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Abstract 

 

 Genetic algorithms are search techniques that borrow ideas from the biological 

process of evolution.  By means of natural selection, genetic algorithms can be employed 

as robust numerical optimizers on problems that would normally be extremely 

problematic due to ill-behaved search spaces.  The genetic algorithm has an advantage in 

that it is a global optimization strategy, as opposed to more conventional methods, which 

will often terminate at local maxima. 

 The success and resourcefulness of genetic algorithms as problem-solving 

strategies are quickly gaining recognition among researchers of diverse areas of study.   

In this thesis I elaborate on applications of a genetic algorithm to several problems in 

physics and astronomy.   

 First, the concepts behind functional optimization are discussed, as well as several 

computational strategies for locating optima.  The basic ideas behind genetic algorithms 

and their operations are then outlined, as well as advantages and disadvantages of the 

genetic algorithm over the previously discussed optimization techniques.  Then the 

results of several applications of a genetic algorithm are discussed.  The majority are 

relatively simple problems (involving the fitting of only one or two parameters) that 

nicely illustrate the genetic algorithm’s approach to optimization of “fitness,” and its 

ability to reproduce familiar results.  The last two problems discussed are non-trivial and 

demonstrate the genetic algorithm’s robustness.  The first of these was the calculation of 

the mass of the radio source Sagittarius A*, believed to be a supermassive black hole at 
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the center of the Milky Way, which required that the genetic algorithm find several 

orbital elements associated with an orbiting star.  The results obtained with the genetic 

algorithm were in good agreement with those obtained by Genzel et al [19].  Then 

discussed was the problem of parametrization of thermonuclear reaction rates.  This 

problem is especially interesting because attempts at fitting several rates prior to the 

implementation of the genetic algorithm proved to be unsuccessful.  Some of the rates 

varied with temperature over many orders of magnitude, and required the genetic 

algorithm to find as many as twenty-eight parameters.  A relatively good fit was obtained 

for all of the rates. 

 In the applications of genetic algorithms discussed in this thesis, it has been found 

that they can outperform conventional optimization strategies for difficult, 

multidimensional problems, and can perform at least as well as conventional methods 

when applied to more trivial problems. 
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Chapter 1 
 
 

Introduction 
 
 
 
 Function optimization is a problem encountered quite often in the physical 

sciences, and a great deal of effort has been spent in inventing and perfecting 

computational methods that yield optima of difficult functions, the extrema of which 

cannot be found analytically.   

 It is the purpose of this thesis to explore one particular method that is quickly 

gaining recognition as a robust optimization strategy, the genetic algorithm.  In this 

chapter, the reader is introduced to the basic concepts behind optimization, as well as 

several optimization techniques.  In the following chapters, the computational procedures 

of the genetic algorithm, the results of applications to several problems, and comparisons 

with other optimization methods will be discussed. 

 
 
1.1 Optimization Theory 
 
 Given a function, f ( 1 2 3, ,x x x …), the task of optimization is to find the set of 

variables, ix (where i = 1,2,3…), for which f takes a maximum value.  This parameter set 

is termed the optimal solution.  An optimum value of a function can be one of two types, 

as is illustrated in Figure 1.1.  The figure shows a one-dimensional function bounded by 

the points a and e.  The two optima shown above are located at the points  
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Fig. 1.1   One-dimensional function f(x)   

Source: http://mat.gsia.cmu.edu/QUANT/NOTES/chap2/node4.html 
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x = b and x = d.  The former is a global optimum, whereas the latter is known as a local 

optimum.  The global optimum is truly the highest peak of f.  The local optimum, on the 

other hand, denotes the highest point in the immediate vicinity.  Thus, the point x = b in 

the illustration need not correspond to a global optimum if the observed region were to be 

extended beyond the interval [a,e]. 

 The basic calculus approach to the problem of locating an optimum is to 

differentiate the function and find the value of x that satisfies the condition 

 

f’(x) = 0. 

 

This x-value corresponds to an extremum of f.  Few real world problems, however, can be 

solved by such simple means.  Firstly, the above analytical method is not applicable for 

many functions, such as transcendental functions, where the task of finding the roots is 

non-trivial and often itself proves to be a very difficult problem.  Also, for a complicated 

function with several extrema, it would be a difficult task to find all the roots of the above 

formula.   

There is a nice example from optics that illustrates the limitation of the above 

approach [1].  This problem is encountered when studying the diffraction pattern 

resulting from a single vertical slit.  If x is taken to the distance measured in the direction 

perpendicular to the slit, then the intensity of the diffraction is related to x through the 

function 
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I(x) = 







x
xsin

2

. 

 

An attempt to find the extrema of such a function using the above analytical procedure 

results in the following transcendental equation. 

 

2

cos sin2sin 0x xx
x x

 − = 
   

 

The minima are easily obtained by recognizing that the above equation is satisfied when 

sin x = 0, and thus nx nπ=  (where n = 1,2,3…).  Finding the maxima, on the other hand, 

would require one to algebraically solve for x, which is not possible for the above 

formula.  In such a case, a more practical approach is to solve the problem numerically.  

 There are several numerical methods of optimization, the strengths and 

weaknesses of which are dependent on the kind of problem.  Finding the particular 

method best suited for optimizing a given type of function is thus very important.  Given 

below are descriptions of several common optimization routines, and some strengths and 

weaknesses associated with each.   
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1.2   Other Search Techniques 

Random Search 

In this method, points in the search space are randomly selected and evaluated. 

After many random evaluations, the point that yields the greatest function value is taken 

as the maximum.  This strategy is rarely used by itself [2].  

Gradient Methods 

This strategy is restricted to finding local optima. This alone presents a difficulty 

in applying such a technique to the global optimization problem.  The basic procedure 

behind these so-called “hill-climbing” methods is outlined as follows.  Starting at a 

random location in parameter-space, the direction of steepest ascent in the vicinity of the 

local landscape is evaluated, usually by making use of gradient information.  After 

moving a specified distance in that direction, the path of steepest ascent is again 

evaluated.  This process is reiterated until the surrounding terrain is downhill in all 

directions.  At finding this optimum, the computation ceases.   

The hill-climbing method is serial, meaning that only one point at a time in 

solution space is evaluated and hence can only search one direction, and thus remains 

ignorant of the shape and behavior of the overall landscape. The success of the hill-

climbing strategy in optimization is therefore highly dependent upon the problem and the 

search space in question.  The method assumes that a derivative exists for the function 

being optimized.  Thus, hill-climbing often fails if a derivative cannot be evaluated.  Such 

would be the case when employing a gradient-based method on a discontinuous function, 

for example.   
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Another difficulty encountered in the hill-climbing strategy is the tendency for a 

search to terminate on local maxima.  The hill-climbing strategy would be ideal for 

finding the optimum in unimodal landscapes, like that of the parabolic function shown in 

Fig. 1.2.  In this particular problem, there exist only one maximum, so there is no 

question that the global optimum has been found.  Consider, on the other hand, the task 

of finding the global optimum of a function with several local optima, like the degree-18 

legendre polynomial shown in Fig 1.3.  Here it is apparent that the success of the hill-

climbing strategy is dependent upon the hill-climber’s starting location.  If the 

computation is initiated at a point beyond the local vicinity of the central peak, it is clear 

that the iterative hill-climbing technique outlined above will converge on a local 

optimum.  For a complex search space, finding a suitable starting location that allows for 

convergence on the global optimum may become extremely problematic, because one can 

never be certain if the solution obtained is indeed the desired result, or is instead only a 

local optimum. 

Iterative Hill-Climbing 

 Iterative Hill-Climbing is a combination of hill-climbing and random search.  

Like conventional hill-climbing discussed above, this strategy suffers from the drawback 

of terminating on the first maximum it finds, regardless of whether it is local or global.  

Upon convergence, however, the procedure is reiterated at a different starting point, thus 

improving the odds of a global convergence, while the user keeps track of the maxima 

that have thus far been found.  Again, this search is serial and is therefore carried out in 

local isolation, with the search having no knowledge of the overall terrain of the search 

space, or of other possible maxima, so a problem is knowing when to terminate the 
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Fig 1.2   Upside-down parabola 
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Fig. 1.3   18-degree legendre polynomial 

 

Source: http://math.berkeley.edu/~mhaiman/mathH54/legendre.html 
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iterative search. 

Simulated Annealing 

 This is a modified version of hill-climbing in which moves are weighted by 

probabilities, where uphill moves tend to be more probable than downhill ones.  Starting 

from a random location, a move is made, with the probability of downhill moves 

constantly decreasing.  As such, moves in any direction are favored initially, but as time 

goes on, uphill moves tend to be favored over downhill ones.  This approach has the 

advantage over those discussed above in that, with simulated annealing, there is a 

possibility, with enough negative moves, of escaping local maxima.  Of course, too many 

negative moves will lead the search away from the global optima.  Like the other 

strategies discussed above, this method only analyzes one solution at a time and thus 

cannot build an overall picture of the surrounding landscape, and no information from 

previous moves is used to guide the search.  This strategy has proved to be successful in 

many applications, like the VLSI circuit layout, for example [3]. 

The Simplex Method 

 This method is specifically designed to locate extrema in a multi-dimensional 

space, where each dimension corresponds to a variable defining a solution.  Consider an 

n-dimensional space.  A simplex is a geometrical figure with n + 1 vertices existing in 

this space.  The simplex of a 2D space, for example, would be a triangle, for a 3D space, 

a tetrahedron, and so on.  Given n variables, the location of each vertex of the simplex 

corresponds to a solution ( 1 2 3, , ... nx x x x ), as is illustrated in Fig. 1.4.  The simplex has the  
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Fig. 1.4   Simplex   

 

Source:  http://en.wikipedia.org/wiki/Simplex_algorithm 
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ability to undergo three types of displacements: contraction, expansion, or reflection.  In 

this way, the vertex with the worst solution is displaced, such that the function value 

corresponding to that vertex is increased by the move.  Having gone through successive 

such moves in the complex n-dimensional topography, the method terminates when no 

other moves can be found that will increase the function value, and this final “resting 

place” of the simplex is taken to be the position of a maximum.  But, as in the strategies 

discussed above, the simplex method lacks the ability to distinguish between local and 

global extrema.   

The simplex method does not make uses of derivative information, but only 

requires function evaluations.  Like the above hill-climbing methods, the initial 

coordinates of the vertices of the simplex often determine whether the global optimum is 

found [1].  Compared to gradient-based strategies, the simplex method is much slower.  It 

is, however, more successful at navigating a complex search space that might thwart 

faster, hill-climbing searches, and thus has a better chance of achieving global 

optimization [1].  
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Chapter 2 
 
 

Genetic Algorithms 
 
 
 
2.1   An Overview 
 
 Genetic algorithms accomplish the optimization process in a manner analogous to 

biological evolution.  This procedure is outlined below in six steps.  

 

1) A random set of model parameter values is generated.  This randomness 

guarantees that no initial bias is present.  Each trial solution, corresponding to a 

specific set of parameter values, can be thought of as an individual in a 

population.   

2) The fitness of each solution, or individual, is computed.  This is usually done by a 

chi square measure of fitness with the data (although other methods of fitness 

could be employed), where the fitness is defined to be the inverse of chi squared. 

            

Fitness = 
x2

1  

 

      A minimum value of 
2χ will thus yield a maximum value of fitness. Because   

      these parameters were produced in a random fashion, the fitness values of the  

      population should vary over a considerable range.  The genetic algorithm, then,  
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      does not seek to maximize an objective function (a physics equation, for  

      example), but a fitness function.    

3) Pairs of solutions are then chosen from the population, where the probability of a 

particular solution being chosen is proportional to the solution’s fitness.  This is 

the computational equivalent of the evolutionary process of natural selection, 

where the more fit parents tend to reproduce more often.  This is the driving force 

behind evolutionary development.  On average, individuals better adapted to their 

environment tend to produce more offspring compared to “less fit” parents.  Here, 

the measure of fitness that a solution has with a given data set obviously plays the 

role of biological fitness of an individual with respect to its environment, in that it 

is a measure of reproductive success. 

4) From each pair of selected solutions, new solutions are produced.  This 

reproduction process makes use of two operations: crossover and mutation, which 

are discussed in greater detail below. These new solutions form the next 

generation of model parameters. 

5) Now, with natural selection acting on this new population, steps 2) through 5) are 

repeated. This tends to produce successive generations that have a higher fitness 

to the data.  Hence, the solutions tend to “evolve” over time. 

6) Termination occurs when the fitness of a solution in the current population      

      exceeds some preset value, or when the computation has been carried out over a 

      specified number of generations. 
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2.2   The “Breeding” Process 

Encoding 

As a prerequisite for the subsequent reproduction procedures, each parameter 

defining a solution is encoded as a string of integers.  These are then spliced together, 

producing a 1-D integer array, or “chromosome.”  It is this array that undergoes the 

future operations of crossover and mutation.  

As an example, consider the 2-D fitting problem, in which two parameters (x and 

y) are to be found which maximize the function f(x,y).  If the fitted parameters have the 

following values, 

 

(x,y) = (.12348, .71974) 

 

then the resulting “chromosome” would be  

 

1234871974. 

 

Note that the decimals of the x and y values have been discarded in the encoding process. 

Hence, each set of parameters defining a solution (in this case, the x and y values) 

can be considered a single chromosome, where each digit is a gene occupying a 

chromosomal site for which there exists ten possible alleles, or gene values.  While it is 

not biologically accurate to regard a single chromosome as an individual in a population, 

this characterization will suffice for the purposes of putting the computational steps of the 
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genetic algorithm in a biological context.  At best, these “individuals” can be thought of 

as possessing a single chromosome, making the two concepts thereby synonymous.   

To fully appreciate the analogy with evolutionary biology, two important 

concepts are of interest here: phenotypes and genotypes.  The phenotype can be regarded 

as the sum of an individual’s observable traits; anything that makes up the observable 

characteristics and behavior of the organism.  The genotype consists of the internally 

coded, genetic information of the individual.  It is this information that is passed from 

one generation to the next via sexual reproduction, and hence is the underlying factor in 

determining an organism’s inheritable physical traits.  The encoding process can be 

regarded as the “uncovering” of an individual’s genotype, given its phenotype.  Using the 

above example, the string ‘1234871974’ is the genotype of the phenotype (x,y). 

