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ABSTRACT 

The need for improvements in avian wildlife monitoring efficiency, accuracy, and scope has led 

to use of new technologies such as autonomous recording units (ARUs). As a monitoring tool, 

passive acoustic recording has numerous benefits, but it is still limited to use in human-

accessible areas. There is also need for monitoring technologies in areas that are inaccessible. 

Military installations, which host a disproportionately large number of threatened, endangered, 

and at-risk species compared to other federal lands, pose the accessibility problem with sizeable 

impact areas that are too hazardous for humans to access. This thesis introduces the Balloon 

Aerial Recording System (BARS), a novel technology that fuses acoustic and aerial strategies to 

address the problem of ground-based land accessibility. The primary objectives of this thesis 

were to create models that could be used to predict male songbird abundance from song cue-

count data and to establish and implement an analytical pathway for bird population estimation 

from acoustic data recorded with the BARS. ARUs were used to study the song rates/behaviors 

of Prairie Warbler (Setophaga discolor), Bachman’s Sparrow (Peucaea aestivalis), Field 

Sparrow (Spizella pusilla), Grasshopper Sparrow (Ammodramous savannarum), and Henslow’s 

Sparrow (Ammodramus henslowii) across 3 military installations. Point-count and line-transect 

field tests were implemented to directly compare BARS data with that of human-observer 

techniques in both real-bird communities and simulated-bird communities (with known 

populations). Both thesis objectives were met for each focal species except Grasshopper 

Sparrow. Based on negative binomial regression models, song activity was positively related to 

male abundance and was negatively related to either day of breeding season or time of day. Song 

activity was also influenced by temperature, wind speed, or atmospheric pressure for some 
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species. The BARS analytical method successfully predicted densities of Prairie Warbler, 

Bachman’s Sparrow, and Henslow’s Sparrow. Field tests of the BARS with simulated-bird 

communities revealed that species-specific footprints of detection are needed to further improve 

density estimates. Through this study, the BARS system has been validated and shown to be 

useful for documenting presence/absence of rare species, relative abundance of more common 

species, and in some cases, actual estimation of densities.
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CHAPTER 1  

Introduction 



2 
 

Birds are important wildlife resources as well as valuable indicators of ecological health 

(Baillie 1991). Because birds are sensitive to environmental changes and are more practical to 

monitor than many other taxa (Baillie 1991), avian monitoring can provide an important 

foundation for conservation and natural resources decision-making.  

Typical approaches to avian monitoring in large areas include point-count or line-transect 

surveys (Bibby 2000). These techniques are criticized for being subject to human variability and 

bias (Faanes and Bystrak 1981). Simons et al. (2007) found that observer variability led to 

significant variance in abundance estimates, which ranged from 81-132% of actual populations. 

Even in counts where distance-sampling is not a factor, like those of the North American 

Breeding Bird Survey (BBS), changes in observers can erroneously influence population trend 

analysis (Sauer et al. 1994).  

The use of passive acoustic technology may bypass many of the widespread concerns 

about the influence of human observer variability and bias in avian surveys. Autonomous 

recording units (ARUs) may actually provide more accurate, better quality data. Some of the 

benefits of using acoustic technology are that expert field observers are not needed, field 

observer biases are eliminated, permanent records of the data are created, and bird detection rates 

may increase (Haselmayer and Quinn 2000, Acevedo and Villanueva-Rivera 2006, Tegeler et al. 

2012). Furthermore, ARUs greatly increase the amount of data that can be collected, are 

amenable to automated data collection and processing, and are able to collect data when 

visibility is poor and/or in environments that are inhospitable to humans (Marques et al. 2013). 

 ARUs have already shown benefits over other survey methods in side-by-side 

comparisons. For example, acoustic recording devices detected more species than traditional 
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survey techniques in California montane meadows (Tegeler et al. 2012), in Puerto Rico wetland 

forests (Acevedo and Villanueva-Rivera 2006), and in tropical grasslands and forests in Thailand 

(Chimchome 2004). Haselmayer and Quinn (2000) found that sound recordings were preferable 

to point counts when species richness was high, such as during the dawn chorus. Analysis of 

recordings made from a stereo microphone configuration by Hobson et al. (2002) produced 

abundance estimates similar to those from point counts for most species. 

JUSTIFICATION 

The United States federal government owns 29% of the nation’s land area (Stein et al. 2008). 

Much of this land is undeveloped, thus natural resource management and conservation are 

important priorities for federal land policy. Various federal legislative acts (e.g., Endangered 

Species Act (ESA), Sikes Act, and Migratory Bird Rule) require federal land managers to 

monitor and reduce impact on threatened, endangered, and at-risk species (TER-S), as well as all 

migratory birds. The Department of Defense (DoD) is one federal agency that is challenged with 

meeting these legislative mandates. 

DoD landholdings include 12 million ha (Boice 2006). Although this area comprises only 

3% of federal landholdings, DoD lands contain ~3 times as many imperiled and ESA status 

species per unit area than any other federal landowner (Stein et al. 2008). This concentration of 

listed species on DoD lands reflects the ecological uniqueness of DoD installations among 

federal landowners. DoD installations are maintained and used for a range of military readiness 

activities, which exposes the land to frequent disturbance, often in the form of fire (Fischer et al. 

2011). These disturbance regimes create and maintain habitat for a diversity of TER-S, leading to 

a disproportionately large number of TER-S on DoD lands, relative to acreages of other federal 
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land management agencies (Stein et al. 2008, Fischer et al. 2011). DoD installations also contain 

highly threatened ecosystems that typically have been lost from the surrounding region because 

of development activities. DoD installations, in some cases, support the only remnant 

populations of TER-S in the region (Fischer et al. 2011). These factors make avian monitoring 

on DoD lands extremely important. 

Traditional human-based avian monitoring methods are particularly unsuitable for DoD 

lands for several reasons. The DoD holds very large parcels of remote, undeveloped land with 

limited infrastructure and road access. To adequately sample these lands, additional time and 

capital are required because of access difficulty. On DoD lands, time is a resource that is not 

readily available without obstructing the DoD’s main objective of maintaining military readiness.  

In addition to these vast tracts of DoD lands posing logistical constraints because of 

scope and accessibility, large parcels of DoD lands set aside as impact areas further complicate 

these constraints. Decades of military training and testing weapon platforms have littered these 

areas with potentially unexploded ordnance. Human safety concerns associated with impact areas 

typically preclude human access on the ground. Existing avian monitoring techniques all require 

on-the-ground access to the areas being studied. This unmet need for remote monitoring of 

wildlife populations has recently catalyzed the development of a new technology: the Balloon 

Aerial Recording System (BARS, or “balloon”). 

 The BARS is a novel technology that fuses acoustic and aerial monitoring strategies. The 

technology addresses many of the criticisms associated with traditional observer-based survey 

techniques by employing a custom ARU design. The BARS also addresses the needs for 

inventorying and monitoring on DoD lands because it is a remotely-operated aerial device. 
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Proper deployment of this technology allows acoustic sampling of large areas in short periods of 

time and collects data without requiring on-the-ground access. The BARS is designed to fly, with 

the wind, over large areas while recording bird song and transmitting real-time global positioning 

system (GPS) data to an operator on the ground (Hockman in prep.). The current model of this 

payload was developed based on a system first designed by the Cornell Laboratory of 

Ornithology (Fristrup and Clark 2009). Since the initiation of the BARS project at the University 

of Tennessee, Knoxville in 2010, significant improvements to the payload have been made by 

personnel in the Environmental Sensors Lab in the Department of Biosystems Engineering and 

Soil Science. 

RESEARCH 

As with any new technology, the BARS must be validated to determine the appropriate 

conditions under which it is able to collect useful avian monitoring data. The fieldwork for my 

Master’s project was designed to demonstrate the applicability and functionality of BARS use 

for monitoring songbirds on military installations. To do this, I focused on the following 5 

species, which exhibit a range of vocal qualities and are of conservation concern: Prairie Warbler 

(Setophaga discolor), Bachman’s Sparrow (Peucaea aestivalis), Field Sparrow (Spizella pusilla), 

Grasshopper Sparrow (Ammodramous savannarum), and Henslow’s Sparrow (Ammodramus 

henslowii). Northern Bobwhite (Colinus virginianus) was also included in part of the study. The 

field tests were also designed so that BARS data collection results could be directly compared to 

results obtained from traditional bird monitoring methods (i.e. human observer point-count and 

line-transect surveys). Additional study methods were implemented to investigate focal species 

song behavior. The study of song behavior was used to inform our development of population 
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estimation procedures. The major challenge addressed by the following chapters is the estimation 

of avian population densities from acoustic recordings collected with the BARS. Acoustic 

recordings collected by the balloon are unique because they are recorded with a single 

microphone that is mobile and at a potentially great vertical distance from the sources of the 

acoustic signals. Unlike the large majority of acoustic population analysis procedures (McGregor 

et al. 1997, Marques et al. 2013, Stevenson et al. 2014), we cannot estimate the 

direction/distance of the acoustic signals. Therefore, we used a cue-count approach (Hiby 1985) 

and developed an analytical pathway for estimating populations without being able to distinguish 

between individuals or groups of individuals. 

Chapter 2 describes the process and results of the song behavior investigation of 5 focal 

species. The primary objectives for this chapter were to (1) document avian song activity at 

various male abundances and relate it to temporal and weather-related conditions, and (2) build 

models that can be used to predict male abundance from song cue counts and temporal and 

weather-related covariates. Chapter 2 also addresses how availability for detection and 

alternative song types may be relevant to acoustic monitoring. 

 The primary objective of Chapter 3 was to describe and evaluate a novel acoustic 

approach for estimating densities of breeding songbirds from mobile, aerial, single-microphone 

recordings. The secondary objective of Chapter 3 was to compare acoustic-based density 

estimates with estimates derived from typical human-based avian population monitoring 

methods, including point-count and line-transect distance-sampling techniques. To accurately 

validate BARS performance, we used both real- and simulated-bird communities. The simulated 
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communities allowed us to compare the balloon-based population estimates to actual known 

populations. 

 The final chapter summarizes the most important results from chapters 2 and 3. It also 

reiterates our recommendations for future balloon research and cue-based acoustic monitoring. 
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CHAPTER 2  

Effects of Conspecific Abundance, Weather, and Time on Song Activity: Applications for 

Acoustic Population Monitoring 
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ABSTRACT 

The use of automated audio recording technology for documenting avian song behavior and 

monitoring populations has increased greatly as recording devices have become highly portable 

and more affordable. This technology affords many benefits, including extensive documentation 

of song behavior, elimination of observer bias, and data collection efficiency. We used 

automated recording devices to document breeding season song behavior for 5 passerine species: 

Prairie Warbler (Setophaga discolor), Bachman’s Sparrow (Peucaea aestivalis), Field Sparrow 

(Spizella pusilla), Grasshopper Sparrow (Ammodramous savannarum), and Henslow’s Sparrow 

(Ammodramus henslowii). We collected field data during the breeding seasons of 2012-2013 at 

study areas in Indiana, Kansas, and North Carolina. We employed automated recording units, 

observer-based song counts, and territory mapping to measure and validate song activity and to 

estimate abundance. We documented variability in species song activity based on various 

temporal and weather-related parameters. Negative binomial regression models showed linear 

relationships between the total numbers of songs recorded per unit time and the estimated male 

abundances for most species. Species song activity was also related either to the day of the 

breeding season or to the time of day. Occasionally, weather variables were influential in the 

song activity models. In addition to providing new information on vocal behavior for our focal 

species, the modeled relationships can be used to predict male abundances based on the total 

counts of songs per unit time. This simple approach to population estimation has a growing 

number of applications for passive acoustic monitoring. 
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INTRODUCTION 

Typical approaches for fulfilling avian monitoring requirements in large areas include sampling 

techniques such as avian point-count or line-transect surveys (Bibby 2000). These techniques 

have generated concerns associated with observer biases and errors (Faanes and Bystrak 1981, 

Bart and Schoultz 1984, Diefenbach et al. 2003). Problems with avian monitoring techniques 

include observer variability in skill, experience, and/or hearing ability; species misidentification; 

inaccurate distance estimation; and/or other distance-sampling assumption violations (Franzreb 

1981, Ramsey and Scott 1981, Bart 1985, Sauer et al. 1994b). Playback experiments in a forested 

setting showed that these types of problems may lead to abundance estimates that range from 81-

132% of the actual populations (Simons et al. 2007). The use of autonomous recording units 

(ARUs) is one potential means to address problems associated with observer bias. 

 Use of ARUs has already shown benefits against other survey techniques in side-by-side 

comparisons. For example, Chimchome (2004) found that ARUs in tropical grasslands and 

forests in Thailand detected more species than unlimited-distance point counts or spot mapping 

in most habitat types. Likewise, a recording system in wetland forests of Puerto Rico, detected 

more avian species than 10-min fixed-radius point counts and more amphibian species than 

traditional amphibian aural/visual transect methods (Acevedo and Villanueva-Rivera 2006). In 

addition to better data collection, ARUs preclude the need for expert field observers and create 

permanent data records.  

A potential flaw of ARUs is that they lack the ability to detect individuals visually, 

whereas human observers can include visual detections while sampling. However, in breeding-

bird point-count surveys, 70-94% of observations are typically aural detections (Scott et al. 1981, 
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Dejong and Emlen 1985, Sauer et al. 1994a). In fact, some studies reported that point counts 

were based solely on aural detections, without observers seeing any birds at all (Wiens 1969, 

Scott et al. 1981). Thus, ARUs may be a powerful tool in conditions where observer biases are 

strong and auditory detections are the most frequent form of detection. By replacing field 

observations with permanent acoustic recordings, researchers may have the opportunity to 

eliminate error and bias, and to estimate avian populations with greater precision and accuracy. 

The ability to estimate abundance/density for avian populations remains a large challenge 

in the use of acoustic monitoring approaches. A simple way to fuse acoustic monitoring 

techniques and abundance estimation is to bring the point count to the laboratory. A high-quality 

2-microphone stereo configuration was used to make field recordings and then observers listened 

to the recordings with headphones, estimating distance and direction of bird songs as they would 

have in the field (Hobson et al. 2002). However, both equipment and observer-time costs can be 

high in these situations (Hobson et al. 2002, Hutto and Stutzman 2009). Furthermore, this 

technique did not eliminate observer bias in distance and direction estimation, and as such did 

not improve population estimates (Hobson et al. 2002). Nor did this technique increase the 

amount or regional scope of data collected in comparison to traditional point-count methods 

because the ARUs were still limited to monitoring one area at a time, defined by the detection 

distance of the microphone.  

Automated computer analysis of acoustic data would both eliminate observer biases and 

greatly increase the ability to process large amounts of data. The field is already moving in this 

direction (Marques et al. 2013) and several software packages have become available for this 
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purpose (Specht 2004, Figueroa 2011). Software can also potentially be used to spatially 

distinguish individuals with microphone-array recording systems (Blumstein et al. 2011). 

Researchers are also interested in the use of autonomous aerial recording devices 

(Fristrup and Clark 2009), where movement of the recording systems would complicate, if not 

preclude, the use of distance and direction as means of abundance estimation. For these 

applications, methods that require only one acoustic input channel are desirable. A viable method 

under these circumstances may be cue counting, where a known cue rate is applied to a count of 

the number of cues detected per unit of time and area (Buckland 2006). Cue counting was 

originally introduced as a method for estimating densities of great whales (Hiby 1985) but has 

also been applied to bird surveys (Buckland 2006) and, more recently, acoustic bird surveys 

(Lambert and McDonald 2014). The primary issue for cue-based population estimation is 

obtaining a known cue-rate for species of interest under survey conditions (Marques et al. 2013). 

This is a problem when cue-rate is influenced by the density of individuals, which may be 

expected for vocalizations used for social communication (Marques et al. 2013). Several studies 

have confirmed a link between bird abundance and song rate, indicating that a bird’s likelihood 

of detection increases with density (McShea and Rappole 1997, Sexton et al. 2007, Laiolo and 

Tella 2008, Warren et al. 2013). 

We propose the use of density-dependent variation in song activity (total number of 

songs observed per unit of time) as a potential predictor of abundance, as opposed to a problem 

for abundance estimation. This method would enable researchers to use stationary or mobile 

single-microphone audio recordings to estimate populations of vocal species.  
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Study Objectives 

This chapter’s study objectives were to (1) document avian song activity at various male 

abundances and relate it to temporal and weather-related conditions, (2) build models that can be 

used to predict male abundance from song cue counts and temporal and weather-related 

covariates, and (3) investigate how availability for detection and alternative song types may be 

relevant to acoustic monitoring. We modeled the song behavior of 5 songbird species and the 

song-rate relationships with factors that could influence song activity. We hypothesized that song 

activity during the breeding season would (1) increase proportionately with abundance at low 

densities and then gradually level-out at high abundances (because of signal saturation in the 

environment) and (2) would be related to one or more temporal or weather covariates.  

Study Species and Song Characteristics 

We selected 5 passerine species for study based on the desire to evaluate the song-rate- 

abundance relationship for species that occupy different habitats and exhibit different song types 

and acoustic characteristics. The individual species song characteristics are reviewed below. 

Prairie Warbler (Setophaga discolor). A Neotropical migrant, the Prairie Warbler 

breeds in old fields and young forests throughout the eastern United States and southern Ontario. 

Prairie Warbler is a species of conservation concern because of population declines in parts of its 

breeding range since 1966 (Nolan Jr. et al. 1999). 

 Song behavior and characterization. Male Prairie Warblers have been described to have 

2 main song types (A and B), both of which can vary considerably. The classification of A and B 

songs is mostly agreed upon in the literature but there are some slight disagreements regarding 

some of the variants within each category. We reviewed the classifications by Nolan Jr. (1978) 
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and Nolan Jr. et al. (1999), but we adopted the discrete A and B classification types from 

Houlihan (2000), the most recent classification.  

Type A songs (Figure 2.1A) are mostly associated with mate attraction and male-female 

communication (Nolan Jr. 1978, Houlihan 2000). The typical A song, lasts 1-2.5 s, and consists 

of a rising series of short, buzzy notes (Nolan Jr. et al. 1999, Houlihan 2000). Type A songs are 

often loud and may be heard up to 185-200 m under optimal conditions, although there is a 

continuous graduation of song volume down to being barely audible from 4-5 m (Nolan Jr. 

1978). 

Type B songs (Figure 2.1B) are associated with male-male communication and territory 

disputes but the evidence for this is not as strong as the evidence for type A songs being related 

to male-female interactions (Nolan Jr. 1978, Houlihan 2000). B songs are more complex and 

more variable than A songs in both time and frequency and they contain whistles, buzzy notes, or 

combinations of both (Houlihan 2000). One type B variant consists of several long, ringing, and 

sometimes raspy notes that rise in pitch [Figure 2.1C; described as “Sing-song,” a type A variant, 

in Nolan Jr. (1978)]. Some versions of this variant end in a short series of quicker notes that rise 

in pitch more rapidly. Another type B song (Figure 2.1D) is remarkably similar to a simple Field 

Sparrow song but it terminates in a buzzy, up-slurred note that is uncharacteristic of Field 

Sparrows (F. H. Allen quoted in Bent 1953, Nolan Jr. 1978, S. C. Prevost personal observation). 

 Song rates. Prairie Warbler song rate declines through the breeding season but rate, as 

well as song type, can be significantly related to stages in the breeding cycle (Houlihan 2000). 

Males start singing at low rates before arriving on breeding grounds (Nolan Jr. 1978). Average 

song rates are greatest during territory establishment before females arrive (3.2 songs per min 
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between 0530 and 1230) and during pair formation (2.8 songs per min between 0530 and 1230) 

and rates seem to be lowest during the last day of active nest-building (0.3 songs per min 

between 0500 and 1230) (tables 11 and 12 in Nolan Jr. 1978). Males that lost females between 

May and July 10 increased their song rates to levels comparable to the pair-formation stage 

(tables 11 and 12 in Nolan Jr. 1978). Song rates may increase slightly during incubation and 

perhaps after fledging (tables 11 and 12 in Nolan Jr. 1978). 

 Song rate within a singing bout (time between first notes of consecutive songs ≤45 s 

apart) varies both within and between males (Nolan Jr. 1978). Rate does not seem to be affected 

continuously by time of morning but rate is more likely to be greater earlier than later in the day 

(Nolan Jr. 1978, Houlihan 2000). Song activity and male aggressiveness generally decrease in 

windy conditions and during cold rain but are not affected by high temperature or humidity 

(Nolan Jr. 1978). 

 Bachman’s Sparrow (Peucaea aestivalis). Bachman’s Sparrow is a resident of mature 

pine forests and open habitats of the southeastern United States. Loss of mature, open pine 

forests has caused Bachman’s Sparrows to shift their habitat use to open grasslands created by 

clear-cuts or utility rights-of-way. Over the last century, contraction in Bachman’s Sparrow 

range and decreasing populations have caused management concern for this species (Dunning 

2006). 

 Song behavior and characterization. Bachman’s Sparrows have 3 song types described as 

(1) primary song, (2) whisper song, and (3) excited song (Dunning 2006). The primary song 

(Figure 2.2) is used for territory defense and counter-singing (Borror 1971, Dunning 2006) and it 

is typically described as a long, clear introductory whistle followed by 1-2 long trills of different 
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pitch. Another variation is similar but the introductory note is buzzy. There also may be a second 

introductory note before the trill (Meanley 1990). Bachman’s Sparrow songs sometimes may be 

heard from as far away as 213 m (Meanley 1990). 

 The whisper song is similar to the primary song except that it is barely audible. Dunning 

(2006) suggested that while whisper song seems to be directed at mate and nestlings, it might 

also function as part of a distraction display. Whisper song is sung during all stages of the 

nesting cycle.  

The excited song, which has had various names in the literature, is described as a 

“bubbling, exuberant combination of slurs, whistles and trills” (Dunning 2006). The context may 

vary but Bachman’s Sparrows seem to use this song only when agitated (Dunning 2006, E. V. 

Hockman personal communication). 

 Bachman’s Sparrows have extensive song repertoires. Birds (n = 13) sang 244 different 

song patterns among 820 songs recorded in Ohio and Florida (tables 1 and 2 in Borror 1971). 

