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Abstract 

This thesis presents work on analytical modeling and simulation of SiGe MOS gate 

HEMT. A modified model for the threshold voltage of the MOS-gate HEMT is 

presented. An expression to calculate accurately minimum gate voltage VGmin of p-

channel MOS-gate HEMT is derived. Using the modified expressions, VTHp and VGmin are 

calculated. Current-voltage characteristics, transconductance and cutoff frequency are 

calculated and plotted using the modified model and the results are compared with the 

results obtained from an existing model. The effects of different device and material 

parameter variation on VTHp and VGmin are also investigated. 

 

An analytical temperature model for the MOS-gate HEMT is proposed. The temperature 

variation of threshold voltage, current-voltage characteristics and transconductance are 

simulated using the analytical model. 

 

A model for a delta-doped MOS-gate HEMT is proposed which is valid for any width of 

the delta-doped layer. Effects of different device parameters on VTHp and Vtl have been 

investigated using this model. 

 

In addition, device simulator MediciTM has been used to simulate the delta-doped and 

regular-doped MOS-gate HEMTs. The results obtained from the MediciTM simulations are 

compared to some of the results obtained from the analytical model. 
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Chapter 1 

Introduction 

 

1.1 Background 

In recent years the increasing need for high-speed communication and computation has 

pushed silicon-based MOSFET technology to the edge. To meet the ever-increasing 

speed requirement, the gate length of the MOSFET has been continually reduced. The 

gate length of the MOSFET has reached such small dimension that several detrimental 

effects are taking place in the MOSFET. The overall behavior of the short channel 

MOSFET is quite different from the long channel MOSFET. In this situation, scientists 

and engineers are constantly looking for new materials as well as new device structures 

that can replace silicon-based MOSFETs and cope up with the speed requirement. 

 

1.2 Limitations of Silicon-Based MOSFET with Short Channel 

The short channel device is distinguished from a long channel device by the following 

criteria [1]: 

1. In short channel device, the drain current no longer varies as 1/(gate length). 

2. The threshold voltage decreases. 

3. The gate voltage required to reduce the sub-threshold current becomes larger. 
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Various effects occur due to the shrinking of the gate length and oxide thickness, which 

are known as “short channel effects”. The gate length at which the short channel effects 

starts to take place depends on the device dimensions, doping and other device 

parameters. Some of the short channel effects are described below: 

 

• Hot Carriers: As the gate length of the short channel MOSFET is very small, the 

critical electric field is reached for small drain-source voltage. Velocity saturation 

occurs above the critical electric field. The carriers traveling at the saturation 

velocity vs are called the hot carriers. These hot carriers can get trapped in the 

gate oxide and change the threshold voltage of the MOSFET. Also, they can 

tunnel through the gate oxide (as the gate oxide of short channel MOSFET is 

thin) and cause gate leakage current. 

 

• Drain- Induced Barrier Lowering (DIBL): For an n-type MOSFET, the positive 

potential at the drain terminal attracts electrons under the gate oxide. In short 

channel devices, these electrons cause lowering of the potential barrier between 

the drain and the source. Thus, as the drain-source voltage increases, potential 

barrier in the channel decreases. Eventually this reduction in the potential barrier 

causes current flow between drain and source even at a gate voltage lower than 

the threshold voltage. This current is called subthreshold current. 

 

• Oxide Breakdown: Maximum electric field across a MOSFET gate oxide should 

be limited to 7MV/cm [2]. Thus, to prevent possible oxide breakdown and ensure 
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long-term operation, the gate bias is limited by a maximum value. The oxide 

thickness in a short channel MOSFET is usually small. As a result, the maximum 

permissible gate voltage is small for a short channel MOSFET. 

 

• Relationship between drain current and gate voltage: In long channel MOSFET, 

the drain current in saturation region is proportional to the square of the gate-

source voltage. For the short channel, this theory does not apply. The saturation 

drain current varies linearly with the gate-source voltage. This effect is the result 

of the velocity saturation of the channel carriers. 

  

1.3 HEMT: A Light of Hope 

High Electron Mobility Transistor (HEMT) was invented in the beginning of 1980’s. The 

HEMT is basically a high-speed heterojunction device, which uses two-dimensional 

electron or hole gas trapped in a quantum well as the carrier. The structure of the HEMT 

is such that the carriers in the channel are far from the ionized dopant atoms. Thus, the 

carriers encounter small Coulombic interaction with the ionized dopant atoms and the 

carrier mobility is increased. 

 

The formation of the quantum well in the HEMT restricts the carrier movement to only 

two dimensions. This is another reason why the carriers in the channel acquire high 

mobility.  Figure 1.1 [3] shows the first HEMT fabricated by Fujitsu Corp, Japan. This is  
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Figure 1. 1: The first HEMT, fabricated by Fujitsu Corp in Japan [3]. 
 
 
 
a Schottky-gate GaAs/AlGaAs HEMT. The band diagram and device cross section are 

also shown in the figure.  

 

1.4 MOS-Gate HEMT 

Integration of the HEMT into the CMOS microelectronic circuits is a very important step 

that can enable us to use the excellent properties of the HEMT. Research efforts are going 

on to make this integration possible. One of the difficulties of integration is the fact that 

the traditional HEMT uses a Schottky gate. On the other hand, the CMOS circuits use 

oxide-gate devices such as the MOSFET. To solve this problem, research efforts have 

been driven to design and fabricate an oxide-gate HEMT. Most of the HEMTs fabricated 

in the early days used GaAs and AlGaAs. But GaAs or AlGaAs do not have a native 

oxide. On the other hand, SiO2 possesses attractive properties that made it suitable for 
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microelectronic integration. To utilize SiO2 as the gate oxide of the HEMT device, Si 

based material technology is incorporated in the design of the MOS-gate HEMT. As a 

result, the MOS-gate HEMT has been fabricated by growing SiO2 on top of the Si/SiGe 

heterostructure [4].  

 

1.5 SiGe MOS-Gate HEMT 

The SiGe MOS-gate HEMT demonstrates quite a few advantages over the traditional 

Schottky-Gate HEMT. Some of the advantages are listed below: 

 

• The MOS-gate HEMT has high input resistance like the MOSFET.  

 

• The MOS-gate HEMT is capable of accepting a wider range of gate voltage swing 

than the Schottky-gate HEMT. For example, an n-channel Schottky-gate HEMT 

can accept only negative gate voltage. On the other hand, an n-channel MOS-gate 

HEMT can accept both positive and negative gate bias. 

 

• The gate voltage operating range of a MOS-gate HEMT can be controlled by 

varying the thickness of the oxide layer.  

 

Although fabrication of a MOS-gate HEMT is one step toward the integration of a 

HEMT into mainstream CMOS integrated circuits, more research challenges remain. The 

HEMT has multiple layers and the number of layers is more than that of a conventional 
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MOSFET. That makes it unsuitable for the conventional CMOS process, which deals 

with only a few layers. Also, there are still some problems associated with the growth of 

oxide in the MOS-gate SiGe HEMTs. These will be discussed in the next chapter. 

  

1.6 Proposed Work 

 In recent years, the HEMT has been subjected to lot of research efforts in various 

material system including SiGe. SiGe HEMT is one of the hot topics. The SiGe HEMTs 

can be broadly classified into two groups: the Schottky-gate SiGe HEMT and the MOS-

gate SiGe HEMT. Due to some fabrication difficulties of the MOS-gate HEMT, more 

research efforts have been devoted to Schottky-gate HEMT. But efforts have been made 

to solve the fabrication problems of the MOS-gate HEMT and researchers have come up 

with some possible solutions.  

 

Quite a few research groups around the world are working on the SiGe MOS gate HEMT. 

Most of the works concentrate on fabrication and experimental characterization of MOS 

gate HEMTs. Not much work has been devoted to the analytical modeling and simulation 

of these devices. A reliable device model is very important in device design and in 

predicting the behavior of an existing device. The analytical model can be used as the 

first tool in device design, which is able to provide a rough, if not very accurate, idea 

about the behavior of the device to be designed. As a second step of the design process, 

numerical simulation software such as MediciTM, DavinciTM, AtlasTM, etc. can be used 
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Analytical modeling of the MOS-gate HEMT is the main scope of this research work. 

Also, device simulator MediciTM has been used to compare the results obtained from 

these analytical models. The main research goals of this thesis are to: (1) propose a 

modified analytical model for calculating the threshold voltage VTH and the minimum 

gate voltage VGmin of a p-channel MOS-gate HEMT, (2) calculate the current-voltage 

characteristics using the modified model, (3) examine the effects of different device and 

material parameters on VTH and VGmin, using the modified analytical model, (4) introduce 

an analytical model to predict the temperature dependency of VTH and the current-voltage 

characteristics of the MOS-gate HEMT,  (5) propose a modified threshold voltage model 

for the delta-doped MOS-gate HEMT (6) derive the expression for the minimum gate 

voltage Vtl of delta-doped MOS-gate HEMT , (7) examine the effects of some device 

parameters on VTH and Vtl of the delta-doped HEMT, (8) perform MediciTM simulations 

of the MOS-gate HEMT to investigate device behavior as well as compare the results 

obtained from  the analytical model to the results of  the MediciTM simulations. 

 

The p-channel MOS-gate SiGe HEMT has been used in the analytical models and the 

MediciTM simulations. But the analytical models can be extended to other MOS-gate 

HEMTs with similar structure including the n-channel MOS-gate SiGe HEMT. 

 

1.7 Outline of the Thesis 

Chapter 2 presents a review of the literature that includes: HEMT, SiGe material 

properties and recent works on SiGe MOS-gate HEMT. 
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Chapter 3 starts with the discussion of the existing model of the MOS-gate HEMT. Then, 

a modified model is proposed, and VTHp, VGmin, current voltage characteristics, 

transconductance and cutoff frequency are calculated using the modified model. The 

results obtained from two models are compared. The last part of this chapter examines 

the effect of different device and material parameters on VTHp and VGmin. 

 

A simple temperature model for the MOS-gate HEMT is introduced in Chapter 4. The 

effects of temperature variation on threshold voltage, current voltage characteristics and 

transconductance of the MOS-gate HEMT are investigated using the temperature model. 

 

A modified threshold voltage model for the delta-doped MOS-gate HEMT has been 

proposed in Chapter 5 that can be applicable to any width of delta-doped layer as well as 

any distance of the layer from the oxide interface. An expression of the minimum gate 

voltage Vtl for the delta-doped HEMT has been derived and its value is calculated using a 

p-channel SiGe delta-doped MOS-gate HEMT. The effects of doping concentration, 

distance of the delta-doped layer from oxide interface and width of the delta-doped layer 

on VTHp and Vtl have been examined using the model. 

