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Abstract 
 

Food contact surfaces are a major concern for food service facilities in controlling 

the spread of foodborne pathogens. Food service areas within these facilities are 

considered critical to health, and therefore the microbiological quality of these surfaces 

within child care center food service areas must be surveyed and assessed. The main 

objectives of this study were: (1) to gather information as to the environmental 

microbiological quality of food service surfaces and a non-food contact surface in child 

care centers, and (2) to evaluate several rapid sanitation assays for determining the 

sanitation quality of food contact surfaces and to determine if the methods have potential 

for utilization within child care centers.  

A microbiological survey was conducted in six (6) Knoxville, TN area child care 

centers. The facilities represented three large (> 100 children) and three small (< 50 

children) centers. Each child care center was tested twice monthly over the course of an 

eight (8) month period for a total of 16 sampling periods per center. Four areas, one food 

service area, one diaper changing area, and two food preparation areas (n=288), within 

each center was sampled. The food service area and the food preparation areas consisted 

of three food contact surfaces, two food preparation surfaces (i.e. kitchen counters) and 

one food service surface (i.e. children’s eating table), while the diaper changing area 

consisted of one non-food contact surface (i.e. diaper changing surface). All surfaces 

were tested three times daily, pre-opening, lunch time, and following final clean-up of the 

day, to monitor the microbiological quality of each surface throughout the day.  

For the microbiological analysis, results were expressed as the mean aerobic plate 

count (APC) and coliforms per 50 cm2 area and by prevalence rates of the presence of 

coliforms and E. coli, i.e., the percentage of total samples in which coliforms or E. coli 

were detected, per 50 cm2 area. Mean log APC counts over the survey period were 3.04, 

3.93, 3.08, 4.50, 3.45 and 4.16 log10 CFU/50 cm2 for centers 1 through 6, respectively. 

Mean coliform counts were 1.35, 17.96, 5.59, 87.55, 10.22, and 20.43 CFU/50 cm2 for 

the same respective centers. There was a significant difference between counts for center 
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size based on mean log APC with large centers having lower mean log APC (3.55 log10 

CFU/50 cm2) than small centers (3.81 log10 CFU/50 cm2). As for coliform counts, there 

was no significant difference between coliform counts for center size with large centers 

having a mean coliform count of 35.62 CFU/50 cm2 and small centers 10.72 CFU/50 cm2. 

Coliforms were detected on 283 of 1,149 (24.7%) samples with counts ranging from 1 to 

2,000 CFU/50 cm2 while E. coli was detected on 18 of 1,149 (1.6%) samples with counts 

ranging from 1 to 35 CFU/50 cm2.  

For the rapid sanitation assays, microbial data and ATP, protein and glucose 

results were available on 1,129 samples. Correlations between rapid sanitation assays and 

microbiological analysis (APC) were determined using Spearman’s rho analysis. 

Correlations (p < 0.01) were found, using Spearman’s rho analysis between the APC and 

the ATP (r = 0.26) and protein assays (r = 0.16). Rapid sanitation assays were also 

compared with APC based upon percent agreement, i.e., the number of times the rapid 

sanitation assays and APC were in agreement of a “clean” or “dirty” surface or area. 

Surfaces and areas with < 1,000 CFU/50 cm2 and ATP value of < 300 relative light units 

(RLU) or a negative protein or glucose reaction were defined as “clean.” Surfaces with > 

1,000 CFU/50 cm2 and > 300 RLU or a positive protein or glucose reaction were 

considered “dirty”. The overall percent agreement between APC and ATP 

bioluminescence, protein assay and glucose assay was 24.3%, 68.7% and 81.9%, 

respectively. Therefore, the protein and glucose assays were in agreement more often 

with the APC analysis. However, the level of RLU to define a “clean” surface using the 

ATP assay was based upon manufacturer recommendations used for food processing 

operations and could be modified for child care facilities. Using the manufacturer 

recommendations for RLU limits, the ATP bioluminescence assay classified only 16.2% 

of surfaces tested as “clean,” i.e., RLU < 300. The greatest percentage of samples had 

RLUs between 1,000 and 5,000 (34.7%).   

