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Abstract

This thesis documents research, methods, and results to satisfy the requirements for the M.S.

degree in Electrical Engineering at the University of Tennessee. This thesis explores two

primary steps for proper classification of impedance spectra: data dimension reduction and

effectiveness of similarity/dissimilarity measure comparison in classification. To understand

the data characteristics and classification thresholds, a circuit model analysis for simulation

and unclassifiable determination is studied. The research is conducted using previously

collected data of complex valued impedance measurements taken from 1844 similar devices.

The results show a classification system capable of proper classification of 99% of data

samples with well-separated data and approximately 85% using the full range of data

available to this research.
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Chapter 1

Introduction

This report documents research and results to satisfy the requirements for the M.S. degree

in Electrical Engineering at the University of Tennessee. The research developed here is

shown to be unique among published research in this topic, and results can be beneficial

to many active industries. The background information provides an overview of the various

approaches published in the field and places what has been accomplished in context.

The research method described later in this thesis provides a two-step process to

determine the optimal decision process for classification of complex-valued electrical

impedance spectra gathered from hardware devices of similar type but with differing makeup

of component parts, grouped according to similar characteristics. Dimensionality reduction is

used to reduce the number of dimensions to be analyzed due to redundancy and correlation

embedded in the data. The samples are compared with a pair-wise comparator function

to determine the degree of similarity, or dissimilarity, between two objects. Other topics

investigated include origin of circuit model parameters, tolerances on category assignment,

and a comparison of similarity measures in the correct classification of objects. The

classification system proposed in this report is capable of correctly classifying up to 99%

1



of well-seperated data and 85% of the provided data samples. The system’s error rate

(misclassification of samples) can in some cases be less than 1%.

1.1 Problem Statement

We wish to develop a method to classify electrical impedance spectra efficiently and

effectively by comparing each spectrum to a database of spectra with known classification

by using applicable measures of spectral similarity, effective dimension reduction methods,

and establishment of optimum classification thresholds.

2



Chapter 2

Background

To understand the methods of this research, it is important to understand the research

performed in the past that has led to the current state of information. These topics will

give the reader a solid understanding of the background material required and show current

research that has been conducted on similar topics.

2.1 Characteristics of Impedance Spectra

Electrical impedance is defined as “A measure of the complex resistive and reactive attributes

of a component in an alternating-current circuit” by the Institute of Electrical and Electronics

Engineers (IEEE) [1]. Impedance measurements can be represented in several different

forms. The most popular methods involve representing the phase angle and magnitude,

in a manner similar to measurements in polar coordinates, or as a complex number, in

cartesian coordinates [2]. In this research, the impedance will be represented as a complex

number.

Electrical impedance is a well-researched and documented property of conductive

materials. This section gives the reader a solid understanding of the background material

3



required to understand the measurements provided in the data and the steps involved in

model analysis. An overview of impedance properties, including the effects of basic electrical

components on the model’s overall impedance along with single/multiple resonant circuits,

is detailed. With this information, an understanding of the traits of an electrical impedance

spectrum will be used to refine the methods used in comparison of the spectra.

2.1.1 Alternating Current

The use of alternating current (AC) became popular in the late 1800s after limits on the

transmission and delivery of direct current (DC) were realized. By this time, many of the

basic concepts of direct current were well researched and documented. Therefore, many

of the properties of alternating current are derived from the same principles used in direct

current circuit analysis. AC differs from DC in that the electric current continuously reverses

direction in a sinusoidal pattern. For the purposes of this discussion, only AC voltage sources,

or sources where the voltage is regulated to be consistent, will be reviewed; however, the

same principles can be applied to AC current sources.

AC voltage is most commonly described in either its time-domain or phasor repre-

sentation. In the time-domain, the voltage v, as a function of time t, is represented as

v(t) = Vmsin(wt + θ) where Vm is the peak amplitude of the waveform, w is the frequency

of the waveform, and θ is the phase shift of the wave. These properties are described in

figure 2.1. More often, AC is described using its phasor representation due to the simplicity

in calculations in subsequent circuit analysis. The phasor representation makes use of the

amplitude, or magnitude, and phase angle to represent the electric current as a function of

frequency. The phasor representation may be written using the magnitude and phase in a

method similar to the polar coordinate system or as a complex number in a method similar to

the cartesian coordinate system. Conversion between the two methods is illustrated in figure
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Figure 2.1: Phasor Diagram [3]

Figure 2.2: Conversion of Polar to Cartesian Coordinates [4]

2.2. The phasor representation in its complex form will be used from this point forward to

describe the electric voltage, current, and impedance in the models.

2.1.2 Basic Impedance of Resistors, Inductors, and Capacitors

In DC circuit analysis techniques, calculations involving resistors are not time-dependent.

Therefore, the translation of resistance to impedance in AC is a straight-forward one-to-one

transformation where the ratio of voltage V to current I still follows Ohm’s law, V = IR [5],

and R is the impedance. In DC circuit analysis, inductors and capacitors vary with time and

therefore have special properties in AC circuit analysis. In AC, an inductor has a voltage to
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Figure 2.3: RLC Series Circuit

current ratio of V
I

= jwL where j is
√
−1, w is the AC frequency, and L is the inductance

in Henry. The impedance of the inductor is jwL. A capacitor has a voltage to current

ratio of V
I

= 1
jwC

with the impedance being 1
jwC

. Notice that the impedance of a resistor

is purely real, resulting in the magnitude equalling the impedance with a zero degree phase

shift. In addition, the inductor and capacitor have purely imaginary impedance resulting in

the magnitude equalling the impedance but with a 90 degree phase shift.

2.1.3 Resonance Circuits

Resonance can occur in an electrical circuit just as it can occur in most natural materials. In

signal and system analysis, resonance can occur “in any system that has a complex conjugate

pair of poles [6]”, or any system that has at least one inductor and capacitor. To illustrate a

simple resonance circuit, the impedance of a simple RLC series circuit, illustrated in figure

2.3, is analyzed here. As in DC, the impedance of components connected in series can be

added to determine the total impedance of the system. Therefore, the total impedance of

an RLC series circuit would be

Z = R + jwL+
1

jwC
(2.1)

= R + j

(
wL− 1

wC

)
(2.2)
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From the equation above, there are several circumstances that are interesting. To

determine the frequency at which the circuit has a minimum impedance, solve for the

imaginary part equal to zero because the real part is not dependent on the frequency.

0 = wL− 1

wC
(2.3)

1

wC
= wL (2.4)

1

LC
= w2 (2.5)

w =

√
1

LC
(2.6)

As is well known in circuit analysis, this is the basic equation for the resonant frequency

in a series RLC circuit. Calculation of the frequency where the system has the maximum

impedance is not as straightforward because the system does not have a local maxima where

the slope is zero and the second derivative of the impedance with respect to frequency is

concave. If we look at the basic case where L = 1 and C = 1, the magnitude of the impedance

becomes dependent on (
w − 1

w

)
(2.7)

The maxima therefore occur at zero and infinite frequency.

2.1.4 Multiple Resonance Circuits

Multiple resonance is a phenomenon that can occur with circuits involving many inductor

and capacitor components arranged in loop structures. With a circuit that exhibits multiple

resonance, more than one frequency exists that give local impedance maxima or minima.

A circuit that exhibits multiple frequencies of zero impedance is illustrated in figure 2.4.

Smith and Alley show this circuit along with an analysis showing the algebraic equation

with quadratic terms created by the overall impedance equation that causes the multiple
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Figure 2.4: A circuit exhibiting multiple resonance frequencies

resonance frequencies [7]. Smith and Alley show the calculations required to obtain the

overall impedance equation of

‖z‖ =
w4 − w2

(
1

L1C1
+ 1

L2C2
+ 1

L1C2

)
+ 1

L1C1L2C2

w
L1

(
w2 − 1

L2C2

) (2.8)

which reduces to the form

‖z‖ =
(w2 − w2

1)(w
2 − w2

3)
w
L1

(w2 − w2
2)

(2.9)

indicating two frequencies that can cause a zero in the numerator and an overall impedance

of zero. Notice that this circuit cannot be decoupled with each section analyzed separately;

it must be analyzed as one system.

2.2 Dimensionality Reduction

Modern network analyzers that measure the impedance of a system over a range of

frequencies are capable of taking measurements from 10 MHz (106) to 1.05 THz (1012)

with over 20,000 sample points [8]. Analysis of all 20,000 points may be time consuming and

unneeded because initial investigations show that the similarity of two impedance curves can

be determined by their general shape, which can be represented with a lot less measurements

at selected frequencies.

For analysis, the data used in this research will be represented as vectors of complex

floating point values, for instance, a vector of 20,000 elements representing the real and
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imaginary parts of the impedance at 20,000 frequencies. If correlation exists among the

data variables, then one of several techniques can be used to reduce the dimensionality of

a set of data while still retaining most of the information represented in the data. In this

section, several documented techniques will be reviewed. Using knowledge of the data and an

analysis of the loss of information, one may be able to reduce the data to less than 1/1000th

of the original size, allowing much more efficient calculation of results, avoiding instability of

solution results, and rendering more possibilities for application. In the subsections below,

two methods of dimension reduction are reviewed: principal component analysis and peak

binning.

2.2.1 Principal Component Analysis

Principal component analysis (PCA) identifies the principal components of the data that

exhibit the most variability. With PCA, the data are represented with respect to a new

ordered set of orthogonal bases that capture successively less variability in the data. In

many cases, 90% of the variability in the data can be represented in the first few principal

components.

One of the first publications on PCA was in Philosophical Magazine by Karl Pearson

in 1901, where he describes his techniques by choosing a line to best represent a series of

data points in a method where the sum of the error distance perpendicular to the best fit

line is minimized [9]. Since 1901, PCA has been an integral part of multivariate analysis

and may possibly be the most used data analysis techniques in dimensionality reduction.

Several books are dedicated to the subject and explain many different applications of the

same techniques with many great advantages [10, 11, 12].

One method of performing PCA is with singular value decomposition (SVD). With SVD,

the data matrix of size m × n with rank r is factored into three matrices that have unique

9



properties.

X = UΣV ′ (2.10)

The V matrix is of size n× r, and the columns of V are right singular vectors of X. The

columns of V represent a set of basis where each column shows the directions onto which the

sum of squares of the projection of the rows of X is of decreasing magnitude. The columns

of V are orthonormal.

The U matrix is of size m × r and the columns of U are orthonormal, and are the left

singular vectors of X.

The Σ matrix is a diagonal r × r matrix. The values in the Σ matrix are referred to as

the singular values and are the positive square roots of the eigenvalues of both XX ′ and

X ′X. The singular values are in decreasing order and can be used to determine the real,

or effective, rank of the original data matrix by looking at the number of non-zero singular

values. To determine the effective rank, the ratio of each singular value to the maximum

singular value is calculated and low ratios below a threshold are typically taken to be zero.

The number of non-zero singular values above the threshold represent the ‘effective rank’.

In figure 2.5, 1,000 two-dimensional points from the multivariate normal distribution are

plotted. The SVD of the mean-centered data matrix was calculated, and both columns of

the V matrix are shifted by the mean of the data and plotted in red. The vector of the first

column of V is the longer red vector and shows the direction of most variance. The vector

from the second column is orthogonal to the first and shows the direction of least variance.

The data used here have many traits that work well with PCA. The impedance spectra

for the circuits used have several maxima and minima with steep slope transitions. This

type of data, when analyzed with PCA, should produce a change of basis that exemplifies

the variability in the maxima vs minima.
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Figure 2.5: SVD of two-dimensional data from a correlated multivariate normal distribution.

2.2.2 Peak Analysis - Binning

This method comes from Puryear et al. where the data were binned and multiple peaks falling

in one bin were combined [13]. This method may have problems if the bins are selected to be

too large and combining peaks that should have remained separate or selecting bins that are

too small and obscure the natural variability in the data peaks. The results of this research

show the effect of bin size on the loss of data during reduction.

2.3 Spectral Similarity/Dissimilarity Metrics

Comparison of objects represented as data vectors is a well-researched and documented topic.

The most popular methods that are pertinent to impedance spectra are reviewed here. This

involves most of the metrics covered in McGill’s research [14]. While studying the equations

and background for each similarity measure, a geometric approach will also be applied to

visualize the contours of points ‘equally’ distant from a specific point. Note that the shapes
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of the contours depend upon the selected point, so this is only an illustration. This geometric

approach is taken from the examples in Jones and Fumas [15].

Vector comparisons have been performed in mathematics for many years. The topic

is heavily documented in fields ranging from computerized text searches [14] to speech

recognition [16], comparing music [17] and mass spectrometry [18, 13, 19]. The most

complete publication on the topic found was documented by Noreault, McGill, and Koll

under a NSF grant in 1979 where a list of 67 similarity measures were reduced to 24 based

on algebraic equivalence of statistical similarity [20]. Here, we examine the utility of the

similarity measures on the data to be used in the proposed research.

The notation in table 2.1 and the following sections is similar to the notation used in

Norealt [20] and McGill [14]. Two vectors, X and Y , of any dimension are compared. Xi

refers to the ith element of the X vector.

2.3.1 Inner Product

The inner product has some interesting geometric features that make it a very good basis

for many of the equations used here. The inner product of a vector with itself is equivalent

to the length of the vector squared. The inner product between two orthogonal vectors is

equal to zero. ∑
XiYi (2.11)

Jones and Furnas geometrically illustrate four important properties of using an inner product

for comparing two vectors. The inner product between a vector and another vector grows

as the angle between the two vectors grows. If two vectors are being compared to a query

vector and they both have the same angle of separation from the query vector but are of

different lengths, the longer vector will have a larger inner product value [15].

One problem with the inner product as a similarity measure is that the value is

unbounded. The inner product of two vectors can grow arbitrarily large based on the
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Table 2.1: Listing of metrics analyzed.

Metric Distance Equation

Inner Product
∑
XiYi

Euclidean distance
√∑

(Xi − Yi)2

Mahalanobis distance
√

(x− µ)S−1(x− µ)′

Manhattan distance
∑
|Xi − Yi|

Average 1
M

∑
Xi − Yi

Squared Chord
∑(√

Xi −
√
Yi
)2

Canberra
∑(

|Xi−Yi|
Xi+Yi

)
Coefficient of Divergence 1

M

∑(
Xi−Yi
Xi+Yi

)2
Modified Boolean Correlation 1

M
(
∑
XiYi +

∑
X ′iY

′
i )

Avg Weight of Shared Terms
∑

(Xi+Yi)βi
2N

Overlap
∑

min(Xi,Yi)
min(

∑
Xi,
∑
Yi)

Cosine
∑
XiYi

(
∑
X2

i

∑
Y 2
i )

1
2

Similarity Index

√∑(
|Xi−Yi|

min(Xi,Yi)

)2
M

Tanimoto’s
∑
XiYi∑

X2
i +
∑
Y 2
i −
∑
XiYi
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Figure 2.6: Contour graphs of equivalent inner product distances. All graphs show contours
for distances of 15, 20, 25, 30, 35, and 40 with more similar contours in green.

length. If all values in the vectors are bounded to be positive, a lower bound on the inner

product exists at 0; but, without the bound to be positive values, the inner product could

be unbounded in the positive and negative direction. This problem will be solved later with

variations better suited for similarity comparison.

In two dimensions, the inner product is evaluated as

X1Y1 +X2Y2 (2.12)

and the inner product distance d to a location (X1, X2) is evaluated as

d = X1Y1 +X2Y2 (2.13)

X2 = −Y1
Y2
X1 +

d

Y2
(2.14)

which is the equation for a line with a slope of -Y1
Y2

and a y-intercept at d
Y2

. The contour lines

of equal distance to locations (3,6), (4,4), and (5,2) are shown in figure 2.6.
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2.3.2 Euclidean Distance

Euclidean distance is the standard metric used in most distance measurements because in

<2, the distance can be measured with any standard ruler.

√∑
(Xi − Yi)2 (2.15)

If the equation for Euclidean distance is evaluated to find all locations that have a distance

of d to the location (4,4), the following equation is formed

d =
√

(X1 − 4)2 + (X2 − 4)2 (2.16)

d2 = (X1 − 4)2 + (X2 − 4)2 (2.17)

To understand what the equation above looks like graphically, the equation for a circle is

reviewed below. In the equation below, the circle is centered at location (a, b) and has radius

of r.