 

Chapter 6 consists of the MediciTM simulations of the regular-doped and the delta-doped 

SiGe MOS gate HEMT. These simulations have been used to explore the device behavior 

as well as the simulation results have been compared to some of the results obtained from 

the analytical models. 
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Chapter 7 summarizes the work done in the thesis. Also, it includes the discussion of the 

future work directions that may help to improve the analytical models. 
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Chapter 2 

  Literature Review 

 

2.1 HEMT   

2.1.1 What is HEMT 

HEMT (High Electron Mobility Transistor) is a heterojunction device that uses the 

carriers in 2DEG or 2DHG for current transport. It is one of the fastest solid-state devices 

ever reported. The name HEMT was proposed by Fujitsu Corp. Japan. Some other names 

of the HEMT, proposed by different laboratories are: the MODFET (Modulation-Doped 

FET) (Univ. of Illinois), the TEGFET (Two-Dimensional Electron-Gas FET) (Thomson 

CSF), the SDHT (Selectively-Doped Heterojunction Transistor) (Bell Labs.) and the 

HFET (Heterojunction FET). 

 

2.1.2 GaAs/AlGaAs HEMT 

The first HEMT was fabricated using the compound semiconductors GaAs and AlGaAs 

[3]. Later, HEMTs have been fabricated using different material systems such as 

AlInAs/GaInAs  [5], Si/SiGe [6], etc.  AlGaAs has almost perfect lattice match with 

GaAs for all the possible mole fraction of Al. Thus, a high quality epitaxial layer of 

AlGaAs can be grown on GaAs substrate.  
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Figure 2.1 shows a typical structure of an n-channel GaAs/AlGaAs HEMT. There exists 

discontinuity in both the conduction band and the valence band at the GaAs/AlGaAs 

heterointerface. Electrons diffuse from the highly doped AlGaAs region to the undoped 

GaAs region and they are trapped in the almost triangular shaped quantum well formed in 

the interface at the GaAs side. The motions of these electrons are restricted to two 

dimensions as they are not free to move in the direction normal to the heterointerface. 

The widths of the quantum well being very thin, the electron energies in the well are 

quantized. The two lowest subbands are mostly occupied and only they are included in 

the calculation of electron density. 

 

As the electron motions are confined to only two directions, the mobility of the electrons 

is certainly higher than that of the bulk material. Another reason behind the mobility 

enhancement is the distance of the electrons in the channel from the ionized dopant 

impurities [7]. The electrons in the channel encounter much less Coulomb scattering than 

the electrons in a typical MOSFET channel. Although at room temperature, the mobility 

is limited by optical phonon scattering, it can attain very high value at low temperature. 

The electron mobility at 100 K can be as high as twenty times of the mobility at room 

temperature [8]. 

 

For normal operation, the supply layer is totally depleted due to the gate voltage and the 

depletion at the AlGaAs/GaAs heterostructure. Thus, when voltage is applied between 

drain and source, conduction can only take place through the 2DEG channel formed in 

the GaAs layer. There exist two limits of the applied gate bias: the threshold voltage VTH 
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Figure 2. 1: The cross-sectional view of a GaAs/AlGaAs n-channel HEMT. 
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and the minimum gate voltage VGmin (for p-channel HEMT) or the maximum gate voltage 

VGmax (for n-channel HEMT). The threshold voltage is defined as the gate voltage, which 

causes total depletion in the channel. Thus, above (for p-channel HEMT) or below (for n-

channel HEMT) the gate voltage value of VTH, the HEMT is turned off. Again, at the gate 

voltage value of VGmax or VGmin, the supply layer is not anymore fully depleted. As a 

result, conduction parallel to the channel takes place in the AlGaAs region. This parallel 

conduction reduces the gate transconductance. For normal operation, the gate bias of the 

HEMT is kept within the range: VGmin<VG<VTH (for p-channel HEMT) or 

VTH<VG<VGmax (for n-channel HEMT). 

 

2.1.3 SiGe MOS- gate HEMT 

As discussed in the previous chapter, the realization of the MOS-gate HEMT is a 

significant leap towards the integration of HEMT into mainstream CMOS monolithic 

integrated circuits. SiO2, being a tested oxide in integrated circuits, has naturally become 

the choice for the gate oxide of the MOS-gate HEMT. As SiO2 is the native oxide of 

silicon, the MOS gate HEMT has been realized in the SiGe material system [4].  

 

Figure 2.2 shows a p-channel MOS-gate HEMT while Figure 2.3 shows an n-channel 

MOS-gate HEMT. The operation of the MOS-gate HEMT is very similar to that of the 

Schottky-gate (metal-gate) HEMT. The silicon layer at the top of the SiGe supply layer is 

needed for growing SiO2 on the top. The SiGe buffer layer between the substrate and the 

channel is called the virtual substrate.  
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Figure 2. 2: The cross-sectional view of a p-channel SiGe MOS-gate HEMT. 
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Figure 2. 3: The cross-sectional view of an n-channel SiGe MOS-gate HEMT. 
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The virtual substrate plays a very important role in the strained SiGe material system. 

The thick and strain relaxed layer of SiGe virtual substrate is grown on the substrate (Si 

or Ge). Then, (for p-channel HEMT shown in figure 2.2) thin strained layers of Ge and 

Si0.5Ge.05 is grown commensurately on top of the buffer layer [4]. The strain on the Ge 

and Si0.5Ge.05 layers and most of the material properties of the strained Ge and Si0.5Ge.05 

layers depend on the x value of the Si1-xGex virtual substrate. Thus, composition of the 

virtual substrate controls the size of the band discontinuity and the quantum well formed 

in the heterointerface. Also, the virtual substrate helps better confinement of the carriers 

in the quantum well.  

 

2.2 Properties of SiGe and Si/SiGe Heterostructure 

SiGe material properties and the behavior of Si/SiGe heterostructure play a very 

important role in the performance of the SiGe MOS-gate HEMT. In this section, some of 

the important material properties of bulk and strained SiGe, and Si/SiGe heterostructure 

will be briefly discussed. 

 

The band structure of Si1-xGex is similar to that of Si for x<0.85. For x>0.85, the material 

demonstrates Ge-like character with a conduction band L minima [9]. Thus, the bandgap 

(the distance between the minimum of the conduction band and the maximum of the 

valence band) of the Si1-xGex varies with composition. Also, when the heterostructure 

between SiGe and Si or Ge is formed, the bandgap is changed due to strain.  
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The conduction band or the valence band offset is an important parameter to be 

considered in a heterostructure. In the p-channel HEMT, large valance band offset is 

expected. On the other hand, large conduction band offset is required in an n-channel 

device. Not many results are available for the Si/SiGe conduction band offset. But, lots of 

work has been reported on theoretical and experimental studies of the valence band offset 

in this system [10] [11]. Obviously, the band structures and thus the band offsets are 

crystallographic orientation dependent. For <100> SiGe heterostructure, in the case of the 

strained Si1-xGex grown on the relaxed Si1-yGey virtual substrate, an average valence band 

offset expression proposed by Rieger and Vogl [10] is given by, 

))(06.047.0(, yxyE avv −−=∆   ………………………………………………....2.1 

 

This valance band offset is calculated considering only the hydrostatic strain. 

Consideration of the effect of the uniaxial strain components will provide more accurate 

results. 

 

As mentioned before, the bandgap of SiGe depends on the strain resulted from the 

pseudomorphic growth. Also, the bandgap is a function of temperature. For unstrained                   

Si1-yGey, the bandgap at 4.2 K is given by [12], 

85.0,206.043.0115.1)2.4,( 2 <+−= yyyKyEg   ……………………………...2.2 

 

To predict the bandgap of the Si1-yGey at higher temperature, Si-like bandgap-temperature 

relation is used [13], 
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Assuming that, the bandgap at 0 K is almost equal to that at 4.2 K,  
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Equation 2.4 can be used to estimate the bandgap of the unstrained Si1-yGey for any 

composition smaller than 0.85 and at any temperature. 

 

For the strained Si1-xGex, the bandgap can be estimated [14] using the following equation, 

  ………………………………………...2.5 2396.0896.017.1)2.4,( xxKxEg +−=

 

To estimate the temperature dependence of the bandgap of the strained Si1-xGex, equation 

2.4 (y replaced by x) can be used. Table 2.1 shows some important parameters of bulk 

Si1-yGey material at 300 K [15]. 

 

2.3 Development of SiGe MOS-Gate HEMT 

Although there still exists some difficulty in the fabrication process of SiGe MOS-gate 

HEMT, due to its attractive features compared to the Schottky-gate HEMT, quite a few 

research groups around the world are working on it. Some of the research results reported 

in recent years will be discussed in this section. 
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      Table2.1: Basic parameters of bulk Si1-yGey, at 300 K. 

Parameter Name Value 

Dielectric Constant 11.7+4.5y 

Effective Electron Mass (in units of m0) ~0.92 for y<0.85, 

~1.59 for y>0.85 

Electron Affinity (eV) 4.05-0.05y 

Lattice Constant (A°) 5.431+0.2y+0.027y2 

Electron Mobility (cm2/V-s) 1450-4325y, 3.00 <≤ y  

Hole Mobility (cm2/V-s) 450-865y, 3.00 <≤ y  

Electron Diffusion Coefficient (cm2/s) 36-112y, 3.00 <≤ y  

Hole Diffusion Coefficient (cm2/s) 12-22y, 3.00 <≤ y  

Electron Thermal Velocity (cm/s) 2.4X107, y<0.85 

3.1X107, y>0.85 

Hole Thermal Velocity (cm/s) 1.65+0.25y 
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In 1991, Murakami et al [4] reported the fabrication and characterization of strain-

controlled SiGe delta-doped MOS-gate HEMT. Very high hole mobility has been 

obtained in the 2DHG formed in the strain-controlled Ge channel. Field effect mobility as 

high as 9500 cm2/V-s is estimated from the measurements conducted at 77 K. 

 

In 1992, Jain et al [16] proposed an analytical model for the SiGe MOS-gate HEMT. In 

this work, a threshold voltage expression for the MOS-gate HEMT has been derived and 

the threshold voltage has been calculated for a p-channel SiGe MOS-gate HEMT. 

Current-voltage characteristics, transconductance and cutoff frequency for the HEMT are 

also calculated using this model along with Chang-Fetterman’s extended model [17]. 

 

In a work published in 2000, Lu et al [18] have reported the fabrication and 

characterization of a 0.1 µm gate length p-type SiGe Schottky-gate HEMT and a MOS-

gate HEMT. In their work, they have pointed out two important problems in the 

fabrication of SiGe MOS-gate HEMT: (1) high density of interface states of oxides 

formed on SiGe and (2) Ge segregation caused by the high temperature oxide processing. 

They have compared two SiGe HEMTs of similar dimensions: one with MOS gate and 

the other with Schottky gate. The comparison shows that the MOS-gate HEMT has a 

wider gate voltage swing and lower leakage current than its counterpart. 

  

V. Gaspari et al [19] have investigated the effect of temperature on the transfer 

characteristics of an n-channel Si/SiGe MOS-gate HEMT. They have experimentally 

measured the extrinsic transconductance for different gate voltages at different 
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temperature ranging from 180 K to 300 K. It has been found that at low temperature the 

off current is reduced and the subthreshold slope becomes steeper. Their experimental 

results have been compared with MediciTM simulation results. This work was published in 

2004. 

