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Abstract

The Universal Verification Methodology (UVM) package is an open-source Sys-

temVerilog library, which is used to set up a class-based hierarchical testbench.

UVM testbenches improve the reusability of Verilog testbenches. Direct Memory

Access (DMA) plays an important role in modern computer architecture. When

using DMA to transfer data between a host machine and field-programmable gate

array (FPGA) accelerator, a modularized DMA core on the FPGA frees the host side

Central Processing Unit(CPU) during the transfer, helps to save FPGA resources,

and enhances performance. Verifying the functionality of a DMA core is essential

before mapping it to the FPGA. In this thesis, we tested an open source DMA core

with UVM (Universal Verification Methodology). Bus agents and interface modules

are designed for input and output signals of the DMA Design Under Test (DUT). We

constructed a Register Level Abstraction (RLA) model to allow both front-door access

and back-door access to the register files in the DUT. We designed the sequences,

scoreboards, and tests with features to allow reuse. The overall testbench structure

is defined by a base-type test. Different tests then extend the base-type test and use

type overriding with the UVM configuration database to use different scoreboards and

sequences accordingly. With scoreboard and coverage groups, the testbench monitors

the correctness of the behavior of the DMA DUT, as well as the functional coverage

of all tests. We performed the simulations with the Questa simulator. Several bugs

in the open-source DMA core were found and corrected.
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Chapter 1

Introduction

1.1 Introduction to Verification and the UVM

During the past decade, Verification plays an important role than ever in today’s

semiconductor industry. The demand for design engineers grew at a rate of less than

4%. Meanwhile, the number of verification engineers increased about 3.5x the number

of design engineers [18]. Before the Universal Verification Methodology (UVM) was

adopted by the academy and the industry, different projects each might have their

own verification process. Even for the same Design Under Test (DUT), different

groups may carry out different testbench designs. Without a unified verification

methodology, testbench design lacks of reusability, which holds back the productivity

of both design and verification groups.

In Verilog HDL, a classic testbench is a piece of wrapper code of the DUT as shown

in Figure 1.1. In general, the Verilog testbench contains harnesses to generate stimuli

to the DUT and a scoreboard/verifier to check if the output signals are correct. A

testbench may contain multiple modules that are loaded into the simulator at the

beginning of the simulation, and reside in the memory of simulator during the whole

simulation process [13]. The Verilog testbench also lacks reusability. For example,

when new harnesses need to be tested, they will be added to the original testbench
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DUT

testbench

harness

harness
.
.
.

harness

verifier

Figure 1.1: A typical Verilog testbench.

and all of the harnesses in the testbench will be compiled and simulated again. If

setting up a new testbench with new harnesses, then copying and pasting code can

not be avoided, for example, to instantiate the DUT.

SystemVerilog language is an extended version of Verilog. It has several features

that make it more advantageous than Verilog especially in developing testbenches [11].

Specifically, it has Object-Oriented mechanisms to allow the testbench to be abstract.

It also has other features such as constraint and covergroups to make the testbench

more efficient.

UVM is an open source verification standard. The UVM package is maintained

by the Accellera UVM working group [9]. It is a library built upon the SystemVerilog

language [13]. It provides base classes such as uvm component to construct the

structure of the testbench, uvm object to serve as data structures used in the

testbench, and uvm sequence to compose the transactions passed through UVM

components. Figure 1.2 shows the inheritance of those classes.
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uvm_object

uvm_report_object

uvm_component

uvm_transaction

uvm_sequence_item

uvm_sequence

uvm_monitor

uvm_env uvm_driver

uvm_sequencer

uvm_test uvm_agent

uvm_scoreboard

Figure 1.2: Inheritance of UVM classes.
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sequencer driver
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Agent

scoreboard coverage

enviroment

test

config
agent
config

DUT

TOP

Figure 1.3: A typical UVM testbench.

UVM helps to further abstract and structure a SystemVerilog testbench. Fig-

ure 1.3 shows a typical UVM testbench. An UVM bus agent is used to drive and

monitor the signals on the interface of the DUT. With bus agents dealing with the pin-

level activities of the DUT, stimuli to the DUT are further abstracted as transactions

and sequences. UVM Transaction defines the data type sent to the agents. UVM

Sequences control how the transactions are constructed. UVM sequencer then sends

transaction from sequence to the driver inside of a UVM agent. The driver deals with

the virtual interface to drive the transaction level data to the pin level activities of the

DUT. With transaction, sequence, sequencer, and agent, the definition, construction,

transferring, and commission of stimuli are separated to allow collaboration, easy

modification, and reuse of the testbench data types and components.

1.2 Introduction to DMA

Direct Memory Access (DMA) is a mechanism that allows peripheral memory

operations that load/store data from/to main memory without the control of the

Central Processing Unit (CPU). This helps to enhance the system performance in

modern compute architecture [17]. Without DMA, for instance, if an I/O device needs

4



to write data to main memory, it should first write the data through the CPU to its

register, then the CPU will write the contents of its register to the main memory. The

processor will either do polling or wait for I/O interrupts for a small number of bytes

that are transferred from/to the device. Either way, the processor is involved in the

data movements and is blocked from performing other computing jobs. Meanwhile,

it is not efficient when transferring thousand bytes of data between the main memory

and the device, for example, a hard disk.

With DMA, the device controller can transfer large portions of data between itself

and the main memory without involving the CPU. It frees CPU from jobs such as

calculation of the memory addresses involved in the data transfer. The CPU could do

other computational work that is not related to these memory operations. In other

words, the CPU does not have to be blocked for the memory operations, which can

be too slow, reducing the system performance.

In modern computer systems, the DMA method is widely used in I/O devices

such as network cards and disk drives. The DMA method is also used in General-

purpose Graphic Processing Unit (GPGPU) accelerator technology such as [4]. Since

Field-Programmable Gate Arrays (FPGAs) are also popular as general-purpose

computational accelerators, a DMA module is used to facilitate the communication

between the FPGA and the host machine [1]. Major FPGA venders such as Altera

(bought by Intel in 2015) and Xilinx both provide their own DMA IP cores to facilitate

user designs [5, 2]. The open source projects, Riffa [14] and Riffa2.0 [15] that focus on

high performance data transfer between host main memory and FPGA accelerators,

also use a DMA module to enhance performance.

1.3 Goal of Research

Figure 1.4 gives a general application example with a DMA module on an FPGA

which serves as an accelerator to the host machine. User logic on the device is to

process data read from the main memory on the host side. Results are sent from the

5



DMA Module

User Logic or 
Device Logic

Bus Module

FPGA

DMA memory

Driver and Libs

Host Application

Main 
Mem

Host machine

bus link

Figure 1.4: An application example with DMA module.

FPGA to the host machine. The DMA module connects a bus module and the user

logic. The bus module can be, for instance, a PCIe module. The FPGA is connected

with the host machine via physical bus links. On the host machine, proper drivers and

applications reside in the main memory. Memory dedicated for the DMA operations

between the host machine and the FPGA is pre-allocated on the host machine as

well.

DMA modules are widely used and the process of verification of the DMA core of

those designs and implementations is critical. Leveraging open source projects that

provide functional DMA cores such as [10], the design of an application such as that

shown in Figure 1.4 becomes less time-consuming. However, the original verification

of [10] is implemented with Verilog, and lacks reusability. Before we can fully trust

the design and map it onto our own platform, a thorough study and verification of this

DMA core is helpful. Using SystemVerilog and the UVM library to set up a reusable

and efficient verification framework for the DMA core will benefit both design and

further verification of the whole application system such as shown in Figure 1.4.

This thesis focuses on setting up a reusable UVM testbench for an open

6



source DMA core obtained from opencores.org [10]. The testbench is coded with

SystemVerilog and the UVM library, and is simulated with QuestaSim version 10.5 [6].

