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ABSTRACT 

 
A new method for rapid chemical analysis of lignocellulosic biomass was 

developed using Fourier transform near-infrared (FT-NIR) spectroscopic 

techniques. The new method is less time-consuming and expensive than 

traditional wet chemistry. A mathematical model correlated FT-NIR spectra with 

concentrations determined by wet chemistry. Chemical compositions of corn 

stover and switchgrass were evaluated in terms of glucose, xylose, galactose, 

arabinose, mannose, lignin, and ash. Model development evaluated multivariate 

regressions, spectral transform algorithms, and spectral pretreatments and 

selected partial least squares regression, log(1/R), and extended multiplicative 

signal correction, respectively. Chemical composition results indicated greater 

variability in corn stover than switchgrass, especially among botanic parts. Also, 

glucose percentage was higher in internodes (>40%) than nodes or leaves (~30-

40%). Leaves had the highest percentage of lignin (~23-25%) and ash (~4-9%). 

Husk had the highest total sugar percentage (~77%). Individual FT-NIR 

predictive models were developed with good accuracy for corn stover and 

switchgrass. Root mean square errors for prediction (RMSEPs) from cross-

validation for glucose, xylose, galactose, arabinose, mannose, lignin and ash 

were 0.633, 0.620, 0.235, 0.374, 0.203, 0.458 and 0.266 (%w/w), respectively for 

switchgrass, and 1.407, 1.346, 0.201, 0.341, 0.321, 1.087 and 0.700 (%w/w), 

respectively for corn stover. A unique general model for corn stover and 

switchgrass was developed and validated for general biomass using a 

combination of independent samples of corn stover, switchgrass and wheat 

straw. RMSEPs of this general model using cross-validation were 1.153, 1.208, 

0.425, 0.578, 0.282, 1.347 and 0.530 %w/w for glucose, xylose, galactose, 

arabinose, mannose, lignin and ash, respectively. RMSEPs for independent 

validation were less than those obtained by cross-validation. Prediction of major 

constituents satisfied standardized quality control criteria established by the 

American Association of Cereal Chemists. Also, FT-NIR analysis predicted 
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higher heating value (HHV) with a RMSEP of 53.231 J/g and correlation of 0.971. 

An application of the developed method is the rapid analysis of the chemical 

composition of biomass feedstocks to enable improved targeting of plant botanic 

components to conversion processes including, but not limited to, fermentation 

and gasification.  



 

 vi

TABLE OF CONTENTS 

Chapter                      Page 
CHAPTER I INTRODUCTION.............................................................................. 1 
1.1 Biomass properties and industrial potentials for bio-energy ........................... 1 
1.2 The disadvantage of wet chemistry analyses ................................................. 1 
1.3 An effective solution: near infrared technique with chemometrics .................. 3 
1.4 Further development of NIR instrumentation—Fourier-transform (FT)-NIR.... 4 
CHAPTER II BACKGROUND INFORMATION..................................................... 7 
2.1 Biomass feedstocks investigated in this study................................................ 7 

2.1.1 Corn stover............................................................................................. 7 
2.1.2 Switchgrass............................................................................................ 7 

2.2 Diffuse reflectance in NIR region .................................................................... 8 
2.3 Data processing methodology ...................................................................... 10 

2.3.1 Data pretreatment methods.................................................................. 10 
2.4.2 Multivariate analysis techniques........................................................... 12 

2.4.2.1 Principle component analysis (PCA) ............................................... 12 
2.4.2.2 Hierarchical clustering analysis (HCA) ............................................ 13 
2.4.2.3 Multiple linear regressions (MLR) with stepwise variable selection . 15 
2.4.2.4 Principle component regression (PCR) ........................................... 15 
2.4.2.5 Partial least squares regression (PLS) ............................................ 16 

2.5 Biomass properties....................................................................................... 17 
2.5.1 Chemical properties ............................................................................. 17 

2.5.1.1 Carbohydrates................................................................................. 17 
2.5.1.2 Lignin............................................................................................... 18 
2.5.1.3 Ash .................................................................................................. 19 

2.5.2 Heating values ..................................................................................... 20 
2.6 Objectives..................................................................................................... 21 
CHAPTER III LITERATURE REVIEW ................................................................ 23 
3.1 NIR Applications in related disciplines.......................................................... 23 
3.2 Discussion on calibration dataset ................................................................. 26 
3.3 Data processing............................................................................................ 28 

3.3.1 Data pretreatment methods.................................................................. 28 
3.3.2 Spectral ordinate: K-M or log(1/R)?...................................................... 28 
3.3.3 Multivariate analyses............................................................................ 29 

CHAPTER IV MATERIALS AND METHODS ..................................................... 30 
4.1 Biomass materials ........................................................................................ 30 

4.1.1 Corn stover........................................................................................... 30 
4.1.2 Switchgrass.......................................................................................... 31 
4.1.3 Wheat straw ......................................................................................... 32 

4.2 Methods........................................................................................................ 33 
4.2.1 Sample preparation.............................................................................. 33 
4.2.2 Date collection...................................................................................... 33 

4.2.2.1 Overview of composition analysis model calibration........................ 33 
4.2.2.2 FT-NIR sampling ............................................................................. 34 



 

 vii

4.2.2.3 Wet chemistry analysis.................................................................... 35 
4.2.2.4 Data processing and multivariate analyses ..................................... 38 

4.3 Experiment designs ...................................................................................... 38 
4.3.1 Water bands study and justification for dry sample usage ..................... 38 

4.3.2 FT-NIR predictive model development ...................................................... 39 
4.3.2.1 Calibration dataset design ............................................................... 39 
4.3.2.2 Discussion on the best modeling configuration Error! Bookmark not 
defined. 
4.3.2.2.1 Investigation of spectral pretreatments ........................................ 40 
4.3.2.2.2 Spectral transform algorithm comparison..................................... 42 
4.3.2.2.3 Multivariate regression method comparison................................. 42 
4.3.2.3 Model validation .............................................................................. 43 

4.3.2.4 HHV analysis ...................................................................................... 44 
CHAPTER V RESULTS AND DISCUSSION...................................................... 46 
5.1 Wet chemistry results ................................................................................... 46 

5.1.1 Switchgrass............................................................................................ 46 
5.1.2 Corn stover ............................................................................................ 48 
5.1.3 Chemical composition overview............................................................. 49 
5.1.4 Higher heating value for switchgrass dataset......................................... 49 

5.2 NIR Water bands and justification of using dry samples............................... 50 
5.3 The development of best modeling configurations ....................................... 54 

5.3.1 Spectral pretreatment............................................................................. 54 
5.3.1.1 The necessity of spectral pretreatment............................................ 54 
5.3.1.1.1 Microscopic imaging results ......................................................... 54 
5.3.1.1.2 Original spectral analysis ............................................................. 56 
5.3.1.2 Pretreatment selection..................................................................... 59 
5.3.1.2.1 Hierarchical clustering results ...................................................... 59 
5.3.1.2.2 Prediction result comparison........................................................ 61 

5.3.2 Spectral transform algorithm selection................................................... 65 
5.3.3 Regression method determination ......................................................... 66 

5.4 Predictive model results................................................................................ 69 
5.4.1 Corn stover and switchgrass individual models......................................... 69 
5.4.2 One general model hypothesis investigation............................................. 72 

5.4.2.1 Justification of the general model .................................................... 72 
5.4.2.2 Cross validation results ................................................................... 73 
5.4.2.3 Validation using independent data .................................................. 75 
5.4.2.4 The model prediction capability of wheat straw ............................... 75 

5.4.3 HHV modeling........................................................................................ 76 
CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS ............................ 78 
6.1 Conclusions .................................................................................................. 78 
6.2 Future studies............................................................................................... 79 
LIST OF REFERENCES .................................................................................... 81 
APPENDIX A NOMECLATURE.......................................................................... 95 
APPENDIX B EXPERIMENTAL UTILITIES........................................................ 97 
APPENDIX C STATISTICS CALCULATIONS.................................................... 98 



 

 viii

APPENDIX D LIGNIN STRUCTURAL INFOMATION ...................................... 100 



 

 ix

LIST OF TABLES 
 

Table              Page 
Table 1 General chemical composition of different biological materials .............. 5 
Table 3 Experiment design of switchgrass data collection.. ............................... 39 
Table 4 Experiment design of corn stover data collection .................................. 39 
Table 2  Data denotation of the experimental design for pretreatment selection  
 ........................................................................................................... 40 
Table 5 Information associated the validation dataset........................................ 43 
Table 6 HHV data collection of 15 categories of biomass samples .................... 44 
Table 7 The chemical composition of different switchgrass cultivars and botanic 

fractions ................................................................................................ 47 
Table 8 The chemical composition of different botanic parts of corn stover ....... 48 
Table 9 The dissimilarity distances calculated during the last three mergence in 

HCA for different pretreatments............................................................ 61 
Table 10 Correlation comparison of switchgrass models applied with different 

pretreatments..................................................................................... 63 
Table 11 RMSEP comparison of switchgrass models applied with different 

pretreatments..................................................................................... 64 
Table 12 Cross-validation results comparison between K-M and log(1/R) ......... 66 
Table 13 Stepwise variable selection results on corn stover and switchgrass 

calibration dataset respectively.......................................................... 67 
Table 14 The cross-validation results comparison between PCR and PLS ....... 68 
Table 15 The cross-validation result of switchgrass individual model................. 71 
Table 16 The cross-validation result of corn stover individual model.................. 72 
Table 17 The cross-validation result of the general model ................................. 74 
Table 18 The results of validating the general model using independent dataset, 

including 5 corn stover and 5 switchgrass samples. .......................... 75 
Table 19 The results of validating the general model using 5 wheat straw 

samples ............................................................................................. 76 
   
 



 

 x

LIST OF FIGURES 
 
Figure         Page 
Figure 1 Illustration of FT-NIR spectrometer layout .............................................. 5 
Figure 2 Illustration of NIR diffuse reflectance...................................................... 8 
Figure 3 Illustration of dendrogram..................................................................... 14 
Figure 4 The flowchart of cross-validation. ......................................................... 17 
Figure 5 Cellulose repeating β-1,4-linked anhydrocellobiose unit ...................... 18 
Figure 6 Fisher open-chain molecular formulas of five simple sugar analytes 
commonly encountered in biomass ................................................................... 19 

Figure 7 The principal linkage modes between the phenylpropane units in lignin 
macromolecules.. .............................................................................................. 20 

Figure 8 Manually separated botanical fractions of corn stover.......................... 30 
Figure 9 Manually separated botanical fractions of switchgrass......................... 32 
Figure 10 Scheme of data collection and model development ........................... 34 
Figure 11 Optical geometry of an integrating sphere for NIR diffuse reflectance 
sampling............................................................................................................ 35 

Figure 12 Wet chemistry analysis process of ground biomass samples............. 36 
Figure 13 Scheme of experimental procedures for sampling one investigated 
biomass variety. ................................................................................................ 41 

Figure 14 HHV of different switchgrass cultivars and botanic parts.................... 50 
Figure 15 The FT-NIR spectra of all the moisture samplings. ............................ 51 
Figure 16 The score plot of PCA applying to the 9 spectra of different moisture 
samplings depicted in Figure 15........................................................................ 52 

Figure 17 The loading plot associated with PC1 depicted in Figure 16 .............. 52 
Figure 18 The plot of the integrated peak (two) area vs. moisture content......... 53 
Figure 19 Microscope view of particles of Alamo-leaf sample after 40 mesh 
grinding ............................................................................................................. 55 

Figure 20 Micrographs of the ground particles of Alamo botanic parts............... 55 
Figure 21 The 27 original spectra ....................................................................... 56 
Figure 22 PCA score of 27 samples: PC1 vs. PC2............................................. 58 
Figure 23 PCA loading plot associated with PC1 displayed in Figure 22 ........... 58 
Figure 24 The dendrogram of HCA of the 27 original FT-NIR spectra................ 59 
Figure 25 The dendrograms of the 27 FT-NIR spectra after different 
pretreatments .................................................................................................... 60 

Figure 26 Spectral presentation after applying EMSC pretreatment on the original 
spectra of switchgrass samples ........................................................................ 62 

Figure 27 The predicted chemicals are plotted all together versus the measured 
chemical contents and R2 is calculated based all the data points. .................... 70 

Figure 28 The PCA score plots based on the spectral data of corn stover and 
switchgrass data. .............................................................................................. 73 

Figure 29 The PCA score plots based on the chemicals data of corn stover and 
switchgrass data. .............................................................................................. 74 

Figure 30 The plot of the predicted HHV vs. measured HHV with cross-validation 
results presented............................................................................................... 77 



 

 1

CHAPTER I INTRODUCTION 

1.1 Biomass properties and industrial potentials for bio-energy 
Broadly, biomass is all plant and plant-derived matter. For renewable 

energy resources, biomass often refers to agricultural residuals, wood waste, and 

dedicated energy crops. As fossil fuels are facing depletion (Hoel and Kverndokk, 

1996), lignocellulosic biomass has attracted growing attention as a promising 

alternative. Various products can be derived from lignocellulosic biomass through 

thermal, chemical, biological, and physical conversions (Demirba，2001; Kucuk, 

1997). Biomass is a renewable energy source that will provide environmental and 

economic benefits.  

Lignocellulosic biomass consists of three major constituents: cellulose, 

hemicellulose, and lignin (Gary et al., 1983). Other than serving different 

biological functions, these constituents have different industrial applications. 

Biomass materials with higher cellulose content are preferable for bio-ethanol 

production, while lignin-enriched biomass is preferred by combustion or co-firing 

with coal, since lignin has high heating value. Lignin can also be used in many 

other productions such as plastic products and polyblends (Hu, 2002). Ash has 

few applications. But knowledge of the ash content contributes to the selection of 

feedstock, enhances heat transfer and reduces the ash slagging and fouling 

problems in combustion (Winegartner, 1974, Baxter, 1993). The assessment of 

biomass chemical composition as well as the heating value aids feedstock 

selection and process adjustment for higher yield. Therefore, the contents of 

carbohydrates, and lignin, ash, as well as higher heating value (HHV) may be 

very important to the bio-energy industry, and were thus selected as the target 

analytes in this study. 

1.2 The disadvantage of wet chemistry analyses  
Total acid hydrolysis (ASTM E1758-95, 1995; Sluiter et al., 2006) is a 

traditional wet chemistry method for the structural carbohydrates and lignin 

measurement. A two-step acid hydrolysis is utilized to break down large 
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polymers into smaller detectable compounds. Many chemicals (sulfuric acid, 

calcium carbonate, high purity monosaccharides, etc) are consumed and various 

instruments (eg. analytical balance, autoclave, oven, HPLC, UV-Vis, etc) are 

involved. Ash is measured gravimetrically after 550~600 ºC (ASTM E1755-01) 

combustion. Heating value is measured using calorimeter and consumption of 

oxygen.  

The wet chemistry approach has disadvantages that make it impractical, 

or even impossible, to be applied to at-line or online monitoring in the industry. 

First of all, the time-consuming characteristic is the major drawback. For 

instance, it takes over two days to obtain data on sugars, lignin, and ash. 

Second, all these conventional methods consume chemicals and energy, which 

increase analysis expense. It was reported that a complete analysis set via 

standard wet chemistry methods costs $800-2000 per sample (Hames et al., 

2003). Third, operating wet chemistry analysis requires systematic laboratory 

settings, including the water purification system, filtration settings, analytical 

balance, autoclave, water bath, convection oven, furnace, desiccator, HPLC, UV-

Vis, etc, and a variety of glassware as well. In addition, the wet chemistry method 

is labor-intensive and the operation steps such as weight measurements and 

filtrations may be the potential error sources, which affect the analysis 

reproducibility and precision. 

Therefore, the traditional analysis methods for the chemical composition 

as well as heating value measurement will not satisfy the booming bio-energy 

industry. The time and expense issues make it difficult to expend the biomass 

compositional analyses via wet chemistry methods from laboratory scale to 

industrial scale. Researchers and engineers are trying every possibility in 

seeking an alternative analysis pathway.   
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1.3 An effective solution: near infrared technique with 
chemometrics 

Near infrared (NIR) spectroscopy combined with multivariate analyses has 

been studied as an effective approach to chemical property prediction (Burn, 

1997; Workman, 1999). The chemical bond of an object can be excited to higher 

energy level by absorbing the radiation at certain frequencies (f), which is 

depicted (Equation 1) in terms of wavenumber (υ) in cm-1 or wavelength (λ) in nm 

in an electromagnetic spectrum.  