Crossover 

Crossover refers to the process in which genetic fragments of the population are 

used in defining a new generation of trial solutions. This is one of the major features that 

distinguish the genetic algorithm from other optimization methods.  In a biological 

context, crossover is best regarded as a process that may occur in reproduction.  For each 

site, or gene, in a chromosome, there exists a probability that a crossover operation will 

occur at that site.  This consist of a fragmentation of the chromosome at the location of 

the site in question, and then the interchanging of fragments with another chromosome.  

The resulting new chromosomes are regarded as the offspring of the original two in the 

genetic algorithm.   

As an example, consider the following encoded solutions.   
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1234871974             parent #1 

 

3571092526             parent #2 

 

At a randomly selected site, both parent chromosomes are cut and the resulting fragments 

are interchanged.  If the cutting site were located at site seven, the crossover operation 

would look like this. 

 

CUT:       123487   1974 

                                                                     357109   2526 

 

SWAP:       123487   2526 

                                                                      357109   1974 

 

                          SPLICE:      1234872526         offspring #1 

                                                                       3571091974         offspring #2                     

 

This process ensures that both offspring have “inherited” information from both parents, 

analogous to the reproduction of sexual species, in which complementary portions of 

genetic material are passed on to the new generation.  For the sake of simplicity, the 

example illustrated here is of one-point crossover, where the splicing and recombination 

occurs at one site in the string.  In general, genetic algorithms make use of one-point 
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crossover.  Such is the case for the algorithm used in obtaining the results discussed in 

the following chapter.  There are some genetic algorithms, however, that make use of 

two-point, or even higher orders of crossover, where the chromosome is cut in more than 

one location, resulting in a number of fragments.  Note that, for one-point crossover, two 

offspring are produced.  These two offspring replace their parents in the generation, so 

the population size remains a constant throughout the evolutionary run.  

To see the significance of the crossover operation in optimization, consider the 

two parent solutions again, where the digits in bold are assumed, for sake of illustration, 

to represent those sites that tend to contribute to a greater-than-average fitness.  Those not 

in bold are assumed to contribute little toward maximizing fitness. 

 

1234871974             parent #1 

 

3571092526             parent #2 

 

Making note of the above offspring chromosomes, it is clear that offspring #1  

 

1234872526 

 

is more fit than either parent or its sibling,  

 

3571091974, 
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since it has inherited a greater number of those genes that convey a high fitness and thus 

will have a greater probability of being selected for breeding in the next iteration. 

  Hence, the crossover operation, combined with natural selection of trial solutions, 

ensures that each generation “more fit” than the last, meaning that each generation is 

better able to produce a more accurate model describing the given set of data. 

Mutation 

The next step in breeding is the application of the mutation operation to the 

offspring chromosomes.  For each integer in the number sequence, there exist a small 

probability that a random number will replace the digit.   

The following is an example of a mutation. 

 

                                                                    1234872526 

 

12 4872526 

 

1284872526 

 

Note the change in digit value, from 3 to 8, that occurred at the third site from the left.  

This, of course, is analogous to genetic mutation, where random copying errors in gene 

values can occur in information being passed from parent chromosomes to offspring 

chromosomes.  Depending upon which gene is affected, mutations can lead to small 

displacements in parameter space, or to large leaps that result in offspring trial solutions 

radically different from that of either parent.     
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The rate of mutation, and hence the probability that a chromosome may undergo a 

change in one of its digits, is allowed to vary throughout the evolutionary run.  A similar 

process occurs in nature.  Some bacterial species will undergo a phase of 

“hypermutation” when something disruptive occurs in its surrounding environment to 

threaten the survival of the species, while the mutation rate remains relatively low at 

other times.  In this way, the odds of adapting to new circumstances, and hence survival, 

are increased in times of severe environmental stress [6].  Just as the rate of mutation in 

some living things varies in accordance with changes in their surroundings, the mutation 

rate of a population in a genetic algorithm continually adjusts itself to compensate for 

fitness (or lack thereof) between solutions and the data.  The initial mutation rate is, in 

general, much less than the crossover probability, so as to ensure that mutation does not 

undermine any progress made by crossover in breeding more fit solutions. 

 Decoding 

Decoding is simply the inverse of encoding.  At this stage the offspring 

phenotypes are constructed from their corresponding genotypes, to be used in the next 

generational iteration.  The phenotypes of the two offspring chromosomes given above 

would look like the following. 

 

 

(x,y) = (.12848, .72526)            offspring #1 

 

(x,y) = (.35710, .91974)           offspring #2 
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They have clearly made significant advancements in parameter space as compared to the 

parents. 

 

(x,y) = (.12348, .71974)           parent #1                           

 

(x,y) = (.35710, .92526)           parent #2 

 

2.3   A Brief History of Genetic Algorithms 

 Genetic Algorithms began to appear in the late 1950s and early 1960s.  Their 

original use was in modeling natural evolution, but they were soon appreciated as 

optimization strategies for artificial problems.  By 1962, researchers, such as G.J. 

Friedman and W.W. Bledso, to name a few, had begun to make use of genetic algorithms 

for optimization purposes.  In 1965 a researcher, Ingo Rechenberg, of the Technical 

University of Berlin, introduced a technique that came to be known as an “evolution 

strategy.”  This method made no use of crossover or populations.  Instead, a single 

solution underwent a mutation to produce one offspring.  The more fit of the two 

solutions was kept, to be again subjected to a mutation.  The idea of a population of 

solutions was introduced into later versions [6].  In 1966, L.J. Fogel, A.J. Owens and M.J. 

Walsh introduced the technique of “evolutionary programming.”  Like evolution 

strategies, this technique only made use of mutation.  The primary difference between the 

two methods is the methods of selection.  Evolution strategies make use of deterministic 

selection, based on a function evaluation, whereas the selection techniques employed in 
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evolutionary programming are probabilistic in nature and based on fitness, much like 

selection in genetic algorithms.  Unlike genetic algorithms, where solutions are encoded 

during the breeding process, there is no constraint placed on the representation of 

solutions in evolution strategies or evolutionary programming.  Another major distinction 

between these two methods and genetic algorithms is the manner in which mutation is 

employed.  The mutation operation in evolutionary programming and strategies is 

weighted with a statistical distribution, with the probability of a change occurring being 

proportional to the magnitude of the variation.  Small variations in the offspring are thus 

much more probable than substantial ones [7].  In short, the focus of evolution 

programming and strategies is placed on the behavioral linkage between parent and 

offspring solutions.  There is no emulation of specific genetic operations found in nature, 

as is present in genetic algorithms [7].  

 In 1975, the publication of the book Adaptation in Natural and Artificial Systems 

brought about the wide recognition of genetic algorithms as problem solving strategies.  

This book built on earlier research by John Holland, who was the first to propose the use 

of crossover and mutation in explicitly mimicking biological evolution as a method of 

optimization [6].  Also introduced in this same book is the notion of schemata, in which 

individual solutions were encoded and thought of as being comprised of “building 

blocks,” similar to how proteins are the “building blocks” of DNA chromosomes [6][8]. 

In the same year, the genetic algorithm’s success in navigating complex, discontinuous, 

and other ill-behaved search spaces was firmly established in a dissertation by Kenneth 

De Jong [6][9].  By the mid-1980s, there was a widespread interest in genetic algorithms, 
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and they were being applied to a huge variety of problems, including pipeline flow 

control, structural optimization, and pattern recognition/classification [9].  

 Today, genetic algorithms are a thriving field of study, and are used to solve 

problems in a variety of fields, such as physics, astronomy, aerospace engineering, 

microchip design, biochemistry and molecular biology [6].  The range of problems that 

genetic algorithms can handle and “adapt” to is larger than that of any other optimization 

strategy.   

 

2.4   Advantages and Disadvantages Over Conventional Methods 

 Genetic algorithms have proven to be successful at virtually any task that can be 

treated as an optimization problem, and anything described by an equation can be easily 

treated as such.  Of course, for many problems, genetic algorithms may not always be the 

most efficient way of finding the desired solution(s).  This is one form of what has come 

to be known in the field of evolutionary algorithms as the exploitation vs. exploration 

dilemma.  Exploration and exploitation are both ideal elements of any evolutionary 

search technique: exploration consists of selecting a large number of diverse solutions, 

while exploitation builds on those solutions that have been found to have high fitness.  In 

this way, both work together to form a picture of the overall landscape to ensure with 

great certainty that the optimum found is the global one.  So while the application of a 

genetic algorithm to relatively simple problems will no doubt yield the optimal solution, 

it may also mean a waste of computational effort when the solution could be obtained by 

much simpler means, like those of gradient-based methods, for example.  It has been 
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found that analytically solvable problems are usually best done with traditional methods, 

which are less time consuming and are guaranteed to give an exact solution, unlike 

genetic algorithms [6]. In other words, applying genetic algorithms to relatively simple 

tasks could result in more exploitation than what is necessary.   

So the question becomes, when is the use of a genetic algorithm called for?  

Charbonneau lists a few instances where a genetic algorithm might excel where other 

search techniques fail [6].  

 

(1) Multimodal problems in which one cannot make a reliable guess as to the  

       location of the global optimum. 

 

(2) Problems in which derivatives are extremely difficult or impossible to 

compute. 

 

(3) Problems which are ill-conditioned, those described by integral equations, for  

example. 

 

The genetic algorithm, as opposed to conventional methods, is a global 

optimization strategy.  This is due to the effectiveness of crossover and mutation.  

Crossover is the main feature that sets genetic algorithms apart from conventional 

optimization methods, and without it, the strategy would reduce to that of parallel random 

searches.  Unlike the methods discussed in chapter one, where an individual is confined 

to searching the space in its local vicinity, the crossover operation in genetic algorithms 
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allow for the exchange of information between individuals separated by large distances in 

search spaces.  Individuals in one region of the space can therefore benefit from and 

improve upon what has been learned by individuals elsewhere.  In this way, crossover 

insures a combining of individuals of high fitness, and the possibility that the resulting 

solutions will have “inherited” the strengths of both parents. 

Mutation of offspring solutions is a great advantage in that genetic algorithms, as 

opposed to conventional numerical optimization methods, are less likely to terminate at 

local optima, and are better able to navigate complex, even discontinuous fitness 

landscapes.  In regions surrounding local optima, crossover operations do little to further 

maximize the fitness of parameters because, once a population has converged on a local 

maximum, segments are being exchanged that are nearly identical.  It is here that the 

significance of the mutation operator becomes obvious.  Mutation allows for the 

production of offspring trail solutions with “genetic segments” that vary from that of the 

parents to such a degree that these solutions are not confined to local optima.  The genetic 

algorithm can thus make large leaps in the search space even after partial convergence on 

a local maximum.   

This inherent stochasticity of the genetic algorithm can, however, be a two-edged 

sword.  While the probabilistic nature of the genetic algorithm tends to drive the search 

toward the global optimum, convergence on a global optimum cannot be guaranteed for 

the same reason.  It is important to note that, while genetic algorithms are exceptionally 

good at finding the global optima in a fitness space, they do not operate with this specific 

goal.  Like evolution, genetic algorithms are inductive.  In the natural world, evolution 

does not have a particular goal of maximizing fitness, but only to evolve away from less-
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fit circumstances.  And just as the development of a species can terminate at an 

evolutionary dead end, there is also the possibility of a few solutions coming to dominate 

the populate, resulting in the genetic algorithm converging on sub-optimal solutions [11].  

This is more likely to occur in small populations, where reproductive dominance of a few 

well-fit individuals prematurely drives down diversity before global optimization is 

obtained [11].  Genetic algorithms are, however, generally successful at finding “very 

good” solutions to a problem, if not the optimal solution.  Techniques custom designed 

for solving particular problems, however, are likely to outperform the genetic algorithm 

in terms of speed and accuracy.  Yet, even in cases such as these, improvements have 

often been made by hybridizing the existing technique with a genetic algorithm [2].  

Ironically, one of the biggest advantages of the genetic algorithm would at first 

glance appear to be a drawback:  the genetic algorithm is “blind.”  Genetic algorithms 

know nothing about the problems they are being applied to.  Instead of relying on specific 

information about a problem, as do many other search techniques, a fitness function is 

employed to ascertain whether the random changes resulting from crossover and 

mutation have made improvements to the overall fitness with data to a theoretical model.  

In this way, genetic algorithms are not hampered by the user’s preconceived notions 

about a problem, but are concerned only with finding optimal solutions, even if those 

solutions run contrary to expectations.  The disinterested genetic algorithm, therefore, has 

advantages over conventional methods in that it can explore the fitness landscape without 

preconceived bias and is thus prone to discovering new and radical solutions that could 

not have been predicted by a priori means.  Also, with the solutions being judged solely 

on a fitness level, local optima are not distinguished from other equally fit points in the 
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solution space.  This ensures the continuation of the iterative breeding process.  Points 

closer to the global optimum will have greater fitness values, and each generation 

improves upon the fitness of solutions until a convergence criterion is met [10].  

It is evident from the above discussion that the fecundity of the crossover and 

mutation operations employed by genetic algorithms in finding global optima is at its 

greatest when dealing with populations of diverse solutions.  In populations of large 

diversity, local maxima are not likely to be mistaken for global optima.  In less diverse 

populations, the genetic algorithm can offer little in advantage over conventional 

methods.  This is because the offspring solutions would vary little from their parents, 

making what would otherwise be advantages of the genetic algorithm redundant.  

Another advantage of the genetic algorithm is its ability to search the parameter 

space in many directions simultaneously.  While other heuristic methods perform 

iterations on a single solution, genetic algorithms make use of an entire population.  

Unlike most other optimization algorithms, which are serial and confined to exploring the 

space in one direction at a time, the multiple offspring of the genetic algorithm can 

explore a large number of regions at once, increasing the odds of a convergence upon the 

global optimum.  Genetic algorithms are thus ideal for problems involving vast search 

spaces, problems that would be very time-consuming for conventional hill-climbing 

strategies.  