Most of these Bachman’s Sparrows sang 20 or more different song patterns, with some 

individuals singing close to 40. Birds typically sang one particular pattern 1-4 times before 

switching to another song pattern (Borror 1971). Several song patterns were common to different 

individuals within the same geographic area but no patterns were common between Ohio and 

Florida Bachman’s Sparrows (Borror 1961, 1971).  

 Song rates. Bachman’s Sparrows in the Southeast may start singing as early as late 

February (Dorsey 1976, Meanley 1990). Whisper songs were not observed in an 8-week study of 

8 individual males but low rates of excited songs (<5% of all songs) were observed (Sirman and 
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Cox 2010). Wind speed and sky condition (standard North American Breeding Bird Survey 

codes) were not related to Bachman’s Sparrow song rates (Sirman and Cox 2010).  

Bachman’s Sparrow song rates may be related to male breeding status. In Georgia, 

observed song rates of unpaired males (3.1 songs per min) were greater than that of paired males 

(0.2 per min); but paired male song rates before and after hatching did not differ (Sirman and 

Cox 2010). In between the onset of singing, but before nesting activities, a male Bachman’s 

Sparrow in Louisiana sang 52 times in 15 min (3.5 songs per min) (Meanley 1959). A male in 

North Carolina sang 99 times in 40 min (2.5 songs per min) during a morning on an unspecified 

date (Meanley 1990). 

 Field Sparrow (Spizella pusilla). The Field Sparrow is a common passerine of eastern 

North America, inhabiting undeveloped, brushy fields and young forests. Though relatively 

abundant, the Field Sparrow is still a species of concern because of declining populations 

associated with loss of breeding habitat (Carey et al. 2008).  

Song behavior and characterization. Field Sparrow males sing 2 song types, a “simple” 

type and a “complex” type (Nelson and Croner 1991). Simple songs are used in long-distance 

counter-singing among neighboring males (Nelson and Croner 1991). These songs are assumed 

to have the dual purpose of defending the territory and attracting females because complex song 

use has not been associated with male-female interactions (Morrison-Parker 1977). A typical 

simple song (Figure 2.3A) begins with long (potentially down-slurred) notes with slow or little 

frequency modulation, and ends with one or more rapid trills (Carey et al. 2008). The notes in the 

song do not vary much in frequency but they become shorter and faster in duration as the song 

progresses into a trill.  
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The less common, complex song (Figure 2.3B) is usually restricted to dawn chorus 

singing and aggressive territorial interactions (Nelson and Croner 1991). Typically longer, 

complex songs begin with a trill of short notes followed by longer down-slurred notes, and the 

song often alternates between phrases of these 2 types (Carey et al. 2008). 

 Field Sparrows apparently are able to recognize individual conspecifics by their song 

attributes (Goldman 1973, Morrison-Parker 1977, Nelson 1989), but song-sharing between 

neighboring males also occurs (Saunders 1922, Cross 1951, Nelson 1992). Nelson (1992) found 

that males acquiring particular territories for the first time often sing 2 or more simple song types 

but retained only the simple song that “best matches the most vocally active neighboring male.” 

This led to localized groups of neighboring males that all shared the same simple song as the 

only song in their repertoires (Nelson 1992). If song-sharing was not common, then individual 

differentiation could be obtained from recordings. 

Song rates. Field Sparrow singing begins upon male arrival on breeding grounds and 

becomes less common after pair formation. Males may resume singing at lesser rates once 

incubation begins or upon nest failure (Carey et al. 2008). In spite of the relationship between 

song activity and stages of the breeding cycle, the mean interval between songs during singing 

bouts remains fairly constant until August where the time lag increases to 26 s from an interval 

of 16-19 s in March-July (Morrison-Parker 1977).  

When Field Sparrows sing, the mean interval between successive songs does not change 

by time of day (Morrison-Parker 1977) but overall song rate is greater during the dawn chorus 

than during mid-morning (Nelson and Croner 1991). Average song rate of 11-12 New York 
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males was 3.1 (±0.49) songs per min during the dawn chorus and 1.7 (±0.39) songs per min 

during mid-morning.  

  Grasshopper Sparrow (Ammodramous savannarum). The Grasshopper Sparrow 

typically breeds in dry grasslands throughout much of the lower 48 states. Although its range 

encompasses a large area, this sparrow is uncommon to rare throughout much of it. Loss of 

prairies and agricultural grasslands are likely linked to the population declines that began early in 

the 20th Century (Vickery 1996). 

Song behavior and characterization. Grasshopper Sparrows are one of few North 

American sparrows that sing 2 completely different songs. Primary songs (Figure 2.4A) are used 

during territory establishment and during male-male interactions (Smith 1959). The primary song 

is ~1.5-2 s in duration and begins with 1-3 short, high-pitched, staccato notes that are followed 

by a long, dry, insect-like buzz (Vickery 1996). The sustained song (Figure 2.4B) is used for 

mate attraction and may also be important for maintaining the pair bond (Smith 1959). The 

sustained song is typically a 5- to 15-s series of short, buzzy notes varying slightly in pitch 

(Vickery 1996). The primary song is often interspersed between sustained songs. Acoustically, 

primary songs have limited variability across the breeding range but sustained songs are quite 

variable (figure 2 in Vickery 1996). Grasshopper Sparrows also have a third song type that is 

sung both by males and females and seems to be exclusively used for intra-pair communication 

(Smith 1959). 

Song rates. Patterns of singing and song type use in Grasshopper Sparrows are influenced 

both by the time of season/breeding cycle and by weather conditions (Smith 1959). Although 

male Grasshopper Sparrows primarily sing in the morning, there is no pronounced predawn song 
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period and they commonly sing in the evening after dusk (Smith 1959, Vickery 1996). Singing 

may lessen during pairing but is fully resumed during laying/incubation (Smith 1959, Vickery 

1996). Singing also becomes less frequent while feeding young (Smith 1959). Beyond the 

regional differences in temporal patterns and song use, the sustained song is common 2-3 weeks 

after territory establishment (Smith 1959) and during July and August (Vickery 1996). The use 

of the primary song appears to be greater for unpaired than for paired males in Maine and Florida 

(Vickery 1996). 

Wisconsin Grasshopper Sparrows spent ~60% of their daily time budget singing 

(including perched time while singing) (figure 24 in Wiens 1969). Pennsylvania male song rates 

ranged from 5-150 songs per day (before dawn till dark) over the course of the breeding season 

(figure 1 in Smith 1959). During territory establishment, Grasshopper Sparrows may sing up to 

220 songs per hr (3.7 songs per min) (Smith 1959). 

 Henslow’s Sparrow (Ammodramus henslowii). The Henslow’s Sparrow winters in the 

southeastern United States and breeds mainly in the Midwest. Henslow’s Sparrows are grassland 

obligates and prefer wet prairie with tall, dense vegetation and thick litter. Loss of this specific 

cover type has likely led to the population declines observed since the initiation of the North 

American Breeding Bird Survey (BBS) in 1966 (Cooper 2007). Sharp annual population declines 

have created extra concern for the status of this species. Although not federally listed in the 

United States, the Henslow’s Sparrow is listed as Endangered in 7 states and in Canada, as 

Threatened in 5 states, and as a species of Special Concern in 4 states (Herkert et al. 2002). 

Song behavior and characterization. The Henslow’s Sparrow has only one type of song, 

very short, non-musical, and insect-like, which functions both for mate attraction/pair formation 
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and territory defense (Herkert et al. 2002). Despite the apparent simplicity and brevity of the 

song, audio-spectrographic analysis showed that it is composed of 4 to 6 complex groups of 

notes that vary in frequency and intensity (Borror and Reese 1954; Figure 2.5). Song variation 

exists among different individuals but song variation may not necessarily be related to 

geographic location (Borror and Reese 1954). 

Song rates. Henslow’s Sparrow males sing immediately upon arrival on the breeding 

grounds. Song activity increases until approximately mid-May and may remain relatively 

constant into August (Hyde 1939) or even mid-September (Robins 1971). Song activity may also 

be linked to the breeding stage. Daily time budget accounts for Henslow’s Sparrow documented 

~65% of observed time singing (including perched time while singing) for 4 males in Wisconsin 

(figure 24 in Wiens 1969) and 15% of observed time singing during incubation in Michigan 

(Hyde 1939). 

 Song rates vary considerably for Henslow’s Sparrow. Song totals for 3 males in Michigan 

ranged from 223 to 4,962 songs per day (0.2 to 3.4 songs per min) during 24-hr counts (Robins 

1971). Song rate may decrease during the breeding season, as linkages between song activity and 

breeding stage would suggest. The mean time intervals between 73 songs of 3 males in Ohio 

were 3.04 s (range: 1.9-5.9; 0830 on April 18), 1.21 s (range: 0.8-1.8; 0930 on April 26), and 

5.22 s (range: 3.5-7.5; 0740 on May 16) (Borror and Reese 1954). These data give average rates 

of ~10-40 songs per min (based on small sample size) but it is unclear whether this variation 

could be attributed to a decreasing seasonal trend or to individual differences. Henslow’s 

Sparrows in Michigan showed a decreasing trend in song rate between mid-June (13-14 songs 

per min) and early-August (~7-9 songs per min) (table 1 in Hyde 1939). 
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METHODS 

Study Areas 

We selected 3 study areas from eastern Department of Defense (DoD) installations for this 

research based on their ability to represent (1) a range in cover types that occur on eastern United 

States DoD installations (i.e. grasslands, forests, savannas), (2) a range in climate (e.g., wind 

conditions, temperature, relative humidity), and (3) avian species of interest to land managers for 

acoustic monitoring (Fischer et al. 2011). DoD installation willingness to host our research, as 

well as the practicality of fulfilling our objectives without interfering with DoD training 

activities, were also critical factors in the selection process.  

Big Oaks National Wildlife Refuge (NWR), Indiana. The northern-most installation, 

previously known as Jefferson Proving Ground (JPG), is a deciduous forest intermixed with open 

grasslands and oak savannahs. JPG is representative of other midwestern installations, such as 

forts Campbell, KY, Knox, KY, Leonard Wood, MO, and McCoy, WI. The climate is warm with 

intermediate humidity and moderate winds. Prairie Warbler, Field Sparrow, and Henslow’s 

Sparrow were the focal species at this study area. We collected data at this study area during 

May-July 2012. 

Fort Riley, Kansas. Fort Riley is located in an open grassland/scrub/agricultural 

landscape. It is representative of the open landscapes found in many Great Plains (e.g., Fort Sill, 

OK) and southwestern (e.g., Fort Bliss, TX) installations. Climatic conditions are hot, semi-arid, 

and windy. The focal species for this study area were Field Sparrow, Grasshopper Sparrow, and 

Henslow’s Sparrow. We collected data at this study area during May-July 2013. 
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Fort Bragg, North Carolina. Fort Bragg is located within a Longleaf (Pinus palustris) 

and Loblolly (Pinus taeda) pine-dominated landscape. The Fort Bragg landscape is 

representative of many other southeastern coastal plain installations, such as Eglin Air Force 

Base, FL, Camp Lejeune, NC, Fort Benning, GA, and Fort Stewart, GA. The climate is hot and 

humid with generally light winds. The focal species for study at Fort Bragg were Prairie Warbler 

and Bachman’s Sparrow. We collected data at this study area during May-July, 2012 and 2013. 

Field Methods 

Territory mapping and acoustic recording. During early May, we mapped territories 

for 9 males of each focal species at 3 sites within a given study area and logged the individual 

male locations with global positioning system (GPS) units (Garmin models eTrex 10 and 

GPSMAP 60, Olathe, KS). In 2012, we conducted these methods at Big Oaks NWR and Fort 

Bragg, and in 2013, at Fort Riley and Fort Bragg. The 9 males were spread across 3 sites (3 

males per site) with at least 4 km between sites. We continued territory mapping the selected 

territories 1-2 times per week, at various times of day, throughout the breeding season. Field 

technicians at Big Oaks NWR and Fort Riley also recorded the number and direction of 

neighboring conspecific territories when additional males were detected.  

Song Meter SM2 units (Wildlife Acoustics, Maynard, MA), with 2 SMX-II 

omnidirectional microphones, were mounted on posts (~1.25 m above ground) in the 

approximate center of each mapped territory. Every 2-8 days, the SM2 units were rotated 

between individual male territories. Recordings were made between May 15 and July 23, from 1 

half-hr before sunrise to 4 hr after sunrise (units at Fort Bragg recorded from sunrise to 4 hr after 

sunrise). Audio files were saved in 16-bit PCM uncompressed WAV format with 24-32 kHz 
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sampling frequency. Each WAV file was 4-4.5 hr in duration. If a focal male’s territory changed 

or shifted during the season, we adjusted the center point of the territory and the location of the 

SM2 unit. If the SM2 needed to be moved more than 25 m, the new location was considered a 

new territory. During the early half of the breeding season, some focal males abandoned their 

territories and SM2 units were moved to new territories. Recordings made on abandoned 

territories or territories with fewer than 3 song counts were excluded from analysis. 

Song counts. During each rotation of the SM2 units (~1-2 times per week), song counts 

were performed at each unit. During a song count, a trained observer stood beside the SM2 unit 

for 10 min, recorded the number of singing males of the focal species, and tallied the number of 

songs sung per min by each individual. The observer also estimated the distance and direction of 

each detected individual in reference to the survey point by sketching a map of the singing 

individuals’ relative locations. Song counts were always performed between 1 half-hr before 

sunrise and 4 hr after sunrise. 

Estimating male abundance. We estimated male abundance as the maximum number of 

singing males detected from each SM2 location during human-observer visits. Most abundance 

estimates were based on detections during human-observer song counts but we also considered 

the maximum number of singing males recorded at an SM2 location during territory-mapping 

sessions. The greater of the 2 maxima was used for male abundance (only song counts were 

considered for Fort Bragg because maximum male data were not recorded during territory 

mapping at this study area).  
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Sampling of Acoustic Files and Acoustic Data Processing 

We used a stratified random sampling to select 5-min portions of audio files to be analyzed for 

songs of focal species. The sampling technique was applied for each dataset (Table 2.1). We 

define “dataset” as all the sampled recordings for a specific species, study area, and year (e.g., 

one dataset = all Prairie Warbler samples from Fort Bragg in 2012). Prior to sampling, we 

excluded all audio data that fell into one or more of the following categories: (a) audio collected 

from abandoned territories, (b) audio collected from territories with fewer than 3 song counts, (c) 

audio compromised by human or equipment error (e.g., incorrect time settings, microphone 

failure), and/or (d) audio with spectrogram quality severely compromised by background noise 

(e.g., insect chorus covering frequency range of focal species, medium to heavy rain, strong 

wind). We made one exception to these audio file exclusion criteria for Bachman’s Sparrow. 

Most of the Bachman’s Sparrow recordings had only one channel (due to microphone failure) so 

we only processed one channel for all of this species’ recordings. This likely reduced the 

detection area of the SM2 but the same decrease in detection distance was applied to all 

Bachman’s Sparrow recordings. 

To prepare audio data for stratified sampling, we divided the data for each species into 5 

equal date intervals (period 1 = May 15-28, period 2 = May 29-June 11, period 3 = June 12-25, 

period 4 = June 26-July 9, and period 5 = July 10-23). We randomly selected 5 audio files in 

each date interval while stratifying the sampling across estimated abundances and different 

territories. Because we were particularly interested in the relationship between song and 

conspecific abundance, our stratified sampling had relatively equal sample sizes across 

abundance estimates.  



28 
 

We divided recording time into 5 equal time intervals (270 min / 5 = 54 min each for Big 

Oaks NWR and Fort Riley, 240 min/5 = 48 min each for Fort Bragg) and randomly selected one 

min (as a start time) to sample across the 5 time intervals in each file. This sampling strategy 

selected 125 5-min samples (5 samples in each date/time period) for each species, site, and year. 

In some cases, sample sizes were >125 in a dataset (Table 2.1) because we opportunistically 

added 5-min audio segments that had been previously analyzed for a separate study but were not 

part of the stratified sample. Fewer than 125 samples in a dataset resulted from limited audio 

data from which to sample because of recording equipment malfunction and/or audio exclusion 

criteria. 

We handled missing audio data in several ways. The dataset for Prairie Warbler at Fort 

Bragg in 2012 did not include any audio files during the 1st date interval and only 2 files during 

the 4th date interval. Similarly, the Fort Bragg Prairie Warbler dataset for 2013 had limited data 

during the 5th date interval. We compensated for these data sampling limitations by increasing 

the number of samples in the neighboring date periods. Bachman’s Sparrow data also had a 

limited number of samples in some of the date intervals but we did not add samples from 

neighboring date intervals because we believed, in this case, it would have unduly inflated the 

influence of the abundance estimates during those intervals. The Grasshopper Sparrow dataset 

(Fort Riley, 2013) had a total of only 2 samples (10 min total) among time intervals 3, 4, and 5 

for the 1st and 2nd date intervals. Where possible, missing audio data were replaced with data 

from observer song counts at SM2 locations and sample type was added to the analysis as a 

covariate.  
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A spectrogram for each 5-min sample was created and annotated with Raven Pro 

software, Version 1.5 (Bioacoustics Research Program  2014). Spectrogram settings were 

Blackman window function with 1,125 samples, time grid hop size of 360 with 68% overlap, and 

frequency grid spacing at 21.5 Hz. I visually and aurally scanned each spectrogram for songs of 

the specified species. Each audio clip was scanned only for the species associated with the 

mapped territory where the audio was recorded. Songs were selected and annotated directly on 

the Raven Pro spectrogram. This approach created a customizable, annotated data table based on 

the selections. Songs were only selected when both their average and maximum powers 

(measured in Raven Pro) were at least 3 dB greater than the background noise. This cutoff was 

based on experiments that indicated a 3-dB difference between signal and noise is sufficient for 

Red-winged Blackbirds (Agelaius phoeniceus) to detect songs against background noise 

(Brenowitz 1982). Sounds below this threshold were often unidentifiable. All of the audio clips 

and selections were rechecked for errors to ensure accuracy.  

Song Type Classification and Correlation 

During the annotation process, we classified songs into groups based on functional differences 

(i.e. song types associated with different behaviors or purposes, as described in the literature) and 

based on specific song variations that may complicate species identification. We focused on 

major song types that are typically used for detection by human observers during field surveys. 

We did not annotate calls or other non-song vocalizations. We did not knowingly annotate 

“whisper” songs, although we may not have recognized a distinction between a song sung from a 

long distance and a nearby whisper song. We did not classify song types for Bachman’s or 
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Henslow’s sparrows because these species only have one major song type for both inter- and 

intra-sex communication. 

Prairie Warbler. Prairie Warbler song annotations were categorized into the following 5 

groups (Figure 2.1): (1) typical type A songs (Figure 2.1A), (2) general type B songs (Figure 

2.1B), (3) songs described as “sing-song” in Nolan Jr. (1978) and as a variant of type B in 

Houlihan (2000) (Figure 2.1C), (4) unusual type B song that is similar to a Field Sparrow song, 

also described in Nolan Jr. (1978) (Figure 2.1D), and (5) rare, abnormal songs (Figure 2.1E). 

Because Prairie Warbler songs vary continuously across all types (Houlihan 2000, S. C. Prevost 

personal observation), it can be difficult to distinctly classify songs that are intermediates 

between types. Therefore, we only classified a song as group 1, 3, or 4 if it clearly belonged to 

the group. The group 2 classification served as a catchall for intermediate songs. Songs were 

only classified as group 5 if they were truly aberrant vocalizations that were uncharacteristic of 

any of the described types. There were 28 songs (<1% of total) that we classified in a 6th 

category because species identification was uncertain. These songs were all either variants and/or 

degraded versions of group 4 songs, or they were unusually high frequency Field Sparrow songs. 

We excluded this sixth song category from all analyses because of the uncertainty of the species 

of origin. 

Field Sparrow. Field Sparrow song annotations were classified into the following 3 

groups: (1) simple songs, (2) complex songs, (3) songs similar to Prairie Warbler group 3 songs. 

Some of the group 3 songs (Figure 2.6) would have been difficult to classify if they were 

observed at Big Oaks NWR, where both Field Sparrows and Prairie Warblers coexist. However, 

this song type was only observed at the Fort Riley study area, which lacked Prairie Warblers. 
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Grasshopper Sparrow. Grasshopper Sparrow song annotations were classified as either 

primary song (group 1) or sustained song (group 2). Both song types are easy to identify and 

distinguish from one another. The observer song-count samples (n samples = 17) in this dataset 

(see sampling methods) were excluded from song classification analysis because song type was 

not recorded by field observers. 

 Correlation Analyses. We performed Spearman rank-order correlation analyses between 

the 2 most common song types for Prairie Warbler, Field Sparrow, and Grasshopper Sparrow 

and 2 temporal variables (i.e. day of season and time of day). We used the general “stats” 

package in program R (R Core Team  2015) for the correlation analyses and we used package 

“ggplot2” (Wickham 2009) to plot linear models (with 95% confidence intervals) of each song 

type (y-axis) by the explanatory variable day of season or time of day (x-axis) (see Table 2.2 

for explanatory variable descriptions). We expected each song type to have a moderately 

different relationship with the temporal variables because song types have different behavioral 

functions and they are influenced by the breeding cycle and/or time of day (Prairie Warbler, 

Houlihan 2000; Field Sparrow, Nelson and Croner 1991; Grasshopper Sparrow, Smith 1959). In 

all cases where pairwise correlations were greater than 20%, the 2 most common song types for a 

species were correlated to the temporal variable in the same direction (i.e. both positively or both 

negatively). Thus, the counts of all song types were summed in a single response variable 

referred to as total songs. We also plotted linear models between each major song type and 

temporal variable, which provided a visual comparison between each song type’s relationships to 

the temporal variables. 
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Availability for Detection and Song Activity 

Availability for detection for each species was calculated as the proportion of 5-min samples that 

contained at least one song of the specified species. Availability rates for each species were 

graphically examined for their relationships to male abundance. We also calculated species 

availability for detection for each dataset individually. 

Song activity for a species is represented as the total number of songs annotated in a 5-

min audio sample. For each species, we plotted the average song activity in each abundance 

category. We also individually examined each dataset for linear relationships between total songs 

and male abundance. We used program R (R Core Team  2015) with package “ggplot2” 

(Wickham 2009) to fit linear models (with 95% confidence intervals) between total songs (y-

axis) and abundance (x-axis). 