Equation 1:     1c
fλ υ= =       where: c is the speed of light 

The electromagnetic spectrum is the range of all possible electromagnetic 

radiation, while near-infrared refers to the electromagnetic spectrum ranging from 

4000 cm-1~12500 cm-1 (800 nm to 2500 nm), which contains combination bands, 

1st and 2nd overtones.  Since the biomass is basically composed of organic 

compounds with various chemical bonds and the NIR spectrum is the 

accumulative result attributed to existing chemical bonds, mathematical models 

can be derived to correlate chemical information with NIR spectral information. 

Since the acquisition of biomass NIR spectra is much faster and simpler than wet 

chemistry analysis, the goal is to predict the chemical information based solely 

on the NIR spectra. In model calibration, independent variables come from NIR 

spectral data and the dependent variables come from chemical concentration 

data. With the developed model, the analyte content can be calculated from the 

sample spectrum, which can be acquired within minutes. This non-destructive 

approach does not involve chemical reactions, and thus minimizes expense. NIR 

analysis approach is promising for application in bio-energy industry, especially 

in online monitoring.  

Efforts have been made in this NIR technique with chemometrics in many 

disciplines, such as forage (eg. Martens, et al., 1984; Melchhinger, et al., 1990; 

Flores Pires, et al., 1998; Xiccato et al., 1999), food (eg. Hong et al., 1996; 
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Manley et al., 2002; Maertens et al., 2004), and forestry (eg. Michell and 

Schimlec, 1994; Schimleck et al., 2000; Kelley, 2004; Lestander and Rhen, 2005; 

Balleirini dos Santos, 2006). Especially, the applications in wood and forestry 

areas indicate the feasibility of applying the NIR technique to biomass. However, 

although wood material and agricultural biomass are similarly composed, it does 

not mean that those available models for woods can be taken directly for use on 

agricultural biomass materials. Given that their constituents cover different 

ranges from biomass (Table 1), it is unreliable for the models developed for 

woods to predict agricultural residues. Even within the same range, due to the 

physical interferences, the feasibility of using the model of one species to predict 

another species needs verification.  

1.4 Further development of NIR instrumentation—Fourier-
transform (FT)-NIR 

There are two common NIR spectrometers: dispersive NIR and FT-NIR 

nowadays. Dispersive NIR employs a prism or moving grating to separate each 

frequency that passes individually through a slit to the detector. The slit 

determines the spectral bandwidth (resolution) while the grating movement 

controls the passing frequency. Then the detector measures once a time the 

radiation at each frequency that has reflected from (or transmitted through) the 

sample (Koenig, 2001). Therefore, it takes time to complete all the measurement 

across the NIR spectral region. The major difference of FT-NIR is the 

interferometer system. The mechanism is illustrated in Figure 1. NIR beam from 

the source is split by the beamsplitter into two sub-fluxes. One sub-flux is sent to 

a stationary mirror, and another sub-flux goes to a moving mirror, which moves 

back and forth at a constant speed. The two sub-fluxes are reflected by the two 

mirrors respectively and merge at the beamsplitter with different traveling 

distance. In this way, some of the frequencies recombine constructively and 

some combine destructively and thus interferogram is formed. 
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Table 1 General chemical composition (%w/w) of different biological materials (DOE, 2004) 

Material Six-Carbon Sugars Five-Carbon Sugars Lignin Ash 

Hardwoods 39-50% 18-28% 15-28% 0.3-1.0% 

Softwoods 41-57% 8-12% 24-27% 0.1-0.4% 

Ag Residues 30-42% 12-39% 11-29% 2-18% 
 

 

 

 

 

 

 

 

 

Figure 1 Illustration of FT-NIR spectrometer layout 

(Thermo application note TN-00128, 2002) 
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This interferogram then goes to the sample, and the reflected (or 

transmitted) portion is received by the detector with the entire NIR frequencies. In 

other words, the detector obtains complete information of every frequency 

simultaneously. 

 Different mechanical layouts determined numerous advantages of FT-NIR 

over dispersive NIR. First, FT-NIR measures all the frequencies simultaneously 

while dispersive NIR does it individually. So the scan time is much shorter for FT-

NIR than the dispersive NIR; or given the same amount of time, FT-NIR can 

generate better spectral representation by averaging more scans (McCarthy and 

Kemeny, 2001). Second, the slit in dispersive NIR restricts the throughput 

energy; the higher resolution, the narrower the silt and thus the more substantial 

energy loss, which results in poor spectral quality. In contrast, there is no 

degradation of optical throughput for FT-NIR, so higher optical resolution is 

achieved by FT-NIR without compromising signal-to-noise ratio (Griffiths and de 

Haseth, 1986). Third, FT-NIR uses a laser to control the speed of the moving 

mirror and to provide internal wavelength calibration. Since the wavelength of the 

laser is a constant, the operation and calibration is precise and accurate by 

referring to this value. Therefore, FT-NIR has greater repeatability compared to 

dispersive NIR which relies on external calibration. In addition, the relatively 

mechanically simple apparatus conformation (less moving parts) ensures FT-NIR 

less possibility of breakdown (Griffiths and de Haseth, 1986).  

Before the advent of FT-NIR instrumentation, most of NIR studies were 

conducted on agricultural and wood materials using dispersive NIR spectrometer, 

while there is still a deficiency in the studies using FT-NIR, especially on the 

subjects of biomass. So there is a need to enhance the NIR research with this 

more advanced equipment. 
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CHAPTER II BACKGROUND INFORMATION 

2.1 Biomass feedstocks investigated in this study 

2.1.1 Corn stover 
Corn (Zea mays L.) stover is the major field crop residue in the US with an 

annual availability of over 238 million tons (Sokhansanj et al., 2002). The United 

States is the single largest corn producer in the world, with approximately 28 

million hectares and taking up slightly less than 1/4 of all US cropland; almost 

20% of the corn production is diverted to produce ethanol (Patzek, 2004) and 

corn is the major ethanol production feedstock according to USDA’s 2002 survey 

(Shapouri and Gallagher. 2005). Since corn is a primary crop product, key food 

source and the feedstock for current bio-ethanol production, there is a huge 

resource of corn stover. Consequently, corn stover is considered in the near 

future as a renewable energy feedstock.  

Corn stover has been studied using dispersive NIR spectroscopy (Hames 

et al., 2003), which showed the feasibility of NIR techniques on biomass 

chemical composition analysis. Therefore, this species is a good subject to start 

to further update the NIR analysis on corn stover with FT-NIR instrument. The 

available composition data resource of corn stover can be used as reference to 

the wet chemistry measurement in this study  

2.1.2 Switchgrass 

Switchgrass (Panicum virgatum) is one of the dominant tall grass species, 

perennially growing on the central North American prairie (Towne and Owensby, 

1984). Switchgrass has been discussed frequently as major energy crop in 

recent years. Switchgrass was determined to be focused on by Department of 

Energy Bio-energy Feedstock Development Program after more than 30 

herbaceous crops species had been screened, due to its high yield, excellent 

conservation attributes and good compatibility with conventional farming 

practices (McLaughlin et al., 1992). 
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Studies on switchgrass have been ongoing in studying their yields, energy 

potential, and environmental impact (McLaughlin et al., 1992; Hopkins et al., 1995; 

Christian et al., 1998; Elbersen et al., 1998; Duffy and Nanhou, 2002; Lemus et al., 

2002; Boateng et al., 2006). All these research activities suggest that switchgrass is 

a promising feedstock for bio-fuel industry. However, few NIR studies have been 

done on switchgrass; even the compositional information, with respect to the 

renewable energy consideration, is insufficient for the switchgrass cultivars and the 

botanic parts. Therefore, this study will provide not only the switchgrass 

compositional information to further broaden current knowledge on switchgrass, but 

also a rapid compositional analysis approach using FT-NIR techniques. 

2.2 Diffuse reflectance in NIR region 

Diffuse reflectance mode is usually utilized in NIR analysis of solid or 

powder samples (Osborne, 1981). When incident NIR beam sheds on the 

sample particles, the radiation is distributed into several sub-flux (Figure 2): 1) 

some radiation is reflected directly off the surface; 2) some is directly absorbed 

by the surface particles; 3) some is reflected to the next particles; 4) some is 

transmitted through the surface particles to the inner particles; and also 5) the 

absorption, transmission and reflection may cross-occur many times in the 

 

 

 

Figure 2  Illustration of NIR diffuse reflectance 
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sample until the remaining radiation reflected out of the surface. Amongst all 

these sub-fluxes, only those scattered within the sample and returned to the 

surface are considered as diffuse reflectance (Osborne, 1981, Bajcsy, 1996; 

Pasikatan et al., 2001). 

The detector collected all the diffused reflected flux of the sample (Id) and 

compared to that of a non-absorbing standard (Io), resulting in the reflectance 

(R= Id/Io). The amount of radiation reflected from the sample is quantified as the 

reflectance (R) of the sample. As for diffuse reflectance NIR spectra, the intensity 

is commonly presented in two forms: log(1/R) and Kubelka-Munk (K-M). The 

algorithm for log(1/R) is the logarithm of the inversed reflectance, while K-M is 

defined as Equation 2. 

Equation 2   K-M =
2(1 )

2
R

R
−  

Where: R is the reflectance. 

 
The detected NIR radiation was partially absorbed by the sample, thereby 

carrying the sample chemical information. This is the communication key 

between NIR spectra and the sample chemical characteristics. The 

concentrations of analytes can be statistically correlated to the spectral dataset 

(Kortum, 1969; Martens and Naes, 1987; Workman and Brown, 1996; Wold and 

Sjostrom, 1998), since these chemical concentration, or chemical bonds 

concentration were the essential cause of the NIR spectra. The major task in the 

model calibration is to seek a set of coefficients (K) via statistical and 

mathematical approaches to satisfy Equation 3.  

Equation 3  C K X= ⋅  

 
where C represents the concentration information of the chemical data, and X 

bears the spectral information.  

Studies have proved that this mathematical equation is quantitatively and 

statistically derivable through multivariate analysis; however, the specific 

application varies. First, the spectral data (X) can have units either in K-M or 
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log(1/R). Second, the spectral data (X) can either represent the original 

wavenumber or represent the recomposed factors arising from the original scales. 

Third, even the concentration data can have different presentations, either in the 

original scales or the recomposed factors (Kramer, 1998). 

2.3 Data processing methodology 

2.3.1 Data pretreatment methods 
When NIR techniques are in use to assess chemical composition 

information, the ideal scenario occurs when the differences among spectra are 

exclusively attributed to the chemical properties. However, many physical factors 

exist, especially in diffuse reflectance sampling, interfering with NIR spectral 

acquisition of chemical information. Many pretreatment algorithms are dedicated 

to correcting for the physical interferences. The most commonly used 

pretreatment methods are: standard normal variate (SNV), 1st derivative, 2nd 

derivative, multiplicative scatter correction (MSC), extended multiplicative signal 

correction (EMSC), as well as various combinations of them. The mechanisms of 

these pretreatment methods are described below. 

Assume that wi represents each wavenumber throughout the investigated 

NIR region, and yi is the overall intensity shown along spectral ordinate 

corresponding to each wi. Since NIR spectra combine information from both 

physical phenomena and chemical variation, yi is not solely attributed to the 

chemical factors. Another variable xi is necessary to represent the part of spectral 

signal corresponding solely to chemical information and the remaining part of yi is 

then considered as all the possible additive variation introduced by the physical 

interference.  

 If the latent physical interference causes the multiplicative effect and offset, 

which thus modify the presented spectral to: 

Equation 4  i iy a bx= +  

 
Then SNV (Sánchez et al., 2004; Esbensen, 2004) could be a solution. Since 
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SNV is calculated as Equation 5, it centers and scales individual spectra without 

relying on the other spectra.  

Equation 5  ( ) /SNV ix y μ σ= −   

 Where:μ  is the mean and σ is standard error 

If the additive terms a and b in Equation 4 are very close or proportional to μ  

and σ  respectively, then the SNV pretreated result SNVx  comes out close to ix . 

MSC is more specifically derived to compensate the situation as 

described in Equation 4. This MSC algorithm (Isaksson and Næs, 1988; 

Esbensen, 2004) applies simple regression on the original spectral dataset and 

thus computes the vectors a’ and b’ at each wavenumber i (Equation 6).  

Equation 6  ' ' ' 'i iy a b x= +   

Therefore, if the physical interferences only cause the situation as described in 

Equation 4, then a’ and b’ essentially are a and b, and thus the MSC transformed 

spectra xi’ are perfectly reflecting xi. 

If the latent physical interference causes offset but not the multiplicative 

effect, changing the desired spectra to the presented spectra yi: as in Equation 7  

Equation 7  i iy a x= +  

then 1st derivative can remove the term a by taking the difference between the 

intensity at two NIR wavelengths, resulting in a 1st derivative spectra di without 

any additive term (Equation 8).  

Equation 8  1 1( ) ( )i i i id a x a x x x− −= + − + = −  

If the latent physical interferences cause the offset no longer only a 

constant but also proportional to the wavelength (Equation 9), 

Equation 9  i i iy x bw a= + +  

then the 2nd derivative can remove the terms a and b by taking the difference of 

the difference from 1st derivative, resulting in a 2nd derivative spectra (di ‘)’without 

any additive term (Equation 10). 
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Equation 10  
 

' ' ' '
1 1 1 1 1( ) [( ) ( )] [( ) ( )]i i i i i i i i i i id d d a bw x a bw x a bw x a bw x− + + − −= − = + + − + + − + + − + +  

1 1 1 1 1 1( ) ( )i i i i i i i ix x b w w b w w x x+ − + − + −= − + − − − = −  
If the physical interferences cause the offset and the multiplicative 

coefficient associated with both xi and wavenumber (Equation 11), 

Equation 11  i i iy a bx cw= + +     or   
2

i i i iy a bx cw dw= + + +  

then EMSC develops a model with the assumption of the corresponding format 

and back-calculated ix  (Equation 12) (Martens and Stark, 1991; Martens et al., 

2004; Esbensen, 2004).  

Equation 12  ( ) /i i ix y a cw b= − −     
2( ) /i i i ix y a cw dw b= − − −  

So far, with these theoretical deductions, almost every extraneous effect 

with its associated additive terms can be mathematically corrected and removed.  

The problem is to figure out what situation fits physical interferences in biomass 

compositional analysis case and accordingly make the modification.            

Retrospecting the development of NIR technology, the original momentum 

came from the application rather than the theory. Following this approach, this 

study investigated and demonstrated the selection of data pretreatment methods 

from the experimental application results.  

2.4.2 Multivariate analysis techniques 

2.4.2.1 Principle component analysis (PCA) 

PCA is utilized to decompose the original spectral dataset and re-locate 

the dataset in the newly developed orthogonal coordinates, principle components 

(PC) with maximum variance which reflects certain hidden phenomenon. Thus 

the capability of explaining the dataset variance is descending from the 1st PC to 

the latter PC (Kramer, 1998).  

The only assumption in PCA (Esbensen, 2004) is that the original dataset 
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X can be split into a sum of a matrix product (PC), and a residual matrix E. The 

mathematical description is shown in Equation 13: 

Equation 13  1 1 2 2 ...T T T T
n nX nPC E UL E u l u l u l E= + = + = + + + +  

where U is the score matrix which mathematically re-locates the data points in 

the newly composed co-ordinate system, and LT is associated loading matrix 

which is the mathematical description of the new co-ordinates with respect to the 

original variables. Each data point has a set of scores by projecting onto the new 

coordinates, which are connected with the original variables via the loading 

vectors il . In Equation 13, each term T
i iu l  represents one principle component, 

and the number of PC is determined by the operator’s judgment on the 

goodness-of-fit or how small he wants the residual to be (Gnandesikan, 1977; 

Osborne, 1986; Mark and Workman, 1987). But it is certain that the number of 

PCs is much less than the original variables, since significant collinearity exists in 

spectral data while the first PCs always explain larger variance.  

2.4.2.2 Hierarchical clustering analysis (HCA) 

The agglomerative hierarchical clustering algorithm is a method that 

classifies the data in hierarchy architecture via the degree of dissimilarity, and 

commonly displayed as a tree diagram called a dendrogram (Figure 3). It starts 

with every observation as one cluster, presented on the right side of the 

dendrogram. With certain computation algorithm, the observations with larger 

similarity fuse into one group, and this procedure continues until all the 

observations merged. Therefore, on the right end of dendrogram, the number of 

horizontal lines equals the number of the observations, while the left side only 

has only one line. The distance between two vertical split represents the 

dissimilarity of the corresponding two clusters. In this way, the internal structure 

and data grouping can be clearly observed. More detailed procedures are 

described as below:  
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Figure 3 Illustration of dendrogram 1,2,3,4,5 

1. Initially four observations are four clusters on the right side of dendrogram.  
2. 1 and 2 has the least dissimilarity, fusing first. The dissimilarity was calculated via the 

Euclidean distance (Appendix C), and equals 0.4. 1 and 2 merge as a new Cluster 1&2. 
3. Calculate the distances between the Cluster 1&2 and other clusters, using Ward’s minimum 

variance algorithm, and find Cluster 3 and Cluster 1&2 has the least dissimilarity (1.3). 
Therefore, Cluster 1&2 merges with Cluster 3, and a new Cluster 1&2&3 is formed.  