The rest of this thesis is organized as follows:

Chapter 2 introduces the DMA core DUT we verified with UVM. Chapter 3

presents the UVM testbench we designed. In this chapter, we first discuss the overall

architecture of the testbench. Then we present the bus agents in the testbench. After

that, we talk about two data objects we designed: the transactions and the register

abstraction layer. We describe the UVM testbench components, such as sequences,

coveragegroups, scoreboards, and tests, in the rest of Chapter 3. We present the

simulation and results in Chapter 4. We also discuss some bugs we found in the DMA

core in this chapter. We give conclusions and talk about future work in Chapter 5.
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Chapter 2

Background

This chapter briefly introduces the DMA core to be tested. The original design is an

open source core and a detailed design specification can be obtained from [10].

2.1 Introduction

Figure 2.1 shows the interfaces of the top-level module of the DMA core. The

input and output signals can be divided into five groups, four of which are protocol

interfaces (WISHBONE v3 [12] compatible), and the fifth one is a miscellaneous

interface (misc if).

DMA operations are between the two WISHBONE master interfaces, wb0 master

and wb1 master. Reading and writing the DMA control and status registers are

through wb0 slave interface. The DMA core can work as a bridge. In the bridge mode,

signals from wb0 master will be passed to wb1 slave, while signals from wb1 master

will be passed to wb0 slave. The whole DMA core acts as only combinational logic in

the bridge mode. Verification of the bridge mode is done by the original design of the

DMA core, and is not covered by this thesis; though in our UVM testbench, it still

provides interface module designs and the corresponding bus agent for the wb1 slave

interface which are only used in the bridge mode.

Figure 2.2 shows a more detailed block-level diagram of the DMA core. Signals

8



DUT_TOP

clk_i rst_i

wb0_slave

wb0_master

wb1_slave

wb1_master

misc_if

Figure 2.1: Interface groups of the DMA core.

in orange are interface signals. All other signals are inner connections between sub-

modules. The DMA core supports at least 1 channel and up to 31 channels connected

between a host and a device. Each channel can be configured with certain features

and is unidirectional after each configuration.

The register file module contains all the architecture registers of the DMA core.

It has 5 global control/status registers and 31 groups of channel registers (named

with prefix CHx , with x from 0 to 30). Each channel group has 8 channel registers.

Table 2.1 explains the usage of the global registers and a group of channel registers.

A more detailed description can be found in the DMA core design specification [10].

When the DMA core is working, the channel selection module will select one

channel based on the channel priority and pass the selection result (ch sel[4:0]) to

the register file module. The channel selection module also selects the working set of

channel registers, and then pass the register contents to the DMA engine module. The

DMA engine module uses the selected register contents to perform DMA operations

according to the register configurations.

There is a mismatch in the RTL design and the design specification for the CHx SZ

register, the CHx DESC register, and the CHx SWPTR register. Figure 2.3 gives

the correct layout of these registers that we used throughout this thesis. More

details about the usage of the architecture registers can be found in the design

9



Table 2.1: DMA registers

Register name Usage

CSR Main control and status register of the DMA core
INT MASK A Address mask for the INT SRC A register.
INT MASK B Address mask for the INT SRC B register.
INT SRC A Read only. Interruption source of the inta o singal.
INT SRC B Read only. Interruption source of the intb o singal.
CHx CSR Control register for channel x (x in 0 to 30)
CHx SZ Chunk size and total transfer size
CHx A0 DMA Source address
CHx AM0 DMA source address mask
CHx A1 DMA destination address
CHx AM1 DMA destination address mask
CHx DESC Linked list descriptor pointer
CHx SWPTR Software pointer

specification [10].

2.2 DMA Operations

2.2.1 DMA Operations

The DMA core can operate in two modes: the software mode (a.k.a the normal

mode) and the hardware mode. The CHx CSR register controls the operation mode

and other features for each channel. Figure 2.4 gives the layout of the CHx CSR

registers. For both modes, DMA operations can be either between the two master

interfaces or on the same master interface. In a complete DMA transfer, the total

data transferred will be divided into chunks. Each DMA operation will transfer only

a chunk size amount of data.

In software mode (SW mode), the DMA operation is initiated by the host machine.

After the DMA registers are configured, data transfers will start after the enable bit

ch en is set in the CHx CSR register as shown in Figure 2.4. Interrupts will be

generated on inta o or intb o after a chunk size data is transferred or the total size of

data is transferred, according to different configuration of the CHx CSR registers.
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Figure 2.2: Block level diagram of the DMA controller
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CHx_SZ

31 reserved 27
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4

Figure 2.3: Register layout of CHx SZ, CHx DESC, and CHx SWPTR

CHx_CSR
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stop sz_wbdone busyerr

ien_e rest_enine_ck ine_dc_done c_errorreserv. szdone

ch_priority

2431

reserv.

Figure 2.4: Layout of the CHx CSR registers
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In hardware mode (HW mode), the DMA operation is initiated by the device.

After the DMA registers are configured, data transfer will start after the device

asserts the dma req i signal on the misc if interface for corresponding channels. For

every chunk size of data transferred, the DMA core will assert a dma ack o signal on

the misc if interface for the operating channel for one bus clock cycle. The dma req i

is asserted during the DMA operation, and the device can either toggle the dma req i

and re-issue it again to transfer the next chunk size of data, or the device can keep it

being asserted for a back-to-back DMA transfer.

For both SW mode and HW mode, for each DMA transfer on a channel, the DMA

core can choose to use the DMA channel registers, which store information such as the

transfer direction, source address, destination address, data chunk size, total transfer

size, etc., to guide the transfer; or it can use the Linked List Descriptors, as known

as External Descriptors (ED), which are stored in the memory connected with the

wb0 master interface to guide the transfer. The address of the ED is configured in

the CHx DESC register for channel x, with x in 0 to 30.

2.2.2 Other Functionality

Other functionalities of the DMA core are also configurable via the CHx CSR

registers, such as the priority of the DMA channel, whether interruption is enabled for

the channel or not, whether using the ED or not, etc. The status of the DMA channel

can also be read from the CHx CSR register. A detailed bit map of the CHx CSR

register can be found in the fourth chapter of the design specification [10].

2.2.3 Host and Device Memory Organization

The memory for DMA operations on the host and device side can be organized into

circular buffers. For this organization, the source/destination address mask registers

(CHx AM0/CHx AM1) are used to make sure the address will not go beyond the

last entry of the buffer. Except for the circular buffer, the host side memory can also

13



be organized as a FIFO buffer. The software pointer register (CHx SWPTR) is then

used to record the last memory address that the software has accessed. Host software

is responsible for updating the CHx SWPTR register. Verification of the FIFO mode

is not covered by this thesis.

2.3 Conclusions

In this chapter, we introduced the open source DMA core we are going to verify. We

briefly talked about the functionality of the sub-modules of the DMA core, as well as

the architecture registers. We then introduced the DMA operation modes configured

through the channel control and status registers. In the next chapter, we will describe

the UVM testbench we built to verify this DMA core.
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Chapter 3

UVM Testbench Design

This chapter describes the details of the UVM testbench design.

3.1 Overall Structures

The overall structures of the testbench are shown in Figure 3.1. Each group of

interface has its own bus agent. Inside of each agent, it has a driver, which drive the

sequence item onto the bus that connects the DUT and the agent; and a monitor,

which monitors the pin level activities on the bus, and then converts these activities

to transaction items, and also sends the transaction items to upper level UVM

components through analysis port and export.

