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ABSTRACT 

 

 Lake sediments are increasingly important archives of human-environment interactions 

and paleoclimate in the neotropics. In Costa Rica, Anchukaitis and Horn (Palaeogeography, 

Palaeoclimatology, Palaeoecology 221: 35–54, 2005) established a land-use history for Laguna 

Santa Elena (8.9306 N, 82.9275 W, 1055 m elevation), a small lake in the Diquís archaeological 

region, based on pollen and charcoal analyses of a 7-meter sediment core. I carried out stable 

carbon and nitrogen isotope and loss-on-ignition analyses at higher resolution to extend the 

existing 2000-year record. The new geochemical data parallel major trends in botanical proxies 

but also reveal aspects of human and environmental dynamics not apparent in the prior analysis. 

Inferred changes in land use in the watershed are consistent with archaeological evidence. 

Geochemical trends strongly suggest a population collapse at the site around the time of the 

Terminal Classic Drought of the Mayan region. The generally close correspondence between 

microfossil assemblages and geochemistry in the Santa Elena core demonstrates the usefulness 

of stable isotope analysis as a first line of investigation in paleoenvironmental research. 

 Sediment samples for carbon isotope analysis need to be acidified to remove carbonates 

that can affect isotope measurements, and debate exists over whether nitrogen isotope analysis 

can use these acidified samples or require non-acidified samples. My thesis research tested the 

effects of pre-analysis acidification of sediment and soil samples from Laguna Santa Elena and a 

second lake in Costa Rica, Laguna Azul (9.9558 N, 83.6519 W, 630 m elevation) in the Central 

Highlands-Atlantic Watershed archaeological region. Results show that acidification may cause 

statistically significant differences in nitrogen isotope values. These differences appear to be 

random and unpredictable, and can manifest as either positive or negative shifts that have the 
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potential to alter or even reverse relative trends in nitrogen isotope signals in lake sediment 

profiles. More tests are needed, but the results of this analysis suggest that researchers should 

avoid dual-mode analysis, in which data for both stable carbon and nitrogen isotopes are 

obtained from a single acidified sample, and should continue analyzing an additional non-

acidified sample to obtain nitrogen isotope values. 
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CHAPTER I 

INTRODUCTION 

 

 The study of lake sediments as archives of paleoenvironmental history typically involves 

the sampling of a single core from the deepest part of the lake (Davis 1989; Lane et al. 2010; 

Taylor et al. 2013a). A variety of microfossils preserved in sediments provide evidence of 

prehistoric human activity around lakes. The presence or absence of Zea mays subsp. mays L. 

(maize) pollen in sediment cores is used as a proxy for the presence or absence of humans in a 

watershed (Goman and Byrne 1998; Clement and Horn 2001; Anchukaitis and Horn 2005; Dull 

2007; Wahl et al. 2007). Additionally, the abundance of macroscopic and microscopic charcoal 

is used as an indicator of local and regional biomass burning (Clark 1990; Whitlock and Larsen 

2001; Whitlock and Anderson 2003; Prichard et al. 2009; Denis et al. 2012). While grains of 

maize pollen in sediments do indicate agriculture, and charcoal fragments can signal agricultural 

fires, the temporal sensitivity of these proxies to changes in land use can be limited, particularly 

in single-core analyses (Lane et al. 2010; Taylor 2011; Taylor et al. 2013a).  

 Limnological conditions and processes of sediment transport, particularly sediment-

focusing in the deepest portion of the lake (Lehman 1975; Davis and Ford 1982; Larson and 

MacDonald 1994), strongly affect concentrations of pollen in lake sediments and create a 

generalizing effect that homogenizes basin inputs and can induce a time lag in the 

paleoenvironmental record (Davis and Ford 1982; Burden et al. 1986; Taylor 2011; Taylor et al. 

2013a). While lake-sediment analyses can reveal important evidence of maize (Bush et al. 1992; 

Islebe et al. 1996; Northrop and Horn 1996; Fisher et al. 2003; Oldfield et al. 2003; Horn 2006), 

grains of maize pollen are much larger than most pollen grains and their deposition is governed  
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by a complexity of factors. These include distance from the lakeshore (Raynor et al. 1972; Islebe 

et al. 1996; Lane et al. 2010), wind speeds, and roughness of land surfaces (Jarosz et al. 2003, 

2005), all of which can limit the presence of maize pollen in sediments. 

 In southern Costa Rica and western Panama, debate exists over the timing and intensity 

of maize agriculture, the use of maize as a subsistence or special-use crop, and the importance of 

climate versus the Spanish Conquest as a driver of population movement and decline (Linares 

and Sheets 1980; Drolet 1988; Hoopes 1991, 1996; Anchukaitis and Horn 2005; Palumbo 2009; 

Taylor 2011; Taylor et al. 2013b). Lake-sediment analyses can help resolve this debate, but due 

to the potential limitations of maize pollen analysis, such investigations can benefit from the 

study of additional proxies.  

In small neotropical watersheds, stable carbon isotope analysis can enhance evidence of 

land-use history revealed by pollen and charcoal assemblages and allow researchers to 

reconstruct a sensitive, temporally-explicit record of the scale and intensity of prehistoric 

agriculture and human land use (Lane et al. 2004, 2008, 2009; Taylor 2011; Taylor et al. 2013b). 

Analyses of total organic carbon and nitrogen abundance, carbon/nitrogen ratio, and stable 

nitrogen isotopic composition in bulk lake sediments can provide additional geochemical 

evidence of agricultural history (Russell et al. 2009; Taylor 2011; Taylor et al. 2013a, b). Stable 

carbon isotope ratios (δ13C) are an especially efficient and effective proxy for reconstructing 

timelines of land-cover change and the intensity of maize agriculture from the sediments of small 

lakes in tropical settings in which conversion of wild vegetation to agriculture involves a shift in 

dominant photosynthetic pathways. Plants of tropical lowland and montane forests primarily use 

the C3 photosynthetic pathway, producing organic matter with δ13C values ranging from –35 to  

–20‰ V-PDB (Bender 1971; O’Leary 1981; Brown 1999; Sage et al. 1999). Maize and many 
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agricultural weeds use the C4 photosynthetic pathway, producing organic matter with δ13C values 

between –14 and –10‰ V-PDB (Bender 1971; O’Leary 1981). Anthropogenic forest clearance 

and replacement of native vegetation by maize and agricultural weeds causes a positive shift in 

δ
13C in lake sediments due to changing terrestrial (allochthonous) organic inputs. This shift in 

δ
13C can be detected through stable isotope analysis and paired with pollen and charcoal 

evidence to reconstruct timelines of prehistoric land use (Lane et al. 2004, 2008, 2009).  

Lake sediments comprise both allochthonous and autochthonous carbon (Meyers and 

Ishiwatari 1993; Meyers 1994; Meyers and Lallier-Vergés 1999). Certain algae can produce a 

signal enriched in the heavier 13C isotope under conditions of limited dissolved CO2, which can 

cause a false C4 vegetation signal in the δ13C of sediments (Mook et al. 1974; Smith and Walker 

1980; Lucas 1983; Huang et al. 1999). Stable carbon isotope ratios in bulk sediments from lakes 

with extensive C4 vegetation may show δ13C values that fall within the range associated with 

organic matter from C3 plants. However, despite the skew to the heavier isotope that can result 

from autochthonous carbon, relative shifts of δ13C over time record land-use history. More 

positive (negative) values for δ13C indicate increasing (decreasing) C4 signals from the watershed 

(Lane et al. 2004, 2008, 2009). 

 Carbon/nitrogen ratios (C/N) and stable nitrogen isotope ratios (δ15N) provide further 

insight into processes operating within lakes and watersheds (Talbot 2001). C/N ratios identify 

the source of organic matter input into lakes (Meyers and Ishiwatari 1993; Tyson 1995; Meyers 

and Lallier-Vergés 1999; Talbot 2001), which can help to sort out terrestrial versus aquatic 

contributions to the δ13C of sediments. C/N ratios of sediments with high terrestrial input are 

generally > 20. Sediments with high aquatic productivity have C/N ratios in the range of 3–9. 
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C/N ratios of 10–20 indicate mixed aquatic and terrestrial input (Meybeck 1982; Hedges et al. 

1986; Tyson 1995; Meyers 1997; Sharpe 2007).  

 Changes in δ15N of lake sediments can be driven by a variety of factors, both internal and 

external to the lake, such as climatic aridity, phytoplankton and microbial activity, changes in 

water depth, sudden pulses of sediment input, natural changes in trophic state, human alteration 

of the watershed, and others (Hassan et al. 1997; Talbot 2001; Russell et al. 2009; Tepper and 

Hyatt 2011; Torres et al. 2012). Interpreting shifts in δ15N can be difficult due to the number of 

biogeochemical processes and sources of N fractionation, but δ15N nevertheless can provide 

valuable paleoenvironmental information when combined with other proxies (Talbot 2001), such 

as diatoms, δ13C, C/N ratios, and other geochemical indicators.  

 While bulk stable carbon and nitrogen isotopes are common proxies for 

paleoenvironmental reconstruction, researchers have disagreed over sample preparation methods 

(Brodie et al. 2011a, b, c). Each sample analyzed on an isotope ratio mass spectrometer (IRMS) 

yields C and N abundance data, as well as δ13C and δ15N values. Processing of carbonate-

containing soils and sediments for δ13C analysis requires acidification of samples prior to 

analysis to remove carbonates and allow an accurate measurement of organic carbon content and 

organic δ13C values. Brodie et al. (2011a, b, c) reported that acidification interferes with accurate 

determinations of N content and δ15N values, primarily by causing a negative directional shift in 

δ
15N values, thus requiring the analysis of a non-acidified fraction for N and δ15N data and an 

acidified fraction for C and δ13C data. For projects with many samples, these additional IRMS 

runs can require a large amount of human labor and instrument time.  

 Recent datasets generated by the Stable Isotope Laboratory at the University of North 

Carolina Wilmington (UNCW), directed by Dr. Chad Lane, suggest that while differences in 
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δ
15N values due to pre-analysis sample acidification may be statistically significant, they may not 

be large enough to alter paleoenvironmental interpretation of the results (C. Lane, personal 

communication, 2012). If this is true, then analyzing a non-acidified fraction for N data is an 

unnecessary step and eliminating it could reduce instrument time and sample costs by half. 