4. Repeat step 3, calculating the distance between Cluster 4 and Cluster 1&2&3 (3.0). 
5. The dissimilarity between 1 and 2 is 0.4; the dissimilarity between the Cluster 1&2 and 3 is 

1.3, and the dissimilarity between the Cluster 1&2&3 and 4 is 3.0 
 

3.0 

1.3 

0.4 



 

 15

2.4.2.3 Multiple linear regressions (MLR) with stepwise variable 

selection 

MLR (De Noord, 1994) is a method for relating the variations in a 

response variable (Y-variable) to the variations of several predictors (X-variables), 

with explanatory or predictive purposes. If there are several response variables, 

MLR is performed multiple times so that each response variable has an 

associated model with the predictors. MLR requires the complete independence 

among the predictors, because multicollinearity causes the instability of the 

estimated regression coefficients. This requirement becomes the major drawback 

of MLR in NIR analysis, since multicollinearity is prevalent in NIR spectra. MLR is 

applicable when the spectrum contains only a small number of 

wavelengths/wavenumbers. The direct application of MLR usually violates the 

independence requirement of multiple regression; therefore, variable reduction 

such as stepwise selection should always be performed beforehand. 

Stepwise variable selection uses the forward selection strategy modified 

with backward elimination (Johnson, 1998). It starts with no variable in the model, 

and adds the most significant variable to the model one each iteration, 

recalculates the significance of the updated candidate variables in the model and 

removes the non-significant ones from the model. This procedure iterates until no 

more variables can be entered or removed from the model at the predetermined 

significant levels, so program requires one significant level for adding the variable 

and another one for removing the variable. Usually larger significant level (α) is 

used for exclusion than inclusion to prevent an infinite loop (Steyerberg et al., 

2000). Stepwise selection eliminates multicollinearity problem, and multiple linear 

regression consequently becomes valid to apply to the selected variables.  

2.4.2.4 Principle component regression (PCR) 

PCR is usually performed in a two-steps manner. First, PCA is conducted 

on the spectral dataset, resulting in a series of principle components (PCs) and 
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projecting the spectral dataset into an optimal coordinate system. Second, 

instead of the original variables, PCs are used to relate to the dependent variable 

dataset (chemical concentrations) with the least-square fitness in seek of the 

calibration coefficient set. It can be expressed as Equation 14 (Kramer, 1998): 

Equation 14  C K PC= ⋅   

Where: C is the chemicals dataset matrix; PC stands for pre-composed 

principle components matrix; and K is the regression coefficient matrix 

2.4.2.5 Partial least squares regression (PLS)  

PLS employs the same strategy as PCA not only on the spectral dataset 

(X-block) but also chemical side (Y-block) (Kramer, 1998).  As a result, spectral 

data are expressed as projections onto the optimal spectral factors (coordinates), 

while the chemical data are projections onto a series of chemical factors 

(coordinates).  Each pair of factors, composed of one spectral factor and its 

associated chemical factor is rotated or perturbed and adjusted to each other 

until minimum least square is achieved in the linear relationship between spectral 

dataset and chemical dataset. It can be expressed as: 

Equation 15  . .proj proj
i iC K S= ⋅   

where Sproj. is the projection of the spectral data onto the ith spectral factor; 

Cproj is the projection of the associated chemical data onto the ith chemical factor; 

and Ki is the coefficient between the ith pair of spectral and chemical factor.  

2.4.2.6 Leave-one-out cross-validation 

Leave-one-out cross-validation is a complementary validation approach 

employed when the accessible sample set is not large enough to be separated 

into calibration set and validation set (Hildrum et al., 1996; Goodchild et al., 1998; 

Freitas et al., 2005; etc). First, one variable is on hold while the other variables 

are used in the model calibration. Then the excluded variable is used to validate 

the calibration model. The procedure continues until each of the samples has 

been kept out once, and the test statistics are the average of all the iterations.  
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Figure 4 The flowchart of cross-validation, assuming the dataset includes n samples. 

The equations to calculate correlation, RMSEP, bias, SEP are listed I Appendix C. 
 

 

Cross-validation mechanism can be more clearly presented in Figure 4.  

Cross-validation is a conservative validation method, especially when 

applied to a small dataset with large variability. Since under this situation in every 

permutation the excluded sample is not involved in the calibration range 

developed on the rest samples, it is highly possible that the error is inflated. 

2.5 Biomass properties 

2.5.1 Chemical properties 

2.5.1.1 Carbohydrates 

Cellulose, the principle plant component, is a water-insoluble 

carbohydrate homo-polymer with large average molecular weight over 100,000 

(McKendry, 2002). Its long linear chain repeats β-D-glucophyranosyl units joined 

by β-(1->4 ) glycosidic linkages (Figure 5), which can be also considered as a 

combined form of D-glucose.  

Unlike linear and stereoregular cellulose structure composed of the same 

unit, the hetero-polymer hemicellulose is a highly branched chain composed of  

i <= n 

i = 1 

Yes 

Calculate: correlation/ RMSEP/ bias/ SEP using 
measurements (n) and the saved predictions (n) 

No 

Calibrate without sample i; 
Predict sample I and record the prediction 

i = i + 1;
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Figure 5 Cellulose repeating β-1,4-linked anhydrocellobiose unit (Fennema, 1996) 

 

 

different monomer sugar units. Hemicellulose has a lower average molecular 

weight (<30, 000) (McKendry, 2002), and is amorphous and easily hydrolyzed 

into D-xylose, L-arabinose, D-glucose, D-galactose and D-mannose.  

Although cellulose and hemicellulose are the existing carbohydrate format 

in the biomass plant, the analytes associated with carbohydrates throughout this 

study are glucose, xylose, galactose, arabinose, and mannose.  

Several reasons account for using these monosaccharides instead of 

cellulose and hemicellulose. First, they are the downstream products and directly 

measured in the standard wet chemistry analysis. Second, monosaccharides, 

especially glucose, are the direct reactants for the ethanol fermentation, hence 

the knowledge of their values is more straightforward and instructive for industrial 

use. Also, these five monosaccharides are the hydrolysis products of cellulose 

and hemicellulose, so it is possible to calculate cellulose and hemicellulose 

contents based on them.  

Among these five simple sugars, xylose and arabinose are five-carbon 

sugars while glucose, galactose, and mannose are six-carbon sugars. Their 

open-chain molecular formulas are presented in Figure 6. 

2.5.1.2 Lignin 

Lignin is amorphous aromatic macro polymer with very complex structure 

(Appendix D). It functions to bind the individual cell together and harden the cell 

tissue so that to concrete the plant structure (Mckendry, 2002). The phenyl- 
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Figure 6 Fisher open-chain molecular formulas of five simple sugar analytes commonly 
encountered in biomass  

 
 
propane units are connected via varieties of linkages (Figure 7).  

Therefore, both carbohydrates and lignin are organic compounds, 

consisting of varieties of chemical bonds (C-C, C-O, C-H, O-H, C=C, C=O). 

These chemical bonds absorb NIR radiation, presenting the accumulative results 

at each wavenumber cross the entire NIR region in spectra. 

2.5.1.3 Ash 

Ash is mainly composed of the inorganic compounds, such as SO2, CaO, K2O 

and Al2O3 and some trace minerals, such as Cr, Ni, Co,  etc. (Demirbas, 2005). 

There is no NIR absorption occurring to most of the inorganic matters in ash 

(Lestander and Rhén, 2005). However, it is possible to use NIR technique to 

probe ash content (de Aldana et al., 1996; Lestander and Rhen, 2005; Znidarsic, 

et al., 2005, Cozzolino et al., 2006), since its existence may correlate with other 

constituents thus indirectly leading to the NIR spectral variation. 

2.5.2 Heating values 

 Heating value provides direct guidance for the bio-power plant in estimating the 

energy potential that can be transferred from certain feedstock or fuel products. 

Higher heating value (HHV), or gross calorific value, is the potential combustion 

energy when water vapor from combustion is condensed, thus taking into 
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Figure 7 The principal linkage modes between the phenylpropane units in lignin 
macromolecules. (1) guaiacylglycero-β-aryl ether substructure (40-60%), (2) 

phenylcoumaran (10%), (3) diarylpropane (5-10%), (4) pinoresinol (<5%), (5) biphenyl (5-
10%), (6) diphenyl ether (5%) (Higuchi, 1990). 



 

 21

account the latent heat of vaporization of water in the combustion products. HHV 

is obtained when all the combustion products are cooled down to the original 

temperature (usually 25 ºC). 

HHV measurements basically are based on oxidization reaction, and all 

the reactants are the chemical constituents in biomass, and thus HHV essentially 

is associated with the chemical bonds characteristics and quantities. Therefore, it 

is reasonable and possible to use NIR spectra to predict HHV.  

2.6 Objectives  
This study included both chemical composition investigation and FT-NIR 

modeling in terms of biomass chemical composition and HHV as well. The 

objectives were: 

♦    to analyze the chemical composition of corn stover and switchgrass, in 

terms of glucose, xylose, galactose, arabinose, mannose, lignin, and ash, and 

investigate the variability existing in botanic fractions and cultivars for directing 

future planting and industrial feedstock selection; 

♦    to determine the best modeling configurations for biomass NIR study in 

three aspects: 1) the selection between two spectral transform algorithms for 

better linearity between chemical composition and NIR spectra; 2) the selection 

of the optimal spectral pretreatment method among the nine most frequently 

used methods in previous NIR studies; 3) the selection of the optimal multivariate 

regression method among MLR, PCR and PLS; 

♦    to develop the individual FT-NIR-based models for corn stover and 

switchgrass to rapidly and accurately predict their chemical composition 

respectively; 

♦    to test the hypothesis that a general model is valid for both corn stover 

and switchgrass in probing their chemical compositions, and to develop the 

general FT-NIR predictive model for both species if the hypothesis holds; 

♦    to test whether the general model has the potential predictive capability to 

predict the chemical composition of other species; 
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♦    to investigate the potential of using FT-NIR techniques to predict HHV of 

the biomass feedstock. 
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CHAPTER III LITERATURE REVIEW 

3.1 NIR Applications in related disciplines  
There are a great many applications of NIR in predicting chemical 

properties in many agricultural disciplines with different focuses.  

In the animal feed and forage areas, studies concentrate more on the 

nutrition content and thus many indexes such as protein, fibers, and starch are of 

major interest. Lucerne forage (Martens, et al., 1984; Flores Pires, et al., 1998), 

legumes (Martens, et al., 1984), maize stover (Albanell et al.,1995; Cozzolino et 

al., 2000; Wei et al., 2005), maize grain (Melchhinger, et al., 1990), mixed 

pasture, and whole plants have been investigated for acid detergent fiber (ADF), 

neutral detergent fiber (NDF), and protein, which has been studied with some 

other species, including stargrass/ bermuda grass (Brown, et al., 1990), and 

temperate grass silage (Smith and Flinn, 1991).  Although these materials were 

all agricultural crops or herbaceous plants that could also be used as bio-industry 

feedstocks, the predictive models developed by these studies are not appropriate 

as a guide for bio-fuel production. Protein, ADF and NDF are no longer of major 

interest in bio-energy industry, and instead, monosaccharides, lignin and even 

the small amount of ash have been focused on, because these constituents are 

directly related with bio-fuel production, or bio-energy production. Lignin has 

been the anaylte in the previous NIR studied in the forage discipline, and the 

reported reference contents were 6.1% for legumes (Marten et al., 1984), 3.3% 

for maize stover (Zimmer, et al., 1990), 1.9-8.3% for mixed pasture species 

(Garcia-Cuidad et al., 1993) respectively. However, these values were 

significantly different from the commonly detected range 10-25% in bio-

renewable energy area. The reason is that the interested lignin in forage industry 

is actually acid detergent lignin, which is a part of total lignin content (acid soluble 

lignin and acid insoluble lignin) Also, the wet chemistry method for acid detergent 

lignin (Donnelly and Wear, 1972; Edwards, 1973; Jung, 1989) is different from 

the one commonly employed in forestry and bio-energy discipline (ASTM E-
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1721-95, 1995, Sluiter et al., 2006). Therefore, although some agricultural 

residuals and herbaceous grasses were  studied before, since the analytes differ 

and reference methods differ, those study results are not applicable to current 

biomass energy programs, and new predictive model development is demanded.  

Woods have similar composition to biomass with the major constituents: 

cellulose, hemicellulose, and the non-destructive NIR research has been 

conducted for years in forestry area, which is very instructive to renewable 

energy feedstock biomass. Lignin is a major concern for wood industry and thus 

has been focused on. Balleirini dos Santos et al. (2006) reported their prediction 

of lignin content with a 93% correlation and 0.55% error rate via NIR on 

Eucalyptus. Poke and Raymond (2006) predicted chemical composition of solid 

woods using an existing calibration NIR model of ground woods; however, the 

prediction was really poor. Therefore, they specifically developed a calibration 

model for solid wood and achieved the R2 from 0.67 to 0.87 for total lignin, 

cellulose and extractives yet the acid-soluble lignin was not well predicted. 

Second derivative NIR spectral data at 1673 nm was correlated to lignin content 

and a correlation of 0.956 for the milled spruce wood samples and 0.984 for the 

fungi-treated samples were achieved (Schwanninger et al., 2004). Many other 

chemical properties, including carbohydrates, have also been studied for many 

wood species (Michel, 1988; Michell and Schimlec, 1994; Schimleck et al., 2000; 

Kelley, 2004; Lestander and Rhen, 2005).  

All the studies above were conducted using dispersive NIR 

spectrophotometers. With the development of powerful microcomputer Fourier 

transform function was applied to NIR instrumentation, which enhanced the 

capability and improves the accuracy of NIR techniques. An FT-NIR 

spectrophotometer utilizes an interferometer to modulate the signal, and each 

wavelength has a distinctive modulation frequency, which is to be transformed 

immediately via the computer into its actual electromagnetic frequency. Given all 

the features overcoming the dispersive NIR (Bell, 1972; Griffiths and de Haseth, 

1986; Burns, 1997), FT-NIR has the potential to finally dominate NIR instrument 



 

 25

market. Peirs et al. (2002) did a parallel comparison between FT-NIR and 

dispersive NIR spectroscopy on investigating apple quality, where they claimed 

that FT-NIR overcomes dispersive NIR not only from theoretical and mechanical 

reasons but also from the experiment result. Due to its late start, the applications 

of FT-NIR in biological materials are insufficient. Much less efforts have been 

made using FT-NIR, compared to plenty of studies using dispersive NIR. 

Applying S-Golay second-derivative (Savitzky and Golay, 1964) to the raw FT-

NIR spectra, Schwanninger et al. (2004) successfully differentiated the thermally 

treated wood. Manley et al. (2002) announced that scanning instruments (FT-NIR) 

overcomes the weakness of the filter instrument (dispersive NIR), so they chose 

FT-NIR to study whole wheat flour and successfully determined the kernel 

hardness, protein and moisture content. The feasibility of applying FT-NIR in 

determining extractive and phenolic contents in hardwood of larch trees was 

investigated by Gierliner et al. (2002), and the results proved that FT-NIR was a 

reliable and accurate approach for wood extractive determination. 

The successful applications of compositional analyses using NIR 

techniques in the related disciplines shows promising future of applying the 

techniques to the investigation of renewable energy feedstock biomass. However, 

it is necessary to do the research for biomass specially. First, different industries 

use different standards and criteria to investigate the feedstock, and the focuses 

vary even as for the same material. For instance, when the corn stover is used 

as the feedstock in forage industry, fiber and protein will be of interest, while in 

bio-renewable energy industry, sugars and lignin are the major concerns. Second, 

the physical and chemical characteristics of feedstock vary by the material used 

in different industries. For examples, eucalypts have larger portion of lignin than 

grasses; cereal grains have great starch content while the switchgrass dose not. 

Therefore, previous NIR studies in other areas show the feasibility yet do not 

ensure the conclusion of NIR application on biomass.  Furthermore, most of the 

previous NIR studies were developed on dispersive NIR spectrometers, including 

some studies on corn stover and stover-derived feedstock (Hames et al., 2003). 
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They are not compatible to FT-NIR spectrometers, which have higher resolution. 

So far, few NIR applications on switchgrass have been reported, and neither corn 

stover nor switchgrass has been studied using FT-NIR. Therefore, it is 

worthwhile to verify the feasibility of FT-NIR analysis on corn stover, and further 

extent the analyses to switchgrass composition prediction. 