Negative Binomial Regression 

For each species, we modeled the total number of songs per 5 min with estimated abundance, 2 

temporal variables, 3 weather variables, and up to 3 categorical variables (see Table 2.2 for 

variable descriptions). Weather data were retrieved from the National Climatic Data Center in 

surface hourly abbreviated format (http://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd). Weather 

stations used for Big Oaks NWR were Big Oaks (WIMS127301) and Cincinnati/Northern 

Kentucky [WBAN93814; Cincinnati/Northern Kentucky weather data were used only for the 

atmospheric pressure variable (henceforth referred to as “pressure”) and to fill gaps in the Big 

Oaks weather data]. For Fort Bragg, we used Simmons Army Airfield (WBAN93737) and 

Fayetteville Pope Air Force Base (WBAN13714), and for Fort Riley, we used Marshall Airfield 
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(WBAN13947). The ranges of values for all continuous variables, by species, site, and year, are 

in Table A.1 in the thesis Appendix. 

For the regression analyses, we used program R (R Core Team  2015) with packages 

“MASS” (Venables and Ripley 2002), “ggplot2” (Wickham 2009), and “car” (Fox and Weisberg 

2011). We used function “glm.nb” to run negative binomial regressions on total number of songs 

per 5 min. Regressions were first run by species with pooled data (all applicable study areas and 

years for each species). Preliminary model results for pooled data indicated that study area and 

year were important explanatory variables in all applicable cases. Therefore, we modeled species 

data for each study area and year separately. The abundance variable was included in every 

candidate model because we are interested in the relationship between total songs and the 

number of males. The corrected Akaike Information Criterion (AICc) was used for model 

selection among all possible regressions. We considered models where ∆AICc ≤ 2 as having 

strong support (Burnham and Anderson 2002). We also visually examined the relationships 

between the response variable and each non-categorical explanatory variable with scatterplots 

(“ggplot” function in R). If exponential and/or multimodal relationships were apparent in the 

plots, these terms were added to a new set of candidate models based on the top models from the 

first candidate set. We selected a new best model from the second candidate set if its AICc score 

was ≥2 points less than the previous best model. The final model selected was evaluated for 

regression coefficient significance (α = 0.05), multicollinearity (with variance inflation factors), 

deviance / degrees of freedom, distribution of residuals, and studentized residuals against 

predicted.  
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RESULTS 

The total number of hours of recordings analyzed (sum of the 5-min samples) was ~92, or ~18 hr 

per species (minimum = 9, maximum = 30). The total number of songs annotated ranged from 

2,407 songs (Bachman’s Sparrow, 19 hr of recording) to 10,337 songs (Henslow’s Sparrow, 11 

hr of recording) (Table 2.1).  

Song Type Classification and Correlation 

Prairie Warbler. Prairie Warbler group 1 songs were the most common (57%), followed 

by group 2 (32%), at both study areas. Song groups 3 and 4 were only observed in recordings 

from Big Oaks NWR where group 3 made up 13% and group 4, 5% of the area total. There were 

only 3 songs (0.2% of area total) from group 5 observed among samples from Big Oaks NWR 

and 23 songs at Fort Bragg (2% of area total).  

There was one strong negative correlation (rs ≥ 50%) between Prairie Warbler group 1 

songs and day of season but correlation coefficients were similar for both song groups (Table 

2.3). Both song groups 1 and 2 were negatively correlated with day of the season, and 

uncorrelated (rs < 15%) with time of day (Table 2.3, Figure 2.7). All 5 Prairie Warbler song 

groups were summed for further analyses.  

 Field Sparrow. Group 1 songs made up 95% of total annotated Field Sparrow songs. 

Most of the remaining 5% of songs belong to group 2. Group 3 songs (2% of Fort Riley total) 

were only observed in Fort Riley recordings where there were no Prairie Warblers. The songs 

were restricted to 3 territories within the same vicinity. Samples from the other territories on Fort 

Riley (geographically separate from the former 3) did not have any group 3 songs on their 

recordings.  
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There were no strong correlations (rs ≥ 50%) between the 2 most common song groups 

nor between either song group and a temporal variable. Group 1 Field Sparrow songs were 

negatively correlated with time of day (rs = -0.39; Table 2.3, Figure 2.8B). There was no support 

(rs < 15%) for any pairwise correlations with group 2 songs (Table 2.3, Figure 2.8C and D). We 

pooled all 3 song groups for further analyses. 

 Grasshopper Sparrow. Group 1 songs made up 92% of total annotated Grasshopper 

Sparrow songs; the remaining 8% were group 2 songs. There were no strong correlations (rs ≥ 

50%) between song groups nor between either song group and a temporal variable. Like Field 

Sparrow, group 1 Grasshopper Sparrow songs were negatively correlated with time of day (rs = -

0.46), but not with day of season (Table 2.3, Figure 2.9A and B). Group 2 songs were negatively 

correlated with day of season (rs = -0.21), but not with time of day (Table 2.3, Figure 2.9C and 

D). We pooled both song groups for further analyses. 

Availability for Detection and Song Activity 

The availability for detection (proportion of the 5-min audio samples that contained at least one 

song of a given species) was positively related to male abundance across all focal species except 

Grasshopper Sparrow (Figure 2.10). Availability for detection reached 1.0 for Field Sparrow at 

an abundance of 5 males, Grasshopper Sparrow at an abundance of 3 males, and Henslow’s 

Sparrow at an abundance of 4 males (Figure 2.10). Prairie Warbler availability changed 

dramatically between observed abundances (Figure 2.10). At an abundance of one male, Prairie 

Warbler availability was only 0.1. At an abundance of 5 males, Prairie Warbler availability 

exceeded 0.9. For Field Sparrow and Grasshopper Sparrow, availability was high (>0.8) and did 
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not vary much among abundances (Figure 2.10). In contrast, Bachman’s Sparrow availability 

was modest (<0.8), even at an abundance of 6 males. 

 The average number of songs in each 5-min sample appeared to increase with abundance 

(Figure 2.11), with the exception of Bachman’s Sparrow (2013 only) and Grasshopper Sparrow 

(Figure 2.12). In 2013, Bachman’s Sparrow song activity remained approximately the same at 

various male abundances (Figure 2.12E). The average numbers of songs for Field and Henslow’s 

sparrows peaked and then decreased before abundance was at its maximum (Figure 2.11).  

Negative Binomial Regression 

All of the final models fit the data reasonably well (Table 2.4, Figure 2.13). There were no 

indications of multicollinearity or patterns in studentized residuals. The final models had 

acceptable levels of deviance with deviance differing from degrees of freedom at a maximum 

rate of 1.3. The model deviances were least for Prairie Warbler and Bachman’s Sparrow at Fort 

Bragg.  

 In the majority of the models, the abundance explanatory variable was significantly 

related to the total songs response variable, with 2 exceptions. Abundance was not significant in 

the 2013 Bachman’s Sparrow model or the Grasshopper Sparrow model (P > 0.05, Table 2.5). In 

all other models, abundance was positively related to the total number of songs (P ≤ 0.02; Table 

2.5, Figure 2.12).  

 Day of season was included in 4 of the 10 final models (Table 2.5). In 3 of these 4 

models, each additional day in the breeding season led to an incremental decrease in the total 

number of songs (rate ratios in Table 2.5). In contrast, day of season in the 2012 Fort Bragg 

Bachman’s Sparrow model had a positive relationship with total songs. 
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 Time of day was included in 4 of the 10 final models and had a negative relationship with 

total songs (Table 2.5). For a one-unit increase in time (1 unit = 5 min), total songs decreased by 

2-3% for Field, Grasshopper, and Henslow’s sparrows. Temperature (negative effect) was 

included in one of the best-supported Bachman’s Sparrow’s models for 2013 (Table 2.5). 

Alternatively, a model that included the positive effect of pressure on total songs performed 

equally well for Bachman’s Sparrows in 2013. Pressure was also included in the best model for 

Field Sparrow at Fort Riley, but it had a negative relationship with total songs (Table 2.5). 

 For 3 of the final models, having an exponentiated term in the model decreased ∆AICc by 

2 or more. The exponentiated terms (i.e. day of season and wind speed) had negative 

relationships with total songs (Table 2.5, Figure 2.14) but the rates of decrease in the response 

variable accelerated as values of the explanatory variables increased (Figure 2.14). The top 

candidate models and AICc for each dataset are listed in Table A.2 in the Appendix. 

DISCUSSION 

Factors Related to Song Activity 

Song activity (total songs) was positively related to male abundance for all but one of the study 

species (i.e. Grasshopper Sparrow). These results supported our hypothesis that the number of 

songs increase with conspecific abundance. Numerous other studies also supported the existence 

of positive relationships between avian song activity and abundance (Penteriani et al. 2002, 

Cunningham et al. 2004, Warren et al. 2013, Borker et al. 2014, Lambert and McDonald 2014). 

We also hypothesized that there would be a curvilinear relationship between song activity and 

abundance where song activity would increase proportionately with abundance at lesser densities 

but these increases would gradually level-out at greater densities (because of signal saturation in 
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the environment). We expected a curved relationship because of intraspecific song asynchrony 

where individuals alternate singing to avoid overlapping songs with conspecific neighbors 

(Morrison-Parker 1977, Wasserman 1977). Overlapping songs among conspecific neighbors 

should generally be avoided because the acoustic interference would reduce the strength of each 

song signal while simultaneously limiting signal interpretation by the singers. As density 

increases, individuals may need to reduce their song rates to avoid signal overlap. However, 

introducing a curvilinear relationship into the negative binomial regression models (by 

exponentiating the abundance term) did not improve model performance. This result thus failed 

to support the stated hypothesis. Inadequate sampling at very low and/or very high densities, 

however, may have confounded our ability to detect the hypothesized curvilinear relationships. 

 Results from the negative binomial regression models also supported our second 

hypothesis that song activity would be related to one or more temporal or weather-related 

covariates. All final models included a temporal and/or weather-related covariate, in addition to 

abundance (Table 2.5). Day of season and time of day were the most important explanatory 

variables (excluding abundance) related to total songs. Other studies have also found that day of 

season and time of day were influential factors for song rate in the Mourning Dove (Zenaida 

macroura) (LaPerriere and Haugen 1972), Wood Thrush (Hylocichla mustelina), Ovenbird 

(Seiurus aurocapillus), and Northern Cardinal (Cardinalis cardinalis) (McShea and Rappole 

1997). Detection rates, which are directly related to availability for detection, were also 

influenced by temporal factors in a range of species (Best 1981, Robbins 1981b, Skirvin 1981).  

Day of season had a consistent negative relationship with song activity in all 3 Prairie 

Warbler models. The exponential day of season relationships, observed in 2 of these models, is 
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supported by previous Prairie Warbler observations. Nolan Jr. (1978) and Houlihan (2000) 

observed a general decline in singing over the breeding season and/or fluctuations in song 

activity that corresponded to particular stages of the breeding cycle. In contrast to the Prairie 

Warbler models and our expectations (based on the literature), day of season had a positive 

relationship with Bachman’s Sparrow song activity in 2012. This positive relationship, however, 

was inconsistent between years, and may have been an artifact of our sampling design in 2012 

(further discussed in the Study Limitations section). 

Day of season was not a component of the best models for Field, Grasshopper, or 

Henslow’s sparrows. However, relationships between song activity and breeding stage and/or 

date have been documented for these species elsewhere [Field Sparrow, (Morrison-Parker 1977, 

Carey et al. 2008); Grasshopper Sparrow, (Smith 1959); Henslow’s Sparrow, (Hyde 1939, 

Borror and Reese 1954)]. Assuming that our samples were representative of song activity across 

the season, the absence of day of season in the models suggested either that song activity in our 

study populations was not influenced by the progression of the breeding season/cycle or that 

males in our populations were asynchronous in stages of the breeding cycle. Asynchrony can 

occur as individual nests fail at various stages of the nesting cycle. If nest survival rates were 

low, then asynchrony was likely to occur. 

Time of day only appeared to influence song activity for the 3 species that were not 

influenced by day of season (Field, Grasshopper, and Henslow’s sparrows). The relationship 

between time of day and song activity has been documented in other studies of Field (Nelson and 

Croner 1991), Grasshopper (Smith 1959), and Henslow’s (Robins 1971) sparrows. The 

magnitude and direction of the effect (negative in all cases) of time of day in the models did not 
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differ among species or between Field Sparrow study area/year (all rate ratios for time of day = 

0.97-0.98; Table 2.5).  

Weather covariates were related to song activity in 4 of the 10 final models [temperature 

(negative effect for Bachman’s Sparrow, 2013), pressure (positive effect for Bachman’s and 

negative effect for Field sparrows in 2013), and wind speed2 (negative effect for Grasshopper 

Sparrow); Table 2.5]. The effect of pressure on avian song activity is not widely documented but 

both barometric pressure and wind speed (among other factors) have been useful predictors of 

Northern Bobwhite (Colinus virginianus) calling rates (Wellendorf et al. 2004). In the BBS, 

detections of several species were negatively related to wind speed, but temperature was 

positively or negatively related to detection, depending on the species (Robbins 1981a).  

The negative relationship between wind speed and Grasshopper Sparrow song activity at 

Fort Riley is supported by Smith (1959), who observed decreases in song activity during adverse 

weather conditions. Wind speeds at Fort Riley regularly interfered with acoustic detection of bird 

songs (S. C. Prevost, personal observation). At high wind speeds (≥8 m s-1), the benefits of 

singing would be small because of high sound attenuation. Presumably, birds should reduce or 

discontinue singing activity as costs start to outweigh benefits. The effects of wind speed on song 

activity may have been apparent in other models if we had included recordings during high wind 

conditions. However, we generally excluded audio files obtained under very windy conditions 

because the signal to noise ratio was problematic for audio analyses. For this reason, our model 

results are only applicable for the reduced wind speeds under which we conducted the study. 

Models for species that were studied at more than one study area and/or during more than 

one year (i.e. Prairie Warbler, Bachman’s Sparrow, and Field Sparrow models), suggested that 
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the relationships between song activity and our covariates can vary across space and time. Study 

area and/or year were significant in the top models for all applicable species. Although the 

significant explanatory variables and the direction of the effects (positive or negative) remained 

consistent in the different Prairie Warbler and Field Sparrow models, the magnitude of the 

effects changed (Table 2.5). The differences in effect magnitude could reflect actual response 

differences in the populations (by region, year, and/or factors that were not accounted for in the 

study) and/or sampling error. 

Song Activity Models for Abundance Prediction 

Negative binomial regression was a successful method for modeling songbird cue-count data 

with male abundance and with temporal and weather-related covariates. A suitable candidate 

model, with 1-3 covariates was always found among the top models. Our selection criteria 

specified choosing the model with the fewest and simplest (i.e. exponent with least value) terms 

that was within 2 ∆AICc of the top model. In all cases, these criteria specified models with 

significant (α = 0.05) covariates (except where abundance was insignificant for the 2013 

Bachman’s and Grasshopper sparrow models). The residual deviances of the selected models 

never exceeded 1.3 times the degrees of freedom, indicating good model fit.  

 Although our regression models fit the data well, the differences among models for a 

species across study area and year may challenge the practicability of using these models to 

predict male abundance from song cue counts. Additional monitoring may be needed to collect 

the data necessary to create new cue-count abundance models for each species, study area, and 

year of interest. However, differences among the models for a given species may have also been 

a function of factors that we did not account for among the explanatory variables (e.g., habitat 
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characteristics). Model differences could also have resulted from random variation that 

significantly affected the data because of our limited sample sizes. A larger and more robust 

sampling strategy may be more capable of determining if and why there are variations across 

study areas and years. Another useful endeavor would be to study the same individual males for 

multiple breeding seasons to determine if song activity changed at the individual level, while 

accounting for conspecific abundance.   

To construct abundance prediction models, the terms in the negative binomial regression 

models were remodeled with abundance as the response variable and the model was forced 

through zero (thus, abundance would equal zero when there were zero songs). The forced 

intercept allowed the models to predict abundances less than the abundances in the original data. 

The resulting negative binomial models were in the following form: 

Equation 2.1 
Abundance ൌ 	 expሺఉೄ௑ೄାఉభ௑భା	⋯	ାఉೖ௑ೖሻ  

In Equation 2.1, ߚௌ  = regression coefficient for the total number of songs observed in a 5-min 

time period, ௌܺ  = the total number of songs observed in a 5-min time period, ߚଵ  = ௞ߚ	⋯

additional covariate coefficients, and ଵܺ ⋯	ܺ௞ = additional covariate values. The resulting 

equations after remodeling are in Table A.3 in the thesis Appendix. 

Implications for Acoustic Monitoring 

Availability for detection. Species availability for detection (proportion of the 5-min 

audio samples that contained at least one song of the specified species) generally increased with 

male abundance. For some species, availability was ~1 at moderate (3-5 males) and high (6-8 

males) abundances. Maximum species availability at low abundance (1-2 males) was 0.6. A 

positive relationship between auditory availability and abundance has also been documented for 
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other songbirds [Eastern Kingbird, Tyrannus tyrannus (Sexton et al. 2007); Dupont’s Lark, 

Chersophilus duponti (Laiolo and Tella 2008); Golden-cheeked Warblers, Setophaga 

chrysoparia (Warren et al. 2013)]. The relationship between availability for detection and 

abundance can be a problem for population monitoring when using methods that rely on an 

assumption of independent detection, that are based on short-duration observation periods, 

and/or that use cue counts without accounting for changes in abundance.  

Conversely, species availability (or detection probability) can be used as an index of 

general abundance (Royle and Nichols 2003). Low detection rates would indicate small 

populations and high detection rates would indicate large populations. For species that sing 

frequently and thus have high availability for detection even when abundance is moderate (Field, 

Henslow’s, and Grasshopper sparrows), the duration of the sample could be reduced to allow for 

a wider range of detection rates and potentially, a finer-scale abundance index. This abundance 

index may have applications for surveys with repeated visits or for stationary acoustic recordings 

that are sampled or analyzed in short-duration segments. However, more studies are needed to 

confirm that the relationship between availability and abundance is consistent. 

Song type. The existence of multiple song types will affect acoustic monitoring of some 

species more than others. Intra-specific variation in song characteristics will likely pose the 

largest challenge to an automated detection process. Use of automated detection software will 

likely be the analysis approach for future acoustic signal processing because it substantially 

decreases the effort required to process acoustic data and it excludes observer bias during this 

stage of data analysis (Brandes 2008, Blumstein et al. 2011, Stowell and Plumbley 2014). The 3 

species that had different functional song types in our study (Prairie Warbler, Field Sparrow, and 
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Grasshopper Sparrow) mostly sang (≥57% of total songs) their primary song type (classified as 

group 1). For Field and Grasshopper sparrow, alternative song types were sung at such low rates 

(≤8% of total songs) that these songs may be disregarded in acoustic analysis without impacting 

results. Considering that group 2 songs of Field and Grasshopper sparrows were extremely 

variable in structure, note choice, and duration (S. C. Prevost, personal observation), choosing to 

analyze only the primary song-type for these species would be desirable to simplify an 

automated song-detection process. However, pooling observations of all song types would 

provide a more accurate representation of total song activity. Pooling all song types may become 

a viable option as detection software continues to improve. 

Prairie Warbler song repertoires, like many other Paruline repertoires, may be difficult to 

fully account for with an automated detection process. The Prairie Warbler, and many of its 

relatives, sing songs from both of 2 song categories at substantial rates (Spector 1992). 

Alternative Prairie Warbler song types made up a large portion of song activity (43%) in our 

study. Thus, alternative song types should be included in analysis of acoustic data for this 

species. Another challenge posed by Prairie Warblers and similar species is the diversity of song 

types within each of the 2 functional song categories (Spector 1992). As the automated detection 

process attempts to accommodate these song variations, the range of possible values attributed to 

each song characteristic will need to increase, and greater numbers of false positives will likely 

result.  

 Song variants, where species identification is questionable, increases concern for species 

misidentification in both automated detection and general acoustic detection where additional 

identification clues (e.g., visual, habitat, etc.) are absent. Certain variants of Prairie Warbler and 
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Field Sparrow songs may pose challenges to species identification. The Prairie Warbler variant 

of type B song (group 4; Figure 2.1D) that is nearly identical to a primary Field Sparrow song 

composed 5% (91 songs) of total Prairie Warbler songs detected at Big Oaks NWR. At least one 

Field Sparrow at Fort Riley sang a song type [Figure 2.6; Field Sparrow group 3; comprised 1% 

(n = 56) of total Field Sparrow songs detected at Fort Riley] that was very similar to some 

versions of Prairie Warbler group 3 songs. Documenting and gaining a better understanding of 

song types that resemble songs of other species will help inform and guide classification of 

acoustic data.  

Prairie Warbler and Field Sparrow song variants may be related to region and/or 

interspecific co-occurrence. Group 3 and 4 Prairie Warbler songs (Figure 2.1C and D), were only 

observed in recordings at Big Oaks NWR (where Prairie Warblers and Field Sparrows co-

occurred), and not at Fort Bragg. Co-occurrence could explain why we only observed Prairie 

Warblers singing Field Sparrow-like group 4 songs at Big Oaks NWR. Allen (quoted in Bent 

1937) also described this song variant for Prairie Warblers singing alongside Field Sparrows. 

Interestingly, Field Sparrow group 3 songs (which resemble some Prairie Warbler group 3 songs) 

were observed only at Fort Riley, in the absence of Prairie Warblers. We have not found 

documented evidence that this song variant has been described before. The song could be part of 

a local dialect but it also could have been an anomaly in a single male’s repertoire. More 

observations of Field Sparrow songs in the Fort Riley area are needed to further document the 

use of this song type. 
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Study Limitations 

Song classification. Variation in the acoustic landscape between Big Oaks NWR and 

Fort Riley led us to forego analysis of Henslow’s Sparrow data at Fort Riley. The short duration 

of Henslow’s Sparrow songs make them susceptible to obscurement by other sounds in similar 

frequency bands. In this case, the great abundance of Dickcissel (Spiza americana) vocalizations 

on Fort Riley recordings made it extremely difficult to annotate Henslow’s Sparrow songs, such 

that the resulting data were compromised and incomparable to the Big Oaks NWR study area. 