 

Velàzquez et al [20] have reported the “design of nearly body effect free” Si/SiGe n-

channel HEMT. They have numerically studied the effect of doping of the setback layer 

and designed the doping profile in such a way that the effect of the substrate bias is 

substantially reduced. They have also used MediciTM and compared the simulation results 

with results obtained from the experiments. 
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Chapter 3 

Modified Model for MOS-Gate SiGe HEMT 

 

In this chapter, different aspects of the analytical modeling of the SiGe MOS-gate HEMT 

will be discussed. Mostly, the analyses and discussions will be limited to the p-channel 

MOS-gate HEMT. The analysis of the n-channel MOS-gate HEMT can be performed in a 

similar fashion. At first, the analytical model proposed by Jain et al [16] will be 

discussed. Then, the modified model including the effect of the silicon cap layer will be 

proposed and the results obtained from the two models will be compared. Last part of this 

chapter consists of the simulation results and analyses of the effects of the change of 

different device and material parameters using the modified model.  

 

3.1 Existing Model for the MOS-Gate HEMT 

3.1.1 The threshold voltage expression 

A threshold voltage expression for the MOS-gate HEMT has been reported in [16]. In 

this work, a p-channel SiGe MOS-gate HEMT has been used to derive the threshold 

voltage equation. The structure of the device is shown in Figure 3.1. This structure 

combines a conventional MOSFET with the HEMT structure. The p-channel SiGe MOS-

gate HEMT consists of a Si0.5Ge0.5 (p-type) supply layer, an intrinsic Si0.5Ge0.5 spacer  
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Figure 3. 1: Cross-sectional schematic of a p-Channel SiGe MOS-gate HEMT. 
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layer, an n- -Ge channel, a Si0.25Ge0.75 virtual substrate and a Ge substrate. Also, a thin 

layer of silicon is used on the top of the supply layer, which is called silicon cap. The 

purpose of this layer is to grow the SiO2 layer on the top. On the top of the gate oxide, the 

gate metal is deposited, which is Aluminum in this case.  

 

The threshold voltage expression in [16] has been derived without considering the effect 

of the silicon cap layer. The device structure, charge distribution and energy band 

diagram used in the derivation is shown in Figure 3.2. In this derivation, dd, the width of 

the supply layer is defined as the distance from the oxide/silicon interface to the supply 

layer/spacer layer interface. The charge accumulated in the metal gate due to the applied 

gate voltage VG is compensated by part of the charge in the depletion layer of the 

Si0.5Ge0.5 supply layer. This charge is termed as Qd. The rest of the charge in the depletion 

layer is compensated by the charge in the two dimensional hole gas (2DEG) and a small 

charge due to the depletion layer formed in the Ge channel. 

 

The derivation starts with the equation, 

s
ox

D
FBG C

QVV ψ++=  …………………………………………………………….3.1                                     

where, VG is the applied gate voltage,                                   

            VFB is the flatband voltage 

            ψs   is the surface potential, 

            Cox is the oxide capacitance. 
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Figure 3. 2: Device schematic, charge distribution and energy band diagram of the 
p-channel MOS-gate HEMT. 
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Using the depletion approximation, the expressions for ψs   and Qd are found as, 

2

2

2

2 deps WqN
ε

ψ =  ………………………………………………………………….3.2                                        

depWqN 2dQ =   ……………………………………………………………….….3.3 

 where, N2 is the doping density in the Si0.5Ge0.5 supply layer, 

 ε2 is the permittivity of the Si0.5Ge0.5 supply layer = 13.95 ε0,   

 ε0 is the permittivity of the free space. 

 

The expression for VFB is given by,  

FBV = 
ox

ox
ms C

Q
φ −   ……………………………………………………………….3.4  

 

ϕms is the difference between the metal and the semiconductor (Si0.5Ge0.5) work function, 

which is given by, 

msφ = )]([ 2
2 q

E
V

q
E

q
E f

d
vg

m −−
∆

−+− χφ ……………………………………….3.5 

             where, χ2 is the electron affinity of the semiconductor, 

 Φm is the metal work function, 

                         ∆Ev is the valence band discontinuity at the Si0.5Ge0.5/Ge Interface, 

             Vd is the potential difference between the maximum of the valence band 

             and the bottom of the valence band discontinuity, 

 Eg2 is the band gap of Si0.5Ge0.5, 

 Ef is the Fermi level measured for the top of the valence band      

discontinuity. 

 26



Again, Vd is expressed in terms of sρ as,                   

dV = 
222

2

2 ε
ρ

ε
ρ

is dq
N

q
s +  …………………………………………………..……….3.6 

 

Two other useful relations used in the derivation are, 

i
s

m d
N

x +=
2

ρ
 ………………………………………………….…….………….3.7 

and, W middep xdd −+= )( ……………………………………………..….…….3.8 

 

Using equations 3.1 through 3.8, the final charge control equation can be derived. The 

charge control equation is given by, 

][ THpG
eq

s VV
q

C
−−=ρ ……………………………………………………………3.9     

                  where, 
2

1
ε

ddd
C

id

eq

∆++
= ,                                                                          

                        ∆ = d
q

a 2ε . 

 

VTHp is the threshold voltage. The expression of VTHp is given by, 

THpV  =
q
E

q
E

q
E fvg

m
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2

∆
−
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+−− χφ
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2
22

2ε
d
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ox dqN
C

dqN
C
Q

++− ……………….3.10 

 

The expression for the n-channel MOS-gate HEMT can be derived in similar fashion and 

is given by, 

 27



THnV =
q
E

q
E fc

m
0

2

∆
+

∆
−− χφ

2

2
22

2ε
d

dqN
C

dqN
C
Q

ox

d

ox

ox −−− ……………………....3.11 

 

3.1.2 Calculation of VTHp  

 
The threshold voltage for the MOS-gate HEMT shown in figure 3.1 will be calculated 

now. The device and material parameters used to calculate the threshold voltage is listed 

in table 3.1. All the parameters are for 300 K. Some of the parameter values are not same 

as the ones used in the work of Jain et al [16]. One of the reasons behind the differences 

is the fact that the calculations performed in [16] were for 77 K instead of 300 K.  

 

The electron affinity of Si0.5Ge0.5 is calculated using the following relation [15], 

x05.005.42 −=χ  ……………………………………………………………..3.12 

 where, x is the mole fraction in Si1-xGex. 

 

The bandgap of the strained Si0.5Ge0.5 at 300 K is calculated using the following 

equations [12] 

2
2 396.0896.017.1)2.4,( xxKxEg +−= ……………………………………….3.13       

636
1073.4)0,(),(
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T
TKxETxE gg  ……………………………………....3.14     

Here, it is assumed that the band gap at 0 K is almost same as the bandgap at 4 K.                     
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    Table 3. 1: Device and material parameters used to calculate VTHp at 300 K. 

Parameter Value Unit 

Φm 4.10 EV 

χ2 4.025 eV 

q 1.6X10-19  Coulomb 

Eg2 0.7755 eV 

∆Ev 0.2212 eV 

0f
E∆  0.00 eV 

Qox 1X1011 Coulomb/cm2 

tox 50X10-7 cm 

a 0.125X10-12 V-cm-2 

dd 30X10-7 cm 

di 4X10-7 cm 

ε2 13.95 ε0 

ε0 8.854X10-14 F/cm 

εoxide 3.90 ε0 

N2 5X1017 cm-3 
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0f
E∆ is zero at 300 K. The value of ε2 is determined using the following relation, 

x5.407.112 +=ε  …………………………………………………………...…3.15 

          

The calculation of the valence band discontinuity requires special attention. One might be 

tempted to use the Andersons model [21] to calculate ∆Ev using following equations, 

 ……………………………………………………………...3.16 cgv EEE ∆−∆=∆

 21 χχ −=∆Ec ………………………………………………………………….3.17 

 ……………………………………………………………….3.18 21 ggg EEE −=∆

 

But the Anderson model is oversimplified and it often fails to match the experimental 

data, mainly because it does not include the effect of the surface states, which is pretty 

dominant in most heterostructures. The device under investigation in this thesis consist of 

a strained SiGe/Ge interface pseudomorphically grown on a relaxed SiGe buffer, the use 

of the Anderson model would be inappropriate. Instead, the following relation derived by 

People and Bean [11] can be used, 

 ) ………………………………………………………....3.19 53.084.0( yxEv −=∆

             where, y is the mole fraction of the virtual substrate Si1-yGey.  y is 0.75 for the p-

channel MOS-gate HEMT structure used in the thesis. 

 

Using the parameters specified, the threshold voltage value is found  as,  

       VTHp =3.0573 V 
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It will be shown later that this threshold voltage value is an overestimation. 

 

3.1.3 Calculation of  VGmin 

 
            The minimum gate voltage VGmin is another important quantity of the HEMT. Unlike the 

MOSFET, the HEMT has two boundaries for its gate bias. For p-channel HEMT, the gate 

voltage must be less than the threshold voltage VTHp to keep it ‘ON’. For gate voltage 

equal to or greater than VTHp, the total channel is depleted and thus, there is no free carrier 

to conduct current flow from the source to the drain. Again, the gate voltage has to be 

greater than the minimum gate voltage VGmin  for normal operation. At gate voltage equal 

to or lower than VGmin, the SiGe spacer layer is not fully depleted. Thus, there exists a 

conducting path in the SiGe supply layer parallel to the Ge channel. The device 

transconductance goes down due to this parallel conduction. Thus, this parallel 

conduction is not expected for the normal HEMT operation. As a result, HEMT operation 

is usually restricted within the gate voltage range: VGmin<VG< VTHp. 

 

            The VGmin value can be calculated using the following relation, 

 THp
eq

so
G V

C
q

V +−=
ρ

min …………………………………………………………..3.20 

             where, ρso is the equilibrium channel charge   

            In the work of Jain el al [16], the value of ρso has been assumed to be 1012 cm-2. Using 

this value the minimum gate voltage VGmin is calculated as, 

                                      VGmin = 0.1738 V 
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In the later part of this chapter, a way to calculate more accurate value of ρso will be 

discussed. Accurate estimation of ρso helps to get a better estimate of the value of   VGmin. 

                        

3.1.4 The current-voltage characteristics 
 
The basic analytical model developed by Chang and Fetterman [22] has been used to 

calculate the current-voltage characteristics of the HEMT. There are several models 

available for calculating the current-voltage characteristics of the HEMT. The Chang-

Fetterman model [22] has been used as it has been shown to be effective to match the 

experimental data. 

 

The basic Chang-Fetterman model has been derived for the n-channel HEMT. Thus, a set 

of modified equations will be used here, which are valid for p-channel HEMT. The drain 

current ID is given by, 

 )]exp(1)][([0
s

x
THpGD v

xVVVGI
µξ

−−−−−=  ………………………………....3.21 

             where, G =C0 eqvsZ, 

                   µ = The hole mobility in the strained Ge channel, 

                    vs = the hole saturation velocity in the Ge channel, 

                   xξ = The electric field in the direction from source to drain, 

                    Z= the gate-width of the HEMT. 
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Now, considering the fact that xξ = 
dx

xdV )( , equation 3.21 can be written as, 
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          Rs = Source Resistance, 

          Rd = Drain Resistance. 

 

Again, Saturation current IDsat is given by, 
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2 )1ln(
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             where, 
)(0 sDsatTHpG

Dsat
os RIVVG

I
−−

=t . 