Additionally, while Brodie et al. (2011a, b, c) tested several methods of sample acidification, 

including an in-capsule fumigation method, they did not evaluate the method used by the UNCW 

Stable Isotope Laboratory. The volume of recent work on paleoenvironmental proxies from lake 

and swamp sediments in Costa Rica (e.g. Arford and Horn 2004; Lane et al. 2004, 2009, 2011; 

Anchukaitis and Horn 2005; Haberyan and Horn 2005; Horn 2006, 2007; Horn and Kennedy 

2006; Kennedy and Horn 2008; Filippelli et al. 2010; Taylor 2011; Lane and Horn 2013; Taylor 

et al. 2013a, b; Horn and Haberyan forthcoming) makes the area a valuable location for testing 

this idea.  

 Loss-on-ignition analysis (LOI; Dean 1974) is a simple and inexpensive technique for 

estimating the organic matter (OM), inorganic, and carbonate composition of sediments and 

soils. Changes in influx of OM and inorganic sediments in a lake can indicate watershed 

disturbances and changes in land use. Forest clearance and agriculture destabilize soil and 

increase inorganic contributions to sediments (Oldfield et al. 2003; Enters et al. 2006; Lane et al. 

2008; Bookman et al. 2010), which in turn can drive shifts in δ13C and δ15N values, providing 

evidence of anthropogenic impacts in watersheds.  

 Sediments have important ecological and biogeochemical roles in water quality and 

carbon cycling (Ballinger and McKee 1971; Sutherland 1998). Organic carbon (OC) is the 

principle component of sedimentary OM. LOI provides an estimate of OM, but accurate 

measurement of OC is generally achieved through dry combustion, such as with an induction 
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furnace (Charles and Simmons 1986; Sutherland 1998). LOI is a widely accepted technique for 

estimating OM in sediments and soils (Gosz et al. 1976; Covington 1981; Craft et al. 1991; 

Gagnier and Bailey 1994; Van Der Perk and Van Gaans 1997), and many researchers have 

reported conversion factors between OM and OC developed through regression models 

comparing values for OM derived from LOI versus OC from dry combustion (Roelofs 1983; 

Goldin 1987; David 1988; Lowther et al. 1990; Grewal et al. 1991; Soon and Abboud 1991). 

Sutherland (1998), however, noted widespread concern over the accuracy of LOI for estimating 

OM and OC by conversion (e.g. Howard 1965; Gibbs 1977; Christensen and Malmros 1982; 

Mook and Hoskin 1982; Weliky et al. 1983; Gallardo et al. 1987; Howard and Howard 1990; 

Grewal et al. 1991; Schulte et al. 1991). Sutherland (1998) found that a generally applied 

conversion factor developed for soils of 1.724 between OM and OC is inaccurate for fluvial bed 

sediments. The findings of Sutherland (1998) suggest that the soil conversion factor of 1.724 is 

likely also inaccurate for lake sediments. This thesis research provides an opportunity to compare 

LOI estimates of OM with IRMS determinations of OC for some Costa Rican lake sediments. 

 Researchers have documented a long history of anthropogenic landscape disturbance and 

maize agriculture in southern Costa Rica and western Panama through lake-sediment analyses of 

pollen and charcoal (Behling 2000; Clement and Horn 2001; Anchukaitis and Horn 2005; Horn 

2006), pollen and stable carbon isotopes (Horn et al. 2004; Lane et al. 2004; Taylor et al. 2004), 

diatoms (Haberyan and Horn 2005), and phosphorous (Filippelli et al. 2010). Recent work at 

Laguna Zoncho (Taylor 2011; Taylor et al. 2013a), however, questioned the sensitivity of maize 

pollen deposition to the scale of maize agriculture. Analysis of multiple sediment cores from the 

Zoncho basin revealed a possible lag effect in maize pollen transport to the center of the lake. 

Those results suggest that cultural chronologies established through single-core maize pollen 
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studies linking population collapse with Spanish conquest may be inaccurate by hundreds of 

years, demonstrating the need for more temporally-sensitive proxies of land use in the region. 

 Anchukaitis and Horn (2005) conducted pollen and charcoal analyses on a sediment core 

from Laguna Santa Elena, located ca. 15 km north of Laguna Zoncho, to reconstruct prehistoric 

forest disturbance and maize agriculture in the watershed (Fig. 1). Their results established the 

presence of maize agriculture and the timing of a possible short interval of catchment 

abandonment at Laguna Santa Elena. They linked their data with the larger cultural chronology 

of the area based on archaeological investigations (e.g. Sánchez and Rojas 2002; Soto and 

Gómez 2002). The Santa Elena core yielded evidence of ca. 2000 years of nearly continuous 

human occupation at the site (Anchukaitis and Horn 2005). 

 For this project, I carried out additional studies of the Laguna Santa Elena core to 

construct a record of the scale of prehistoric land use and maize agriculture in the watershed. I 

used a suite of geochemical and isotopic paleoenvironmental proxies, focused primarily on stable 

organic carbon isotope ratios (δ13C), but also including bulk analysis of total organic carbon and 

nitrogen abundances, ratios, and isotopic compositions (%OC, %N, C/N, and δ15N) (Lane et al. 

2004, 2009; Russell et al. 2009; Taylor 2011; Taylor et al. 2013a). I sampled these proxies at the 

29 stratigraphic levels included in the original Anchukaitis and Horn (2005) study and at 29 

additional levels to increase the sampling resolution from ca. 16–32 cm to ca. 8–16 cm. 

Additionally, I report data from LOI analysis I performed and previously unpublished data from 

Anchukaitis and Horn to build an understanding of organic versus inorganic and carbonate 

sedimentation in the lake, and I compare OM estimated by LOI with OC determined through 

IRMS analysis. These new results improve the regional paleoenvironmental proxy record with 

work centered on Laguna Santa Elena, add to the work of Taylor (2011) and Taylor et al.
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Figure 1: Location of Laguna Santa Elena and Laguna Azul. Map also shows other sites in 
Costa Rica and Panama mentioned in the text, with additional archaeological regions and 
selected physical features. After Horn (2006).
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(2013a, b) at Laguna Zoncho, and strengthen previous reconstructions of land-use history based 

on maize pollen and charcoal proxies.  

 In this thesis I also report the results of an assessment of the effects of pre-analysis 

sample acidification on δ15N results for carbonate-containing soils and sediments from Costa 

Rica. This analysis includes samples from 58 stratigraphic levels of the Laguna Santa Elena lake 

sediments and underlying soil profile, and 18 samples from a test sediment core from Laguna 

Azul (Fig. 1), a small lake in the Río Reventazón Valley of Costa Rica near the archaeological 

site of Guayabo de Turrialba (Horn 2006). 

 My research was designed to answer the following questions: 

1. What do bulk stable isotope and loss-on-ignition analyses reveal about the nature and 

timing of prehistoric land use at Laguna Santa Elena, and do these analyses confirm or 

refute the timeline and interpretations established by Anchukaitis and Horn (2005)? 

2. How does organic matter content estimated by loss-on-ignition compare to carbon 

content determined through IRMS analysis for Laguna Santa Elena sediments? 

3. How do the results of this research relate to recent work at nearby Laguna Zoncho and 

ongoing archaeological investigations in southern Pacific Costa Rica and western 

Panama?  

4. Does comparison of δ15N results from acidified and non-acidified samples from Laguna 

Santa Elena and Laguna Azul using the UNCW acidification protocol indicate that 

acidification causes statistically significant differences in δ15N values that might warrant 

analysis of an additional non-acidified fraction? 

5. If so, are those differences scientifically important or meaningful, in that the differences 

would affect the paleoenvironmental interpretation of the δ15N results?
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CHAPTER II 

ARCHAEOLOGICAL SETTING AND PREVIOUS PROXY ANALYSES AT  

LAGUNA SANTA ELENA AND LAGUNA AZUL 

 

A. Archaeological Setting of Laguna Santa Elena 

 Laguna Santa Elena (8°55ˊ50˝ N, 82°55ˊ39˝ W, 1055 m elevation) (Fig. 1) is a small 

(0.13 ha), shallow (3.8 m) lake located in southern Pacific Costa Rica (Horn and Haberyan 

forthcoming). The lake occupies a landslide-truncated stream channel. Anchukaitis and Horn 

(2005) showed through pollen and charcoal analyses of lake sediments that pre-Columbian 

human inhabitants in the Laguna Santa Elena watershed practiced landscape management and 

maize agriculture at varying intensities over a long duration, as found at other sites in southern 

Costa Rica and Panama (Bush and Colinvaux 1994; Northrop and Horn 1996; Behling 2000; 

Clement and Horn 2001). The proxies allowed Anchukaitis and Horn to reconstruct a ca. 2000-

year history of continuous occupation in the area. 

 The following summary, adapted from Anchukaitis and Horn (2005), provides an 

archaeological background for the area that includes Laguna Santa Elena. The lake is situated in 

the archaeological region designated Greater Chiriquí, which includes southern Pacific Costa 

Rica and western Panama. Greater Chiriquí is further divided into sub-regions, with the Costa 

Rican segment designated the Diquís sub-region. Humans have occupied the area continuously 

for thousands of years (Barrantes et al. 1990; Constenla 1991; Barrantes 1993; Lange 1992, 

1993; Corrales 2000; Palumbo 2009).  

 Developing a cultural chronology for the area continues to be problematic, with most 

current dates derived from archaeological contexts and pottery comparisons (Corrales et al. 
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1988; Drolet 1992; Hoopes 1996; Corrales 2000; Palumbo 2009). Corrales (2000) dated the 

earliest sedentary habitation of the Diquís sub-region from 3450 B.P. in the Sinancrá Phase, but 

the chronology remains poorly established. The Aguas Buenas period, dated by ceramic 

typology, may have begun sometime between 2450 and 1750 B.P. (Drolet 1984; Haberland 

1984a, b; Hoopes 1996; Corrales 2000; Palumbo 2009). The Chiriquí period followed the Aguas 

Buenas, spanning ca. 1150 to 450 B.P. (Quilter and Vargas 1995; Baudez et al. 1996; Corrales 

2000; Anchukaitis and Horn 2005). Hoopes (1996) postulated that populations in the Aguas 

Buenas period were small and dispersed, while Linares et al. (1975) reported chiefdom-level 

societies that they termed “Barriles” in western Panama. Bugaba Phase ceramics have been dated 

to 1750–1350 B.P. in western Panama, which overlaps and corresponds stylistically to typologies 

of the Aguas Buenas period. Archaeological investigations at Laguna Zoncho (Fig. 1) yielded 

radiocarbon dates later than 1750 B.P. for Aguas Buenas materials (Soto and Gómez 2002). 