(x− a)2 + (y − b)2 = r2 (2.18)

Contour graphs for the euclidean distance to locations (3,6), (4,4), and (5,2) are shown in

figure 2.7.

2.3.3 Mahalanobis Distance

The Mahalanobis distance was first introduced by Prasanta Chandra Mahalanobis in 1936

with his publication, “On the generalized distance in statistics” [21]. The metric is very

similar to the Euclidean distance with the modification that it takes into account the density

and dispersion of known members in a group. This metric is different from many of the

metrics listed here in that it will calculate the distance to the center of a cluster of points

based on the dispersion of existing members in the group.
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Figure 2.7: Contour graphs of equivalent Euclidean distances. All graphs show contours for
distances of .25, .5, 1, 2, 3, and 4 from the given point, with more similar contours in green.

The Mahalanobis distance equation uses the mean (µ) and covariance matrix (S) of the

current group members to calculate the distance from the mean to a given point (x).

√
(x− µ)S−1(x− µ)′ (2.19)

where each element of the covariance matrix, S, is the variance between samples of feature

i and of feature j defined as

S(i, j) =
(Xi − X̄i)

′(Xj − X̄j)

n− 1
(2.20)

where Xi is a vector of the ith column/feature values of the group members, X̄i is the mean of

the ith column/feature values of the group members, Xj is a vector of the jth column/feature

values of the group members, X̄j is the mean of the jth column/feature values of the group

members, and n is the number of group members. The covariance matrix can also be

calculated as X ′X.
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Figure 2.8: An example distribution with Mahalanobis distance contours from the mean
value of the group, (-3,-5) and (1,2). [23].

Figure 2.8 is a contour graph for an example group of two dimensional data. Notice how

the contours follow the natural dispersion and density of the members of the group.

Mahalanobis Distance Calculation using SVD

The Mahalanobis distance scores can also be calculated using SVD [22]. The proof is shown

in equation 2.21. In equation 2.21, Xc is a matrix with each row representing a sample

belonging to group X with the mean of group X subtracted. d is the mahalanobis distance

to the mean of group X. Yc is a matrix with each row representing a mean-centered point.

Note that the covariance matrix S is equivalent to X ′cXc/(n− 1), where n is the number of

group members. Also note that section 2.2.1 describes how SVD decomposes a matrix into
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three matrices, UΣV ′, with unique properties.

d2 = YcS
−1Y ′c (2.21)

= Yc

(
X ′cXc

n− 1

)−1
Y ′c (2.22)

= Yc

(
(UΣV ′)′(UΣV ′)

n− 1

)−1
Y ′c (2.23)

= Yc

(
V ΣU ′UΣV ′

n− 1

)−1
Y ′c (2.24)

= Yc

(
V ΣΣV ′

n− 1

)−1
Y ′c (2.25)

= Yc

(
V Σ2V ′

n− 1

)−1
Y ′c (2.26)

= Yc

(
n− 1

V Σ2V ′

)
Y ′c (2.27)

= YcV Σ−2V ′Y ′c (n− 1) (2.28)

(2.29)

d2 is the sum of the squares of normalized distances of a point to its mean of the group,

normalized by the respective standard deviation of the spread of the points along the V

vectors (or new basis vectors).

2.3.4 Manhattan Distance

The Manhattan distance measure is often called the city block, or taxicab, distance because

it measures the distance between points in space if the path of travel is only able to follow

directions parallel to the coordinate space, as a taxicab driver in Manhattan, NY would have

to do when traveling between two points in the city where the streets are only North-South
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Figure 2.9: Contour graphs of equivalent Manhattan distances. All graphs show contours
for distances of .25, .5, 1, 2, 3, and 4 with more similar contours in green.

or East-West. The Manhattan distance is defined as

∑
|Xi − Yi| (2.30)

where X and Y are two given points, and Xi refers to the ith coordinate of the point X.

When the equation is evaluated in two dimensions to find all locations that have a distance

of d to the location (4,4), the following equation is formed

d = |X1 − 4|+ |X2 − 4| (2.31)

Some intuitive thinking and evaluation of the equation above gives the contours in figure 2.9.

The advantages and disadvantages of using the Manhattan distance are similar to those of

the Euclidean distance with the exception that similar vectors form a diamond shape around

the query point.
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2.3.5 Average Distance

The average distance is defined as

1

M

∑
Xi − Yi (2.32)

where M is the number of coordinates in X. Y contains the same number of points as X.

A look at this equation in two dimensions reveals the contour structure that gives us

similar values. We will determine all points with a distance value of d to the location (4,4).

d =
1

2
[(4− Y1) + (4− Y2)] (2.33)

2d = (4− Y1) + (4− Y2) (2.34)

2d = 8− Y1 − Y2 (2.35)

Y2 = −Y1 + (8− 2d) (2.36)

Therefore, the following vectors will have the same average distance to the vector (4,4):

(1,3), (2,2), (3,1), (4,0), (5,-1). . . creating a straight contour line at a negative 45◦ angle to

the query point. The contour graph in figure 2.10 illustrates several distances to the locations

(3,6), (4,4), and (5,2).

2.3.6 Squared Chord Distance

The squared chord distance has been actively used in palynology for pollen assemblage

comparison based on the work by Gavin et al. and Overpeck et al. in comparing distance

metrics with respect to pollen assemblages [24] [25]. The equation only allows comparisons

of vectors with positive elements and produces a shape similar to Euclidean distance, but
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Figure 2.10: Contour graphs of equivalent Average distances. All graphs show contours for
distances of -3, -2, -1, 1, 2, and 3 with more similar contours in green.

stretched in the direction of the axis.

∑(√
Xi −

√
Yi

)2
(2.37)

A look at this equation in two dimensions reveals the contour structure that gives us similar

values. We will determine all points with a similarity distance value of d to the location

(4,4).

d =
(√

4−
√
Y1

)2
+
(√

4−
√
Y2

)2
(2.38)

d =
(

2−
√
Y1

)2
+
(

2−
√
Y2

)2
(2.39)(

2−
√
Y2

)2
= d−

(
2−

√
Y1

)2
(2.40)

2−
√
Y2 = ±

√
d−

(
2−

√
Y1

)2
(2.41)√

Y2 = 2±
√
d−

(
2−

√
Y1

)2
(2.42)

Y2 =

(
2±

√
d−

(
2−

√
Y1

)2)2

(2.43)
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Figure 2.11: Contour graphs of equivalent Squared Chord distances. All graphs show
contours for distances of .05, .1, .25, .5, 1, and 2 with more similar contours in green.

Graphing the above equation for several point values yields the contour structure in figure

2.11.

2.3.7 Canberra Distance

The canberra distance was first published in 1966 [26] and then refined in 1967 by the same

authors, Lance and Williams. ∑(
|Xi − Yi|
Xi + Yi

)
(2.44)

A look at this equation in two dimensions reveals the contour structure that gives us similar

values. We will determine all points with a similarity distance value of d to the location

(4,4).

d =

(
|X1 − 4|
X1 + 4

)
+

(
|X2 − 4|
X2 + 4

)
(2.45)

Graphing the above equation for several point values yields the contour structure in figure

2.12.
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Figure 2.12: Contour graphs of equivalent Canberra distances. All graphs show contours for
distances of .05, .1, .15, .25, .5, and 1 with more similar contours in green.

2.3.8 Coefficient of Divergence

The coefficient of divergence was introduced by Sneath and Sokal [27], studied by McGill

[14], and defined as

1

M

∑(
Xi − Yi
Xi + Yi

)2

(2.46)

where M is the number of coordinates in X. Y contains the same number of points as X.

In two dimensions, this equation is expanded to

1

2

[(
X1 − Y1
X1 + Y1

)2

+

(
X2 − Y2
X2 + Y2

)2
]

(2.47)

where X is a vector and is compared to Y , which is also a vector. The contour graphs of

similar distances d to the locations (3,6), (4,4), and (5,2) is shown in figure 2.13.

d =
1

2

[(
4− Y1
4 + Y1

)2

+

(
4− Y2
4 + Y2

)2
]

(2.48)
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Figure 2.13: Contour graphs of equivalent coefficient of divergence distances. All graphs
show contours for distances of .001, .01, .1, .25, .5, and .7 with more similar contours in
green.

2.3.9 Modified Boolean Correlation

The modified boolean correlation was introduced in Sager [28] and is almost the same as

the arithmetic mean of the two vectors. Its modified from the arithmetic mean to include

another term that is a value of zero or one depending on if the terms in the vector are positive

or negative (if either term is negative, Xi and Yi equal zero, Xi and Yi equal one otherwise).

This other term becomes more and more negligible as the elements of the two vectors are

larger and larger.
1

M
(
∑

XiYi +
∑

X ′iY
′
i ) (2.49)

In our case, all terms will be positive and therefore the second term will always be one. If

we expand the equation to show equal distances in two dimensions from the location (4,4),

the following relationship is formed.

d =
1

2
(4X1 + 4X2 + 2) (2.50)
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Figure 2.14: Contour graphs of equivalent modified boolean correlation distances. All graphs
show contours for distances of 5, 10, 15, 20, 25, and 30 with more similar contours in green.

Rearranging the above equation, it can be shown that this is an equation for a line with a

−Y2
Y1

slope and y-intercept at 2(d−1)
Y1

.

d =
1

2
(X1Y1 +X2Y2 + 2) (2.51)

2d = X1Y1 +X2Y2 + 2 (2.52)

X1Y1 = −X2Y2 + 2(d− 1) (2.53)

X1 = −Y2
Y1
X2 +

2(d− 1)

Y1
(2.54)

(2.55)

The contours of similar distances are graphed in figure 2.14 and reveal a structure very

similar to the average distance measure but shifted with a different slope and y-intercept.

2.3.10 Average Weight of Shared Terms

The average weight of shared terms metric was introduced in Reitsma and Sagalyn’s report in

1967 [29] and is equivalent to the average value of all of the terms in both vectors, excluding
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any dimensions with negative values.

∑
(Xi + Yi)βi

2N
(2.56)

βi =

 1 : Xi > 0 and Yi > 0

0 : Otherwise

The data used in this research always has positive terms, causing the βi term to fall off and

have no effect. In two dimensions, the equation is expanded to be the following.

1

4
(X1 + Y1 +X2 + Y2) (2.57)

An analysis of this equation to reveal contours of equal distance d to the vector (X1, Y1)

reveals another distance metric that simplifies to the equation of a line with a -1 slope and

y-intercept at 4d− Y1 − Y2, as shown in figure 2.15.

d =
1

4
(X1 + Y1 +X2 + Y2) (2.58)

4d = X1 + Y1 +X2 + Y2 (2.59)

X1 = −X2 + (4d− Y1 − Y2) (2.60)

2.3.11 Overlap ∑
min(Xi, Yi)

min(
∑
Xi,
∑
Yi)

(2.61)
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Figure 2.15: Contour graphs of equivalent average weights of shared terms. All graphs show
contours for distances of 3, 3.5, 4, 4.5, 5, and 5.5 with more similar contours in green.

Expanding the equation in two dimensions to find contours of equal distance d from a vector

(4,4) reveals the following equation.

d =
min(X1, 4) + min(X2, 4)

min(X1 +X2, 8)
(2.62)

This equation is difficult to graph and doesn’t give much meaning. Instead, we will evaluate

the function for several different scenarios. If X1 < 4 && X2 > 4, the equation evaluates to

the following and the distance is always 1.

d =
4 + 4

8
(2.63)

If X1 � 4 && X2 < 4 or X1 < 4 && X2 � 4, the distance evaluates to the following and

will be in the range of .5-1.

d =
4 +X2

8
(2.64)

d =
X1 + 4

8
(2.65)
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Figure 2.16: Contour graphs of equivalent overlap distances. All graphs show contours for
distances of .99, .9, .8, .7, .6, and .5 with more similar contours in green.

If X1 < 4 and X2 < 4 the distance evaluates to the following and will always be 1.

d =
X1 +X2

X1 +X2

(2.66)

If we look at the case where X1 < 4 and X2 = 4 or close to it, it becomes obvious that this

metric is bounded by 0.5-1.

d =
[0− 4] + 4

[4− 8]
=

[4− 8]

[4− 8]
(2.67)

Graphing several contours of distance 0.5-1 to the points (3,6), (4,4), and (5,2) shows the

structure in figure 2.16. Notice how any points in the upper right or lower left quadrants

result in a distance of 1.
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2.3.12 Cosine Similarity

The cosine similarity distance metric is equivalent to the cosine of the angle between two

vectors and also the inner product divided by the norm/length of the inner product.

∑
XiYi

(
∑
X2
i

∑
Y 2
i )

1
2

(2.68)

This metric has been used in many areas due to the easy and intuitive interpretation of

the similarity. The metric is also bounded on the interval zero to one with a value of

zero indicating the vectors are perpendicular and a value of one indicating the vectors are

collinear. Noreault and McGill cite Torgerson’s 1958 book [30] as the origin of the metric

[20]; however many linear algebra texts show the proof of this metric [31]. This metric has

the benefit of being scale independent. A contour graph showing the general structure of the

contours is shown in figure 2.17 and can be applied to locating similar distances to a point

at locations (3,6), (4,4), and (5,2).

d =
X1Y1 +X2Y2√

(X2
1 +X2

2 )(Y 2
1 + Y 2

2 )
(2.69)

2.3.13 Similarity Index

The similarity index is a metric introduced by Lay, Gross, Zwinselman, and Nibbering in

1983 [32] and later refined by Wan, Vidavsky, and Gross in 2002 [33]. The equation is defined

as √√√√∑(
|Xi−Yi|

min(Xi,Yi)

)2
M

(2.70)

where M is the number of coordinates in X. Y contains the same number of points as X.
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Figure 2.17: Contour graphs of equivalent cosine distances. All graphs show contours for
distances of .99, .9, .75, .5, .25, and .01 with more similar contours in green.

The metric was compared to the cosine similarity in 2002 by Wan et. al. [33] and

determined to be less effective, but Wan’s study was determined to be invalid by Alfassi

2003 [19] because of the lack of scaling performed on the similarity index. The similarity

index is an unbounded metric where a value of 0 indicates an exact match and the value

increases as the two vectors become less and less similar. The contour graph in figure 2.18

illustrates the contours to locations (3,6), (4,4), and (5,2).

2.3.14 Tanimoto’s

The Tanimoto coefficient is an extension of the cosine similarity distance that is documented

in Tanimoto’s internal IBM memos [34] and Rogers [35]. The calculation is equivalent to the

Jaccard coefficient [36] when all elements of the vectors are binary values.

∑
XiYi∑

X2
i +

∑
Y 2
i −

∑
XiYi

(2.71)
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Figure 2.18: Contour graphs of equivalent similarity index distances. All graphs show
contours for distances of .1, .25, .5, 1, 2, and 3 with more similar contours in green.

In two dimensions, the equation becomes

d =
X1Y1 +X2Y2

X2
1 +X2

2 + Y 2
1 + Y 2

2 −X1Y1 −X2Y2
(2.72)

d =
X1Y1 +X2Y2

(X2
1 −X1Y1 + Y 2

1 ) + (X2
2 −X2Y2 + Y 2

2 )
(2.73)

Figure 2.19 shows contours to the locations (3,6), (4,4), and (5,2).

2.3.15 Metric Use in Complex Vector Spaces

The data used in this research are in complex vector spaces, causing a slight modification

of the similarity/dissimilarity metrics. In most cases, the inner product is replaced with the

Hermitian product. As an example, Scharnhorst illustrates how the cosine similarity is used

in complex vector spaces with the following two equations [37].

cosθ(a, b) =
(a, b)R
|a||b|

(2.74)

cosθC(a, b) =
(a, b)C
|a||b|

(2.75)
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Figure 2.19: Contour graphs of equivalent Tanimoto’s distances. All graphs show contours
for distances of .999, .99, .9, .8, .6, and .4 with more similar contours in green.

where (a, b)R is the scalar product and (a, b)C is the Hermitian product.