In the base test, it configures the base type environment with a configuration

object. It also instantiates a register model that used in the testbench. A virtual

test, which extends the base test, sets up all the base type sequences. Those base

type sequences control the order of generated data that will eventually sent to the

DUT through virtual interfaces. In different tests, different sequences will override

the base type sequence in the virtual test.

The environment composes the main architecture of the testbench. It instantiates

all the bus agents, scoreboards, coveragegroups, register adapter and predictor. It

uses its configuration object to configure other configuration objects in bus agents,
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Figure 3.1: Overall testbench structures
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and set these agents’ configuration objects in the database. It connects corresponding

UVM components with analysis port and analysis exports.

In the top level of the UVM testbench, it instantiates five interface modules

connected with the DUT. Virtual interfaces are set into the configuration database

of the UVM testbench environment. The testbench is organized in a way that

test/sequence/scoreboard can be override by UVM component/object that extends

the corresponding base type component/object.

In Figure 3.1, round shape represents analysis port, and diamond shape represents

analysis export. The monitor inside of each agent will monitor and sample event of

the pin level on the bus, and send the sampled data as UVM transaction item through

analysis export. Analysis exports then twitter these transactions to components with

same transaction type of analysis port to further analyze the sampled data.

In this way, a structured testbench is set up to separate the way data stimuli

generated, how data stimuli are sent to the DUT, and how and when the interface

pin level activities are monitored and analyzed.

3.2 Agents

A UVM bus agent is a protocol specific component for each testbench design. It helps

to abstract the pin level activities on the interface of the DUT into data transactions.

The abstract data transactions are then passed through other UVM components to be

further analyzed. In chapter 2, the interface signals are categorized into five groups,

which can be further divided into 3 types: two slave type interfaces, two master type

interfaces, and one miscellaneous type interface. For each type of interface, we design

an agent to work with it: slave agent, master agent, and misc agent, respectively. In

Figure 3.1, slave0 agent and slave1 agent are two instances of the slave agent, and

master0 agent and master1 agent are two instances of the master agent. There is

only one instance of the misc agent.

Virtual interface in an agent that serves as a placeholder for instance of interface
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Figure 3.2: Transactions

that connects the agent with the DUT. SystemVerilog interface modules are designed

for each type of interfaces of the DUT. We name the SystemVerilog interfaces

accordingly with the functionality of the interfaces of the DUT. For example, a slave

interface will connect a slave agent to the slave type interface signals of the DUT.

The design of slave interface and misc interface is straightforward. In the design

of master interface, a memory model is designed to serve as the main memory of the

host for DMA read and write operations.

3.3 Transactions

As we grouped the interfaces, the data transferred onto these interfaces can also be

grouped together. We designed two transactions representing different types of data

that are transferred onto different types of interface, as shown in Figure 3.2. Both

transactions are extended from the uvm sequence item object.

The first type of transaction is the wb bus item transaction. It defines data/ad-

dresses transferred onto the master/slave WISHBONE interfaces. In our DUT, all

WISHBONE interfaces have the same set of signals with different in/out directions

according to whether the interface serves as a master or a slave. We abstract these

pin level signals into a wb bus item transaction. Whether a certain data/address

is an input or output for a specific WISHBONE interface, it is the driver in the

corresponding bus agent that defines its direction. The drivers in different bus agents

also drive WISHBONE protocol control signals to the bus, such as cyc, we, stb, sel,
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ack, err, and rty, accordingly. Listing 3.1 is the code for the wb bus item transaction.

Listing 3.1: wb bus item class code

1 class wb_bus_item extends uvm_sequence_item;
2 ‘uvm_object_utils(wb_bus_item)
3 typedef enum {READ, WRITE, BLK_RD, BLK_WR, RMW, NO_OP}

transac_type_e;
4 rand transac_type_e m_type;
5 typedef enum {UNKNOWN, ACK, RTY, ERR, TIMEOUT} status_e;
6 status_e m_status;
7 rand bit [31:0] addr;
8 rand bit [31:0] data_o;
9 rand bit [31:0] data_i;
10 function new(string name="wb_bus_item ");
11 super.new(name);
12 endfunction: new
13 /*do_copy(), do_compare(), do_print, cover2string(),do_record(),
14 do_pack, do_unpack not shown*/
15 endclass:wb_bus_item

Listing 3.2: misc item class code

1 class misc_item extends uvm_sequence_item;
2 ‘uvm_object_utils(misc_item)
3 rand bit [30:0] dma_req;
4 rand bit [30:0] dma_nd;
5 rand bit [30:0] dma_rest;
6 bit [30:0] dma_ack;
7 bit inta;
8 bit intb;
9 int item_id;
10 function new(string name="misc_item");
11 super.new(name);
12 endfunction
13 /*do_copy(), do_compare(), do_print, cover2string(),do_record(),

do_pack, do_unpack*/
14 endclass:misc_item

The second type of data transaction is the misc item transaction. In this

transaction, other than the interface signals, it also has a counter to record the item

ID. When the counter reaches zero, the misc agent driver will de-assert the dma req i

signal on the bus. Listing 3.2 gives the code of the misc item transaction.
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0x000 csr

0x004 int_mask_a

0x008 int_mask_b
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0x010 int_src_b
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0x10 ch0_a1
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0x18 ch0_desc
0x1c ch0_swptr

offset channel reg
0x00 ch0_csr

Figure 3.3: Top-level register block and map design

3.4 Register Level Abstraction

UVM provides a standard base class to be extended and to build particular register

level abstraction layer for the testbench [16]. Those shadow registers in the testbench

environment can store the values that are written/read to/from the registers in the

DUT. The register abstraction layer can also map the shadow registers to its bus

address. Registers can be grouped together as a register block, and further multiple

register blocks that have the same layout could be built by assigning different base

addresses to the instance of that register block.

Figure 3.3 shows the top-level register block organization and the map configura-

tion used in our testbench environment. Channel registers are organized as sub-blocks

within the top-level register block. Each sub-block is assigned with an offset address.

Figure 3.4 shows how components are connected in the base type environment.

To be concise, it only displays components that are related to the register level

abstraction layer.
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Figure 3.4: Register Level Abstraction (RLA)

In Figure 3.4, slave0 agent gets its configuration object s0 agent cfg from the

environment configuration object env cfg. The s0 agent cfg has information of the

virtual interface that assigned to this agent. Also it has other configuration settings

such as if this agent works in a passive mode. In passive mode, only s0 monitor

works to sample activities on the virtual interface. No wb bus item transaction will

be transferred from sequencer to the s0 driver and hence no further pin level activities

are driven to the bus. Similar architecture is designed for the master agent and the

misc agent.

In the register map, it has a handle pointing to the adapter in-use. The adapter

will translate register transaction into wb bus item transaction that will be fed by

the sequencer to the driver. It also converts the wb bus item transaction from the

monitors’s analysis export back to the register transaction. The predictor uses this

register transaction to update the data contents in the shadow register file in the

register map. Therefore, for each register read and write, the data that transferred

on the bus interface will be updated to the shadow register file so that it represents
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the up-to-date contents of the real architecture registers in the DUT.

Registers in the DUT can be access either by front door access method or back

door access method [7]. In front door access method, tests access architecture registers

by generating proper bus operations to a specific register address to write or read it.

The method can be used to verify the correctness of bus transactions, but it consumes

a large simulation time to populate value to and from the DUT. In modern design and

verification, it is normal for a DUT to have hundreds of registers. In this case, front

door access could be too slow to be effective. In back door access method, registers

are accessed directly in zero simulation time. In Verilog, this is done by hierarchical

reference to the HDL code of the DUT, which could be hard to manage and reuse

in testbench design. UVM has a back door access feature in the register abstraction

layer. We add back door access to all registers in our register model. We further show

the simulation time difference of these two types of access methods in Chapter 4. In

our testbench design, we use back door access in our scoreboard to save simulation

time, mean well, to serve as a reference design.