 

Using Equation 3.23, the IDsat vs. VG plot is obtained which is shown in Figure 3.3 (a). As 

expected, the saturation current varies almost linearly with the gate voltage. As the gate 

voltage approaches the threshold voltage (3.0573 volt in this case), the current goes to 

zero. Obviously, any parallel conduction or leakage current is neglected in this simple 

model. The entire current is assumed to be only due to the channel charge. 
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(a) 

 
(b) 

 

Figure 3. 3: (a) The IDsat-VG and (b) the ID-VD characteristics of the p-channel SiGe 
MOS-gate HEMT, using the analytical model of Jain et al [16]. 
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The ID-VD plot is obtained using equation 3.22 and the IDsat-VG plot. This plot is shown in 

Figure 3.3(b). It should be noted that in this model, the variation of saturation current 

with drain to source voltage (VDS) is ignored. Thus, the current in the saturation region is 

constant for a fixed gate voltage. A hole mobility value of 500 cm2/V-s is used in the 

calculation of current voltage characteristics. This value is estimated using [8]. In [8], the 

hole mobility value is almost 1000 cm2/V, which is obtained experimentally for a delta-

doped HEMT device that consists of a strained Ge channel grown on a cubic Si0.3Ge0.7 

buffer. A delta-doped HEMT has higher mobility than a regular HEMT. Thus, it has been 

assumed that for the regular-doped HEMT an approximate mobility value of 500 cm2/V-s 

can be used.  

 

The hole saturation velocity of 3X107
 cm/s is used in the calculation of Jain et al [16]. 

This value is definitely an overestimation. A hole saturation velocity of 4X106 cm/s has 

been used in this thesis. Use of this value provides a closer agreement between the 

current-voltage characteristics calculated from the analytical model and that obtained by 

the MediciTM simulations. 

 

3.1.5 The transconductance (gms) and cutoff frequency (fT) 

The transconductance  gms is an important parameter of any transistor, which determines 

its small signal (ac) performance. The expression that has been used to calculate gms is 
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given below:                  
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Using this relation, gms has been calculated for different gate voltages. The gms vs. VG plot 

is shown in Figure 3.4(a). It is clear that as the gate voltage goes down from the threshold 

voltage, the saturation transconductance goes up abruptly. At around a gate voltage value 

of 2 volts, the value of gms starts to saturate and it remains basically constant over the rest 

of the gate voltage range. It should be noted that in practical cases, gms value saturates and 

then starts going down for gate voltage less than VGmin. The current-voltage model used 

in this thesis considers current due to channel conductance only and thereby ignores any 

parallel conduction path such as the spacer layer. As mentioned before, for a gate voltage 

value less than VGmin, parallel conduction takes place in the spacer layer. Thus, the gms 

calculated here is basically the saturation transconductance due to the channel current 

only. But, for normal operation, gate bias is usually limited within the range: VGmin<VG< 

VTHp. Thus, although, gms value calculated here is not very accurate for VG< VGmin, it is 

not a big concern. 

 

The cutoff frequency is another important figure of merit. Due to its high mobility, the 

HEMT has quite high cutoff frequency. The use of MOS gate in HEMT, further enhances 
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(a) 

 

(b) 

Figure 3. 4: (a) The gms vs. VG and (b) the fT vs. L plot of the p-channel SiGe MOS-
gate HEMT, using the analytical model of Jain et al [16]. 
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gate length, thus higher fT value can be obtained. 

 

3.2 The Modified Model 

3.2.1 The threshold voltage expression 

In the existing model, the threshold voltage expression has been derived completely 

ignoring the effect of silicon cap layer. A modified model for threshold voltage will be 

proposed, which will include the effect of the silicon cap layer and thus provides a more 

accurate estimation of the threshold voltage. 

 

Figure 3.5 shows the device schematic, charge distribution and band diagram for the 

modified model. The derivation starts by considering the charge neutrality condition, 

 GeGesim WqNqdxq +=− ρ)(  …………………………………………………..3.25 

 

As the Ge layer is unintentionally doped, GeGes WN>>ρ . Thus, equation 3.25 can be 

written as, 

 sim qdxq ρ=− )(  
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m d
N

x +=⇒
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ρ
……………………………………………………...………..3.26 

Again, 

 ……………………………………………………….3.27depW misd xddd −++=  
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Figure 3. 5: Device schematic, charge distribution and energy band diagram of the 
p-channel MOS-gate HEMT, used in the modified model. 
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Using equation 3.24,  

  d - =depW sd d+
2N
sρ

 ……………………………………………….…………3.28 

 

Again, the gate voltage is given by equation 3.1 as, 

 s
ox

D
FBG C

QVV ψ++= …………………………..………………………………..3.29 

 

Finding ψs:      

Considering the electric field and potential in the direction normal to the gate oxide/Si 

interface and using Gauss’s law,  

 s
si

si dx
qN

dx
d

<<−= 0,
ε

ξ  

 deps WxdqN
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<<−= ,
2

2

ε
ξ …………………………………………………….3.30 

                               

In the region, ds<x<Wdep,                          

 AxqNx +−=
2

2)(
ε

ξ   …………………………………………………………...3.31 

             where, A is the constant of integration 

At, x=Wdep, .0)( =xξ  Using this boundary condition in 3.27 yields, 
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Substituting the value of A in equation 3.27 , 
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Now, for 0<x<ds, 
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                   where, B is the constant of integration. 

 

At x = ds, the electric flux D has to be continuous,  
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Substituting this value in equation 3.31 yields, 

 )(2
sdep

si

dWqNB −=
ε

+ s
si

si d
qN
ε

………………………………………….…….3.37 

 

Thus, the electric field can be expressed as, 
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si −
ε

, 0<x<ds ………………………….....3.38 

  and, ( )xξ =  )(
2

2 xWqN
dep −

ε
, ds <x<Wdep ……...………………………….….3.39 

 

 The potential functions can be found by integration of equations 3.38 and 3.39, 

 −=)(xψ xdWqN
sdep

si

)(2 −
ε

 1
2 )( Kxxd

qN
s

si

si +−
ε

− , 0<x<ds ………………....3.40 

            )(xψ = +−− )
2

(
2

2

2 xxWqN
depε 2K , ds <x<Wdep ……………………….……….3.41 

       where, K1 and K2 are the constants of integration. 

 

At x=Wdep, the potential becomes zero, 

 )( depWψ = …………………………………………………….……..………..3.42 0

 

Using equation 3.42 with equation 3.41 yields, 

 2

2

2
2 2 depWqNK

ε
= ………………………………………………………………....3.43 
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Thus, in the range, ds <x<Wdep, 

 )(xψ = +−− )
2
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2

2
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 ……………………………...……….3.44 

 

At x=ds, 

 )( sdψ = +−− )
2

(
2

2

2 s
sdep

d
dWqN

ε
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2

2

2 depWqN
ε

………………………………...….3.45 

 

Now, potential has to be continuous across the Si/SiGe interface. Thus, substituting the 

value of )( sdψ in equation 3.36 and performing some algebraic manipulations, the 

following expression is obtained, 

 ssdep
si

s
si

si
sdep ddW
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d
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K )(
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)(

2
222

2

2
2 −++−=

εεε
………………..……..3.46 

It is clear from Figure 3.5 that, 

 =2K =)0(ψ sψ …………………………………………………………….….3.47 

 

Combining equation 3.46and equation 3.47, the expression for sψ is found as, 

 sψ = ssdep
si

s
si

si
sdep ddW

qN
d

qN
dW

qN
)(

22
)(

2
222

2

2 −++−
εεε

……………………….3.48 

 

Finding VFB: 

The expression for the flat band voltage VFB is given by equation 3.4 as, 
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            V = FB
ox

ox
ms C

Q
φ − .  

 

Again, the difference between the metal and the semiconductor work function is given 

by, 

            msφ = sim φφ − ………………………………………………………………...…3.49 

       where, siφ is the work function of silicon. 

 

The silicon used in the silicon cap layer is normally lightly doped p-type material. It can 

be shown with the help of the band diagram that the work function of the p-type Si0.5Ge0.5 

is almost equal to the work function of the lightly doped silicon layer. Thus φms can be 

expressed as, 

            msφ ≈ 2φφ −m ……………………………………………………………….…..3.50 

       where, 2φ  is the work function of Si0.5Ge0.5. 

 

Thus, using equation 3.5, 

            msφ ≈ )]([ 2
2 q

E
V

q
E

q
E f

d
vg

m −−
∆

−+− χφ ……………………………………..……3.51 

 

The flatband voltage can be written as, 

            
ox

oxf
d
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mFB C

Q
q

E
V

q
E

q
E

−−−
∆

−+−= )]([ 2
2χφV ………...……………………3.52 
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Finding Qd: 

From Figure 3.5, it is clear that the depletion charge due to the gate voltage, Qd is given 

by, 

 )(2 sdepssid dWqNdqNQ −+= …………………………………………..…….3.53 

The Threshold Voltage: 

Substituting the values of Ψs, VFB and Qd from equation 3.48,3.52,3.53 into equation 3.1 

yields, 
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Now, using depletion approximation, it can be shown that, 
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Using the value of Vd in equation 3.54 yields, 
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Using the linear approximation, Ef can be expressed as, 
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 sfof aqEE ρ+∆= ……………………………..……………………………….3.57 

         where, ∆Efo is the y-axis intercept of the Ef vs.ρs plot. 

                         a is the slope of the plot. 

Substituting this value of Ef in equation 3.56 and performing some algebraic 

manipulations, the final charge control expression is obtained, 

   ][ THpG
eq

s VV
q

C
−−=ρ …………………………………………………...…….3.58 

 The equivalent or total capacitance Ceq is given by, 
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         where, 
q

a
d 2ε

=∆ . 

The modified expression for threshold voltage VTHp is given by, 
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3.2.2 Calculation of threshold voltage using modified model 
 
Now, the threshold voltage for the p-channel HEMT shown in Figure 3.1 will be 

calculated, using the modified threshold voltage expression. The device and material 

parameters used to calculate VTHp is shown in Table 3.2. It should be noted that, in this 

case, a dd value of 25 nm is used instead of 30 nm. Actual value of the width of the SiGe  
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Table 3. 2: Device and material parameters for the calculation of VTHp using 
modified model. 

Parameter Value Unit 

Φm 4.1 eV 

χ2 4.025 eV 

q 1.6X10-17 Coulomb 

Eg2 .7755 eV 

∆Ev .2212 eV 

0f
E∆  0 eV 

Qox 1X1011 Coulomb/cm2 

tox 50X10-7 cm 

a 0.125X10-12 V-cm-2 

dd 25X10-7 cm 

ds 5X10-7 cm 

di 4X10-7 cm 

ε2 13.95 ε0 

ε0 8.854X10-14 F/cm 

εoxide 3.90 ε0 

εsi 11.7 ε0 

N2 5X1017 cm-3 

Nsi 5X108 cm-3 
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layer is 25 nm in both cases. But, in the Jain model, as the effect of the silicon layer have 

been ignored, the width of the silicon layer (5 nm in this case) had to be included, in the 

dd value. In the modified model, as the width of the SiGe spacer layer and the silicon 

layer have been defined by the terms dd and ds respectively, the dd value of 25 nm can  be 

used. The addition of dd and ds (dd+ds), specifies the total distance from the gate oxide to 

the supply/spacer interface. 