(a, b)R =
m∑
k=1

akbk (2.76)

(a, b)C =
n∑
k=1

ākbk (2.77)

where a and b in equation 2.77 are complex vectors and āk denotes the complex conjugate

of ak.

2.4 Summary

This chapter has explained the background material and previously published research

required to implement the model analysis, dimension reduction, and similarity equations

on the impedance spectral data for this thesis. Basic impedance characteristics of single

and multiple resonance circuits were explained. Two dimension reduction techniques were
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detailed: principal component analysis and binned peak analysis. Fourteen similarity/dissim-

ilarity metrics were explained: inner product, Euclidean, Mahalanobis, Manhattan, average,

squared chord, Canberra, coefficient of divergence, modified boolean correlation, average

weight of shared terms, overlap, cosine, similarity index, and Tanimoto’s. These techniques

have been adapted to several fields other than the field that they originated in. Several of

those applications are detailed in chapter 3.
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Chapter 3

Existing Applications

Research has been performed in many related fields that are incorporated into the

methodology used here. The basic components of this research involve applying a comparison

of two data vectors using a method that fits the data model and show how the samples

are related. Vector comparison has been performed in many seemingly unrelated fields

on different types of data. Several fields have modified the original methods to allow the

experimenters to work with the data being analyzed.

3.1 Mass Spectrometry

The data used in this research have many characteristics that match those of mass

spectrometry. In mass spectrometry, an unknown compound is analyzed by looking at the

mass to charge (m/z) ratio of the individual components creating an output graph similar

to our data where peaks exist at very specific m/z values. These output graphs can then be

represented as a vector of values showing the intensity at every m/z value and compared to

other compounds that have been analyzed [13]. In some methods, the spectra are reduced

to a binary vector indicating if a peak exists at a specific ratio or does not [38]. The extent
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of comparison has even been extended to develop a database of compound values where

unknowns can be compared quickly and identified as compounds that exist in the database

[39]. Many of the methods for comparison have been included in this research.

3.2 Music and Speech Recognition

Music and sound in almost all cases is digitized by analyzing the frequency and amplitude

of the incoming sound waves over time. The resulting data consist of a vector of intensity

values with a time constant spacing that can be displayed as a continuous waveform. The

comparison of two sounds has been a tough problem to solve for many researchers. Two

people could say the same phrase and the resulting digitized waveform could be drastically

different but with distinct characteristics that give them a related strength [40]. Work has

been performed in the music industry to quickly and effectively compare two sounds to give

a measure of similarity between the two digitized waveforms [17].

3.3 Medical

Biological impedance tomography has been used to investigate and map the tissue

composition of organisms within the medical field for many years. Blad and Baldetorp show

how the impedance spectra of a tissue sample can be used to quickly identify the existence

of cancerous tissue by analyzing the characteristic frequencies. They show that tumorous

tissue exhibit a larger permittivity and conductivity than normal tissues and analyze the

complex impedance of the tissue in the frequency range of 1.5–700 kHz. Their preliminary

results “show that this method can be extended to a new application for detection of tumour

tissue by electrical impedance tomography” [41].
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3.4 Document and Text Searching

Words, phrases, sentences, or entire documents can be compared and evaluated for a degree

of similarity using many of the techniques in this research. A word could be represented

as a vector of ASCII numerical values or as a 26 element vector with the frequency of each

letter. Documents can be represented as a multi-dimensional vector, the size of a dictionary,

with each element representing the frequency of the existence of the dictionary word in the

document. Martinez and Marinez illustrate an example of calculating the cosine similarity

between several book titles using binary vectors illustrating if a word is present or not [42].

They also perform a comparison after using SVD to reduce the dimensions of the book

vectors. Extensive research has also been conducted to maximize the efficiency of the search

to perform the document searching quickly and in parallel [14].

3.5 Numerical Taxonomy

The classification of plants and animals into categories, or taxa, with other plants or animals

that share like characteristics can be modeled as a vector of traits with the most similar

beings having similar vectors. The techniques used in biological classification systems have

been extended into many fields and are the basis of many of the techniques used here [43].

3.6 Hyperspectral Imagery

Van de Meer explains how similarity measures can be used to compare spectra acquired

through remote sensing operations to determine the surface composition and properties. He

uses several spectral measures in the comparison of the imagery data to known samples

including spectral angle, Euclidean distance, and spectral correlation [44]. Some of these

comparison techniques will be used in this research.
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3.7 Summary

This chapter has shown many of the existing fields of research that have used techniques

similar to the methods in this research. Chemists working with mass spectrometry have

used similarity coefficients to compare the mass to charge ratios of compounds. Music and

speech recognition have analyzed the sound waveforms for similarities between sounds. The

medical industry has been using impedance tomography to detect cancerous tissue using the

impedance spectra output of tissue samples. Biologists have compared organism traits using

similarity coefficients in numerical taxonomy. Geologists have analyzed spectral data in the

analysis of hyperspectral imagery to determine ground composition from remote sensing. In

this research, the techniques in existing applications will be combined to form methods of

automatically comparing electrical impedance spectra.
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Chapter 4

Approach/Methods

4.1 Overview

The approach to solution will follow a simple four step process to determine the optimal

steps in comparing impedance spectra.

1. The measured data are fit to a circuit model to form an estimated transfer function

and circuit parameters.

2. Reduce the dimension of the impedance data with retention of important characteristics

of the samples.

3. Use different similarity/dissimilarity metrics to determine which perform more correct

classifications.

4. Determine if a threshold exists to determine when a sample does not belong to any of

the current categories.

Each step may have its own individual analysis, results, and conclusion.
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4.2 Research Questions

• Does a circuit model exist that simulates the data and does analysis reveal any

characteristics important to classification?

• Does a reduction of data cause degradation in the classification of impedance spectra?

• What methods of data reduction are most suitable for this type of data?

• What similarity metrics are most suitable for this type of data?

• Do any of the similarity metrics correctly classify more samples than using the

Mahalanobis distance?

• Is it possible to determine when an unknown sample does not belong to any of the

known categories?

4.3 Available Data

Experiments conducted for this research will make use of impedance data from 1024 devices

originating from 13 separate categories. The data were acquired using an Agilent network

analyzer with 1601 sample points evenly spaced throughout the acquisition frequency range.

The data were then scaled to a range of 1-1.6 Khz with a step impedance of 1 ohm. Analyzing

the output graphs, shown below, several characteristics are desirable that distinguish each of

the separate categories. The group membership of the devices was retained during acquisition

and the characteristics of the data from each device group is detailed in these subsections.

A plot of the magnitudes of all 13 groups is shown in figure 4.14 and the phase is shown in

figure 4.15.
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Figure 4.1: Impedance spectra from 115 members of group 1

4.3.1 Group 1

Group 1 spectra, shown in figure 4.1, consists of 115 samples and shows two well-defined

peaks around frequencies of about 300Hz and 900Hz for the magnitude of the data. There are

other frequencies that may have importance and will be investigated in the model analysis.

There is also a high level of noise and variance in the higher frequencies. The spectra of all

members of group 1 are overlaid in figure 4.1.

4.3.2 Group 2

Group 2 spectra, shown in figure 4.2, consists of 71 samples and shows three well-defined

peaks around frequencies of about 175Hz, 550Hz, and 900Hz for the magnitude of the data.

There is also a high level of noise and variance in the higher frequencies. The spectra of all

members of group 2 are overlaid in figure 4.2.
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Figure 4.2: Impedance spectra from 71 members of group 2

4.3.3 Group 3

Group 3 spectra, shown in figure 4.3, consists of 52 samples and shows two peaks around

frequencies of about 300Hz and 900Hz. There are other frequencies that may have importance

and will be investigated in the model analysis. There is also a high level of noise and variance

in the higher frequencies. The characteristics of this groups seem very similar to that of group

one; however, initial classification results show that they can be effectively distinguished from

each other. The spectra of all members of group 3 are overlaid in figure 4.3.

4.3.4 Group 4

Group 4 spectra, shown in figure 4.4, consists of 516 samples and shows two well-defined

peaks and valleys around frequencies of about 300Hz and 900Hz with one major peak in the
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Figure 4.3: Impedance spectra from 52 members of group 3

magnitude. There is also a high level of noise and variance in the higher frequencies. The

spectra of all members of group 4 are overlaid in figure 4.4.

4.3.5 Group 5

Group 5 spectra, shown in figure 4.5, consists of 176 samples and shows two well-defined

peaks around frequencies of about 600Hz and 1200Hz, despite the high level of variance in

the last interesting frequency. The spectra of all members of group 5 are overlaid in figure

4.5.

4.3.6 Group 6

Group 6 spectra, shown in figure 4.6, consists of 169 samples and shows two well-defined

peaks around frequencies of about 250Hz and 900Hz. There is also a high level of noise and
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Figure 4.4: Impedance spectra from 516 members of group 4
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Figure 4.5: Impedance spectra from 176 members of group 5
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Figure 4.6: Impedance spectra from 169 members of group 6

variance in the higher frequencies. The spectra of all members of group 6 are overlaid in

figure 4.6.

4.3.7 Group 7

Group 7 spectra, shown in figure 4.7, consists of 188 samples and shows two well-defined

peaks around frequencies of about 250Hz and 950Hz. There is also a high level of noise and

variance in the higher frequencies. The spectra of all members of group 7 are overlaid in

figure 4.7.

4.3.8 Group 8

Group 8 spectra, shown in figure 4.8, consists of 91 samples and shows two well-defined peaks

around frequencies of about 200Hz and 600Hz. There are other frequencies that may have
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Figure 4.7: Impedance spectra from 188 members of group 7

importance and will be investigated in the model analysis. There is also a high level of noise

and variance in the higher frequencies. The spectra of all members of group 8 are overlaid

in figure 4.8.

4.3.9 Group 9

Group 9 spectra, shown in figure 4.9, consists of 131 samples and shows two well-defined

peaks around frequencies of about 200Hz and 600Hz. There are other frequencies that may

have importance and will be investigated in the model analysis. There is also a high level

of noise and variance in the higher frequencies. The spectra of all members of group 9 are

overlaid in figure 4.9.
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Figure 4.8: Impedance spectra from 91 members of group 8
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Figure 4.9: Impedance spectra from 131 members of group 9
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Figure 4.10: Impedance spectra from 140 members of group 10

4.3.10 Group 10

Group 10 spectra, shown in figure 4.10, consists of 140 samples and shows two well-defined

peaks around frequencies of about 200Hz and 600Hz. There are other frequencies that may

have importance and will be investigated in the model analysis. There is also a high level

of noise and variance in the higher frequencies. The spectra of all members of group 10 are

overlaid in figure 4.10.

4.3.11 Group 11

Group 11 spectra, shown in figure 4.11, consists of 47 samples and shows two well-defined

peaks around frequencies of about 200Hz and 600Hz. There are other frequencies that may

have importance and will be investigated in the model analysis. There is also a high level
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Figure 4.11: Impedance spectra from 47 members of group 11

of noise and variance in the higher frequencies. The spectra of all members of group 11 are

overlaid in figure 4.11.

4.3.12 Group 12

Group 12 spectra, shown in figure 4.12, consists of 49 samples and shows two well-defined

peaks around frequencies of about 200Hz and 600Hz. There are other frequencies that may

have importance and will be investigated in the model analysis. There is also a high level

of noise and variance in the higher frequencies. The spectra of all members of group 12 are

overlaid in figure 4.12.
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Figure 4.12: Impedance spectra from 49 members of group 12

4.3.13 Group 13

Group 13 spectra, shown in figure 4.13, consists of 99 samples and shows two well-defined

peaks around frequencies of about 200Hz and 600Hz. There are other frequencies that may

have importance and will be investigated in the model analysis. There is also a high level

of noise and variance in the higher frequencies. The spectra of all members of group 13 are

overlaid in figure 4.13.

4.4 Model Analysis

The first step to formulating a solution will involve understanding the available data. The

equivalent circuit model in figure 4.16 is used to model the characteristics of the objects

analyzed. Every data sample was taken from a unique object that could have different

component values but still follows the equivalent circuit model. The goal of these first steps

49



0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

M
a
g
n
it
u
d
e
 (

O
h
m

s
)

Overlay of Impedance for All 98 Members of Group 13

0 200 400 600 800 1000 1200 1400 1600 1800
−1.5

−1

−0.5

0

0.5

1

1.5

2

Frequency (Hz)

P
h
a
s
e
 (

D
e
g
re

e
s
)

Figure 4.13: Impedance spectra from 99 members of group 13

are to analyze the model to understand the type of data that could be produced and the

importance of characteristics within the data.

Performing a frequency analysis of the data plots may show an understanding of the steep

peaks and long valleys within the data. The resonant frequency analysis will be obtained

using an equivalent circuit impedance and basic circuit analysis techniques.

Detailed analysis steps include:

1. Develop an equivalent circuit impedance equation based on the model provided.

2. Perform a Bode plot analysis to determine corner frequencies and transfer function

characteristics.
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Figure 4.14: Impedance magnitude of all 13 groups.
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Figure 4.15: Impedance phase of all 13 groups.
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Figure 4.16: Model Circuit for Data

4.5 Comparison of Techniques for Dimension Reduc-

tion

The data will be reduced using the previously described techniques and the techniques’

effectiveness in retaining information necessary for classification will be compared. The

techniques will be analyzed to determine each reduced data set’s effectiveness in retaining

the most information with the least amount of data. It is expected that all three approaches

will have similar results showing that spectra peak information provides the greatest

discrimination across groups.

After dimension reduction, an attempt will be made to effectively graph the data showing

the types of structures that related samples create. This step will prepare the data for

analysis by similarity measures. Three methods will be compared. The steps for each

method are outlined below.

1. Method 1: Principal Component Reduction.

A. Perform SVD on the data matrix to obtain the U, Σ, and V matrices.

X = UΣV ′ (4.1)

B. Analyze the scree plot to determine what should be the optimal number of

dimensions.
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C. Use the new UΣ data matrix (also referred to as scores), or the equivalent XV

matrix, for the similarity analysis.

D. Perform classification using 1-1601 features from the scores matrix and determine

the number of features that give the highest number of correct classifications.

2. Method 2: Binning

A. Find the peaks of the impedance spectrum by looking at the zero crossings of the

phase. Note that this may not work in all cases.

B. Combine peaks in a single bin by taking an average of the impedance at each

peak frequency.

C. Perform classification using 1-1601 bins and determine the number of bins that

give the highest number of correct classifications.

3. Analyze the differences between SVD and binned peak analysis. Determine if one is

better, and whether both should be used individually, none should be used, or a hybrid

should be investigated.

4.6 Similarity/Dissimilarity Measure Effectiveness Com-

parison

The purpose of this metric comparison is to define the metric that most accurately, based on

the associated group assignments, classifies the impedance spectra data used in this research.

During this iterative process, the reduced data will be used with a portion being appropriated

as training data and the remainder as test data.

1. The following steps will be repeated 20 times.
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A. Randomly select 60 percent of the samples from each group to become training

samples and the other 40 percent of each group to become test samples.

B. Assign the training samples their pre-defined categories.

C. Determine a virtual centroid sample for each pre-defined sample category by

taking an average of all members of the category created in the previous step.

D. For each similarity comparator:

i. For each test sample:

a. Calculate the similarity value between the test sample and each category

centroid.

b. Classify the test sample by choosing the category with the most similar

value.

c. Compare the similarity value to the threshold calculated using the

methods described in section 4.7. Make a note if the similarity value

is less than the threshold.

d. Determine if the test sample has a similarity value to another category

that is higher than the category’s threshold. If so, make a note that the

test sample could be similar to another category.

ii. Create a classification confusion matrix for analysis of the results and

comparison with actual classification.

iii. Keep the classification confusion matrix of this comparator with other runs

on this comparator for later analysis.

2. Compare the classification confusion matrices for the comparators and determine the

comparator with the greatest number of correct classifications and also the comparator

with the lowest number of incorrect classifications.
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Figure 4.17: Histograph of distances to group G01 centroid.