Considerable debate continues over the timing, chronology, and connections between the Aguas 

Buenas, Barriles, Bugaba, and other cultural phases and periods in the Greater Chiriquí region 

(Palumbo 2009).  

 Several lake-sediment studies have revealed chronologies of maize agriculture in the 

Greater Chiriquí region. Behling (2000) found maize pollen in a core from Laguna Volcán (Fig. 

1) in western Panama beginning ca. 1800 B.P. Clement and Horn (2001) demonstrated a 3000-

year history of maize agriculture at Laguna Zoncho, although more recent work on bulk stable 

carbon isotopes (Taylor et al. 2013b) showed that the decline in maize agriculture that Clement 

and Horn associated with Spanish Conquest may have occurred a few centuries earlier. These 

studies showed that maize was cultivated in southern Costa Rica and western Panama prior to the 
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Aguas Buenas period, confirming its presence in both the Diquís and Chiriquí sub-regions during 

the Aguas Buenas and the Chiriquí cultural phases (Anchukaitis and Horn 2005). 

 Several archaeological sites have been identified in the area around Laguna Santa Elena. 

Sánchez and Rojas (2002; M. Sánchez, personal communication, 2013) identified several house 

sites on the hilltops surrounding the lake from which they recovered lithic artifacts and Aguas 

Buenas period ceramics, but no Chiriquí artifacts. They found a larger site named Fila Tigre ca. 2 

km east of Laguna Santa Elena that contained predominantly Aguas Buenas period ceramics, but 

also had a minor presence of Chiriquí period artifacts. Sánchez and Rojas argued that Fila Tigre 

was likely a significant regional center and that the area conforms to expected settlement patterns 

of large centers associated with dispersed hamlet sites for the Diquís sub-region (Linares and 

Sheets 1980; Drolet 1992; Anchukaitis and Horn 2005). 

 The earliest identified maize macrofossils in the region are from highland Panama and 

date to 1750 B.P. (Galinat 1980). Though no earlier macrofossils have been found, Galinat 

(1980) and Smith (1980) argued that maize was introduced prior to 1750 B.P. in the region, 

which is consistent with the pollen record (Horn 2006). Macrobotanical remains and stone 

grinding implements from the Chiriquí region of western Panama show a shift to maize and bean 

subsistence following Archaic occupations (Haberland 1984b); however, Drolet (1992) claimed 

that similar evidence does not exist for the Diquís sub-region. While carbonized maize and bean 

remains have been reported for the area (Blanco and Mora 1994), Hoopes (1991, 1996) argued 

that maize may not have been a staple, but may have instead been a special-use crop, possibly for 

ritual feasting.  

 In addition to debate over the archaeological chronology for the Diquís and the cultural 

and dietary role of maize in the region, disagreement also exists over subsistence strategies and 
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the intensiveness of agriculture (Anchukaitis and Horn 2005; Palumbo 2009). Linares and Sheets 

(1980) argued that the inhabitants were intensive farmers, while Drolet (1988) emphasized the 

role of gathered wild resources. Focusing on the wider region, Iltis (2000) and Iltis and Benz 

(2000) proposed that maize was not initially cultivated in tropical America for its grain, but for 

its sugary stems. Smalley and Blake (2003) argued that alcohol produced from corn may have 

played a role in developing complexity. 

 Despite these many uncertainties, researchers have argued that the development of social 

complexity in Central and Mesoamerica, including South Pacific Costa Rica, may have been 

linked to a transition to subsistence-based maize agriculture. For example, Corrales et al. (1988) 

suggested that the increased importance of maize agriculture may be directly tied to major 

cultural shifts toward political, economic, and social complexity in the Chiriquí period. However, 

Hoopes (1996) noted that disentangling the effects of maize intensification and increasing 

complexity is very difficult. Studies of lake sediments as archives of paleoenvironmental and 

land use signals have the potential to contribute to knowledge on the subject. 

 

B. Previous Proxy Work at Laguna Santa Elena 

 Anchukaitis and Horn (2005) recovered a 7.13-m long sediment core in successive one-

meter drives from Laguna Santa Elena using a Colinvaux-Vohnout (C-V) locking piston corer 

(Colinvaux et al. 1999) operated from an anchored floating platform. A plastic tube fitted with a 

rubber piston was used to recover a core of the uppermost, watery sediments. This mud-water 

interface (MWI) core was extruded in the field, sliced at 1 cm intervals, and placed in labeled 

plastic bags. The C-V core sections were returned to the Laboratory of Paleoenvironmental 

Research at the University of Tennessee in their original aluminum coring tubes, where the tubes 
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were opened on a router. The sediment core sections were sliced longitudinally, photographed, 

and described. The Laguna Santa Elena sediment core comprises ca. 6 m of lacustrine sediments 

underlain by ca. 1 m of soil. Anchukaitis and Horn obtained six dates on wood and plant 

macrofossils using AMS radiocarbon analysis, five from the lacustrine section of the core and 

one from underlying soil (Table 1). They calibrated dates using CALIB v.4.4 (Stuiver and 

Reimer 1993) and the INTCAL98 dataset (Stuiver et al. 1998), and used the weighted means of 

the probability distributions of the calibrated ages and linear interpolation to establish a 

chronology.  

Anchukaitis and Horn (2005) sampled 29 stratigraphic levels of the core at intervals of 

ca. 16–32 cm for pollen and microscopic charcoal analyses. They obtained and reported 

microfossil data for 25 samples from the lacustrine portion of the core, in which pollen was well 

preserved, but did not count the lowest four samples as they contained few pollen grains. They 

processed additional samples for macroscopic charcoal centered on the intervals sampled for 

pollen and microscopic charcoal. Loss-on-ignition analysis was carried out at each level sampled 

for pollen to estimate the organic, inorganic, and carbonate content of the sediments; these data 

were included on diagrams in Anchukaitis (2002), but not published. 

 The Laguna Santa Elena record supports archaeological evidence of a long human 

presence on the landscape (Anchukaitis and Horn 2005). Maize pollen at Santa Elena is 

consistent with sediment records from Laguna Zoncho (Clement and Horn 2001; Taylor 2011; 

Taylor et al. 2013a, b) and Laguna Volcán (Behling 2000). At Santa Elena, maize pollen is 

absent in the level dated to ca. 540 cal yr B.P., which may represent a temporary abandonment of 

the site near the time of Spanish arrival (Anchukaitis and Horn 2005). Taylor (2011) and Taylor 

et al. (2013a, b), however, showed that the chronology of maize decline and site abandonment at 
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Table 1: Radiocarbon dates for the Laguna Santa Elena sediment core. 
 

Sample  Depth Material Dated Radiocarbon Age Calibrated Age yr. B.P. 

(2-sigma) 

Relative Area Under the 

Calibration Curve 

Weighted Mean 

Calibration Age yr. B.P. 

B-158436 156 wood 150 ± 40 yr. B.P. 40–0 

160–60 

290–170 

0.174 

0.346 

0.480 

150 

B-150706 312 mixed plant 

material 

640 ± 60 yr. B.P. 670–540 1.000 610 

B-145347 434 wood 1240 ± 40 yr. B.P. 1260–1060 1.000 1170 

B-145348 530 charcoal 1510 ± 40 yr. B.P. 1320–1310 

1420–1330 

1510–1430 

0.030 

0.694 

0.277 

1400 

B-141242 580 wood 1880 ± 30 yr. B.P. 1880–1720 1.000 1810 

B-121243 683 wood 1950 ± 30 yr. B.P. 1850–1820 

1950–1860 

1970–1960 

1990–1980 

0.145 

0.831 

0.018 

0.006 

1890 

After Anchukaitis and Horn (2005). All analyses were performed by Beta Analytic Laboratory. Radiocarbon ages were calibrated by Anchukaitis and Horn 

(2005) using CALIB v4.4 (Stuiver and Reimer 1993) and the INTCAL98 dataset (Stuiver et al. 1998). Recalibration using CALIB v7.0.1 (Stuiver and Reimer 

1993) and the INTCAL13 dataset (Reimer et al. 2013) yielded age ranges the same or very close to those obtained by Anchukaitis and Horn (2005), with 

differences of 10 years or less in the weighted means. Weighted means are based on Telford et al. (2004). Calibrated dates are rounded to the nearest decade.
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Laguna Zoncho established by Clement and Horn (2001) from pollen analysis of a single central 

core may be inaccurate by ca. 200 years, indicating a need for additional research on the timing 

of population movement in the area. 

 

C. Background, Setting, and Previous Proxy Work at Laguna Azul 

 Laguna Azul (9°57ˊ21˝ N, 83°39ˊ07˝ W, 630 m elevation) (Fig. 1) was a small lake in 

the Río Reventazón Valley near the major, complex Period V (1450–950 B.P.) to VI (950–400 

B.P.) archaeological site of Guayabo de Turrialba, which is part of the Central Highlands–

Atlantic Watershed Archaeological Region (Snarskis 1981; Horn 2006). Horn and colleagues 

first visited Laguna Azul in 1991 when it was still an intact lake surrounded by agricultural fields 

(Horn and Haberyan 1993); however, when Horn and students returned to the lake in 1992, 

destruction of the site was underway for the development of a hydroelectric project (Horn 2006). 

They recovered a mud-water interface core using a plastic tube fitted with a rubber piston and a 

70-cm section beginning about 3 m below the sediment-water interface using a square-rod piston 

corer (Wright et al. 1984). These were intended as test samples to be followed up by full-scale 

coring later, but the lake was converted to a cement reservoir before additional coring could take 

place. Three radiocarbon dates on leaf fragments and bulk sediment from the 70-cm section 

show that this core segment captured Pre-Columbian sediments (Horn 2006, unpublished data). 