 

In section 3.1.2, the methods of calculating parameters like χ2, ∆Ev, ∆Efo etc have already 

been discussed. As mentioned before, the p-type silicon-cap layer is usually very lightly 

doped. Here, a doping concentration value of 5X108 cm-3 has been selected for the silicon 

layer. The width of the silicon layer is 5 nm. The main reason of the use of the silicon 

layer is to grow the gate oxide (SiO2). Thus, it is expected that most of the silicon layer 

originally grown on the spacer layer is consumed in growing SiO2. Still, there exists a 

definite layer of silicon (few nanometers) that have been taken into account and termed 

its width as ds. Later, it will be shown that the threshold voltage changes with the 

variation in the value of ds.  

 

Using the parameters specified in Table 3.2, the threshold voltage has been calculated as, 

                          

       VTHp =2.4839 V 

 

As it will be shown later, this value is very close to the threshold voltage value obtained 

from MediciTM simulation.  
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3.2.3 Calculation of VGmin 

 
The value of VGmin can be calculated using equation 3.20, 

 VGmin= THp
eq

so V
C
q

+
ρ

−  

An expression will be derived that can help to predict ρso accurately. From equation 3.55 

Vd can be expressed as, 
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2 ε
ρ

ε
ρ iss

d
dq

N
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 02 =−+⇒ dss VBA ρρ  ………………………………………………………..3.61 

             where, A=
222 N

q
ε

, 

                        B= 
2ε

iqd
. 

Now, from Figure 3.5, it is clear that, Vd can be expressed as,  

 )( vFfvd EEEEV −−−∆=       …………………………………………..….3.62                         

                     

EF-Ev is the difference between the Fermi level and the maximum point of the valence 

band in SiGe. This difference is calculated using the following relation, 

 )ln( 2

v
vF N

NkTEE −=−  ………………………………………………………..3.63 

From equation 3.57, Ef can be expressed as, 

 sfof aqEE ρ+∆=  . 
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Using equation 3.57, 3.62 and 3.63in equation 3.61and performing some algebraic 

manipulations, the expression for ρs is found as, 

 )()()]ln([
2

2
22

2
222 ddNddN

N
N

kTEE
q
N

ii
v

fovs ∆+−∆+++∆−∆=
ε

ρ …….3.64 

 

Again, from equation 3.9 , 

 ][ THpG
eq

s VV
q

C
−−=ρ . 

 

VGmin is the gate bias at which the gate depletion and the channel depletion of the SiGe 

spacer layer just touch each other, but they do not interpenetrate. For this condition, the 

equilibrium channel charge ρso can be found using the simultaneous solution of equation 

3.9 and 3.64. Thus, the value of ρso can be found using equation 3.64 and the VGmin  value 

can be found using equation  3.55, 

 VGmin= THp
eq

so V
C
q

+
ρ

−  

The ρso value has been calculated using equation 3.64. The calculated value is 

6.6067X1011 cm-2. Using this value in equation 3.55 yields a VGmin value of, 

VGmin=0.5715 V. 
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3.2.4 Current-voltage characteristics  
 

The current-voltage characteristics for the modified model are calculated using [22] as 

before. The same equations and parameters are used; except the value of threshold 

voltage VTHp is different here. 

 

The IDsat vs. VG plot is shown in Figure 3.6(a). The same plot for the previous model is 

also shown in the same figure. Comparison of these two plots shows that, the existing 

model overestimated the current values. 

 

The ID-VD plots for different VG values, for both models are shown in Figure 3.6(b). 

Again, it is evident from the comparison that the existing model overestimated the current 

values.   

           

3.2.5 Transconductance (gms) and cutoff frequency (fT) 

The gms vs. VG plots using both models are shown in Figure 3.7(a). For gate voltage close 

to the threshold voltage, the value of gms using existing model is higher than the modified 

model. But for lower voltages, where gms value saturates, both model yields almost same 
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(a) 

 
(b) 

Figure 3. 6: (a) The IDsat-VG and (b) the ID-VD characteristics, using existing and 
modified model. 
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(a) 

 
(b) 

Figure 3. 7: (a) The gms vs. VG and (b) The fT vs. L plot, using existing and modified 
model. 
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value. It is evident that in this region, gm value is not very sensitive to the threshold 

voltage value. 

 

The plots of fT vs. L for both models are shown in Figure3.7 (b). It is clear from the plots 

that the existing model slightly overestimates the value of the cutoff frequency for all 

gate lengths.  

 

3.3 Effect of Device and Material Parameters on VTHp and 
VGmin 
 
 
In this section, the effects of some device parameters such as doping concentration (N2), 

silicon cap layer width (ds), spacer layer width (di) and oxide thickness on the value of 

threshold voltage VTHp and minimum gate voltage VGmin will be analyzed. Also, the effect 

of the mole fraction value x of Si1-xGex on VTHp and VGmin will be investigated.  All 

analyses will be performed using the modified model. 

3.3.1 Effect of doping concentration 
 
The threshold voltage and the minimum gate voltage can be changed by varying the 

doping of the SiGe spacer layer. Figure 3.8(a) shows the N2 vs. VTHp plot. The threshold 

voltage increases almost linearly with the increase in the doping concentration. The linear 

variation can be expected by looking at the expression of VTHp, which contains only first 

order terms of N2. For a doping density variation from 4X1017
 cm-3 to 1X1018

 cm-3, the  
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(a) 

 
(b) 

 

Figure 3. 8:  (a) N2 vs. VTHp plot and (b) N2 vs. VGmin plot of the p-channel 

SiGe MOS-gate HEMT. 
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VTHp value changes from 1.8 V to 5.6 V. Thus, it can be concluded that VTHp is strongly 

dependent on the doping density of the spacer layer. 

 

The plot of N2 vs. VGmin is shown in figure 3.8(b).  Similar to VTHp, VGmin also varies 

linearly with doping density. The total change in VGmin is almost same as the total change 

in VTHp. Thus, the operating voltage range of the HEMT (VTHp~VGmin) remains almost 

constant with the variation of the doping density. 

 

3.3.2 Effect of spacer layer width 

The spacer layer width di vs. VTHp plot is shown in Figure 3.9(a). The expression of VTHp 

doesn’t include any term consist of di. Thus, the threshold voltage remains practically 

indifferent to the change of the spacer layer width. 

 

On the other hand, the plot of di vs. VGmin in Figure 3.9(b) shows that VGmin is weakly 

dependent on the value of di. The expression for VGmin contains the term Ceq. Ceq is 

dependent on di; thus making the VGmin value dependent on di.  
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(a) 

 
(b) 

 

Figure 3. 9: (a) di vs. VTHp plot and (b) di vs. VGmin plot of the p-channel 

SiGe MOS-gate HEMT. 
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3.3.3 Effect of silicon layer Width 
 
The inclusion of the effect of silicon cap layer in the expression of VTHp is the main goal 

of the modified model. As a result, using the modified model, the effect of the variation 

of the width of the silicon cap layer can be analyzed. As mentioned before, the main 

purpose of the silicon cap layer is to grow the SiO2 gate insulator, which is an inevitable 

part of the MOS structure. It is expected that, most of the silicon layer would be 

consumed in this oxidation process. In most cases, there remains a thin layer of silicon 

after the oxidation is done. Depending on the thickness of this layer it might have a 

significant or negligible effect on VTHp and VGmin value. 

 
 
Figure 3.10 shows the ds vs. VTHp plot. The variation is almost linear. The expression of 

VTHp includes second order term of ds. But as the coefficient of the second order term is 

Nsi, which is much smaller than N2, the second order term has almost negligible effect in 

the variation of VTHp. It is evident from the plot that the variation of ds moderately affects 

the value of VTHp. For a large doping density of the silicon layer, the variation would be 

larger.  

 

The variation of VGmin shown in Figure 3.10(b) demonstrates a weak dependence of VGmin 

on the value of ds. The operating voltage range is slightly varied with the variation of ds. 
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(a) 

 
(b) 

 

Figure 3. 10: (a) ds vs. VTHp plot and (b) ds vs. VGmin plot of the p-channel 

SiGe MOS-gate HEMT. 
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3.3.4 Effect of oxide thickness 

The inclusion of the gate oxide makes the MOS-gate HEMT different from the Schottky-

gate HEMT. The tox vs. VTHp plot is shown in Figure 3.11(a). The threshold voltage 

shows a strong dependence on the selection of the oxide thickness. The dependence is 

almost linear. The expression of VTHp does not contain any term of tox. But it contains 

terms with 1/Cox. 1/Cox is directly proportional to tox. This explains the linear dependence.  

 
Figure 3.11(b) shows the tox vs. VGmin plot. It is evident that, VGmin is not so strongly 

dependent on tox as the threshold voltage. The VGmin expression consists of a term -1/Cox. 

This term compensates part of the change that occurs due the change in VTHp. It is clear 

from the comparison of Figure 3.11(a) and (b) that increasing the oxide thickness can 

result in effective increase in the operating gate voltage range. On the other hand, 

excessive increase in tox results in poor transconductance value. Thus, an optimum value 

of tox should be selected while designing a MOS-gate HEMT, so that an wide operating 

voltage range, high cutoff frequency as well as reasonable gate transconductance can be 

achieved. One should also keep in mind that the minimum value of tox is determined by 

the breakdown electric field.   
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(a) 

 
(b) 

Figure 3. 11: (a) tox vs. VTHp plot and (b) tox vs. VGmin plot of the p-channel 

SiGe MOS-gate HEMT. 
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3.3.5 Effect of mole fraction in SixGe1-x 

The p-channel MOS-gate HEMT device used in the simulations consists of Si0.5Ge0.5 

spacer and supply layer. The variation of the mole fraction x in Si1-xGex results in the 

change of bandgap, valence band discontinuity (∆Ev) and other parameters. The effect of 

the choice of the mole fraction x on VTHp and VGmin will be investigated in this section. 

 

Figure 3.12(a) shows the dependence of the threshold voltage on the mole fraction. VTHp 

shows an almost linear and moderate dependence on x. As the spacer layer material 

approaches Ge (higher value of x), the threshold voltage increases.  

 

As it is evident from Figure 3.12(b), VGmin shows an opposite reaction to the increase in x 

value. VGmin value goes down as the x value is increased. Thus, for higher value of x, 

larger operating voltage range can be achieved. 

 

3.4 Conclusions              

In this chapter, the existing model, the modified model and the comparisons between 

them have been discussed. It is evident from the discussions that the modified model 

includes more device and material parameters and thus more accurately predicts device 

behavior. Using the modified model, the effect of some device and material parameters 

on the threshold voltage, VGmin and the operating voltage range have been shown.  