3.5 Sequences

Two types of sequences are designed. One is the register sequence. The other is the

misc item sequence. Both of them are designed with reusability.

Figure 3.5 shows register sequence reuse by class extension. The uvm sequence is

the base type sequence object provided by the UVM library. Sequence dma reg base seq

extends uvm sequence with transaction type wb bus item. It defines common data

types such as the register map handle dma reg blk and a handle of the base

environment configuration object m cfg. In the body task of the dma reg base seq, it

gets the configuration from the UVM database to m cfg, and uses this configuration

to set dma reg blk to the targeted register map, which is used for all other sequences

that extend the dma reg base seq. This sequence also defines common data types

that will be used during register read/write.
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uvm_sequence 
#(wb_bus_item)

ch_csr_seq

dma_reg_base_seq
dma_reg_blk
m_cfg
common data types
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ch_desc_seq
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Figure 3.5: Inheritance of register sequence

uvm_sequence 
#(misc_item)

misc_base_seq

misc_seq misc_nd_seq misc_rest_seq

Figure 3.6: Inheritance of misc item sequence

The sequence of ch csr seq only defines a loop function inside of its body task. It

defines how data are written to the CHx CSR registers. The real sequences that sent

to the sequencer are the ones that extend the ch csr seq sequence. These sequences

provide specific data to be written to the CHx CSR registers, as well as number

of channels in use. In the body task of these extended sequences, it only calls

super.body() to write the registers through bus operations. With class extension,

testbench can be more organized and reusable and it reduces copy/paste as much as

possible.

Figure 3.6 shows the inheritance relationship of the misc item sequence. The

misc item sequence is used when the DMA core is configured to operate in HW mode

or when interruption is enabled. In the dma virutal test, a base type misc base seq
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phase.raise_objection(this);
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join

Figure 3.7: Sequence order

sequence is used. It also calculates how many misc item transactions to be generated

by reading the CHx CSR registers in a back door mode. The misc seq sequence

is used in testing HW mode DMA with or without ED. The misc nd seq is used

in the hw dma nd test (introduced in secion 3.8). The misc rest seq is used in the

hw dma rest test (introduced in secion 3.8).

A virtual sequence is designed to group common register sequences together.

These sequences are not to be overridden in other tests. In the base type test, the

order of sequence scheduling is shown in Figure 3.7. Before starting the misc base seq,

a global SystemVerilog event is triggered to let the scoreboard know the end of

initialization of the architecture registers.

3.6 Coveragegroup

SystemVerilog covergegroups [19] are designed to capture functional coverage. Two

parts of coveragegroup are designed in our UVM testbench. One part is a dedicated
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UVM component in the test environment. The other part is integrated in the RLA

design.

The coverage component samples item from an uvm tlm analysis fifo to record

the operations on the wb slave0 interface that if all the registers are accessed. The

FIFO is connected with analysis export on the coverage component, which is further

connected with the slave0 agent through analysis port. The coverage component also

has analysis exports to connect with the two master agents. So new design can extend

this coverage component to compose more coveragegroups for activities of the master

agents.

The functionality of the DMA core is configured by the CHx CSR registers.

Table 3.1 describes each coverage point designed in the coveragegroups in the RLA

design. Those coverage points reflect the major tests we should run during the

verification process.

3.7 Scoreboard

The scoreboard is also designed in a way that can be reused in the future. Since

DMA operation in SW mode and HW has different interactions on the interfaces,

two scoreboards, hw dma scoreboard and sw dma scorebaord, are designed for each

DMA modes separately. Both scoreboards inherit the same base type scoreboard

dma scoreboard base.

Because the write method of the analysis export completes in zero time, it cannot

guarantee the order of the transaction that is passed through the analysis port to the

scoreboard. The dma scoreboard base scoreboard uses UVM analysis FIFOs to keep

the order of the transactions that are sampled by the monitor.

In the base environment, the base type scoreboard is declared and instantiated.

The environment connects all the analysis exports with corresponding analysis

ports from the agents. In later test, extensions such as hw dma scoreboard and

sw dma scoreboard will override this base type scoreboard while maintaining the
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Table 3.1: Coverage point for the CHx CSR reigsters.
Coverage Point Description

DIRECTION Has 4 bins; each bin represents a DMA transfer direction on the two
master interfaces.

ED Whether the DMA core is using External Descriptors (ED) or not.
MODE Whether the DMA core is operating in SW mode or in HW mode.
WE DESC CSR Whether the DMA core is enabled to write back the remaining data size

to the ED or not.
STOP Whether the STOP bit of the CHx CSR register is written or not.
AUTO RESTART Whether the automatic restart is enabled on the channel or not.
PRIO Different configurations of the channel priority.
INT EN Whether the interrupts are enabled on the channel or not.
HARD REST Whether the hardware restart is enabled on the channel or not.
HW REST This is a cross coverage point of the MODE and REST coverage point.

It has one bin. When hardware restart is enabled, the DMA should be
in HW mode.

HW DE CROSS WB This is a cross coverage point of the MODE, the ED, and the WB coverage
point. It has 5 bins, each of which represents a different DMA mode (SW
or HW), whether use ED or not, whether writing back the remaining data
size to the ED or not.

MODE AUTO ARS This is a cross coverage point of the MODE and ARS coverage point. It
has 4 bins, each of which represents a different DMA mode (SW or HW)
with ARS enabled or not.

DIRECTION WB DE This is a cross coverage point of the DIRECTION and the
HW DE CROSS WB coverage point. It has 20 bins. Each bin represents
a different DMA transfer direction, whether in SW or in HW mode,
whether using external descriptor or not, whether writing back the
remaining data size to the ED or not.

connection structures.

In the run phase of the dma scoreboard base, it waits until the global event is

triggered in the sequences in the test, then it will use get mirrored value() function to

read the contents in the shadow registers in the testbench environment as references.

The two extended scoreboards use these references to generate expecting behaviors,

then read transactions from the analysis FIFOs, hence further compare the expecting

behaviors with these transactions. Assertions are used for comparison.

Figure 3.8 shows the algorithm used in the scoreboard for DMA in HW mode.

Figure 3.9 is the algorithm used in the scoreboard for DMA in SW mode. Both

have a similar structure that it firstly calls the super.run phase() and then forks

two threads, with one thread to deal with the misc item from the misc fifo, and

with another thread to deal with the wb bus item from both of the m0 fifo and the
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m1 fifo, where the sm0 fifo stores transactions from the m0 agent, and the m1 fifo

stores transactions from the m1 agent.

Major difference is that the scoreboard for DMA in HW mode needs to fork

multiple threads to deal with different scenarios of the misc item transaction.

3.8 Tests

As shown in Figure 3.1 at the beginning of this chapter, a base type test dma test base

is designed to hold the overall components of the testbench structure. The

dma test base extends the uvm test. It defines the test environment and writes

configuration objects to the database. The dma test base instantiates the register

map used in all tests. The dma virtual test extends the dma test base and defines

the sequences and the execution order of those sequences. In dma virtual test, all of

the sequences are declared with corresponding base-type sequences.

Figure 3.10 shows the inheritance relationship of all the tests. Chapter 4 explains

these tests in detail.

The dma virtual test is not to be executed from the top level. Instead, it serves

as a placeholder for all the sequences used in later tests that actually run. In later

tests, for instance, in the hw dma ed test, the DUT is configured to operate in HW

mode with external descriptors enabled. In the hw dma ed test, in its build phase, it

uses following code

ch csr seq::type id::set type override(ch csr hw ed seq::get type(),1);

to override the base type ch csr seq to a specific register sequence ch csr hw ed seq.