Another advantage of this intrinsic parallelism of the genetic algorithm is its 

ability to not only evaluate the fitness of each individual, but also to sample all subspaces 

to which the solution belongs.  A subspace can be thought to consist of a group of 

individuals that share a common gene or set of genes.  For example, consider the search 
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space formed by all possible eight-digit strings, ********, where the * can take on any 

integer between 0 and 9.  Thus, the string 37956812 would be member of this space, but 

would also be a member of the subspace 3*******, the subspace 37******, the subspace 

3******2, and so on.  After many iterations, the algorithm can ascertain the average 

fitness associated with each subspace, thereby making judgments about the many 

individuals that are members of the space.  In this way, it can implicitly evaluate large 

group of individuals by explicitly evaluating a select few, much like a pollster hopes to 

learn something about the thoughts and opinions of an ethnic, religious, or social group 

by sampling a small percentage of the population [6].  After many evaluations, the 

genetic algorithm can thus “pinpoint” the search space containing the individuals of 

greatest fitness.  This is known as the Schema Theorem in the literature of evolutionary 

algorithms, and is regarded as the “central advantage” of the genetic algorithm over other 

optimization methods [6].  

There exist, however, “deceptive” search spaces in which genetic algorithms can 

be thwarted.  In such spaces, improvements give misleading information on where the 

global optimum is to be found [6].  The genetic algorithm operates with the underlying 

assumption that improved points reveal a neighborhood that is likely to harbor the global 

optimum.  Hence, regions of high-fitness tend to be explored at the expense of regions of 

low fitness.  It is thus easy to imagine how a genetic algorithm might be unsuccessful at 

locating an optimum that is surrounded on all sides by regions of low fitness. Such a 

function would be extremely difficult to optimize by any means, and iterative hill-

climbing usually wins out over genetic algorithms in such circumstances [2].  But like  
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natural evolution, genetic algorithms tend to make the best of whatever circumstance it is 

exposed to and, in such a hypothetical situation, it can at least deliver a fairly impressive 

solution through convergence on a local maximum.  It should also be noted that few 

problems are as deceptive as the one presented here, and that the location of local 

improvements usually contribute, to some degree, to the discovery of the global 

optimum’s location [6].  

The performance of genetic algorithms in finding solutions to problems is often 

highly sensitive to the values of several parameters.  These include the following. 

 

Population size 

     

Number of generations through which the solution is to evolve 

 

Number of significant digits retained in a chromosomal string 

 

Crossover probability 

 

Mutation rate 

 

These variables influence greatly the genetic algorithm’s potential for finding optimal 

solutions and often require a “fine-tuning” by the user for optimal performance.  For 

example, a small population may not allow for a sufficient exploration of the fitness 

landscape, and hence is unlikely to stumble across the optimal solution.  Likewise, if the 
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rate of genetic change is too high, the algorithm’s likelihood of converging may be 

compromised.  Too great of a mutation rate could undermine any progress brought about 

by crossover, and the search essentially becomes a random one.  On the other hand, if the 

rate of mutation is too low, the risk of terminating on local maxima is increased.  The 

problem, then, is to find a set of parameters that strikes a balance between exploration 

and exploitation of the solution space.  The combination of values required to yield an 

effectively good solution is not problem-specific, and so finding the choice of the most 

suitable parameter values for a specific problem becomes an optimization task in and of 

itself.  Evolution has faced similar difficulties in nature.  Drastic environmental changes 

that significantly alter a population size, mutation rates, etc, can result in an extinction of 

a species [6].  Finding a suitable choice of input parameters can be the biggest obstacle 

confronted by the user. And due to the stochastic nature of the genetic algorithm, there is 

no guarantee that a good result can be recreated with the same set of parameters.  A 

parameter set that successfully yields the global optimum on one evolutionary run could 

produce drastically different results after in a subsequent run for the same problem.          

 In summary, the four major advantages of genetic algorithms over conventional 

methods are parallelism, selection, crossover, and mutation.  While the individual 

implementation of any one of these functions would result in only slight improvements to 

a problem, it is the combination of these four operations that give genetic algorithms their 

power and success at finding global optimums.  Beginning with a population of diverse 

individuals, crossover and mutation allow for an exhaustive search of the space, with 

selection driving the individuals of each generation toward more promising regions.  But 

by that same token, the unpredictability inherent in the crossover and mutation operations 
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cannot guarantee global convergence.  There is always a risk of sub-optimal convergence, 

and if one already has specific knowledge of a problem that can help in guiding the 

search such as the approximate location of the global optimum other techniques are likely 

to outperform the genetic algorithm.  Genetic algorithms tend to be the most effective for 

complex, multimodal problems involving complex search spaces, outperforming 

conventional methods in both speed and accuracy.  
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Chapter 3 
 
 

Applications 
 
 

 
 The following is a number of problems from physics and astronomy, and a 

genetic algorithm’s treatment of them.  These problems were solved with the genetic 

algorithm, Pikaia, a general purpose function optimization FORTRAN subroutine.  The 

subroutine can be accessed from the Pikaia homepage [1]. 

 

https://www.hao.ucar.edu/Public/models/pikaia/pikaia.html 

 

3.1   Computing the Hubble Constant 

From observing the red-shifts of spectra from distant galaxies, the astronomer 

Edwin Hubble was the first to make note of the expansion of the universe.  His 

observations served to formulate what is today known as Hubble’s Law, which states that 

the velocity, v, at which two galaxies recede from one another is proportional to the 

distance, D, between them via Hubble’s constant, H. 

 

v = HD. 

 

This relationship, illustrated in Figure 3.1, suggests that the expansion of space is uniform 

on large scales, where mutual gravitational attraction between galaxies is negligible.  
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Fig. 3.1   Hubble’s Law.  The slope of the above line is the Hubble constant, the    
               proportionality constant that relates the distance of receding galaxies to their   
               velocities   
 

Source: http://astrosun2.astro.cornell.edu/academics/courses//astro201/hubbles_law.htm 
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While there is some degree of uncertainty in the value of H, it is thought to be in the 

range of 45-90 km/sec/Mpc [12], with the best current data suggesting a value near 70 

km/sec/Mpc.  In this example, the best-fit value for the Hubble constant is found using 

data taken from a sampling of twelve galaxies.  Since v and D have a linear relationship, 

the problem simply consists of finding the best-fit slope of a line, given the x-data and y-

data (the distances and velocities, respectively).  However, the observation data for this 

problem aren’t v and D, so additional calculations must be carried out in order to obtain 

values for recessional velocity and distance, which are to be used in the least-squares 

merit function.  Table 3.1 shows twelve galaxies and lists their apparent visual 

magnitudes.  These particular galaxies have a common absolute magnitude of –22.  From 

the data in Table 3.1 the distance to each of these galaxies, in units of parsecs, can be 

obtained. 

 

(1)                                                 D = 10^(m-M+5)/5    

 

The quantity, M, in equation (1) denotes absolute magnitude.  The corresponding 

recessional velocities were obtained in the following manner.  For each of the above 

twelve galaxies, the wavelengths of two specific spectral lines, the Ca K and H lines, 

were measured.  Table 3.2 lists these values in angstroms. 

Light leaving a receding object is shifted toward the red end of the visible 

spectrum by the expansion of space.  For sufficiently small redshifts, λ∆ ,  
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Table 3.1  Galaxies and their Apparent Visual Magnitudes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source:  K. Duckett, A Laboratory Textbook for Introductory Astronomy, Fifth Edition,  
              Contemporary, (1998) 

 

 

 
 
 
 
 
 
 
 
 

Object m 

Uma1-2 14.7 

Uma1-3 14.6 

Uma1-1 14.5 

CrBor2 15.5 

CrBor1 15.4 

Boot2 16.8 

Boot3 16.7 

Coma2 12.5 

Coma3 12.7 

Uma2-1 16.6 

Uma2-3 16.8 

Uma2-2 16.8 
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Table 3.2   Galaxies and their corresponding Ca K and H spectral lines  
Object λ k  λ h  

Uma1-2 4134 4172 

Uma1-3 4134 4170 

Uma1-1 4136 4172 

CrBor2 4216 4254 

CrBor1 4218 4256 

Boot2 4452 4492 

Boot3 4452 4488 

Coma2 4024 4058 

Coma3 4022 4058 

Uma2-1 4472 4514 

Uma2-3 4472 4510 

Uma2-2 4476 4512 
Source:  K. Duckett, A Laboratory Textbook for Introductory Astronomy, Fifth Edition,  
              Contemporary, (1998) 
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(2)                                                                 v =  c
λ
λ

0

∆ , 

 

where c is the speed of light, and oλ denotes the stationary wavelength, measured in 

Angstroms. For the Ca K and H lines, these are 3933.67 and 3968.847 Angstroms, 

respectively.  For each galaxy in Table 3.2, equation (2) is used in computing the two 

recessional velocities associated with each spectral line.  The accepted velocities used in 

obtaining the Hubble constant are taken as the average of these two values. 

 

(3)                                                         V = 
2
vv HK

+
 

 

The Pikaia subroutine contains twelve adjustable parameters.  These, and the default 

values are listed in Fig 3.2.  For this particular problem, all elements of the ctrl array are 

kept at their default values except the first two.  The population number was set to fifty 

individuals, and the number of generations was given a value of one hundred.  As one 

might expect, the probability of a successful convergence upon an optimal solution 

generally is highly dependent on the values of these two input parameters.  Of course, the 

inherent randomness involved in the algorithm’s exploration and exploitation of a search 

space does not always guarantee that larger populations and generation counts will yield 

more fit solutions than smaller ones.  For simple problems like this one, however, the 

returned solution does not seem to vary significantly with changes in input parameter 

values, especially those of population size and number of generations.  Repeated 

executions of the evolutionary run with increasingly greater values of the two  
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ctrl( 1) - number of individuals in a population (default 
           is 100) 
 
ctrl( 2) - number of generations over which solution is 
           to evolve (default is 500) 
 
ctrl( 3) - number of significant digits (i.e., number of 
           genes) retained in chromosomal encoding (default 
           is 6)   
 
ctrl( 4) - crossover probability; must be  <= 1.0 (default 
           is 0.85).  
 
ctrl( 5) - mutation mode; 1/2/3/4/5 (default is 2) 
 
ctrl( 6) - initial mutation rate; should be small (default 
           is 0.005) (Note: the mutation rate is the proba- 
           bility that any one gene locus will mutate in 
           any one generation.) 
 
ctrl( 7) - minimum mutation rate; must be >= 0.0 (default 
           is 0.0005) 
 
ctrl( 8) - maximum mutation rate; must be <= 1.0 (default 
           is 0.25) 
 
ctrl( 9) - relative fitness differential; range from 0 
           (none) to 1 (maximum).  (default is 1.) 
 
ctrl(10) - reproduction plan; 1/2/3=Full generational 
           replacement/Steady-state-replace-random/Steady- 
           state-replace-worst (default is 3) 
 
ctrl(11) - elitism flag; 0/1=off/on (default is 0) 
           (Applies only to reproduction plans 1 and 2) 
 
ctrl(12) - printed output 0/1/2=None/Minimal/Verbose 
           (default is 0) 

 

 

Fig. 3.2   Control parameters in the genetic algorithm program Pikaia 

 

Source:  https://www.hao.ucar.edu/Public/models/pikaia/pikaia.html 
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aforementioned parameters reveals a convergence in the fitness of the returned solution, 

where greater values offer no improvement. 

 With the distance and velocity values obtained from equations (1) and (3), 

a chi-square measure of fitness is performed using the obtained distance and velocity 

values. 

 

χ 2
 = 






 −

σ
VHD

2

 

 
This is carried out in a separate subroutine as shown below. 
 
sum=0. 
do i=1,numb 
sum = sum + ((H*D(i) - V(i))/err(i))**2 
End do 
 
The integer numb denotes the number of data points, in this case, fifteen.  The arrays D(i) 

and V(i) contain the fifteen values of the distances and velocities, respectively, and err(i) 

denote the error estimates of each data point, assumed here to be constant.  The fitness is 

then defined as the inverse of the sum.   

 

fit = 
sum

1   

 

The solution to be returned by the algorithm is defined in the calling program as an array, 

x(n), bounded in the region [0,1].  The argument n is the number of parameters defining a  
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a solution.  For the present problem of finding the Hubble constant, only one 

parameter is being fitted, and hence n = 1.  In general, for an n-dimensional array, x(n), 

the search space in any one dimension can be extended by multiplication with a real 

number, M.   

 

A = x( in )*M 

 
For the i’th dimension, then, the search for a global optimum is confined to the interval 

[0,M], with A denoting the normalized i’th parameter defining a solution.  So while it is 

the elements of the array x(n) that are encoded and manipulated by the operations of the 

“breeding” process, the fitness measurements require them to be properly rescaled.  In 

order that the returned solution be of the right order of magnitude, the variable H is 

expressed in the fitness subroutine in terms of the one-dimensional array x(1). 

 

H = x(1)*100 

 

The best-fit value of H was found to be 

 

H = 72.029  km/s/Mpc 

 

Note that a solution expressed in these units requires the distances computed in eqn (1) be 

converted from parsecs to mega-parsecs before the fitting procedure is performed. 
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3.2 Computation of Gravitational Freefall Acceleration Near the  
           Earth’s Surface 
             

In the following example, the freefall acceleration of gravity is computed by 

means of the genetic algorithm, and the results compared with that yielded by a more 

conventional search technique.  Unlike the previous example, which was a linear least-

squares fitting problem, the least-squares problem given here is non-linear, meaning that 

the given data is not related in a linear manner.  This example illustrates nicely how the 

fitting procedure carried out is not sensitive to the manner in which the model parameters 

are related to the given data. 

Consider a pendulum of length L, consisting of a string with a small spherical 

mass attached to the end.  If the mass of the string is negligible, and the oscillations are 

relatively small, the motion of the attached mass can be approximated as simple harmonic 

motion and is governed by the equation   

 

(1)                                                             

2
2

2

d
dt
θ ω θ=  

 

where θ  is the angle of displacement from equilibrium, ω  is defined as 

 

ω  = 
L
g  
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and g is the gravitational freefall acceleration. The period, the time of one oscillation, is a 

function of L only and is given by 

 

(2)                                                    T = 2π g
L . 

 

 Note that this model has a non-linear dependence on g.   