Pollen analysis showed evidence of maize cultivation in the Laguna Azul watershed during the 

La Cabaña phase (Period VI) (Horn 2006).
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CHAPTER III 

STABLE ISOTOPE ANALYSIS OF LAND-USE HISTORY AT  

LAGUNA SANTA ELENA, COSTA RICA 

 

A. Methods 

i. Sampling 

 I sampled the Santa Elena core for bulk stable carbon (δ13C) and nitrogen (δ15N) isotope 

analysis at the same 29 levels that Anchukaitis and Horn (2005) examined for pollen and 

charcoal. I also took samples from 29 additional stratigraphic levels for stable isotope and LOI 

analyses centered between the intervals investigated by Anchukaitis and Horn, increasing the 

sampling resolution to ca. 8–16 cm for this study. Samples for isotope and LOI analyses were 1 

cm3 volume. My paleoenvironmental interpretations make use of isotope results for 50 samples 

from the lacustrine portion of the core, while eight additional samples from the soil profile are 

added to my investigation of whether δ15N analysis requires non-acidified samples. 

 

ii. Loss-on-Ignition 

 Following Dean (1974), samples for LOI analysis were weighed in porcelain crucibles, 

oven-dried at 100 °C for 24 h to remove water, and reweighed. They were then combusted at 550 

°C in a furnace for 1 h, cooled, and weighed to estimate organic matter content. Following the 

550 °C burn, the samples were again combusted in a furnace, this time at 1000 °C for 1 h, 

cooled, and weighed to estimate carbonate and inorganic content. 
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iii. Sample Acidification and Stable Isotope Analysis 

Bulk organic carbon and nitrogen content and isotope analysis followed the methods of 

Lane et al. (2013a) and the laboratory protocol of the University of North Carolina Wilmington 

(UNCW) Stable Isotope Laboratory. Samples were oven-dried at 50 °C and then ground to a fine 

powder and homogenized with an ethanol-rinsed mortar and pestle. The ground samples were 

split roughly into two aliquots, with one aliquot ready for δ15N analysis as the non-acidified 

fraction (Brodie et al. 2011c). Samples analyzed for δ13C composition were moistened with 

distilled water and fumigated with 12 N hydrochloric acid (HCl) for 2 h in a desiccator, then 

vented for 24 h. Following acidification, the samples were dried on a hotplate (surface 

temperature ca. 60 °C) until free of water and residual acid (ca. 48 h), and then reground. 

Acidification and drying took place in ceramic crucibles. Sample preparation took place in the 

Laboratory of Paleoenvironmental Research at the University of Tennessee.  

Subsamples for δ13C and δ15N analysis were loaded into tin capsules and shipped to the 

UNCW Stable Isotope Laboratory. Isotope samples were randomized for analysis in the loading 

process so that they did not enter the IRMS in stratigraphic sequence relative to the sediment 

core. All samples were analyzed in 100% duplicate. The 30 samples with the highest standard 

deviation between duplicate analyses were run a third time, yielding ca. 26% triplicate analyses 

to better approximate true data values. Results from replicate runs were averaged to produce a 

single value for each datum. The samples were analyzed on a Costech Elemental Analyzer 

coupled to a Thermo Delta V Plus Mass Spectrometer. Carbon and nitrogen isotopic 

compositions are reported in standard δ-per mil notation, with carbon values relative to the 

Vienna-Pee Dee belemnite (V-PDB) marine carbonate standard and nitrogen values relative to 

AIR, where R = 13C/12C or 15N/14N and:  
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δ
13C or δ15N(permil) = 1000[(Rsample/Rstandard)-1] (1) 

 

Repeated analyses of USGS 40 glutamic acid standard indicated that instrument precision for 

these samples was better than ±0.16‰ for C and N.  

 Results for stable isotope analysis and loss-on-ignition for the Laguna Santa Elena 

samples were plotted along with original pollen and charcoal data using C2 (Juggins 2007). 

Whereas Anchukaitis and Horn (2005) plotted proxies by depth, I plotted previous and new 

proxy data by calibrated age. I used the weighted means of the probability distributions (Telford 

et al. 2004) of the calibrated ages of the five dates on the lacustrine section (Table 1), together 

with a surface age of –51 cal yr B.P. (AD 2001, year of core collection), to estimate the ages for 

each sampled horizon using linear interpolation. Recalibration of the AMS dates using CALIB 

v7.0.1 (Stuiver and Reimer 1993) and the INTCAL13 dataset (Reimer at al. 2013) yielded age 

ranges the same or very close to those obtained by Anchukaitis and Horn (2005) using the 

INTCAL98 dataset (Stuiver et al 1998), with differences of 10 years or less in the weighted 

means. Due to the small difference, and to facilitate comparison with the original study, I 

constructed my chronology using the weighted means reported by Anchukaitis and Horn (2005).  

 

iv. Statistical Methods for OM/OC Comparison 

 Organic carbon percentages determined by IRMS analysis were compared to organic 

matter percentages estimated by LOI for 48 sediment samples using simple linear regression. 

The regression equation is: 

 

 %OC = ± Intercept + Slope * %OM (2) 



20 
 

The conversion factor between OM and OC is then derived from: 

 

 CF = 1 / Slope (3) 

 

if the intercept approximates zero (Sutherland 1998). Carbon content data from the non-acidified 

fractions were used to replicate the analyses of Sutherland (1998). The lowest sediment sample 

(584 cm depth, ca. 1840 cal yr B.P.) was excluded from the analysis due to unusually low C and 

N contents. A second sample (427 cm, ca. 1140 cal yr B.P.) was identified as an outlier and 

removed.  

 Two regression models were compared. The first included all 48 sediment samples. 

Examination of model residuals revealed that the regression was heavily influenced by samples 

with low (< 20%) and high (> 42%) OM. In the second model, three stratigraphic samples with 

OM < 20% (32, 40, and 53 cm) and two samples (427 and 440 cm) with OM > 42% were 

removed. Two-tailed paired t-tests were used to compare %OC determined through IRMS 

analysis to %OC obtained through conversion from %OM. Regression modeling was performed 

in the R Version 3.0.1 environment for statistical computing (R Core Team 2013). Graphical 

outputs were produced in R using the “ggplot2” package (Wickham 2009). 

 

B. Results 

i. Paleoenvironmental Reconstruction 

 Anchukaitis and Horn (2005) provided a detailed core description, which is summarized 

here. The upper ca. 6 m of the Laguna Santa Elena core consists of lacustrine silts and clays with 

organic matter contents of ca. 15–43%, as estimated by loss-on-ignition. The lake sediments are 
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underlain by ca. 1 m of soil. The lacustrine portion contains three volcanic tephra layers at 538, 

415–417, and 312–314 cm. Radiocarbon analyses of six samples revealed a normal stratigraphic 

sequence dating to 1950±30 14C yr B.P., based on a wood fragment in the underlying soil (Table 

1). The base of the lacustrine core (596 cm) is 16 cm below a radiocarbon date of 1880±30 14C yr 

B.P. (1880–1720 cal yr B.P.; weighted mean 1810 cal yr B.P.). 

 Anchukaitis and Horn (2005) found variations over time in pollen percentages of trees 

and herbaceous taxa in the Santa Elena core, although maize pollen was present in all but three 

samples (Fig. 2), based on additional low-power scans of up to five microscope slides from each 

level (Horn 2006). All 50 isotope samples yielded isotopic signals in abundances adequate for 

interpretation (Fig. 3). Anchukaitis and Horn (2005) delineated informal zones based on 

microfossil assemblages and the regional archaeological chronology. I maintain their zonation 

here for ease of discussion. Below I present the LOI and isotope analyses in the context of the 

major trends in botanical proxies documented by Anchukaitis and Horn.  

 

Zone 3 (ca. 1840 to 1510 cal yr B.P.)  

 Geochemically, this zone corresponding to the earliest interval of lacustrine 

sedimentation is characterized by the lowest δ13C values in the record and δ15N values that are 

also low, with both increasing at the upper boundary. Pollen shows intact mature tropical 

premontane forest with a high diversity of pollen taxa, tree pollen typical of moist lowland and 

premontane forests in Costa Rica (Rodgers and Horn, 1996), and rare occurrences of disturbance 

taxa. The minor presence of maize pollen, coupled with the lowest levels of charcoal in the core, 

shows a slight human presence on the landscape at this time. High total organic matter, along 

with high organic C content and low δ13C values, support the interpretation of low disturbance 



 

 

Figure 2: Laguna Santa Elena pollen diagram. All data are from Anchukaitis and Horn (2005) but plotted here by estimated age. Ages 
were estimated using linear interpolation between levels dated by AMS 
probability distributions of the calibrated ages used as the single age estimate for each dated level. Taxa are arranged by l
with trees and shrubs on the left, followed by herbs and ferns. Undifferentiated pollen in the Urtica
could include both woody and herbaceous taxa. Pollen percentages for all taxa except Cyperaceae are calculated based on a pol
sum that excludes Cyperaceae. Monolete and trilete fern spores and 
pollen plus spores. Spores of Anthocerotophyta in the Santa Elena sediments may be an indicator of agricultural activity (Anc
and Horn 2005). Zea mays refers to Zea mays subsp. 
revealed by additional low-power scans (black +, 
based on microfossil assemblages and are retained here.
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Laguna Santa Elena pollen diagram. All data are from Anchukaitis and Horn (2005) but plotted here by estimated age. Ages 
were estimated using linear interpolation between levels dated by AMS 14C analyses of macrofossils, with the w
probability distributions of the calibrated ages used as the single age estimate for each dated level. Taxa are arranged by l
with trees and shrubs on the left, followed by herbs and ferns. Undifferentiated pollen in the Urticales order and Mimosoideae pollen 
could include both woody and herbaceous taxa. Pollen percentages for all taxa except Cyperaceae are calculated based on a pol
sum that excludes Cyperaceae. Monolete and trilete fern spores and Anthocerotophyta spores are expressed as percentages of total 
pollen plus spores. Spores of Anthocerotophyta in the Santa Elena sediments may be an indicator of agricultural activity (Anc

subsp. mays, or maize pollen. Bars indicate the presence/absence of 
(black +, longer gray –). Zones were informally delineated by Anchukaitis and Horn (2005) 

based on microfossil assemblages and are retained here. 