3.2 Discussion on calibration dataset 
An accurate and robust model requires a diverse yet typical calibration 

dataset, covering as large variability as possible yet still representative enough 

for the investigated subject. A lot of studies achieve the large variation 

requirement through collecting samples from different locations or different time 

frames; however, sometimes, these approaches are not very easily accessible. 

Lestander and Rhen (2005) used NIR spectroscopy and bi-orthogonal PLS 

regression to model moisture and ash content as well as gross calorific value in 

ground samples of stem and branches wood of Norway spruce. The study 

presented the big variation between stems branches, and suggested different 

botanic parts of plant vary a lot in the chemical composition. Crofcheck and 

Montross (2004) studied enzymatic hydrolysis on three fractions of corn stover, 

cobs, leaves, and husks, with the attempt to use fractions with higher glucose 

potential. The result of this study shows that there are differences among the 

fractions, and infers that manual separation could be a new pathway to introduce 

larger variation to NIR calibration.  

Now that the variability has been emphasized to enhance model 

robustness, a question will be naturally associated: can the variation be created 

via introducing a quite different material? For instance, in predicting lipids large 

variation can certainly and easily be achieved by combining oats and potato 

chips in calibration dataset, but the significance and representation of the result 

is questionable and meaningless scientifically and statistically. This is an extreme 

case, but what if using two species that are close in the chemical composition? 

Throughout literature, most NIR studies was conducted on one species, 

for example, as for animal feeds, lucernes (Martens, et al., 1984), legumes 
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(Smith and Flinn, 1991) or maize (Melchinger, et al) were investigated separately 

through different studies; similarly, as for woods, pulpwood (Schimleck et al., 

2000), eucalyptus (Michell and Schimlec, 1994) and Norway spruce (Lestander 

and Rhen, 2005) were separately studied. These suggest that most researches 

hold the idea that different models should be developed respectively for different 

species, which was stated clearly by Hames et al. (2003). While most studies 

developed each method specifically for one species, there were several studies 

that developed models for a range of species. Xiccato et al. (1999) used NIR 

reflectance spectroscopy to predict chemical constituents, digestibility and 

energy value of many feeds for rabbit, including alfalfa meal, dried beet pulp, 

sunflower meal, wheat bran, whole soy bean, grains (barley, wheat) and wheat 

straw. The prediction results were not very satisfactory, with R2 ranging from 0.25 

for organic matter to highest value 0.93 for ether extract. This result was 

discussed to be probably due to too many species in calibration dataset, which 

again indicate that each species probably should be studied individually in the 

first place. Other studies (Brown, et al., 1990; Carcia-Cuidada, et al., 1993) also 

showed the prediction results from many species were not as good as those from 

individual species. However, Sanderson et al (1996) used a calibration dataset, 

which was composed of varieties of woody and herbaceous species, and 

achieved good prediction result of ash, lignin, arabinose, xylose and N from the 

calibration dataset.  

This controversy introduced an objective to this FT-NIR study. Is one 

general model valid and appropriate for predicting both biomass species (corn 

stover and switchgrass)? Therefore, other than developing individual models for 

corn stover and switchgrass individually, another objective of this study is to 

justify and verify one hypothesis: one general model can be developed on the 

both species and thus be used to predict either corn stover or switchgrass 

chemical composition.  
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3.3 Data processing 

3.3.1 Data pretreatment methods 

When NIR techniques are in use to access chemical composition 

information, the ideal scenario occurs when the differences among spectra are 

exclusively attributed to the chemical properties. However, many physical 

phenomena exist, especially in diffuse reflectance sampling, interfering with NIR 

spectral acquisition of chemical information. Although there are many 

pretreatment methods for NIR spectra to remove the physical interferences, no 

consensus has been established in the literature. The most frequently used 

methods are 1st derivative (eg. Flinn et al., 1996; Church et al., 1999; Nousiainen 

et al., 2004; Confalonieri et al., 2004; Veraverbeke et al.,2005; Liu and Ying, 

2005; Dou et al., 2006), 2nd derivative (eg. Sverzut et al., 1987; Hong et al., 1996; 

Liu et al., 1998; Rodriguez-Saona et al., 2001; Tosi et al., 2003;), SNV (eg. 

Sánchez et al., 2004; Esbensen, 2004), MSC (eg. Shimoyama et al., 1999; 

Czarnik-Matusewicz et al., 1999; Baianu et al.,2004; Sato et al., 2003; Munck, 

2006), and EMSC (eg. Schonkopf et al., 1992; Martens and Stark, 1991; Saiz-

Abajo et al., 2005). Also, the combination usage of SNV with either 1st or 2nd 

derivative have been theoretically addressed (Fearn, 2000). There is obviously 

not a universal pretreatment method that we can take it for granted in the 

biomass FT-NIR research. Therefore, a search for pretreatment method in 

biomass application is necessary.  

3.3.2 Spectral ordinate: K-M or log(1/R)? 

Many studies used log(1/R) as the transform equation (Martens, et al., 

1984; Liu, 1996; Walsh, et al., 2000, etc). Especially, Burns (1997) claimed that 

log(1/R) gives better linearity association to concentration, and thus is more 

useful when matrix absorbs at the same wavelength as the analytes. It was later 

argued that K-M definitely outweighs log(1/R) (Dahm et al., 1995). With the same 

idea as Dahm et al., many studies (Fardim et al., 2002; Andres, 2005; Fardim et 

al., 2005; Morgano et al., 2007; etc.) used the spectra with the K-M transform 
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algorithm in their quantitative analyses.  

Given the fact that NIR calibration does not precisely obey Beer’s Law 

and some multivariate methods are able to reconstruct the data for the goodness 

of fit, it is difficult to conclude, for biomass materials, whether K-M or log(1/R) 

provides better linear relationship between spectral dataset and the chemical 

dataset. This issue will be examined in this study via pair-wise comparisons.  

3.3.3 Multivariate analyses 

PCA is the most commonly used multivariate method in qualitative 

analyses of NIR spectra (Esbensen, 2004). PCA is used to decompose the 

series of spectral data, and recomposed with much fewer numbers of principle 

components that represent the maximum of the data variance, coherently 

realizing the data reduction. Compared to the wide utilities of PCA, HCA, which 

can also be used as NIR qualitative tool, has much less applications in NIR 

research; especially, applying HCA to the spectral pretreatment investigation has 

rarely been seen in the literature.  

As for the quantitative NIR analyses, a great many studies (Albanell et al., 

1995; Cozzolino et al., 2000; Hames et al., 2003;Schimleck et al., 2000; 

Lestander and Rhen, 2005; Wei et al., 2005; etc) used PLS to develop the 

regression model. Other than this most frequently used method, some other 

approaches also have been utilized in the quantitative NIR analysis, such as 

PCR (Isaksson at al, 1995; Sun, 1996; Chang et al., 2001; Via et al., 2003; 

Medendorp et al., 2006; etc) and MLR (Otsuka et al., 2000; Suehara, 2004; Ito, 

2007; Szlyk et al., 2007; etc). Facing these multivariate methods especially the 

regression options, this study has objective to determining the best functional 

regression methodology for the FT-NIR biomass chemical composition modeling.   
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CHAPTER IV MATERIALS AND METHODS 

This chapter provides the detailed information associated with the 

biomass materials used in this study (Section 4.1), the experimental procedures 

and methods (Section 4.2) and the experiment designs to achieve the multiple 

objectives (Section 4.3).  

4.1 Biomass materials  
4.1.1 Corn stover 

Corn stover samples of the cultivar DeKalb DK64-10RR were collected 

from TN Knoxville Agriculture Experimental Station in May 2006, and air dried in 

the lab. Different botanical parts have different structure, serving different 

biological functions, and thus possibly dissimilar ratio of chemicals. Therefore, 

botanic fractions were utilized in this study to create the variability for the 

calibration model accuracy and robustness. The preliminary results showed the 

feasibility of using botanic fractions of corn stover to create the variability. The 

whole corn stalk was studied, together with the manually separated botanical 

parts, namely nodes, piths, rinds, sheaths, leaves and husks (Figure 8). 

 

 

 

Figure 8 Manually separated botanical fractions of corn stover 
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This alternative solution breaks through geographical and temporal 

limitations and even endows researchers the flexibility to prepare certain samples 

with desired compositional proportion. The meaning of separation lies not only in 

manually creating large variability, but also in making better use of corn residuals. 

For example, botanic parts with higher glucose content should be selected as 

feedstock for bio-ethanol production, while those with lower sugar content are 

better to be left in the field to provide sufficient erosion control. In this way, 

ethanol production cost is reduced and the yield is increased.  

In addition, stover samples of a sweet corn cultivar (Incredable) were 

collected at the same time in small quantities and only used in the pretreatment 

experiment (refer to Section 4.3.2.2.1) 

4.1.2 Switchgrass 

There were six switchgrass cultivars available at TN Agriculture 

Experimental Station, including Cave-in-Rock, Alamo, Kanlow, Shelter, NC1-16, 

and NC2-16. They were collected in August, 2006, and stored in the lab. 

The morphological heterogeneity of the nodes, internodes, and leaves (Figure 9) 

suggests that chemical composition distinction would exist among these 

switchgrass botanic parts. The aerodynamic partition of these botanic parts was 

proved to be feasible (Klasek, 2006). However, further chemical composition 

investigation with respect to the botanic fractions is rarely seen in literature. 

Therefore, it was worthwhile to investigate these major botanic fractions, which 

meanwhile provide more variability for the model calibration. Alamo and Kanlow 

were further separated into botanic parts, because a previous study (Lemus et al., 

2002) reported that these two varieties produced the highest biomass yield 

among twenty switchgrass populations, with lowest ash contents. Consequently, 

these two cultivars have greater potential to be predominantly grown and thus it 

was worthwhile to further study them. 
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Figure 9 Manually separated botanical fractions of switchgrass 

 

4.1.3 Wheat straw 

The wheat straw samples were harvested from UT dairy site in Blount 

County, TN, in 2005 summer. Wheat straw was incorporated in model validation 

to test whether the hypothesized general model was capable to predict the 

chemical composition of a third biomass species.  Several reasons accounted for 

the selection of wheat straw as part of the independent validation data: 1) 

according to Department of Energy database (http://www1.eere.energy.gov/ 

biomass/feedstock_databases.html), wheat straw chemical composition is very 

close to that of corn stover; 2) it was easily accessible; 3) a quick check of the 

associated spectra showed that all of them located within the calibration spectral 

dataset.  

If the prediction of wheat straw was validated, it means that the developed 

model could be extended to cover more biomass species as long as their 

chemical compositions are within the calibration range. And it would suggest as 

well that the physical characteristics and genotype differences can be corrected 

by spectral pretreatment as well.  

Leaves 

Internodes 

Nodes 
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4.2 Methods 

4.2.1 Sample preparation  

Biomass sample were stored in the laboratory at the ambient temperature 

(20-30 °C) and less than 50% relative humidity for at least four months. All the 

samples were air-dried to moisture content within 10%. Wiley Mini Mill (Thomas 

Scientific) was utilized to grind the biomass samples. Three sieve sizes (20 mesh 

(0.85 mm opening), 40 mesh (0.425 mm opening) and 60 mesh (0.25 mm 

opening)) were used for the pretreatment selection experiment (refer to Section 

4.3.2.2.1). Other than that experiment, all the other samples used in this study 

were prepared through 40 mesh sieve. Approximately 1 g ground biomass were 

sampled in a non-absorbing glass vial (PIKE Technologies, Madlson WI), and 

dried in a 105°C convection oven until a constant weight was achieved. 

4.2.2 Date collection 

4.2.2.1 Overview of composition analysis model calibration 

Oven-dried samples were cooled to room temperature in a desiccator 

before the FT-NIR spectra were acquired. Immediately after the spectra 

acquisition, the sample was subjected to wet chemistry analysis and the 

chemical data on glucose, xylose, galactose, arabinose, mannose, lignin, and 

ash were collected. The wet chemistry analysis and FT-NIR sampling procedures 

are described in detail in Section 4.2.2.3. During the transportation between FT-

NIR sampling and wet chemistry analysis, the samples were kept in the vial and 

well sealed to keep out the moisture. A complete set of one sample was 

composed of both chemical and spectral data. These procedures (Figure 10) 

were repeated for all the samples; and finally, the models were developed based 

on the complete dataset using the selected multivariate analysis method. These 

are the general experimental procedures for the development of FT-NIR 

composition analysis model.  
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Figure 10 Scheme of data collection and model development 

 
 
4.2.2.2 FT-NIR sampling  

 
FT-IR spectrometer Excalibur 3100 (Varian Inc., Palo Alto, CA) is 

equipped with NIR IntegratIR integrating sphere accessory (PIKE Technologies, 

Madlson WI) and a build-in high-speed, low-noise, indium-gallium-arsenide 

(InGaAs) detector. Background spectrum was collected each day using a diffuse 

gold reference plate and automatically included in the calculation of each sample 

spectrum in order to minimize the atmosphere variation effect. Two algorithms 

(log(1/R) and K-M) were used to transform the diffuse reflectance radiation to a 

absorbance unit and thus the spectra were recorded with the ordinate of log(1/R) 

and K-M.  The sample vial was mounted on the FT-NIR sample holder. NIR light 

beam shot from underneath to the samples through an optimized borosilicate 

window with 10 mm diameter (Figure 11). All FT-NIR diffuse reflectance spectra 

were collected at the resolution of 8 cm-1 over the 4000-10000cm-1 spectral 

region and one spectrum was formed by averaging sixty-four scans. 
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Figure 11 Optical geometry of an integrating sphere for NIR diffuse reflectance sampling 

 

Three spectral samplings were conducted for each vial of sample with vigorous 

shaking between samplings so that the diffuse reflectance sampling represents 

more portions of the biomass powder within the vial. The average spectrum was 

calculated out of these three spectral samplings in the Unscrambler 9.2 

(statistical software), and coherently used in the multivariate analysis. In this way, 

the spectrum was more representative to the whole population within the vial.  

4.2.2.3 Wet chemistry analysis 
Immediately after FT-NIR spectral acquisition, the sample was subjected 

to wet chemistry analysis (Figure 12), basically following NREL Laboratory 

Analytical Procedure "Determination of structural carbohydrates and lignin in 

biomass" for hydrolyzed monosaccharides and lignin measurement, and ASTM 

"Standard Method for the Determination of Ash in Biomass" for ash 

measurement (ASTM E1755-01). The procedure is briefly described as below:  

1 Dry biomass (300.0±10.0 mg) was weighed into a crucible and subjected 

to 575 ºC furnace for 12 hr to obtain ash content.  

2 Another 300.0±10.0 mg biomass were weighed out into a pressure tube, 

and then well mixed with 3.00±0.1 ml 72%w/w sulfuric acid. The tube then stayed  
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Figure 12 Wet chemistry analysis process of ground biomass samples 

1. Include 2 steps: 1st concentrated acid hydrolysis and 2nd dilute acid hydrolysis. 

2. Total lignin content is equal to acid-soluble lignin plus acid-insoluble lignin.  

3. Detectable sugars include glucose, xylose, galactose, arabinose, mannose. 
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in 30 ±3 ºC water bath for 1 hr;  during this time span, samples should be stirred 

at least every 10 min to make reaction thorough.  

After the completion of this concentrated acid hydrolysis, the tube was 

removed from the water bath and 84.00±0.04 ml deionized water was added to 

dilute the acid to 4%w/w concentration. The sealed tube was placed in Napco 

8000-DST bench top autoclave (Winchester, VA) at 121 ºC for 1 hour.  During 

this dilute acid hydrolysis step, a set of sugar recovery standards (SRS) was 

conducted to correct for the possible loss due to destruction of sugars during 

dilute acid hydrolysis step. D-(+)glucose, D-(+)xylose, D-(+)galactose, 

L(+)arabinose, and D-(+)mannose (purchased from Sigma-Aldrich, St. Louis, MO)  

that closely resembled the real situation in biomass samples were weighed out to 

a pressure tube, and added with 10.0 mL deionized water and then 348.5 μL of 

72% w/w sulfuric acid. The tube was placed in the autoclave together with the 

sample tubes. 

3 The autoclaved hydrolysis solution was vacuum filtered through a 

previously weighed filtering crucible (Coors porcelain, medium porosity). Crucible 

with filtrated solid were 105 ºC oven-dried for at least 4 hours before being sent 

to 575 ºC furnace for another 12 hours. Weight difference (before and after 

furnace) was computed as acid-insoluble lignin.  

4 A portion of the filtrate was sent to Schimatzu UV-1700 UV-

spectrophotometer for acid-soluble lignin detection, and UV-absorbance was 

acquired at wavelength 320 nm and used for the calculation of acid-soluble lignin 

content. Afterwards, total lignin content was computed as the sum of both acid-

soluble and acid-insoluble lignin. 