Table 3.3 displays measurements made on a simple pendulum.  It lists the 

recorded periods, as well as the corresponding lengths associated with each period value.  

The data were collected in the following manner.  For each length value listed above, the 

time interval for ten oscillations was recorded.  This interval was then divided by ten to 

yield an average value of the period for that particular length.  These averages were 

recorded as the period values displayed in the table.  After each recording of the period 

for a particular length, the length was altered and the process repeated again.  In all, 

fifteen measurements were made.   

Using these data, and equation (2), the value of g is computed, again using a least-

squares fit.  Again, the estimated error associated with each point is assumed to be a 

constant. 

The returned value of the freefall acceleration for this problem is 

 

g = 9.86480 meters/square second 

 

Because the lengths given in the above data table are expressed in millimeters, a 
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Table 3.3   Oscillation Periods of a Pendulum and the Corresponding Lengths 

 
 
 
 
 
 
 
 
 
 
  
 
 
  
 
 
 
 

Source:  Source:  K. Duckett, A Laboratory Textbook for Introductory Astronomy, Fifth  
               Edition, Contemporary, 1998 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Period  (s) L  (mm) 
1.212 37 
1.021 25.6 
1.172 33.7 
1.25 39 

1.194 35 
1.112 31 
1.006 27.7 
0.863 18.4 
0.794 15.7 
1.169 34 
1.887 91 
1.678 70 
1.547 1.547 

1.456 1.456 

1.337 1.337 
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conversion of units is carried out in the code so as to yield the free-fall acceleration in its 

familiar form expressed in SI units. 

This result is now compared with another search method known as a “golden 

section” search [15].  This procedure is specifically designed to locate the minima of 

functions, rather than optima.  The difference between minimization and optimization 

strategies is a trivial one, however.  Recall that the genetic algorithm, in the above 

problem is, defined fitness as 

 

Fitness = 
x2

1 . 

 
 
So while the problems that genetic algorithms are applied to are usually referred to as 

optimization problems, they can also be regarded as ones of minimization, for while the 

algorithm searches for the global optima of a fitness space, it is doing so by finding a 

minimal value of chi-squared.  This is precisely the quantity to be minimized by the 

golden section search, where 

 
 

(3)                                              

2

2

2 L T
g

π
χ

σ

 
− 

 =  
  
 

. 

 
 

With the above data supplying the values of L and T, the above formula is a function of g 
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only.  The golden section strategy therefore plays the same role in this problem as did the 

genetic algorithm; namely, to find the value of g that minimizes
2χ .  Letting the data 

point ( , )i iL T  define a
2
iχ via equation (3), the quantity being minimized in this 

problem is the average
2χ . 

2

2

n

i
i

n

χ
χ =

∑
 

  

The golden section search accomplishes this task in a manner analogous to that of 

the root-finding method of bisection, where a root is bracketed on an interval (a,b) and 

the function is evaluated at some intermediate point x, at which point the interval is 

replaced with either (a,x) or (x,b).  The process is reiterated until a termination criterion is 

satisfied, usually when the length of the bracketed interval reaches a preset value.  There 

is, however, a fundamental difference between the method of bisection and its 

minimization counterpart, and this is the bracketing process.  While bisection, as a root-

finding strategy, requires the functional evaluations of two points, bracketing a minimum 

requires the evaluations of three, where that of the intermediate point is less than those of 

the other two.  For example, consider the bracketed function shown in Fig. 3.3.  The 

bracketing triplet is initially (a,b,c), where  

 

f(b) < f(a)          and          f(b) < f(c). 
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Fig. 3.3   A bracketed minimum 

 

Source: http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/BMVA96Tut/node17.html 
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The function is evaluated at a new point, d, in the interval (a,b).  If 

f(d) > f(b) 

 

as in Fig. 3.3, then the bracketing interval (a,b,c) is replaced with (d,b,c).  If, however,  

 

f(d) < f(b) 

 

Then the new bracketing triplet is (a,d,b).  This bracketing process is iterated until the 

distance between the outer points falls below a preset tolerance value. 

 The method of choosing new values of x is based on the idea of “golden ratios,” 

hence the search name “golden section.”  As Fig. 3.4 illustrates, two numbers, a and b, 

are said to be in the golden ratio if the ratio of the larger number to the smaller one is 

equivalent to that of sum to the larger 23 .  This relation takes the following mathematical 

form. 

(4)                                      
a

ba
b
a +
=  

 

When equation (4) is multiplied by 
b
a , one obtains 

 

(5)                                                         2 1u u= + , 
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Fig. 3.4   The golden ratio 

 

Source:  http://en.wikipedia.org/wiki/Golden_ratio 
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where u = 
b
a .  The roots of equation (5) are known as the golden ratios.  So, in algebraic 

terms, a golden ratio can be defined as a number, the square of which is equal to itself 

plus one.  In the bracketed region, (a,b,c), of the golden search, the middle point, b, is 

chosen so that its distance from one end is .38197 times the total length of the interval, 

and its fractional distance from the other end is .61803.  Note that the ratio of the latter 

number to the former is approximately 1.61803, the positive root of equation (5).  In 

general, given a bracketing triplet of points, the next number to be evaluated is located at 

a fraction of  .38197 into the larger of the two regions.  Hence, each successive 

bracketing interval decreased by a factor of .61803, ensuring that the distances from the 

point to both ends of the bracketed region are the self-replicating golden ratios.  If the 

routine is initiated with a bracketing triplet, the segments of which are not of the golden 

ratios, the above procedure for choosing a new point in the larger segment will rapidly 

reach a convergence, upon which the golden ratios are replicated. 

 The minimum was found to exist at 

 

g = 9.86484 meters/square second 

 

Note how close this value comes to that given by the genetic algorithm.  The two 

solutions differ by only .00043%, thus demonstrating the genetic algorithm’s ability to 

perform simple optimization/minimization problems of this type.  Note also that the 

golden section search required an initial guess as to the approximate location of the 

minimum (the search requires that a minimum already be known to exist within the 
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bracketed interval).  The genetic algorithm’s independence of prior knowledge of the 

problem and its insensitivity to its starting location are clearly advantages when dealing 

with problems in which prior knowledge is lacking. 

3.3   The Computation of the Rest Mass of the Electron 

 Unlike the previous two cases, this next problem is one in which two parameters 

are being optimized.  The genetic algorithm is hence finding the maximum of a function 

in a 2-D search space, with the returned solution being an array with two components. 

Hence n = 2 and each parameter to be fitted serves as a component of the array x(n).  The 

best-fit parameters returned in this problem are the rest mass of the electron and the 

energy of a gamma ray photon emitted from 137 Cs, a radioactive isotope of Cesium.  

 Compton scattering is an elastic collision between a photon and an electron.  A 

photon strikes an atom and imparts some of its energy to an electron, causing it to recoil.  

The interaction is illustrated in Figure 3.5.  Experimentally, this transfer of energy is 

evident from the observation that the light after the collision is of a wavelength different 

than that before the interaction.   

Conservation of energy states that 

 

(1)                                                    ' eE E Eγ γ= +  

 

where Eγ  is the energy of the incoming photon, 'Eγ is the energy of the scattered 
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Fig. 3.5   Compton Scattering 

 

Source:  NASA's 'Imagine the Universe 
              http://imagine.gsfc.nasa.gov/docs/science/how_l2/compton_scatter.html 
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photon and eE  is the energy of the scattered electron.  Conservation of linear 

momentum gives 

 

(2)                                          
c

hf  = 
c

hf ' cosθ + mvcosφ 

 

and 

 

(3)                                        
c

hf ' sinθ − mvsinφ = 0 

 

for the x and y directions respectively.  Here f  is the frequency of the incoming photon, 

f ’ is the frequency of the scattered photon, h is Plank’s constant, and mv is the 

momentum of the scattered electron.  From the above three equations, one can obtain the 

following formula, where the energy of the scattered photon is a function of initial photon 

energy and θ, 

 

(4)                                       

                                                                        
                                                                       
                                                                    

 

 

where 
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and em designates the rest mass of the electron, and is related to the mass of the scattered 

electron, m, by  

 

2

21

emm
v
c

=

−  

where v is the recoil velocity. 

Table 3.4 shows data taken during a Compton scattering experiment, with 137 Cs 

as the source of the incident photons.  The left column contains θ values in radians and 

the right column lists the corresponding scattered photon energies, expressed in units of 

mega-electron volts.  With this data as input, equation (4) is used in the least-squares 

fitting problem to find the optimal fitness of the trail solutions for the electron rest mass 

and Eγ , the energy of a 137 Cs gamma ray. 

The best-fit values of the photon energy and electron rest mass were found to be 

 

0.662E MeVγ =  

                                                     
20.512 /em MeV c= , 
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Table 3.4   Scattered Photon Angles and Incident Energies 
Theta E 

0 0.662 

0.1745 0.649 

0.349 0.613 

0.5236 0.565 

0.6981 0.508 

0.8726 0.455 

1.0471 0.402 

1.2216 0.358 

1.3962 0.321 

1.5707 0.289 

1.7452 0.263 

1.92 0.242 

2.0942 0.225 

2.2688 0.212 
Source:  EG&G ORTEC, Experiments in Nuclear Science AN34 Laboratory Manual,    
              Third Edition, 1984 
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both of which are in close agreement with the accepted values of .662 MeV and  

.511 MeV/ 2c , respectively. 

 
3.4   Computation of the Mass of Saturn 

 Kepler’s third law of planetary motion states that the square of the period, P, of a 

body in a bound orbit around a central mass, M, is proportional to the cube of the semi- 

major axis of the orbit.  If the orbit is circular, and the central mass is very large 

compared to that of the orbiting body, Kepler’s third law takes the following form.   

 

(1)                                                      
3 2

24
GMr P
π

= ,                                   

 

Here, r is the orbital radius and G is the gravitational constant.  When the following 

expression, 

 

(2)                                                              P  = 
v

rπ2  

 
is inserted in equation (1), the mass of the central body can be expressed as, 
 

(3)                                                               

2v rM
G

= ,                                                

 

where v is the velocity of the orbiting body.   
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 In this problem the mass of Saturn is computed using this formula, with Pikaia 

supplying the best-fit value of v, the orbital velocity of the rings, which are treated as 

being composed of gravitationally bound particles in circular Keplerian orbits about the 

planet. 

 Due to the rotation of the rings along our line of sight, the light reflected from the 

rings on one side of Saturn is red-shifted, while the light coming from the opposite side is 

blue-shifted.  Table 3.5 lists the wavelengths, in angstroms, of light coming from five 

different points along the plane of the rings, where each row denotes a different radial 

distance of the ring particles from Saturn.  These data were obtained from spectra taken 

by astronomers at the Lick Observatory [13].  These spectra were observed at an 

observation angle that guarantees Doppler shifts resulting from direct recession or 

approach of the ring material.  The inclination angle of the plane of the rings with respect 

to that of the sky is thus taken to be 90 degrees, making the tangential velocities of the 

ring particles equivalent to the orbital velocities that are to be used in equation (3).  The 

line of observation is along Saturn’s equator.  Using this data, the Doppler shifts 

corresponding to each radial point can be calculated, and thereby the velocity determined 

using the following equation. 

 

(4)                                                         4 o

v λ
λ
∆

=
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Table 3.5  Wavelengths of Light Reflected From Saturn’s Rings 

λ R
 λ B

 λ 0
 

6219.23 6218.39 6218.67 
6230.66 6229.54 6229.82 
6252.40 6251.28 6251.84 
6264.10 6263.26 6263.54 
6269.95 6269.11 6269.39 

Source:  K. Duckett, A Laboratory Textbook for Introductory Astronomy, Fifth  
              Edition, Contemporary, 1998 
 
The first two columns in the above table correspond to opposite sides of the planet.  The 
left column designates the wavelengths of the red-shifted light, while the middle column 
denotes that of the blue-shifted light.  The last column, λ 0

, lists the wavelengths of light 
coming from the region of the rings in which the tangential velocities are perpendicular to 
our line of sight, and therefore does not experience a Doppler shift.  Each row 
corresponds to a radial distance of ring material from Saturn. 
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where  

 

R Bλ λ λ∆ = − . 

 

The factor of four in the denominator is included as a correction factor.  This correction is 

due to two reasons.  First, a factor of two must be included to correct for the fact that the 

light being observed is not emitted from Saturn’s rings, but reflected.  Also, an additional 

factor of two is added due to the fact that ∆λ does not denote the usual difference 

between a shifted wavelength and one of light coming from a stationary source.  Instead, 

it is the difference between the red-shifted and blue-shifted light coming from opposite 

sides of the rings that are used here.  

 From the above data table and equation (4) used in measuring fitness, Pikaia 

arrives at a best-fit value for the average velocity of the orbiting rings.  

 

V = 14083.000 meters/second 

 

Since the width of the rings is much smaller than the distances separating Saturn’s center 

of mass from the inner and outer edges of the rings, a mean orbital radius is assumed, and 

has the following value. 

 

r = 1.2 x  81 0  meters 
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When this value, along with the returned value of the mean orbital velocity, is placed in 

equation (3), one obtains the following value for Saturn’s mass. 

 

Mass of Saturn = 6.572 x 5610  kg, 

 

This is in good agreement with the accepted value of 5.7 x 5610  kg.  The percent error is 

approximately 15%. 

 
3.5   Computation of the Distance to the Small Magellanic Cloud 
 
 In this next problem Pikaia is used in the computation of the distance to the Small 

Magellanic Cloud (hereafter SMC), a satellite galaxy of the Milky Way, using data 

gathered from observations on Cepheid variables [13]. 

 Cepheid variables are a class of stars that experience a periodic change in 

apparent magnitude.  A correlation exists between the variation period of a Cepheid and 

it’s average absolute magnitude, M.  Thus, by observing the period, one can deduce the 

distance modulus (m – M), and hence the distance using the formula, 

 

(1)                                                   D = 10^(m-M+5)/5, 

 

where m is the apparent magnitude. 