4.7 Unclassifiable Determination

During the classification process, there is a possibility that samples may not belong to any

of the known categories and must be allocated to a new category. This determination will

not be a straightforward decision and will straddle the boundaries of unsupervised learning.

The goal of this method is to choose a threshold that minimizes the classification error. The

methods used here closely follow with the principals of bayesian decision theory [45, p. 20].

An example is shown here. Figure 4.17 shows a histogram of cosine similarity distances

for all samples to the centroid (average of the group) of group G01. The samples that

belong to group G01 are shown in a different color than those that do not belong to group

G01 based on the pre-assigned group numbers. Based on the histogram, a clear separation

appears between the non-members and members around a distance of 0.9. A Receiver

Operating Characteristic (ROC) curve is shown in figure 4.18 but does not provide much

information because the separation is very good between the members and non-members.

To obtain a threshold, the histogram was analyzed at every bin (.01 separation) for the
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Figure 4.18: ROC curve for member/non-member classification of group G01.

total error classification based on that value of a threshold. For group G01, the threshold

of 0.92 has the lowest number of misclassifications to be either a member or non-member

with 2 misclassifications. Therefore, we would determine that any sample that has a cosine

similarity distance less than 0.92 could possibly be unclassifiable.

These methods will need to be integrated into the similarity/dissimilarity measure

comparison and recalculated with each new training set and metric. The following procedure

summarizes this method:

1. Determine the threshold limits of classification

A. Calculate the threshold that minimizes the error classification rate.
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4.8 Detailed Steps

This section is a repeat of the steps from the previous sections combined into a single step-

by-step procedure.

1. Develop an equivalent circuit impedance equation based on the model provided.

2. Perform a Bode plot analysis to determine corner frequencies and transfer function

characteristics.

3. Method 1: Principal Component Reduction.

A. Perform SVD on the data matrix to obtain the U, Σ, and V matrices.

X = UΣV ′ (4.2)

B. Analyze the scree plot to determine what should be the optimal number of

dimensions.

C. Use the new UΣ data matrix (also referred to as scores), or the equivalent XV

matrix, for the similarity analysis.

D. Perform classification using 1-1601 features from the scores matrix and determine

the number of features that give the highest number of correct classifications.

4. Method 2: Binning

A. Find the peaks of the impedance spectrum by looking at the zero crossings of the

phase. Note that this may not work in all cases.

B. Combine peaks in a single bin by taking an average of the impedance at each

peak frequency.
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C. Perform classification using 1-1601 bins and determine the number of bins that

give the highest number of correct classifications.

5. Analyze the differences between SVD and binned peak analysis. Determine if one is

better, and whether both should be used individually, none should be used, or a hybrid

should be investigated.

6. The following steps will be repeated 20 times.

A. Randomly select 60 percent of the samples from each group to become training

samples and the other 40 percent of each group to become test samples.

B. Assign the training samples their pre-defined categories.

C. Determine a virtual centroid sample for each pre-defined sample category by

taking an average of all members of the category created in the previous step.

D. Determine the threshold limits of classification

i. Calculate the threshold that minimizes the error classification rate.

E. For each similarity comparator:

i. For each test sample:

a. Calculate the similarity value between the test sample and each category

centroid.

b. Classify the test sample by choosing the category with the most similar

value.

c. Compare the similarity value to the threshold calculated using the

methods described in section 4.7. Make a note if the similarity value

is less than the threshold.
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d. Determine if the test sample has a similarity value to another category

that is higher than the category’s threshold. If so, make a note that the

test sample could be similar to another category.

ii. Create a classification confusion matrix for analysis of the results and

comparison with actual classification.

iii. Keep the classification confusion matrix of this comparator with other runs

on this comparator for later analysis.

7. Compare the classification confusion matrices for the comparators and determine the

comparator with the greatest number of correct classifications and also the comparator

with the lowest number of incorrect classifications.
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Chapter 5

Results

The results of this research are organized to show details of each of the three phases of the

methods. First, the intermediate steps of classification for one similarity function are shown

for the cosine similarity function. Then, the classification results for all similarity functions

are shown along with statistics for multiple repetitions. Next, the intermediate steps of

data dimension reduction using SVD and peak binning are shown. Finally, the results of

classification using dimension reduction of all sizes with all similarity functions are shown.

5.1 Data Preprocessing

Graphing of the group members at the beginning of the investigation revealed that some of

the samples were acquired in a non-standard process, causing abnormalities in the output

that did not fit with the other members of the group. These abnormal samples were removed

prior to any operations on the data. Leaving these samples in the data set would result in

an improper analysis of the methods of the research. Training samples must be guaranteed

to be correctly acquired and correctly classified.
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Figure 5.1: Model Circuit for Data with Parts Illustrated

5.2 Model Analysis

5.2.1 Equivalent Circuit Impedance

The first step in the model analysis was to create an equivalent circuit impedance equation

from the circuit in figure 4.16. Calculation of an equivalent circuit impedance was done in

stages. Figure 5.1 illustrates the breakdown of the circuit.

Z1 = jwL4 +R6 (5.1)

1

Z2

=
1
1

jwC3

+
1

R5

+
1

Z1

(5.2)

= jwC3 +
1

R5

+
1

Z1

(5.3)

Z2 =
1

jwC3 + 1
R5

+ 1
Z1

(5.4)

Z3 = R4 + jwL3 + Z2 (5.5)

Z4 =
1

jwC2 + 1
R3

+ 1
Z3

(5.6)

Z5 = R2 + jwL2 + Z4 (5.7)

Z6 =
1

jwC1 + 1
Z5

(5.8)

Ztotal = R1 + L1 + Z6 (5.9)

62



Solving the equations above using MATLAB’s COLLECT function in the symbolic

toolbox gives a rational transfer function with a form similar to equation 5.10 where s = jw.

Z =
(A)s7 + (B)s6 + (C)s5 + (D)s4 + (E)s3 + (F )s2 + (G)s+ (H)

(I)s6 + (J)s5 + (K)s4 + (L)s3 + (M)s2 + (N)s+ (O)
(5.10)

This transfer function indicates seven zeros and six poles exist in the system. These values

are compared to transfer function estimation using the measured data in the next section.

5.2.2 Transfer Function Estimation

A bode plot of the measured data from sample one of group one is shown in figure 5.2.

The bode plot shows at least eight zeros and at least eight poles. Using MATLAB’s

INVFREQS command with eight zeros and eight poles, the transfer function in equation

5.11 was acquired. The estimated transfer function is plotted in figure 5.2.

0.01s8 − 1.8s7 + (6.1E4)s6 − (2.4E7)s5 + (6E10)s4 − (4.2E13)s3 + (1.4E16)s2 − (1.4E19)s+ 1.4E20

s8 + 111s7 + (E6)s6 + (1.7E8)s5 + (2.9E12)s4 − (1.7E10)s3 + (7E17)s2 − (1.8E19)s+ 2.2E22
(5.11)

The resulting output bode plot in figure 5.2 validates eight zeros and eight poles in the

measured data. Notice that the characteristic frequencies of both bode plots are aligned. The

characteristic frequencies are shown to be important parts of the model and the dimension

reduction portion of this research will test that conclusion.

5.3 Classification Using Cosine Similarity

The most significant part of the classification system is the algorithm for determination

of similarity between an unknown sample and the known groups. This section shows the
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Figure 5.2: Bode plot of measured and estimated transfer functions from sample 1 of group
01.
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Table 5.1: Number of total samples split into training and test categories for each group.

Group # of Members # Training # Test

G01 115 69 46

G02 71 43 28

G03 52 31 21

G04 516 310 206

G05 176 106 70

G06 169 101 68

G07 188 113 75

G08 91 55 36

G09 131 79 52

G10 140 84 56

G11 47 28 19

G12 49 29 20

G13 98 59 39

Total 1843 1107 736

classification results using 1844 impedance spectrum samples from 13 predefined groups for

one run of one similarity function, cosine similarity.

5.3.1 Separation of Training and Test Samples

Table 5.1 shows the number of samples in each predefined group. Each group was divided

by random assignment into 60% training and 40% test samples using MATLAB’s random

functions. Table 5.1 also shows the number of samples from each group that were placed

into the training and test categories.
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Figure 5.3: Group G01 training samples drawn in blue and the centroid of the training
samples drawn in orange.

5.3.2 Centroid Calculation

The training samples from each group were used to determine the centroid and threshold of

classification. The centroid of each group was calculated using the average of each dimension

of all training samples in the group. Figure 5.3 shows the magnitude and phase of all training

samples of group G01 with their centroid. Figure 5.4 shows the centroids of all 13 groups.

5.3.3 Threshold Determination

The similarity distances of all group members to the group’s centroid were calculated for each

group 01-13. Figure 5.5 shows a binned histogram of the distances of group G01 training

samples to the G01 training samples’ centroid in blue, calculated using the cosine similarity

function. Each blue bar represents the percentage of total group G01 training samples that

had a similarity distance in that bin. The sum of all blue bars is equal to 100 percent. The
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Figure 5.4: Centroids of groups 01-13

cosine similarity distance of all non-group samples (Groups 02-13) to group G01 training

samples’ centroid was also calculated. Figure 5.5 also shows a binned histogram of the

distances of all non-G01 training samples to the G01 training samples’ centroid with red

bars. Each red bar represents the percentage of total non-group training samples that had

a similarity distance in that bin. The sum of all red bars is equal to 100 percent.

The error rate was calculated as the sum of the percentage of group members to the

left of the similarity value and the percentage of non-group members to the right of the

similarity value. Figure 5.5 shows the error rate, or rate of misclassification as a function

of the similarity value if that similarity value is used as the threshold to determine group

membership. The optimum threshold is shown with a orange line and matches the location

of the minimal error rate in the figure. The threshold for each group was recorded for

classification of the test samples.
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Figure 5.5: Histogram of group 01 test samples’ cosine similarity distance to the training
samples’ centroid. Calculated threshold drawn in orange.
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5.3.4 Theshold Scenarios

For classification, the similarity value between each test sample and each group’s centroid

was calculated and the test sample is then assigned to the group with the most similar

centroid. Three scenarios were studied:

1. A test sample was classified to the group with the most similar centroid regardless of

threshold value.

2. A test sample was classified to the group with the most similar centroid only if the

similarity value was above the threshold for that group. If the sample was not above the

threshold, it was placed in a special, unclassifiable group called Un2 in the classification

confusion matrices.

3. A test sample was classified to the group with the most similar centroid only if the

similarity value was above the threshold for the group and the similarity value to all

other groups was below the threshold for the group. If the sample was above the

similarity threshold for more than one group and none of the groups were the correct

group, it was placed in a special, unclassifiable group called Un3 in the classification

confusion matrices. If the sample was above the similarity threshold for more than

one group and one of the groups was the correct group, it was placed in a special,

unclassifiable group called Un4 in the classification confusion matrices.

5.3.5 Classification Results

The results of classification using methods in this research are displayed using a classification

confusion matrix [46, p. 96]. The matrix shows the real group membership of the test samples

in the columns and the number of samples classified to the group in the rows. For example,

all of the samples that belong to group 1 are in column G01. The number of samples that

were correctly classified for group 1 are in the column G01 and row G01. Any samples that
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were misclassified add to the counts in the other rows. The number of correct classifications

can be easily distinguished by looking at the counts on the diagonal.

Tables 5.2, 5.3, and 5.4 show classification confusion matrices for each of the scenarios

above using the cosine similarity function. The groups along the left side indicate the group

that the test sample was classified to and the groups along the top indicate the group that the

test sample really belongs to. The number of correct classifications is obtained by calculating

the sum of the counts on the diagonal. Table 5.5 shows the total number of test samples

correctly classified, incorrectly classified, and unclassifiable for each of the three scenarios.
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Table 5.2: Classification confusion matrix for scenario 1 from section 5.3.4 using the cosine similarity function.

True Group Membership

G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 G13

C
la

ss
ifi

ed
G

ro
u
p

M
em

b
er

sh
ip

G01 46 0 0 0 0 0 0 0 0 0 0 0 0

G02 0 27 0 0 0 0 0 0 0 0 0 0 0

G03 0 0 21 0 0 0 0 0 0 0 0 0 0

G04 0 0 0 205 0 0 0 0 0 0 0 0 0

G05 0 0 0 1 70 0 0 0 0 0 0 0 0

G06 0 0 0 0 0 54 3 0 0 0 0 0 0

G07 0 0 0 0 0 14 72 0 0 0 0 0 0

G08 0 0 0 0 0 0 0 13 0 0 2 0 16

G09 0 1 0 0 0 0 0 2 32 2 7 1 3

G10 0 0 0 0 0 0 0 2 1 30 1 6 0

G11 0 0 0 0 0 0 0 8 15 2 7 2 4

G12 0 0 0 0 0 0 0 2 3 22 2 11 0

G13 0 0 0 0 0 0 0 9 1 0 0 0 17



72

Table 5.3: Classification confusion matrix for scenario 2 from section 5.3.4 using the cosine similarity function.

True Group Membership

G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 G13

C
la

ss
ifi

ed
G

ro
u
p

M
em

b
er

sh
ip

G01 45 0 0 0 0 0 0 0 0 0 0 0 0

G02 0 27 0 0 0 0 0 0 0 0 0 0 0

G03 0 0 21 0 0 0 0 0 0 0 0 0 0

G04 0 0 0 204 0 0 0 0 0 0 0 0 0

G05 0 0 0 0 68 0 0 0 0 0 0 0 0

G06 0 0 0 0 0 54 3 0 0 0 0 0 0

G07 0 0 0 0 0 14 72 0 0 0 0 0 0

G08 0 0 0 0 0 0 0 13 0 0 2 0 15

G09 0 0 0 0 0 0 0 2 31 2 7 1 3

G10 0 0 0 0 0 0 0 2 1 30 1 6 0

G11 0 0 0 0 0 0 0 8 14 2 7 2 4

G12 0 0 0 0 0 0 0 2 2 22 2 10 0

G13 0 0 0 0 0 0 0 9 0 0 0 0 17

Un2 1 1 0 2 2 0 0 0 4 0 0 1 1
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Table 5.4: Classification confusion matrix for scenario 3 from section 5.3.4 using the cosine similarity function.

True Group Membership

G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 G13

C
la

ss
ifi

ed
G

ro
u
p

M
em

b
er

sh
ip

G01 44 0 0 0 0 0 0 0 0 0 0 0 0

G02 0 28 0 0 0 0 0 0 0 0 0 0 0

G03 0 0 20 0 0 0 0 0 0 0 0 0 0

G04 0 0 0 199 0 0 0 0 0 0 0 0 0

G05 0 0 0 0 67 0 0 0 0 0 0 0 0

G06 0 0 0 0 0 32 0 0 0 0 0 0 0

G07 0 0 0 0 0 1 2 0 0 0 0 0 0

G08 0 0 0 0 0 0 0 0 0 0 0 0 0

G09 0 0 0 0 0 0 0 0 0 0 0 0 0

G10 0 0 0 0 0 0 0 0 0 0 0 0 0

G11 0 0 0 0 0 0 0 0 0 0 0 0 0

G12 0 0 0 0 0 0 0 0 0 0 0 0 0

G13 0 0 0 0 0 0 0 0 0 0 0 0 0

Un2 2 0 0 1 0 1 1 2 2 2 0 0 0

Un3 0 0 0 0 0 0 0 3 3 0 0 1 0

Un4 0 0 1 6 3 34 72 31 47 54 19 19 40



Table 5.5: Classification results using the cosine similarity function.

Scenario Correctly Classified Incorrectly Classified Unclassifiable

1 605 (82.09%) 132 (17.91%) 0 (0%)

2 599 (81.28%) 126 (17.10%) 12 (1.63%)

3 392 (53.19%) 1 (0.14%) 344 (46.68%)

5.4 Classification using All Metrics

Classification results similar to those reported in section 5.3 were obtained for these similarity

functions: Inner Product, Euclidean Distance, Mahalanobis Distance, Manhattan Distance,

Average Distance, Squared Chord Distance, Canberra Distance, Coefficient of Divergence,

Modified Boolean Correlation, Average Weight of Shared Terms, Overlap, Cosine Similarity,

Similarity Index, and Tanimoto’s. Each of these functions has been described in section

2.3. Tables 5.6, 5.7, and 5.8 show the results of classification using scenarios 1, 2, and 3

respectively using the same training/test set random permutation.