 

Laguna Santa Elena pollen diagram. All data are from Anchukaitis and Horn (2005) but plotted here by estimated age. Ages 
C analyses of macrofossils, with the weighted mean of the 

probability distributions of the calibrated ages used as the single age estimate for each dated level. Taxa are arranged by life form, 
les order and Mimosoideae pollen 

could include both woody and herbaceous taxa. Pollen percentages for all taxa except Cyperaceae are calculated based on a pollen 
expressed as percentages of total 

pollen plus spores. Spores of Anthocerotophyta in the Santa Elena sediments may be an indicator of agricultural activity (Anchukaitis 
the presence/absence of maize pollen as 

. Zones were informally delineated by Anchukaitis and Horn (2005) 



 

 
Figure 3: Laguna Santa Elena proxy diagram. 
analyses. Ages used for plotting proxies were estimated using linear interpolation between levels dated by AMS 
macrofossils, with the weighted mean of the probability distributio
dated level. Isotopic geochemistry and some LOI results are from the present study; other proxy data are from Anchukaitis and
(2005 and unpublished). Zea mays refers to Zea mays

revealed by additional low-power scans (black +, 
black shows carbonate. Nitrogen content and nitrogen isoto
carbon isotope ratio are based on acidified samples. C/N ratio is reported for acidified samples to avoid bias from inorganic
carbonates.

% Pollen +/- Dry mass Black = % Carbonate
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 Figure includes maize pollen and results from LOI, charcoal, and geochemical 
analyses. Ages used for plotting proxies were estimated using linear interpolation between levels dated by AMS 
macrofossils, with the weighted mean of the probability distributions of the calibrated ages used as the single age estimate for each 
dated level. Isotopic geochemistry and some LOI results are from the present study; other proxy data are from Anchukaitis and

Zea mays subsp. mays (maize). Bars indicate the presence/absence of 
power scans (black +, longer gray –). For % inorganic, gray shading shows total inorganic content and 

black shows carbonate. Nitrogen content and nitrogen isotope ratio are based on non-acidified samples, while carbon content and 
carbon isotope ratio are based on acidified samples. C/N ratio is reported for acidified samples to avoid bias from inorganic

δ13C‰ Black = % Carbonate Influx (fragments cm-2 yr-1) 
 

maize pollen and results from LOI, charcoal, and geochemical 
analyses. Ages used for plotting proxies were estimated using linear interpolation between levels dated by AMS 14C analyses of 

ns of the calibrated ages used as the single age estimate for each 
dated level. Isotopic geochemistry and some LOI results are from the present study; other proxy data are from Anchukaitis and Horn 

Bars indicate the presence/absence of maize pollen as 
inorganic content and 

acidified samples, while carbon content and 
carbon isotope ratio are based on acidified samples. C/N ratio is reported for acidified samples to avoid bias from inorganic 

δ15N‰ 
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and predominantly C3 tropical vegetation in the watershed during the initial interval of lacustrine 

sedimentation following formation of the lake. The low δ15N values suggest low aquatic 

productivity with low terrestrial nutrient delivery. C/N ratios indicate mixed terrestrial and 

aquatic inputs. 

 

Zone 2c (ca. 1510 to 1140 cal yr B.P.)  

 This zone shows a marked intensification of agriculture and land clearance in the Santa 

Elena watershed beginning no later than ca. 1510 cal yr B.P. Organic C and N contents drop 

between zone 3 and zone 2c, while δ13C and δ15N ratios increase substantially in response to 

forest clearance and increased maize agriculture. C/N ratios increase to the middle of zone 2c 

(ca. 1360 cal yr B.P., 512 cm), suggesting an increase in the terrestrial component of the 

sediment. LOI data indicate increased inorganic composition of the lake sediments, perhaps from 

erosion from agricultural fields. Pollen counts indicate clearance of tropical forest and 

replacement by grasses and other disturbance taxa. This zone also shows increased maize pollen 

percentages and the highest charcoal influx in the profile. Zone 2c has abundant charcoal 

fragments in the 500–1000 µm and > 1000 µm size classes, which are found only sporadically in 

other parts of the core. However, the top of zone 2c begins a transition in human activity, 

including reduced maize agriculture and a period of forest regrowth, indicated by a shift in proxy 

data.  

 The timing of this shift just below the zone 2c/2b boundary at ca. 1140 cal yr B.P. (427 

cm) is around the time of the transition between the Aguas Buenas and Chiriquí cultural phases 

and also roughly corresponds to the onset of the Mayan Terminal Classic Drought. The samples 

at depths of 440 cm (estimated age 1180 cal yr B.P.) and 427 cm (ca. 1140 cal yr B.P.) show the 
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highest organic content in the core and continued high charcoal influx. The low inorganic 

content at this time suggests a decline in soil disturbance due to decreased agriculture in the 

basin. A negative excursion of δ13C and δ15N values continues through the top of zone 2c, 

indicating decreasing maize agriculture and an increasing C3 vegetation signal as the Aguas 

Buenas period ends. 

 

Zone 2b (ca. 1140 to 880 cal yr B.P.) 

 This zone shows changes in proxy signals that indicate changes in the pattern of human 

activity in the watershed beginning ca. 1140 cal yr B.P. The negative excursion of isotopic 

values that started in zone 2c continues into the beginning of 2b, paralleled by decreases in 

organic C and N content. The trend in δ13C values indicates a shift toward more C3 vegetation, 

and δ15N reaches its lowest values in the core at ca. 1090 cal yr B.P., early in zone 2b. The influx 

of microscopic and macroscopic charcoal decreases sharply across the zone 2c/2b boundary. 

These changes point to reduced agricultural activity, an interpretation supported by increased 

percentages of pollen of forest and successional taxa (Quercus, Alnus, Acalypha, and Urticales) 

and a slight decrease in disturbance taxa. However, toward the middle of zone 2b, δ13C and δ15N 

values increase, with the former reaching its highest values in the profile, suggesting increased 

maize agriculture beginning ca. 1010 cal yr B.P. (399 cm). C/N ratios peak for the core in this 

same sample, indicating increased terrestrial input to the lake, likely caused by increased 

agricultural activity in the watershed.  
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Zone 2a (ca. 880 to 490 cal yr B.P.)  

 This zone begins with a peak in maize pollen, and δ13C values show a high C4 vegetation 

signal. But within zone 2a, at ca. 720 cal yr B.P. (336 cm), tree pollen percentages increase, grass 

and other disturbance taxa decrease, and carbon isotopic ratios shift strongly toward C3 

vegetation, indicating forest regrowth. The absence of maize pollen led Anchukaitis and Horn 

(2005) to propose a possible brief hiatus in maize agriculture at ca. 540 cal yr B.P. (288 cm), but 

this interpretation is not supported by δ13C data. Charcoal influx, organic matter, and C and N 

contents remain relatively stable through zone 2a. C/N ratios across the zone suggest mixed 

terrestrial and aquatic inputs. Values for δ13C and δ15N also stabilize toward the top of zone 2a, 

with δ13C particularly establishing a constant background transitioning from the Chiriquí period 

into Post-Contact. 

 

Zone 1 (ca. 490 cal yr B.P. to present)  

 This zone begins the Post-Contact period and shows the return of maize agriculture and 

land use, albeit with an increased level of forest and successional taxa (Alchornea, 

Melastomataceae-Combretaceae, Weinmannia, Hedyosmum, Celtis, and Urticales) relative to 

previous levels. Signals remain stable across all proxies until modern time. Beginning at 80 cm 

(ca. 50 cal yr B.P.), inorganic input increases, and δ13C and δ15N values show positive 

excursions. Maize pollen increases and low C/N ratios suggest increased productivity in the lake, 

likely signaling increased settlement around the lake. Proxy signals remain highly variable, with 

maize agriculture and landscape disturbance continuing to the top of the core. 
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ii. Comparison of Organic Matter to Organic Carbon 

 The first regression model using 48 stratigraphic sediment samples yielded an r2 value of 

0.883, with intercept = –9.861 ± 1.066 (p < 0.001) and slope = 0.673 ± 0.036 (p < 0.001) (Table 

2). This gives a conversion factor of ca. 1.486 between OM and OC. The second regression 

model, with three low OM (< 20%) and two high OM (> 42%) samples removed, yielded an r2 

value of 0.899, with intercept = –14.671 ± 1.284 (p < 0.001) and slope = 0.832 ± 0.043 (p < 

0.001). This gives a conversion factor of ca. 1.111 between OM and OC. 

 

C. Discussion 

i. Land-Use History 

What do bulk stable isotope and loss-on-ignition analyses reveal about the nature and timing of 

prehistoric land use at Laguna Santa Elena, and do these analyses confirm or refute the timeline 

and interpretations established by Anchukaitis and Horn (2005)? 

 

 My thesis research yielded a fine-grained reconstruction of prehistoric land use and maize 

agriculture in the watershed of Laguna Santa Elena that extends prior proxy interpretations based 

on pollen and charcoal. Isotopic analysis at twice the resolution of the original pollen and 

charcoal study revealed new details of land use history. Stable isotope evidence indicates rapid 

forest clearance and increased maize agriculture shortly after ca. 1650 cal yr B.P. Stable carbon 

isotope signals of intensive maize agriculture and high charcoal influx indicative of extensive 

biomass burning are present between ca. 1500 and 1140 cal yr B.P. These signals, together with 

higher maize pollen percentages, suggest a strong human presence in the Santa Elena watershed 

during the Aguas Buenas period. Data for δ13C, δ15N, and C/N show a 
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Table 2: Regression model statistics for comparison of OC and OM. 
 

Model r
2 

Intercept ± SE PIntercept Slope ± SE PSlope CF
1 

48 Samples 0.883 –9.861 ± 1.066 < 0.001 0.673 ± 0.036 < 0.001 1.486 
       

43 Samples 0.899 –14.671 ± 1.284 < 0.001 0.832 ± 0.043 < 0.001 1.111 

 
1CF = Conversion factor obtained by dividing one by the regression slope.
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negative excursion and a discontinuity in land use beginning ca. 1140 cal yr B.P., corresponding 

to the transition from the Aguas Buenas to the Chiriquí period. As noted by Anchukaitis and 

Horn (2005), the timing of this isotopic discontinuity roughly coincides with a regional drought 

event in Costa Rica (Horn and Sanford 1992) and with the Mayan Terminal Classic Drought 

(Hodell et al. 2005), which affected the wider circum-Caribbean region (Lane et al. in press). 

While the continued presence of maize pollen across the 2c/2b transition indicates a low-

intensity human presence in the watershed, the abrupt decline in proxy signals of land use ca. 