5 A portion of filtrate was neutralized using calcium carbonate (ACS reagent 

grade) until pH reached 5-6. The neutralized filtrate was first vacuumed filtered 

and then further filtered through 0.2 μm syringe filter before being injected into 

HPLC. BioRad Aminex HPX-87P column pre-protected by ionic-form H+/CO3 

deashing guard column was used to separate the monosaccharides before 
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entering the Waters 410 refractive index detector. Column operating condition 

was set at 80 ºC with the flow rate at 0.6 ml/min. The real-time signal outputs 

were monitored, and all the integrations were performed using the software GC 

Chemstation (Agilent Technologies, 1990-2001). These HPLC procedures were 

used for the measurement of the five monosaccharides: glucose, xylose, 

galactose, arabinose, and mannose.  

4.2.2.4 Data processing and multivariate analyses 
The Unscrambler 9.2 was used for all the spectral data pretreatments, 

PCA, PCR, PLS, and MLR in this study. Some other multivariate analyses, such 

as HCA and stepwise variable selection were conducted in the statistics software 

NCSS 2004. The use of multivariate methods is dictated specifically in the 

following section.  

4.3 Experiment designs 

4.3.1 Water bands study and justification for dry sample usage 

The grinded switchgrass sample (1.20±0.05 g) was measured into a FT-

NIR sampling vial and oven-dried until a constant weight was reached. FT-NIR 

spectrum was collected on this vial of moisture-free sample. Then it underwent 

isotherm sorption process at 25°C and 100% relative humidity, which was 

realized by being placed in the headspace of air-tight container with water at the 

bottom. After six hours, it was taken out of the container, acquired another FT-

NIR spectrum and put back in. The next FT-NIR spectral sampling was the next 

day, and repeated for another two acquisitions. Afterwards, the time interval was 

extended to two days for four more acquisitions.  All the weights were recorded, 

and the associated moisture contents were thus calculated. Nine observations in 

total were collected.  

The scope of this experiment was to investigate how moisture content 

affected the NIR spectrum, and thus to determine the FT-NIR sampling condition 

for the modeling in this study.  
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4.3.2 FT-NIR predictive model development  
4.3.2.1 Calibration dataset design   

To develop the switchgrass FT-NIR model, three replicates were collected 

for each of six cultivars, Cave-in-rock, Alamo, Kanlow, Shelter, NC1-16, and 

NC2-16 respectively (Table 2). Three replicates for each of the three botanic 

fractions (leaves, nodes, and internodes) were performed for Alamo and Kanlow, 

respectively. Therefore, in total, thirty-six observations (Table 3) were collected, 

including both spectral and chemical information.  

To develop the corn stove FT-NIR model, DeKalb DK64-10RR was used 

and manually separated into six botanic parts: husks, piths, rinds, nodes, sheaths 

and leaves. Five replicates were collected for each of these six botanic parts and 

for the whole stalk as well (Table 4). Therefore, totally, thirty-five observations 

were obtained.  

All the 36 switchgrass samples and 35 corn stover samples were 

combined to compose the calibration dataset (71 samples in total) for the general 

model hypothesis testing, and a general model was justified and then developed.  

 

 
Table 2 Experiment design of switchgrass data collection: 3 repetitions for each of the 6 
switchgrass cultivars, and 3 repetitions for the three botanic parts of Alamo and Kanlow, 
respectively. 

 
 Cave-in-rock  Alamo Kanlow Shelter NC1-16 NC2-16 

Whole Stalk 3 3 3 3 3 3 

Leaf - 3 3 - - - 

Node - 3 3 - - - 

Internode - 3 3 - - - 
 
 
Table 3 Experiment design of corn stover data collection, 5 replicates for each of the six 
botanic fractions of corn stover and also 5 replicates for the whole stalk 

Whole Stalk Husk Pith Rind Node Sheath Leaf 

5 5 5 5 5 5 5 
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Table 4  Data denotation of the experimental design for pretreatment selection 1,2,3 

 20 mesh 40 mesh 60 mesh 

Husk (DK64-10RR) 
Hr20-1 
Hr20-2 
Hr20-3 

Hr40-1 
Hr40-2 
Hr40-3 

Hr60-1 
Hr60-2 
Hr60-3 

Husk (Incredable) 
Hs20-1 
Hs20-2 
Hs20-3 

Hs40-1 
Hs40-2 
Hs40-3 

Hs60-1 
Hs60-2 
Hs60-3 

Switchgrass 
(Shelter) 

G20-1 
G20-2 
G20-3 

G40-1 
G40-2 
G40-3 

G60-1 
G60-2 
G60-3 

1. Three biomass categories (ROWs) are marked as Hu, Hs, and G 
2. Three sieve sizes are shown as COLUMNs and are marked as 20, 40, 60.  
3. Three replicates were conducted for each biomass variety, following 20, 40, 60 mesh 

grinding subsequently.  
 
 
4.3.2.2 Discussion on the best modeling configuration  
4.3.2.2.1 Investigation of spectral pretreatments 
Three replicates of the husks of two corn cultivars (Incredable and DeKalb DK64-

10RR) and the internodes of one switchgrass cultivar (Shelter) were subjected to 

gradient grinding process, 20 mesh, then 40 mesh and finally 60 mesh. After 

each grinding step, three FT-NIR spectra were acquired on the vial of sample 

before the next grinding (smaller sieve opening) step was conducted on it. In this 

way, for certain variety of biomass, the chemical composition can be considered 

remaining the same, while the particle size varied. The experimental design is 

shown in Table 2, while each sample variety followed the procedures shown in 

Figure 13. Therefore, a major physical variation (particle size) was rationally 

created, while morphology difference as a minor physical variation was indirectly 

created at the same time. 
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Figure 13 Scheme of experimental procedures for sampling one investigated biomass 

variety, repeated for Hu, Hs, G, respectively 

 

 

Microscopic imaging was performed on the 40 mesh ground powders of 

different switchgrass botanic parts. Olympus SZH10 Research Stereo 

(Microscope) was utilized for the magnification and SONY MAVICA MVC-CD500 

was used for taking the image. The amplification of 70× was applied to monitor a 

single particle and 20× to monitor the particle distribution. Original NIR spectral 

data were reprocessed using nine different algorithms in the Unscrambler 9.2, 

and then transported to NCSS 2004 for HCA. The comparison of pretreatment 

performance was made among the nine different methods, given the knowledge 

of the chemical and physical characteristics. Nine pretreatment methods of 

interest were SNV, 1st derivative, 2nd derivative, MSC, EMSC, 1st derivative 

followed by SNV (1st + SNV), SNV followed by 1st derivative (SNV+1st), 2nd 

derivative followed by SNV (2nd+SNV), and SNV followed by 2nd derivative 

(SNV+2nd). Other than the judgment based upon HCA, the study also 

investigated the pretreatment performance via the predictive results. The original 
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spectral dataset of switchgrass (Table 3) was pretreated using nine different 

pretreatment methods, and then modeling was performed between each of the 

nine spectra dataset and four most important chemical constituents (glucose, 

xylose, lignin, and ash). Cross-validation was used to evaluate the performance 

of the nine models based on two statistical criteria (correlation and RMSEP). 

Larger correlation and lower RMSEP suggested better linearity between spectra 

data and chemical data. 

4.3.2.2.2 Spectral transform algorithm comparison   

To determine whether K-M or log(1/R) provided better biomass NIR 

modeling, this study assessed it via the experimental point of view. The 

comparison was performed for switchgrass dataset (Table 3) and corn stover 

dataset (Table 4), respectively. As spectra were collected in both K-M unit and 

log(1/R) unit (Section 4.2.2.2), so for both corn stover and switchgrass, there 

were two sets of data: K-M spectra with chemicals and log(1/R) with chemicals. 

All the other modeling configurations remained identical to ensure a fair 

comparison. For both corn stover and switchgrass, two sets of models were thus 

developed, and the selection of the better algorithm was based on correlation and 

RMSEP calculated via cross-validation.  

4.3.2.2.3 Multivariate regression method comparison 

Corn stover and switchgrass calibration datasets were utilized for the 

regression methods comparison. They were considered as two modeling streams 

and the comparison was preformed thereupon. Three regression methods MLR, 

PCR and PLS were compared based the corresponded model performance while 

other modeling configurations (transform algorithm and spectral pretreatment) 

remained identical,  

MLR, PCR, PLS regression were conducted in the Uncrambler 9.2, with 

spectral data as independent variables and chemical data as the dependent 

variables. As for MLR, stepwise variable selection was conducted in NCSS to 

remove the collinearity that highly existed among 1558 spectral variables. The 
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inclusion significance was set at 0.05 and exclusion significance 0.10, and the 

selected variables would be used as independent variables for MLR. Correlation 

and RMSEP from cross-validation were used as the criteria to compare the 

performance three models and thus determined the best regression method.  

4.3.2.3 Model validation 
The individual models for corn stover and switchgrass and the general 

model including both corn stover and switchgrass were thus developed based on 

the best modeling configurations that determined in Section 4.3.2.2. Leave-one-

out cross-validation was used to evaluate the model performance. 

Furthermore, an independent validation was performed to further verify 

the general model prediction performance. This validation dataset included five 

corn stover and five switchgrass samples (Table 5) that were of different 

genotype, collected at different time and spatial locations, and not used in the 

calibration development.  

Five wheat straw samples (Table 5) were conducted to investigate the 

potential of using the developed general model to predict the wheat straw 

chemical composition. The significance of introducing a third species to the 

validation is that it will confirm that NIR techniques only probe chemical 

differences, and the genotype, ecotype and some physical variation can be 

corrected by the pretreatment method. The general model can be further 

extended to cover more biomass species as long as the chemical composition is 

within the calibration region.  

Both chemicals and spectral data were collected as the same procedures 

 

Table 5 Information associated with the validation dataset 

Varieties Reps. Sources 

Corn Stover 5 UT experimental station in Knoxville, TN, 2006 summer 

Switchgrass 5 UT experimental station in Milan, TN, 2005 

Wheat Straw 5 UT dairy site in Blount county, TN, 2006 summer 
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as calibration dataset data collection. Afterwards, these fifteen FT-NIR spectra 

were pretreated by the saved EMSC model (based on the 71 calibration spectra), 

and then input into the developed general model and calculated the seven 

constituents’ values. The predicted chemical values as well as the measured 

were transported into a spreadsheet (Excel 2003), and several model evaluation 

parameters were calculated by applying the corresponding algorithms (Appendix 

C). 

4.3.2.4 HHV analysis 
The scanned biomass samples remaining after the usage of wet 

chemistry were collected by variety and prepared for higher heating value (HHV) 

testing; therefore, these samples share the same FT-NIR spectra with the 

samples went through the wet chemistry analysis. The sample preparation was 

performed in two steps: first, around 0.5 g samples were compressed via a 

pelletizer, and oven drying to remove moisture. IKA calorimeter system C 200 

was utilized to measure HHV, and all HHV was calculated on the dry basis. 

Measurement was performed in duplicates (Table 6), while three spectral 

replicates were collected before wet chemistry analysis; this resulted in that each 

replicate of heating value did not exactly match each individual spectrum.  

 

Table 6 HHV data collection of 15 categories of biomass samples (2 replications) 

Category Reps. Category Reps. Category Reps. 

Cave-in-rock 
Alamo 
Kanlow 
Shelter 
NC1-16 
NC2-16 

2 
2 
2 
2 
2 
2 

Leaf-Alamo 
Leaf-Kanlow 
Node-Alamo 
Node- Kanlow 
Internode-Alamo 
Internode-Kanlow 

2 
2 
2 
2 
2 
2 

Sample 11 

Sample 2 
Sample 3 
Sample 4 
 
 

2 
2 
2 
2 
 
 

1. Samples 1-4 are from independent validation dataset.  
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Therefore, instead of directly using individual HHV, modeling was conducted on the 

average of two spectral replicates and the average of the three FT-NIR spectra as the 

independent variables (thus sixteen sets of data) for the PLS regression. All the averaging 

performance was conducted the Uncrambler 9.2.  
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CHAPTER V RESULTS AND DISCUSSION 
This chapter provides the results corresponded to all the experiments 

dictated in Chapter IV, along with the discussion and inferences. Section 5.1 

presents wet chemistry results (the conventional measurement). Section 5.2 

showed how moisture affects the spectra and justified the sampling condition 

selected in this study. Section 5.3 demonstrates the determination of the best 

modeling configurations for biomass NIR study, and Section 5.4 presents the 

validation results for the thus developed models. 

5.1 Wet chemistry results 

5.1.1 Switchgrass 

Among the six switchgrass cultivars, variation was clearly present (Table 

7): glucose content ranged from 38.35% in NC1-16 to 46.17% in Cave-in-rock, 

xylose from 19.65% in cave-in-rock to 22.90% in Shelter, galactose from 2.17% 

in Cave-in-rock to 3.48% in Alamo, arabinose from 3.40% in NC2-16 to 4.76% in 

Shelter, mannose from 0.62% in Alamo and Kanlow, lignin from 20.64% in 

Kanlow to 22.89% in Alamo, and ash ranging from 2.62% in Cave-in-rock to 

3.90% in Alamo. The values were calculated by averaging three samplings out of 

each cultivar. Although Alamo and Kanlow had been reported the highest crop 

yield, they are observed comparatively low glucose content, while the low-yield 

upper-land crops Cave-in-rock had larger glucose proportion and indicates higher 

ethanol production efficiency. Therefore, the overall economical efficiency, 

considering both crop productivity and ethanol conversion efficiency should be 

studied to finally draw a conclusion to guide planting. Furthermore, an interesting 

finding lied in NC2-16, it had high glucose content, low ash and lignin content, 

which met the criteria for good feedstock for bio-ethanol production; moreover, its 

lowland ecotype characteristics suggest that it has high yield. Therefore, the 

results showed that this cultivar is promising and worthy of more attention. The 

variability was enhanced with the additional samples from the manually-

separated botanic fractions: for glucose, the lower boundary was brought down 
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Table 7 The chemical composition of different switchgrass cultivars and botanic fractions 

 Glucose Xylose Galactose Arabinose Mannose Lignin Ash 
Cave-in-rock 46.171±.362 19.65 ±.15 2.17±.05 3.65 ±.56 0.94 ±.13 21.73 ±.57 2.62 ±.04 
Alamo 40.41 ±.28  22.90 ±.73 3.48 ±.27 4.19 ±.36 0.62 ±.08 22.89 ±..37 3.90 ±.19

Kanlow 40.34 ±.31  20.71 ±.06 3.34 ±.16 4.11 ±.32 0.62 ±.05  20.64 ±..01 3.21 ±.07 
Shelter 41.53 ±.39  23.76 ±.20 3.11 ±.10 4.76 ±.11 0.97 ±.08  21.91 ±.25 2.64 ±.25 
NC1-16 38.35 ±.68  22.64 ±.95 2.82 ±.24 3.62 ±.13 1.28 ±.31  22.83 ±.55 3.29 ±.23 
NC2-16 44.71 ±.51  21.64 ±.70 2.61 ±.12 3.40 ±.05 1.11 ±.22  21.49 ±.57 3.26 ±.16 
Leaf-Alamo 38.59 ±.22  19.58 ±.22 3.56 ±.13 4.75 ±.15 1.10 ±.14  24.43 ±.33 4.90 ±.08 
Leaf-Kanlow 40.45 ±.17  23.98 ±.17 1.87 ±.42 3.35 ±.53 1.07 ±.02  25.10 ±.13 3.74 ±.01 
Node-Alamo 39.09 ±.27  25.87 ±.27 2.56 ±.13 5.39 ±.11 1.00 ±.11  21.43 ±.12 2.62 ±.12 
Node-Kanlow 37.81 ±.20  25.69 ±.20 2.15 ±.12 4.59 ±.02 0.67 ±.11  22.18 ±.24 1.49 ±.28 
Internode-
Alamo 45.54 ±.50  24.35 ±.50 2.15 ±.29 3.17 ±.22 0.70 ±.05 21.43 ±.21 2.19 ±.44 
Internode-
Kanlow 43.45 ±.22  25.76 ±.22 2.01 ±.12 3.60 ±.03  1.15 ±.12  21.36 ±.12 1.60 ±.07 

1. Mean was calculated based on the three replicates of each category (in %w/w).  

2. Standard error was calculated based on the three replicates of each variety (in %w/w). 
 

 

to 37.81% by node (Kanlow); both ends were extended for xylose, downwards by 

leaf (Alamo) to 19.58% and upwards to 25.87% by node(Alamo); the range of 

galactose was enlarged both ends to 1.87%-3.56% and ash’s range as well 

(1.60%-4.90%); and for lignin, the higher range was achieved to 25.10% by leaf 

(Kanlow). As most of the extremes are achieved by the fractions, the issues of 

having lower valuable constituent can be compensated for the high-yield plants-

Alamo and Kanlow. The chemical differences were observed via different botanic 

fractions, which indicated the efficiency and significance of using certain botanic 

fractions instead of the whole plot to enhance the bio-conversion. The trend can 

be observed that internodes have higher glucose content than leaves and nodes, 

while leaves have higher lignin and ash contents yet lower xylose content. This 

suggests that it is very positive that bio-ethanol production increases its efficiency 

by 10% via utilizing prescreened internodes than the whole switchgrass plot, 

which is mechanically feasible (Klasek, 2006). Also, the observation that botanic 

parts provide larger variability than several cultivars indicates that using botanic 
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parts is an effective alternative to create variability for model calibration. 