Table 3.6 lists some Cepheid variables in the SMC, along with their average 

apparent magnitudes and the logarithms of their periods of variation.  A plot of this data 

reveals a linear relationship, as is seen in Figure 3.6. 
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Table 3.6   Observational Data on Cepheid Variable Stars 

Variable log P m 
HV 837 1.63 12.85 

HV 1967 1.45 13.52 
HV 843 1.13 14.83 

HV 2063 1.05 14.47 
HV 2019 0.21 16.8 
HV 2035 0.3 17.7 

HV 844 0.35 16.3 
HV 2046 0.41 16 
HV 1809 0.45 16.1 
HV 1987 0.5 16 
HV 1825 0.63 15.6 
HV 1903 0.71 15.6 
HV 1945 0.81 15.2 
HV 2060 1.01 14.3 
HV 1873 1.11 14.7 
HV 1954 1.22 13.8 
HV 847 1.44 13.8 
HV 840 1.52 13.4 

HV 11182 1.6 13.6 

HV 1837 1.63 13.1 

HV 1877 1.7 13.1 
Source:  K. Duckett, A Laboratory Textbook for Introductory Astronomy, Fifth  
              Edition, Contemporary, 1998 
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Fig. 3.6   Apparent magnitude vs. log P values for several cepheid variables in the SMC 
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Since all of the Cepheids are approximately the same distance away, there exists a one-

to-one relationship between absolute and apparent magnitude.  The distance to the SMC 

can therefore be calculated if a relationship between the period of varying brightness and 

absolute magnitude can be determined.  Table 3.7, known as a Period- Luminosity Curve, 

first compiled by the astronomer Harlow Shapely, serves as a calibration by which this 

relationship is made known.  This table, together with Table 3.6 is used in determining 

the distance modulus, the difference in apparent and absolute magnitude and log P is also 

a linear one, and is shown in Figure 3.7.  Pikaia’s role in this problem is in finding the 

best-fit lines through both of the above data sets.  Pikaia returns the slope and y-intercept 

of the best-fit lines through both sets of data.   

 

2

2 log i i

i

a P b m
χ

σ
=

 + −
∑ 
 

. 

 
The parameters a and b are the slope and y-intercept, respectively, and the error weights 

associated with each data point are assumed to be equivalent. This procedure must be 

carried out twice, once for each data set, with the appropriate values for log iP  and im .  

In this way, Pikaia returns the average apparent and absolute magnitudes for a Cepheid as 

a function of its period.  This allows the distance modulus to be computed in the 

following manner.  For a given value of log P, the difference, m – M, can be evaluated.  

This is done ten times for random log P values that are read from an external data file.   
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Table 3.7   Period-Luminosity Curve    
Log P M 

0 0.4 

0.2 0.8 

0.4 1.2 

0.6 1.6 

0.8 2.2 

1 2.9 

1.2 3.6 

1.4 4.4 

1.6 5.1 

1.8 5.8 
Source:  K. Duckett, A Laboratory Textbook for Introductory Astronomy, Fifth  
              Edition, Contemporary, 1998 
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Fig 3.7   A plot of the period-luminosity curve (displayed in Table 3.7) 
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These ten values of m – M are then averaged.  It is from this averaged value of the 

distance modulus that the distance to the SMC is computed by means of equation (1). 

The returned values for the distance modulus and the distance to the SMC are, 

 

                                                distance modulus = 17.85 
 

distance =   42225.368 parsecs 

 

The returned value differs from the currently accepted value of 53,000 Pc by about 20%.  

Such a significant deviation could possibly be due to convergence on a local optimum.  

However, for a simple linear fitting problem of this type, it is much more likely due to 

measurement errors in the data.  Firstly, it has been found that the cepheids used by 

Shapely to determine the distance to the SMC (those listed in Table 3.7) are of a different 

class than those observed within the SMC.  Furthermore, in 1923, studies by Edwin 

Hubble indicated that an error was introduced into the distance calculation due to 

interstellar dust [13]. 

 
3.6 Computation of the Mass of the Milky Way’s Central    
         Black Hole          
 

It is believed that many galaxies harbor supermassive black holes in their centers.  

Measurements of stellar velocities in the vicinity of the Milky Way’s center suggest the 

presence of a high concentration of mass, presumed to be a black hole [19].  Figure 3.8 

shows astrometric data taken over a ten-year period and two thirds of the orbit of the star 

S2 around the radio source Sagittarius A*, believed to be the black hole.  These  
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Fig. 3.8    Data showing two thirds of the orbit of S2 around a central mass thought to be  
                a supermassive black hole.  The listed orbital parameters were obtained by  
                Schodel et al using the publicly available Binary Star Combined Solution  
                Package 
 
                 
 

Source:  R. Genzel et al., Nature, 419,694 (2002) 
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observations, performed by Genzel et al, reveal a highly elliptical keplerian orbit.  Each 

data point shown above corresponds to the angular coordinates (right ascension and 

declination) at which S2 was observed at the displayed time.  The vertical and horizontal 

lines shown with each data point denote the uncertainties in the measurements made of 

the declination and right ascension, respectively.  The solid curve represents the best-fit 

Keplarian orbit of S2.  Genzel et al estimated the black hole mass to be of  

(3.7 1.5) x 610 solar masses.  In this section, the orbital elements and mass of SgrA* 

are reproduced with a genetic algorithm using the astrometric data of Fig. 3.8. 

 The procedure used here in obtaining the orbital elements is known as 

Kowalsky’s method [20].  Given the general equation of the apparent orbit (the projection 

of the true orbit along the plane of the sky),  

 

(1)                             2Ax  + Hxy2  + 2By  + Gx2  + Fy2  + 1 = 0,  

 

this analytical method derives the orbital elements from the coefficients A, H, B, G, and 

F.  The coordinate system of equation (1) is simply that shown in figure 3.8.  The x and y-

axes correspond to right ascension and declination, respectfully, and the origin is taken to 

be the position of SgrA*.   

 Note that this method assumes that the coefficients of equation (1) are known.  

Knowledge of these constants is crucial in determining the orbital parameters required for 

the calculation of the black hole’s mass.  The role of the genetic algorithm in this 

problem lies in finding the values of A, B, G, F, and H given the coordinates marking the 
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measured positions of S2.  The most straightforward and obvious way of finding the best-

fit coefficients of the ellipse shown above would be to perform a least-squares measure of 

fitness with equation (1).  This direct approach, however, proved to be unsuccessful.  For 

unknown reasons, the genetic algorithm failed to converge, instead carrying out the 

iterative breeding process beyond the specified bounds placed on each trial solution, 

eventually producing imaginary values for the coefficients.  This method was therefore 

abandoned in favor of another approach that, although less direct than the above method, 

proved to be more fruitful. Consider the following alternative expression for the apparent 

orbit in spherical coordinates, 

 

(2)                              

2 2
2

2 2 2 2cos ( ) sin ( )o o

u vr
u vθ θ θ θ

=
− + − , 

 

where u and v are the semi-major and minor axes, respectively, r is the distance from the 

ellipse center, θ  given by  

 

arctan o

o

y y
x x

θ
 −

=   −   

 

with ox  and oy  denoting the coordinates marking the center, and oθ  is the angle made 

between the x-axis and the major axis.  Using the Pythagorean theorem to compute the 

distances of each data point from the ellipse center,    
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(3)                                         di
 = )()(

22 yyxx ioio −− + , 

 

the least-squares fitting problem takes the following form. 

 

(4)                                               χ 2
 = 









∆
−

r
rd

i

ii )(
2

θ  

 

The quantity ( )ir θ  denotes equation (2) evaluated at the angle corresponding to the ith 

data point, and ir∆  is the estimated error in distance between the ith point and the center.  

These error weights were obtained from those associated with the measurements of right 

ascension and declination through a propagation of errors. 

 

r∆  = 
x
d
∂
∂ x∆  + 

y
d
∂
∂ y∆  

 

The quantities 
x
d
∂
∂  and 

y
d
∂
∂  denote the derivatives of equation (3) evaluated at each data 

point, with x∆ and y∆  representing the corresponding errors in right ascension and 

declination.  This fitting procedure returns the best-fit values for the following: u, v, ox , 

oy , and oθ .  The problem now is to deduce the constants of equation (1) in terms of 

these parameters. 
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 Re-writing the expression for the apparent ellipse in its more familiar form, 

 

(5)                                         
( ) ( )2 2

2 2 1o ox x y y
v u
− −

+ = , 

 

the x and y-intercepts of the ellipse are calculated in terms of the returned parameters.  

Setting y = 0 in equation (5), the x-intercepts, 1x and 2x , are found to be 

 

(6)              
2 2

1 o o
vx x u y
u

= + −                           
2 2

2 o o
vx x u y
u

= − − . 

 

Likewise, setting x = 0, it can be shown that 

 

(7)             
2 2

1 o o
uy y v x
v

= + −                        
2 2

2 o o
uy y v x
v

= − − . 

 

Letting y = 0 in equation (1) yields the following. 

 

(8)                                                 2 2 1 0Ax Gx+ + =  
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Invoking the quadratic formula to find the roots of this expression, one obtains the 

following expressions for 1x  and 2x  in terms of the unknown coefficients. 

 

(9)                           

2

1
1G Gx

A
− + −

=          

2

2
1G Gx

A
− − −

= . 

 

It can be shown from these two equations that 

 

(10)                                             ( )1 2
1
2

G x x A= − + . 

 

Inserting 1x  into equation (8) gives 

 

(11)                                                   
1

2
1

2 1GxA
x

− −
=

. 

 

Rearranging equation (10) yields 

 

2
1 1 2 1 1 1 22 ( ) ( )Gx x x Ax x xx A− = + = + .   

Inserting this expression into equation (11), the latter formula reduces to 
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A = 
xx 21

1 . 

 

Now, putting this expression for A into equation (11), G can be written as 

 

1 2

1 22
x xG

x x
+

= −
. 

 

Setting x = 0 in equation (1) yields 

 

(12)                                                 
2 2 1 0By Fy+ + =  

 

and a similar procedure gives B and F in terms of the two y-intercepts of the ellipse.  Four 

of the five desired constants have thus been obtained in terms of the roots.   

 

(13)                                        
1 2

1A
x x

=                 
1 2

1 22
x xG

x x
+

= −  

 

                                             
1 2

1B
y y

=
               

1 2

1 22
y yF

y y
+

= −                                

Given the parameters returned by the genetic algorithm, the numerical values of the roots 

are known from equations (6) and (7), and hence the values of A, B, G, and F from 
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equations (13).  There still remains the problem of finding H, and again the genetic 

algorithm is invoked for this purpose.  With the measured position coordinates serving as 

the x and y values in equation (1), 

 

2Ax  + Hxy2  + 2By  + Gx2  + Fy2  + 1 = 0, 

 

the only remaining unknown quantity in this formula is H.  Isolating H,  

 

(14)                               

2 2 2 2 1 ( , )
2

Ax By Gx FyH h x y
xy

+ + + +
= ≡ , 

 

the chi-square measure of fitness is 

 

(15)                                      ( )22 2 ( , )i i i iHx y h x yχ = − , 

   

where ( , )i ih x y  is equation (14) evaluated at the data point ,( )i ix y with the coefficients 

given by equations (13).   

Having obtained the coefficients of equation (1), Kowalsky’s method for 

determining the orbital element of the system is now undertaken.  Illustrated in Fig. 3.9 

are several orbital parameters that are of importance in the following derivation of the 

black hole mass.  The origin O corresponds to SgrA*, a focal point of the orbit of S2. If 
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Fig. 3.9   Orbital elements using in deriving the mass of the Milky Way’s central black  
                hole. 
 

Source:  http://www.phy6.org/stargaze/Smotion.htm 
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we take the horizontal plane shown above to be the plane of the apparent orbit, and the 

inclined plane to be that of the true orbit, then the line N can be taken as the line of nodes, 

the line common to both ellipses, the true and the apparent. The angle i denotes the 

inclination and is the angle made between the two planes.  The point P denotes the 

periastron, the point of closest approach in the orbit.  The angle ω  is made between the 

line of nodes and the major axis of the true orbit, and Ω  is the angle made by the 

intersection of the plane perpendicular to the line of sight and that of the true orbit.  Let 

(x’, y’, z’) denote the coordinates of S2 with respect to rectangular axes made in reference 

to the true orbital plane.  The ellipse describing the true orbit can therefore be expressed 

as  

 

(16)                                              
( )2 2

2 2

' ' 1
x a y

a b
ε+

+ =  

 

where a and b are the semi-major and minor axes, respectively, and ε  is the eccentricity.   

Making a change in coordinates, this expression can be re-written in terms of the (x, y, z) 

coordinate system, giving the following equation for the apparent ellipse. 

 

(17)                          

( )
( )

2 2
2 2 3 1 1

2 2
33

( ) 1
( )

m x l y a n m x l y
bnan

ε− + −
+ =
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where 1 2 1 2, , ,l l m m and 3n are five of the nine direction cosines, the elements in the 

transformation matrix that relates the (x,y,z) coordinates to those defined by the plane of 

the true orbit, 
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and are defined as follows 

 

(18)                                      l1
 = cosΩ cosω  − sinΩ sinω cos i 

 

l2
 = -cosΩ cosω  − sinΩ sinω cos i 

 

l3
 = sinΩ sin i 

   

                                          m1
 = sinΩ cosω  − cosΩ sinω cos i 

 

m2
 = -sinΩ cosω  + cosΩ sinω cos i 

 

m3
 = -cosΩ sin i 
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n1
 = sinω sin i 

 

n2
 = cos ω sin i 

 

n3
 = cos i 

 

Equations (1) and (17) are equivalent and therefore coefficients of like powers are 

proportional.  It follows that 

 

(19)                         

2 2
2 1

2 2 2
3

a m mA
pn a b

 −
= + 

  ,            

2 2
2 1

2 2 2
3

a l lB
pn a b

 −
= + 

   

  

2 2 1 1
2 2 2
3

a l m l mH
pn a b

 = + 
   

 

2

3

mG
pn
ε−

= ,         
2

3

lF
pn
ε

=
, 

 

Where p is the latus rectum of the true ellipse and is defined to be 
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2bp
a

=  

 

It follows from equations (18) and (19) that  

 

(20)                                   

2
2 2

2

tan cos(2 )iF G A B
p

− + − = Ω  

 

(21)                                            

2

2

tan sin(2 )
2

iFG H
p

− = − Ω  

 

(22)                                   

2
2 2

2 2
2 tan( ) iF G A B
p p

+ − + = + . 