1140 B.P. likely indicate population collapse at Santa Elena (see below). 

 The discontinuity in land use following the transition from the Aguas Buenas to the 

Chiriquí period is followed by an increase in isotopic values to the strongest δ13C signal of C4 

agriculture in the profile at ca. 1010 cal yr B.P. Values for δ13C and signals of maize agriculture 

fluctuate through the early Chiriquí period from ca. 1010 to 720 cal yr B.P. These fluctuations 

may indicate that the extent of maize agriculture in the watershed varied across time, an 

interpretation not supported by the maize pollen data alone. Values for δ13C decline following 

the final signal of expansive C4 vegetation at 720 cal yr B.P. Both maize pollen and δ13C values 

from that time forward indicate limited maize agriculture in the watershed, a pattern that 

continues into modern times. Beginning ca. 70–50 cal yr B.P., proxy signals of intensive 

landscape disturbance and maize agriculture return to the Santa Elena watershed. Charcoal influx 

increases, followed by maize pollen percentages and inorganic content. Values for δ13C and δ15N 

become highly variable, with δ15N particularly increasing, likely in response to increased 

inorganic input. C/N ratios decrease, indicating possible increased lake productivity in response 

to increased terrestrial nutrient delivery. 
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 Values for δ13C in the Santa Elena sediments range between ca. –30‰ and –14‰. This 

range is much wider than many other lakes in Costa Rica and the circum-Caribbean, including 

nearby Laguna Zoncho. This suggests that periods of both maize agriculture and forest recovery 

were very intense in the watershed and that the Santa Elena core recorded very strong signals of 

land use over the history of the lake. A portion of the isotopic shifts toward increased C4 signals 

is probably attributable to increased aquatic productivity; however, the range of δ13C values is 

nevertheless noteworthy. Further research aimed at reconstructing lake productivity at Laguna 

Santa Elena could help sort out the contributions of C4 terrestrial vegetation to the δ13C pool in 

the sediments. 

 Values for δ15N remain relatively steady across the history of the lake after the 

establishment of intensive maize agriculture in zone 2c, averaging 3.93‰ (SD 0.60‰). Two 

periods of major shifts mark the δ15N record, including the establishment of modern maize 

farming at the top of the core and in the early part of zone 2c, at ca. 1090 cal yr B.P. C/N ratios 

across the history of Santa Elena generally indicate mixed terrestrial and aquatic contributions to 

sediments. Two points in the C/N record suggest periods of increased terrestrial input: at ca. 

1360 cal yr B.P. during the height of Aguas Buenas period agricultural intensification, and at ca. 

1010 cal yr B.P. during the Chiriquí period intensification. Decreasing C/N ratios across the zone 

2c/2b transition, along with decreased inorganic input, suggest a higher contribution of aquatic 

organic matter to the sediment pool at that time. Decreasing C/N ratios in the period of modern 

maize agriculture suggest increased lake productivity in response to increased nutrient delivery. 

 The stable isotope signal at Laguna Santa Elena reveals an uncommon pattern in which 

values for δ15N closely track those of δ13C (Fig. 3). Shifts in δ15N in lake sediments can be driven 

by a variety of factors, both allochthonous and autochthonous, such as climatic aridity, 
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phytoplankton and microbial activity, changes in water depth, sudden pulses of sediment input, 

natural changes in trophic state, human alteration of the landscape in the watershed, and others. 

Shifts in δ13C are easier to interpret and are primarily caused by changes in C3 vs. C4 terrestrial 

vegetation and changes in lake productivity, and often a combination of both. The relationship 

between δ15N and δ13C at Santa Elena, in which increasing (decreasing) δ15N values track closely 

with increasing (decreasing) signals of C4 agriculture, suggests that both proxy signals are 

responding to changes in human activity and land use in the watershed. While parts of the 

relative shifts in δ13C and δ15N in the Santa Elena sediments are almost certainly due to changes 

in primary productivity in response to concurrent changes in terrestrial nutrient delivery, the 

close correspondence between δ13C and δ15N suggests the intriguing possibility of cultural 

eutrophication at the lake.  

 Torres et al. (2012) reported results of isotopic analysis on modern sediments from 

hypereutrophic Lake Apopka in Florida. Apopka had been receiving cultural nutrient inputs for 

several decades prior to analysis. Patterns in variation of δ13C and δ15N in the sediments 

displayed a close correspondence, similar to that at Laguna Santa Elena. While Torres et al. 

concluded that the enriched δ15N signal from Lake Apopka was likely caused by a synergy of 

factors, including autochthonous N sources and processes, the primary producer community, and 

water depth, Apopka is also the only lake in their study that received heavy cultural nutrient 

inputs. I suggest that the patterns of δ13C and δ15N variation in sediments from Laguna Santa 

Elena are a consequence of human agricultural and waste disposal activities, and that the δ15N 

signal represents a lake on the border of eutrophication as a result. Fecal biomarkers can provide 

further insight into fluctuations in δ15N in response to agricultural and waste disposal activities of 

prehistoric populations (Evershed et al. 1997; Bull et al. 1999; D’Anjou et al. 2012), but 
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elucidating such causes will require considerable further research. Analysis of diatom 

assemblages in the Santa Elena core would also help to sort out the causes and consequences of 

shifts in δ15N. Stable carbon and nitrogen isotope ratios in the sediments of nearby Laguna 

Zoncho (Taylor 2011) show a generally similar relationship between C and N as sediments from 

Laguna Santa Elena, suggesting that the pattern between C and N signals at Santa Elena may be 

representative of a broader local or regional phenomenon. Isotopic analyses at additional lakes in 

the region could help to further elucidate this pattern. 

 

ii. Estimating Organic Carbon from Organic Matter Content 

How does organic matter content estimated by loss-on-ignition compare to carbon content 

determined through IRMS analysis for Laguna Santa Elena sediments? 

 

 Conversion factors for obtaining %OC from %OM estimated using LOI can be derived 

from the regression equation by dividing one by the regression slope, but only if the intercept 

approximates zero. This is because when %OM is truly zero, %OC must also be zero. An 

intercept that does not pass through the origin represents measurement error in the OM/OC 

relationship and biases the results obtained through a conversion factor. If the intercept of the 

regression model is not equal to zero, but is not significantly different from zero, then the 

regression line could be forced through the origin. Sutherland (1998), however, cautioned against 

forcing the regression line, as doing so assumes a priori that no bias exists in measurement—a 

scientific and statistical impossibility. 

 For Laguna Santa Elena, the model including 48 stratigraphic sediment samples yielded a 

conversion factor (CF) of 1.486 (Table 2). This model has an intercept of –9.861 ± 1.066, which 
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is significantly different from zero (p < 0.001), indicating considerable bias. Converting %OM to 

%OC for the Santa Elena samples using CF = 1.486 yielded values for %OC that are 

significantly different from the observed values of %OC determined by IRMS analysis (p < 

0.001). An approximate conversion factor between %OM and %OC for these samples, obtained 

by dividing %OM by %OC for all strata and calculating the mean of those results, would be 

3.471 (SD = 1.388), instead of 1.486. If the full regression equation is used, which accounts for 

the bias in the intercept, rather than CF = 1.486, then the conversion becomes: 

 

 %OC = (%OM * 0.673) – 9.861 (4) 

 

which yields values for %OC that are not significantly different from those determined by IRMS 

analysis (p = 0.945). Use of a general conversion factor of 1.724, which Sutherland (1998) found 

highly inaccurate, also produced poor results for %OC that were significantly different from 

IRMS values (p < 0.001).  

 Using the full regression equation that accounts for bias in the intercept accurately 

converts %OM to %OC (r2 = 0.883; Fig. 4). The conversion factor derived from the regression 

by dividing one by the slope, however, does not produce accurate results. This suggests that for 

high-resolution sediment core studies including many stratigraphic samples, a regression model 

comparing %OM estimated by LOI to %OC determined through IRMS analysis for a subset of 

samples (here, n = 48), well-distributed across the core, could yield a conversion factor that is 

sufficiently accurate to extrapolate onto the rest of the core. Doing so requires accurate 

determination of a local conversion factor for the specific samples under investigation and 

precludes using general published conversion factors.
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Figure 4: %OC versus %OM in Laguna Santa Elena sediments. Percent organic carbon 
determined through IRMS analysis plotted against percent organic matter estimated through LOI 
for Laguna Santa Elena sediments (r2 = 0.889, intercept = –9.861, slope = 0.673). 
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 Examination of regression residuals indicated that the first model was heavily influenced 

by high (> 42%) and low (< 20%) values for %OM, but the second regression model with five 

stratigraphic samples removed introduced additional bias (intercept = –14.671 ± 1.284). The 

conversion factor obtained from this model of 1.111 yielded converted values for %OC that are 

significantly different from %OC observed through IRMS analysis (p < 0.001). Using a full 

regression equation that accounts for the intercept also yielded %OC results that are significantly 

different from the IRMS values (p < 0.001). Comparison of the two regression models through 

ANOVA was not possible due to the removal of five samples in the second model. ANOVA can 

only be performed on models using the same datasets. While the first regression model was 

heavily influenced by values at the extreme ends of the %OM distribution, removal of the 

samples produced unsatisfactory results and is not recommended. 

 

iii. Population Collapse at Laguna Santa Elena 

 The cultural transition between the Aguas Buenas and Chiriquí periods across zone 2c/2b 

at ca. 1140 cal yr B.P. is marked by major shifts in proxy signals, indicating large changes in the 

pattern, scale, and intensity of land use and maize agriculture at Laguna Santa Elena (Figs. 2 and 

3). Pollen percentages show a decrease in maize and disturbance taxa and concomitant forest 

regeneration. Charcoal influx declines across all size classes, indicating decreased biomass 

burning. Inorganic input decreases due to lower human soil disturbance, causing a decrease in 

primary productivity and values for δ15N responding to lower terrestrial nutrient delivery. Values 

for δ13C display a large negative shift toward a C3 signal at the beginning of zone 2b due to 

changing terrestrial vegetation and decreased aquatic productivity. C/N ratios have relatively 

lower values as well, further indicating decreased terrestrial contribution to sediments. The 
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geochemistry of a sediment sample analyzed at the zone 2c/2b boundary showed an odd ratio of 

42.83% OM to 6.23% OC. This sample does not fit the overall pattern of the OM/OC 

relationship in the Santa Elena core, suggesting a significant change in geochemical processes at 

the site. Elucidating a possible cause for this disruption will require further research. 

Archaeological excavation revealed the presence of Aguas Buenas period ceramics, but no 

Chiriquí materials at Santa Elena (Sánchez and Rojas 2002), indicating that permanent 

settlement sites in the watershed were abandoned. Additionally, the timing of this major shift in 

land use coincides with the widespread Terminal Classic Drought. All the evidence taken 

together strongly suggests collapse and depopulation of the Laguna Santa Elena watershed ca. 