5.1.2 Corn stover 
Large variability was observed (Table 8) among different corn stover 

botanic parts, which again proved that this manual separation can efficiently 

provide large variability for multivariate analysis. Glucose content was ranging 

from 32.39% in Node to 44.03% in sheath, xylose from 18.10% in nodes to 

25.26% in husks, galactose from 1.69% in rinds to 2.73% in husks, arabinose 

from 2.63% in rinds to 5.42% in husks, mannose from 0.93% in pith to 1.77% in 

husks, lignin from 16.14% in husk to 23.95% in leaves and ash ranging from 

2.42% in husks to 8.79% in leaves. Generally, the internodal part, composed of 

the sheath, rind and pith, was preferable for fermentation than node and leaves, 

since it contained significantly higher glucose content, comparably lower lignin 

content. Moreover, husk was the most valuable for the bio-ethanol production, 

since 1) its overall sugars contents were comparatively high while previous 

researches (Van Zyl. et al., 1988; Alterthum and Ingram, 1989; Bothast et al., 

1994; etc) proved that both cellulose and hemicellulose can be converted to 

ethanol, and 2) also husk had the lowest lignin and ash content. Since compared 

to separating corn leaves, nodes, internodes, it is much easier to separate husk 

from cob (Kracl, 1986) which is also necessary for food supply. So it is promising  

 

Table 8 The chemical composition of different botanic parts of corn stover 

 Glucose Xylose Galactose Arabinose Mannose Lignin Ash 
Node 32.391 ±1.1222 18.10 ±1.05 2.41 ±.25 4.39 ±.21 1.12 ±.17 23.6 ±.41 3.7 ±.28 
Pith 43.37 ±1.49 19.66 ±.88 1.85 ±.19 3.29 ±.38 0.93 ±.31 19.88 ±.63 4.86 ±1.00

Sheath 44.03 ±.85 19.44 ±.94 2.27 ±.48 4.5 ±.64 1.43 ±.48 16.31 ±6.02 5.42 ±1.15

Rind 42.04 ±.63 18.91 ±1.32 1.69 ±.35 2.63 ±.58 1.18 ±.31 22.68 ±1.71 3.8 ±.46 
Leaf 34.20 ±2.08 18.31 ±1.28 2.49 ±.57 3.52 ±.27 1.32 ±.10 23.95 ±.46 8.79 ±4.24

Husk 41.78 ±2.87 25.26 ±4.87 2.73 ±.31 5.42 ±.72 1.77 ±1.03 16.14 ±1.79 2.42 ±1.19

Whole3 36.86 ±1.90 21.52 ±1.96 2.41 ±.52 3.55 ±1.09 1.25 ±.41 22.1 ±2.25 2.37 ±.38 

1. Mean is calculated based on the three replicates of each category (in %w/w).  

2. Standard error is calculated based on the three replicates of each category (in %w/w). 

3. Whole corn stover, including node, pith, sheath, rind and leaf. 
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and meaningful that husk is favorable for bio-ethanol production. The result also 

indicated that leaves had high lignin proportion thus good for bio-power plants 

but the fouling problems need to be paid attention to, due to its high ash content. 

5.1.3 Chemical composition overview  
The variability that exhibits among the botanic parts of just one corn stover 

cultivar is much greater than the variability created by different switchgrass 

cultivars and even their botanic parts. This observation implies that the variation 

lies in the corn stover species, generally, is larger than switchgrass species. 

Consequently, when switchgrass is used as the feedstock, less economic 

concern would arise during long-term operation, since its quality is comparably 

stable and consistent; on the contrary, when corn stover as feedstock, due to its 

large variability, close attention should be paid to monitoring the feedstock 

composition.  

Furthermore, corn stover and switchgrass show the consistency in that 

internodal parts have higher glucose content than nodes and leaves, and leaves 

tend to have more lignin content, suggesting that these tendencies might exist 

generally among biomass species.  

5.1.4 Higher heating value for switchgrass dataset 

Figure 14 presents the HHV results for all the switchgrass varieties, 

following the procedure dictated in Section 4.3.3.4. Among the six switchgrass 

cultivars, NC1-16 had very high heating value, thus preferable for co-firing and 

combustion; and Alamo and Kanlow were also promising for bio-power industry 

considering their high yields and their moderately large HHV. As for the botanic 

parts, leaves had significantly larger HHV than node and internodes. Compared 

with the chemical properties of switchgrass presented earlier in Table 7, it is 

found that the samples with higher lignin content had comparatively higher HHV, 

while those with higher glucose proportion exhibited comparatively lower HHV. It 

was reasonable because cellulose had the lowest heating value (11.7 kJ/g) and 

lignin had comparatively high heating value (24.1 kJ/g) (Raveendran and Ganesh,  
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Figure 14 HHV of different switchgrass cultivars and botanic parts 1,2,3 

1. The ordinate scale starts at 18200 J/g. 
2. The listed HHV values are calculated from two measurements for each category. 
3. The error bar shows ±standard error, calculated from the two measurements. 

 
 

1996). Also, large HHV variation exhibited within each investigated variety with 

the standard error ranging from 22.67 to as large as 351.43 J/g.  

 
5.2 NIR Water bands and justification of using dry samples 

All the observations were derived from the same sample in a manner of 

increasing moisture content (Section 4.3.1); therefore, they could be assumed to 

have the same proportion of all the chemical constituents with only moisture 

content variation. In the spectra of the series of samplings, it is very clear 

moisture content significantly affected to the entire NIR spectra (Figure 15), since 

the response of O-H stretching to NIR is overwhelming. The significant increase 

of absorption occurred in the two regions (as marked on Figure15), especially 

region a .  

Principle component analysis was performed to confirm this direct visual 
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Figure 15 The FT-NIR spectra of all the moisture samplings. From the bottom curve of dry 
sample (0% moisture content) up, the spectra correspond to moisture content of 3.67%, 
9.79%, 15.01%, 18.24%, 26.36%, 28.81%, 31.48%, 32.26%, respectively. Moisture change 

caused significant spectral variation in region a, and region b as well. 

 

 

judgment. It was very clear that observations with the increased moisture content 

were distributed following PC1 direction, which accounted for 97% of the total 

variance of this dataset (Figure 16). Therefore, PC1 was determined to reflect 

moisture content and its associated loading plot (Figure 17) was confirmed to 

carry the characteristic bands information attributed to moisture, or water. 

The result in Figure 17 showed the agreement with some former studies 

(Williams, 1992; Neimanis et al., 1999, Rantanen et al., 2000),, an intense peak 

appears around 5180 cm-1, and consequently this region was assigned to the 

bond of –OH stretching due to water, covering from 4800 cm-1 and 5450 cm-1. 

Besides, the broad peak around 7067 cm-1 as well exhibited less yet still 

significant correlation with water. Thus the region between 6804 cm-1 and 7167 

cm-1 was significantly affected by water as well. The spectral curve presentation 

between 4800 cm-1 and 5450 cm-1 can be used as a flag to on-time signal 

whether the sample is dry or wet.  
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Figure 16 The score plot of PCA applying to the 9 spectra of different moisture samplings 
depicted in Figure 15  

 
 

 

Figure 17 The loading plot associated with PC1 depicted in Figure 16
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              This study also found that the integrated peak area of the spectra in the 

assigned regions was linearly correlated with moisture content (Figure 18). The 

integration was performed in the Varian Resolution Pro software with the forced 

cut-off edges (4800 cm-1 and 5450 cm-1, 6804 cm-1 and 7167 cm-1, respectively), 

and linearly regressed against moisture content. The data points were closely 

distributed around the linear regression line with R2 over 0.99 for both regions, 

which demonstrated that moisture content and spectral integrated area were 

highly correlated in these two regions. Therefore, the wavenumbers 4800 cm-1~ 

5450 cm-1 and 6804 cm-1~7167 cm-1 were proved as water or moisture bands. 

Water, essentially the O-H bonds, has a significant influence to the entire 

NIR spectra, and this overwhelming effect may interfere with the modeling work 

 

 

 

Figure 18 The plot of the integrated peak (two) area vs. moisture content. The line with 
triangles presents the relationship between the integrated area and moisture content in 
the most significant region a (4800 cm-1 and 5450 cm-1); the line with dots presents the 
relationship in the second significant region b (6804 cm-1 and 7167 cm-1). 
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on the other chemical properties by the even slight variation of sample moisture 

content. Furthermore, in the two assigned regions, other than O-H in the 

moisture, O-H stretching also exists in the other compositional constituents such 

as carbohydrates, and other bonds may have absorbance in these two regions 

(especially 6804 cm-1 and 7167 cm-1) as well. In other words, the existence of 

moisture would overwhelm the variations in these two regions attributed to other 

compounds. Furthermore, since wet chemistry analysis requires oven-dried 

samples at the start point, acquiring FT-NIR samples on the dried sample 

ensured that the spectra exactly matched wet chemistry measurement since 

oven-drying might cause some chemical loss. These reasons justified why the 

FT-NIR spectra were collected on dried samples, since the major task of fast NIR 

analysis was to probe the compositional chemicals, not moisture content.   

5.3 The development of best modeling configurations 

5.3.1 Spectral pretreatment  

5.3.1.1 The necessity of spectral pretreatment 
The physical characteristic is a critical source of interference in 

investigating of chemical properties. However, how to differentiate the chemical 

and physical causes and claim that the data pretreatment is removing the 

essentially physical interference is not simple. This study addresses this 

pretreatment issue from several perspectives:  

5.3.1.1.1 Microscopic imaging results 

The particle distribution of the leaves of Alamo was clearly presented 

through microscopic image (Section 4.3.2.2.1). Although all the particles passed 

through the same sieve with the opening diameter of 0.425mm, the particle size 

variation was clearly observed (Figure 19). The morphological difference lied in 

different botanic parts correlated to botanical structure which could be observed 

under microscope (Figure 20). Node particles usually had chunky shapes; while 

internode and leaf particles mostly existed as long tissues (leaf particles also had 

flat profile). Their surface texture exhibits differences as well.  
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Figure 19 Microscope view of particles of Alamo-leaf sample after 40 mesh grinding 

 
 

 
Figure 20 Micrographs of the ground (through 40 mesh) particles of Alamo botanic parts. 
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All these graphs clearly demonstrated that to investigate biomass, it was 

very difficult and almost impossible to achieve ideally homogenized NIR sampling 

(all the particles had identical physical properties, such as size, shape, and 

texture). 

5.3.1.1.2 Original spectral analysis 

The original spectra obtained via the particle size control experiment 

(Section 4.3.2.2.1) scattered greatly (Figure 21), which suggested that the 

physical effect due to particle size contributed significantly to the overall variation. 

One argument is that many spectra had larger signal intensity than some others 

throughout all the wavenumbers, which was impossible because the biomass 

samples had the same constituents. Statistical analysis was employed to 

demonstrate that the particle size effects disguised the variation attributed to 

chemical composition difference. 

 

 

 
 

Figure 21 The 27 original spectra, 3 repetitions for each of 3 particle size for 3 biomass 
varieties. 
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First, PCA was conducted on these spectra dataset, all wavenumber 

variables were utilized.  Along PC1 direction in the score plot (Figure 22), the 

tendency of particle size distribution was evident: the spectral observations with 

finer particles were distributed towards the left side, and larger particles toward 

right and this PC explained 82% of the total variance of the spectra dataset. 

Meanwhile, from the score plot, along PC2 direction, the sample distribution 

tends to reflect certain chemical characteristics: Hr and G observations exhibited 

on the top and Hs ones appeared at lower level. However, even if completely 

contributed by chemical difference, the explained variance was much lower than 

the explained portion by particle size difference.  

Compared particle size distribution along PC1 in Figure 22 with the PC1 

associated loading plot (Figure 23), the larger particle samples had larger NIR 

absorption across the entire NIR region, since the loading values remained 

positive for all the wavenumbers. Also the loading curve shape had great 

resemblance to the original spectra, which suggested given the same amount of 

NIR incident beam, diffuse reflectance happened more times in the sample with 

larger particles. It is reasonable because with large space between particles, NIR 

beam was easier to get through the surface and hit more inner particles, thus 

more absorption took places. Furthermore, this suggested that other than an 

offset term, particle size variation also brought in the multiplicative term (refer to 

Section 2.3.1). The dendrogram (Figure 24) states the same problem from 

another perspective. The major three clusters were expected to represent the 

three biomass varieties, since the target of using NIR was to probe chemical 

difference, that is to say, the three major clusters (marked as A, B, C) should 

represent G samples, Hs samples, and Hr samples, since G, Hs, and Hr 

represented three varieties (Section 4.3.2.2.1). However, the cluster A was 

composed solely of the samples after 60 mesh and cluster B and C reflected 

more particle size variation than variety information. This hierarchy structure was 

far from the expectation that three major clusters composed of G, Hs and Hr, 

respectively. 
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Figure 22 PCA score of 27 samples: PC1 vs. PC2. Three biomass varieties: Hr: Husk from 
the regular corn cultivar DeKalb DK64-10RR; Hs: Husk from the sweet corn cultivar 

Incredable; G: straw of switchgrass cultivar Shelter. 20, 40, 60 stand for the grind mesh 
size, thus biomass particle sizes decrease as the number increases.  

 

 

 
Figure 23 PCA loading plot associated with PC1 displayed in Figure 22 

 
 

Associated loading plot 

Wavenumber (cm-1) 

L
oa

di
ng

s 

Score plot of 27 samples 

PC1

PC
2 



 

 59

25 17 8 0

Hr20-1
Hr20-2
Hr20-3
G20-1
G20-3
G20-2
Hr40-1
Hr40-2
Hr40-3
G40-1
G40-3
G40-2
Hs20-1
Hs20-2
Hs20-3
Hs40-1
Hs60-3
Hs40-2
Hs40-3
Hr60-1
Hr60-2
Hr60-3
Hs60-1
Hs60-2
G60-1
G60-3
G60-2
Name

 
Figure 24 The dendrogram of HCA of the 27 original FT-NIR spectra 

 

5.3.1.2 Pretreatment selection  
5.3.1.2.1 Hierarchical clustering results 

HCA was applied in the same manner on the datasets pretreated by all 

the nine methods described in Section 4.3.2.2.1. For all the dendrograms (Figure 

25), the three major clusters clearly represented sample varieties, which 

indicated that physical interferences had been reduced and chemical 

characteristics were thereby enhanced.  These structures again demonstrated 

the significance of spectral pretreatment in FT-NIR analysis of biomass chemical 

composition. 

The efficiency in reducing physical variation varied amongst the nine 

methods; and this point can be reached by examining the dissimilarity of clusters. 

The dissimilarity of clusters can be read from the horizontal position of the split. 

Compared to the other eight methods, EMSC exhibited the best performance for 
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Figure 25 The dendrograms of the 27 FT-NIR spectra after different pretreatments  

 

2nd derivative 

SNV MSC EMSC 

1st derivative 1st +SNV SNV+ 1st  

2nd +SNV SNV+ 2nd  



 

 61

Table 9 The dissimilarity distances calculated during the last three mergence in HCA 
for different pretreatments. 1st row: the dissimilarity distances of the last merged two 
clusters; 2nd row: the dissimilarity distances of the last 2nd merged two clusters; 3rd 
row: the dissimilarity distances of the last 3rd merged two clusters, which also 
represent the largest dissimilarity attributed to particle size  
 

 SNV MSC EMSC 1st 
derivative 1st+SNV SNV+1st 2nd 

derivative 2nd+SNV SNV+2nd

1 28.2  28.2  30.7  22.1  25.4  26.2  22.1  16.1  16.4  

2 13.4  13.5  15.0  12.8  13.2  14.3  12.8  8.9  8.3 

3 3.02  3.04 1.34  3.60  2.18 1.61 3.60  1.75 2.04  
 

  

reducing physical interference, based on the observation that the ratio of the 

dissimilarity distance resulting from chemical compositions to that from physical 

effects is maximized. From the scale of the dissimilarity axis, it is clear that 

EMSC provided larger distance between the three major clusters. 