The results of performing classification using scenario 2 from section 5.3.4 with 5

repetitions are shown in table 5.10. Note that the difference in each run are the random

assignment of the samples to training or test categories. Statistics from 20 repetitions are

shown in table 5.9 and a box plot showing the median, 25th/75th percentile, and outliers is

shown in figure 5.6.
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Table 5.6: Classification of all metrics using scenario 1 from section 5.3.4 and using all 1601
frequencies.

Metric Correctly Classified Incorrectly Classified Unclassifiable

Canberra 640 (87%) 97 (13%) 0 (0%)

Manhattan 624 (85%) 113 (15%) 0 (0%)

Similarity Index 622 (84%) 115 (16%) 0 (0%)

Cosine 597 (81%) 140 (19%) 0 (0%)

Euclidean 596 (81%) 141 (19%) 0 (0%)

Coe of Divergence 594 (81%) 143 (19%) 0 (0%)

Overlap 590 (80%) 147 (20%) 0 (0%)

Mahalanobis 518 (70%) 219 (30%) 0 (0%)

Squared Chord 503 (68%) 234 (32%) 0 (0%)

Inner Product 479 (65%) 258 (35%) 0 (0%)

Average 372 (50%) 365 (50%) 0 (0%)

Avg Weight 206 (28%) 531 (72%) 0 (0%)

Tanimoto’s 231 (31%) 506 (69%) 0 (0%)

Mod Bool Correlat 206 (28%) 531 (72%) 0 (0%)
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Table 5.7: Classification of all metrics using scenario 2 from section 5.3.4 and using all 1601
frequencies.

Metric Correctly Classified Incorrectly Classified Unclassifiable

Canberra 631 (86%) 87 (12%) 19 (2%)

Manhattan 617 (84%) 107 (14%) 13 (2%)

Similarity Index 620 (84%) 107 (15%) 10 (1%)

Cosine 588 (80%) 130 (18%) 19 (2%)

Euclidean 590 (80%) 133 (18%) 14 (2%)

Coe of Divergence 588 (80%) 122 (16%) 27 (4%)

Overlap 583 (79%) 126 (17%) 28 (4%)

Mahalanobis 545 (74%) 172 (23%) 20 (3%)

Squared Chord 482 (65%) 214 (29%) 41 (6%)

Inner Product 467 (63%) 76 (10%) 194 (26%)

Average 347 (47%) 350 (48%) 40 (5%)

Avg Weight 205 (28%) 61 (8%) 471 (64%)

Tanimoto’s 217 (29%) 492 (67%) 28 (4%)

Mod Bool Correlat 200 (27%) 46 (6%) 491 (67%)
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Table 5.8: Classification of all metrics using scenario 3 from section 5.3.4 and using all 1601
frequencies.

Metric Correctly Classified Incorrectly Classified Unclassifiable

Canberra 424 (58%) 3 (0.4%) 310 (42%)

Manhattan 378 (51%) 5 (1%) 354 (48%)

Cosine 382 (52%) 2 (0.3%) 353 (48%)

Euclidean 243 (33%) 3 (0.4%) 491 (67%)

Similarity Index 332 (45%) 4 (1%) 401 (54%)

Overlap 346 (47%) 6 (1%) 385 (52%)

Coe of Divergence 373 (51%) 2 (0.3%) 362 (49%)

Squared Chord 283 (39%) 10 (1%) 444 (60%)

Inner Product 25 (3%) 0 (0%) 712 (97%)

Mahalanobis 307 (42%) 7 (1%) 423 (57%)

Average 37 (5%) 2 (0.3%) 698 (95%)

Avg Weight 0 (0%) 0 (0%) 737 (100%)

Tanimoto’s 71 (10%) 3 (0.4%) 663 (90%)

Mod Bool Correlat 0 (0%) 0 (0%) 737 (100%)
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Table 5.9: Statistics from 20 repetitions of classification using all 1601 frequencies, scenario two from section
5.3.4, and different training/test permutations.

Metric Mean Variance Std Deviation Std Error 95% Confidence Interval

Canberra 624 (85%) 41.10 6.41 1.43 621.19 (84%) - 626.81 (85%)

Manhattan 608 (82%) 49.55 7.04 1.57 604.87 (82%) - 611.03 (83%)

Similarity Index 597 (81%) 74.69 8.64 1.93 593.31 (81%) - 600.89 (82%)

Cosine 593 (80%) 58.35 7.64 1.71 589.20 (80%) - 595.90 (81%)

Euclidean 592 (80%) 47.41 6.89 1.54 589.28 (80%) - 595.32 (81%)

Coe of Divergence 576 (78%) 34.15 5.84 1.31 573.39 (78%) - 578.51 (78%)

Overlap 571 (77%) 71.56 8.46 1.89 567.09 (77%) - 574.51 (78%)

Mahalanobis 551 (75%) 52.86 7.27 1.63 547.61 (74%) - 553.99 (75%)

Squared Chord 480 (65%) 101.55 10.08 2.25 475.13 (64%) - 483.97 (66%)

Inner Product 478 (65%) 104.65 10.23 2.29 473.57 (64%) - 482.53 (65%)

Average 353 (48%) 100.65 10.03 2.24 348.10 (47%) - 356.90 (48%)

Tanimoto 208 (28%) 133.29 11.55 2.58 203.19 (28%) - 213.31 (29%)

Avg Weight 204 (28%) 2.21 1.49 0.33 203.05 (28%) - 204.35 (28%)

Mod Bool Correlat 200 (27%) 5.14 2.27 0.51 198.61 (27%) - 200.59 (27%)
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Figure 5.6: Box plot of 20 repetitions of classification using all 1601 frequencies, scenario two from section 5.3.4,
and different training/test permutations.



The time required for caculation of the metrics using all 1601 frequencies/dimensions and

scenario 2 ranged from 0.1 to 71 seconds. Figures 5.7 and 5.8 are box plots of the amount of

time required for calculation of the metrics over 20 repetitions using different training/test

permuations each time. Table 5.11 is a summary of other statistics on the same repetitions.
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Table 5.10: Number of samples correctly classified during multiple repetitions of the
classification methods using scenario 2 from section 5.3.4 and using all 1601 frequencies.

Metric Rep 1 Rep 2 Rep 3 Rep 4 Rep 5

Canberra 633 (86%) 623 (85%) 615 (83%) 624 (85%) 609 (83%)

Manhattan 630 (85%) 611 (83%) 603 (82%) 606 (82%) 612 (83%)

Cosine 595 (81%) 600 (81%) 599 (81%) 595 (81%) 596 (81%)

Euclidean 598 (81%) 602 (82%) 586 (80%) 590 (80%) 593 (80%)

Similarity Index 612 (83%) 586 (80%) 584 (79%) 594 (81%) 589 (80%)

Overlap 586 (80%) 575 (78%) 568 (77%) 575 (78%) 568 (77%)

Coe of Divergence 582 (79%) 576 (78%) 575 (78%) 575 (78%) 563 (76%)

Mahalanobis 538 (73%) 558 (76%) 553 (75%) 544 (74%) 558 (76%)

Squared Chord 488 (66%) 479 (65%) 475 (64%) 475 (64%) 484 (66%)

Inner Product 477 (65%) 479 (65%) 476 (65%) 480 (65%) 470 (64%)

Average 361 (49%) 357 (48%) 348 (47%) 352 (48%) 349 (47%)

Avg Weight 205 (28%) 203 (28%) 203 (28%) 205 (28%) 204 (28%)

Tanimoto’s 214 (29%) 214 (29%) 193 (26%) 190 (26%) 209 (28%)

Mod Bool Correlat 195 (26%) 200 (27%) 199 (27%) 199 (27%) 198 (27%)
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Figure 5.7: Box plot of metric 1 (Mahalanobis Distance) from timing of the metrics using
20 repetitions, 1601 frequencies, and scenario 2 from section 5.3.4.
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Figure 5.9: Spectrum 1 from group 1 with bins overlaid in red and peaks marked in green.

5.5 Dimension Reduction Using Peak Binning

The methods for these results created N evenly sized bins from the original 1601 frequencies

and recorded the average values of all peaks located in the bin. N has a value between 1 and

1601. Figure 5.9 illustrates spectrum sample 1 of group 02 being divided into 4 bins of 400,

400, 400, 400, and 401 frequencies with red lines.

The algorithm for determination of a peak was unique to this data. For this data, the

frequencies of magnitude peaks was obtained by looking at zero crossings for the spectrum

phase. Figure 5.9 shows the zero crossings for sample 1 of group 02 in green.

To determine the most effective bin demarcations, all three scenarios from section 5.3

were used to classify the same training/test group with bin counts 1-1601. Figures 5.10,
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Table 5.11: Box plot from timing of the metrics using 20 repetitions, 1601 frequencies, and
scenario 2 from section 5.3.4.

Metric Mean Var Std Dev Std Error 95% Conf Interval

Mahalanobis 68.93 1.79 1.34 0.30 68.35-69.52

Similarity Index 1.32 0.00 0.01 0.00 1.31-1.32

Canberra 0.78 0.00 0.01 0.00 0.78-0.79

Tanimoto 0.72 0.00 0.01 0.00 0.72-0.73

Overlap 0.56 0.00 0.00 0.00 0.56-0.56

Coe of Divergence 0.55 0.00 0.00 0.00-0.55 0.56

Manhattan 0.51 0.00 0.00 0.00 0.51-0.51

Avg Weight 0.48 0.00 0.00 0.00 0.48-0.48

Squared Chord 0.46 0.00 0.01 0.00 0.46-0.47

Euclidean 0.44 0.00 0.00 0.00 0.44-0.44

Cosine 0.31 0.00 0.00 0.00 0.31-0.31

Mod Bool Correlat 0.27 0.00 0.00 0.00 0.27-0.28

Average 0.25 0.00 0.03 0.01 0.24-0.27

Inner Product 0.13 0.00 0.00 0.00 0.13-0.13
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5.13, and 5.16 show the number of correctly classified samples for each of the bin counts

using scenarios 1, 2, and 3 from section 5.3.4. Figures 5.11, 5.14, and 5.17 show the same

graphs with a average smoothing filter applied to allow more readability. Scenarios 1 and 2

show drastic changes in the first 100 bin sizes and is shown in figures 5.12 and 5.15. Table

5.13 shows the bin size that gives the highest number of correct classifications for each metric.
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Figure 5.10: Number of correctly classified samples vs number of bins used for classification using scenario one
from section 5.3.4. The line number to metric mapping can be found in table 5.12



Table 5.12: Mapping for line numbers to comparison metrics in figures.

Line Number Metric

1 Mahalanobis

2 Inner Product

3 Euclidean

4 Manhattan

5 Average

6 Squared Chord

7 Canberra

8 Coefficient of Divergence

9 Modified Boolean Correlation

10 Average Weight of Shared Terms

11 Overlap

12 Cosine

13 Similarity Index

14 Tanimoto
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Figure 5.11: Number of correctly classified samples vs number of bins used for classification using scenario one
from section 5.3.4 with a moving average of 100 applied. The line number to metric mapping can be found in
table 5.12



90

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Number of Bins

N
u

m
b

e
r 

o
f 

S
a

m
p

le
s
 C

o
rr

e
c
tl
y
 C

la
s
s
if
ie

d

Number of Correctly Classified Samples vs Number of Bins of All Metrics for Scenario 1 with Smoothing Applied

 

 

3

12

14

6

5

1

4

11

2

9
7
8
10
13

1

2

3

4

5

6

7

8

9

10

11

12

13

14
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Figure 5.13: Number of correctly classified samples vs number of bins used for classification using scenario two
from section 5.3.4. The line number to metric mapping can be found in table 5.12
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Figure 5.14: Number of correctly classified samples vs number of bins used for classification using scenario two
from section 5.3.4 with a moving average of 100 applied. The line number to metric mapping can be found in
table 5.12
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Figure 5.15: Number of correctly classified samples vs number of bins used for classification using scenario two
from section 5.3.4 zoomed to show the first 100 bin counts with a moving average of 10 applied. The line number
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Figure 5.16: Number of correctly classified samples vs number of bins used for classification using scenario three
from section 5.3.4. The line number to metric mapping can be found in table 5.12
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Figure 5.17: Number of correctly classified samples vs number of bins used for classification using scenario three
from section 5.3.4 with a moving average of 100 applied. The line number to metric mapping can be found in
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Figure 5.18: Scree plot from SVD of training samples.

5.6 Dimension Reduction Using SVD

The results of using SVD to reduce the number of dimensions for classification are detailed

here. First, all of the training data samples were combined into one matrix where the

rows are samples and the columns are complex impedance values as a function of frequency

values. The mean value of each column of the training samples was calculated, stored, and

subtracted from each training sample’s value at the corresponding frequency. The SVD

function in MATLAB was used to decompose the mean-centered training data matrix, X,

into UΣV ′. To begin analyzing the results of SVD, the scree plot is shown in figure 5.18.

The scree plot shows the sum of the ratios of the squares of the singular values to the sum of

the squares of all the singular values. The first 4 loadings vectors are shown in figure 5.19.
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Table 5.13: Optimal number of dimensions to keep from binning for classification using each
comparison metric. Change is with respect to results from multiple runs using all 1601
frequencies.

Change Metric
Optimal # of # of Correct
Dimensions Classifications

↑ 4 Euclidean 50 558 (76%)

Manhattan 6 525 (71%)

↑ 9 Tanimoto 17 511 (69%)

↑ 5 Squared Chord 18 511 (69%)

↓ 1 Cosine 75 508 (69%)

↑ 2 Mahalanobis 6 484 (66%)

↓ 6 Canberra 2 425 (58%)

↓ 5 Similarity Index 2 413 (56%)

↑ 2 Average 2 397 (54%)

↓ 4 Coe of Divergence 2 372 (50%)

↓ 4 Overlap 13 276 (37%)

↓ 2 Inner Product 548 181 (25%)

↑ 1 Mod Bool Correlat 440 79 (11%)

↓ 1 Avg Weight 2 46 (6%)
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Figure 5.19: The first 4 loadings vectors from the SVD of training samples.

Figure 5.20 shows the scores of the samples in a group projected on the first two principal

component vectors, with the scores for each group shown in a difference color. Figure 5.21

shows the same scores but with the first three principal components.

Dimension reduction using SVD was performed by using only the first N columns of the

scores matrix, which reduces the data to the projection of the data points in 1601 dimensions

down to the N-dimension subspace spanned by V . N represents the number of dimensions

to use. Each column mean of the training data was subtracted from the corresponding test

sample data set, followed by post-multiplying by the Vr matrix from the traning data matrix

to obtain the scores for the test samples. Classification was achieved by representing each

sample point with only their scores in the first N principal components and is shown in

figure 5.22 for each comparison metric. Some of the curves change direction sharply around
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the 50-100 dimensions used and is shown in figure 5.23. The mapping of line numbers to

comparison metric is in table 5.12.
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Figure 5.22: Number of correctly classified samples using scenario two from section 5.3.4 vs number of columns
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Figure 5.23: Number of correctly classified samples using scenario two from section 5.3.4 vs number of columns
of the scores matrix from SVD used for classification. Only the first 100 dimensions used are shown. The line
number to metric mapping can be found in table 5.12



From figure 5.22, it is shown that different metrics have different optimum number of

dimensions to use. Table 5.14 shows the minimum dimension with the largest number of

correctly classified samples.
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Table 5.14: Optimal number of dimensions to keep from SVD for classification using scenario
two from section 5.3.4 and using each comparison metric.