Song activity. Average song activity was unexpectedly high at intermediate abundances 

for Field and Henslow’s sparrows (Figure 2.11) but we suspect these data points may have been 

influenced by inconsistencies with our sampling scheme, rather than reflective of actual songbird 

behavior. Although we used a balanced sampling design by day of season and time of day, the 

number of samples at each level of abundance was determined by the abundances encountered in 

the field. In this case, Field Sparrow territories with abundances of 5 had twice as many samples 

in the first date interval (May 15-28) than in any of the 4 subsequent date intervals, which likely 

inflated the song counts for that abundance level. The large peak in Henslow’s Sparrow song 

activity can be primarily attributed to 2 adjoining territories. The high song activity could have 

been due to unusually high activity associated with these territories or to an inaccurate 

abundance index. At this point, we are unable to distinguish between these 2 possible 

explanations. 

Sampling limitations and regression model applicability. Abundance had the greatest 

magnitude of influence on total songs in the model for Prairie Warbler at Fort Bragg in 2012. 

The model specified that total songs (in a 5-min interval) increased by a factor of 8.13 for each 
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additional male (Table 2.5). This estimate may be inflated because of the limited number of 

territories sampled (Figure 2.12B). Fort Bragg in 2012 had only 2 Prairie Warbler territories that 

had enough quality data to sample from. Thus, all samples were taken from 2 locations, with 

abundances of 1 and 4. Further inflating this estimate, only 1 song was detected among the 55 

audio samples from the territory with an abundance of 1 male. Because of these limitations, we 

suggest that a model based on pooled Fort Bragg Prairie Warbler data (both years) would be 

more appropriate for prediction purposes. 

 Data limitations may have also affected all of the Bachman’s Sparrow models in terms of 

abundance and day of season. As described in the Methods section, only single-channel audio 

recordings were used for the Bachman’s Sparrow analysis. This approach may have reduced the 

detection radius of the recording units. Depending on the distribution of birds around the 

recorder, a shorter detection radius may have been insufficient to reflect the observed abundance 

index. Temporal sampling limitations could have influenced the relationship (or lack thereof in 

2013) between Bachman’s Sparrow song activity and day of season. The dates of the first 

Bachman’s Sparrow recordings were May 22 in 2012 and May 27 in 2013, both of which are 

well into the breeding cycle for this species (Dorsey 1976, Meanley 1990). Our samples likely 

missed the peak of Bachman’s Sparrow song activity at the beginning of the breeding season. If 

the first samples taken in 2012 occurred during an intermediate stage of breeding where song 

activity was low, the regression model would reflect an increase in song activity with the 

progression of the breeding season, which is consistent with our 2012 model (Table 2.5). The 

lack of a relationship between total songs and day of season in the 2013 Bachman’s Sparrow 

models may be explained by beginning the sampling period while song activity levels were 
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intermediate. Although preliminary modeling showed a significant difference between the 2012 

and 2013, a model based on pooled data for both years may remediate some of the sampling 

concerns. 

The Grasshopper Sparrow model may have been influenced by the sampled abundances 

and/or numbers of territory samples in each abundance category. The model may have failed to 

detect a relationship between song activity and abundance because we only obtained song 

activity data for abundances of 3, 4, and 5 males. Variation in song activity related to abundance 

may only exist across broader scales of abundance (e.g., low vs. medium vs. high), whereby 

sampling within only one scale would not detect a relationship. Alternatively, song activity in 

this species might not be affected by individual density. In either case, our Grasshopper Sparrow 

model as developed would not be useful for predicting abundance from song activity. 

Conclusion 

The goal of this chapter was to study the relationship between song activity and abundance 

across a variety of songbird species and across a variety of landscapes. We constructed models 

that not only quantitatively define detection opportunity (one opportunity = one song) in terms of 

local male abundance and influential covariates, but that also may be used to predict male 

abundance from song cue-count data gathered from stationary or mobile acoustic recorders. The 

strategy to population estimation offered by our models challenges the perception that density-

dependent availability for detection is a problem to be accounted for in population estimation. 

Instead, we defined the relationship between number of individuals and number of acoustic 

signals for 5 species so the relationship can be used to predict abundance, given the covariates 

defined in the models and the number of songs detected per unit time. We were successful in 
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developing models that can be used for abundance prediction for 4 of the 5 study species. We 

found that day of season, time of day, temperature, wind speed, and atmospheric pressure were 

related to song activity but not all of these factors are influential for each species. Variation in 

song activity across species, study areas, and years challenges the broad applicability of our 

models because new data will need to be collected and modeled for each species, location, and 

time period of interest. Species that regularly use more than one song type will require additional 

attention during the acoustic detection process, especially if automated software is employed. 
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CHAPTER 2 APPENDIX 

Table 2.1. Sample sizes, average male abundances, and availability for detection by species, study area, and year. The average male 
abundance was calculated by totaling the estimated abundances associated with the 5-min samples and dividing by the number of 
samples. Availability for detection is the proportion of 5-min samples that contained at least one song of the specified species. Sample 
sizes shown here were used for all analyses unless noted otherwise. 

Species Study area Year Territories 
(n) 

5-min 
samples 
(n) 

Songs 
annotated 
(n) 

Average 
male 
abundance 

Availability 
for 
detection 

Prairie Warbler  
(Setophaga discolor) 

Big Oaks NWR 2012 9 131 1,756 3.6 0.76 
Fort Bragg 2012 2 110 762 2.5 0.32 

2013 5 121 664 1.9 0.43 
Bachman's Sparrow  
(Peucaea aestivalis) 

Fort Bragg 2012 5 125 1,355 3.1 0.49 
2013 5 103 1,052 2.0 0.54 

Field Sparrow  
(Spizella pusilla) 

Big Oaks NWR 2012 10 140 3,300 5.3 0.95 
Fort Riley 2013 6 131 5,016 4.1 0.93 

Grasshopper Sparrow  
(Ammodramous savannarum) 

Fort Riley 2013 7 112 2,501 3.8 0.89 

Henslow's Sparrow  
(Ammodramus henslowii) 

Big Oaks NWR 2012 8 133 10,337 5.1 0.86 
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Table 2.2. Response and explanatory variables used in negative binomial regression modeling of 
song activity (total songs per 5-min) for 5 passerine species at 3 Department of Defense study 
areas, 2012-2013. 
Variable Descriptions and units 

Total songs Response variable. Total number of songs of a given species in a 5-min audio 
sample. Obtained by listening to and viewing spectrogram of audio in Raven Pro 
(Bioacoustics Research Program  2014). 

Abundance Abundance index. Maximum number of singing males detected from SM2 
location during song counts and/or territory mapping. 

Day of 
season 

Modified Julian date. (May 1 = 1).  

Time of day Modified Julian time divided by 5. (30-min before sunrise = 0, 25-min before 
sunrise = 1, sunrise = 6, etc.).  

Temperature  Degrees in Celsius. (C⁰) 

Wind speed Average wind speed measured over a fixed time period. (meters per second).  

Pressure Atmospheric pressure given as altimeter setting (station pressure corrected to sea 
level). This variable was transformed by subtracting the mean (761 mm) from 
each value. (millimeters of mercury).  

Study area Categorical. Used when species dataset included more than one study area (i.e. 
Big Oaks NWR, Fort Bragg, and/or Fort Riley). 

Year Categorical. Used when species dataset included more than one year (i.e. 2012 
and 2013). 

Sample type Categorical. Indicates whether or not a human observer was present at the time of 
the audio recording. 
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Table 2.3. Spearman rank-order correlation coefficients for pairwise comparisons between 
numbers of songs classified as group 1 and classified as group 2, song group and day of season, 
and song group and time of day. Prairie Warbler song group data were from audio recordings 
made at Big Oaks NWR (2012) and Fort Bragg (2012-2013). Field Sparrow song group data 
were from audio recordings made at Big Oaks NWR (2012) and Fort Riley (2013). Grasshopper 
Sparrow song group data were from audio recordings made at Fort Riley (2013). 

    Group 2 Day of season Time of day 
Prairie Warbler 
  

Group 1 0.31 -0.52 0.01 
Group 2  -0.33 -0.13 

Field Sparrow 
  

Group 1 0.00 -0.09 -0.39 
Group 2  -0.05 -0.13 

Grasshopper Sparrow 
  

Group 1 0.25 -0.04 -0.46 
Group 2  -0.21 -0.07 
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Table 2.4. Negative binomial regression models with abundance. The response variable was the total number of songs counted in 5-
min audio samples from 3 Department of Defense study areas, 2012-2013. K = number of parameters, df = degrees of freedom, Dev = 
residual deviance. 

Species Study area Year Best model(s) K df Dev 
Prairie Warbler Big Oaks NWR 2012 Abundance + Day of season6 3 128 151.2

Fort Bragg 2012 Abundance + Day of season 3 107 69.4 
2013 Abundance + Day of season4 3 118 97.4 

Bachman's Sparrow Fort Bragg 2012 Abundance + Day of season 3 122 114.4

2013a Abundance + Temperature 3 100 101.3

Abundance + Pressure 3 100 101.3

Field Sparrow Big Oaks NWR 2012 Abundance + Time of day 3 137 163.5
Fort Riley 2013 Abundance + Time of day + Pressure 4 127 164.8

Grasshopper Sparrow Fort Riley 2013 Abundance + Time of day + Wind Speed2 4 108 133.9

Henslow's Sparrow Big Oaks NWR 2012 Abundance + Time of day 3 130 161.2
a Two models performed equally well for Bachman’s Sparrow, 2013. Both are shown. 
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Table 2.5. Details for the explanatory variables in the chosen models for negative binomial regression on total songs in 5-min audio 
samples from 3 Department of Defense study areas, 2012-2013. Effect denotes whether the relationship between the explanatory 
variable and the response variable is positive (+) or negative (-). The rate ratio is the exponentiated coefficient of the model term; it 
reflects the rate at which the response variable changes with a one-unit increase in the explanatory variable (see Table 2.2 for variable 
units). A rate ratio that is less than one indicates that the explanatory variable has a negative relationship with the response variable, 
whereas a ratio greater than one indicates a positive relationship. 
Species Study area Year Term Effect Rate ratio Lower CI Upper CI z P 
Prairie Warbler Big Oaks NWR 2012 (Intercept) + 6.95 3.36 14.86 5.09 < 0.001 

Abundance + 1.30 1.08 1.56 2.79 0.01  
Day of season6 - 1.00 1.00 1.00 -8.25 < 0.001 

Fort Bragg 2012 (Intercept) - 0.14 0.00 1.43 -1.36 0.17  
Abundance + 8.13 4.76 21.39 6.03 < 0.001 
Day of season - 0.92 0.90 0.94 -7.07 < 0.001 

2013 (Intercept) + 3.04 1.11 9.00 2.04 0.04  
Abundance + 2.12 1.28 3.58 3.04 0.00  
Day of season4 - 1.00 1.00 1.00 -6.61 < 0.001 

Bachman's Sparrow Fort Bragg 2012 (Intercept) - 0.16 0.04 0.60 -3.17 0.00  
Abundance + 1.73 1.40 2.17 5.72 < 0.001 
Day of season + 1.04 1.02 1.06 3.69 < 0.001 

2013 (Intercept) + 110.09 12.59 1532.84 4.08 < 0.001 
Abundance - 1.00 0.60 1.64 -0.01 0.99 
Temperature - 0.89 0.79 0.98 -2.06 0.04 

2013a (Intercept) + 7.97 2.95 25.28 3.51 < 0.001 
Abundance - 0.96 0.59 1.56 -0.16 0.88 
Pressure + 1.12 1.01 1.23 2.11 0.04  

Field Sparrow Big Oaks NWR 2012 (Intercept) + 20.47 12.06 35.19 11.77 < 0.001 
   Abundance + 1.17 1.07 1.28 3.78 < 0.001 

  Time of day - 0.97 0.96 0.98 -6.34 < 0.001 
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Table 2.5 (continued) 
Species Study area Year Term Effect Rate ratio Lower CI Upper CI z P 
 Fort Riley 2013 (Intercept) + 3.30 1.79 6.13 3.60 < 0.001 
   Abundance + 1.94 1.69 2.23 8.86 < 0.001 

Time of day - 0.98 0.97 0.99 -4.71 < 0.001 
Pressure - 0.96 0.93 0.99 -2.22 0.03  

Grasshopper Sparrow Fort Riley 2013 (Intercept) + 135.66 31.07 625.78 6.76 < 0.001 
Abundance - 0.76 0.52 1.09 -1.55 0.12  
Time of day - 0.98 0.97 0.99 -3.79 < 0.001 
Wind speed2 - 0.98 0.97 0.99 -3.49 < 0.001 

Henslow's Sparrow Big Oaks NWR 2012 (Intercept) + 69.53 33.18 151.68 11.34 < 0.001 
Abundance + 1.15 1.01 1.30 2.32 0.02  
Time of day - 0.97 0.96 0.99 -3.48 < 0.001 

a Two models performed equally well for Bachman’s Sparrow, 2013. Details for both are shown. 
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Figure 2.1. Prairie Warbler song groups including a typical type A song (A), a typical type B 
song (B), a song described as “sing-song” by Nolan Jr. (1978) (C), an unusual type B song that is 
similar to a Field Sparrow song (D), and (5) a rare, abnormal song (E). A through D songs were 
recorded at Big Oaks NWR in 2012; E was recorded at Fort Bragg in 2012. 



61 
 

 

Figure 2.2. Bachman’s Sparrow song recorded at Fort Bragg in 2012. 
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Figure 2.3. Field Sparrow song groups including simple song (A), recorded at Big Oaks NWR in 
2012, and complex song (B), recorded at Fort Riley in 2013. 
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Figure 2.4. Grasshopper Sparrow song groups including primary song (A) and sustained song 
(B), recorded at Fort Riley in 2013. 
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Figure 2.5. Henslow’s Sparrow song recorded at Big Oaks NWR in 2012. 
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Figure 2.6. Group 3 Field Sparrow song that resembles some variations of Prairie Warbler group 
3 songs (Figure 2.1C), recorded at Fort Riley in 2013. 
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Figure 2.7. Prairie Warbler fitted linear models (with 95% confidence intervals) of songs (per 5-
min sample) by day of season (May 1 = 1) or time of day (1 unit = 5 min; 30-min before sunrise 
= 0). The scatter plots show day of season by group 1 songs (A), time of day by group 1 songs 
(B), day of season by group 2 songs (C) and time of day by group 2 songs (D). The 5-min audio 
samples were taken from recordings made between May and July at Big Oaks NWR (2012) and 
Fort Bragg (2012-2013). 
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Figure 2.8. Field Sparrow fitted linear models (with 95% confidence intervals) of songs (per 5-
min sample) by day of season (May 1 = 1) or time of day (1 unit = 5 min; 30-min before sunrise 
= 0). The scatter plots show day of season by group 1 songs (A), time of day by group 1 songs 
(B), day of season by group 2 songs (C) and time of day by group 2 songs (D). The 5-min audio 
samples were taken from recordings made between May and July at Big Oaks NWR (2012) and 
Fort Riley (2013). 
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Figure 2.9. Grasshopper Sparrow fitted linear models (with 95% confidence intervals) of songs 
(per 5-min sample) by day of season (May 1 = 1) or time of day (1 unit = 5 min; 30-min before 
sunrise = 0). The scatter plots show day of season by group 1 songs (A), time of day by group 1 
songs (B), day of season by group 2 songs (C) and time of day by group 2 songs (D). The 5-min 
audio samples were taken from recordings made between May and July at Fort Riley (2013). 
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Figure 2.10. Species availability for detection (proportion of the 5-min audio samples that 
contained at least one song of a given species) by male abundance based on 5-min samples of 
audio recorded at 3 Department of Defense study areas, 2012-2013. Availability for detection 
was calculated as the proportion of 5-min samples that contained at least one song of the 
specified species. 
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Figure 2.11. Average number of songs by male abundance based on 5-min samples of audio 
recorded at 3 Department of Defense study areas, 2012-2013. 
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Figure 2.12. Fitted linear models (with 95% confidence intervals) of total number of songs in 5-
min by male abundance. Models show the following: Prairie Warbler at Big Oaks NWR in 2012 
(A), Fort Bragg in 2012 (B), and Fort Bragg in 2013 (C); Bachman’s Sparrow at Fort Bragg in 
2012 (D) and 2013 (E); Field Sparrow at Big Oaks NWR in 2012 (F) and Fort Riley in 2013 
(G); Grasshopper Sparrow at Fort Riley in 2013 (H); and Henslow’s Sparrow at Big Oaks NWR 
in 2012 (I). 
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Figure 2.13. Fitted negative binomial models (Table 2.4) and 95% confidence intervals of total 
numbers of songs observed by the total numbers predicted. Models show the following: Prairie 
Warbler at Big Oaks NWR in 2012 (A), Fort Bragg in 2012 (B), and Fort Bragg in 2013 (C); 
Bachman’s Sparrow at Fort Bragg in 2012 (D) and 2013 [model with temperature (E) and model 
with atmospheric pressure (F)]; Field Sparrow at Big Oaks NWR in 2012 (G) and Fort Riley in 
2013 (H); Grasshopper Sparrow at Fort Riley in 2013 (I); and Henslow’s Sparrow at Big Oaks 
NWR in 2012 (J). 
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Figure 2.13 (continued) 
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Figure 2.14. Fitted linear models (with 95% confidence intervals) depicting the relationships between the response variable and a 
significant exponentiated explanatory variable. Models show the following: total songs for Prairie Warbler at Big Oaks NWR in 2012 
by day of season6 (A); total songs for Prairie Warbler at Fort Bragg in 2013 by day of season4 (B), and total songs for Grasshopper 
Sparrow at Fort Riley in 2013 by wind speed2, m s-1 (C). 
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CHAPTER 3  

Estimating Songbird Densities with a Passive Acoustic Cue-counting Approach 
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ABSTRACT 

The need for improvements in avian wildlife monitoring efficiency, accuracy, and scope has led 

to increased development and use of new technologies such as autonomous recording devices 

and unmanned aerial vehicles. This chapter introduces the Balloon Aerial Recording System 

(BARS, or “balloon”), a novel technology that addresses these issues as well as the problem of 

ground-based land accessibility. The balloon takes advantage of the benefits of aerial monitoring 

and autonomous acoustic recording. The objectives of this chapter are (1) to describe and 

evaluate a novel acoustic approach for estimating densities of breeding songbirds and (2) to 

compare acoustic-based density estimates with estimates derived from typical avian population 

monitoring methods. Point- and line-based field tests were implemented across 3 study areas 

during 2011-2013 to directly compare balloon data and data collected with human-observer 

techniques in both real-bird communities and remotely controlled simulated-bird communities 

with known populations. The accuracy of both real- and simulated-bird estimates depended upon 

species and survey method. Excluding estimates from point counts, the balloon-based density 

estimates did not differ from spot map estimates for Prairie Warbler (Setophaga discolor), 

Bachman’s Sparrow (Peucaea aestivalis), or Henslow’s Sparrow (Ammodramus henslowii) but 

balloon estimates for Field Sparrow (Spizella pusilla) were much greater than the spot-map 

estimate. The human distance-sampling approach performed similarly to the balloon approach 

for real birds except the distance-sampling estimates for Field Sparrow did not differ from the 

spot-map estimates. Abundance estimates of simulated birds were closer to true abundances for 

the balloon than for human observers but simulated-bird density estimates from distance 

sampling were more similar to simulated-bird densities. Sources of variation in balloon 
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methodology that likely affected the accuracy and precision of population estimates included 

balloon flight dynamics (e.g., movement, speed, and altitude), human error in song selection 

during acoustic analyses, and calculation of effective detection areas available for recording. 

Some of these sources of variation can be controlled by additional development of the analytical 

methods. The accuracy of the balloon approach for Prairie Warbler, Bachman’s Sparrow, and 

Henslow’s Sparrow, under certain conditions, demonstrated the viability of the acoustic cue-

count approach, especially if the suggested methodological improvements are adopted. Balloon 

technology can provide a feasible solution for wildlife monitoring in large and/or inaccessible 

areas and its versatility allows for broad wildlife applications beyond both military installations 

and avian population monitoring. 

INTRODUCTION 

Wildlife Monitoring Technologies 

Passive acoustic techniques have many benefits for wildlife research and monitoring 

applications. Passive acoustics increase the amount of data that can be collected, eliminate the 

need for skilled field observers, and produce permanent, unbiased records. Marques et al. (2013) 

noted additional benefits of acoustic surveys in contrast to visual-based surveys including (1) 

increased detection range for animals that are more detectable by sound than by sight, (2) ability 

to survey during low-visibility conditions (e.g., fog, nighttime, etc.), (3) amenable to automated 

data collection and processing, and (4) data collection in environments that are inhospitable to 

humans.  

Autonomous aerial monitoring systems also benefit wildlife research and monitoring in 

many of the same ways that passive acoustic monitoring does. Aerial systems also have 



78 
 

additional benefits of potential increases in effort efficiency and sampling area extent, and ease 

of data collection in remote and/or hard-to-access areas. Beyond these benefits, aerial systems 

may also enable monitoring in previously inaccessible areas due to safety concerns, including 

Department of Defense (DoD) impact areas and regions of civil unrest. 

A combined approach of passive acoustics and aerial monitoring systems has had very 

little attention in wildlife monitoring. Mobile acoustic recording systems have primarily been 

limited to towed and autonomous marine hydrophone systems and animal-borne recording tags 

(Marques et al. 2013). Autonomous aerial methods for monitoring wildlife typically employ 

unmanned aerial vehicles (UAVs) that are limited to either visual-based detection of animals 

(Jones et al. 2006, Koh and Wich 2012) or detection of radio-tagged animals (Dos Santos et al. 

2014, Cliff et al. 2015). Therefore, UAV monitoring has been restricted to easy-to-spot, medium- 

to large-sized vertebrates (Jones et al. 2006, Vermeulen et al. 2013) and/or flocks of large birds 

(Chabot and Bird 2012), or radio-tagged animals. Furthermore, UAVs are not always feasible 

because of expense (Watts et al. 2010, Vermeulen et al. 2013) and UAV regulatory restrictions 

(Watts et al. 2010, Linchant et al. 2015).  