The quantified comparison is further presented in Table 9. The first two 

rows represent the difference among the three major clusters, or sample varieties, 

which is the larger the better; and the 3rd row is the largest dissimilarity attributed 

to particle size differences, the smaller the better. EMSC maximized the 

dissimilarity attributed to chemical variations, and minimized the dissimilarity 

attributed to physical variation. EMSC quantitatively generated the best 

pretreatment result for subsequent investigation of chemical composition. 

Compared to the original spectra (Figure 21), it was evident that large variation 

due to physical interferences had been removed (Figure 26), which again proved 

that physical variation was significant and should be removed; however, only with 

the reasoning above, it was safe to announce that the removed variation was 

attributed to physical effects.   

5.3.1.2.2 Prediction result comparison 

Last section used HCA to demonstrate EMSC as the best pretreatment method 

from qualitative angle, as the spectral grouping presentation after EMSC 

pretreatment best reflected the chemical composition differences. The discussion 
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Figure 26 Spectral presentation after applying EMSC pretreatment on the original spectra 

(Figure 21) of switchgrass samples 

 
 

in this section focuses on the quantitative perspective based on the cross-

validation result of the nine models derived from differently pretreated spectral 

data (Section 4.3.2.2.1). Two parameters were employed as the criteria to define 

a good model: 1) Correlation (Table 10) was used for assessing the model 

fitness and it represents better model when it is closer to 1. 2) RMSEP (Table 11) 

was used to evaluate model prediction performances and the model performs 

more accurately if it has smaller RMSEP. Since glucose takes up the largest 

portion in the biomass chemical composition (averaged 41.37 %w/w) and is a 

significant source for the fermentation and ethanol production, the glucose 

content is the most important factor that judgment should be based upon. 

Clearly, EMSC pretreatment provided best model for glucose, since the 

associated model had highest correlation and lowest RMSEP. Other than 

glucose, EMSC associated model had the lowest RMSEP for predicting ash, 
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Table 10 Correlation1 comparison of switchgrass models applied with different 

pretreatments 2 

Pretreatment Glucose Xylose Lignin Ash 

Original  
SNV 
1st derivative 
2nd derivative 
EMSC 
1st +SNV 
SNV+1st  
2nd +SNV 
SNV+2nd  
MSC 

0.901 
0.955 
0.942 
0.934 

0.9703 

0.951 

0.9564 

0.948 
0.942 
0.943 

0.882 
0.935 
0.942 
0.887 

0.9443 

0.931 
0.937 
0.935 
0.942 

0.9434 

0.743 
0.861 
0.871 
0.849 

0.9024 

0.9093 

0.897 
0.846 
0.824 
0.856 

0.946 

0.9554 

0.949 
0.928 

0.9563 

0.945 
0.951 
0.905 
0.917 
0.950 

1. Larger correlation suggests better model.  
2. Original: The model was developed using original spectra without any pretreatment; its 

correlation is much poorer than all the pretreated ones. SNV: standard normal variate. 
EMSC: extended multiplicative signal correction. MSC: multiplicative scatter correction. 1st: 
1st derivative. 2nd: 2nd derivative.  

3. The largest correlation in each column 
4. The second largest correlation in each column 
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Table 11 RMSEP1 comparison of switchgrass models applied with different pretreatments 2 

Pretreatment Glucose (%w/w) Xylose (%w/w) Lignin (%w/w) Ash  (%w/w) 

Original  
SNV 
1st derivative 
2nd derivative 
EMSC 
1st +SNV 
SNV+1st  
2nd +SNV 
SNV+2nd  
MSC 

1.250 
0.819 
0.954 
1.000 

0.6833 

0.798 

0.7804 

0.906 
0.94 
0.809 

1.042 
0.782 
0.739 
1.018 

0.7304 

0.805 

0.6403 

0.785 
0.738 
0.734 

1.178 
0.670 
0.650 
0.693 

0.5704 

0.5173 

0.579 
0.698 
0.746 
0.598 

0.309 

0.2824 

0.299 
0.353 

0.2783 

0.310 
0.285 
0.405 
0.378 
0.290 

1. Root mean error for prediction: smaller RMSEP suggests more accuracy of model prediction, 
since it means the predicted chemical content is closer to the measured value.   

2. See Table 10 for the abbreviations. 
3. The smallest RMSEP in each column. 
4. The second smallest RMSEP in each column. 
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ash, and it had the second lowest RMSEP for lignin and xylose, which are the 

other two major constituents next to glucose. EMSC also provided largest 

correlation for xylose and ash, and the 2nd largest correlation for lignin with a 

slight difference to the largest one provided by 1st +SNV. Although the 

combination of 1st derivative and SNV exhibited less than EMSC yet still good 

performance, one concern may be raised when the pretreatment involves 

derivative algorithm. Derivatives usually enlarge the noise, therefore, if the 

developed model is transferred to other spectrometer (lower signal-to-noise ratio 

than FT-NIR spectrometer), problems will occur. Therefore, overall, EMSC turned 

out to be the best pretreatment method for biomass composition analysis, based 

on model prediction results.  

The result also demonstrated the quantified evident that the model 

developed on the original spectra did not perform well especially for the three 

major constituents while pretreatments improved the model accuracy.  

5.3.2 Spectral transform algorithm selection  
As described in Section 4.3.2.2.2, there were two sets of models 

developed for corn stover and switchgrass, respectively.  Correlation and RMSEP 

corresponding to the two model sets (the one derived from K-M spectra and the 

one derived from log(1/R) are presented in Table 12. For both corn stover and 

switchgrass dataset, the model derived from the log(1/R) spectra had larger 

correlation and smaller RMSEP than their counterparts derived from the K-M 

spectra for all the seven chemical analytes. This consistency for both biomass 

species demonstrated that log(1/R) transform algorithm provided better linearity 

between chemical information of biomass samples and their FT-NIR spectra. In 

addition, in case of any change of the reference reflector (gold plate in this study) 

in the later-on stage, such as replacement, log(1/R) transform provides a simpler 

systematic adjustment than K-M transform. 

Because the change of the reference reflector may result in the change of 

background spectra ( oI  at each wavenumber changes), and consequently affect  
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Table 12 Cross-validation results comparison between K-M and log(1/R)  
  Glucose Xylose Galactose Arabinose Mannose Lignin Ash 

Corn stover 1 

K-M 2 0.911 0.838 0.640 0.732 0.709 0.800 0.882 
Correlation 

Log(1/R)3 0.947 0.901 0.838 0.953 0.765 0.962 0.918 

K-M 1.887 1.687 0.379 0.694 0.385 2.366 1.214 RMSEP 
(%w/w) Log(1/R) 1.407 1.346 0.201 0.341 0.321 1.087 0.700 

Switchgrass 4 
K-M 0.949 0.918 0.835 0.819 0.522 0.884 0.945 

Correlation 
Log(1/R) 0.975 0.960 0.925 0.855 0.674 0.939 0.953 

K-M 0.900 0.874 0.333 0.413 0.224 0.622 0.310 RMSEP 
(%w/w) Log(1/R) 0.633 0.620 0.235 0.374 0.203 0.458 0.266 

1. Modeling results on corn stover calibration dataset. 
2. The model is developed using the K-M transformed NIR spectra. PLS regression is applied; 

correlations and RMSEPs are generated from cross-validation.  
3. The model is developed using the log(1/R) transformed NIR spectra. PLS regression is 

applied; correlations and RMSEPs are generated from cross-validation. 
4. Modeling results on switchgrass calibration dataset. 
 
 

the reflectance at each wavenumber because of the equation R=Ia/Io. So with 

log(1/R) transformed spectra, the systematic bias is a constant across the entire 

NIR region and can be adjusted easily to the new situation from the formerly 

developed model. While this simplicity does not occur on the K-M transformed 

ones, a completely new calibration model needs to be developed. Therefore, 

log(1/R) transform algorithm was determined in FT-NIR analyses of biomass 

chemical composition.  

5.3.3 Regression method determination 
The results for the comparison of three multivariate regression methods 

(Section 4.3.2.2.3) are discussed. MLR method was first studied. Stepwise 

regression on the switchgrass dataset generated seven series of variables 

(Table 13) that were significant for the predictions of the seven chemical 

analytes. Likewise, another seven series of significant variables were shown in 
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Table 13 Stepwise variable selection results on corn stover and switchgrass calibration 
dataset respectively 1,2 

Chemicals Significant variables (cm-1) 

Set A 3 : based on corn stover dataset 
Glucose 4220   4706   5285   6697   7133   8529   8572   

Xylose 5107   5648   6847   6855   7399   9386   9548 

Galactose 4864   6697 

Arabinose 4895 

Mannose 4290   7094 

Lignin 4409   4413  7110   7449   7453   8259    8321   8398   9413   9420 

Ash 4957   6635    7133   7445   7449    9220   9251   9254   92798   9293   9297 

Set B 4 : based on switchgrass dataset 
Glucose 4309  5235   5644   6828  8425 

Xylose 5686   6766   7167   7229 

Galactose 4313   5632   6750   9362 

Arabinose 4305   5636   6897   9505   9520 

Mannose 4497   5883   9578   9582   9605   9609   9621 

Lignin 4297   5590   9478 

Ash 4965   5339   5844   7422 

1. Each row lists the chemical analyte and the significant variables for this analyte selected 
from 1558 spectral variables. All the values represent wavenumber. 

2. Stepwise significance levels: inclusion level: 0.05; exclusion level: 0.10. 

3. Set A presents the stepwise variable selection results conducted on the corn stover 
calibration dataset. 

4. Set B presents the stepwise variable selection results conducted on the switchgrass 
calibration dataset. 
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 the table, derived from the stepwise applied on corn stover calibration dataset. 

Theoretically, the selected variables (wavenumbers) indicated where the 

response chemical analyte had large absorbance; so the selections derived from 

both calibration datasets should have great resemblances. However, 

consistency was hardly observed, and this suggested that these two sets of 

stepwise selection results were data dependent thus not representative. 

Consequently, MLR developed upon the selection results will be subjective. 

Stepwise is only recommended when a very large dataset is available so that 

any influential points and noise are overwhelmed by real signal association. 

Another drawback of MLR is that it can only predict one chemical at a time. 

Compared with simultaneous predictions of seven chemical constituents, MLR 

takes more efforts and ignores the correlation between the chemical analytes. 

Therefore, MLR was not appropriate for this study.  

Then the remaining comparison was between PLS and PCR. The cross-

validation results of PCR and PLS applied to the individual corn stover and 

switchgrass dataset were shown in Table 14. For both calibration datasets (corn 

correlation and smaller RMSEP than PCR did throughout all the chemical 

 

Table 14 The cross-validation results comparison between PCR and PLS 1 

  Glucose Xylose Galactose Arabinose Mannose Lignin Ash 

Corn stover 

PCR 0.916 0.787 0.556 0.767 0.780 0.765 0.666 
Correlation 

PLS 0.947 0.901 0.838 0.953 0.765 0.962 0.918 

PCR 1.756 1.910 0.413 0.717 0.321 2.628 1.275 
RMSEP 2 

PLS 1.407 1.346 0.201 0.341 0.321 1.087 0.700 

Switchgrass 

PCR 0.972 0.936 0.831 0.875 0.648 0.901 0.953
Correlation 

PLS 0.975 0.960 0.925 0.855 0.674 0.939 0.953

PCR 0.660 0.777 0.343 0.292 0.200 0.568 0.287
RMSEP 

PLS 0.633 0.620 0.235 0.374 0.203 0.458 0.266

1. Better model has correlation closer to 1 and lower RMSEP. 
2. All the values for RMSEP have the unit of %w/w (dry-based). 
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stover and switchgrass, respectively), PLS regression method provided larger 

analytes. Therefore, PLS was better than PCR for biomass NIR modeling and 

thus was used as final modeling method in this study.  

5.4 Predictive model results 

5.4.1 Corn stover and switchgrass individual models 
Based on all the selections discussed above, PLS regression were 

performed using the entire set of EMSC pretreated data in log(1/R) unit and all 

the chemicals were included in the modeling simultaneously. Leave-one-out 

cross-validation was utilized.  

Figure 27 visually indicated good cross-validation results (correlation) of 

both individual models: the predicted chemical contents from the models were 

very close to the measured ones from wet chemistry analysis. The quantified 

cross-validation results are presented in Table 15. For switchgrass, the 

correlations between the measured values and the predicted values from the 

model were large (0.975, 0.960 and 0.939 %w/w, respectively) for the three 

major constituents, glucose, xylose, and lignin, which add up to over 80% weight 

percentage. RMSEP was 0.975 %w/w for glucose, 0.96 %w/w for xylose and 

0.939 %w/w for lignin, and these values were small if compared to the original 

scale of each individual constituent: the prediction error rate (RMSEP divided by 

Mean) was only 2.5% for glucose, 3% for xylose, 2.4% for lignin. The correlation 

for mannose was poor (0.674) and RMSEP for the three minor monosaccharides 

had relatively larger error rate,  approximately around 10% for galactose, 

arabinose, and up to 21% for mannose. The possible reasons are: 1) The weight 

percentage was small thus the contribution to the dataset variation was 

accordingly much less, while the composed latent factors during regression 

tended to explain from larger variance down. 2) Since the concentrations of these 

three monosaccharides in the hydrolyzate were very low, HPLC measurement of 

them was not as accurate as glucose and xylose. 
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Figure 27 The predicted chemicals are plotted all together versus the measured chemical 

contents and R2 is calculated based all the data points. A: switchgrass model; B: Corn 
stover model. Both graphs have the data points swarm around the linear diagonal line y=x. 

A 

B 

R2=0.998 

R2=0.982 
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Table 15 The cross-validation result of switchgrass individual model 

Switchgrass Glucose Xylose Galactose Arabinose Mannose Lignin Ash 
Mean (%w/w) 41.37 23.04 2.65 4.05 0.94 22.28 2.95 

Correlation 0.975 0.960 0.925 0.855 0.674 0.939 0.953 

RMSEP (%w/w) 0.633 0.620 0.235 0.374 0.203 0.458 0.266 

SEP (%w/w) 0.642 0.629 0.238 0.379 0.206 0.465 0.270 

R 1 (%w/w) 9.33 6.85 2.01 2.90 1.02 4.75 3.83 

R/SEP 2 14.533 10.89 8.45 7.65 4.95 10.215 14.185
1. The range of the dataset, calculated by the maximum minus the minimum 

2. This parameter is used to evaluate the model performance target provided American 
Association of Cereal Chemists (AACC) standard :   
R/SEP≥4  calibration good for screening                      
R/SEP≥10    calibration good for quality control                      
R/SEP≥15    calibration good for research development 

 

 

3) Like glucose and xylose, they are also carbohydrates, thus are very similar in 

terms of chemical bonds. So the corresponded spectra tended to have similar 

curvature, while PLS regression tended to give the credit of the variation to 

glucose and xylose for their overwhelming percentage weight. Although ash had 

a good correlation (close to 1), its error rate almost reached 10%. One possible 

cause was that inorganic compounds have no absorption in NIR region, while 

ash is primarily composed of inorganic compounds. 

For corn stover (Table 16), likewise, the correlations between the 

measured values and the predicted values from the model were large: 0.947, 

0.901 and 0.962 for the glucose, xylose, and lignin, respectively, RMSEPs were 

0.975 %w/w for glucose, 0.96 %w/w for xylose and 0.939 %w/w for lignin, and 

error rate was 3.6% for glucose, 6.7% for xylose, 5.3% for lignin. With the 

reasons stated earlier, the RMSEP was still not very satisfying for galactose, 

arabinose, mannose and ash. 

The prediction result visually seemed not as good as switchgrass model, 

however, the corn stover dataset covered a greater variability in their chemical 

composition. To make a fair comparison and judgment, a criteria published by 

the American Association of Cereal Chemist (AACC) was adopted, since there  
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Table 16 The cross-validation result of corn stover individual model 

Corn Stover Glucose Xylose Galactose Arabinose Mannose Lignin Ash 

Mean (%w/w) 39.2 20.10 2.26 3.90 1.28 20.67 4.07 

Correlation 0.947 0.901 0.838 0.953 0.765 0.962 0.918 

RMSEP (%w/w) 1.407 1.346 0.201 0.341 0.321 1.087 0.700 

SEP (%w/w) 1.427 1.359 0.204. 0.346 0.326 1.099 0.707 

R (%w/w) 15.10 14.99 2.03 4.35 2.55 14.26 7.58 

R/SEP 10.732 11.028 9.974 10.497 7.96 12.977 10.721
 

 

was no established standard for biomass NIR study.  In the AACC Method 39-00 

(1999), the recommended performance targets are: the model with R/SEP≧4 is 

qualified for screening calibration, ≧10 is acceptable for quality control, and ≧15 

very good for research quantification. According to this standard, the 

performance levels of these two models turned out almost the same. For both 

corn stover and switchgrass, the models were suitable for the industrial quality 

control in terms of glucose, xylose, lignin and ash measurement, and were 

qualified for screening purposes in terms of galactose and mannose. And the 

only difference, in terms of performance targets, lied in the arabinose 

measurement: the switchgrass model of predicting galactose was at screening 

level, while the corn stover model was at quality control level.  