Change Metric
Optimal # of # of Correct
Dimensions Classifications

↑ 7 Mahalanobis 2 600 (80%)

↑ 3 Euclidean 29 600 (81%)

↑ 1 Cosine 4 598 (80%)

↓ 2 Manhattan 9 590 (80%)

↑ 1 Coe of Divergence 2 555 (44%)

↓ 3 Similarity Index 2 541 (46%)

↑ 4 Average 2 536 (76%)

↓ 1 Overlap 223 506 (64%)

↓ 8 Canberra 4 505 (43%)

↓ 1 Squared Chord 2 502 (72%)

↓ 1 Inner Product 23 472 (69%)

↑ 2 Mod Bool Correlat 3 319 (35%)

↓ 1 Tanimoto’s 5 318 (42%)

↓ 1 Avg Weight 3 201 (28%)
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Chapter 6

Discussions

6.1 Model Analysis

Determination of an expanded circuit impedance equation and transfer function did not

assist in improving the effectiveness of classification of the impedance data. The results

do show that it is possible to estimate a transfer function that contains many of the same

features of the measured data.

6.1.1 Bode Plot of Data vs Estimated Transfer Function Bode

Plot

The bode plot of an estimated transfer function, calculated from the measured data, in figure

5.2 shows some similarity to the bode plot of the measured data in figure 5.2. The phase in

the lower frequencies is much lower and takes a different approach in the estimated transfer

function bode plot. The corner frequencies occur at the same frequencies in both graphs and

the magnitude follows the same general shape.
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6.2 Similarity/Dissimilarity Metric Performance

The results of performance of the similarity/dissimilarity metrics varied from very good to

very poor. After classification, the results show that some of the metrics are not fit for

this type of data. When using all 1601 frequencies for classification, Canberra, Manhattan,

Similarity Index, Cosine, Euclidean, Overlap, and Coefficient of Divergence did very well

(see section 6.2.1 for analysis) with Canberra and Manhattan consistently with the most

samples correctly classified (see section 6.2.2 for analysis). Average Weight, Tanimoto’s,

and Modified Boolean Correlation did a very poor job of classification (see section 6.2.3 for

analysis). The Mahalanobis distance did not classify as well as expected and was not a top

performer (see section 6.2.4 for analysis).

Repetition of classification using different random permutations of training/test samples

showed that most metrics had similar classification results across repetitions, with the

exception of the Mahalanobis distance (see section 6.2.5 for analysis).

The amount of time required for calculation of most of the metrics was very similar, with

the Mahalanobis distance being the only exception and taking much longer for execution

(see section 6.2.6 for analysis).

6.2.1 Best Classification Metrics

Table 5.10 shows the metrics Canberra, Manhattan, Cosine, Euclidean, Similarity Index,

Overlap, and Coefficient of Divergence consistently classifying 76-86% of the test samples

into the correct groups. Figure 6.1 shows contour graphs of the metrics from section 2.3.

These metrics all share the property that as the vectors get further apart in the NorthWest

or SouthEast direction, the value of similarity decreases. This group also includes all of the

metrics that were bounded with a minimum and maximum similarity: Cosine, Normalized

Euclidean, and Coefficient of Divergence.
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Figure 6.1: Contour graphs of the top classification metrics using 1601 frequencies.
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6.2.2 Canberra and Manhattan Results

Tables 5.10, 5.6, 5.7, and 5.8 all consistently show the Canberra and Manhattan distances

classifying the most correct samples in all three scenarios using all 1601 frequencies in the

normal frame. Figure 6.1 shows the contour graphs of both metrics. The contour graphs

show that both metrics have a similar diamond, or four-sided star, shape. The Canberra

contours look almost as if the Manhattan contours were stretched out parallel to the axis.

These contours show that a sample can have a high similarity value to another sample if

at least one of the dimensions is very similar. If one of the dimensions is similar, flexibility is

given on the other dimension to be larger for the Canberra distance. In multiple dimensions

with the data used in this research, all samples in the same group have most of their

dimensions very similar with only a few values at the peaks showing the most variability.

6.2.3 Poor Classification Metrics

Classification using the Average Weight, Tanimoto’s, and Modified Boolean Correlation

metrics yielded results that were less than desirable for a classification system. The root

causes were different for each of the metrics.

Details of the average weight metric can be found in section 2.3.10 and show that the

distance is the average of all of the positive values in the two vectors. When working with

complex numbers, the definition of a positive number is difficult to define. For the purposes of

this research, all of our values were defined to be positive, even though some of the imaginary

values were negative. Ignoring the problem with determining if a number is positive, this

metric still has other problems. If one of the vectors has very large values, the similarity

value is very large, even if they are very dissimilar. This metric would need to be modified

to use a range around the average of the centroid.
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Details of Tanimoto’s metric can be found in section 2.3.14. The exact cause of

Tanimoto’s poor performance has not been determined; however, it may be due to the

non-linear changes in similarity as the distance from the centroid increases.

Details of the Modified Boolean Correlation metric can be found in section 2.3.9, and

the equations are intended for Boolean values of zero or one in each dimension of the vector.

This requirement is evident in the classification results using the metric.

6.2.4 Mahalanobis Distance Underperformance

Before results were obtained, the Mahalanobis distance was expected to perform rather well

in the classification of the samples. Instead, it performed worse than many of the metrics.

The cause of the problems was most likely the large number of vector values that are close

to zero in all of the samples. Analysis of the dimension reduction results show that the

Mahalanobis distance did much better when only a few dimensions with high variability

were used.

6.2.5 Mahalanobis Distance Variability Between Reps

The Mahalanobis distance requires the inverse of the covariance matrix formed from the

training samples. The covariance matrix is ill-conditioned in most cases causing small

changes in the covariance matrix to have a large impact on the inverse of the matrix. This

ill-conditioned property causes some small changes in the training samples to have a big

impact on the classification. This problem was addressed by calculating the pseudo-inverse

using SVD and reducing rank by setting the singular values of less than 1/1000th of the

maximum singular value to zero.
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6.2.6 Mahalanobis Distance Computation Time

The most computationally intensive part of the Mahalanobis distance is the inverse of the

covariance matrix. The inverse calculation can be very costly and is heavily dependent on the

number of dimensions used and the implementation algorithm. Time was saved by storing

the inverse and only recalculating the inverse when a new set of training samples exist. In

a production implementation, the recalculation would be set to be conducted on a routine

basis when utilization is low.

6.3 Unclassifiable Determination Scenarios

Three scenarios for determination if a sample is unclassifiable were researched. The results

of the scenarios are shown in tables 5.6, 5.7, and 5.8. In scenario 1, all test samples were

classified to the most similar group centroid (see section 6.3.1 for analysis). In scenario 2 and

3, a threshold was determined for each group for each metric that minimizes the classification

error using the training data. Scenario 2 places a test sample in the unclassifiable group if

the similarity value to the most similar group is not above the threshold for that group (see

section 6.3.2 for analysis). Scenario 3 expands scenario 2 by also classifying a sample as

unclassifiable if it has similarity values above the threshold for more than one group (see

section 6.3.3 for analysis).

6.3.1 Classification using Scenario 1

Table 5.6 shows the results of all metrics using scenario 1 for classification and table 5.2

shows the classification confusion matrix using scenario 1 with the cosine similarity metric.

Scenario 1 gives the largest percentage of correctly classified test samples, but also gives

the highest percentage of incorrectly classified test samples for most of the metrics. The

classification confusion matrix shows that the classification algorithm has a difficult time
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distinguishing between groups 6 and 7 and also between groups 8-13 because the spectra are

too similar.

6.3.2 Classification using Scenario 2

Scenario 2 builds on scenario 1 by eliminating the test samples that do not exceed the

threshold for their classification group. The number of incorrectly classified test samples

decreased for most metrics, but the number of correctly classified also decreased. Comparing

the classification confusion matrices of scenario 1 and 2, the incorrectly classified samples of

groups 2 and 4 were moved to unclassifiable, but some of the correctly classified samples in

groups 1, 4, and 5 were also moved to unclassifiable. The classification of groups 6-13 were

mostly unchanged.

This scenario did not have as much of an effect on this data set because the groups were

well defined with most of the samples matching the same general shape of their centroid.

If samples that were improperly measured or incorrectly classified were included in the test

samples, they would show up using this scenario.

6.3.3 Classification using Scenario 3

Scenario 3 had a drastic affect on the results of classification with all of the metrics. Table

5.6 shows the results of classification using scenario 3 with each of the metrics. In all metrics,

the number of incorrectly classified became almost zero. However, the number of correctly

classified samples also dropped significantly.

Table 5.4 shows the classification confusion matrix using scenario 3 and the cosine

similarity function. Comparing the matrix to the scenario 1 classification confusion matrix

in table 5.2, it can be seen that this scenario only affects the groups that are very similar to

each other (Groups 6-13).
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Table 5.4 also shows that when the sample matches multiple groups, one of the groups

is most often the correct group. The classification system could give as a result a subset of

the groups that the sample may belong to.

This scenario could be very useful in circumstances where the number of incorrectly

classified samples is more important than the number of correctly classified samples. A good

example is the medical field where it would more appropriate to determine that a sample is

unclassifiable, than to incorrectly classify the sample.

6.4 Dimension Reduction Using Binning

The results of using binning for dimension reduction have shown that binning is not an

effective method of reducing the number of dimensions in the spectral data. A comparison

of the optimal number of bins vs not using binning shows most metrics performing worse

after binning (see section 6.4.1 for analysis). The threshold scenarios have the same effect

on the binned data as they do on the non-reduced, non-binned data (see section 6.4.2 for

analysis).

6.4.1 Binning vs Non-Binning Results

Table 5.13 shows the bin size with the highest number of correct classifications. These values

are less than the number of correct classifications obtained from using all 1601 frequencies.

When using 1601 bins, the only difference between the data and non-reduced data is that

only the peak frequencies contain values. The fact that this scenario has less samples

correctly classified shows that frequencies without peaks contain information vital to correct

classification.
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6.4.2 Binning Effect on Threshold Scenarios

Figures 5.10, 5.13, and 5.16 show the results of every bin size using scenarios 1, 2, and

3 for determination if a sample is unclassifiable. These results match the same respective

change in number of correctly classified samples as the comparison using all 1601 frequencies.

Scenario 1 and 2 are very similar and scenario 3 has fewer correctly classified samples.

6.5 Dimension Reduction Using SVD

Dimension reduction using SVD appears to be a promising method of data reduction. The

overall groupings of good/ok/poor metrics did not change but some metrics did perform

better than others after reduction using SVD (see section 6.5.1 for analysis). The number

of dimensions to keep after transformation with SVD depends on the metric but is always

much less than all 1601 dimensions (see section 6.5.2 for analysis).

6.5.1 Comparison With and Without Reduction

Table 6.1 shows the ranking of the classification performance of all metrics using all 1601

frequencies and the ranking of metrics from their most effective dimension of reduction using

SVD. Some of the metrics did significantly better at their optimal dimension reduction and

some did worse.

The metrics that performed better using dimension reduction with SVD have some

properties in common. Most of the well-performing metrics have elliptical contours of

equivalent similarity distance.

6.5.2 Optimal Dimension for Classification

Table 5.14 shows the optimal dimension to use for classification of SVD transformed data.

However, analysis of the table by itself isn’t enough to determine the most effective number
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Table 6.1: Ranking of similarity/dissimilarity metrics

Rank Full 1601 Dimensions Reduction by SVD Optimal Dimension

1 Canberra Euclidean

2 Manhattan Tanimoto’s

3 Cosine Inner Product

4 Euclidean Mahalanobis

5 Similarity Index Modified Boolean Correlation

6 Overlap Overlap

7 Coefficient of Divergence Manhattan

8 Squared Chord Canberra

9 Inner Product Similarity Index

10 Mahalanobis Cosine

11 Average Average

12 Average Weight Squared Chord

13 Tanimoto’s Average Weight

14 Modified Boolean Correlation Coefficient of Divergence
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of dimensions to keep. Figure 5.22 shows number of correctly classified samples for all

dimensions. For some of the metrics, they stabilize at dimensions higher than that of the

highest correctness. For example, Euclidean and Cosine would be much more effective at

25 dimensions to work with the variability in future samples that is not encompassed in this

research.
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Chapter 7

Recommendations

Analysis of data for this research has shown that certain metric and data dimension reduction

methods will result in better classification under specific situations. Several choices must

be made to optimize the classification system for accuracy, complexity, and computational

time requirements. The following sections outline the benefits for each of the options in the

classification system.

7.1 Choice of Similarity/Dissimilarity Metric

The choice of comparison metric will depend on if dimension reduction with SVD is used

and the desired speed of classification.

When using all dimensions of the data without any dimension reduction or rotation,

tables 5.6, 5.7, and 5.8 show that regardless of the scenario, Canberra distance is the metric

to use. However, if speed is a concern, the Manhattan distance has comparable performance

results and requires only half the calculations of the Canberra distance. Table 2.1 shows the

equations required for Canberra and Manhattan respectively.
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When using dimension reduction with SVD, table 5.14 shows that Euclidean distance

provides the best results with the least number of dimensions. The Euclidean distance

requires relatively short computation time in comparison to the other metrics.

7.2 Choice of Unclassifiable Scenario

The three scenarios for unclassifiable determination of a sample have utility in applications

of different requirements. Scenario one would be used when there is a requirement to always

classify an unknown sample to a group. Scenario two would be used when the system may

have unknown samples that do not belong to any of the groups currently trained in the

system. Scenario three would be used when incorrectly classified samples could have a big

impact. A field that might use scenario three is medical.

7.3 Classification Steps

The choices from section 7.1 and 7.2 can be combined to form the algorithm for classification.

A flow chart for a classification system using the decision process from this research is shown

in figure 7.1. Pseudocode for a classification system based on the results of this research and

the flow chart is also included below.

Sample = Read_Sample();

IF Sample is a Reference Sample {

Store_Spectrum(Sample);

Queue System to recalculate training data;

} ELSE Sample is an Unknown Sample to be classified {

Get stored group centroids

IF Dimension Reduction is being used {
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Figure 7.1: Flow chart for a classification system based on this research.
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Get stored V from SVD

Sample = Sample * V

Compute Euclidean distance between Sample and group centroids

} ELSE Dimension Reduction is not being used {

IF Speed is a concern {

Compute Manhattan distance between Sample and group centroids

} ELSE Accuracy is more important {

Compute Canberra distance between Sample and group centroids

}

}

IF Unclassifiable Scenario is 1 {

OUT = Most similar group centroid

END

} ELSE Scenario is 2 or 3 {

IF Scenario is 3 {

IF Similarity value is above threshold for more than 1 group {

OUT = Unclassifiable

END

}

}

IF Similarity value is below the threshold for most similar group {

OUT = Unclassifiable

END

} ELSE {

OUT = Most similar group centroid

END

}
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}

}

FUNCTION Recalculate_Training_Data {

All_Reference_Samples = Stored_Reference_Samples combined with new Sample

IF Dimension Reduction is being used {

All_Reference_Samples is Number_of_Samples X Number_of_Frequencies

[U S V] = SVD(All_Reference_Samples)

Store V matrix

Store All_Reference_Samples*V

All_Reference_Samples = All_Reference_Samples*V

}

Compute centroids of groups in All_Reference_Samples

Store centroids

}
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Chapter 8

Future Work

The results of this research have shown several experiments that can be expanded into

seperate research projects. Many of the comparison metrics that did very poorly are

not properly formulated to handle complex values. Research can be conducted to modify

these equations to find an equivalent complex valued equation that provides more effective

classification of the data. The classification system can be expanded to handle determination

of a new group and effectively regroup the samples using unsupervised learning. Finally, the

entire system can be combined into a system with a GUI interface and efficient processing

as a production system.
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Appendix A

Source Code

All source code is written for execution in MATLAB® version 7.11.0.584 (R2010b) 64-bit.

A.1 Dimension Reduction

A.1.1 Peak Binning

1 % This M-File contains the commands for dimension reduction using binning

2 % techniques.

3 % Requires the following files: data groups.mat, dispDebug.m, getPeaks.m

4

5 % SETTINGS

6 NUMBER OF BINS = 1601;

7 % Calculate total not matching the group centroid

8 CALC TOT NOT MATCH CENTROID = 1;

9

10 if exist('data groups', 'var')==0

11 load('data groups');

12 end

130



13

14 % Create our cell array that will hold the binned values

15 data groups bin = cell(size(data groups));

16

17 bins = 0:size(data groups{1},1)/NUMBER OF BINS:size(data groups{1},1);

18 if exist('num dif from centroid','var')==0

19 num dif from centroid = zeros(1601,13);

20 end

21 binned centroid = zeros(NUMBER OF BINS,13);

22

23 % Reduce the dimension of each data group

24 for k=1:length(data groups)

25 dispDebug(['Currently Binning Group ' num2str(k) ' Into ' ...