 

These three equations contain three unknown variables: Ω, p, and i.  Dividing equation 

(21) by (20), one can determine Ω. 

 

(23)                                           2 2

1 2( )arctan
2

FG H
F G A B
− − Ω =  − + −  . 
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Knowing Ω, the value of 
2

2

tan i
p  can then be calculated from equation (20) or (21).  

Equation (22) then allows for the determination of p.  Having thus found p, the 

inclination, i, is easily determined by equations (20), (21), or (22).  In addition, equations 

(18) and (19) can be used to show that 

 

(24)                                      ωε sin  = p(GsinΩ − FcosΩ)cos i 

 

and  

 

(25)                                      ωε cos  = - p(GsinΩ + FsinΩ). 

 

Dividing equation (24) by (25) gives 

 

(26)                                            tanω = -
Ω+Ω
Ω−Ω

sincos
cossin

FG
FG . 

 

Taking the inverse tangent of equation (26) thus gives a value for ω.  There is now 

enough information to allow for the calculation of the eccentricity. 

 

ε  = 
ωsin

cos)cossin( iFGp Ω−Ω  
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Taking the value of the semi-major axis of the apparent orbit, u, returned by the genetic 

algorithm, the semi-major axis of the true orbit is obtained from dividing by the sine of 

the inclination angle, i.  

 

(27)                                                          a = 
i

u
sin

 

 

Note from the above plot of the data that u, and therefore a, is given in terms of arc 

seconds and therefore correspond to the angular separation between the apogee and 

perigee of the orbit.  Dividing the quantity given in equation (27) by 3600 gives the 

angular separation in units of degrees.  Our solar system lies approximately 2.63 x 910  

astronomical units from the galactic center.  If the major axis of S2’s orbit is treated as a 

small segment of the arc of a great circle with a radius of r, then a conversion of a from 

degrees to astronomical units is possible by letting r = 2.63 x 910  AUs and evoking the 

formula 

 

(28)                                                       a = 
3.57
θr  

 

where θ  is the quantity of equation (27) in degrees and a is now the semi-major axis in 

astronomical units. 

 To determine the orbital period of S2, consider the formula for the true orbit 

written in its conic form. 
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(29)                                                     

2(1 )
1 cos
a

f
ερ

ε
−

=
+  

 

Here f denotes the true anomaly, the position angle of S2, and ρ is the radius vector 

extending from the focal point to the position of S2 along the ellipse.  Now consider the 

ellipse describing the orbit to be a circle of radius a inclined at an angle φ  = arcsin ε , as 

shown in Fig 3.10.  The angle E is known as the eccentric anomaly and is the angle 

measured between the major axis of the ellipse and the line joining the center of the 

auxiliary circle to point Q, which is joined with the point P, marking the true position of 

S2 on the ellipse, by a vertical line running perpendicular to the major axis.  Both the true 

and eccentric anomalies are measured from the major axis and increase by 360 degrees 

with each revolution.  The rates at which these angles change depend on the position of 

the star in its orbit and are governed by Kepler’s law of areas.  From Fig. 3.10, it is seen 

that CF = aε  and CD = acosE.  Therefore, 

 

DF = CF − CD = aε  − acosE = -ρcos f. 

 

Rearranging gives 

 

(30)                                                 cos f = 
ρ

ε )(cos −Ea . 
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Fig. 3.10   The orbit of S2 inscribed in an auxiliary circle 

 

Source:  http://www.phy6.org/stargaze/Smotion.htm 
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Substituting equation (30) for cos f in (29) yields 

  

2
2 2cos(1 cos ) 1 cos (1 )a E af a E a aε ερ ε ρ ρ ε ε ε

ρ ρ
 

+ = + − = + − = − 
   

 
Solving for E gives 

 

(31)                                              
1cos aE

a
ρ
ε

− − =  
   

 

Note that the eccentric anomaly is a function of ρ  only.  Knowing the right ascension 

and declination of each data point, the Pythagorean theorem allows for the computation 

of the distances of each position from the black hole. 

 

(32)                                                   

2 2

sin
i i

i

x y
i

ρ
+

=  

 

The denominator accounts for the fact that the data points marking the positions of the 

star define the apparent orbit, not the true one.  Inserting the calculated values of 

equation (32) in (31) allows for the determination of the eccentric anomalies 

corresponding to each recorded position of S2. 

 The total orbital energy of the star, Q, is the sum of its kinetic and its gravitational 

potential energies, 
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(33)                                         

2 2

2

1
2 2

d l kQ m
dt m
ρ

ρ ρ
 = + − 
   

 

where m is the mass of the star and the constant l denotes the magnitude of the angular 

momentum of the system and is given by  

 

2 dl m
dt
θρ  =  

   

 

The last term of equation (33) denotes the gravitational binding energy.  Rearranging 

equation (33) gives 

 

(34)                                             2

2
2

2

ddt
k lQ

m m

ρ

ρ ρ

=
 

+ − 
 

 

 

It can be shown that the total energy of the system remains constant [22], and is given by   

 

Q = 
a
k

2
− . 

 

With this expression, equation (34) reduces to  
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(35)                                           2 2 2( )

ma d
kdt

a a

ρ ρ

ε ρ
=

− − . 

 

Equation (31) can be rearranged to yield  

 

(36)                                                 )cos1( Ea ερ −= . 

Differentiating gives 

 

(37)                                                 Ead sinερ = dE. 

 

Putting equations (36) and (37) into (35) gives 

 

(38)                                           dt = dEEa
k

ma )cos1( ε− . 

 

Kepler’s third law states that 

 

(39)                                                   

3

2 maT
k

π=  
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where T is the orbital period.  Putting this expression into equation (38) yields 

 

(40)                                              dEEdt
T

)cos1(2 επ
−= . 

 

Integrating equation (40), with the condition that E = 0 at perigee, when the star is at its 

closest approach to the black hole, one obtains 

 

(41)                                                EE
T
t sin)(2

−=
−τπ , 

 

where τ  is the time of periastron passage.  The left side of equation (41) is often referred 

to as the mean anomaly.  This angle increases at a steady rate and would mark the 

position of the star if the eccentricity of the orbit were zero, hence corresponding to a 

circular orbit in which the orbital velocity is a constant.  The mean anomalies of each 

data point are determined from the eccentric anomalies calculated in equation (31). 

 

(42)                                                   sini i iM E E= − . 

 

With the data marking the time, in years, of each observation of S2’s position, the 

formula 
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(43)                                                  
2 ( )i

i
tM
T

π τ−
=  

 

is used in performing a chi-square measure of fitness. 

 

(44)                                 

2
2 2 ( )i i

i

M T t
M
π τχ

 − −
=   ∆   

 

In this way, the genetic algorithm returns the best-fit values for the period of S2 and the 

time marking its point of closest approach to the black hole. The quantity iM∆ denotes 

the error estimate of the mean anomaly associated with the ith data point.  Again, these 

error estimates are obtained through a propagation of errors.  Given equation (32) and the 

error estimates in right ascension and declination, the error in ρ  is estimated to be 

 

(45)                                               i i ix y
x y
ρ ρρ ∂ ∂

∆ = ∆ + ∆
∂ ∂  

 

The errors associated with the eccentric anomaly values are therefore taken to be 

 

(46)                                                  i i
EE ρ
ρ
∂

∆ = ∆
∂ , 
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where the derivative 
ρ∂
∂E  is that of equation (31) with respect to ρ .  Lastly, the derivative 

of equation (42) is taken and the values of iM∆  are determined. 

 

(47)                                                  i i
MM E
E

∂
∆ = ∆

∂  

 

Knowing the period of S2, there is now enough information to deduce the mass of 

the Milky Way’s central black hole. Kepler’s third law states that the square of the period 

of a body in orbit around a central mass is proportional to the cube of the semi-major axis 

of the orbit.  When the period is expressed in years, and the semi-major axis in 

astronomical units, as is the case here, the proportionality constant of Kepler’s third law 

is simply the mass of the central body in units of solar masses.  Hence, the black hole 

mass is taken to be 

(49)                                                         

3

2

aM
T

=  

 

 Below are listed the values obtained for the orbital parameters of the system, and 

are in good agreement with those found by other means [19]. 

 

inclination = 64.55o  

eccentricity = .92 

semi-major axis = .097o  = 971.69 AU 
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Period = 16.47 yrs 

The value of the black hole mass was found to be approximately 3.4 x 610 solar masses, 

again in good agreement with previous estimates.  

 
3.7 Parameterization of Thermonuclear Reaction Rates 

 The rate of a thermonuclear reaction is strongly dependent on the temperature of 

the reactants.  Parametrization of reaction rates is of extreme importance in astrophysical 

calculations, as it allows for the compilation of libraries that house such parameters, and 

can be easily accessed for purposes of astrophysical computations.  Here the genetic 

algorithm is applied to the problem of fitting parameters to rates of reactions that play a 

role in explosive nucleosynthesis that occurs in nova events or in x-ray bursts.  Consider 

the following functional form that is currently used to parameterize such rates. 

 

reaction rate (T) = exp(a1 + a2/T + a3/T^(1/3) + a4*T^(1/3) + a5*T + 

a6*T^(5/3) + a7*ln(T)) 

 

Given several values of temperature and rates of reactions involving heavy element 

production, the goal is to find the parameters a1, a2, a3, etc, that maximizes fitness.  If a 

good fit cannot be found, an additional set of parameters is added.  So a functional form 

with fourteen parameters would be expressed as 
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Rate(T) = 

exp(a1+a2/T+a3/T^(1/3)+a4*T^(1/3)+a5*T+a6*T^(5/3)+a7*ln(T)) + 

exp(a8+a9/T+a10/T^(1/3)+a11*T^(1/3)+a12*T+a13*T^(5/3)+a14*ln(T)) 

 

 This problem is an ideal one for genetic algorithms because it is multimodal, 

requiring the fitting of several parameters, and previous attempts at finding reasonable 

solutions for certain rates that had proven difficult to fit with other optimization 

algorithms.  It is here that the robustness of the genetic algorithm can be fully 

appreciated. 

A total of nine reaction rates were parameterized in all.  In giving a detailed 

description of the problem of maximizing the fitness of these parameter sets, one 

particular rate is expounded upon.  This reaction is one in which two alpha particles and a 

free neutron combine to produce a radioactive isotope of beryllium. 

 

n + 4He + 4He  Be7 

 

The data shown in Figure 3.11 is a small sample of data that was taken by the NACRE 

collaboration, and gives rate values and associated temperatures.  There are fifty-nine 

data points in all.  As can be seen, the rates vary by many orders of magnitude over the 

temperature range of physical interest.  Using these data, a chi-square measure of fitness 

is performed.  Finding a good fit for this particular reaction required a rate function with 

twenty-eight parameters. 
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T9                 Rate 

    0.1000000000E-02    0.3900000000E-58 

    0.2000000000E-02    0.2500000000E-46 

    0.3000000000E-02    0.1350000000E-40 

    0.4000000000E-02    0.5580000000E-37 

    0.5000000000E-02    0.2110000000E-34 

    0.6000000000E-02    0.1960000000E-32 

    0.7000000000E-02    0.7390000000E-31 

    0.8000000000E-02    0.1480000000E-29 

    0.9000000000E-02    0.1880000000E-28 

    0.1000000000E-01    0.1690000000E-27 

    0.1100000000E-01    0.1160000000E-26 

    0.1200000000E-01    0.6370000000E-26 

    0.1300000000E-01    0.2950000000E-25 

    0.1400000000E-01    0.1180000000E-24 

    0.1500000000E-01    0.4170000000E-24 

    0.1600000000E-01    0.1330000000E-23 

    0.1800000000E-01    0.1050000000E-22 

    0.2000000000E-01    0.6290000000E-22 

    0.2500000000E-01    0.2990000000E-20 

 

 

Figure 3.11   Rates and corresponding temperatures for the reaction  
                     n + 4He + 4He   Be9 
 
 
Source:  http://pntpm.ulb.ac.be/Nacre/nacre_d.htm 
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Unlike the previous problems discussed here, the returned solutions were much 

more sensitive to the input parameters governing the evolution of trial solutions, and a 

great deal of time was spent changing the values of quantities such as population size and 

crossover probability to ensure a returned solution that would yield a minimal chi-square.  

Of course, in a problem such as this, it is ultimately impossible to ascertain if the returned   

solution is the global optimum or merely a local one.  There is always the possibility that 

there exist a combination of input parameters that can yield a better solution.  One cannot 

hope to exhaustively search every possible set of these parameters, and this is in part due 

to the stochastic nature of the genetic algorithm, which makes itself well known in the  

problem of parameterization of reaction rates.  Due to the inherent randomness involved 

in the search for an optimal solution, a particular set of input parameter values need not 

return the same solution for two consecutive executions.  After yielding an effectively 

good solution, the next execution may return an even better one, or a far worse one.  In 

this respect, this problem was much more challenging than those discussed above. 

Another distinguishing characteristic that sets this problem apart from the others 

was the apparent proportionality between fitness of returned solutions and the number of 

generations through which the solutions are allowed to evolve.  Unlike the problems in 

which returned solutions consists of only one or two fitted parameters and a point is 

reached where additional generations add nothing to the accuracy of the final result, the 

fitness of the returned solutions for most of the reactions tended to increase steadily with 

generation count.  Others would eventually reach a convergence.  The fitting of the above 

reaction, for example, was done with 710  generations, with a count of 810 offering 
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nothing new.  Those evolutionary runs with 710  and 810  generations would often take 

several days to converge on an optimal solution, running on a single 2GHz processor.   

The most dominant influence on the outcome of the evolutionary runs appeared to 

be the upper and lower bounds for the allowed range of mutation rate.  These can be 

found in the subroutine adjmut.  The default values are 

 
rdiflo (minimum rate) = .0005 

                                          rdifhi (maximum rate) = .25. 

 

Changing the values had a significant effect on the evolutionary runs and the solutions 

returned.  The success of a given range in mutation rate varied with the reaction being 

studied.  The above variables therefore had to be re-adjusted when a new reaction rate 

was attempted.  For the particular reaction given above, the two values marking the 

bounds of the mutation rate were set to be .1 and .85. 