In the run phase of the dma virtual test, base-type sequences are created with

type id::create() to allow this latter override. In all tests that extend from the

dma virtual test, it only needs to call super.run phase(phase) in its run phase task.

The sequences will execute in an order as shown in Figure 3.7, which is defined in the

run phase of the dma virtual test.
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Figure 3.8: Scoreboard for DMA in HW mode
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Figure 3.9: Scoreboard for DMA in SW mode
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Figure 3.10: Inheritance of tests

3.9 Conclusions

In this chapter, we presented the design of our UVM testbench for the DMA core

introduced in Chapter 2. We first introduced the overall structures of our UVM

testbench. Then we presented the details of the design of the testbench components

and data structures. Reusability of the design is highlighted throughout this chapter.

In the next chapter, we will present the simulation result of our testbench.
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Chapter 4

Simulations and Results

This chapter represents the test case and simulation results for the DMA core. We

will verify 4 channels of the DMA core using the UVM testbench designed in Chapter

3. The methods used in Chapter 3 and Chapter 4 can be used to further verify more

channels.

4.1 Test Cases Illustration

A DMA transfer can be started either by the host controller which is connected to the

WISHBONE interface 0, or by the user logic connected to the WISHBONE interface

1. The first type of transfer is the SW mode DMA. The other type is the HW mode

DMA. For each mode, External Linked List Descriptors (EDs) could either be used or

not according to different configuration the USE ED bit in the channel CSR register.

The external descriptors are stored in the host memory, which is attached to the

master WISHBONE interface0 of the DMA DUT.

In SW mode, the DMA transfer is initiated on a certain channel by setting the

CH EN bit of the corresponding channel CSR register. Transfer can occur either

on the same WISHBONE master interface, or between the two master WISHBONE

interfaces.

Table 4.1 gives an example of configuration of the CHx CSR register for the 4

31



Table 4.1: Channel CSR configuration for software mode DMA
Field (Read/write) ch0 0to0 ch1 0to1 ch2 1to0 ch3 1to1

Reserved(RO) 9’b0 9’b0 9’b0 9’b0
Interrupt source(ROC) 3’b0 3’b0 3’b0 3’b0
Enable interrupt 3’b0 3’b001 3’b010 3’b100
Restart en 1’b0 1’b0 1’b0 1’b0
Priority 3’b011 3’b010 3’b001 3’b000
ERR(ROC) 1’b0 1’b0 1’b0 1’b0
Done busy(RO) 2’b0 2’b0 2’b0 2’b0
Stop(WO) 1’b0 1’b0 1’b0 1’b0
Sz wb 1’b0 1’b0 1’b0 1’b0
USE ED 1’b0 1’b0 1’b0 1’b0
ARS 1’b0 1’b0 1’b0 1’b0
MODE 1’b0 1’b0 1’b0 1’b0
INC SRC, INC DES 2’b11 2’b11 2’b11 2’b11
MODE 2’b00 2’b01 2’b10 2’b11
CH EN 1’b1 1’b1 1’b1 1’b1

32’h6019 32’h0002401b 32’h0004 201d 32’b0008001f

channels that execute in SW mode without usign the external descriptors. In Table 4.1

, the label of chi xtoy(i = {0, 1, 2, 3}, x = {0, 1}, y = {0, 1}) means that channel i is

configured to transfer data from interface x to interface y. Each row is the composition

of certain field in the CHx CSR register. The last row of Table 4.1 is the configuration

value to be written to each CHx CSR register. For instance, configuration ch0 0to0

means the channel0 is enabled to transfer data from interface 0 to interface 0, and

interrupt is disabled, and the channel has the highest channel priority among the

four.

For each transfer channel, while interrupt is enabled, there are three types of

interrupt. Type1: the channel has transferred a chunk size of data. Type2: The

channel has transferred the total size of data. Type3: an error occurs on the channel.

These three types of interruption are configured on channel 1, channel 2, and channel

3, respectively, as shown in Table 4.1.

Table 4.3 explains the functionality of the tests we run. In each test, it has

corresponding CHx CSR registers configured according to the functionality of each

test, similar to the example shown in Table 4.1. In Table 4.1, RO stands for read

only; ROC stands for read only and reset to zero after read; WO stands for write
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Table 4.2: DMA operation directions
Channel ID Description

0 From lower address space of interface 0 to higher address space of interface 0.
1 From lower address space of interface 0 to higher address space of interface 1.
2 From lower address space of interface 1 to higher address space of interface 0.
3 From lower address space of interface 1 to higher address space of interface 1.

only. In all tests in Table 4.3, interrupts are enabled on both inta o and intb o. For

tests that use four different channels, each channel is configured to transfer data in a

certain direction as denoted in Table 4.2.

Figure 4.1 shows the overall scenarios for all tests. All the register sequences

will be driven to the DMA DUT through the interface model wb0 slave. The DMA

DUT is connected to the host side main memory with interface model wb0 master;

and to the device side memory with wb1 master. Each memory is logically divided

into higher address portion and lower address portion. Each dotted line represents a

direction of data transfer between those portions as denoted in Table 4.2. The slave

1 interface is a dummy interface when this DMA core is not configured as a signal

bridge. The two interruption signals, inta o and intb o, are connected to the host

side. Signals that has a prefix of dma are connected with the device. When the

DMA DUT is operating in HW mode, these signals will be driven and sampled by

the master1 agent.

4.2 Simulation and Results

4.2.1 General

The simulation structure is shown in Figure 4.2. The structure is for the sw dma ed test.

Similar structure is used for all tests. Both of the master agents are operating in a

UVM PASSIVE mode. The slave agents are in UVM ACTIVE mode. In this specific

test, the sw dma scoreboard overrides the dma scoreboard base type. In tests for

DMA in hardware mode, a hw dma scoreboard will override the dma scoreboard base
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Table 4.3: Tests description
Name of Test Description

sw dma no ed test DMA test in SW mode without external descriptor; 4 channels are
tested with different/same priority

hw dma no ed test DMA test in HW mode without external descriptor; 4 channels are
tested with the same priority

sw dma ed test DMA test in SW mode with external descriptor; 4 channels are tested
with different/same priority

hw dma ed test DMA test in HW mode with external descriptor with same priority for
each channel; 4 channels are tested

sw dma ars test DMA in SW mode, with ARS (automatic restart) bit set in the
CHx CSR register; 4 channels are tested with different priority

hw dma ars test DMA in HW mode, with ARS (automatic restart) bit set in the
CHx CSR register; 4 channels are tested with the same priority

hw dma rest test DMA in HW mode, with REST (hardware restart) bit set in the
CH0 CSR register; 1 channel is tested.

hw dma nd test DMA in HW mode with external descriptor enabled for forcing the next
descriptor test; SZ WB bit is set in the CH0 CSR register to enable
write back of the remaining size of data to the external descriptor.

type.

4.2.2 Simulation Results

Figure 4.3 shows the testing results of the DMA DUT in SW mode without using

external descriptors (EDs). Figure 4.3(a) shows the simulation results of four channels

with the same priority. The completion order of DMA operations is in round robin

mode among the four channels. Each channel transfers a chunk size data and the

DMA engine module within the DUT proceeds to the next available channel. For

Figure 4.3(b), the four channels are configured with different priorities, with channel

0 of the highest priority. After channel 0 finished transfer the total size of data, the

DMA engine will proceed to the next channel with the highest priority.