 

These simulation results can be really handy to a device designer at the initial phase of  
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(a) 

 
(b) 

 

Figure 3. 12: (a) Mole fraction x vs. VTHp plot and (b) mole fraction x vs. VGmin plot 
of the p-channel SiGe MOS-gate HEMT. 
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the design. Certainly, to obtain a more accurate estimation of the threshold voltage and 

other parameters, some kind of numerical analysis software or device simulator (such as 

MediciTM, DavinciTM, ATLASTM) has to be used.   
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Chapter 4 

The Temperature Model 

 

In the previous chapter, the p-channel MOS-gate HEMT behavior using the modified 

model has been discussed. All the analyses have been performed at room temperature 

(300 K). In this chapter, the effect of temperature variation on the behavior of the HEMT 

will be investigated. The HEMT has a wide range of applications that includes low 

temperature electronics as well as high temperature applications. Using the modified 

model, efforts will be made to theoretically predict the effects of temperature change on 

the threshold voltage, transconductance and current-voltage characteristics.     

 

4.1 Effect of Temperature on Threshold Voltage 

According to the modified model, the threshold voltage expression is given by, 
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The effect of the temperature variation on different terms in this expression will be 

investigated and combining the effects, the temperature dependence of the threshold 

voltage will be predicted.  
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4.1.1 Temperature dependence of doping concentration 

The temperature range under consideration is from 100 K to 450 K. 100 K is much higher 

than the freeze out temperature of Si, Ge or SiGe. Thus, for the entire temperature range 

(100 K< T < 450 K), it can be assumed that the doping concentrations N2 and Nsi are 

almost constant. 

 

4.1.2 Temperature dependence of metal work function (ϕm) 

Using the free electron model, it can be shown that the temperature dependence of the 

metal Fermi level can be expressed as [23],  

])(
12

1[)( 2
2

Fmo
FmoFm E

kTETE π
−=   ……………………………………………….4.2 

Here, EFmo is the metal Fermi level at 0 K, which can be evaluated using following 

relation, 

FmoE 3
22
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8

(
π
n

m
h

e

= …………………………………………………………...…4.3 

where, me is the mass of electron, 

                        h is Planck’s constant, 

                        n is the total number of valence electrons in the metal/unit volume. 

 

Normally, the value of EFmo is much larger than the value of kT. As a result, the metal 

Fermi level shows extremely weak temperature dependence.  

 66



Assuming the vacuum level being constant, it can be concluded that the change in the 

metal Fermi level is equal to the change in the metal work function. Obviously, the sign 

of the change is opposite. Thus, if the change in the metal Fermi level with temperature 

can be calculated, the change of the work function can be found.  

 

Using the material parameters of Al, the change of the metal Fermi level has been 

calculated for a temperature change of 0 K to 300 K. The change is very small (few mV). 

Thus, in this present analysis, it can be easily assumed that the metal work function is 

essentially constant. 

 

4.1.3 Temperature dependence of semiconductor electron affinity (χ2) 

The applied gate bias voltage VG is independent of temperature. Two components of the 

gate voltage, ψs and Qd are independent of temperature variation. As a result, the third 

component ϕms has to be constant also. It has been already proved that the metal work 

function is essentially constant. This makes ϕs independent of temperature variation. 

 

The temperature independence of ϕs implies that the Fermi level of the semiconductors 

will be almost constant over the temperature range. Thus, it can be assumed that the 

change in the electron affinity of the SiGe supply layer is half of the change of its 

bandgap. Of course, the sign of the change is opposite. This relation can be expressed in 

an equation as, 
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The value of the electron affinity of the SiGe layer at 300 K is known. Thus, using 

equation 4.4, the temperature dependence of χ2 can be calculated. 

 

4.1.4 Temperature dependence of bandgap 
 
The temperature dependence of the bandgap of the strained Si1-xGex spacer layer is 

calculated using equations 3.13 and 3.14 [9] mentioned in the previous chapter, 

Eg2 (x, 4.2 K)  = −17.1 0.896x + 0.396x2
…………………………………………………………....4.5       

Eg2 (x, T)  = 
636
104.73 - K) Eg2(x,0

2-4

+
×

T
T  ……………………………..………...4.6 

 

4.1.5 Temperature dependence of ∆Ev 

 
As mentioned in the previous chapter, the valence band discontinuity ∆Ev is calculated 

using the People and Bean’s [11] equation. The model does not specify the temperature 

dependence of ∆Ev. The other available models [10] to calculate ∆Ev of a strained system 

also do not show any consideration of temperature variation. In the present analysis, it is 

assumed that ∆Ev is temperature independent. 
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4.1.6 Temperature dependence of ∆Efo 

 
There is no accurate model available to predict the temperature variation of ∆Efo. But it is 

known that at 300 K, ∆Efo=0 and at 77 k ∆Efo=0.025 eV. It have been assumed that a 

linear variation of ∆Efo between these two temperatures. With this assumption, ∆Efo(T) 

can be expressed as, 

.0336+-0.000112)( TTE fo =∆  ……………………………...………………….4.7 

 

4.1.7 Calculation of temperature dependence of VTHp 

 
The other parameters in the threshold voltage equation can be assumed independent of 

the temperature variation. Thus, taking into consideration the temperature dependence of 

the parameters mentioned in the previous sections, the temperature dependence of the 

threshold voltage can be calculated. A MATLAB program has been used to calculate the 

temperature dependence of VTHp. Figure 4.1 shows the T vs. VTHp plot. A temperature 

range of 100 K to 450 K is considered which falls within the extrinsic temperature range 

of the semiconductors. As a result, n0 2N≈ .  

 

It is evident from the plot that the threshold voltage shows weak dependence on 

temperature. The variation of VTHp is almost linear. Over a temperature change of 350 K  
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Figure 4. 1: Temperature variation of the threshold voltage. 

 
 
 

(100K to 450 K), the threshold voltage changes only 8 mV. In practical cases, a little 

more variation might be observed, due to the variation of some other device and material 

parameters that have not been included in this analysis. 

 

 

4.2 Effect of Temperature on Hole Mobility (µh) 
 
The hole mobility of the strained Ge channel varies with temperature. With increment in 

temperature, the mobility value goes down. At this point, no accurate analytical model is 

available to describe the temperature dependence of the hole mobility in the strained Ge 
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channel. The experimental data for temperature dependence of the hole hall mobility in 

the strained Ge channel reported in [8] will be used in this analysis. It should be noted 

that this data is obtained using strained Ge channel on cubic Si0.3Ge0.7. In the device 

under discussion, the virtual substrate is not Si0.3Ge0.7, but Si0.5Ge0.5. Still, it can be 

assumed that the temperature dependence of mobility can be approximated using the 

available data. Also, the data is for a delta-doped HEMT structure, which has higher 

mobility than the regular-doped HEMT. A mobility value of 1000 cm2/V-s at 300 K is 

reported in [8]. In the present analysis, the mobility value at 300 K is 500 cm2/V-s. Thus, 

the experimental mobility values at other temperatures can be scaled down by the factor 

of 2 to use in the present analysis. 

 

The mobility values used in the calculation are shown in Table 4.1. It should be noted 

that the mobility value at 400 K was not available in the experimental data. It has been 

attempted to estimate the value using linear approximation. 

 

 

Table 4. 1: The hole hall mobility at different temperature as estimated from the 
experimental plot. 

Temperature (K) Hole Hall Mobility (cm2/V-s) 

100 10000 

200 1500 

300 500 

400 150 
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4.3 The Current-Voltage Characteristics 

The current-voltage characteristics for different temperatures have been calculated using 

the Chang-Fetterman model [22]. It has been assumed that the only two temperature 

dependent parameters in the Chang-Fetterman current-voltage characteristics are the 

threshold voltage and hole mobility. Figure 4.2(a) shows the IDsat vs. VG plot. It is evident 

that the saturation current decreases as the temperature goes up. The current values at 100 

K and 200 K are very close. As the temperature goes up from 200 K to 300 K, bigger 

reductions in the current values are noticed. Again, in the temperature range of 300 K to 

400 K, the changes in the current values are even larger. 

 

ID-VD characteristics for different temperatures at gate voltage 1 V are shown in Figure 

4.2 (b). Due to the high mobility at low temperatures, the current increases very quickly 

with the increment of VDS in the linear region. As the temperature goes up, the mobility 

decreases due to adverse effects such as optical phonon scattering. As a result, the current 

does not increase as fast as in the case of low temperatures. In the saturation region, the 

current value remains constant, as the channel length modulation effect has not been 

taken into consideration.  

4.4 Transconductance  

Figure 4.3 shows the gms vs. VG plot for different temperatures. As the temperature goes 

up, transconductance goes down. For the gate bias values close to the threshold voltage, 

gms is sensitive to both temperature and threshold voltage. At lower gate voltages, gms 
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(a) 

 

(b) 

 

Figure 4. 2: Temperature variation of  (a) the IDsat -VG and (b) the ID-VD 
characteristics. 
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Figure 4. 3: gms vs. VG plot of different temperatures. 

 

 
becomes almost constant. For lower temperatures, this saturation occurs early. At high 

temperatures, saturation takes place slowly. As gms saturates, it becomes less sensitive to 

temperature. 

 

4.5 Conclusions 

In this chapter, a simple temperature model has been presented. Using this model, the 

temperature dependence of the threshold voltage, current voltage characteristics and 

transconductance have been predicted. It should be noted that the saturation velocity (vs) 
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has been assumed to be independent of the temperature variation. This is definitely not 

true in practical cases. No accurate analytical model or experimental data is available that 

could help predicting the temperature variation of vs in the strained Ge channel. If it is 

assumed that vs is weakly temperature dependent, this temperature model should be able 

to give us a rough idea of the temperature dependency. 
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Chapter 5 

Analytical Modeling of Delta-Doped HEMT 

 

In a delta-doped HEMT, the whole supply layer is not doped. Instead, a very thin layer in 

the supply layer is doped. There are quite a few advantages of the delta-doped HEMT 

over the regular-doped HEMT that include increase in mobility and cutoff frequency. By 

varying the position and width of the doped layer, one can control the cutoff frequency, 

the threshold voltage, the minimum gate voltage and the transconductance. In the 

beginning of this chapter, the existing threshold voltage model for the delta-doped MOS-

gate HEMT will be presented and its limitations will be discussed. Then, a modified 

model will be proposed that is valid for any width of the doped layer. Also, an expression 

for the minimum gate voltage Vtl will be derived. In the last part of this chapter, the 

effects of different material and device parameters on VTHp and Vtl are investigated. 

 

5.1 The Existing Threshold Voltage Model 

5.1.1 The threshold voltage expression 

An expression of the threshold voltage for the p-channel delta-doped SiGe MOS-gate 

HEMT has been proposed by Gokhale et al. [24]. The expression of VTHp is given by, 
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where, χ2 is the electron affinity of the semiconductor, 

                        Φm is the metal work function, 

                        ∆Ev is the valence band discontinuity at the Si0.5Ge0.5/Ge Interface, 

            Eg2 is the band gap of Si0.5Ge0.5, 

            nd is the charge sheet density in the delta doping of the supply layer, 

            d1 is the distance of the doped plane from the oxide/Si interface. 

 

5.1.2 Limitations of the existing model 

The existing model for the threshold voltage is applicable only when the width of the 

doped layer is extremely thin. In other words, the expression of the threshold voltage is 

derived with the assumption that the width of the doped layer (the width can be called δ) 

is negligible compared to the distance of the doped layer from the oxide/Si interface (d1). 