1140 cal yr B.P., likely in response to severe drought in the region. 

 

iv. Santa Elena in a Broader Perspective 

How do the results of this research relate to recent work at nearby Laguna Zoncho and ongoing 

archaeological investigations in southern Pacific Costa Rica and western Panama? 

 

 Proxy signals from Laguna Santa Elena yielded a reconstruction of land-use history that 

coincides well with evidence from nearby Laguna Zoncho. Taylor (2011) and Taylor et al. 

(2013b) reported two periods of agricultural decline at Zoncho, between ca. 1150–970 and 860–

640 cal yr B.P., that correspond to severe droughts in the region and throughout the circum-

Caribbean. Taylor et al. (2013b) suggested that population patterns and agricultural intensity at 

Zoncho and in the wider area, including at Santa Elena, were controlled by climate and 

precipitation variability. The scale and intensity of land use and maize agriculture declined at 

Santa Elena after ca. 1140 and 720 cal yr B.P. These times fall within the intervals of agricultural 
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decline recognized at Laguna Zoncho. Anchukaitis and Horn (2005) reported a brief hiatus in 

maize agriculture at Santa Elena at ca. 540 cal yr B.P., but this finding is not well-supported by 

δ
13C values and may simply represent the chance failure of maize pollen to be captured in that 

particular sample. 

 Taylor et al. (2013b) reported that maize agriculture, and presumably also people, were 

nearly absent at Zoncho ca. 220 years before the arrival of the Spanish. In contrast, stable carbon 

isotope ratios and maize pollen signals suggest that the Laguna Santa Elena watershed was 

continuously occupied, despite possible population collapse after ca. 1140 cal yr B.P. and a 

smaller decline in the scale of agriculture beginning after ca. 720 cal yr B.P. The Santa Elena 

core shows negative shifts in carbon isotope values at ca. 1250 and 720 cal yr B.P., following 

peaks in C4 signals. The shift beginning at 720 B.P. is accompanied by decreased Poaceae pollen 

and increased forest regrowth. Continued charcoal influx and the presence of maize pollen, 

however, suggest that low-intensity maize agriculture continued despite the declines. 

 Archaeological evidence from southern Pacific Costa Rica and western Panama shows 

population movement, increasing social complexity, and culture change across the transition 

from the Aguas Buenas to the Chiriquí period ca. 1150 cal yr B.P. Excavations at Laguna Santa 

Elena revealed the presence of house sites on hilltops surrounding the basin (Sánchez and Rojas 

2002; M. Sánchez, personal communication, 2013). These sites contained Aguas Buenas period 

artifacts, but no Chiriquí materials. Archaeological evidence suggests that the Santa Elena 

watershed was abandoned and proxy evidence from lake sediments suggest a population collapse 

ca. 1140 B.P., but with signals of low-intensity maize agriculture continuing across the cultural 

transition. Five human generations later, pollen and δ13C signals of maize agriculture increased 

to the strongest C4 signature in the history of Laguna Santa Elena ca. 1010 cal yr B.P., but the 
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archaeological record does not show evidence that residences returned to the watershed (M. 

Sánchez, personal communication, 2013). 

 A major question remains for Laguna Santa Elena. If archaeological and sedimentary 

evidence suggests that people moved out of the Santa Elena watershed following the end of the 

Aguas Buenas period, but proxy data from lake sediments show that maize agriculture continued 

and later intensified, where did people go and why? Sánchez and Rojas (2002) reported the 

presence of a larger site named Fila Tigre ca. 2 km east of Laguna Santa Elena that contained 

predominantly Aguas Buenas period ceramics, but also had a minor presence of Chiriquí 

artifacts. They argued that Fila Tigre was likely a significant regional center and that the area 

conforms to expected settlement patterns of large centers associated with dispersed hamlet sites 

for the Diquís sub-region (Linares and Sheets 1980; Drolet 1992; Anchukaitis and Horn 2005). 

Fila Tigre would have been a likely location for initial population agglomeration during 

environmental stress and collapse in the hinterlands. 

 The minor presence of Chiriquí period artifacts at Fila Tigre suggests that the site was not 

occupied for a long duration following the Aguas Buenas to Chiriquí transition. Considering 

severe drought, population movement and decline, and increasing hierarchy and social 

complexity in the region across the cultural transition, one logical conclusion is that people were 

relocating from the hinterlands to primary population centers larger than Fila Tigre, and were 

maintaining small sites like Laguna Santa Elena and Laguna Zoncho for farming. Conversations 

with archaeologist Maureen Sánchez of the University of Costa Rica (personal communication, 

2013) revealed that other sites exist in the area that are known to locals, but are yet 

uninvestigated by professional archaeologists. Future archaeological and paleoenvironmental 

research in the area may help to resolve activities and movements of the people who occupied 
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the Laguna Santa Elena watershed and the wider area during the Aguas Buenas–Chiriquí period 

transition.
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CHAPTER IV 

EFFECTS OF ACID FUMIGATION ON STABLE NITROGEN ISOTOPE RATIOS IN 

SEDIMENTS AND SOILS FROM  LAGUNA SANTA ELENA AND LAGUNA AZUL, 

COSTA RICA 

 

A. Methods 

i. Sampling 

 The Laguna Santa Elena sediment core comprises ca. 6 m of lacustrine sediments 

underlain by ca. 1 m of soil. Anchukaitis and Horn (2005) sampled 29 stratigraphic levels of the 

core at intervals of ca. 16–32 cm for pollen and charcoal analyses, including 25 levels from the 

lacustrine portion and 4 levels from the soil. For my thesis research I sampled the core for bulk 

stable isotope analysis at the same 29 intervals examined by Anchukaitis and Horn (2005), and at 

29 additional, intervening stratigraphic levels, increasing the sampling resolution to ca. 8–16 cm 

for this study. My analysis of the effects of acid fumigation on δ15N results used 50 samples from 

the lacustrine portion of the core and 8 additional samples from the underlying soil profile in 

total. Samples were 1 cm3 volume. 

 The Laguna Azul profile is composed of 60 cm of near-surface sediments and a 70-cm 

section that begins 3 m below the mud-water interface. Eighteen samples of 1 cm3 volume were 

collected for stable isotope analysis at irregular intervals of 2–24 cm through the two sections. 

Sampling intervals were guided by previous proxy work (Horn 2006, unpublished data). 

 

ii. Sample Acidification and Stable Isotope Analysis 

 Bulk organic carbon and nitrogen content and isotope analysis followed the methods of 

Lane et al. (2013a) and the laboratory protocol of the University of North Carolina Wilmington 
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(UNCW) Stable Isotope Laboratory. Samples were oven-dried at 50 °C and then ground to a fine 

powder with an ethanol-rinsed mortar and pestle. The ground samples were split roughly into 

two aliquots, with one aliquot ready for δ15N analysis as the non-acidified fraction (Brodie et al. 

2011c). Samples analyzed for δ13C composition were moistened with distilled water and 

fumigated with 12 N HCl for 2 h in a desiccator, then vented for 24 h. Following acidification, 

the samples were dried on a hotplate (surface temperature ca. 60 °C) until free of water and 

residual acid (ca. 48 h), and then reground. Acidification and drying took place in ceramic 

crucibles. Sample preparation took place in the Laboratory of Paleoenvironmental Research at 

the University of Tennessee. Subsamples for δ13C and δ15N analysis were loaded into tin 

capsules and shipped to the UNCW Stable Isotope Laboratory. All samples from Laguna Santa 

Elena and Laguna Azul were analyzed in 100% duplicate. Additional analyses run to provide 

triplicates for selected levels for other parts of my thesis work were not considered here.  

 The samples were analyzed on a Costech Elemental Analyzer coupled to a Thermo Delta 

V Plus Mass Spectrometer at the UNCW Stable Isotope Laboratory. Carbon and nitrogen 

isotopic compositions are reported in standard δ-per mil notation with carbon values relative to 

the Vienna-Pee Dee belemnite (V-PDB) marine carbonate standard and nitrogen values relative 

to AIR, where R = 13C/12C or 15N/14N and:  

 

 δ
13C or δ15N(permil) = 1000[(Rsample/Rstandard)-1] (5) 

 

Repeated analyses of USGS 40 glutamic acid standard indicated that instrument precision for 

these samples was better than ±0.16‰.  
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iii. Statistical Methods 

 Calculations were performed in the R Version 3.0.1 environment for statistical computing 

(R Core Team 2013). Graphical outputs were produced in R using the “ggplot2” package 

(Wickham 2009). Two-tailed paired t-tests were used to compare the δ15N results for the non-

acidified versus the acidified fractions at the α = 0.05 significance level. The t-tests were 

performed on several combinations of the data, including on Laguna Santa Elena and Laguna 

Azul separately and together, and on the duplicate analyses both separately and averaged 

together. While a paired t-test was not the ideal test for this situation with duplicate samples, it 

was the most appropriate one to compare the before-and-after acidification results. ANOVA was 

inappropriate as isotopic signatures of each stratum of the Santa Elena and Azul profiles reflect 

paleoenvironmental conditions at a certain point in time, thus data are paired. The difference 

between δ15N values for the non-acidified and acidified fractions, defined here as ∆15N = δ15Nnon-

acidified – δ15Nacidified, was plotted against depth in the sediment cores to facilitate a qualitative 

assessment of whether the magnitude of the difference would be likely to affect 

paleoenvironmental interpretation of trends. 

 

B. Results 

 Initially, the duplicate results for δ15N were averaged together to obtain a single value for 

δ
15N non-acidified and δ15N acidified for each sampled depth in the sediment cores to replicate 

how the results would be presented for paleoenvironmental interpretation. For Laguna Santa 

Elena and Laguna Azul together, δ15N in the non-acidified fraction was significantly different 

from δ15N in the acidified fraction (p = 0.01) (Table 3). The non-acidified δ15N values were also 

significantly different from the acidified δ15N values for Santa Elena alone (p < 0.002) and for 
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Table 3: T-test results for δ15N values for Laguna Santa Elena and Laguna Azul. 
 