Figure 4.4 shows the simulation results of four channels operating in SW mode

while using EDs. A linked list of three EDs is initialized in the host memory for

each channel before configuring the CHx CSR registers. The USE ED bit is then set

for all CHx CSR registers. For each DMA transfer, a channel will first fetch an ED

from the host memory attached to wb master0 interface to obtain information such as

34



register_sequences

DUT_TOP

clk_i rst_i
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wb1_slave

wb1_master

hi

lo

host_memory

hi

lo

device_memory

ch0
ch1

ch2
ch3
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[30:0] dma_rest_i

[30:0] dma_req_i

[30:0] dma_nd_i

 [30:0] dma_ack_o

HW mode, 
device signals

Figure 4.1: Scenarios for tests

total transfer size, chuck size, source and destination addresses, the memory address

for the next descriptor in this linked list. Figure 4.4(a) and Figure 4.4(b) also show

different completion orders of DMA operations on the four channels in accordance

with the configuration of channel priorities.

Figure 4.5 shows the simulation result of the DMA DUT in HW mode without

using ED for four channels. Figure 4.6 shows a detailed simulation result for DMA in

HW mode for just one channel using one external descriptor. Each DMA operation

will transfer a chunk size of 16 words. Total 8 chunks of data are transferred for one

external descriptor. Figure 4.7 shows the DMA core in HW mode with ED enabled

for four channels. Channels are configured with the same priority in these tests.

When the ARS field of the CHx CSR register is set and no external descriptor is

used, the channel is set to operate in an auto restart mode. When current channel

successfully transferred a total size data as indicated in the CH SZ register, the

channel will automatically restart the transfer, until the ARS bit is cleared or the

STOP bit in the CH CSR register is set. In the later scenario, the DMA engine

will stop working and asserts a dm abort signal internally. If interrupt is enabled,

signal int o and/or int o will be asserted with CH SZ ERR bit set and corresponding

IN SR A and/or IN SR B is marked with the channel ID number.
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Figure 4.2: Simulation structure

(a)

(b)

Figure 4.3: DMA in SW mode without ED
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(a)

(b)

Figure 4.4: DMA in SW mode with ED

Figure 4.5: DMA in HW mode without ED

In Figure 4.8, 4 channels are enabled in SW mode with ARS bits set. After

channel 0 transferred a total size data, it automatically restarts the transfer since

it has the highest priority. After detecting the restart, the test sets the STOP

bit in the CH0 CSR register, and then the DMA DUT asserts an interrupt with

CH0 CSR[ERR] bit set. The waveform in Figure 4.8(b)shows that a dma abort signal

is asserted internally in the DUT. The DUT aborts after the STOP bit is set in the

CH0 CSR registers, which is not clearly described in the original documentation of

the design [10].

Figure 4.9 shows the test results of ARS bit set and the DUT operates in HW
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Figure 4.6: One channel test in HW mode with ED

Figure 4.7: DMA in HW mode with ED

mode. Four channels are enabled with the same priority. After each channel completes

in a round-robin order, channel 0 repeats its previous DMA transfer. The test detects

that and asserts STOP in the CH0 CSR register. After that, interrupts assert on the

misc if interface and the DMA engine aborts.

When a DMA transfer is not finished due to some reason, the unfinished previous

transfer could be restarted in HW mode with REST bit set in CHx CSR register

and with dma rest i signal asserted on the misc interface. Figure 4.10 shows the test

result of the hardware restart operation. A total size of 128 words (8 chunks data)

needs to be transferred. After 80 (this number is a constrained random number which

is less than the total size) words are transferred on channel 0, the hardware restart

signal is issued on the misc if interface. After that, 128 words are transferred in total.

Figure 4.11 shows the result of testing the forcing next descriptor. After 4 chunks

of data transferred, dma nd i is asserted on channel 0 to force the DMA engine

aborting current external descriptor and load the next descriptor in the linked list,
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(a)

(b)

Figure 4.8: DMA in SW mode with ARS enabled

Figure 4.9: DMA in HW mode with ARS enabled
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Figure 4.10: Hardware restart enabled

Figure 4.11: Forcing the next descriptor in HW mode

even though the total size (128 words) of data has not been fully transferred for

current external descriptor. The new descriptor is loaded after current chuck of data

been transferred. For the previous descriptor, a total number of 80 words have been

transferred. With the SZ WB bit being set in the CH0 CSR register, the remaining

size of data (0x30=48 words) that not yet transferred is written back to the address

of the previous external descriptor (@address 0x00008000) in the host memory.

4.2.3 Other Tests

Figure 4.12 shows the peak-poke test. In the peek-poke test, all the DMA control

registers and four groups of channel registers are first wrote and then read with

the back door access method. After that, all there registers are read through bus

operations. From the timing recorded shown in Figure 4.12, the back-door accesses

completed in zero simulation time, and the front door bus operations completed in

2960 ns (148 clock cycles for reading all 37 registers).

40



Figure 4.12: Peak-poke test

Figure 4.13: HW DMA in back-to-back timing

When the DMA core operates in HW mode, dma req i signal is to indicate the

start of a transfer on corresponding channels, and dma ack o is the output signal of

the DMA core that indicates a completion of a transfer. The dma ack o is asserted

one cycle after a chunk size of data has been transferred.

There are two timing scenarios for the dma req i signal. In the back-to-back

timing, the dma req i can keep asserted after the dma ack o asserted. In the

dma req/dma ack timing, the dma req i is de-asserted for at least one cycle after

the dma ack o is asserted.

In the misc agent, the configuration object has a Boolean variable to control if the

agent operates in dma req/dma ack timing mode or in back-to-back transfer timing

mode. The configuration object also has an integer variable to control the delay

time before asserting a dma req i signal in the dma req/dma ack timing scenario.

Figure 4.13 shows a back-to-back transfer. Figure 4.14 shows dma req/dma ack

timing scenario with a three-cycle delay for dma req i signal in a HW mode transfer.
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Figure 4.14: HW DMA in dma req/dma ack timing

Figure 4.15: Bug: de start not asserted after req i issued

4.2.4 Bugs and Debug

In this session, we introduce some bugs revealed during the verification.

When the DUT is in HW mode, after asserting the dma req i signal, the de start

signal is not asserted, as shown in Figure 4.15. Therefore, the DMA engine module

in the DUT fails to start. As described in Appendix A: code modifications for

wb dma rf.v at line 407, req r is redesigned to properly reduce the X states shown in

Figure 4.15. Figure 4.16 shows the correct waveform after this modification.

Figure 4.17 shows that the timing of signal inta o and intb o is inconsistency with

the deign specification. In the specification, these two signals should be asserted at the

same time the dma ack o is asserted. After fixing this, as described in Appendix A:

code modifications for wb dma rf.v at line 661, the correct wave form is shown in

Figure 4.16: Debug: de start asserted after req i is issued
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Figure 4.17: Bug: the timing error of inta o and intb o in the design

Figure 4.18: Debug: the timing error of inta o and intb o simulation result

Figure 4.18.

In SW mode DMA, the first channel to start is always channel 0, regardless of

the priority of all channels in use. After a chunk is transferred, all other channels are

then arbitrated to execute according to their priority. This suspicious order is not

detected in the original Verilog testbench in the design; because the original testbench

only monitors the order of the final interrupt which represents the order of channel

that finishes the total size data transfer. In the scoreboard in this thesis, it monitors

not only the order channels finish, but also the order of channels finish each chunk

size of data transfer during the DMA operations. In the completion order shown in

Figure 4.19, for the Verilog testbench, it will detect the finishing order is as channel 2

→ channel 1→ channel 0, which is in accordance with the channel priority. However,

as we break down the completion order in details, the channels are not arbitrated

according to their priority for each chunk size of data transfer. This part is not

clearly marked in the design specification, so we leave the RTL code as it is. But

in order to avoid this complication, in the test we run, we always assign the highest

priority to channel 0.