This assumption is definitely not valid when the delta-doped layer is placed very close to 

the oxide layer. Also, it is possible to tune the threshold voltage and the minimum gate 

bias by varying δ. The existing model requires that the δ value be quite thin and 

negligible compared to d1. Thus, the existing model is fallible when the δ value is varied 

freely and it becomes comparable to d1. 
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5.2 The Modified Threshold Voltage Model 
 

5.2.1 Need for the modified model 
 
A threshold voltage model is required that can overcome the limitations of the existing 

model. This modified model should be valid for any value of δ; starting from almost 

negligible widths to the whole supply layer width (when δ = dd = width of the supply 

layer). As a result, the new model would enable us to include the effect of change in δ on 

the threshold voltage and the minimum gate voltage. Thus, this model includes one more 

dimension to the existing model. A new model for the threshold voltage will be proposed, 

which is a modified version of the existing model. 

 

5.2.2 The threshold voltage expression 

Figure 5.1 shows the device structure used to derive the expression of the threshold 

voltage. This device is very similar to the one that has been used in chapter 3. In this 

case, the supply layer is delta doped and there is no spacer layer in this structure. Figure 

5.2 shows the device schematic, band diagram and charge distribution diagram used in 

the derivation. The depletion charge in the supply layer is confined in a very narrow 

width. The part of the depletion charge is due to the gate voltage. The width of this 

charge layer is δ1. The width of the charge layer due to the channel charge is δ2. As there 

is no spacer layer present in this structure, the distance d2 should be equal or greater than 

the typical spacer layer width.  
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Figure 5. 1: The device structure of the delta-doped MOS-gate SiGe HEMT. 
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Figure 5. 2: The device schematic, charge distribution and band diagram used to 
derive VTHp expression. 
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The silicon cap layer used here is undoped. The expression of VTHp has been derived 

neglecting the effect of the silicon layer. It can be assumed that for the delta-doped 

structure and undoped silicon layer, the effect of silicon layer width is negligible. The 

derivation of the threshold voltage expression is similar to the derivation of the threshold 

voltage expression of the regular-doped MOS-gate HEMT. The threshold voltage 

expression is given by, 
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Now, it can be shown that this equation converges to the existing expression for VTHp as 

δ becomes very thin. For a thin doped layer, 12
d<<

δ . If it is defined that nd = the charge 

sheet density in the delta doping of the supply layer = N2δ, equation 5.2 becomes, 
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 which is basically equation 5.1. 
 

5.2.3 Calculation of threshold voltage  
 
The threshold voltage for the delta-doped MOS-gate HEMT shown in Figure 5.1 is 

calculated using the device and material parameters specified in Table 5.1. The calculated 

threshold voltage value is, 

VTHp= - 0.4592 V. 
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Table 5. 1: Device and material parameters used to calculate VTHp of the delta-   
doped MOS-gate HEMT. 

Parameter Value Unit 

Φm 4.1 eV 

χ2 4.025 eV 

q 1.6X10-19 C 

Eg2 0.7755 eV 

∆Ev 0.2212 eV 

0f
E∆  0 eV 

Qox 1X1011 C/cm2 

tox 50X10-7 cm 

a 0.125X10-12 V-cm-2 

d1 15X10-7 cm 

d2 14X10-7 cm 

δ 1X10-7 cm 

ε2 13.95 ε0 

ε0 8.854X10-14 F/cm 

εoxide 3.9 ε0 

N2 1X1018 cm-3 
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This result is very close to the experimental measurement of the threshold voltage of the 

delta-doped MOS-gate HEMT with similar structure, found in the work of Murakami et 

al. [4]. 

 

5.3 The Expression for Vtl 
 
The term Vtl for a delta-doped HEMT is similar to the term VGmin for a regular-doped 

HEMT. The minimum gate bias Vtl of a p-channel delta-doped MOS-gate HEMT is the 

gate voltage at which the top of the valence band of the supply layer almost touches the 

Fermi level. As a result, real space hole transfer occurs in the supply layer. Thus, a 

channel parallel to the Ge channel is formed. The conduction due to this parallel channel 

sharply reduces the device transconductance. Thus, for normal operation of the delta-

doped HEMT, the minimum gate voltage is restricted to equal or greater than Vtl. Thus, 

the normal operating gate-voltage range of a delta-doped HEMT is: Vtl < VG < VTHp.  

 

An expression for Vtl has been derived using its definition. At VG = Vtl, the distance 

between the valence band maximum and the Fermi level, EFV becomes almost zero. The 

expression for Vtl is given by, 
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The expression for the total equivalent capacitance Ceq is given by, 
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Using the parameters specified in Table 5.1, the value of Vtl has been calculated. The 

calculated value is, 

Vtl =  -2.2608 V. 

 

The operating gate voltage range ∆VG is given by, 

                               VtlVV THpG −=∆

                             = (- 0.4592 + 2.2608 ) V 

                             = 1.8016 V. 

 

5.4 Effect of d1 and δ on VTHp and Vtl   
 
As discussed earlier, the value of the threshold voltage and the minimum gate bias can be 

tuned by varying the distance of the delta-doped layer from the oxide/Si interface and the 

width of the delta-doped layer. The effects of these two device parameters for different 

doping concentrations will be investigated in this section. 
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5.4.1 Effect of d1 

 
Figure 5.3(a) shows the d1 vs. VTHp plots for different doping concentrations. As expected 

by inspection of equation 5.2, VTHp varies linearly with the variation of d1. For low 

doping concentration such as 5x1017 cm-3, the threshold voltage increases very slowly as 

the distance of the delta-doped layer from the oxide/Silicon interface is increased. At 

higher doping concentrations such as 5x1018 cm-3, the change of VTHp due to the change 

in d1 is steeper.  

 

Figure 5.3(b) shows the d1 vs. Vtl plots for different doping concentration. As the delta-

doped plane is moved away from the oxide/Silicon interface, the Vtl value goes down. 

The variation is nonlinear, as could be anticipated from equation 5.3. For low doping 

concentrations such as 5x1017 cm-3, the d1 vs. Vtl plot looks almost linear. On the other 

hand, at higher doping concentrations such as 5x1018 cm-3, the curvature of the plot 

become more dominant.  

 

From the comparison of Figure 5.3 (a) and (b), it is evident that the operating voltage 

range ∆VG goes up as the delta-doped layer is moved away from the gate oxide. Also, for 

a fixed d1 value, the higher the doping concentration, the higher ∆VG is. On the other 

hand, if the delta-doped layer is placed very close to the channel, the mobility will be 

reduced. Thus, appropriate positioning of the delta-doped layer is very important. 
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                                                                    (a)  

 
(b) 

Figure 5. 3: (a) d1 vs. VTHp plot and (b) d1 vs. Vtl plot of the p-channel delta-doped 

SiGe MOS-gate HEMT. 
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5.4.2 Effect of δ 

Figure 5.4 (a) shows the δ vs. VTHp plots for three different doping concentrations. For 

low doping concentration, VTHp is weakly dependent on the δ value. On the other hand, as 

the doping concentration increases, the threshold voltage shows significant sensitivity to 

the width of the delta-doped layer. Thus, for delta-doped MOS-gate HEMT with high 

doping, δ is a very effective design parameter that can be used to control the threshold 

voltage value. 

 

Figure 5.4 (b) shows the δ vs. Vtl plots for different doping concentrations. The 

dependence of Vtl on δ is similar to that of VTHp. For higher doping concentrations, Vtl 

becomes quite sensitive to the value of δ. It should be noted that the nature of the δ vs. Vtl 

plots differs from that of the δ vs. VTHp plots as the δ vs. Vtl plots for different doping 

concentrations intersect with each other which is not true for the δ vs. VTHp plots. 

 

5.5 Conclusions 

In Chapter 3, the dependence of VTHP and VGmin of the regular-doped HEMT on the 

device and material parameters has been discussed. In the case of a delta-doped HEMT, 

the device designer has two more parameters to play with: d1 and δ. It is evident from the 

simulation results presented in this chapter that both d1 and δ can be very helpful design  

 87



 

(a) 

 
(b) 

Figure 5. 4:  (a) δ vs. VTHp plot and (b) δ vs. Vtl plot of the p-channel delta-doped 

SiGe MOS-gate HEMT. 
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parameters to achieve certain threshold voltage and operating voltage range for a delta-

doped MOS-gate HEMT. 
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Chapter 6 

MediciTM Simulation of MOS-Gate HEMT 

 

In this chapter, the numerical simulations performed using the device simulator MediciTM 

will be discussed. Some of the simulation results will be directly compared to the results 

obtained form the analytical models presented in the previous chapters. The other 

simulations are used to investigate the device behavior and examine the dependence of 

device and material parameters on device performance.  

 

6.1 Brief Introduction To MediciTM 

MediciTM is an industry-standard device simulator that can predict the electrical 

characteristics of arbitrary two-dimensional structures under user specified operating 

conditions. It is capable of simulating a broad range of devices including diode, BJT, 

MOSFET, JFET, MESFET, HBT, HEMT, IGBT, CCD and GTO. 

MediciTM can help us to: 

• Calculate and plot I-V characteristics, gain and speed of a device. 

• Understand device physics and operation through calculating and plotting 

potential, field, band diagram, carrier concentration, mobility, etc. 

• Calculate ionization rate and current density distributions. 

• Analyze and understand breakdown mechanisms. 
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• Achieve optimal performance by refining device parameters. 

• Study failure mechanisms, such as leakage paths and hot electron effects. 

• Investigate transient radiation effects, such as single event and dose rate upset. 

 

MediciTM is particularly suitable for devices that have structural variations in any two 

dimensions.  

 

6.2 VTHp and VGmin for the MOS-gate HEMT 

Figure 6.1 shows the gate voltage vs. drain current plot for small drain-source voltage 

(VDS=-0.1V). This simulation result has been obtained from MediciTM using a HEMT 

structure similar to the SiGe MOS-gate HEMT shown in Figure 3.1. From Figure 6.1, it 

is evident that the values of the threshold voltage and the minimum gate voltage are 2.45 

V and 0.4 V, respectively. The threshold voltage and the minimum gate voltage obtained 

from the modified analytical model are 2.48 V and 0.57 V, respectively. Thus, the 

modified analytical model is capable of very closely predicting VTHp and VGmin at room 

temperature for MOS-gate HEMT.  

 

6.3 Current Voltage Characteristics of the MOS-Gate HEMT 

Figure 6.2 (a) shows the comparison between the VG vs. IDsat plot obtained from Medici 

simulations and the one obtained using the modified analytical model. It is evident that  
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Figure 6. 1: MediciTM simulation result used to determine VTHp and VGmin. 
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(a) 

 
(b) 

 

Figure 6. 2: (a) Comparison of IDsat-VG plot obtained from analytical model and 
Medici Simulation and (b) ID-VD plot from MediciTM. 
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the saturation currents estimated by the analytical model are very close to the currents 

estimated by MediciTM simulations. It should be noted that the current-voltage data 

obtained from MediciTM is used to plot the IDsat-VG characteristics in Matlab. It enables us 

to plot both results (analytical and Medici) on the same figure. 