Samples df
1 

t-value p-value Samples df
1 

t-value p-value 

Averaged    Individual    
Both Lakes 75 3.339 0.010 Both Lakes 151 2.869 0.005 
Santa Elena 57 3.975 0.002 Santa Elena 115 3.471 0.001 

Azul 17 -3.564 0.002 Azul 35 -3.761 0.001 
        

Acid 1 vs. Acid 2    Non 1 vs. Non 2    
Both Lakes 75 2.900 0.005 Both Lakes 75 1.470 0.146 
Santa Elena 57 2.694 0.009 Santa Elena 57 1.263 0.212 

Azul 17 1.473 0.159 Azul 17 1.351 0.194 
        

Acid 1 vs. Non 1    Acid 1 vs. Non 2    
Both Lakes 75 3.339 0.001 Both Lakes 75 3.716 0.001 
Santa Elena 57 3.975 0.001 Santa Elena 57 4.007 0.001 

Azul 17 -3.564 0.002 Azul 17 -0.765 0.455 
        

Acid 2 vs. Non 1    Acid 2 vs. Non 2    
Both Lakes 75 -0.017 0.987 Both Lakes 75 1.166 0.247 
Santa Elena 57 0.608 0.545 Santa Elena 57 1.511 0.136 

Azul 17 -3.499 0.003 Azul 17 -2.246 0.038 

 
1df = degrees of freedom 
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Azul alone (p < 0.002). When non-acidified δ15N was compared to acidified δ15N with all 

duplicate samples included, but not averaged together, the t-test indicated significant differences 

in both lakes together (p < 0.005), and at Santa Elena (p < 0.001) and Azul (p < 0.001) 

separately. Duplicate samples in the acidified fraction were significantly different from each 

other for both lakes together (p < 0.005) and for Santa Elena alone (p = 0.009), but not for Azul 

(p = 0.159). Values for δ15N in the duplicate runs for the non-acidified fraction were not 

significantly different in any situation (p = 0.146 for both lakes together). 

 Values for δ15N in the first set of acidified samples were significantly different from 

values for δ15N in the first set of non-acidified samples for both lakes together (p = 0.001), and 

for Santa Elena (p < 0.001) and Azul (p = 0.002) separately. Comparing δ15N in the first set of 

acidified samples with the second set on non-acidified samples yielded a significant difference 

for both lakes together (p < 0.001) and for Santa Elena alone (p < 0.001), but not for Azul (p = 

0.455). Results for the second set of acidified samples were not significantly different from 

results for the first set of non-acidified samples for both lakes together (p = 0.987) or for Santa 

Elena alone (p = 0.545), but were different for Azul alone (p < 0.003). Results for the second set 

of acidified samples also did not differ significantly from results for the second set of non-

acidified samples for both lakes together (p = 0.247) or for Santa Elena alone (p = 0.136), but did 

show a difference for Azul alone (p = 0.038).  

 Using the non-averaged δ15N values, for Laguna Santa Elena and Laguna Azul together 

∆
15N ranged from –1.925 to 2.598, with a mean value of –0.131 (SD = 0.562) (Table 4). For 

Santa Elena alone, ∆15N ranged between –1.925 and 2.598, with a mean value of –0.200 (SD = 

0.622). For Azul alone, ∆15N ranged from –0.241 to 0.423, with a mean value of 0.094 (SD = 

0.150).
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Table 4: ∆15N between non-acidified and acidified samples. 
 

Samples Mean ∆
15

N Std. Dev. Range 

Both Lakes –0.131 0.562 –1.925 – 2.598 
Santa Elena –0.200 0.622 –1.925 – 2.598 
Azul 0.094 0.150 –0.241 – 0.423 
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C. Discussion 

Does comparison of δ
15

N results for acidified and non-acidified samples from Laguna Santa 

Elena and Laguna Azul indicate that acidification causes statistically significant differences in 

δ
15

N values that might warrant analysis of an additional non-acidified fraction? 

 

 The results for this portion of the investigation are inconclusive. When δ15N results are 

averaged together to produce a single value for acidified and non-acidified samples from each 

stratigraphic level sampled from the sediment cores, the δ15N values are significantly different 

between the two fractions (Table 3). If the samples had been analyzed only once, rather than in 

duplicate, δ15N values between the acidified and non-acidified fractions may have shown a 

significant difference (i.e. for the first acidified versus non-acidified set of analyses), or they may 

not have shown a difference (i.e. second acidified versus non-acidified analyses). These results 

suggest that the effects of the acidification reaction on δ15N results using the UNCW protocol 

may be unpredictable. The observed differences may be due to a number of factors, including 

residual acid content in the samples, hygroscopic water drawn in by residual acid, the 

acidification reaction and process itself, contamination or measurement error, or simple random 

chance. Additionally, the mixed results for this analysis, including the finding that δ15N values in 

duplicate analyses of acidified samples are significantly different, while δ15N values in duplicate 

non-acidified samples are not different, suggest that analysis of a non-acidified sample fraction 

for δ15N is warranted, pending further investigation and analysis of more samples. Furthermore, 

given that δ15N values in duplicate acidified samples are significantly different, researchers 

opting to use dual-mode analysis despite the findings presented here should exercise 
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considerable caution when interpreting data from analyses of single samples at each stratigraphic 

level. 

 

Are the differences due to acidification scientifically important or meaningful, in that the 

differences would affect the paleoenvironmental interpretation of the δ
15

N results? 

 

 To address this question, δ15N values for replicate analyses were averaged together to 

produce a single value for δ15N acidified and δ15N non-acidified for each stratigraphic level. 

∆
15N was then calculated for each stratum. The differences in δ15N values in the Laguna Santa 

Elena sediments and soils have an overall negative trend (mean ∆15N = –0.200; SD = 0.467), 

which matches the directional trend reported by Brodie et al. (2011a, b, c). Results for the 

Laguna Azul samples, however, have a generally positive trend (mean ∆15N = 0.094; SD = 

0.109), contrary to the findings of Brodie and collaborators.  

 For the Santa Elena samples, ∆15N values range between –1.482 and 1.097, which is 

likely not a large enough change to alter overall paleoenvironmental interpretations (Figs. 5 and 

6). Note that for Santa Elena, many of the error bars (1 SD) overlap (Fig. 5). While the overall 

temporal trends for the Santa Elena δ15N data are maintained and would likely be interpreted 

similarly, the change in δ15N due to acidification appears to be unpredictable and can manifest as 

either positive or negative. This finding has important implications, as paleoenvironmental 

interpretations are based on relative changes in δ15N values over time. The variable and 

unpredictable nature of ∆15N due to acidification can alter the intensity of relative δ15N changes 

and could potentially cause reversals in directional trends through a profile, thus imparting a 

false signal in the δ15N record.  
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Figure 5: δ15N plotted against depth for Laguna Santa Elena samples. Error bars = 1 SD.



49 
 

 
 
Figure 6: ∆15N plotted against depth for Laguna Santa Elena samples. 
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 For the Laguna Azul samples, ∆15N values range from –0.108 to 0.245 (not shown). The 

magnitude of the changes for Azul is very small and would not alter paleoenvironmental 

interpretations. An important point to note, though, is that the changes due to acidification 

manifested differently for the two lakes. Although this study included only two lakes, the 

different results for Laguna Santa Elena and Laguna Azul suggest that whether or not 

acidification affects δ15N values in carbonate-containing soils and sediments is unresolved at this 

point. A final consideration is the comparability of δ15N values between sites. The wide range 

and unpredictability of changes in δ15N values due to acidification in the Santa Elena samples 

suggests that researchers must use caution when comparing paleoenvironmental reconstructions 

between sites, particularly when considering actual δ15N values, rather than just relative trends 

over time. Further research, including analysis of sediment and soil samples from additional 

locations, is necessary to better understand the scientific implications and potential influences of 

acidification on δ15N.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

  

 The results of this study extend the pollen- and charcoal-based record from Laguna Santa 

Elena established by Anchukaitis and Horn (2005), showing geochemical trends that in some 

cases parallel trends in botanical proxies and in others reveal new aspects of human and 

environmental dynamics at the site. The present study also builds on the work of Taylor (2011) 

and Taylor et al. (2013a, b) at Laguna Zoncho, adds a robust suite of data to ongoing efforts to 

disentangle climate change and human-environment interactions in Central America, and 

contributes temporally-explicit data to archaeological investigations in the region. These results 

reinforce the conclusions of Lane et al. (2004; 2009) that δ13C is a reliable proxy for forest 

clearance and maize agriculture in the neotropics. This work at Laguna Santa Elena builds a 

foundation for further proxy studies aimed at disentangling the effects of humans versus climate 

on the local environment.  

 These data demonstrate the usefulness of bulk stable isotope analysis for reconstructing a 

record of the scale of maize agriculture and land use at mid-elevation lakes in Costa Rica. The 

low cost, time investment, sediment volume, and chemical processing requirements of stable 

isotope analysis as compared to pollen and charcoal analyses argues for the routine inclusion of 

bulk stable isotope analyses in palynological studies. This technique is a strong line of initial 

inquiry for generating pilot data prior to more extensive work. Patterns revealed by isotopic 

signals can then direct further targeted proxy research on sediment cores. 

 Pre-analysis acidification of sediment and soil samples from Laguna Santa Elena and 

Laguna Azul following the UNCW Stable Isotope Laboratory protocol may cause statistically 
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significant differences in δ15N values between the acidified and the non-acidified fractions. 

While the magnitude of the changes might not be sufficient to alter paleoenvironmental 

interpretations, the changes do have the potential to alter and even reverse relative trends in δ15N 

signals in lake sediment studies. Additionally, the change in δ15N values due to acidification 

appears to be random and unpredictable, and can manifest as either positive or negative shifts. 

Given the evidence revealed by this study, researchers should avoid dual-mode analyses and 

continue analyzing an additional non-acidified sample to obtain δ15N values, pending further 

investigation. These findings are particularly relevant for studies using strictly quantitative 

approaches where absolute isotopic values are more important than temporal trends. 

 This study forms the basis for future work involving targeted experimental biomarker and 

compound-specific isotope analyses. Such work could be aimed at the direct detection of maize 

agriculture (Reber and Evershed 2004; Reber et al. 2004; E. Reber, personal communication, 

2012), compound-specific analyses to sort out the effects of human activity versus climate in the 

watershed (Russell et al. 2009), further work on C3/C4 vegetation changes, and hydrogen isotope 

analysis of precipitation changes in the region (Russell et al. 2009; Lane and Horn 2013; Lane et 

al. 2013b, in press). Biogeochemical proxies drawn from lake sediments have a high potential to 

reveal finely detailed signals of paleoenvironmental change and human land use. This proxy 

work at Laguna Santa Elena contributes a strong initial dataset to be enhanced by further work in 

the region. 
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