Other bugs are detected and code is modified as in Appendix A for the

wb dma ch sel.v design file due to the latching the dma req i signal.
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Figure 4.19: Suspicious completion orders

4.2.5 Coverage Collection and Discussion

For each test we run, we collect the coveragegroup statistics. After all tests are run,

these statistics are combined together as results shown in Figure 4.20. An 100%

goal is achieved for all the coverage points we designed. A script in Tool Command

Language (Tcl) [8] used for the simulation is given in Appendix A to this thesis.

4.3 Conclusions

In this chapter, we present the simulation scenarios and results. The testbench

components and data are loaded as needed during the simulation time, which saves

the memory overhead of the simulator and enhances the simulation speed. Several

bugs are revealed during the simulation. Corrected code of the DMA core design are

in Appendix A.

44



Figure 4.20: Coveragegroup statistics
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Chapter 5

Conclusions and Future Work

As introduced in Chapter 1, a traditional Verilog testbench is a wrapper code around

the design under test (DUT). It is lack of reusability. For example, to test a new

harness, it either evolves editing the original testbench to add the harness, or it needs

to establish a new version of testbench, in which copying and pasting code of the

original testbench cannot be avoided.

To overcome the shortage of the traditional Verilog testbench, this thesis designed

a reusable UVM testbench for a DMA core obtained from [10]. Register Abstraction

Layer is designed and implemented to facilitate the verification of architecture

registers, as well as to be used as a reference model in the scoreboard component.

All sequences, tests, and scoreboards are designed with OOP feature to allow future

reuse. Coverage groups are designed to monitor the effectiveness of the tests. We

ran the simulation with four channel’s configuration and with Questasim 10.5c [6].

With the verification, we revealed several bugs in the DMA core design and corrected

the bugs as shown in Appendix A. We also pointed out that there is a mismatch

between the simulation behavior and the design specification when different priorities

are assigned onto different DMA channels.

In [3], it proposed an FPGA testing environment for the same DMA Core we tested

with our UVM testbench. Compared to the FPGA test environment, our testbench

46



uses the minimal resources before mapping the design to the more expensive and

complex FPGA platform. Our testbench also features reusability for future usage

and to allow future verification of a larger design to be built upon this thesis when

the DMA core is integrated as a sub-module.

In this thesis, we learnt that, although at the very beginning of adopting the

UVM into the verification process of an application, it requires verification engineers

to make some effort to absorb the knowledge of the UVM, this effort pays itself. An

UVM testbench is well structured. It will benefit verification of large projects that

requires collaboration works. Moreover, the OOP features of the UVM enhance the

reusability of a testbench. This makes the this thesis useful for future design and

verification.

Future work including further verification of the targeted DMA core which serves

both as a stand-alone design and a sub-module inside of an FPGA application.

47



Bibliography

48



[1] Altera SDK for OpenCL: Best Practices Guide. https://documentation.

altera.com/#/link/mwh1391807516407/mwh1391807494883/

en-us. 5

[2] AXI DMA Controller. http://www.xilinx.com/products/

intellectual-property/axi_dma.html. 5

[3] DMA Controller Example: Opencores Wishbone DMA Case. Dynalith Systems

Application Note DS-AN-2008-08-001. 46

[4] GPU Direct. https://developer.nvidia.com/gpudirect. 5

[5] PCI Express Avalon-MM High-Performance DMA Reference

Design. https://www.altera.com/products/

reference-designs/all-reference-designs/interface/

ref-pciexpress-avalonmm-hp.html. 5

[6] Questa Advanced Simulator. https://www.mentor.com/products/fv/

questa/. 7, 46

[7] Register Verification. http://www.testbench.in/TB_32_REGISTER_

VERIFICATION.html. 22

[8] Tool Command Language. https://www.tcl.tk. 44

[9] Universal Verification Methodology (UVM) Working Group. http://

accellera.org/activities/working-groups/uvm/. 2

[10] WISHBONE DMA/Bridge IP Core. http://opencores.org/project,

wb_dma. 6, 7, 8, 9, 10, 13, 37, 46

[11] SystemVerilog 3.1a Language Reference Manual, Accelleras Extensions to

Verilog. Accellera, 2004. 2

49

https://documentation.altera.com/#/link/mwh1391807516407/mwh1391807494883/en-us
https://documentation.altera.com/#/link/mwh1391807516407/mwh1391807494883/en-us
https://documentation.altera.com/#/link/mwh1391807516407/mwh1391807494883/en-us
http://www.xilinx.com/products/intellectual-property/axi_dma.html
http://www.xilinx.com/products/intellectual-property/axi_dma.html
https://developer.nvidia.com/gpudirect
https://www.altera.com/products/reference-designs/all-reference-designs/interface/ref-pciexpress-avalonmm-hp.html
https://www.altera.com/products/reference-designs/all-reference-designs/interface/ref-pciexpress-avalonmm-hp.html
https://www.altera.com/products/reference-designs/all-reference-designs/interface/ref-pciexpress-avalonmm-hp.html
https://www.mentor.com/products/fv/questa/
https://www.mentor.com/products/fv/questa/
http://www.testbench.in/TB_32_REGISTER_VERIFICATION.html
http://www.testbench.in/TB_32_REGISTER_VERIFICATION.html
https://www.tcl.tk
http://accellera.org/activities/working-groups/uvm/
http://accellera.org/activities/working-groups/uvm/
http://opencores.org/project,wb_dma
http://opencores.org/project,wb_dma


[12] WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable

IP Cores. opencores.org, revision b.3 edition, September, 2002. 8

[13] Gordon Allan, Mike Baird, Rich Edelman, Adam Erickson, Michael Horn,

Mark Peryer, Adam Rose, and Kurt Schwartz. UVM cookbook. http:

//verificationacademy.com/cookbook. 1, 2

[14] Matthew Jacobsen, Yoav Freund, and Ryan Kastner. Riffa: A reusable

integration framework for fpga accelerators. In Proceedings of the 2012 IEEE 20th

International Symposium on Field-Programmable Custom Computing Machines,

FCCM ’12, pages 216–219, Washington, DC, USA, 2012. IEEE Computer

Society. 5

[15] Matthew Jacobsen, Dustin Richmond, Matthew Hogains, and Ryan Kastner.

Riffa 2.1: A reusable integration framework for fpga accelerators. ACM Trans.

Reconfigurable Technol. Syst., 8(4):22:1–22:23, September 2015. 5

[16] Mark Litterick and Marcus Harnisch. Advanced uvm register modeling – there’s

more than one way to skin a reg. In DVCon, 2014. 20

[17] David A. Patterson and John L. Hennessy. Computer Organization and Design,

Fourth Edition, Fourth Edition: The Hardware/Software Interface (The Morgan

Kaufmann Series in Computer Architecture and Design). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 4th edition, 2008. 4

[18] Walden C. Rhines. Design verification challenges: Past, present and future.

DVCon U.S. 2016 Keynote. 1

[19] Ray Salemi. The UVM Primer: A Step-by-Step Introduction to the Universal

Verification Methodology. Boston Light Press, 1st edition, 2013. 24

50

http://verificationacademy.com/cookbook
http://verificationacademy.com/cookbook


Appendix

51



Appendix A

Script and Code

A.1 Simulation Script in Tcl

Listing A.1 is the Tcl script we used in the simulation. It first compiles the design

and the testbench. Each component of the testbench is compiled into a package for

reuse purpose. For each test we ran, we collected the statistics of the coverage group

we designed. Then at the end of the simulation, we combined those statistics together

to obtain the final coverage information.