 

Figure 6.2 (b) shows the ID-VD characteristics obtained from MediciTM. This ID-VD 

characteristics differ from the ID-VD characteristic found using analytical model by both 

shape and magnitude. As a result, they have not been plotted in the same figure. The 

differences between the ID-VD characteristics might be explained by the following 

reasons: 

 

• In the analytical model, a mobility value estimated from experimental result for 

strained-Ge channel has been used. On the other hand, while performing MediciTM 

simulations, bulk SiGe and Ge have been used to construct the device. The 

mobility value used by MediciTM has been examined and found to be lower than 

the value used in the calculations from analytical models. 

 

• The saturation velocity value used in the calculations from analytical models is 

not very accurate. It is an estimated value. This estimated value has been used due 

to lack of a suitable analytical expression or experimental data for the saturation 

velocity in the strained-Ge channel. 
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• The Chang-Fetterman equation used in the analytical model considers only 

channel current. On the other hand, MediciTM is capable of calculating leakage 

currents besides the channel current.  

 

• The basic Chang-Fetterman model has been used to calculate the current-voltage 

characteristics, which does not include the channel-length modulation effect. 

 

• Also, the Chang-Fetterman equation does not include position-dependent mobility 

variation. Inclusion of the mobility variation along the direction normal to the 

heterointerface would improve the model. 

 

 

6.4 Doping Concentration Dependence of VTHp 

Figure 6.3 shows the ID-VG characteristics (at low VDS) of the MOS-gate HEMT for 

different doping concentration of the supply layer. It is evident that with the increase in 

doping concentration, the threshold voltage shows significant increment. The VGmin value 

also increases almost the same amount. Thus, the operating voltage range (VTHp ~VGmin) 

remains almost constant with variation in the doping level. These results obtained from 

MediciTM simulations match quite closely with the results obtained from the analytical 

model. It should be noted that the subthreshold current becomes significant for high 

doping concentrations such as 8X1017 cm-3. 
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Figure 6. 3: ID-VG characteristics of the p-channel SiGe MOS-gate for different 
supply layer doping concentrations. 
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6.5 The Temperature Variation of the Threshold Voltage 

Figure 6.4 shows the VG vs. ID characteristics calculated by MediciTM at different 

temperatures. The threshold voltages at different temperatures can be determined from 

this plot. The VTHp values at 100 K, 200 K, 300 K and 400 K are 2.15 V, 2.25 V, 2.45 V 

and 2.6 V, respectively. Thus, MediciTM predicts a total of 450 mV variation in the 

threshold voltage as temperature changes from 100 K to 400 K, as opposed to only 90 

mV change predicted by the analytical temperature model. This larger threshold voltage 

variation obtained from the MediciTM simulation might be the result of using bulk SiGe 

and Ge. The small threshold voltage variation predicted by the analytical model appears 

more realistic. Similar work on temperature behavior modeling of InGaAs HEMT [25] 

considers weak variation of threshold voltage with temperature. 

 

6.6 The Temperature Dependence of the ID-VD Characteristics 

Figure 6.5 shows the ID-VD Characteristics at different temperature (at VG=1.0 V), 

obtained from the MediciTM simulation. Again, the ID-VD Characteristics obtained from 

the MediciTM simulation differs significantly from the ID-VD Characteristics obtained 

from the analytical temperature model. At very low temperature such as 100 K, MediciTM 

current values are substantially higher (almost 4 times) than the current values at 200 K, 

which is not true for the ID-VD Characteristics of the analytical temperature model. It has 

been assumed in the analytical temperature model that the saturation velocity is 
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Figure 6. 4: Temperature Variation of VTHp measured from ID-VG plots at different 
temperatures. 
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Figure 6. 5: Comparison of ID-VD characteristics at different temperatures, obtained 
from MediciTM simulation. 
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temperature independent, which is not true in practical cases. The saturation velocity 

normally goes up at low temperatures. The MediciTM simulations have certainly included  

the temperature dependence of the saturation velocity and thus, it calculated much higher 

current at low temperature. Also, MediciTM has used quite high mobility values at low 

temperatures. 

 

6.7 VTHp and Vtl for Delta-Doped MOS-Gate HEMT 

Figure 6.6 shows the VG vs. ID plot for small drain-source voltage (VDS=-0.1V) obtained 

from the MediciTM simulation for the delta-doped MOS-gate HEMT. The device structure 

is similar to the one used in the calculation from the analytical model. The threshold 

voltage value obtained from the figure is almost –0.5 V. This value is very close to the 

value (-0.46 V) estimated by the analytical model calculation. On the other hand, the Vtl, 

value extracted from the Medici plot is almost –1.8 V. The calculated value of the Vtl 

from the analytical model is –2.2 V. Thus, the Vtl value calculated from the analytical 

model is slightly overestimated. 

 

 In the derivation of the analytical expression of Vtl, it has been assumed that the real 

space hole transfer occurs when the maximum of the valence band touches the Fermi 

level. In practical cases, the hole transfer starts to occur when the distance between the 

maximum of the valence band and the Fermi level becomes comparable to the kT value. 

This is the reason for the difference between the minimum gate voltage value estimated 

by the analytical model and the MediciTM simulation. Although the prediction of the Vtl  
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Figure 6. 6: MediciTM simulation results used to determine VTHp and V  for the p-
channel delta-doped SiGe MOS-gate HEMT. 

tl
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value is not very close, the analytical model is able to provide us with a rough idea about 

the operating voltage range of the delta-doped MOS-gate HEMT. 

6.8 Discussion  

In this chapter, the results obtained from the analytical models and the MediciTM 

simulations have been shown. Usually, the analytical models are used in the first stage of 

the device design process or to get a rough idea of the behavior of an existing device. To 

get a more accurate idea, a numerical simulation software such as MediciTM, DavinciTM, 

etc. can be used. One has to be careful while using a complicated software such as 

MediciTM as it offers a wide variety of device parameter models and other simulation 

options. Careful selection of the models is the first step to obtain the realistic results from 

the simulations. One has to have an idea about the qualitative behavior and physics of the 

device under investigation.  

 

As a whole, the comparison between the analytical model and Medici simulation is 

satisfactory. In cases where big differences between the results of the analytical model 

and the MediciTM simulations have been observed, the possible reasons behind the 

differences have been discussed. 
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Chapter 7 

Conclusions 

7.1 Summary of the Work 

It is evident from the discussions in the previous chapters that the realization of the MOS-

gate HEMT is a very important step toward the integration of the HEMT into CMOS 

circuits. Despite some fabrication difficulties, the MOS-gate HEMT demonstrates better 

performance than a metal-gate HEMT and holds great promise for high-frequency, low-

noise circuits. For the design and analysis of the MOS-gate HEMT, an accurate analytical 

model is very important. In this work, an analytical model has been proposed which is 

better than the existing model and the results from the MediciTM simulations have been 

compared to those obtained from the analytical model. For some of the cases the results 

match closely, while in others there exists difference between the results. Efforts have 

been made to explain the possible reasons for the differences. The work achieved in this 

thesis is summarized below: 

 

• A modified model for the threshold voltage and the minimum gate voltage of the 

SiGe MOS-gate HEMT has been proposed. The values of VTHp and VGmin have 

been calculated using the parameters of a 0.7-µm gate length p-channel SiGe 

MOS-gate HEMT. The calculated results have shown excellent agreement with 

the VTHp and VGmin values calculated by the MediciTM simulations. The threshold 
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voltage value obtained from the analytical model differs only by 0.03 volts from 

the value obtained by the MediciTM simulation. 

 

• The p-channel SiGe MOS-gate HEMT discussed in this thesis contains strained 

SiGe and Ge layers. As the properties of the strained material such as the 

bandgap, the band-discontinuity, etc. vary from the bulk material; care has been 

taken to include the strain-dependent material parameters in the calculations. 

 

• The modified model, along with the Chang-Fetterman equation, has been used to 

calculate the current-voltage characteristics, transconductance and cutoff 

frequency. The comparison of the current-voltage characteristics calculated using 

the analytical model and those obtained from the MediciTM simulations revealed 

some difference between them. The reasons for the differences include the 

difference in the mobility values and the saturation velocity values used in the two 

methods (MediciTM and analytical model calculation). 

 

• Using the modified model, the effects of different material and device parameters 

on the threshold voltage, the minimum gate voltage and the gate voltage swing 

have been investigated. Some of the results have been compared with the 

MediciTM simulations.  

 

• An analytical model for predicting the temperature dependence of the MOS-gate 

HEMT has been presented. The threshold voltage variation due to the temperature 
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variation calculated from this model is smaller than the variation predicted by the 

Medici simulations. The total variation predicted by MediciTM is almost five times 

the total variation obtained from the analytical model. It has been justified that the 

result obtained from the analytical model appears more acceptable. 

 

• The temperature variations of the current-voltage characteristics have been 

calculated using the temperature model and compared with the results of the 

MediciTM simulations. The differences between the results have been explained. 

 

• A new model for the delta-doped MOS-gate HEMT has been proposed, which is 

valid for any width of the delta-doped layer and any distance of the delta-doped 

layer from the oxide interface. The threshold voltage VTHp and the minimum gate 

voltage Vtl of a delta-doped p-channel SiGe MOS-gate HEMT have been 

calculated using this model. The calculated values are very close to the values 

obtained from the MediciTM simulation results. 

 

• The effects of doping concentration, width of the delta-doped layer, etc. on  VTHp 

and Vtl of the delta-doped MOS-gate HEMT have been investigated using the new 

model.  

 

• MediciTM simulations have been performed to compare the results obtained from 

the calculations using the analytical models. Also, the simulations have been used 

to explore the device behavior of the SiGe MOS-gate HEMT under investigation. 
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7.2 Future Work Directions 

To improve the analytical models, the following works may be done in the future: 

 

• The Chang-Fetterman equation [22] does not include the mobility variation along 

the direction normal to the heterointerface. Instead of using a constant mobility, if 

a mobility model is used, which includes the variation of mobility along the 

direction normal to the heterointerface, a better estimation of the current-voltage 

characteristics can be obtained. 

 

• Better estimations of the mobility value and the saturation velocity are required to 

obtain better results from the analytical model. Use of the Monte Carlo method or 

other numerical simulation methods may help to calculate better mobility and 

saturation velocity values. The temperature dependence of the mobility and the 

saturation velocity should also be calculated using numerical simulation. 

 

• The best way of getting realistic values of the mobility and saturation velocity of a 

strained Ge channel grown on cubic SiGe is to fabricate a SiGe p-channel MOS-

gate HEMT, and determine the mobility and saturation velocity values from the 

experimental data. Once the data is obtained, it can be used later for any 

calculation from the analytical model of the p-channel SiGe MOS-gate HEMT. 
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• Also, if the experimental current-voltage characteristics are available, the current-

voltage characteristics obtained from the analytical model can be fitted to the 

experimental data. The fitting parameters can be included as part of the analytical 

model. Thus, the analytical model can be ameliorated.  

 

• The shape of the quantum well formed in the heterojunction depends on the width 

of the channel layer and also the composition and doping of the virtual substrate. 

Including the effects and solving the Schrödinger equation for the quantum well, a 

better and more realistic expression for the charge density in the channel can be 

obtained.  
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