Combining acoustic and aerial technologies could reap the benefits of both monitoring 

strategies. However, aerial acoustic monitoring is untested and it presents challenges in both 

application (i.e. noise interference from aerial device) and acoustic data analysis (i.e. density 

estimation without locating individual animals). With current available technology, powered 

UAVs are problematic for acoustic monitoring because motor noise and turbulence severely limit 

acoustic data quality. An alternative to UAVs is a passive, wind-propelled payload that uses an 

un-powered lifting system, such as a helium-filled weather balloon. One such system was 
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developed and tested by Fristrup and Clark (2009). Although not validated, Fristrup and Clark 

(2009) estimated the number of individual birds recorded per flight based on average species 

song intervals (s song-1). However, without information on species detection probabilities (given 

by distance sampling or otherwise), population densities could not be estimated from the 

numbers of detected individuals. As a result, Fristrup and Clark (2009) used the number of songs 

recorded as an index to relative abundance. 

Acoustic-Based Population Density Estimation 

Distance-sampling approaches are a common method for density estimation in both observer-

based survey methods (Buckland et al. 2001) and passive acoustic methods (Thomas and 

Marques 2012, Marques et al. 2013). Distance sampling requires some form of localization of 

detected animals so distances from the observer/detector can be estimated. Although multi-

sensor arrays are typically used for signal localization (Blumstein et al. 2011, Thomas and 

Marques 2012), distances to acoustic signals have been estimated with single-sensor 

hydrophones via multipath signal transmission under water (McDonald and Fox 1999, Aubauer 

et al. 2000). However, these conditions are generally not applicable to terrestrial single-

microphone systems. Even if distances to signals could be estimated from aerial recordings, the 

assumed environment under which distance sampling is based does not apply to aerial 

monitoring of animals on the ground. Unlike the assumed distance-sampling environment, 

animals of interest in aerial monitoring are not in the vicinity of the recorder and detection 

distances would likely be within a relatively narrow range based on the recorder’s conical 

footprint. Thus, acoustic-based population estimation approaches that do not include distance 

sampling are needed.  
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Cue counts are the most plausible approach to density estimation when individual 

animals cannot be distinguished (Marques et al. 2013). Cue-count population estimates are based 

on a known cue rate that is applied to a count of cues detected per unit of time and area 

(Buckland 2006). Cue counting was originally introduced as a method for estimating densities of 

great whales (Hiby 1985) but has also been applied to bird surveys (Buckland 2006). Cue counts 

have some advantages and disadvantages when compared to standard point- or line-transect 

sampling (Buckland et al. 2015). Detection at zero distance (from a survey point or line transect) 

during a cue count is assumed to be 100% only if an individual presents a cue, whereas detection 

is assumed to be 100% during typical point/line-transect sampling whether the animal presents 

itself or not. Another advantage of the cue-count approach is that individual animals do not need 

to be identified or accounted for to avoid double sampling. A statistical disadvantage of cue 

counts is that repeated cues from the same individual are not independent (Buckland et al. 2015). 

However, traditional sampling methods that largely rely on acoustic cues also violate the 

assumption of detection independence because avian auditory availability often increases with 

abundance (Chapter 2; Sexton et al. 2007, Laiolo and Tella 2008, Warren et al. 2013). The 

practicality of cue counts is challenged by the need to estimate mean cue rate, which may vary 

with factors such as weather, habitat, bird density, time of day, and season (Chapter 2; Buckland 

et al. 2015). 

Cue counts are traditionally used as a variation of distance sampling where counts of cues 

and distances to cues are recorded by observers (Buckland 2006). Although uncommon, other 

studies have used cue-count approaches without distance estimation. Thompson et al. (2010a) 

and Thompson et al. (2010b) created and validated an abundance index (based on linear 



81 
 

regression of abundance and cue rate) for estimating abundances of African forest elephants 

(Loxodonta africana cyclotis) from acoustic recordings. Elephant population estimates were 

similar to, but much more precise than, dung-based survey estimates (Thompson et al. 2010a). 

Abundance indices have also been used to estimate abundances/densities from acoustic cue 

counts of Pacific humpback dolphins (Sousa chinensis) (Van Parijs et al. 2002), Fowler’s toads 

(Bufo fowleri) and bullfrogs (Rana catesbeiana) (Shirose et al. 1997), and Rhyzopertha dominica 

larva (Hagstrum et al. 1988).  

Study Objectives 

The primary objective of this chapter is to describe and evaluate a novel acoustic approach for 

estimating densities of breeding songbirds from mobile, single-microphone recordings. The 

recordings were collected by the Balloon Aerial Recording System (BARS, or “balloon”), an 

instrumentation payload designed and built by personnel in the Environmental Sensors Lab, 

Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville 

(Hockman in prep.). The design of the balloon was conceptually based on the aerial recording 

system developed by the Cornell Lab of Ornithology and implemented by Fristrup and Clark 

(2009). The focal songbird species, studied across 3 study areas, were Prairie Warbler 

(Setophaga discolor), Bachman’s Sparrow (Peucaea aestivalis), Field Sparrow (Spizella pusilla), 

Grasshopper Sparrow (Ammodramous savannarum), and Henslow’s Sparrow (Ammodramus 

henslowii). Northern Bobwhite (Colinus virginianus) was also included in part of the study (i.e. 

simulated-bird tests). 

The second objective was to compare acoustic-based density estimates with estimates 

derived from typical avian population monitoring methods (i.e. human observer-based point-
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count and line-transect distance sampling). In addition to these objectives, this study addressed 2 

of the major research needs for passive acoustic population estimation described by Marques et 

al. (2013). First, the analysis approach used in this study incorporated information on the 

acoustic behavior of the focal species (Chapter 2). Second, this study evaluated the use of the 

balloon when true bird densities were known.  

METHODS 

Study Areas 

We selected 3 study areas from eastern Department of Defense (DoD) installations for this 

research based on their ability to represent (1) a range in cover types that occur on eastern United 

States DoD installations (i.e. grasslands, forests, savannas), (2) a range in climate (e.g., wind 

conditions, temperature, relative humidity), and (3) avian species of interest to land managers for 

acoustic monitoring (Fischer et al. 2011). DoD installation willingness to host our research, as 

well as the practicality of fulfilling our objectives without interfering with DoD training 

activities, were also critical factors in the selection process.  

Big Oaks National Wildlife Refuge (NWR), Indiana. The northern-most installation, 

previously known as Jefferson Proving Ground (JPG), is a deciduous forest intermixed with open 

grasslands and oak savannahs. JPG is representative of other midwestern installations, such as 

forts Campbell, KY, Knox, KY, Leonard Wood, MO, and McCoy, WI. The climate is warm with 

intermediate humidity and moderate winds. Prairie Warbler, Field Sparrow, and Henslow’s 

Sparrow were the focal species at this study area. We collected data at this study area during 

May-August 2011 and May-July 2012. 
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Fort Riley, Kansas. Fort Riley is located in an open grassland/scrub/agricultural 

landscape. It is representative of the open landscapes found in many Great Plains (e.g., Fort Sill, 

OK) and southwestern (e.g., Fort Bliss, TX) installations. Climatic conditions are hot, semi-arid, 

and windy. The focal species for this study area were Field Sparrow, Grasshopper Sparrow, and 

Henslow’s Sparrow. We collected data at this study area during May-August 2011 and May-July 

2013. 

Fort Bragg, North Carolina. Fort Bragg is located within a Longleaf (Pinus palustris) 

and Loblolly (Pinus taeda) pine-dominated landscape. The Fort Bragg landscape is 

representative of many other southeastern coastal plain installations, such as Eglin Air Force 

Base, FL, Camp Lejeune, NC, Fort Benning, GA, and Fort Stewart, GA. The climate is hot and 

humid with generally light winds. The focal species for study at Fort Bragg were Prairie Warbler 

and Bachman’s Sparrow. We collected data at this study area during May-July, 2012 and 2013. 

Real-bird Surveys 

Each study area was visited twice over the course of 3 years. We established 3 survey sites (at 

least 4 km apart) in each of the 3 study areas each year for a total sample size of 18 sampling 

units (3 sites ൈ	2 years ൈ 3 study areas = 18). Survey site size ranged from 21 to 25 ha. Point 

counts and 2 types of line transects (henceforth referred to as line transects and free flights) were 

performed at each site, unless noted otherwise (survey sample sizes in Table 3.1). Real-bird 

surveys were carried out during peak singing hours generally between sunrise and 4 hr after 

sunrise from May 15 to July 23, 2011-2013. 

Point-count surveys. Standard 10-min unlimited-distance point counts were performed 

on real-bird communities at each site on Big Oaks NWR and Fort Riley. For each survey, a 
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trained human observer recorded focal species and distances from a fixed point following 

established methods derived from Reynolds et al. (1980) and Ralph et al. (1995). 

Simultaneously, the balloon was deployed on a tether system ~100-150 m above the survey 

point. The tether system was comprised of a fishing rod with 14-kg fishing line and a technician 

who operated the system from the ground. The balloon (attached to the end of the fishing line) 

was allowed to reach the desired altitude by free-spooling line from the reel. The tether system 

not only allowed for easy deployment and recovery of the balloon, technicians were also able to 

control the position of the recording system. Since the wind was likely to alter the position of the 

aerial system within the duration of a survey, the system was monitored with real-time GPS 

(global positioning system) from a laptop base station (via radio-frequency modem). If the 

balloon shifted from its location above the survey point, the technician at the base station 

instructed the tether operator to move in such a way that would correct for the change in wind. 

Real-bird point counts were not conducted at Fort Bragg because the area’s forest canopy cover 

made the tether system impractical to use. 

Line-transect surveys. Standard unlimited-distance line transects were performed along 

marked 500-m lines within each site on Big Oaks NWR and Fort Riley. For each survey, a 

trained human observer traveled at ~1 km hr-1 along the transect line and recorded individual 

detections of focal species on either side of the line. Observers followed standard line transect 

survey protocols from Burnham et al. (1980) and Buckland et al. (2001). Recorded data included 

time of detection, type of detection (aural or visual), and either the perpendicular distance of the 

bird from the line or the sighting angle and radial distance from observer to the bird at first 

detection. Simultaneously, the balloon was deployed along the transect line on the tether system, 
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~100-150 m above ground. The tether operator walked at ~5 km hr-1 to simulate a fast pace, 

more comparable to the speed the balloon would travel during un-tethered flights. The balloon 

was monitored from a laptop computer similar to point count surveys. The base station 

technician directed the tether operator to adjust the position of the balloon as needed so travel 

approximated a straight line over the designated transect.  

Free-flight surveys. Free-flight surveys followed the same procedures as line transect 

surveys except there was no tether system and the transect line was determined by the wind-

dependent flight path of the balloon. Due to the limited predictability of balloon travel during 

these surveys, free flights were only performed using real-bird communities (except on Fort 

Bragg where the forest canopy cover was not conducive to the tether system). For each survey, a 

human observer conducted a line transect survey according to the previously described line 

transect protocol. Instead of following a marked transect line, observers walked a 500-m line 

transect between the start and end GPS coordinates from the balloon flight path over the study 

site. Observer surveys began during or immediately following the balloon flight. Only flights 

that successfully traversed the established survey sites were included in the analyses. Balloon 

target altitude during free flights was ~100-250 m. 

Spot-mapping surveys. Spot-mapping surveys were conducted to provide estimates of 

bird densities from which comparisons could be made to real-bird distance-sampling and balloon 

density estimates. This method was chosen because it has been considered a standard against 

which other survey methods are compared (Bibby 2000). Spot-mapping surveys for each study 

site were performed on a semi-weekly basis, ~8 times per field season. Each repetition covered 

the extent of the survey site. Based on methods derived from Franzreb (1976), a human observer 
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started in a randomly selected corner of the survey area and systematically covered the site by 

walking at a slow, observant pace along lines that were marked with flagging every 100 m. 

Using descriptive symbols, the observer drew a detailed map of the target species detected within 

a 50-m buffer around the site, including age, sex, breeding status, behavior, and movement. Spot-

mapping surveys were performed during peak activity hours (from 0.5 hr before sunrise to 4 hr 

after sunrise).  

Simulated-bird Surveys 

In addition to real-bird surveys, point counts and line transects were also performed on 

simulated-bird communities with known populations. Simulated-bird surveys were conducted 

according to the same protocols described for real-bird surveys except only simulated birds were 

considered for detections (and thus, all observations were aural) and distances were fixed to a 

maximum of 150 m. Free-flight surveys were only conducted with simulated birds at Fort Bragg 

where forest structure made tethered line-transects impractical. Simulated surveys took place in 

the same locations as real-bird surveys with the exception of point counts at Fort Bragg, which 

were performed in open areas near the survey sites.  

The bird-simulator system was developed by personnel in the Environmental Sensors 

Lab, Department of Biosystems Engineering and Soil Science, University of Tennessee, 

Knoxville. The design of the system was modeled after the amplified mp3 playback system 

described in Simons et al. (2007). Bird simulator deployment aimed to reproduce real-bird point-

count conditions, which are primarily based on auditory cues (Faanes and Bystrak 1981). For 

simulated point counts, a network of ~16 bird song simulators was deployed, with each simulator 

on a tripod within a 150-m radius of the fixed survey point. Simulator locations were pre-
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determined by randomly selecting directional degrees (1-360) and distance (1-150 m) from the 

fixed point-center. For simulated line transects and free flights, ~20 simulators were deployed on 

tripods along either side of a 500-m transect, all within a 150-m perpendicular distance of the 

transect line. The distance down the transect line, as well the perpendicular distance from the 

line, were randomized for each simulator location. Randomizations were stratified so there were 

4 simulators along each of the 5, 100-m segments of the transect. Simulators were elevated only 

to surrounding vegetation height so observers were only able to visually detect simulators close 

to the point or line, much like the case in real-bird surveys. 

During surveys, a technician operated the simulators remotely from a laptop base station 

via radio-frequency modem. For each simulated-bird survey, a different randomly formulated 

playlist of songs was sent to each of the simulators. All songs (5 per species) were selected from 

typical field recordings of the focal species, obtained from the McCauley Library (Cornell Lab of 

Ornithology, Ithaca, NY). Species varied based on study area [Big Oaks NWR (Northern 

Bobwhite, Prairie Warbler, Field Sparrow, and Henslow’s Sparrow); Fort Bragg (Northern 

Bobwhite, Prairie Warbler, Bachman’s Sparrow, and Field Sparrow); Fort Riley (Northern 

Bobwhite, Field Sparrow, Grasshopper Sparrow, and Henslow’s Sparrow)]. Each simulator 

played an assigned bird song at an interval (5-14 s) based on the average singing rate of the 

species. The song rates used for the simulators were calculated based on interval measurements 

from random samples of audio files in the McCauley Library. Amplitude/volume of each track 

was calibrated to average amplitudes measured in the field from a sample of individuals of each 

species using a 732A sound level meter (B&K Precision Corporation, Yorba Linda, CA). 
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Simulated-bird surveys were best performed with as little real-bird activity as possible. 

Therefore, these surveys were completed late in the field season and after peak singing hours. 

However, not all real-bird vocalizations could be avoided during these field tests, especially 

because the simulators themselves provoked responses from resident birds. To remedy this 

problem, a unique tone was appended to the end of each simulated song, which identified it from 

other simulated songs and from real-bird vocalizations. Observers were instructed to only record 

the detection of bird songs which had the appended unique tones. 

Density Estimation for Observer-based Surveys 

Densities based on point-count and line-transect distance sampling were estimated using 

Program DISTANCE software, Version 6.2 release 1 (Thomas et al. 2010). Only detections of 

singing males were used in the distance models. This prevented overestimations of densities 

caused by detecting both males and females at close distances but only males at far distances. 

Only including singing males in the analyses also made the distance-sampling density estimates 

more comparable to estimates from acoustic methods (also based on singing males) and from 

spot mapping (based on male territories). Depending on model performance, either the 

conventional distance sampling or the multiple covariates distance sampling analysis engine was 

used. Covariates used during distance model selection for all species and both bird types (i.e. real 

and simulated) were study area and year. For real birds only, temporal and weather-related 

covariates were also used during model selection. These covariates were chosen a priori for each 

species based on significant covariates in the song activity models from Chapter 2.  

The analysis approach, guidelines, and model selection processes described in Marques et 

al. (2007) and Thomas et al. (2010) were followed. For each focal species and sampling method 



89 
 

(point count or line transect), the detection function was modeled globally but densities were 

estimated for each type of survey (i.e. point count, line transect, or free flight) at each site in each 

study area (sample sizes in Table 3.1). All distances for each species were first examined without 

binning or truncation, after which strategic truncation distances and/or cut-points were chosen 

based on guidelines and recommendations from Buckland et al. (2001) and Thomas et al. (2010). 

Selection of the final model was based on model performance/fit (i.e. corrected Akaike’s 

information criterion (AICc) and goodness-of-fit chi-square test) and logical feasibility of the 

detection function given the distance data. 

 Analysis of distance data from simulated-bird point counts was approached in a slightly 

different way from analysis of real-bird point counts. Bird simulator placement, for both points 

and lines, was randomized to simulate an approximately equal number of birds in each distance 

band out to 150 m. For point counts, this resulted in greater densities of simulators close to the 

observer because area increased with distance from point center. To account for this facet of the 

sampling design, simulated point counts were analyzed as line transects in Program DISTANCE. 

Line length for each survey was set to 235.62 m so the area of each point count (A = π ൈ 1502 = 

70,686 m2) equaled the area of each line transect (A = 235.62 ൈ 300 = 70,686 m2) in Program 

DISTANCE. 

 Simulated-bird line transect data were analyzed in the same way as real-bird data but line 

length for most free flights (Fort Bragg only) was adjusted in Program DISTANCE to account 

for the area of the simulator network (a 300- x 500-m rectangle) that overlapped the width of the 

surveyed transect. The area of overlap was measured using ArcMap 10.1 (ESRI  2012) by 

overlaying the simulator network area and a 150-m buffer on either side of the line transect 



90 
 

(based on the start and end GPS coordinates used by the observer). Line length for each free-

flight transect was then calculated by dividing the area of overlap by 300 m (150-m distance on 

either side of line transect). The areas of overlap were also used to calculate true simulator 

densities for the human-observer surveys. 

 Spot-map survey data were analyzed for each survey site following Bibby (2000). For 

sites with >8 visits, at least 3 detections, each ≥10 days apart qualified as a territory. For sites 

with ≤8 visits, at least 2 detections, ≥10 days apart, qualified as a territory. An active nest 

automatically qualified as a territory. Based on Bibby (2000), the total the number of delineated 

territories within the study site boundaries equaled the number of territories that fell completely 

within the site boundaries plus the proportions (visually estimated to the nearest 10th) of edge 

territories that overlapped site boundaries. 

Acoustic Data Processing 

Audio spectrograms for each balloon flight were created and annotated with Raven Pro software, 

Version 1.5 (Bioacoustics Research Program  2014). Technicians trained in aural and visual 

acoustic identification of focal species songs selected and annotated songs of each focal species 

for each flight on Raven Pro spectrograms. Total songs for each species and flight were summed 

based on the selections. I proofed the annotations of the flight audio files made by the 

technicians by examining a random sample of files, stratified across study area, year, bird type 

(i.e. real or simulated), and flight type (൒20 1-min samples per species per bird type). My song 

counts were then modeled with technician song counts as the explanatory variable using negative 

binomial regression (function “glm.nb”) with package “MASS” (Venables and Ripley 2002) in 

program R (R Core Team  2015). Song counts for each species and bird type (i.e. real or 
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simulated birds) were modeled separately. A quadratic function of technician song counts (y = x 

+ x2) was used if the function was significant (α = 0.05) and if it lowered the model ∆AICc by 2 

or more. The selected models for each species were used to adjust technician song counts for all 

audio files. In general, this approach increased the total number of detections per audio file by 

~70% for real birds and ~30% for simulated birds. 

Effective Flight Area Calculation 

Effective flight area was an adjusted measure of the flight footprint (ground area exposed to the 

balloon microphone) based on the amount of time each squared meter was available to be 

recorded by the microphone. ArcMap 10.1 and ArcMap 10.1 ModelBuilder (ESRI  2012) were 

used for the following 4 calculation steps. First, balloon elevation for each flight GPS point was 

adjusted to height above ground based on 1-m Digital Elevation Models (DEMs). Second, a 

buffer was created around each balloon GPS point based on the experimentally-tested BARS 

footprint of acoustic detection [1:1 relationship between balloon height above ground and 

footprint radius (Hockman in prep.); Figure 3.1]. Third, the layered buffers were converted to 

individual raster matrices and added together at the pixel level. This step associated each 1-m 

pixel in the flight footprint with an exposure time expressed in the number of GPS points. 

Fourth, all pixel values were summed for a total flight exposure in m2 GPS points.  

To convert the ArcMap output (in m2 GPS points) to m2 seconds, each exposure (in m2 

GPS points) was multiplied by the average time value that each GPS point represented during the 

flight (typically ~1.5 s per GPS point). Effective flight area was then calculated by dividing the 

exposure m2 seconds by the total duration (s) of the flight. For real-bird flights, effective flight 

area (m2) was used to calculate bird density from estimated bird abundance.  
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Population Estimation from Acoustic Cue Counts 

Real birds. Negative binomial regression models (based on Chapter 2 analyses) were 

used to predict bird abundances for Prairie Warbler, Bachman’s Sparrow, Field Sparrow, and 

Henslow’s Sparrow. To construct more robust models for Bachman’s Sparrow and Prairie 

Warbler at Fort Bragg, the Fort Bragg song data for 2012 and 2013 were pooled and new models 

were selected (based on criteria described in Chapter 2 methods). The variables selected in the 

Chapter 2 models of song activity were used to construct a new set of negative binomial models 

(Table 3.2) with abundance as the response variable and a forced intercept through zero. The 

forced intercept allowed the models to predict abundances that were less than the abundances in 

the original data. Grasshopper Sparrow abundances could not be estimated because abundance 

was not a significant explanatory variable for song activity (Chapter 2).  