26 num2str(NUMBER OF BINS) ' Bins'])

27 % Create our centroid reduced

28 centroid = mean(data groups{k},2);

29 cur peaks = getPeaks(centroid);

30 for j=1:size(binned centroid,1)

31 bin min = bins(j);

32 if j<length(bins)-1

33 bin max = bins(j+1);

34 else

35 bin max = inf;

36 end

37 peaks in bin = find(cur peaks≥bin min & cur peaks<bin max);

38 if isempty(peaks in bin)

39 binned centroid(j,k) = 0;

40 else

41 binned centroid(j,k) = mean(centroid(peaks in bin));

42 end

43 end

44 % Preallocate the matrix that will hold our bin values
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45 data bin = zeros(NUMBER OF BINS,size(data groups{k},2));

46 % For every sample

47 for i=1:size(data bin,2)

48 dif from centroid = 0;

49 cur peaks = getPeaks(data groups{k}(:,i));

50 for j=1:size(data bin,1)

51 bin min = bins(j);

52 if j<length(bins)-1

53 bin max = bins(j+1);

54 else

55 bin max = inf;

56 end

57 peaks in bin = find(cur peaks≥bin min & cur peaks<bin max);

58 if isempty(peaks in bin)

59 data bin(j,i) = 0;

60 else

61 data bin(j,i) = mean(data groups{k}(peaks in bin,i));

62 end

63 if (data bin(j,i) 6=0 && binned centroid(j,k)==0) | | ...

64 (data bin(j,i)==0 && binned centroid(j,k) 6=0)

65 dif from centroid=1;

66 end

67 end

68 if dif from centroid==1

69 num dif from centroid(NUMBER OF BINS,k) = ...

70 num dif from centroid(NUMBER OF BINS,k)+1;

71 end

72 end

73 data groups bin(k) = {data bin};

74 end

75 % Clean up the variables that won't be used again

76 clear i j k data bin cur peaks bin min bin max peaks in bin;
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1 function output = getPeaks( spectrum )

2 output = [];

3 for i=2:length(spectrum)

4 %if( phase(spectrum(i-1))*phase(spectrum(i))<0 )

5 if( phase(spectrum(i-1))>0 && phase(spectrum(i))<0 )

6 if( isempty(output) | | i-1>output(length(output))+20 )

7 output = [output,i-1];

8 end

9 end

10 end

A.1.2 SVD

1 function [scree fig, loadings fig, scores2 fig, scores3 fig] = ...

2 createSVDPlots( data groups )

3 % Creates scree, loadings, and scores plots of the data in cells of

4 % data groups combined and mean centered.

5

6 % REQUIRES: Variables U, S, V from SVD

7

8 % Mean center the data

9 X = cat(1,data groups{:});

10 X c = X-ones(size(X,1),1)*mean(X);

11 [U, S, V] = svd(X c);

12

13 % OPTIONS

14 SHOW SCREE PLOT = 1;

15 SHOW V PLOT = 1;

16 SHOW U PLOT = 1;
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17 SHOW 3D U PLOT = 1;

18 DEBUG = 1;

19

20 dispDebug('Creating SVD Plots', DEBUG);

21

22 % Show the scree plot

23 if SHOW SCREE PLOT==1

24 scree fig = figure();

25 set(scree fig, 'color', 'white');

26 plot(cumsum(diag(S).ˆ2)./sum(diag(S).ˆ2), 'b')

27 grid minor

28 xlabel('PC #');

29 ylabel('Cumulative Sum of Normalized Singular Values Squared');

30 title('Scree Plot from the SVD of Training Samples')

31 clear scree fig;

32 end

33

34 colors = [0 114 178; 213 94 0; 0 158 115; 230 159 0; 86 180 233; ...

35 204 121 167; 0 0 0; 240 228 66; 125 97 186; 151 84 79; 165 136 105; ...

36 143 148 152; 137 104 89];

37

38 % Show the V plot with the first n PCs

39 if SHOW V PLOT==1

40 loadings fig = figure();

41 set(loadings fig, 'color', 'white');

42 num v to plot = 4;

43 legend labels = char(zeros(num v to plot,3));

44 for i=1:num v to plot

45 plot(abs(V(:,i)),'Color',colors(i,:)./255)

46 hold on

47 legend labels(i,:) = ['PC' num2str(i)];

48 end
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49 grid minor

50 legend(legend labels);

51 xlabel('Original Frequency');

52 ylabel('Value in V Frame');

53 title('Loadings Vectors from the SVD of Training Samples')

54 clear v fig num v to plot legend labels i;

55 end

56

57 % Get the group counts for proper labeling of U legends

58 if SHOW U PLOT==1 | | SHOW 3D U PLOT==1

59 group sizes = zeros(1,length(data groups));

60 for i=1:length(data groups)

61 group sizes(i) = size(data groups{i},1);

62 end

63 clear i;

64 end

65

66 % Show the U plot with the first 2 PCs

67 if SHOW U PLOT==1

68 scores2 fig = figure();

69 set(scores2 fig, 'color', 'white');

70 current u pointer = 0;

71 hold on

72 US = U*S;

73 legend labels = char(zeros(length(data groups),3));

74 for i=1:length(data groups)

75 plot(abs(US(current u pointer+1:current u pointer+group sizes(i)...

76 ,1)),abs(US(current u pointer+1:current u pointer+ ...

77 group sizes(i),2)),'Color',colors(i,:)./255,'Marker','.', ...

78 'LineStyle','none')

79 hold on

80 current u pointer = current u pointer+group sizes(i);
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81 legend labels(i,:) = ['G' num2str(i,'%02d')];

82 end

83 grid minor

84 legend(legend labels);

85 xlabel('PC 1');

86 ylabel('PC 2');

87 title('Scores Plot from the SVD of Training Samples')

88 clear u fig current u pointer US legend labels i;

89 end

90

91 % Show the U plot with the first 3 PCs

92 if SHOW 3D U PLOT==1

93 scores3 fig = figure();

94 set(scores3 fig, 'color', 'white');

95 current u pointer = 0;

96 hold on

97 US = U*S;

98 legend labels = char(zeros(length(data groups),3));

99 for i=1:length(data groups)

100 plot3(abs(US(current u pointer+1:current u pointer+group sizes( ...

101 i),1)),abs(US(current u pointer+1:current u pointer+ ...

102 group sizes(i),2)),abs(US(current u pointer+1: ...

103 current u pointer+group sizes(i),3)),'Color',colors(i,: ...

104 )./255,'Marker','.','LineStyle','none')

105 hold on

106 current u pointer = current u pointer+group sizes(i);

107 legend labels(i,:) = ['G' num2str(i,'%02d')];

108 end

109 grid minor

110 legend(legend labels);

111 xlabel('PC 1');

112 ylabel('PC 2');
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113 zlabel('PC 3');

114 title('Scores Plot from the SVD of Training Samples')

115 clear u3 fig current u pointer US legend labels i;

116 end

117

118 clear group sizes colors;

119 % Clear the options

120 clear SHOW SCREE PLOT SHOW V PLOT SHOW U PLOT SHOW 3D U PLOT DEBUG;

1 function [reduced data groups, V from SVD] = ...

2 ReduceDataWithSVD(data groups,num of dim,V from SVD)

3

4 if exist('V from SVD','var')==0

5 % Compute the SVD of all of the data.

6 dispDebug('Calculating SVD of Data');

7 % Mean center the data

8 X = cat(1,data groups{:});

9 X c = X-ones(size(X,1),1)*mean(X);

10 [¬, ¬, V from SVD] = svd(X c);

11 end

12

13 reduced data groups = cell(1,length(data groups));

14 dispDebug(['Reducing Data to First ' num2str(num of dim) ...

15 ' Principal Components']);

16 for i=1:length(reduced data groups)

17 reduced data groups{i} = data groups{i}*V from SVD;

18 reduced data groups{i} = reduced data groups{i}(:,1:num of dim);

19 end
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A.2 Classification Routine

1 function classif matrix = Classification(data groups,random perm)

2

3 % This M-File contains the steps required for classification of the

4 % impedance spectra following the steps outlined in the thesis proposal for

5 % Carl Sapp's electrical impedance classification

6

7 % SETTINGS - These parameters can be changed to modify features of the

8 % classification.

9 % TRAINING PERCENT - The percentage of each group that will be used as the

10 % training set. Valid range is 0-1. 1-TRAINING PERCENT is the percentage

11 % that will be used for the test set.

12 TRAINING PERCENT = .6;

13 % SIM MEASURES - Function handles to similarity functions. The functions

14 % must operate the same way as the input to the function pdist.

15 SIM MEASURES = {@complexMahalanobis, @complexInnerProduct, ...

16 @complexDistNormalized, @complexManhattan, @complexAverage, ...

17 @complexSquaredChordDist, @complexCanberra, ...

18 @complexCoefficientOfDivergence, @complexModBoolCorrelation, ...

19 @complexAvgWeightOfSharedTerms, @complexOverlap, @complexRSquared, ...

20 @complexSimilarityIndex, @complexTanimoto};

21 % SIM OR DIS - Specifies if the above similarity functions are similarity

22 % or disimilarity function. The size of SIM OR DIS must be the same as

23 % SIM MEASURES. A value of 1 indicates a higher value is more similar. A

24 % value of 0 indicates that a higher value is less similar.

25 SIM OR DIS = [0,1,1,0,0,0,0,0,1,1,1,1,0,1];

26 % NUM PERMUTATIONS - The number of times to repeat the classification

27 % procedure.

28 NUM PERMUTATIONS = 1;

29 % CLASSIFY IF BELOW THRESH - Indicates if a sample should be classified
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30 % into a group if its below the threshold for the most similar group. A

31 % value of one assigns the sample to the most similar category. A value of

32 % zero classifies the sample in group n+1 where n is the number of

33 % categories.

34 CLASSIFY IF BELOW THRESH = 0;

35 % CLASSIFY IF SIM TO MULT - Indicates if a sample should be classified into

36 % a group if its above the threshold for multiple groups. A value of one

37 % assigns the sample to the most similar category. A value of zero

38 % classifies the sample in group n+2 where n is the number of categories.

39 CLASSIFY IF SIM TO MULT = 1;

40 % DEBUG - Specifies whether to display debug ouput. 1 to display, 0 to not.

41 DEBUG = 1;

42 SAVE FIGS = 0;

43 USE EXISTING TRAIN TEST PERM = 1;

44

45 % Load the data for the classification if its not loaded

46 if exist('data groups', 'var')==0

47 load('data groups cell.mat')

48 end

49

50 % Initialize storage for the classification confusion matrices

51 classif matrix = zeros(length(data groups)+3,length(data groups), ...

52 NUM PERMUTATIONS,length(SIM MEASURES));

53 % Save our error rates for reporting - 101 per metric per group per run per

54 % metric

55 error rates = zeros(101,length(data groups),NUM PERMUTATIONS, ...

56 length(SIM MEASURES));

57 timings = zeros(length(SIM MEASURES),NUM PERMUTATIONS);

58 for i=1:NUM PERMUTATIONS

59 dispDebug(['Executing Run ' num2str(i)], DEBUG);

60 % Separate each group into their training and test groups

61 dispDebug('Creating Training and Test Groups', DEBUG);
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62 data groups training = cell(1,length(data groups));

63 data groups test = cell(1,length(data groups));

64 if USE EXISTING TRAIN TEST PERM==0 | | exist('random perm','var')==0 ...

65 | | length(random perm)<length(data groups)

66 random perm = cell(1,length(data groups));

67 end

68 for g=1:size(data groups,2)

69 % Shuffle the samples in the group

70 if USE EXISTING TRAIN TEST PERM==0 | | ...

71 exist('random perm','var')==0 | | isempty(random perm{g})

72 dispDebug(['Creating Random Permutation for Training/Test ' ...

73 'for Group ' num2str(g)], DEBUG);

74 random perm{g} = randperm(size(data groups{g},2));

75 end

76 % Assign 60% of the samples to training, 40% to test

77 num training = round(size(data groups{g},1)*TRAINING PERCENT);

78 data groups training(g) = {data groups{g}( ...

79 random perm{g}(1:num training),:)};

80 data groups test(g) = {data groups{g}(random perm{g}( ...

81 num training+1:size(data groups{g},1)),:)};

82 end

83 clear num training g

84

85 % Determine the centroids of each training group

86 dispDebug('Calculating Group Centroids', DEBUG);

87 training centroids = zeros(length(data groups training), ...

88 size(data groups training{1},2));

89 for g=1:length(data groups training)

90 training centroids(g,:) = mean(data groups training{g});

91 end

92 clear g

93
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94 if SAVE FIGS==1

95 % Create the folder to save everything into

96 c = clock;

97 fig folder = [ 'test' num2str(c(1)) num2str(c(2),'%02d') ...

98 num2str(c(3),'%02d') num2str(c(4),'%02d') ...

99 num2str(c(5),'%02d') num2str(c(6),'%02.0f') ];

100 mkdir(fig folder);

101 fig folder = [fig folder '/'];

102 clear c;

103 end

104

105 % If we will be checking the complex Mahalanobis distance, lets precompute

106 % the inverse of the covariance of the groups to speed things up

107 for s=1:length(SIM MEASURES)

108 if isequal(SIM MEASURES{s},@complexMahalanobis) && ...

109 ( USE EXISTING TRAIN TEST PERM==0 | | ...

110 exist('data groups training cov inv','var')==0 | | ...

111 size(data groups training cov inv{1},1) 6= ...

112 size(data groups training{1},2) )

113 dispDebug('Preparing Inverse Covariance Matrices for the ' ...

114 'Mahalanobis Distance', DEBUG);

115 % Precompute the inverse of the covariance of each group

116 data groups training cov inv = cell(size(data groups));

117 for c=1:length(data groups training cov inv)

118 dispDebug(['Preparing Inverse Covariance Matrix for ' ...

119 'Group ' num2str(c)], DEBUG);

120 data groups training cov inv{c} = ...

121 pinv cond(cov(data groups training{c}),1000);

122 end

123 end

124 end

125 clear s c
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126

127 % BEGIN Repeat for each similarity measure

128 if SAVE FIGS==1

129 if NUM PERMUTATIONS>1

130 run folder = ['Run' num2str(i)];

131 mkdir([fig folder run folder]);

132 run folder = [run folder '/'];

133 else

134 run folder = '';

135 end

136 end

137 for s=1:length(SIM MEASURES)

138 % Determine our thresholds for each group

139 f = functions(SIM MEASURES{s});

140 dispDebug(['Testing Similarity Function ' f.function], DEBUG);

141 if SAVE FIGS==1

142 sim fun folder = f.function;

143 mkdir([fig folder run folder sim fun folder]);

144 sim fun folder = [sim fun folder '/'];

145 end

146 thresholds = inf(1,length(data groups training));

147 for g=1:length(data groups training)

148 % Mahalanobis Distance is different because we compare a sample

149 % to a group and have to calculate it differently

150 if isequal(SIM MEASURES{s},@complexMahalanobis)

151 % in group sim consists of distances to the group

152 in group sim = zeros(size(data groups training{g},1),1);

153 for t=1:size(data groups training{g},1)

154 in group sim(t) = SIM MEASURES{s}( ...

155 data groups training{g}(t,:), ...

156 data groups training{g}, ...

157 data groups training cov inv{g});
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158 end

159 non group train = cat(1,data groups training{[1:g-1 ...

160 g+1:length(data groups training)]});

161 out group sim = zeros(size(non group train,1),1);

162 for t=1:size(non group train,1)

163 out group sim(t) = SIM MEASURES{s}( ...

164 non group train(t,:), data groups training{g}, ...

165 data groups training cov inv{g});

166 end

167 clear t non group train;

168 else

169 in group sim = SIM MEASURES{s}(training centroids(g,:), ...