The problem of fitting parameters to the rates, for the most part, consisted of 

adjusting the input parameters in a trial and error fashion.  A subroutine was introduced 

into the code that calculated rate values using a returned solution, and then determined 

the percent difference between this rate value and the one listed in the data table that 

corresponded to the same temperature.  An average of these percent differences was then 

taken.  If the average percent difference for a reaction was too high, some values of the 

input parameters were altered and the evolutionary run was executed again.  Generally, 

any parameter set yielding rate values that differed from the data by a percent difference 

less than 30% was kept.   
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The parameters, a1 though a28, obtained for the above reaction are 

 

-91.850    0.454  -88.852  -59.628   10.824  -45.308   50.398  -36.404   -0.038   48.798  

13.758  -70.844  -94.884   18.398 -50.064   -1.088   17.192   19.350    0.020    0.000 

-2.114   66.172  -20.002   20.204  -93.172   93.996  -86.004  -38.000 

    

Using the given temperature values, the reaction rates calculated with these parameters 

yielded numbers that differed, on average, from the data by approximately 5.7%. 

 To illustrate the effectiveness of the genetic algorithm’s fitting procedure in this 

problem, Figure 3.12 shows the plots of the data, along with the rates calculated using the 

returned solution.  

The appendix shows the results obtained for eight other reactions 
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Fig. 3.12   log(rate) vs. temperature. The red curve shows the data, with the dark  
                 curve showing the corresponding values computed from the twenty-eight 
                 parameters returned by Pikaia.  Because the data varies over several orders of  
                 magnitude, the graph shows the logarithms of the rates, rather than the rates  
                 themselves.                    
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Conclusions 
 
 

In comparing the performance of genetic algorithms with those of more 

conventional optimization methods, it has been found that the results are highly 

dependent upon the particular problem being studied.  As was seen in the 

parameterization of the several reaction rates presented in the appendix, the genetic 

algorithm was successful at fitting parameters to the rates within a reasonable degree of 

deviation with the data, excelling where previous strategies have failed.  It is complex 

multimodal problems of this type in which the robustness and many strengths of the 

genetic algorithm give it distinct advantages over other procedures.  

The dependency of the results upon various input parameters (population size, 

number of generations, mutation rate, etc) also appears to be problem-specific.  The 

solutions obtained when fitting the reaction rates, for example, were highly sensitive to 

the values of the aforementioned parameters.  Other problems involving a 1-D or 2-D 

fitness space, on the other hand, showed little dependence on input parameters.  This is 

presumably because the problem is simple enough that crossover and mutation need not 

play a large role in obtaining the desired solution. 

 It is evident from the problems discussed that genetic algorithms work well for 

multimodal problems that may thwart other optimization techniques, and perform at least 

as well as other methods when applied to simpler problems, those involving only 1D and 

2D search spaces, for example.  

 It was the finding of the work presented in this thesis that genetic algorithms 

generally work well for anything that can be treated as an optimization problem.  But it is 
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only when dealing with problems having many fitting parameters and large, complex 

search spaces that the use of a genetic algorithm may be necessary and beneficial.    

Genetic algorithms offer promising applications in future astrophysics research.  

One such avenue for genetic algorithms is the modeling of interacting galaxies.  Such 

modeling could provide a deeper understanding of galaxy formation, as well as 

“peculiar” galaxies that exhibit such structures as bridges and tidal tails.  The modeling of 

interacting galaxies involves the fitting of various orbital parameters, requiring searches 

in multidimensional solution spaces, and traditional techniques have long suffered the 

problem of terminating on local optima.  Genetic algorithms, with their weak dependence 

on the location of starting points, provide a great advantage in avoiding such hindrances 

[24].  

There has been recent interest in applying genetic algorithms to the problem of 

gravitational lens inversion, in which structural detail of the lensing object, such as mass 

distribution, is recovered from observations of the gravitational lensed images.  This 

requires optimal fitting of several lens parameters as well as surface brightness 

distribution of the source.  Brewer et al have demonstrated that genetic algorithms can 

successfully recover the source configuration of an idealized gravitational lens system, 

and future work is planned for observed gravitational lens systems [25].  
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 The following shows the percent differences between experimentally obtained 

thermonuclear reaction rates and those computed using the fitted parameters obtained by 

the genetic algorithm.  Also included are the data for each reaction, as well as plots 

showing both curves (the natural logs of the experimentally obtained rates and those of 

the calculated rates) for each reaction.  

 
Reaction                                                                                Percent difference                    

 
      p + 23Na  24Mg       12.4% 
 
 
 
      p + 15N  4He + 12C                                                                      7.86% 
 
 
 
      p + 27Al  28Si                                                                                25.84% 
 
 
 
       p + 28Si  29P                                                                                 23.36% 
 
 
 
       p + 27Al  4He + 24Mg                                                                  23.0% 
 
 
 
       4He + 18O  22Ne                                                                          18.53% 
 
 
 
       4He + 4He + 4He  12C                                                                  14.36% 
 
 
       n + 4He + 4He   Be7                                                                      5.7% 
        
 
       4He + 16O  20Ne                                                                           26.92% 
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Reaction: p + 23Na  24Mg 
 
         T9                  Rate 
    0.1800000000E-01    0.4390000000E-25 
    0.2000000000E-01    0.6160000000E-24 
    0.2500000000E-01    0.1210000000E-21 
    0.3000000000E-01    0.6810000000E-20 
    0.4000000000E-01    0.4430000000E-16 
    0.5000000000E-01    0.9030000000E-13 
    0.6000000000E-01    0.1430000000E-10 
    0.7000000000E-01    0.5130000000E-09 
    0.8000000000E-01    0.7340000000E-08 
    0.9000000000E-01    0.5690000000E-07 
    0.1000000000E+00    0.2900000000E-06 
    0.1100000000E+00    0.1100000000E-05 
    0.1200000000E+00    0.3420000000E-05 
    0.1300000000E+00    0.9590000000E-05 
    0.1400000000E+00    0.2610000000E-04 
    0.1500000000E+00    0.7190000000E-04 
    0.1600000000E+00    0.1990000000E-03 
    0.1800000000E+00    0.1350000000E-02 
    0.2000000000E+00    0.6970000000E-02 
    0.2500000000E+00    0.1440000000E+00 
    0.3000000000E+00    0.1070000000E+01 
    0.3500000000E+00    0.4370000000E+01 
    0.4000000000E+00    0.1230000000E+02 
    0.4500000000E+00    0.2690000000E+02 
    0.5000000000E+00    0.4970000000E+02 
    0.6000000000E+00    0.1220000000E+03 
    0.7000000000E+00    0.2290000000E+03 
    0.8000000000E+00    0.3670000000E+03 
    0.9000000000E+00    0.5320000000E+03 
    0.1000000000E+01    0.7250000000E+03 
    0.1250000000E+01    0.1330000000E+04 
    0.1500000000E+01    0.2110000000E+04 
    0.1750000000E+01    0.3090000000E+04 
    0.2000000000E+01    0.4250000000E+04 
    0.2500000000E+01    0.7000000000E+04 
    0.3000000000E+01    0.1010000000E+05 
    0.3500000000E+01    0.1320000000E+05 
    0.4000000000E+01    0.1610000000E+05 
    0.5000000000E+01    0.2100000000E+05 
    0.6000000000E+01    0.2790000000E+05 
    0.7000000000E+01    0.3490000000E+05 
    0.8000000000E+01    0.4220000000E+05 
    0.9000000000E+01    0.4970000000E+05 
    0.1000000000E+02    0.5740000000E+05 
 
Reaction: p + 15N  4He + 12C 
  
        T9                  Rate 
    0.5000000000E-02    0.7120000000E-25 
    0.6000000000E-02    0.1240000000E-22 
    0.7000000000E-02    0.7590000000E-21 
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    0.8000000000E-02    0.2270000000E-19 
    0.9000000000E-02    0.4010000000E-18 
    0.1000000000E-01    0.4760000000E-17 
    0.1100000000E-01    0.4140000000E-16 
    0.1200000000E-01    0.2810000000E-15 
    0.1300000000E-01    0.1560000000E-14 
    0.1400000000E-01    0.7310000000E-14 
    0.1500000000E-01    0.2980000000E-13 
    0.1600000000E-01    0.1080000000E-12 
    0.1800000000E-01    0.1040000000E-11 
    0.2000000000E-01    0.7390000000E-11 
    0.2500000000E-01    0.3740000000E-09 
    0.3000000000E-01    0.7480000000E-08 
    0.4000000000E-01    0.5870000000E-06 
    0.5000000000E-01    0.1310000000E-04 
    0.6000000000E-01    0.1450000000E-03 
    0.7000000000E-01    0.1000000000E-02 
    0.8000000000E-01    0.5040000000E-02 
    0.9000000000E-01    0.1990000000E-01 
    0.1000000000E+00    0.6530000000E-01 
    0.1100000000E+00    0.1870000000E+00 
    0.1200000000E+00    0.4770000000E+00 
    0.1300000000E+00    0.1120000000E+01 
    0.1400000000E+00    0.2440000000E+01 
    0.1500000000E+00    0.4970000000E+01 
    0.1600000000E+00    0.9750000000E+01 
    0.1800000000E+00    0.3280000000E+02 
    0.2000000000E+00    0.9640000000E+02 
    0.2500000000E+00    0.8800000000E+03 
    0.3000000000E+00    0.4660000000E+04 
    0.3500000000E+00    0.1660000000E+05 
    0.4000000000E+00    0.4480000000E+05 
    0.4500000000E+00    0.9860000000E+05 
    0.5000000000E+00    0.1880000000E+06 
    0.6000000000E+00    0.4910000000E+06 
    0.7000000000E+00    0.9850000000E+06 
    0.8000000000E+00    0.1640000000E+07 
    0.9000000000E+00    0.2350000000E+07 
    0.1000000000E+01    0.3370000000E+07 
    0.1250000000E+01    0.6200000000E+07 
    0.1500000000E+01    0.9710000000E+07 
    0.1750000000E+01    0.1340000000E+08 
    0.2000000000E+01    0.1770000000E+08 
    0.2500000000E+01    0.2590000000E+08 
    0.3000000000E+01    0.3810000000E+08 
    0.3500000000E+01    0.5130000000E+08 
    0.4000000000E+01    0.6520000000E+08 
    0.5000000000E+01    0.9430000000E+08 
    0.6000000000E+01    0.1250000000E+09 
    0.7000000000E+01    0.1550000000E+09 
    0.8000000000E+01    0.1860000000E+09 
    0.9000000000E+01    0.2170000000E+09 
    0.1000000000E+02    0.2470000000E+09 
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Reaction: p + 27Al  28Si 
 
         T9                  Rate 
    0.2500000000E-01    0.1670000000E-22 
    0.3000000000E-01    0.3390000000E-20 
    0.4000000000E-01    0.2440000000E-17 
    0.5000000000E-01    0.1250000000E-15 
    0.6000000000E-01    0.8370000000E-14 
    0.7000000000E-01    0.1310000000E-11 
    0.8000000000E-01    0.6730000000E-10 
    0.9000000000E-01    0.1450000000E-08 
    0.1000000000E+00    0.1690000000E-07 
    0.1100000000E+00    0.1260000000E-06 
    0.1200000000E+00    0.6710000000E-06 
    0.1300000000E+00    0.2750000000E-05 
    0.1400000000E+00    0.9210000000E-05 
    0.1500000000E+00    0.2620000000E-04 
    0.1600000000E+00    0.6520000000E-04 
    0.1800000000E+00    0.2990000000E-03 
    0.2000000000E+00    0.1010000000E-02 
    0.2500000000E+00    0.9550000000E-02 
    0.3000000000E+00    0.4640000000E-01 
    0.3500000000E+00    0.1580000000E+00 
    0.4000000000E+00    0.4380000000E+00 
    0.4500000000E+00    0.1050000000E+01 
    0.5000000000E+00    0.2270000000E+01 
    0.6000000000E+00    0.8200000000E+01 
    0.7000000000E+00    0.2280000000E+02 
    0.8000000000E+00    0.5210000000E+02 
    0.9000000000E+00    0.1030000000E+03 
    0.1000000000E+01    0.1800000000E+03 
    0.1250000000E+01    0.5200000000E+03 
    0.1500000000E+01    0.1100000000E+04 
    0.1750000000E+01    0.1910000000E+04 
    0.2000000000E+01    0.2930000000E+04 
    0.2500000000E+01    0.5450000000E+04 
    0.3000000000E+01    0.8350000000E+04 
    0.3500000000E+01    0.1140000000E+05 
    0.4000000000E+01    0.1440000000E+05 
    0.5000000000E+01    0.1990000000E+05 
    0.6000000000E+01    0.2450000000E+05 
    0.7000000000E+01    0.4030000000E+05 
    0.8000000000E+01    0.5880000000E+05 
    0.9000000000E+01    0.7960000000E+05 
    0.1000000000E+02    0.1020000000E+06 
 
Reaction: p + 28Si  29P 
 
         T9                  Rate 
    0.3000000000E-01    0.5970000000E-24 
    0.4000000000E-01    0.6610000000E-21 
    0.5000000000E-01    0.9630000000E-19 
    0.6000000000E-01    0.4290000000E-17 
    0.7000000000E-01    0.8870000000E-16 
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    0.8000000000E-01    0.1080000000E-14 
    0.9000000000E-01    0.9010000000E-14 
    0.1000000000E+00    0.6440000000E-13 
    0.1100000000E+00    0.6330000000E-12 
    0.1200000000E+00    0.8550000000E-11 
    0.1300000000E+00    0.9880000000E-10 
    0.1400000000E+00    0.8450000000E-09 
    0.1500000000E+00    0.5460000000E-08 
    0.1600000000E+00    0.2790000000E-07 
    0.1800000000E+00    0.4180000000E-06 
    0.2000000000E+00    0.3590000000E-05 
    0.2500000000E+00    0.1640000000E-03 
    0.3000000000E+00    0.1980000000E-02 
    0.3500000000E+00    0.1140000000E-01 
    0.4000000000E+00    0.4110000000E-01 
    0.4500000000E+00    0.1090000000E+00 
    0.5000000000E+00    0.2350000000E+00 
    0.6000000000E+00    0.7140000000E+00 
    0.7000000000E+00    0.1520000000E+01 
    0.8000000000E+00    0.2620000000E+01 
    0.9000000000E+00    0.3920000000E+01 
    0.1000000000E+01    0.5330000000E+01 
    0.1250000000E+01    0.8970000000E+01 
    0.1500000000E+01    0.1290000000E+02 
    0.1750000000E+01    0.1870000000E+02 
    0.2000000000E+01    0.2930000000E+02 
    0.2500000000E+01    0.7860000000E+02 
    0.3000000000E+01    0.1850000000E+03 
    0.3500000000E+01    0.2750000000E+03 
    0.4000000000E+01    0.3820000000E+03 
    0.5000000000E+01    0.6510000000E+03 
    0.6000000000E+01    0.9920000000E+03 
    0.7000000000E+01    0.1410000000E+04 
    0.8000000000E+01    0.1900000000E+04 
    0.9000000000E+01    0.2480000000E+04 
    0.1000000000E+02    0.3160000000E+04 
 