For each balloon flight and applicable species, the corrected number of songs in the audio 

recording was first adjusted to reflect a 5-min period (songs ൈ 5 min / audio duration in 

minutes). Songs per 5 min was then input into the corresponding model in Table 3.2 along with 

applicable temporal and/or weather-related data. The predicted abundance was divided by the 

effective flight area to estimate the density of singing males per hectare. 

Simulated birds. Acoustic data collected by the balloon were used to estimate simulated-

bird abundances with the following equation: 

Equation 3.1 
ሺܵݏ݃݊݋	 ൈ ሻ݈ܽݒݎ݁ݐ݊݅	݃݊݋ݏ	݊ܽ݁ܯ

݁݉݅ݐ	݁ݎݑݏ݋݌ݔ݁	݊ܽ݁ܯ
 

Songs were based on the adjusted counts from the acoustic analysis in Raven Pro. Mean song 

interval (duration between the initiation of a song and the initiation of the subsequent song) was 
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species-specific and it varied from 5 s (Henslow’s Sparrow) to 14 s (Field Sparrow). Mean 

exposure time for the available simulators of a given species was determined by the exposure 

time (in m2 seconds; see section on Effective Flight Area Calculation). First, the flight footprint 

area was used to determine if a bird simulator was exposed to the balloon recorder. Second, the 

flight exposure model was used to approximate the duration that the simulator was exposed to 

the balloon recorder (i.e. exposure time). For each flight, the mean exposure time in Equation 3.1 

was calculated as the average of the individual exposure times of the simulators for a single 

species. Simulators that were not available for recording based on the flight footprint were not 

included in the mean exposure time. 

 Similar to the procedure used for observer-based free-flight tests, true simulator 

abundances and densities were determined by overlaying the balloon flight footprint and the area 

containing the simulator network in ArcMap 10.1 (ESRI  2012). True simulator abundance for 

comparison to each balloon flight was the total number of simulators that fell within the flight 

footprint. Density was then calculated as the true abundance divided by the area of overlap 

between the simulator network and the flight footprint. Likewise, balloon-estimated densities 

were calculated as the estimated simulator abundance (Equation 3.1) divided by the area of 

overlap between the simulator network and the flight footprint. 

Density Estimate Comparisons 

A total of 28 mixed-effects model ANOVAs (analyses of variance), followed by Tukey’s HSD 

(honest significant difference) tests, were performed on density and abundance data for real and 

simulated birds. Models were fitted with restricted maximum likelihood estimates. The fixed 

effects in real-bird models were the unique combinations of estimation method (i.e. spot map, 
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human observer, or balloon) and survey type (i.e. point count, line transect, or free flight; 

applicable to human and balloon estimates only). Fixed effects included balloon population 

estimates from point counts, line transects, and free flights; human-observer based estimates 

and/or counts from point counts, line transects, and free flights; and either the spot-map density 

estimates or the true simulator “populations” during point counts, line transects, and free flights. 

The random effect in models comparing population density estimates was study site. The random 

effect in models comparing simulator abundances was the sample unit (i.e. each individual flight 

survey). All tests were performed with program R (R Core Team  2015), using packages “lme4” 

(Bates et al. 2015), “lmerTest” (Kuznetsova et al. 2015), “pbkrtest” (Halekoh and Højsgaard 

2014), and “lsmeans” (Lenth 2015). Because significant (P < 0.05) ANOVA results did not 

necessary indicate differences in pairwise comparisons that were of interest for our analyses 

(differences, e.g., between “true PC” and “true LT” were irrelevant), only results from the 

subsequent Tukey’s HSD tests were reported with the results. In the Results section, estimates 

were reported with standard errors and all density estimates were reported in singing males per 

10 ha for ease of interpretation. 

 Real birds. Results of the 4 mixed-effects models (and subsequent Tukey’s HSD tests on 

fitted ANOVAs) that were performed on real-bird data (1 model per species for Prairie Warbler, 

Bachman’s Sparrow, Field Sparrow, and Henslow’s Sparrow) were interpreted based on pairwise 

comparisons of least-squares means and Tukey’s HSD groupings between each fixed effect and 

the spot-map estimate for the study site. The linear relationships between spot-map (x) and 

balloon (y) density estimates for each study site were also compared (with adjusted R2) to the 
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linear relationships between spot-map (x) and human-observer (y) estimates. The linear 

relationships were modeled with the “lm” function in program R (R Core Team  2015). 

Simulated birds. Because effective areas sometimes varied between the balloon and 

human surveys (see section on Density Estimation for Observer-Based Surveys), the true 

simulator populations were often different for concurrent balloon and human surveys. Thus, 

mixed-effects were modeled separately for balloon data and human data. Four sets of six models 

(one per species for Northern Bobwhite, Prairie Warbler, Bachman’s Sparrow, Field Sparrow, 

Grasshopper Sparrow, and Henslow’s Sparrow) were used to compare fixed effects and 

simulated-bird population indices. The 4 sets of models made the following comparisons for 

each species: (1) simulator abundances estimated from balloon recordings (Equation 3.1) during 

each survey vs. true abundances within the balloon footprint, (2) numbers of individual 

simulators (of a species) recorded by human observers during each survey vs. true simulator 

abundances within 150 m of the observer, (3) means for balloon-based simulator density 

estimates for each study site vs. true means of simulator densities for each study site and (4) 

human-based simulator density estimates (from Program DISTANCE) for each study site vs. true 

means of simulator densities for each study site. The linear relationships between the true density 

estimates (x) and balloon (y) density estimates for each study area were also compared (with 

adjusted R2) to the linear relationships between true density estimates (x) and human-based (y) 

distance-sampling estimates. The linear relationships were modeled with the “lm” function in 

program R (R Core Team  2015). 
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RESULTS 

Real Birds 

For Prairie Warbler, spot-map density estimates (2.92 ± 0.50) did not differ from balloon 

estimates for line transects (3.36 ± 0.65) or free flights (2.71 ± 0.55), nor from human-based 

estimates for point counts (3.59 ± 0.65) or line transects (2.55 ± 0.65) (Table 3.3). However, the 

balloon point-count estimate (5.88 ± 0.65) was greater than the spot-map estimate and the 

human-based estimate from free-flight surveys (1.12 ± 0.55) was less than the spot-map estimate. 

For Field Sparrow, spot-map (2.50 ± 1.19) and human-based (0.73-2.51 ± 1.23-1.39) density 

estimates did not differ for any survey type but all 3 balloon estimates (7.55-10.15 ± 1.23-1.39) 

were much greater than the spot-map and human estimates (Table 3.3). For Henslow’s Sparrow, 

spot-map, balloon, and human estimates did not differ for line transects or free flights. Both 

balloon (22.14 ± 2.40) and human (15.08 ± 2.40) point-count estimates of Henslow’s Sparrow 

densities were much greater than the spot-map estimates (7.84 ± 2.35). Bachman’s Sparrow 

density estimates did not differ among methods (Table 3.3). 

Based on linear models (Figure 3.2), balloon density estimates were moderately related to 

spot-map density estimates for Prairie Warbler (adjusted R2 = 0.39), Field Sparrow (adjusted R2 

= 0.46), and Henslow’s Sparrow (adjusted R2 = 0.58). The balloon density estimates for 

Bachman’s Sparrow were not significantly related to spot-map density estimates (adjusted R2 = -

0.24, P = 0.89). Human-based density estimates were strongly related to spot-map densities for 

Bachman’s Sparrow (adjusted R2 = 0.70); moderately related to spot-map densities for Prairie 

Warbler (adjusted R2 = 0.43) and Field Sparrow (adjusted R2 = 0.40); and weakly related to spot-

map densities for Henslow’s Sparrow (adjusted R2 = 0.21) (Figure 3.2). 
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Simulated Birds 

Abundance indices. Balloon abundance estimates did not differ from simulator 

abundances for Northern Bobwhite point counts or free flights; for any Prairie Warbler survey 

type; or for Bachman’s Sparrow, Grasshopper Sparrow, or Henslow’s Sparrow point counts 

(Table 3.4). Large standard errors and wide confidence intervals indicated a lack of precision in 

Northern Bobwhite estimates. Balloon estimates of simulator abundance tended to be high for 

Northern Bobwhite and Field Sparrow (Table 3.4). Line transect estimates for Northern 

Bobwhite (20.77 ± 2.03) were much greater than true abundances (3.92 ± 2.03). Balloon Field 

Sparrow estimates (4.94-8.89 ± 0.26-0.53) were greater than actual numbers of simulators (3.29-

4.22 ± 0.26-0.53) for all survey-type comparisons (i.e. point count, line transect, and free flight). 

Bachman’s Sparrow estimates based on free-flight data (5.46 ± 0.42) were greater than 

Bachman’s Sparrow simulator abundances (3.21 ± 0.42). Balloon abundance estimates based on 

line transect surveys were less than true abundances for Grasshopper and Henslow’s sparrows 

(Table 3.4).  

Mean numbers of detections made by human observers did not differ from simulator 

abundances for Northern Bobwhite point counts or line transects, for Bachman’s Sparrow free 

flights, or for Field Sparrow free flights (Table 3.5). Human observers recorded greater numbers 

of detections (compared to the numbers of simulators available within 150 m) when surveying 

Northern Bobwhite (3.72 ± 0.18; true = 2.44 ± 0.18) and Prairie Warbler (3.05 ± 0.15; true = 

2.37 ± 0.15) during free-flight surveys (Table 3.5). Mean numbers of detections made by human 

observers were less than actual simulator abundances for Prairie Warbler point counts (2.86 ± 

0.09; true = 4.05 ± 0.09) and line transects (3.37 ± 0.16; true = 4.93 ± 0.16), Bachman’s Sparrow 
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point counts (2.54 ± 0.13; true = 3.91 ± 0.13), Field Sparrow point counts (2.40 ± 0.07; true = 

3.73 ± 0.07)and line transects (3.42 ± 0.12; true = 4.79 ± 0.12), Grasshopper Sparrow point 

counts (1.65 ± 0.11; true = 3.55 ± 0.11) and line transects (2.94 ± 0.16; true = 4.44 ± 0.16), and 

Henslow’s Sparrow point counts (1.81 ± 0.10; true = 3.84 ± 0.10) and line transects (2.74 ± 0.13; 

true = 5.14 ± 0.13) (Table 3.5). 

Density estimates. None of the balloon density estimates differed from true simulator 

densities but the standard errors for the density estimates were 3.9 times greater (average 

increase for each balloon estimate) than the standard errors for the abundance estimates (Table 

3.4 and Table 3.6). The observer-based density estimates (from Program DISTANCE) did not 

differ from true simulator densities for Northern Bobwhite point counts, Prairie Warbler point 

counts or line transects, Bachman’s Sparrow point counts) or free flights, Field Sparrow point 

counts or line transects, Grasshopper Sparrow point counts or line transects, or Henslow’s 

Sparrow line transects (Table 3.7). Observer-based simulator density estimates were greater than 

true simulator densities for Northern Bobwhite line transects (4.84 ± 0.41; true = 3.24 ± 0.41) 

and free flights (6.33 ± 0.56; true = 2.94 ± 0.56), Prairie Warbler free flights (6.69 ± 0.42; true = 

3.24 ± 0.42), Field Sparrow free flights (6.22 ± 0.57; true = 3.85 ± 0.57), and Henslow’s Sparrow 

point counts (8.71 ± 0.84; true = 5.55 ± 0.84) (Table 3.7). The standard errors for observer-based 

density estimates were 3.0 times greater (average increase for each human estimate) than the 

standard errors for the abundance estimates (Table 3.5 and Table 3.7). 

Based on linear models (Figure 3.3), balloon density estimates were strongly related to 

actual simulator densities for Grasshopper Sparrow (adjusted R2 = 0.89) and moderately related 

to actual simulator densities for Prairie Warbler (adjusted R2 = 0.33) and Henslow’s Sparrow 
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(adjusted R2 = 0.30). Human-based density estimates were strongly related to actual simulator 

densities for Bachman’s Sparrow (adjusted R2 = 0.99) and Henslow’s Sparrow (adjusted R2 = 

0.80) and moderately related to Field Sparrow (adjusted R2 = 0.47). R-squared values were not 

significant for the linear models between truth and balloon Bachman’s Sparrow estimates 

(adjusted R2 = -0.46, P = 0.83) or between truth and human Grasshopper Sparrow estimates 

(adjusted R2 = -0.42, P = 0.77). 

DISCUSSION 

Cue counts have traditionally been used in wildlife population estimation as a supplement to 

distance-sampling methods (Hiby 1985, Buckland 2006). However, cue counts are the best 

approach to population estimation under the conditions of certain acoustic methods (Marques et 

al. 2013), where distance sampling is inapplicable and/or impractical. The BARS approach is one 

such method that is conducive for cue counting but unconducive for distance sampling because 

the aerial microphone array that would be needed for distance sampling is unfeasible. The 

density-estimation process for the balloon is further complicated by the need to determine area of 

detection for an aerial, mobile acoustic recording system in which the altitude is not fixed and 

hence the footprint of the microphone changes continuously. This chapter examined a cue-count 

approach to songbird density estimation from aerial acoustic recordings. The approach 

incorporated the necessary components, described by Marques et al. (2013), for this type of 

methodological evaluation. The methodology incorporated information on the acoustic behavior 

of focal species (Chapter 2) and the evaluation of performance for both real birds in which true 

population densities were unknown, and for simulated birds in which population densities were 

known and fixed in the experiment. 



100 
 

Real Birds 

We used a spot-mapping approach to provide the most accurate estimate of real, male songbird 

densities at each site. We compared the actual density estimates with ANOVAs but we also 

considered how strong the linear relationships were between estimates. Mean estimates that 

varied in magnitude, but were still strongly related, could be useful as unbiased indices to 

abundance, as opposed to actual density estimates (Schwarz and George 1999), given that 

sample sizes are large enough to avoid skewed estimates caused by random process error. 

Estimates that have relatively small standard errors are important for separating process error 

from observational error. Spot mapping is often considered the most reliable method for 

estimating the number of songbird breeding territories per unit area , but spot mapping can still 

be inaccurate (Bibby 2000). Spot-map density estimates from this study may have been biased 

low because of the minimum requirements for observations to be considered definitive male 

territories (i.e. 2 or 3 observations, depending on the number of visits, occurring ≥10 days apart) 

(Bibby 2000). 

Excluding estimates from point counts, the balloon-based density estimates did not differ 

from spot map estimates for Prairie Warbler (balloon = 2.71-3.36 ± 0.55-0.65, spot map = 2.92 ± 

0.50), Bachman’s Sparrow (balloon and spot map = 2.05 ± 0.36), or Henslow’s Sparrow (balloon 

= 13.14-14.32 ± 2.47-2.63, spot map = 7.84 ± 2.35) (Figure 3.2, Table 3.3). Thus, the acoustic 

cue-count approach mostly produced comparable results to the spot-map standard for Prairie 

Warbler, Bachman’s Sparrow, and Henslow’s Sparrow. Balloon estimates for Field Sparrow 

(7.55 ± 1.27 to 10.55 ± 1.23), however, were ~3-4 times greater than the mean spot-map estimate 

(2.50 ± 1.19), depending on the method. Although balloon estimates were high for Field Sparrow 
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and for the Prairie Warbler and Henslow’s Sparrow point counts, the estimates for these species 

were still linearly related to spot-map estimates (Field Sparrow adjusted R2 = 0.46, Prairie 

Warbler adjusted R2 = 0.39, Henslow’s Sparrow adjusted R2 = 0.58; Figure 3.2). The linear 

models between balloon estimates and spot-map estimates indicated that the balloon-based 

estimates may be used as an index of population abundance, even if actual density estimates are 

biased high. The lack of a linear relationship between balloon and spot-map estimates for 

Bachman’s Sparrow (adjusted R2 was not significant: P = 0.89) may be attributed to low sample 

sizes. Our experimental design resulted in ~3 density estimates (i.e. point count, line transect, 

and free flight) per study site per year for the other species (n = 21-30), which resulted in 

estimates with comparable confidence intervals when compared with spot-map estimate 

confidence intervals. However, Bachman’s Sparrow was only present on one study area (Fort 

Bragg) and real-bird point counts and line transects were not logistically possible because the 

forest canopy precluded use of the balloon on tether. For that reason, sample sizes for Bachman’s 

Sparrow balloon estimates were very small (n = 6) accounting for the large variance in estimates.  

Balloon estimates based on the point-count method were consistently biased high for all 3 

applicable species (Prairie Warbler, Field Sparrow, and Henslow’s Sparrow), whereas line 

transect and free flight estimates were more comparable to spot map estimates (Table 3.3). Most 

point-count surveys were conducted earlier in the season than line transect flights and free 

flights. Song counts during these time periods were more likely elevated because many avian 

species sing more frequently earlier in the season (Chapter 2). Elevated song counts could have 

led to elevated density estimates especially if the song counts occurred prior to territory 

establishment when there were likely more males (breeders and floaters) fighting over territories 
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than later in the season (S.C. Prevost, personal observation). Although the Prairie Warbler 

abundance models included day of season (Table 3.2), the models may not have been robust to 

the high activity during territory disputes early in the breeding season. 

The human distance-sampling approach and the balloon approach to density estimation 

approximated spot-map density estimates at equal rates for Prairie Warbler, Bachman’s Sparrow, 

and Henslow’s Sparrow (Table 3.3). However, distance-sampling estimates for Field Sparrow 

(0.73 ± 1.27 to 2.51 ± 1.23) did not differ from the spot-map estimate (2.50 ± 1.19), whereas 

balloon estimates (7.55 ± 1.27 to 10.55 ± 1.23) were much greater (Table 3.3). 

Simulated Birds 

Analyses of audio recordings from simulated-bird flights provided a way to evaluate the acoustic 

cue-count process under more controlled conditions where the location and timing of an 

individual bird singing was fixed by the experiment. Comparisons (balloon vs. human observer) 

were made between simulator abundance indices (actual detections and numbers of simulators 

available), as well as between density estimates. The abundance index tests had many more 

degrees of freedom than comparisons among density estimates because abundances were 

analyzed at the level of individual flights/surveys. Density estimates were compared on a 

different scale (i.e. study area by year) to allow for distance sampling estimation with sufficient 

sample sizes for the human-based estimators. 

Abundance indices. The BARS detected the most simulated songs for Northern 

Bobwhite and Field Sparrow, the species with the greatest-amplitude and lowest-frequency 

vocalizations among the focal species. This could be expected based on reduced sound 

attenuation for signals with greater amplitudes and lower frequencies (Ingård 1953, Marten and 
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Marler 1977). The balloon detected more simulated songs for Northern Bobwhite during 80% of 

flights and Field Sparrow during 75% of flights, than was expected based on the numbers of 

simulators available (and durations of exposure) within the calculated flight. These results 

suggested that the microphone footprint relationship for Northern Bobwhite and Field Sparrow 

was greater than the presumed 1:1 altitude to radius relationship. In contrast, balloon detection of 

Grasshopper and Henslow’s sparrow songs during line transect flights were low, suggesting that 

the microphone footprint relationship is less than 1:1 for these species with lesser-amplitude and 

higher-frequency songs. Given that different species may have different detectability by the 

microphone based on frequency and/or amplitude, incorporating species-specific detectability 

into the density estimation equation would improve estimates. 

Numbers of simulator detections made by human-observers during field surveys tended 

to be biased low compared to the true numbers of simulators available within 150 m (Table 3.5). 

This result was expected because observer probability of detection decreases with distance 

(Buckland et al. 2001) and 150 m may exceed the detection distance for some of the species 

being studied (e.g., Henslow’s Sparrow). Although most differences were biased low, the 

human-observer counts of Northern Bobwhite (human = 3.72 ± 0.18, true = 2.44 ± 0.18) and 

Prairie Warbler (human = 3.05 ± 0.15, true = 2.37 ± 0.15) during free-flight surveys were biased 

high (Table 3.5). This result suggested that, during free-flight surveys, observers underestimated 

distances to these species because they counted simulators that were beyond 150 m from the 

transect line (and estimated distances of ≤150 m). One other possible explanation is that 

observers had trouble distinguishing between real and simulated birds, which could have resulted 

in counts that included some real-bird observations. 
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Density estimates. There were decreases in precision (increases in standard errors) of 

balloon density estimates (Table 3.6) when compared to precision of abundance estimates (from 

which the densities were based; Table 3.4). This loss of precision was because of the decrease in 

degrees of freedom for each estimate (density estimates were based on means for each study 

area, year, and survey type). Similarly, the standard errors of the human-based estimates were 

greater for density estimates than for abundance indices (Table 3.5 and Table 3.7).  

Distance-sampling methods for simulated birds were accurate (i.e., no difference from 

simulator densities) in two-thirds of the density estimates for the 6 focal species (Table 3.7). 

Distance-sampling density estimates were more accurate than the abundance indices on which 

they were based. Of the 15 pairwise comparisons between human-based estimates and true 

simulator densities, 5 were different, whereas 11 of 15 comparisons were different for the 

abundance comparisons (Table 3.5). 

The precision of human-based estimates of simulator densities (mean standard error = 

0.45, mean degrees of freedom = 10; Table 3.7) was greater than the precision of balloon-based 

estimates (mean standard error = 1.69, mean degrees of freedom = 12; Table 3.6). The precision 

of human-based abundance indices (mean standard error = 0.13, mean degrees of freedom = 370; 

Table 3.5) was also greater than the precision of balloon-based abundance estimates (mean 

standard error = 0.65, mean degrees of freedom = 415; Table 3.4). The assumed microphone-

footprint relationship (i.e. 1:1 altitude to footprint radius ratio) may have negatively affected the 

precision of the balloon-based estimates. Balloon abundance estimates were dependent upon the 

microphone footprint because the footprint was used to determine the numbers of simulators 

available to the microphone and the expected durations of simulator exposure to the microphone. 
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Balloon simulator-density estimates were then calculated by dividing the abundance by the 

effective flight area (also determined by the microphone footprint) that overlapped the simulator 

network. If the microphone footprint was biased, both abundance and density estimates would 

also reflect this bias to a certain extent. This bias may have introduced additional variance into 

the estimates because the magnitude of bias would change with flight altitude. The microphone 

footprint was calculated (in part) by squaring the detection radius (radius = altitude), thus the 

bias associated with the microphone-footprint relationship would be lesser at lower altitudes and 

greater at higher altitudes.  