170 data groups training{g});

171 out group sim = SIM MEASURES{s}(training centroids(g,:),...

172 cat(1,data groups training{[1:g-1 g+1:length( ...

173 data groups training)]}));

174 end

175 edges = min([in group sim; out group sim]):(max( ...

176 [in group sim; out group sim])-min([in group sim; ...

177 out group sim]))/100:max([in group sim; out group sim]);

178 if SAVE FIGS==1

179 % Graph the histograms

180 members = histc(in group sim,edges);

181 nonmembers = histc(out group sim,edges);

182 % Save the histogram as a PNG image

183 fig = figure();

184 subplot(2,1,1)

185 bar(edges,[members./sum(members).*100, ...

186 nonmembers./sum(nonmembers).*100]);

187 hold on

188 legend(['G' num2str(g,'%02d') ' Members'], ...

189 ['G' num2str(g,'%02d') ' Nongroup Members']);
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190 xlabel('Similarity Value');

191 ylabel('% of Nongroup or Group Samples');

192 f = functions(SIM MEASURES{s});

193 title(['Similarity of All Samples to Group ' ...

194 num2str(g,'%02d') ' Centroid using ' f.function]);

195 clear f;

196 grid minor

197 end

198

199 % Calculate our error rate at each edge

200 min error rate = inf;

201 for e=1:length(edges)

202 % Error is defined as number of non-group members greater than

203 % or equal to the threshold + number of member less than the

204 % threshold

205 if SIM OR DIS(s)==1

206 error rates(e,g,i,s) = length(find( ...

207 in group sim<edges(e)))/length(in group sim)+ ...

208 length(find(out group sim≥edges(e)))/length( ...

209 out group sim);

210 else

211 error rates(e,g,i,s) = length(find( ...

212 in group sim≥edges(e)))/length(in group sim)+ ...

213 length(find(out group sim<edges(e)))/length( ...

214 out group sim);

215 end

216 if error rates(e,g,i,s)<min error rate

217 min error rate = error rates(e,g,i,s);

218 thresholds(g) = edges(e);

219 end

220 end

221 if SAVE FIGS==1
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222 % Plot the threshold value

223 plot([thresholds(g); thresholds(g)], [min([members; ...

224 nonmembers]); max([members./sum(members); ...

225 nonmembers./sum(nonmembers)])*100], 'Color', ...

226 [.93 .53 .18], 'LineWidth', 2)

227 subplot(2,1,2)

228 plot([thresholds(g); thresholds(g)], [min([members; ...

229 nonmembers]); max(error rates(:,g,i,s)./2.*100)], ...

230 'Color', [.93 .53 .18], 'LineWidth', 2)

231 hold on

232 % Plot the error rates

233 plot(edges,error rates(:,g,i,s)./2.*100)

234 grid minor

235 xlabel('Similarity Value')

236 ylabel('Error Rate %')

237 hold off

238 saveas(fig, [fig folder run folder sim fun folder 'G' ...

239 num2str(g,'%02d') 'ThreshBarGraph.fig']);

240 close(fig);

241 end

242 end

243

244 % Classify each of the test samples to a training group or no group

245 % Do each group individually

246 f = functions(SIM MEASURES{s});

247 dispDebug(['Performing Classification with ' f.function], DEBUG);

248 tic;

249 for g=1:length(data groups test)

250 % Classify each sample in the group

251 for sample=1:size(data groups test{g},1)

252 % Calculate the similarity between the sample and each

253 % centroid
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254 if isequal(SIM MEASURES{s},@complexMahalanobis)

255 % If we are using the mahalanobis distance, we have to

256 % compare to each group instead of centroids.

257 dist to centroids = zeros(length(data groups test),1);

258 for tg=1:length(data groups test)

259 dist to centroids(tg) = SIM MEASURES{s}( ...

260 data groups test{g}(sample,:), ...

261 data groups training{tg}, ...

262 data groups training cov inv{tg});

263 end

264 else

265 dist to centroids = SIM MEASURES{s}( ...

266 data groups test{g}(sample,:),training centroids);

267 end

268 if SIM OR DIS(s)==1

269 [classif distance, classif category] = ...

270 max(dist to centroids);

271 else

272 [classif distance, classif category] = ...

273 min(dist to centroids);

274 end

275 % Calculate number of categories we are higher than

276 % threshold

277 if SIM OR DIS(s)==1

278 [¬, higher than thresh] = max([thresholds; ...

279 dist to centroids']);

280 else

281 [¬, higher than thresh] = min([thresholds; ...

282 dist to centroids']);

283 end

284 % If the distance is less less similar than the threshold

285 % for that category, we categorize it to group 14 (unknown)

146



286 if ((SIM OR DIS(s)==1 && classif distance<thresholds( ...

287 classif category)) | | (SIM OR DIS(s)==0 && ...

288 classif distance>thresholds(classif category))) ...

289 && CLASSIFY IF BELOW THRESH==0

290 classif matrix(length(data groups)+1,g,i,s) = ...

291 classif matrix(length(data groups)+1,g,i,s)+1;

292 else

293 if CLASSIFY IF SIM TO MULT==0 && length(find( ...

294 higher than thresh==2))>1

295 if isempty(find( find(higher than thresh==2)==g ...

296 ))==0

297 classif matrix(length(data groups)+3,g,1,s) ...

298 = classif matrix(length(data groups ...

299 )+3,g,1,s)+1;

300 else

301 classif matrix(length(data groups)+2,g,1,s) ...

302 = classif matrix(length(data groups ...

303 )+2,g,1,s)+1;

304 end

305 else

306 classif matrix(classif category,g,i,s) = ...

307 classif matrix(classif category,g,i,s)+1;

308 end

309 end

310 end

311 end

312 timings(s,i) = toc;

313 num correct = sum(diag(classif matrix(:,:,i,s)));

314 num incorrect = sum(sum(classif matrix(:,:,i,s)))-num correct;

315 f = functions(SIM MEASURES{s});

316 dispDebug([f.function ' - Correct: ' num2str(num correct) ' (' ...

317 num2str(num correct/(num correct+num incorrect)*100) ...
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318 '%) Incorrect: ' num2str(num incorrect) ' (' ...

319 num2str(num incorrect/(num correct+num incorrect)*100) '%)']);

320 end % END Repeat for each similarity measure

321 clear s g bin size e error rate min error rate i num correct ...

322 num incorrect f;

323 if NUM PERMUTATIONS>1

324 clear random perm;

325 end

326 end

327 % Clear the settings

328 clear TRAINING PERCENT SIM MEASURES SIM OR DIS NUM PERMUTATIONS;

A.3 Similarity/Dissimilarity Metrics

1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexAverage(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1

11 if size(a,2)>1

12 error('The first argument must be a vector');

13 end

14 a = a.';

15 end
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16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)

18 % b should be #ofSample X #ofFeatures. Width of b should match

19 % width of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

26

27 result = abs(sum(ones(size(b,1),1)*a-b,2)./size(b,2));

1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexAvgWeightOfSharedTerms(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1

11 if size(a,2)>1

12 error('The first argument must be a vector');

13 end

14 a = a.';

15 end

16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)

18 % b should be #ofSample X #ofFeatures. Width of b should match width
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19 % of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

26

27

28

29 % The inner product of two complex valued vectors is the inner product with

30 % the second vector being the complex conjugate. Performing a transpose of

31 % b causes the conjugate transpose so we are fine

32 % We have to use the magnitude of the complex values for this metric

33 % because negative real or imaginary parts messes things up and makes the

34 % calculation incorrect.

35 a = abs(a);

36 b = abs(b);

37 result = abs((sum(((ones(size(b,1),1)*a+b)),2))./(2*size(b,2)));

1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexCanberra(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1

11 if size(a,2)>1
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12 error('The first argument must be a vector');

13 end

14 a = a.';

15 end

16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)

18 % b should be #ofSample X #ofFeatures. Width of b should match width

19 % of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

26

27 result = abs( sum(abs(ones(size(b,1),1)*a-b)./(ones(size(b,1),1)*a+b),2) );

1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexCoefficientOfDivergence(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1

11 if size(a,2)>1

12 error('The first argument must be a vector');

13 end

14 a = a.';
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15 end

16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)

18 % b should be #ofSample X #ofFeatures. Width of b should match width

19 % of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

26

27

28

29 % The inner product of two complex valued vectors is the inner product with

30 % the second vector being the complex conjugate. Performing a transpose of

31 % b causes the conjugate transpose so we are fine

32

33 result = abs(sum(((ones(size(b,1),1)*a-b)./abs(ones(size(b,1),1)*a+b) ...

34 ).ˆ2,2)./size(b,2));

1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexDistNormalized(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1
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11 if size(a,2)>1

12 error('The first argument must be a vector');

13 end

14 a = a';

15 end

16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)

18 % b should be #ofSample X #ofFeatures. Width of b should match width

19 % of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

26

27 % Preallocate the result matrix for speed

28 result = zeros(size(b,1),1);

29 lengthA = sum(real(a)*real(a)'+imag(a)*imag(a)')ˆ(1/2);

30 for j=1:size(b,1)

31 % Subtract A from B

32 b(j,:) = b(j,:)-a;

33

34 lengthB = sum(real(b(j,:))*real(b(j,:))'+imag(b(j,:))*imag( ...

35 b(j,:))')ˆ(1/2);

36

37 result(j,1) = 1/(1+lengthBˆ2/lengthAˆ2);

38 end

39

40 end
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1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexInnerProduct(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1

11 if size(a,2)>1

12 error('The first argument must be a vector');

13 end

14 a = a';

15 end

16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)

18 % b should be #ofSample X #ofFeatures. Width of b should match width

19 % of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

26

27 result = abs(a*b')';

1 % Calculates the Mahalanobis distance between the vector a and the group b.

2 % The input a can be a row or column vector. The input matrix b is a group
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3 % of samples with the same dimension as a. The matrix b needs to

4 % have one of the sides be the same size as the column vector.

5 function result = complexMahalanobis(a,b,b cov inv)

6

7 % Make sure our inputs are rows of values

8 % a needs to be 1 X #ofFeatures

9 if size(a,1)>1

10 if size(a,2)>1

11 error('The first argument must be a vector');

12 end

13 disp('Transposing a');

14 a = a.';

15 end

16

17 % b needs to be #ofSamples X #ofFeatures

18 if size(b,2) 6= size(a,2)

19 % b should be #ofSample X #ofFeatures. Width of b should match width

20 % of a

21 if size(b,1) 6= size(a,2)

22 error(['One of the sides of the b matrix must be the same ' ...

23 'length as a']);

24 end

25 disp('Transposing b');

26 b = b.';

27 end

28

29 % Check if the inverse of the covariance of b was provided to speed things

30 % up.

31 if exist('b cov inv','var')

32 result = abs(sqrt((a-mean(b))*b cov inv*(a-mean(b)).'));

33 else

34 % The size of sigma is #ofFeatures X #ofFeatures
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35 sigma = cov(b);

36 warning off all

37 result = abs((a-mean(b))*pinv cond(sigma,1000)*(a-mean(b)).');

38 warning on all

39 end

1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexManhattan(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1

11 if size(a,2)>1

12 error('The first argument must be a vector');

13 end

14 a = a.';

15 end

16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)

18 % b should be #ofSample X #ofFeatures. Width of b should match width

19 % of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

156



26

27 result = sum(abs(ones(size(b,1),1)*a-b),2);

1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexModBoolCorrelation(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1

11 if size(a,2)>1

12 error('The first argument must be a vector');

13 end

14 a = a.';

15 end

16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)

18 % b should be #ofSample X #ofFeatures. Width of b should match width

19 % of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

26

27 result = abs((sum(((ones(size(b,1),1)*a.*b)),2)+size(b,2))./size(b,2));
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1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexOverlap(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1

11 if size(a,2)>1

12 error('The first argument must be a vector');

13 end

14 a = a.';

15 end

16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)

18 % b should be #ofSample X #ofFeatures. Width of b should match width

19 % of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

26

27 a = abs(a);

28 b = abs(b);

29 numerator = sum(min(ones(size(b,1),1)*a,b),2);

30 denominator = min(sum(ones(size(b,1),1)*a,2),sum(b,2));

31 denominator(denominator==0)=0.0001;
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32 result = abs( numerator./denominator );

1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 %

8 % [ a ] | b | | |

9 % | b | | |

10 % | b | = | r |

11 % | b | | |

12 % | b | | |

13 function result = complexRSquared(a,b)

14

15 % Make sure our inputs are rows of values

16 % If the first column of the the 1st input is larger than one value, its

17 % not a horizontal vector

18 if size(a,1)>1

19 if size(a,2)>1

20 % If the 1st column is larger than 1 and the 1st row is larger than

21 % one, we have a rectangle that can't be a vector

22 error('The first argument must be a vector');

23 else

24 % We have a column vector, we can easily transpose it to a row

25 % vector

26 a = a.';

27 end

28 end

29 % Make sure we have samples as rows and features as columns
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30 if size(b,2) 6= size(a,2)

31 % b should be #ofSample X #ofFeatures. Width of b should match width

32 % of a

33 if size(b,1) 6= size(a,2)

34 error(['One of the sides of the b matrix must be the same ' ...

35 'length as a']);

36 end

37 b = b.';

38 end

39

40 numerator = a*b';

41 denominator = (diag(b*b')'.ˆ(1/2).*diag(a*a')'.ˆ(1/2));

42 denominator(denominator==0)=0.0001;

43 result = abs(numerator./denominator)';

44

45 end

1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexSimilarityIndex(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1

11 if size(a,2)>1

12 error('The first argument must be a vector');

13 end

14 a = a.';
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15 end

16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)

18 % b should be #ofSample X #ofFeatures. Width of b should match width

19 % of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

26

27 % We will use the value from Wan et al. 2002 to take into account 0

28 % minimums

29 result = abs( sqrt(sum(((abs(ones(size(b,1),1)*a-b)./(ones(size(b,1),1 ...

30 )*a+b)).*100).ˆ2,2)./size(b,2)) );

1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexSquaredChordDist(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1

11 if size(a,2)>1

12 error('The first argument must be a vector');

13 end

14 a = a.';
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15 end

16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)

18 % b should be #ofSample X #ofFeatures. Width of b should match width

19 % of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

26

27 result = abs(sum((ones(size(b,1),1)*sqrt(a)-sqrt(b)).ˆ2,2));

1 % This function is set up for use in the pdist function as a metric. takes

2 % as arguments a 1-by-p vector a, corresponding to a single row of X, and

3 % an m-by-p matrix b, corresponding to multiple rows of X. distfun must

4 % accept a matrix b with an arbitrary number of rows. distfun must return

5 % an m-by-1 vector of distances result, whose kth element is the distance

6 % between a and b(k,:).

7 function result = complexTanimoto(a,b)

8

9 % Make sure our inputs are rows of values

10 if size(a,1)>1

11 if size(a,2)>1

12 error('The first argument must be a vector');

13 end

14 a = a.';

15 end

16 % Make sure we have samples as rows and features as columns

17 if size(b,2) 6= size(a,2)
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18 % b should be #ofSample X #ofFeatures. Width of b should match width

19 % of a

20 if size(b,1) 6= size(a,2)

21 error(['One of the sides of the b matrix must be the same ' ...

22 'length as a']);

23 end

24 b = b.';

25 end

26

27 result = abs( sum(ones(size(b,1),1)*a.*b,2)./(sum((ones(size(b,1),1)*a ...

28 ).ˆ2,2)+sum(b.ˆ2,2)-sum(ones(size(b,1),1)*a.*b,2)) );

1 function x = pinv cond(x, condition number)

2 % This function takes the square matrix x and calculates the pseudo inverse

3 % using SVD but replaces all diagonals in S of USV' with zero if they are

4 % less than max(diag(S))/condition number.

5

6 [U S V] = svd(x);

7 diag S = diag(S);

8 if exist('condition number','var')

9 diag S(diag S<diag S(1)/condition number) = 0;

10 disp(['Nonzero entries: ' num2str(length(find(diag S)))])

11 end

12 diag S(diag S>0) = 1./diag S(diag S>0);

13 x = V*diag(diag S)*U';
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