Reaction: p + 27Al  4He + 24Mg 
 
         T9                  Rate 
    0.2500000000E-01    0.7800000000E-22 
    0.3000000000E-01    0.1550000000E-19 
    0.4000000000E-01    0.1050000000E-16 
    0.5000000000E-01    0.4920000000E-15 
    0.6000000000E-01    0.6070000000E-14 
    0.7000000000E-01    0.3630000000E-13 
    0.8000000000E-01    0.1780000000E-12 
    0.9000000000E-01    0.1320000000E-11 
    0.1000000000E+00    0.1140000000E-10 
    0.1100000000E+00    0.7640000000E-10 
    0.1200000000E+00    0.3800000000E-09 
    0.1300000000E+00    0.1480000000E-08 
    0.1400000000E+00    0.4740000000E-08 
    0.1500000000E+00    0.1300000000E-07 
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    0.1600000000E+00    0.3140000000E-07 
    0.1800000000E+00    0.1410000000E-06 
    0.2000000000E+00    0.5450000000E-06 
    0.2500000000E+00    0.2460000000E-04 
    0.3000000000E+00    0.7030000000E-03 
    0.3500000000E+00    0.8240000000E-02 
    0.4000000000E+00    0.5220000000E-01 
    0.4500000000E+00    0.2190000000E+00 
    0.5000000000E+00    0.6910000000E+00 
    0.6000000000E+00    0.3910000000E+01 
    0.7000000000E+00    0.1390000000E+02 
    0.8000000000E+00    0.3730000000E+02 
    0.9000000000E+00    0.8520000000E+02 
    0.1000000000E+01    0.1750000000E+03 
    0.1250000000E+01    0.8170000000E+03 
    0.1500000000E+01    0.2870000000E+04 
    0.1750000000E+01    0.7930000000E+04 
    0.2000000000E+01    0.1810000000E+05 
    0.2500000000E+01    0.6250000000E+05 
    0.3000000000E+01    0.1500000000E+06 
    0.3500000000E+01    0.2890000000E+06 
    0.4000000000E+01    0.4760000000E+06 
    0.5000000000E+01    0.9690000000E+06 
    0.6000000000E+01    0.1550000000E+07 
    0.7000000000E+01    0.2900000000E+07 
    0.8000000000E+01    0.4820000000E+07 
    0.9000000000E+01    0.7330000000E+07 
    0.1000000000E+02    0.1040000000E+08 
 
Reaction: 4He + 18O  22Ne 
 
         T9                  Rate 
    0.7000000000E-01    0.1530000000E-23 
    0.8000000000E-01    0.5080000000E-22 
    0.9000000000E-01    0.9200000000E-21 
    0.1000000000E+00    0.2730000000E-19 
    0.1100000000E+00    0.1090000000E-17 
    0.1200000000E+00    0.2720000000E-16 
    0.1300000000E+00    0.4200000000E-15 
    0.1400000000E+00    0.4360000000E-14 
    0.1500000000E+00    0.3290000000E-13 
    0.1600000000E+00    0.1920000000E-12 
    0.1800000000E+00    0.3620000000E-11 
    0.2000000000E+00    0.3790000000E-10 
    0.2500000000E+00    0.2950000000E-08 
    0.3000000000E+00    0.7330000000E-07 
    0.3500000000E+00    0.9380000000E-06 
    0.4000000000E+00    0.7160000000E-05 
    0.4500000000E+00    0.3630000000E-04 
    0.5000000000E+00    0.1350000000E-03 
    0.6000000000E+00    0.9740000000E-03 
    0.7000000000E+00    0.3940000000E-02 
    0.8000000000E+00    0.1110000000E-01 
    0.9000000000E+00    0.2460000000E-01 
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    0.1000000000E+01    0.4630000000E-01 
    0.1250000000E+01    0.1510000000E+00 
    0.1500000000E+01    0.4340000000E+00 
    0.1750000000E+01    0.1420000000E+01 
    0.2000000000E+01    0.4710000000E+01 
    0.2500000000E+01    0.3270000000E+02 
    0.3000000000E+01    0.1270000000E+03 
    0.3500000000E+01    0.3340000000E+03 
    0.4000000000E+01    0.6880000000E+03 
    0.5000000000E+01    0.1850000000E+04 
    0.6000000000E+01    0.3470000000E+04 
    0.7000000000E+01    0.6050000000E+04 
    0.8000000000E+01    0.9220000000E+04 
    0.9000000000E+01    0.1270000000E+05 
    0.1000000000E+02    0.1640000000E+05 
 
Reaction: 4He + 4He + 4He  12C 
 
         T9                  Rate 
    0.1000000000E-01    0.2930000000E-70 
    0.1100000000E-01    0.5940000000E-68 
    0.1200000000E-01    0.6590000000E-66 
    0.1300000000E-01    0.4460000000E-64 
    0.1400000000E-01    0.2010000000E-62 
    0.1500000000E-01    0.6400000000E-61 
    0.1600000000E-01    0.1530000000E-59 
    0.1800000000E-01    0.4220000000E-57 
    0.2000000000E-01    0.5450000000E-55 
    0.2500000000E-01    0.1110000000E-50 
    0.3000000000E-01    0.1460000000E-46 
    0.4000000000E-01    0.5310000000E-40 
    0.5000000000E-01    0.1040000000E-35 
    0.6000000000E-01    0.1200000000E-32 
    0.7000000000E-01    0.3000000000E-30 
    0.8000000000E-01    0.9680000000E-28 
    0.9000000000E-01    0.2520000000E-25 
    0.1000000000E+00    0.2380000000E-23 
    0.1100000000E+00    0.9640000000E-22 
    0.1200000000E+00    0.2070000000E-20 
    0.1300000000E+00    0.2720000000E-19 
    0.1400000000E+00    0.2430000000E-18 
    0.1500000000E+00    0.1600000000E-17 
    0.1600000000E+00    0.8220000000E-17 
    0.1800000000E+00    0.1220000000E-15 
    0.2000000000E+00    0.1020000000E-14 
    0.2500000000E+00    0.4220000000E-13 
    0.3000000000E+00    0.4570000000E-12 
    0.3500000000E+00    0.2330000000E-11 
    0.4000000000E+00    0.7490000000E-11 
    0.4500000000E+00    0.1780000000E-10 
    0.5000000000E+00    0.3450000000E-10 
    0.6000000000E+00    0.8620000000E-10 
    0.7000000000E+00    0.1550000000E-09 
    0.8000000000E+00    0.2270000000E-09 
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    0.9000000000E+00    0.2930000000E-09 
    0.1000000000E+01    0.3480000000E-09 
    0.1250000000E+01    0.4300000000E-09 
    0.1500000000E+01    0.4490000000E-09 
    0.1750000000E+01    0.4370000000E-09 
    0.2000000000E+01    0.4160000000E-09 
    0.2500000000E+01    0.3920000000E-09 
    0.3000000000E+01    0.4160000000E-09 
    0.3500000000E+01    0.4770000000E-09 
    0.4000000000E+01    0.5550000000E-09 
    0.5000000000E+01    0.7040000000E-09 
    0.6000000000E+01    0.8030000000E-09 
    0.7000000000E+01    0.8480000000E-09 
    0.8000000000E+01    0.8520000000E-09 
    0.9000000000E+01    0.8280000000E-09 
    0.1000000000E+02    0.7900000000E-09 
 
Reaction: n + 4He + 4He  Be7 
 
         T9                  Rate 
    0.1000000000E-02    0.3900000000E-58 
    0.2000000000E-02    0.2500000000E-46 
    0.3000000000E-02    0.1350000000E-40 
    0.4000000000E-02    0.5580000000E-37 
    0.5000000000E-02    0.2110000000E-34 
    0.6000000000E-02    0.1960000000E-32 
    0.7000000000E-02    0.7390000000E-31 
    0.8000000000E-02    0.1480000000E-29 
    0.9000000000E-02    0.1880000000E-28 
    0.1000000000E-01    0.1690000000E-27 
    0.1100000000E-01    0.1160000000E-26 
    0.1200000000E-01    0.6370000000E-26 
    0.1300000000E-01    0.2950000000E-25 
    0.1400000000E-01    0.1180000000E-24 
    0.1500000000E-01    0.4170000000E-24 
    0.1600000000E-01    0.1330000000E-23 
    0.1800000000E-01    0.1050000000E-22 
    0.2000000000E-01    0.6290000000E-22 
    0.2500000000E-01    0.2990000000E-20 
    0.3000000000E-01    0.5050000000E-18 
    0.4000000000E-01    0.1900000000E-14 
    0.5000000000E-01    0.2580000000E-12 
    0.6000000000E-01    0.6430000000E-11 
    0.7000000000E-01    0.6140000000E-10 
    0.8000000000E-01    0.3240000000E-09 
    0.9000000000E-01    0.1150000000E-08 
    0.1000000000E+00    0.3120000000E-08 
    0.1100000000E+00    0.6920000000E-08 
    0.1200000000E+00    0.1330000000E-07 
    0.1300000000E+00    0.2270000000E-07 
    0.1400000000E+00    0.3570000000E-07 
    0.1500000000E+00    0.5230000000E-07 
    0.1600000000E+00    0.7250000000E-07 
    0.1800000000E+00    0.1220000000E-06 
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    0.2000000000E+00    0.1820000000E-06 
    0.2500000000E+00    0.3480000000E-06 
    0.3000000000E+00    0.4990000000E-06 
    0.3500000000E+00    0.6140000000E-06 
    0.4000000000E+00    0.6900000000E-06 
    0.4500000000E+00    0.7330000000E-06 
    0.5000000000E+00    0.7500000000E-06 
    0.6000000000E+00    0.7340000000E-06 
    0.7000000000E+00    0.6840000000E-06 
    0.8000000000E+00    0.6220000000E-06 
    0.9000000000E+00    0.5600000000E-06 
    0.1000000000E+01    0.5000000000E-06 
    0.1250000000E+01    0.3780000000E-06 
    0.1500000000E+01    0.2890000000E-06 
    0.1750000000E+01    0.2260000000E-06 
    0.2000000000E+01    0.1800000000E-06 
    0.2500000000E+01    0.1210000000E-06 
    0.3000000000E+01    0.8870000000E-07 
    0.3500000000E+01    0.6830000000E-07 
    0.4000000000E+01    0.5480000000E-07 
    0.5000000000E+01    0.3830000000E-07 
    0.6000000000E+01    0.2880000000E-07 
    0.7000000000E+01    0.2260000000E-07 
    0.8000000000E+01    0.1810000000E-07 
    0.9000000000E+01    0.1480000000E-07 
 
Reaction: 4He + 16O  20Ne 
 
         T9                  Rate 
    0.1000000000E+00    0.7960000000E-26 
    0.1100000000E+00    0.1090000000E-24 
    0.1200000000E+00    0.1100000000E-23 
    0.1300000000E+00    0.8680000000E-23 
    0.1400000000E+00    0.5600000000E-22 
    0.1500000000E+00    0.3040000000E-21 
    0.1600000000E+00    0.1430000000E-20 
    0.1800000000E+00    0.2220000000E-19 
    0.2000000000E+00    0.2550000000E-18 
    0.2500000000E+00    0.4960000000E-15 
    0.3000000000E+00    0.3560000000E-12 
    0.3500000000E+00    0.3970000000E-10 
    0.4000000000E+00    0.1360000000E-08 
    0.4500000000E+00    0.2140000000E-07 
    0.5000000000E+00    0.1960000000E-06 
    0.6000000000E+00    0.5530000000E-05 
    0.7000000000E+00    0.6120000000E-04 
    0.8000000000E+00    0.3740000000E-03 
    0.9000000000E+00    0.1520000000E-02 
    0.1000000000E+01    0.4670000000E-02 
    0.1250000000E+01    0.3430000000E-01 
    0.1500000000E+01    0.1250000000E+00 
    0.1750000000E+01    0.3070000000E+00 
    0.2000000000E+01    0.5910000000E+00 
    0.2500000000E+01    0.1430000000E+01 
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    0.3000000000E+01    0.2540000000E+01 
    0.3500000000E+01    0.3860000000E+01 
    0.4000000000E+01    0.5400000000E+01 
    0.5000000000E+01    0.9620000000E+01 
    0.6000000000E+01    0.1700000000E+02 
    0.7000000000E+01    0.2990000000E+02 
    0.8000000000E+01    0.5120000000E+02 
    0.9000000000E+01    0.8240000000E+02 
    0.1000000000E+02    0.1240000000E+03 
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Fig. A1   log (rate) vs. temperature for p + 23Na  24Mg 
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Fig. A2   log (rate) vs. temperature for p + 15N  4He + 12C 
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Fig. A3   log (rate) vs. temperature for p + 27Al  28Si 
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Fig A4   log (rate) vs. temperature for p + 28Si  29P 
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Fig A5   log (rate) vs. temperature for p + 27Al  4He + 24Mg 
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Fig. A6   log (rate) vs. temperature for 4He + 18O  22Ne 
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Fig. A7   log (rate) vs. temperature for 4He + 4He + 4He  12C 
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Fig. A8   log (rate) vs. temperature for n + 4He + 4He  Be7 
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Fig  A9   log (rate) vs. temperature for 4He + 16O  20Ne 
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