Sources of Variation for Cue-count Density Estimation 

There were several sources of variation in balloon equipment, field implementation, and in each 

phase of the analytical process that led to the songbird density estimates (Figure 3.4). Any of 

these sources, in addition to random variation in bird behavior and population dynamics, could 

have influenced the accuracy and/or precision of the bird density estimates. Although the BARS 

design incorporated some technical improvements in command and control capability during the 

course of the study (2011-2013), the microphone and recorder remained the same during the 

entire study, such that changes in the BARS were likely unrelated to variation in density 

estimation. Field personnel and balloon deployment conditions were also sources of variation. 

The balloon’s deployment state, speed, and altitude were probably the most influential sources of 

variation during balloon implementation. The deployment state depended on the survey type (i.e. 

point count, line transect, or free flight), whether or not the balloon was tethered, and the wind 

conditions under which the tether system was used. Greater wind speeds and/or gustier wind 

conditions increased the amount that the payload (and microphone) swung back and forth while 
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tethered, which would potentially increase the microphone footprint and increase the 

detectability of individuals on the footprint periphery. Background noise associated with balloon 

speed and/or wind resistance from the tether may have hindered the detection of songs of lesser 

amplitude that would have been detected on stationary recordings. Because the normal mode of 

operation for the BARS is free flying, the most valuable indicators of balloon performance 

would be obtained from density estimate evaluations based exclusively on free-flight 

deployment. Furthermore, free-flight deployment did not experience the swinging and audible 

wind-resistance problems associated with tether deployment.  

The first phase of the analytical process was acoustic data processing, during which the 

songs (or cues) of focal species were identified on audio spectrograms and tallied for each 

balloon flight. This phase had technician error in song annotations (i.e. false positives, false 

negatives, and song misidentification). Quantities of annotation errors were likely influenced by 

variations in technician skill and experience, in levels of background noise on the recordings, and 

in intensities of bird song activity. To account for song annotation error, I reviewed a sample of 

audio files (n ≥ 20 files per species for real and for simulated birds) and quantified the false 

positives and negatives within the first minute of each file. On average, I annotated 29% more 

songs that the technicians. To account for this source of variation, I modeled (with negative 

binomial regression) the total numbers of songs (in one min) annotated by me vs. by technicians 

for each species among real birds and among simulated birds. This correction procedure added 

an additional source of variation in the analytical process. Consistent, accurate audio file 

transcription is an important requirement for virtually any acoustic monitoring approach. 

Automated detection approaches may remove the human transcription error but would introduce 



107 
 

their own source of variation based on the classification errors associated with the automated 

detection algorithms (Mellinger et al. 2007, Marques et al. 2013). 

The second phase of the analytical process introduced variation associated with the 

balloon flight footprint calculation. Flight footprints were calculated based on the use of second 

by second GPS coordinates from the balloon flight and 1-m DEMs in ArcMap. Footprint 

calculation also depended on field tests that suggested the balloon had a ~45⁰ angle of detection 

(1:1 relationship between balloon altitude and a circular footprint radius). However, the results 

from simulated-bird analyses suggested that the detection footprint may differ for different 

species. The biased-high estimates for Field Sparrow and Northern Bobwhite likely can be 

accounted for because their songs are greater in amplitude and lesser in frequency than the other 

species. The exposure footprints for Field Sparrow and Northern Bobwhite, thus, were likely to 

be overly conservative. 

The third, and final, stage of the analytical process was the application of negative 

binomial regression models to estimate abundance. Inevitable sources of process error that 

affected this analytical phase included random variation in song behavior and population 

dynamics within the populations from which the abundance models were based. Balloon density 

estimates were dependent upon the number of songs on the audio recordings. Because the survey 

durations for the balloon experimental flights were relatively short (≤10 min) in comparison to a 

bird’s total song activity on any given day, there was considerable variation in density estimates. 

Longer flights may lead to more accurate results when accounting for this effect.  
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Summary 

The acoustic cue-count approach used in this study can be a viable method for making inferences 

about songbird populations. The BARS undoubtedly would be effective for covering large areas 

and for documenting the presence of rare species. The aerial balloon system approach has 

successfully been used for monitoring Golden-cheeked Warbler (Dendroica chrysoparia) and 

Black-capped Vireo (Vireo atricapillus) in Texas (Fristrup and Clark 2009). In addition, the 

aerial acoustic method appears suitable for collecting cue-count data as an index to abundance. 

The linear relationships between balloon density estimates and spot-map density estimates 

(Figure 3.2) or song-simulator density estimates (Figure 3.3) suggested that a cue-count index 

could be used as an index to relative abundance and to track population change. However, to 

actually estimate density, several improvements to the process could be considered. Such 

improvements include reducing the error and variance associated with song detectability (i.e. 

accounting for changes in the likelihood of detecting a song based on factors such as flight 

altitude, background noise, etc.), song enumeration (from acoustic recordings), and microphone 

footprint estimation.   

Although we used the balloon on a tether to allow comparison of balloon-based point and 

line-transect counts with human-observer counts, this mode of operation adds variance to the 

estimates because of noise on audio files and variation in the microphone footprint from 

swinging of the payload as the wind blows. Free-flight procedures do not have these limitations; 

they are amenable to moderately windy conditions (<4-5 m s-1) and the balloon flies freely and 

steadily without the resistance of a tether to induce swinging of the payload. For these reasons, 

free flights are recommended for future uses of BARS technology unless there is a unique 
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application that requires a tethered approach. If a tether approach is used, flights should only be 

conducted under light wind conditions (ideally <1.5 m s-1).  

 Further research is needed to better understand the relationships between acoustic aerial 

detection probability and the following: (1) flight speed and altitude, (2) background noise, and 

(3) song characteristics (e.g., frequency). These factors, once better understood, could be 

incorporated into models for balloon detection probability to produce more accurate, species-

specific calculations of flight footprints.  

 The issue of human error associated with audio data processing is already being 

addressed in the field of wildlife acoustic monitoring. Numerous studies have focused on testing 

the implementation of unbiased acoustic-analysis programs (Potamitis et al. 2014, Stowell and 

Plumbley 2014, Rocha et al. 2015, Sebastián‐González et al. 2015). The automation of the 

acoustic detection process with software programs is not only necessary to enable researchers to 

analyze the vast quantities of audio data being collected, it is also necessary to reduce variation 

and eliminate human bias in acoustic analysis procedures (Marques et al. 2013). 
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CHAPTER 3 APPENDIX 

Table 3.1. Sample sizes for acoustic and human-observer surveys at 3 Department of Defense 
study areas, 2011-2013. Dashes indicate that there were too few surveys (<3) to perform 
analyses. N/a (not applicable) indicates that surveys of the corresponding type and location were 
not attempted.  
   Real bird surveys Simulated-bird surveys 
Study 
area 

Year Site Point 
count 

Line 
transect 

Free 
flight 

Point 
count 

Line 
transect 

Free 
flight 

Big Oaks 
NWR 

2011 46 10 9 - 8 10 n/a 
52 9 9 - 9 8 n/a 
57 9 10 - 6 9 n/a 

2012 46 12 12 12 12 - n/a 
52 7 12 12 12 4 n/a 
57 12 12 12 9 10 n/a 

Fort Riley 2011 56 4 9 3 - 3 n/a 
90 6 11 - 9 7 n/a 
95 - 6 8 8 - n/a 

2013 39 10 4 7 10 10 n/a 
49 6 - 10 10 8 n/a 
65 12 - 10 10 4 n/a 

Fort Bragg 2012 Dragon n/a n/a 10 23 n/a 23 
Sanders n/a n/a 11 12 n/a n/a 
Sicily n/a n/a 11 n/a n/a n/a 

2013 Dragon n/a n/a 10 30 n/a 20 
Jones n/a n/a 12 n/a n/a n/a 
Sanders n/a n/a 11 n/a n/a n/a 
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Table 3.2. Prediction models used to estimate abundances of 4 focal species from song cue 
counts of balloon audio recordings collected at 3 Department of Defense study areas, 2011-2013. 
Songs = total songs in 5 min; day of season = modified Julian date (May 1 = 1); Yr binary code = 
0 (indicating 2012 data) or 1 (indicating 2013 data); pressure (mm of mercury) = altimeter 
setting transformed by subtracting the mean (761) from each value; time of day = modified 
Julian time divided by 5 (30-min before sunrise = 0, 25-min before sunrise = 1). 
Species Study area Abundance prediction model 

Prairie 
Warbler 

Big Oaks 
NWR 

Abundance ൌ

expሾሺ4.33 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺെ4.71 ∗ 10ିଵଶሻሺݕܽܦ	݂݋ ଺ሻሿ݊݋ݏܽ݁ݏ

Fort Bragg Abundance ൌ

expሾሺ2.43 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺ1.19 ∗ 10ିଶሻሺݕܽܦ	݂݋	݊݋ݏܽ݁ݏሻ ൅  

							ሺെ1.06 ∗ 10
ିଵሻሺܻݎ ݕݎܾܽ݊݅  ሻሿ݁݀݋ܿ

Bachman's 
Sparrow 

Fort Bragg Abundance ൌ

	expሾሺ2.61 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺ1.56 ∗ 10ିଶሻሺܲ݁ݎݑݏݏ݁ݎଶሻሿ 

Field 
Sparrow 

Big Oaks 
NWR 

Abundance ൌ

	expሾሺ2.34 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺ3.27 ∗ 10ିଶሻ	ሺܶ݅݉݁	݂݋  ሻሿݕܽ݀

Fort Riley Abundance ൌ

expሾሺ1.43 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺ2.12 ∗ 10ିଶሻሺܶ݅݉݁	݂݋	ݕܽ݀ሻ ൅ 

							ሺ2.50 ∗ 10
ିଶሻሺܲ݁ݎݑݏݏ݁ݎሻሿ 

Henslow's 
Sparrow 

Big Oaks 
NWR 

Abundance ൌ

	expሾሺ6.48 ∗ 10
ିଷሻሺܵݏ݃݊݋ሻ ൅ ሺ3.47 ∗ 10ିଶሻሺܶ݅݉݁	݂݋	ݕܽ݀ሻሿ 
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Table 3.3. Real-bird density estimate comparisons: Least-squares means and Tukey’s HSD test 
results among real-bird density estimation methods for 4 species at 3 Department of Defense 
study areas, 2011-2013. Density estimation methods were grouped first by species and then as 
follows: spot mapping (spot map); human-observer point counts (human PC), line transects 
while balloon was tethered (human LT), and line transects while balloon was free-flown (human 
FF); balloon point counts (balloon PC), balloon tethered line transects (balloon LT), and balloon 
free flights (balloon FF). The least-squares means were based on estimated densities of male 
territories per 10 ha for each site/year where a species was expected to be present (sample sizes 
for balloon and human density estimates per site are in Table 3.1; there was only one spot-map 
density estimate per site/year). See Methods section for the density estimation procedures. 
Species Density 

estimation 
method 

Least-
squares 
mean 

SE df Lower 
95% 
CI 

Upper 
95% 
CI 

Tukey 
Group

Prairie Warbler 
(Setophaga discolor) 

Human FF 1.12 0.55 31 0.00 2.25 A 
Human LT 2.55 0.65 39 1.24 3.86 AB 
Balloon FF 2.71 0.55 31 1.59 3.83 AB 
Spot map 2.92 0.50 25 1.89 3.95 B 
Balloon LT 3.36 0.65 39 2.05 4.67 B 
Human PC 3.59 0.65 39 2.28 4.90 B 
Balloon PC 5.88 0.65 39 4.57 7.19 C 

Bachman's Sparrow 
(Peucaea aestivalis) 

Human FF 0.98 0.36 14 0.20 1.76 A 
Spot map 2.05 0.36 14 1.27 2.82 A 
Balloon FF 2.05 0.36 14 1.28 2.83 A 

Field Sparrow 
(Spizella pusilla) 

Human LT 0.73 1.27 43 0.00 3.29 A 
Human FF 0.84 1.39 50 0.00 3.63 A 
Spot map 2.50 1.19 38 0.09 4.90 A 
Human PC 2.51 1.23 40 0.03 4.99 A 
Balloon LT 7.55 1.27 43 4.99 10.12 B 
Balloon FF 9.36 1.39 50 6.57 12.15 B 
Balloon PC 10.15 1.23 40 7.67 12.63 B 

Henslow's Sparrow 
(Ammodramus henslowii) 

Human FF 4.23 2.63 34 0.00 9.58 A 
Human LT 7.29 2.47 29 2.24 12.34 AB 
Spot map 7.84 2.35 25 3.00 12.68 AB 
Balloon FF 13.14 2.63 34 7.79 18.49 BC 
Balloon LT 14.32 2.47 29 9.27 19.36 BC 
Human PC 15.08 2.40 26 10.14 20.01 C 
Balloon PC 22.14 2.40 26 17.20 27.08 D 
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Table 3.4. Balloon simulated-bird abundance estimate comparisons: Least-squares means and 
Tukey’s HSD test results between balloon estimates of simulated-bird abundance and the true 
simulated-bird abundance within the flight footprint for 6 species at 3 Department of Defense 
study areas, 2011-2013. Abundance indicators were balloon point counts (balloon PC) and 
corresponding truth (true PC), balloon tethered line transects (balloon LT) and corresponding 
truth (true LT), and balloon free flights (balloon FF) and corresponding truth (true FF). The 
least-squares means were based on estimated numbers (balloon) and true numbers (true) of bird 
simulators within the flight footprint for each test. See Methods section for the balloon 
estimation procedure of simulated-bird abundance. 
Species Abundance 

indicator 
Least-
squares 
means 

SE df Lower 
95% 
CI 

Upper 
95% 
CI 

Tukey 
Group 

Northern Bobwhite True FF 3.10 2.71 584 0.00 8.43 AB 
 True PC 3.41 1.29 584 0.87 5.94 AB 
 True LT 3.92 2.03 584 0.00 7.91 AB 
 Balloon PC 5.62 1.29 584 3.09 8.16 AB 
 Balloon FF 12.97 2.71 584 7.64 18.30 BC 
 Balloon LT 20.77 2.03 584 16.77 24.76 C 
Prairie Warbler True FF 3.42 0.34 402 2.74 4.09 AB 
 True PC 3.55 0.21 402 3.15 3.95 AB 
 True LT 4.27 0.35 402 3.58 4.96 ABC 
 Balloon FF 4.35 0.34 402 3.67 5.03 ABC 
 Balloon PC 4.47 0.21 402 4.07 4.88 BC 
 Balloon LT 5.20 0.35 402 4.51 5.89 C 
Bachman's Sparrow True FF 3.21 0.42 210 2.39 4.04 A 
 Balloon PC 3.24 0.34 210 2.58 3.91 A 
 True PC 3.57 0.34 210 2.90 4.24 A 
 Balloon FF 5.46 0.42 210 4.63 6.29 B 
Field Sparrow True PC 3.29 0.26 582 2.79 3.79 A 
 True FF 3.31 0.53 582 2.27 4.35 AB 
 True LT 4.22 0.40 582 3.43 5.01 AB 
 Balloon PC 4.94 0.26 582 4.44 5.44 B 
 Balloon FF 7.39 0.53 582 6.35 8.43 C 
 Balloon LT 8.89 0.40 582 8.10 9.68 C 
Grasshopper Sparrow Balloon LT 2.50 0.27 180 1.97 3.03 A 
 Balloon PC 2.95 0.19 180 2.58 3.32 AB 
 True PC 3.05 0.19 180 2.68 3.42 AB 
 True LT 3.67 0.27 180 3.14 4.20 B 
Henslow's Sparrow Balloon PC 2.96 0.17 372 2.61 3.30 A 
 Balloon LT 3.19 0.23 372 2.74 3.63 A 
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Table 3.4 (continued) 
Species Abundance 

indicator 
Least-
squares 
means 

SE df Lower 
95% 
CI 

Upper 
95% 
CI 

Tukey 
Group 

 True PC 3.28 0.17 372 2.94 3.62 A 
 True LT 4.44 0.23 372 4.00 4.89 B 
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Table 3.5. Human-observer simulated-bird count comparisons: Least-squares means and Tukey’s 
HSD test results between numbers of simulated birds detected by humans and the true simulated-
bird abundances within 150 m of the observer for 6 species at 3 Department of Defense study 
areas, 2011-2013. Abundance indicators were point counts (human PC) and corresponding truth 
(true PC), line transects while balloon was tethered (human LT) and corresponding truth (true 
LT), and line transects while balloon was free-flown (human FF) and corresponding truth (true 
FF). The least-squares means were based on the numbers of simulators detected (human) and the 
true number (true) of bird simulators within 150 m of the observer. 
Species Abundance 

indicator 
Least-
squares 
means 

SE df Lower 
95% 
CI 

Upper 
95% 
CI 

Tukey 
Group 

Northern Bobwhite True FF 2.44 0.18 537 2.10 2.79 A 
Human PC 3.62 0.09 537 3.46 3.79 B 
Human FF 3.72 0.18 537 3.38 4.07 B 
True PC 3.86 0.09 537 3.70 4.03 B 
True LT 4.77 0.13 537 4.50 5.03 C 
Human LT 5.18 0.13 537 4.91 5.44 C 

Prairie Warbler True FF 2.37 0.15 345 2.07 2.67 A 
Human PC 2.86 0.09 345 2.68 3.04 AB 
Human FF 3.05 0.15 345 2.75 3.35 B 
Human LT 3.37 0.16 345 3.06 3.67 B 
True PC 4.05 0.09 345 3.87 4.23 C 
True LT 4.93 0.16 345 4.62 5.23 D 

Bachman's Sparrow True FF 2.49 0.16 182 2.17 2.80 A 
Human FF 2.53 0.16 182 2.22 2.85 A 
Human PC 2.54 0.13 182 2.28 2.79 A 
True PC 3.91 0.13 182 3.65 4.16 B 

Field Sparrow Human PC 2.40 0.07 521 2.26 2.55 A 
True FF 2.60 0.15 521 2.31 2.90 AB 
Human FF 2.98 0.15 521 2.68 3.28 BC 
Human LT 3.42 0.12 521 3.19 3.65 CD 
True PC 3.73 0.07 521 3.58 3.87 D 
True LT 4.79 0.12 521 4.56 5.02 E 

Grasshopper Sparrow Human PC 1.65 0.11 182 1.42 1.87 A 
Human LT 2.94 0.16 182 2.63 3.25 B 
True PC 3.55 0.11 182 3.33 3.77 C 
True LT 4.44 0.16 182 4.13 4.75 D 

Henslow's Sparrow Human PC 1.81 0.10 307 1.61 2.01 A 
Human LT 2.74 0.13 307 2.49 2.99 B 
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Table 3.5 (continued) 
Species Abundance 

indicator 
Least-
squares 
means 

SE df Lower 
95% 
CI 

Upper 
95% 
CI 

Tukey 
Group 

 True PC 3.84 0.10 307 3.64 4.04 C 
 True LT 5.14 0.13 307 4.88 5.39 D 
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Table 3.6. Balloon simulated-bird density estimate comparisons: Least-squares means and 
Tukey’s HSD test results between true simulated-bird densities (based on the overlap of the 
simulator network and the balloon flight footprint) and densities estimated with the balloon 
method for 6 species at 3 Department of Defense study areas, 2011-2013. Density estimation 
methods were point counts (balloon PC) and corresponding truth (true PC), tethered line 
transects (balloon LT) and corresponding truth (true LT), and free flights (balloon FF) and 
corresponding truth (true FF). The least-squares means were based on mean estimated densities 
(balloon) and mean true densities (true) of bird simulators for each study site. See Methods 
section for the balloon estimation procedure of simulated-bird densities. 
Species Density 

estimation 
method 

Least-
squares 
means 

SE df Lower 
95% 
CI 

Upper 
95% 
CI 

Tukey 
Group 

Northern Bobwhite True LT 2.87 3.02 18 0.00 9.22 A 
 True FF 3.63 4.38 18 0.00 12.82 A 
 True PC 6.14 2.40 18 1.10 11.19 A 
 Balloon PC 11.92 2.40 18 6.88 16.97 A 
 Balloon LT 16.14 3.02 18 9.80 22.48 A 
 Balloon FF 16.54 4.38 18 7.34 25.74 A 
Prairie Warbler True LT 3.02 1.79 10 0.00 7.01 A 
 True FF 4.12 1.79 10 0.13 8.11 A 
 Balloon LT 4.61 1.79 10 0.62 8.60 A 
 Balloon FF 5.78 1.79 10 1.79 9.77 A 
 True PC 6.28 1.18 10 3.64 8.92 A 
 Balloon PC 8.82 1.18 10 6.19 11.46 A 
Bachman's Sparrow True FF 3.73 1.21 4 0.36 7.09 A 
 Balloon PC 5.64 1.21 4 2.28 9.00 A 
 True PC 5.74 1.21 4 2.38 9.10 A 
 Balloon FF 6.92 1.21 4 3.56 10.28 A 
Field Sparrow True LT 2.98 1.26 18 0.34 5.63 A 
 True FF 4.22 1.81 18 0.41 8.03 AB 
 True PC 5.93 1.00 17 3.81 8.04 AB 
 Balloon LT 6.73 1.26 18 4.09 9.37 AB 
 Balloon FF 9.27 1.81 18 5.46 13.08 AB 
 Balloon PC 9.88 1.00 17 7.77 12.00 B 
Grasshopper Sparrow Balloon LT 1.99 1.13 3.8 0.00 5.20 A 
 True LT 2.77 1.13 3.8 0.00 5.98 A 
 True PC 6.01 1.13 3.8 2.79 9.22 A 
 Balloon PC 6.56 1.13 3.8 3.35 9.77 A 
Henslow's Sparrow Balloon LT 2.31 1.00 12 0.14 4.48 A 
 True LT 3.20 1.00 12 1.03 5.37 A 
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Table 3.6 (continued) 
Species Density 