5.4.2 One general model hypothesis investigation 

5.4.2.1 Justification of the general model  
First, PCA was conducted based on solely chemical information, and all 

PCs combinations failed to separate switchgrass and corn stover samples 

(Figure 28); more accurate description was the variation of corn stover chemical 

composition covered that of switchgrass dataset. Likewise, PCA results based on 

solely FT-NIR spectra of the corn stover and switchgrass samples again 

exhibited that corn stover and switchgrass samples overlap to a great degree  
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Figure 28 The PCA score plots based on the spectral data of corn stover and switchgrass 

data. PC1 vs. PC2. (left), PC1 vs. PC3 (right). S: corn stover; G: switchgrass 

 
 
and are not differentiable (Figure 29).  The rationale of developing one general 

model covering these two species was thus demonstrated.  

5.4.2.2 Cross validation results 
As it was reasonable to combine corn stover and switchgrass together for 

one general model, the general model of 71 observation (Section 4.3.2.1) was 

developed using the best modeling configurations (log(1/R), EMSC, PLS) To 

make a fair comparison to the individual models, cross-validation was still used to 

evaluate the model accuracy (Table 17). Although the correlation decreased 

slightly compared to both of the two individual models, the prediction error rates  

(the ratio of RMSEP to mean) fell between them: 2.8%, 5.6%, and 6.3% for 

glucose, xylose, and lignin, respectively. According to AACC standard, these 

three major constituents still met the quality control criteria, and so did a minor 

constituent, ash. Also, the three minor saccharides were still good for screening.  

Based on cross-validation results comparison, the general model for both 

corn stover and switchgrass achieved almost the same performance target as 

the two individual models. This general model was more robust without losing the 

accuracy. 
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Figure 29 The PCA score plots based on the chemicals data of corn stover and 

switchgrass data. PC1 vs. PC2 (left), PC1 vs. PC3 (right). S: corn stover; G: switchgrass 

 

 

Table 17 The cross-validation result of the general model  

 Glucose Xylose Galactose Arabinose  Mannose Lignin Ash 

Descriptive Statistics of Calibration Dataset 
R 1 (%w/w) 15.406  14.988 2.644  4.346  2.547  14.261  7.476 

Mean (%w/w) 40.612  21.741 2.460  4.047  1.105  21.485  3.369 

Model Performance Assessment 

Correlation  0.954 0.843  0.708  0.735  0.759 0.895  0.854 

RMSEP (%w/w) 1.153 1.208 0.425  0.578  0.282  1.347  0.530 
SEP (%w/w) 1.161 1.217 0.428 0.582 0.284 1.356 0.534 

R/SEP 13.3 2 12.3 2  6.2 3 6.7 3 9.0 3 10.6 2 14.0 2 

1. the data range calculated by Max-Min of the dataset 

2. R/SEP greater than 10, thus good for quality control 

3. R/SEP greater than 4, thus good for screening 
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5.4.2.3 Validation using independent data 
The validation result based on the independent dataset (Section 4.3.2.3) is 

presented in Table 18. Compared to cross-validation results, RMSEP and SEP 

decreased for all the 7 constituents (Table 18). R/SEPs increased for all the 

constituents except for arabinose and lignin; and two constituents were improved 

to a higher criteria level than the cross-validation results: glucose was qualified 

for quantitative research while mannose was capable for quality control now. The 

results further validated that the developed general model can predict the 

chemical composition of corn stover and switchgrass accurately, and also proved 

that cross-validation is a conservative method to validate a developed NIR 

model. 

Both cross-validation and independent validation showed promising 

predictive accuracy of the developed general model in examining switchgrass 

and corn stover. 

5.4.2.4 The model prediction capability of wheat straw 
As described in Section 4.3.2.3, the results of performing the five wheat 

straw samples are summarized in Table 19. The error rates were very low for the 

three major constituents, with only 1.56%, 2.03%, 2.90% for glucose, xylose, and 

lignin, respectively, and the error rates for arabinose and ash were under 10%.  

 

Table 18 The results of validating the general model using independent dataset, including 
5 corn stover and 5 switchgrass samples. 

 Glucose Xylose Galactose Arabinose Mannose Lignin Ash 

R 1 (%w/w) 10.86 7.96 1.77 2.09 0.59 4.53 5.02 
RMSEP (%w/w) 0.598 0.664 0.219 0.256 0.049 0.619 0.347 

SEP (%w/w) 0.604 0.666 0.224 0.264 0.057 0.623 0.357 

R/SEP 17.997 2 11.956 3 7.929 4 7.932 4 10.363 3 7.265 4 14.069 3

1. The data range of the 10 independent validation samples: 5 corn stover samples and 5 
switchgrass samples (Table 5). 

2. R/SEP was greater than 15, thus good for quantitative research. 
3. R/SEP was greater than 10, thus good for quality control. 
4. R/SEP was greater than 4, thus good for screening. 
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Table 19 The results of validating the general model using 5 wheat straw samples 

 Glucose Xylose Galactose Arabinose Mannose Lignin Ash 

Mean 42.269 20.253 2.036 3.143 0.749 24.050 2.358 
R 1 (%w/w) 2.30 2.29 0.58 0.70 0.13 2.87 0.84 

RMSEP (%w/w) 0.659 0.412 0.311 0.201 0.135 0.698 0.213 
SEP (%w/w) 0.662 0.414 0.316 0.205 0.136 0.703 0.216 
Error Rate 2  1.56% 2.03% 15.27% 6.39% 18.02% 2.90% 9.03% 

1. the data range of the 5 wheat straw samples 
2. Error rate: RMSEP divided by the mean of 5 wheat straw samples for each constituent 

respectively 
 
 
 
The results showed the predictive potential of using the developed general model 

to predict wheat straw composition, especially in terms of the three major 

constituents. This test also proved that after spectral pretreatment FT-NIR 

probed only chemical characteristics. The results indicated great potential to use 

the developed general model to predict the chemical composition of wheat straw 

with accuracy, yet further validation investigation is favored by using wheat straw 

samples with larger variability. 

5.4.3 HHV modeling 
The cross-validation result (Figure 30) for the HHV model (Section 4.3.5) 

showed it was feasible to use FT-NIR to predict HHV. RMSEP was 53.23 J/g 

while the average HHV was 18932.1 J/g, so the prediction error rate was only 

0.28%. Also, the correlation was 0.971 with the slope 0.964, indicating that the 

predicted HHV via the FT-NIR predicted model was very close to the measured 

HHV via the calorimeter. The modeling results showed the great potential to 

predict HHV via FT-NIR analyses approach.  
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Figure 30 The plot of the predicted HHV vs. measured HHV with cross-validation results 
presented
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CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS 
6.1 Conclusions  

Manual separation of botanic parts proved to be an effective approach to 

create variability for multivariate analysis. For corn stover, great variability 

exhibited amongst different botanic parts; and for switchgrass, different botanic 

parts provided variability greater than different cultivars did. Glucose, thus 

cellulose, was the major chemical constituents in the investigated biomass 

species, contributing to 30-50 % of the total dry weight. Both corn stover and 

switchgrass showed that internodal parts contained higher glucose content than 

nodes and leaves. Also, corn husks had the greatest total sugar content amongst 

all the botanic parts of corn stover, which suggested it as a very good feedstock 

for ethanol fermentation. Lignin and xylose had similar weight percentage in 

biomass and they were the other two major constituents in biomass, ranging 

roughly from 15% to 30%. The other three monosaccharides took up only small 

portion of biomass chemical composition, with descending sequence from 

arabinose (2~6%w/w), galactose (1~4%w/w), to mannose (0~2%w/w). Biomass 

leaves had higher lignin content compared to other botanic parts and also larger 

higher heating value as well. Generally, switchgrass exhibited less variation in 

chemical composition, compared to corn stover. Among switchgrass cultivars, 

Cave-in-rock and NC2-16 presented significantly higher glucose content than 

other cultivars, while NC1-16 had the lowest glucose content yet the top heating 

value.  

Two NIR regions (4800 cm-1~5450 cm-1 and 6804 cm-1~7167 cm-1) were 

correlated to the O-H bond attributed to water, and linear relationship was found 

between the spectral peak area and moisture content.  

Studies proved that spectral pretreatment was necessary for the FT-NIR 

analysis on biomass samples and EMSC was the best pretreatment method to 

remove the physical interferences existing within biomass spectral sampling. 

Furthermore, this study concluded that it was better to present the spectral 
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intensity in log(1/R) rather than K-M; and partial least square was the best 

multivariate regression method for estimating the predictive FT-NIR model of 

biomass chemical composition . All these modeling configurations were 

recommended for the future NIR studies when biomass chemical composition is 

investigated. 

The individual model developed specifically for switchgrass showed good 

accuracy: RMSEP of cross-validation was 0.633, 0.620, 0.235, 0.374, 0.293, 

0.458 and 0.266 %w/w for glucose, xylose, galactose, arabinose, mannose, 

lignin and ash, respectively. RMSEPs were 1.427, 1.345, 0.201, 0.341, 0.321, 

1.087, 0.700 %w/w for the corn stover individual model. The measurements of 

glucose, xylose, lignin and ash via both models were valid for industrial quality 

control, and the measurements for the other constituents were valid for industrial 

screening process.  

Furthermore, this study justified, developed and validated a single 

predictive model of both corn stover and switchgrass. A combined model on both 

corn stover and switchgrass model was developed without losing much 

prediction accuracy. RMSEP of this general model via cross-validation was 1.153, 

1.208, 0.425, 0.578, 0.282, 1.347, 0.530 %w/w for glucose, xylose, galactose, 

arabinose, mannose, lignin and ash, respectively, and RMSEPs via independent 

validation were even smaller. Using the general model to predict wheat straw 

resulted in small RMSEPs: 0.659, 0.412, 0.311, 0.201, 0.135, 0.698 , 0.213 %w/w 

for the seven chemical constituents, which shows the potential of using this 

developed general model to predict wheat straw composition.  

The study also showed that it was promising to apply FT-NIR techniques 

to predict HHV of biomass feedstock.  

6.2 Future studies 
The results showed that the switchgrass cultivar NC2-16 was rich in 

glucose, while NC1-16 had large heating value, which indicated their potential to 

provide higher yields in different productions. However, literature associated with 

these two cultivars, especially their yields, is rarely found. More research is 
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suggested to be conducted on these two switchgrass cultivars.  

Internodal parts had higher glucose (or cellulose) content than nodes and 

leaves for both switchgrass and corn stover. Does this fact generally exist in all 

the biomass species? More biomass species need to be studied to verify this 

statement. 

As for the FT-NIR modeling, there are several comments on future FT-NIR 

research. By inputting more samples with more variability in the chemical 

composition calibration model, the prediction accuracy will be further enhanced 

so that can be directly used for research purposes. More biomass species can be 

involved after the justification and hypothesis testing to make this method more 

robust and powerful. The compositional predictive models developed based upon 

the spectrometer utilized in this study can be transported to other NIR 

spectrometers via mathematical calibration and modeling. Efforts can be made to 

make the developed models more flexible and transferable. FT-NIR rapid 

analysis method shows great potential in HHV measurement, but sixteen 

samples are far from enough; more efforts are needed to fulfill the HHV 

calibration model.  

.  
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APPENDIX A 
NOMECLATURE 

 
Nomenclature 

g 
mg 
ml 
mm 

ºC  
%w/w 

Grams 
milligrams 
milliliters 
millimeters 
degrees Celsius 
weight percentage (dry base) 

min 
sec 
hr 
J/g 
cm-1 
nm 

minutes 
seconds 
hours 
joule per gram 
wavenumber 
nanometer 

 
 
 
 

Abbreviation  

NIR 
FT 
μ 
σ 

α 
PC 
PCA 
PCR 
PLS 
MLR 
HCA 
K-M 
MC 
HHV 
MSC 
EMSC 
SNV 
RMSEP 
SEP 
R/SEP 

near infrared 
Fourier transform  
mean 
standard error 
significant level 
principle component 
principle component analysis  
principle component regression 
partial least squares regression  
multiple linear regression  
hierarchical clustering analysis 
Kubelka-Munk 
moisture content 
higher heating value 
multiplicative scatter correction 
extended multiplicative signal correction 
standard normal variate 
root mean square error for prediction 
standard error for prediction 
ratio of the data range to standard error for prediction 
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Hu 
Hs 
G 
A 
K 
InterN 
1st +SNV 
SNV+1st  
2nd +SNV 
SNV+2nd  

Husk (DK64-10RR) 
Husk (Incredible) 
Switchgrass straw 
Alamo 
Kanlow 
Internode 
1st derivative+ SNV 
SNV+ 1st derivative 
2nd derivative+ SNV 
SNV+ 2nd derivative 
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APPENDIX B  
EXPERIMENTAL UTILITIES 

List of software and devices used in the experiment and data processing 

Software Major Usage 

The Unscrambler 9.2 (CAMO) 
NCSS 2004 (NCSS) 
Excel 2003 (Microsoft) 
Varian Resolution Pro (Varian Inc.) 
GC Chemstation (Agilent Tech.) 
UV Probe 2.00 (Shimadzu Co.) 

Pretreatments, PCA, PCR, PLS 
Stepwise, HCA, descriptive statistics. 
Other simple computation and graphs 
Spectrometer control 
HPLC monitor and integration 
UV-Vis control 

Hardware Major Usage 

Wiley Mini Mill (Thomas Scientific) 
Varian FT-IR spectrometer Excalibur 3100  
Pike NIR IntegratIR Integrating Sphere Accessory  
BioRad Aminex HPX-87P column (300 x 7.8 mm) 
BioRad H+/CO3 deashing guard column 
Waters 410 refractive index detector 
SSI Lab Alliance Series I HPLC Pump 
Accumet Basic pH meter AB15 
Thelco convection oven 
Barnstead Termolyne 1300 Furnace 
Fisher Scientific Isotemp 3006 (Water bath) 
Schimatzu UV-1700 UV-spectrophotometer 
Mass Balance (accurate to 0.1mg) 
Autoclave 
IKA calorimeter system C 200 
Carver 4350.L pelletizer  
Olympus SZH10 Research Stereo (microscope) 
Sony MAVICA MVC-CD500 

Sample preparation. 
NIR spectra  
NIR spectra 
Sugar detection  
Sugar detection 
Sugar detection 
Sugar detection 
Neutralization pH control 
Drying 
Ash and AIL measurement 
Hydrolysis 
ASL detection 
Weighing 
Hydrolysis 
HHV 
Sample preparation for HHV 
Magnification 
Imaging  
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APPENDIX C  

STATISTICS CALCULATIONS 

Range (R)   

max( ) min( )i iR x x= −  
Standard error (σ ) 

2

1

( )
n

i
i

x x

n
σ =

−
=
∑

     where: x is mean 

Euclidean distance ( jkd ) 

Assume a dataset has m observations, each of which contains n variables. 

In terms of matrices, this dataset can be expressed as a m×n matrix with 

observations as rows and variables as columns.  

j and k are two rows (observations), and the Euclidean distance is 

calculated as: 

2

1

( )
n

ij ik
i

jk

x x
d

n
=

−
=
∑

  
Mahalanobis distances ( 'jkd ) 

With the same assumption as above, the Mahalanobis distance is 

calculated as: 

1'

n

ij ik
i

jk

x x
d

n
=

−
=
∑

 

Covariance (between X and Y) ( ( , )Cov x y ) 

1
( )( )

( , )
1

n

i i
i

x x y y
Cov x y

n
=

− −
=

−

∑
  

 where: x , y  are the means of X and Y, respectively 
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Correlation (between X and Y) (r) 

( , )

x y

Cov x yr
σ σ

=
   

 where  ( , )Cov x y  is the covariance between X and Y 

σ represents standard error. 

Root Mean Square Error for Prediction (RMSEP) 

2

1

ˆ( )
n

i i
i

y y
RMSEP

n
=

−
=
∑

 

Where: ˆiy  is the predicted value for the ith observation 

         iy  is the measured of value of ith observation 

n is the total number of observations 
Bias: The mean of the regression errors 

1

ˆ( )
n

i i
i

y y
Bias

n
=

−
=
∑

 

Standard Error for Prediction (SEP) 

2

1

ˆ( )

1

n

i i
i

y y Bias
SEP

n
=

− −
=

−

∑
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APPENDIX D 
LIGNIN STRUCTURAL INFOMATION 

An example of a possible lignin structure 

 
 

Structural model of softwood lignin (Sakakibara, 1983) 
 

 
The three common monolignols in lignin
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