Listing A.1: Simulation Script in Tcl
1 #constraint
2 #set UVM_HOME /uvm-1.1d/
3 set RTL ./../rtl/verilog
4 set SLAVE_AGENT ./../uvm_test/slave_agent
5 set MASTER_AGENT ./../uvm_test/master_agent
6 set MISC_AGENT ./../uvm_test/misc_agent
7 set REG_MODEL ./../uvm_test/dma_reg_pkg
8 set MEM_MODEL ./../uvm_test/dma_mem_pkg
9 set ENV_MODEL ./../uvm_test/env
10 set TRANS ./../uvm_test/transactions
11 set SEQS ./../uvm_test/sequences
12 set TESTS ./../uvm_test/test
13 set VIR_SEQ ./../uvm_test/virtual_sequences
14 set TOP ./../uvm_test/
15 set MACRO ./../uvm_test/
16 vlib work
17
18 #build
19 vlog +incdir+$RTL $RTL/*.v +acc +cover=sbcef
20 vlog $SLAVE_AGENT/wb_slave_if.sv -timescale 1ns/10ps
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21 vlog $MASTER_AGENT/wb_master_if.sv +incdir+$TOP -timescale 1ns/10ps
22 vlog $MISC_AGENT/misc_if.sv -timescale 1ns/10ps
23 vlog +incdir+$TRANS $TRANS/transactions_pkg.sv
24 vlog +incdir+$SLAVE_AGENT $SLAVE_AGENT/slave_agent_pkg.sv
25 vlog +incdir+$MASTER_AGENT $MASTER_AGENT/master_agent_pkg.sv
26 vlog -permissive +incdir+$MISC_AGENT +incdir+$MACRO $MISC_AGENT/

misc_agent_pkg.sv
27 vlog +incdir+$REG_MODEL $REG_MODEL/dma_reg_pkg.sv
28 vlog -permissive +incdir+$ENV_MODEL +incdir+$MACRO $ENV_MODEL/

dma_env_pkg.sv
29 vlog +incdir+$SEQS +incdir+$TOP $SEQS/dma_test_sequence_pkg.sv
30 vlog +incdir+$VIR_SEQ $VIR_SEQ/virtual_seq_pkg.sv
31 vlog +incdir+$TESTS $TESTS/dma_test_lib_pkg.sv
32 vlog $TOP/top.sv +acc
33 #run the tcl input, which is the test name for this run
34 #vsim top -coverage +UVM_TESTNAME=register_test
35 #vsim top -coverage +UVM_TESTNAME=dma_base_test
36 #vsim top -coverage +UVM_TESTNAME=peek_poke_test
37
38 set NoQuitOnFinish 1
39 onbreak {resume}
40
41 vsim -novopt top -coverage +UVM_TESTNAME=sw_dma_no_ed_test
42 run -all
43 coverage attribute -name TESTNAME -value sw_dma_no_ed_test
44 coverage save sw_dma_no_ed_test.ucdb
45 vsim -novopt top -coverage +UVM_TESTNAME=sw_dma_ed_test
46 run -all
47 coverage attribute -name TESTNAME -value sw_dma_ed_test
48 coverage save sw_dma_ed_test.ucdb
49 vsim -novopt top -coverage +UVM_TESTNAME=hw_dma_no_ed_test
50 run -all
51 coverage attribute -name TESTNAME -value hw_dma_no_ed_test
52 coverage save hw_dma_no_ed_test.ucdb
53 vsim -novopt top -coverage +UVM_TESTNAME=hw_dma_ed_test
54 run -all
55 coverage attribute -name TESTNAME -value hw_dma_ed_test
56 coverage save hw_dma_ed_test.ucdb
57 vsim -novopt top -coverage +UVM_TESTNAME=sw_dma_ars_test
58 run -all
59 coverage attribute -name TESTNAME -value sw_dma_ars_test
60 coverage save sw_dma_ars_test.ucdb
61 vsim -novopt top -coverage +UVM_TESTNAME=hw_dma_ars_test
62 run -all
63 coverage attribute -name TESTNAME -value hw_dma_ars_test
64 coverage save hw_dma_ars_test.ucdb
65 vsim -novopt top -coverage +UVM_TESTNAME=hw_dma_rest_test
66 run -all
67 coverage attribute -name TESTNAME -value hw_dma_rest_test
68 coverage save hw_dma_rest_test.ucdb
69 vsim -novopt top -coverage +UVM_TESTNAME=hw_dma_nd_test1
70 run -all
71 coverage attribute -name TESTNAME -value hw_dma_nd_test1
72 coverage save hw_dma_nd_test1.ucdb
73 vsim -novopt top -coverage +UVM_TESTNAME=hw_dma_nd_test2
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74 run -all
75 coverage attribute -name TESTNAME -value hw_dma_nd_test2
76 coverage save hw_dma_nd_test2.ucdb
77 vsim -novopt top -coverage +UVM_TESTNAME=hw_dma_nd_test3
78 run -all
79 coverage attribute -name TESTNAME -value hw_dma_nd_test3
80 coverage save hw_dma_nd_test3.ucdb
81 vsim -novopt top -coverage +UVM_TESTNAME=hw_dma_nd_test4
82 run -all
83 coverage attribute -name TESTNAME -value hw_dma_nd_test4
84 coverage save hw_dma_nd_test4.ucdb
85 vcover merge dma_test.ucdb sw_dma_no_ed_test.ucdb
86 hw_dma_no_ed_test.ucdb hw_dma_ed_test.ucdb \
87 sw_dma_ed_test.ucdb sw_dma_ars_test.ucdb hw_dma_ars_test.ucdb
88 hw_dma_rest_test.ucdb \
89 hw_dma_nd_test1.ucdb hw_dma_nd_test2.ucdb hw_dma_nd_test3.ucdb
90 hw_dma_nd_test4.ucdb
91 vcover report dma_test.ucdb -cvg -details

A.2 Code Modifications

Listing A.2 shows a value is set to the req r register during reset in the code file

”wb dma ch sel.v” at line 407.

Listing A.2: wb dma ch sel.v line 407

1 always @(posedge clk)
2 begin
3 if(rst == 1’b0)
4 req_r<=31’b0;
5 else if(|req_i)
6 req_r <= #1 req_i & ˜ack_o;
7 end

Listing A.3 shows how to fix the timing issue for signal inta o and intb o.

Listing A.3: wb dma rf.v line 661

1 assign inta_o = |int_srca;
2 assign intb_o = |int_srcb;

Listing A.4 and Listing A.5 show code we corrected in the file of ”wb dma ch sel.v”.

Listing A.4: wb dma ch sel.v line 564

1 always @(ch_sel or valid)
2 case(ch_sel) // synopsys parallel_case full_case
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3 5’h0: valid_sel = valid[0]&(ch0_csr[‘WDMA_MODE]&ch0_csr[‘
WDMA_USE_ED] ? req_i[0]: 1’b1);

4 5’h1: valid_sel = valid[1]&(ch1_csr[‘WDMA_MODE]&ch1_csr[‘
WDMA_USE_ED] ? req_i[1]: 1’b1);

5 5’h2: valid_sel = valid[2]&(ch2_csr[‘WDMA_MODE]&ch2_csr[‘
WDMA_USE_ED] ? req_i[2]: 1’b1);

6 5’h3: valid_sel = valid[3]&(ch3_csr[‘WDMA_MODE]&ch3_csr[‘
WDMA_USE_ED] ? req_i[3]: 1’b1);

Listing A.5: wb dma ch sel.v line 599

1 always @(ch_sel or ndr_r)
2 case(ch_sel) // synopsys parallel_case full_case
3 5’h0: ndr = ndr_r[0]&ch0_csr[‘WDMA_USE_ED];
4 5’h1: ndr = ndr_r[1]&ch1_csr[‘WDMA_USE_ED];
5 5’h2: ndr = ndr_r[2]&ch2_csr[‘WDMA_USE_ED];
6 5’h3: ndr = ndr_r[3]&ch3_csr[‘WDMA_USE_ED];
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