estimation 
method 

Least-
squares 
means 

SE df Lower 
95% 
CI 

Upper 
95% 
CI 

Tukey 
Group 

 True PC 6.39 1.00 12 4.22 8.56 A 
 Balloon PC 6.60 1.00 12 4.43 8.77 A 
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Table 3.7. Human-observer simulated-bird density estimate comparisons: Least-squares means 
and Tukey’s HSD test results between true simulated-bird densities within 150 m of the observer 
and densities estimated by human observers for 6 species at 3 Department of Defense study 
areas, 2011-2013. Density estimation methods were point counts (human PC) and corresponding 
truth (true PC), line transects while balloon was tethered (human LT) and corresponding truth 
(true LT), and line transects while balloon was free-flown (human FF) and corresponding truth 
(true FF). The least-squares means were based on the estimated densities of bird simulators 
(human) and the true densities (true) of bird simulators within 150 m of the observer. See 
Methods section for the human-observer density estimation procedure. 
Species Density 

estimation 
method 

Least-
squares 
means 

SE df Lower 
95% 
CI 

Upper 
95% 
CI 

Tukey 
Group

Northern Bobwhite True FF 2.94 0.56 18 1.76 4.12 AB 
 True LT 3.24 0.41 16 2.37 4.10 A 
 Human LT 4.84 0.41 16 3.98 5.70 BC 
 True PC 5.50 0.34 13 4.76 6.23 C 
 Human PC 6.06 0.34 13 5.33 6.80 C 
 Human FF 6.33 0.56 18 5.14 7.51 C 
Prairie Warbler True FF 3.24 0.42 10 2.31 4.17 A 
 True LT 3.30 0.42 10 2.37 4.22 A 
 Human LT 3.74 0.42 10 2.81 4.67 A 
 True PC 5.78 0.27 10 5.17 6.39 B 
 Human FF 6.69 0.42 10 5.77 7.62 B 
 Human PC 6.90 0.27 10 6.29 7.51 B 
Bachman's Sparrow True FF 3.36 0.22 1 1.34 5.38 A 
 Human FF 3.65 0.22 1 1.63 5.67 A 
 True PC 5.52 0.22 1 3.50 7.54 B 
 Human PC 5.95 0.22 1 3.93 7.97 B 
Field Sparrow True LT 3.15 0.41 16 2.28 4.02 A 
 Human LT 3.63 0.41 16 2.76 4.50 A 
 True FF 3.85 0.57 18 2.65 5.05 AB 
 True PC 5.33 0.34 13 4.60 6.07 BC 
 Human PC 5.72 0.34 13 4.99 6.45 BC 
 Human FF 6.22 0.57 18 5.01 7.42 C 
Grasshopper Sparrow True LT 2.90 0.43 4 1.69 4.11 A 
 Human LT 4.59 0.43 4 3.38 5.81 A 
 Human PC 4.77 0.43 4 3.56 5.98 A 
 True PC 5.01 0.43 4 3.80 6.23 A 
Henslow's Sparrow True LT 3.30 0.84 7 1.30 5.29 A 
 Human LT 4.71 0.84 7 2.72 6.70 A 
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Table 3.7 (continued) 
Species Density 

estimation 
method 

Least-
squares 
means 

SE df Lower 
95% 
CI 

Upper 
95% 
CI 

Tukey 
Group

 True PC 5.55 0.84 7 3.55 7.54 A 
 Human PC 8.71 0.84 7 6.72 10.70 B 
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Figure 3.1. Relationship between the BARS (Balloon Aerial Recording System) microphone 
altitude and the circular footprint radius. 
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Figure 3.2. Real-bird density scatterplots of spot-map estimates (x-axis) by method (i.e. balloon, 
human, or spot map) estimates (y-axis) for Prairie Warbler (A), Bachman’s Sparrow (B), Field 
Sparrow (C), and Henslow’s Sparrow (D), at 3 Department of Defense study areas, 2011-2013. 
Each point for method=balloon or method=human represents a density estimate for a study site 
(sample sizes for each estimate are in Table 3.1). Linear models with 95% confidence intervals 
are plotted for balloon (dark-gray dashed line) and human (light-gray dashed line) density 
estimates, as each relates to its corresponding spot-map estimate. Solid black lines are the best 
estimation of actual bird densities at the study sites (plotted with spot-map estimates on both x 
and y axes for each study site). Adjusted R2 values were obtained with the linear model (“lm”) 
function in program R (R Core Team  2015). 
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Figure 3.3. Simulated-bird density scatterplots of true (x-axis) by estimated (balloon or human) densities (y-axis) for Northern 
Bobwhite (A), Prairie Warbler (B), Bachman’s Sparrow (C), Field Sparrow (D), Grasshopper Sparrow (E), and Henslow’s Sparrow 
(F), at 3 Department of Defense study areas, 2011-2013. Each point for method=balloon or method=human represents a density 
estimate for a study area and year (sample sizes for each estimate are in Table 3.1). Linear models with 95% confidence intervals are 
plotted for balloon (solid line) and human (dashed line) density estimates, as each relates to its corresponding true simulator density. 
Adjusted R2 values were obtained with the linear model (“lm”) function in program R (R Core Team  2015). 
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Figure 3.3 (continued) 
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Figure 3.4. Analytical pathway and sources of variation for BARS (Balloon Aerial Recording System) density estimation. 
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CHAPTER 4 

Conclusions 
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The primary objectives of this thesis were (1) to evaluate the extent to which song cue-

counts can be used to predict songbird abundance and develop predictive models on this basis, 

and (2) to establish and implement an analytical pathway for bird population estimation from 

acoustic data recorded with the BARS. We succeeded in both of these objectives for 4 of 5 of our 

focal species. We found that day of season, time of day, temperature, wind speed, and 

atmospheric pressure were related to song activity but only 1-2 of these factors were influential 

for each species. Variation in song activity across species, study areas, and years challenges the 

broad applicability of the abundance prediction models. 

 This study documented the ability of the BARS to document species presence/absence, 

relative abundance, and density. Although documenting presence/absence and relative 

abundance of the focal species was generally successful, success in generating accurate density 

estimates varied by species. Based on territory densities, estimated with the best method 

available (spot mapping), the balloon analytical method successfully predicted densities of 

Prairie Warbler (line transects and free flights), Bachman’s Sparrow, and Henslow’s Sparrow 

(line transects and free flights), but over-estimated Field Sparrow densities. Field tests of the 

BARS with simulated-bird communities (and known song density) revealed that a species-

specific microphone footprint is needed to improve density estimates. Future improvements in 

automated audio file analysis will also likely lead to more consistent acoustic monitoring results. 

RECOMMENDATIONS FOR FUTURE RESEARCH 

The BARS has wide terrestrial applicability across large and/or limited-access areas and across 

taxa that produce acoustic signals. The technology would be extremely effective for covering 

large areas and documenting species presence. The acoustic cue-count approach described in 
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Chapter 3 is also a viable method for making inferences about songbird populations. Given 

known relationships between acoustic cue densities and animal abundances (Chapter 2), the 

aerial acoustic method can provide population indices based on cue-count data. However, there 

are several improvements that we recommend for future research and applications of the BARS 

or similar technologies. 

Flight Footprint of Detection 

The effective area surveyed must be measured before population density estimates can be 

calculated. The BARS microphone footprint depends upon the flight altitude. From this study, 

we also determined that the size of the footprint depends on the signal of interest (Chapter 3). 

Thus, different bird songs have different detection footprints. Our results suggested that a 1:1 

relationship between flight altitude and footprint radius is appropriate for Prairie Warbler but this 

radius was too small for Northern Bobwhite, Bachman’s Sparrow, and Field Sparrow and too 

large for Grasshopper and Henslow’s sparrows. More accurate footprint estimates are needed to 

generate accurate estimates of bird densities from aerial acoustic data across all species. 

Song Enumeration 

To ensure the best possible accuracy and precision in population estimation, the song 

enumeration process must be consistent when determining cue rates and when counting songs to 

estimate abundance. If songs are enumerated manually by humans, the same method, 

spectrogram parameters (if applicable), and personnel should be employed for all data used in 

the abundance estimation process to minimize variation. Likewise, if automated detection 

software is used for song enumeration (as recommended), the same software and settings must 

be employed for cue rate data and for analysis of sample data. Audio files also need to be 
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screened so that files with background noise that interfere with detection consistency (e.g., 

insects, traffic, etc.) are not included in the analysis. 

Detection Probability 

Further research is needed to better estimate aerial acoustic detection probabilities. The 2 most 

important factors in determining BARS detection probability were addressed in chapters 2 and 3. 

Unlike many human-based methods, the abundance prediction models, based on cue counts, 

accounted for birds that were silent during a given count event (Chapter 2). In Chapter 3, a 

general detection probability, assuming a cue was available, was incorporated into the flight 

exposure-area calculation. Detection depended on the physical location of the balloon and the 

duration of the flight. However, detection likely depended on more than what was accounted for 

in the effective flight area calculation. Detection of a cue may depend upon cue amplitude and/or 

frequency (Chapter 3) or upon the background noise and interfering sounds (i.e. sounds that are 

similar to target sounds) on an audio recording (Marques et al. 2013). Thus, the effects of cue 

characteristics and acoustic noise/interference should be considered. 
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Table A.1. Data ranges for continuous variables in negative binomial models developed from song cue counts of 5 songbird species on 
3 Department of Defense installations, 2012-2013 (Chapter 2). Total songs = total songs in 5 min; day of season = modified Julian 
date (May 1 = 1); time of day = modified Julian time divided by 5 (30-min before sunrise = 0, 25-min before sunrise = 1); pressure 
(mm of mercury) = altimeter setting transformed by subtracting the mean (761) from each value. 
Species Study area Year Total 

songs 
Abundance 
(males) 

Day 
of 
season 

Time of 
day 

Temperature 
(C⁰) 

Wind 
speed 
(m/s) 

Pressure 
(mm/Hg) 

Prairie Warbler Big Oaks NWR 2012 0-59 2-5 15-81 0.0-53.0 8-29 0.0-4.9 -2.30-4.30 

Fort Bragg 2012 0-58 1-4 34-76 6.6-52.6 14-30 0.0-4.6 -6.59-5.86 

2013 0-63 1-3 22-74 6.0-53.0 8-27 0.0-4.0 -5.84-6.84 

Bachman’s 
Sparrow 

Fort Bragg 2012 0-83 1-6 22-76 6.2-53.0 14-30 0.0-4.5 -4.84-5.86 

2013 0-56 1-3 27-72 6.2-52.6 12-28 0.0-6.7 -5.84-7.10 

Field Sparrow Big Oaks NWR 2012 0-104 3-8 15-81 0.6-53.2 8-29 0.0-6.7 -2.30-4.30 

Fort Riley 2013 0-128 3-5 18-84 0.4-52.8 12-29 0.0-9.4 -8.65-6.33 

Grasshopper 
Sparrow 

Fort Riley 2013 0-96 3-5 17-84 0.0-53.0 12-29 0.0-9.4 -7.38-8.37 

Henslow’s Sparrow Big Oaks NWR 2012 0-394 2-8 15-81 1.2-53.0 8-29 0.0-4.9 -3.06-4.30 



137 
 

Table A.2. Sets of the top candidate negative binomial regression models (response variable = total songs in 5-min samples of audio 
recordings collected during May-July) for 5 songbird species on 3 Department of Defense installations, 2012-2013. Included in the 
table are number of parameters (K), degrees of freedom (df), difference in the corrected Akaike’s Information Criterion when 
compared to top model (∆AICc), Akaike weight (wi), and corrected Akaike’s Information Criterion (AICc) of the top model in each 
candidate set. The models selected as “best” models, based on selection criteria, are designated with an asterisk (*). 
Species Study 

area 
Year Model K df ∆AICc wi AICc 

Prairie 
Warbler 

All All Abundance + Study Site + Day of season3  4 358 0.00 0.50 1832.38

Abundance + Study Site + Day of season4  4 358 0.94 0.31  

Abundance + Study Site + Day of season2  4 358 3.91 0.07  

Abundance + Study Site + Day of season5  4 358 4.43 0.05  

Abundance + Day of season4  3 359 5.95 0.03  

Big 
Oaks 
NWR 

2012 *Abundance + Day of season6  3 128 0.00 0.42 859.71 

Abundance + Sample type + Day of season6  4 127 0.76 0.28  

Abundance + Day of season5  3 128 2.11 0.14  

Abundance + Sample type + Day of season5  4 127 2.64 0.11  

Abundance + Day of season4  3 128 5.79 0.02  

Fort 
Bragg 

All Abundance + Year + Day of season + Time of day 5 226 0.00 0.25 887.69 

Abundance + Year + Day of season 4 227 1.26 0.14  

Abundance + Year + Day of season + Time of day + Pressure 6 225 1.87 0.10  

Abundance + Temperature + Year + Day of season + Time of day 6 225 2.09 0.09  

Abundance + Year + Day of season + Time of day + Wind speed 6 225 2.11 0.09  

2012 Abundance + Day of season2 + Day of season + Wind speed 5 105 0.00 0.23 353.75 

Abundance + Temperature + Day of season2 + Day of season + Wind 
speed 

6 104 1.85 0.09  
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Table A.2 (continued) 
Species Study 

area 
Year Model K df ∆AICc wi AICc 

   *Abundance + Day of season 3 107 1.96 0.09  

Abundance + Day of season2 + Day of season6  4 106 2.42 0.07  

Abundance + Day of season2 + Day of season5  4 106 2.76 0.06  

2013 Abundance + Day of season5  3 118 0.00 0.16 509.12 

Abundance + Day of season6  3 118 0.35 0.13  

*Abundance + Day of season4  3 118 0.43 0.13  

Abundance + Day of season3  3 118 2.08 0.06  

Abundance + Day of season2 + Day of season5  4 117 2.14 0.05  

Bachman's 
Sparrow 

Fort 
Bragg 

All Abundance + Temperature + Year + Day of season + Pressure 6 222 0.00 0.24 1280.85

Abundance + Temperature + Year + Day of season + Time of day 6 222 0.65 0.17  

Abundance + Temperature + Year + Day of season + Wind speed + 
Pressure 

7 221 1.89 0.09  

Abundance + Temperature + Year + Day of season + Time of day + 
Pressure 

7 221 2.12 0.08  

Abundance + Temperature + Year + Day of season + Time of day + 
Wind speed 

7 221 2.66 0.06  

2012 Abundance + Day of season + Time of day 4 121 0.00 0.07 661.51 

Abundance + Day of season + Time of day + Wind speed 5 120 0.09 0.07  

Abundance + Sample type + Day of season + Time of day 5 120 0.17 0.07  

Abundance + Sample type + Day of season + Time of day + Wind 
speed 

6 119 0.30 0.06  

*Abundance + Day of season 3 122 0.52 0.05  
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Table A.2 (continued) 
Species Study 

area 
Year Model K df ∆AICc wi AICc 

   Abundance + Sample type + Day of season 4 121 0.66 0.05  

Abundance + Day of season + Wind speed 4 121 1.41 0.04  

Abundance + Sample type + Day of season + Wind speed 5 120 1.58 0.03  

Abundance + Day of season2 3 122 1.64 0.03  

Abundance + Temperature + Day of season 4 121 1.77 0.03  

Abundance + Temperature + Day of season + Time of day + Wind 
speed 

6 119 1.80 0.03  

Abundance + Day of season + Time of day + Pressure 5 120 1.84 0.03  

Abundance + Temperature + Day of season + Time of day 5 120 1.91 0.03  

Abundance + Temperature + Sample type + Day of season 5 120 1.94 0.03  

Abundance + Day of season + Pressure 4 121 1.96 0.03  

Abundance + Day of season + Time of day + Pressure + Wind speed 6 119 2.00 0.03  

2013 Abundance + Pressure3  3 100 0.00 0.07 609.32 

Abundance + Temperature3  3 100 0.78 0.05  

Abundance + Temperature2  3 100 0.83 0.05  

*Abundance + Temperature 3 100 0.90 0.05  

*Abundance + Pressure 3 100 1.29 0.04  

Abundance + Wind speed3  3 100 1.81 0.03  

Abundance + Temperature + Pressure3  4 99 1.87 0.03  

Abundance + Pressure3 + Wind speed 4 99 1.90 0.03  

Abundance + Wind speed2  3 100 1.91 0.03  
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Table A.2 (continued) 
Species Study 

area 
Year Model K df ∆AICc wi AICc 

   Abundance + Temperature + Pressure 4 99 1.96 0.03  

Abundance + Pressure3 + Time of day 4 99 2.00 0.03  

Field 
Sparrow 

All All Abundance + Temperature + Study Site + Time of day + Pressure 6 265 0.00 0.45 2304.33

Abundance + Temperature + Study Site + Day of season + Time of 
day + Pressure 

7 264 1.92 0.17  

Abundance + Temperature + Study Site + Time of day + Wind speed + 
Pressure 

7 264 2.10 0.16  

Abundance + Temperature + Study Site + Day of season + Time of 
day + Wind speed + Pressure 

8 263 4.03 0.06  

Abundance + Study Site + Time of day + Pressure 5 266 4.48 0.05  

Big 
Oaks 
NWR 

2012 Abundance + Temperature + Day of season + Time of day 5 135 0.00 0.13 1129.84

*Abundance + Time of day 3 137 0.92 0.08  

Abundance + Temperature + Day of season + Time of day + Wind 
speed 

6 134 0.96 0.08  

Abundance + Temperature + Day of season + Time of day + Pressure 6 134 1.24 0.07  

Abundance + Temperature + Sample type + Day of season + Time of 
day 

6 134 1.72 0.06  

Abundance + Temperature + Time of day 4 136 2.15 0.05  

Fort 
Riley 

2013 Abundance + Time of day + Wind speed + Pressure 5 126 0.00 0.14 1148.53

*Abundance + Time of day + Pressure 4 127 0.53 0.10  

Abundance + Day of season + Time of day + Pressure + Wind speed 6 125 1.73 0.06  

Abundance + Time of day + Pressure2  4 127 1.83 0.05  

Abundance + Time of day + Pressure3  4 127 1.87 0.05  
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Table A.2 (continued) 
Species Study 

area 
Year Model K df ∆AICc wi AICc 

   Abundance + Temperature + Time of day + Pressure 5 126 1.93 0.05  

Abundance + Time of day2 + Pressure 4 127 2.10 0.05  

Grasshopper 
Sparrow 

Fort 
Riley 

2013 *Abundance + Time of day + Wind speed2  5 107 0.00 0.35 910.89 

Abundance + Time of day + Wind speed4  5 107 0.90 0.22  

Abundance + Time of day + Wind speed3  5 107 2.83 0.08  

Abundance + Sample type + Time of day + Wind speed 5 107 3.84 0.05  

Abundance + Temperature + Sample type + Time of day + Wind speed 
+ Pressure 

7 105 4.17 0.04  

Henslow's 
Sparrow 

Big 
Oaks 
NWR 

2012 Abundance + Time of day + Pressure 4 129 0.00 0.15 1368.07

Abundance + Day of season + Time of day + Pressure 5 128 1.54 0.07  

*Abundance + Time of day 3 130 1.58 0.07  

Abundance + Temperature + Time of day + Pressure 5 128 1.59 0.07  

Abundance + Sample type + Time of day + Pressure 5 128 2.01 0.05  

 



142 
 

Table A.3. Abundance prediction models based on the negative binomial regression results for 5 songbird species on 3 Department of 
Defense installations, 2012-2013. Songs = total songs in 5 min; day of season = modified Julian date (May 1 = 1); time of day = 
modified Julian time divided by 5 (30-min before sunrise = 0, 25-min before sunrise = 1); temperature (C⁰); pressure (mm of mercury) 
= altimeter setting transformed by subtracting the mean (761) from each value. 

Species Study area Year Abundance prediction model 

Prairie Warbler Big Oaks NWR 2012 Abundance ൌ expሾሺ4.33 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺെ4.71 ∗ 10ିଵଶሻሺݕܽܦ ݂݋ ଺ሻሿ݊݋ݏܽ݁ݏ

Fort Bragg 2012 Abundance ൌ expሾሺ2.59 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺ1.23 ∗ 10ିଶሻሺݕܽܦ ݂݋  ሻሿ݊݋ݏܽ݁ݏ

2013 Abundance ൌ expሾሺ2.87 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺ2.28 ∗ 10ି଼ሻሺݕܽܦ ݂݋  ସሻሿ݊݋ݏܽ݁ݏ

Bachman's Sparrow Fort Bragg 2012 Abundance ൌ expሾሺ1.02 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺ1.73 ∗ 10ିଶሻሺݕܽܦ ݂݋  ሻሿ݊݋ݏܽ݁ݏ

2013a
Abundance ൌ expሾሺ8.30 ∗ 10

ିସሻሺܵݏ݃݊݋ሻ ൅ ሺ3.25 ∗ 10ିଶሻሺܶ݁݉݁ݎݑݐܽݎ݁݌ሻሿ 

Abundance ൌ expሾሺ2.32 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺെ1.36 ∗ 10ିଶሻሺܲ݁ݎݑݏݏ݁ݎሻሿ 

Field Sparrow Big Oaks NWR 2012 Abundance ൌ expሾሺ2.34 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺ3.27 ∗ 10ିଶሻ ሺܶ݅݉݁ ݂݋  ሻሿݕܽ݀

Fort Riley 2013 Abundance ൌ expሾሺ1.43 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺ2.12 ∗ 10ିଶሻሺܶ݅݉݁ ݂݋ ሻݕܽ݀ ൅ 

ሺ2.50 ∗ 10ିଶሻሺܲ݁ݎݑݏݏ݁ݎሻሿ 

Grasshopper Sparrow Fort Riley 2013 Abundance ൌ expሾሺ1.69 ∗ 10
ିଶሻሺܵݏ݃݊݋ሻ ൅ ሺ2.32 ∗ 10ିଶሻሺܶ݅݉݁ ݂݋ ሻݕܽ݀ ൅ 

ሺ1.04 ∗ 10ିଶሻሺܹ݅݊݀  ଶሻሿ݀݁݁݌ܵ

Henslow's Sparrow Big Oaks NWR 2012 Abundance ൌ expሾሺ6.48 ∗ 10
ିଷሻሺܵݏ݃݊݋ሻ ൅ ሺ3.47 ∗ 10ିଶሻሺܶ݅݉݁ ݂݋  ሻሿݕܽ݀

a Two models performed equally well for Bachman’s Sparrow, 2013. Both are shown. 
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