  These findings demonstrate that microbial contamination is present on food 

contact surfaces of child care centers. Due to the high risk of foodborne illness associated 

with children, the possibility of cross-contamination from food contact or non-food 
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contact surfaces to foods is an aspect of food safety that requires more attention. The 

findings of the study indicate that rapid sanitation assays may be useful for monitoring 

the sanitation of food contact surfaces in child care centers. These tests could assist in 

improving sanitation and preventing cross-contamination by detecting unsanitary surfaces 

with food residues remaining on the surfaces.  
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1 INTRODUCTION 

The cleanliness and sanitation of food contact surfaces within child care centers 

pose health risks to children due to their potential contribution to foodborne illness. 

Although many cases of foodborne illness have been attributed to inadequate cooking, 

temperature abuse, and the use of contaminated raw ingredients, cross-contamination 

between raw and cooked foods via food contact surfaces has also been identified as a 

significant risk factor (DeCesare et al., 2003). 

Child care center food service operations prepare food for one of the most 

susceptible groups at risk for foodborne illness. Due to underdeveloped immune systems, 

children are considered one of the highest risk populations for foodborne illness (Gerba et 

al., 1996). The Children’s Defense Fund (2000) reported that 60% of all preschoolers, 

toddlers and infants attend child care centers daily. With the increased number of 

working mothers over the past years, it is safe to expect that percentage will increase. 

Due to the increase, there is a need to survey and assess the sanitation of food contact 

surfaces within child care centers to ensure food safety for children. 

  As opposed to the food processing and food service industries, sanitation in child 

care food service is generally much less defined. Several studies have examined food 

processing and foodservice establishments using microbiological testing. However, 

although there is an established amount of information available about the presence of 

bacterial contamination on food contact surfaces within food processing facilities and 

other commercial settings, similar information concerning the bacterial contamination of 

these surfaces within child care centers is lacking. Accordingly, the main objectives of 

this study were: (1) to gather information as to the environmental microbiological quality 

of food service surfaces and a non-food contact surface in child care centers, and (2) to 

evaluate several rapid sanitation assays for determining the sanitation quality of food 

contact surfaces and to determine if the methods have potential for utilization within 

child care centers.  
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A microbiological survey was conducted in six (6) Knoxville, TN area child care 

centers. The facilities represented three large (> 100 children) and three small (< 50 

children) centers. Each child care center was tested twice monthly over the course of an 

eight (8) month period for a total of 16 sampling periods per center. Four areas, one food 

service area, one diaper changing area, and two food preparation areas, within the child 

care centers were sampled. The food service area and the food preparation areas consisted 

of three food contact surfaces, one food service surface and two food preparation 

surfaces, i.e., children’s eating table and kitchen counters. The diaper changing area was 

the one non-food contact surface. All surfaces were tested three times daily, pre-opening, 

lunch time, and following final clean-up of the day, to monitor the microbiological 

quality of each surface throughout the day. Surfaces of each area varied with surface 

types including:  plastic laminate for food service surfaces, stainless steel, grouted tile, 

plastic laminate, and wooden laminate for food preparation surfaces, and acrylic solid 

surface and plastic padding for diaper changing surfaces.  

In order to complete each objective and reach the overall goals, it was necessary 

to use microbiological analysis and rapid sanitation assays to evaluate all surfaces 

surveyed in this study. Microbiological analysis included aerobic plate counts (APC), 

coliform counts, and E. coli counts of a 50 cm2 area on all surfaces using standard 

microbiological swabbing methods. Microbiological analysis of surfaces was done by 

swabbing a 50cm2 area using a sterile stainless steel template. Sampling was performed 

by swabbing the area horizontally, from one side of the template to the other, and 

repeating vertically, and then horizontally. Samples were transported to the laboratory 

and then plated onto Aerobic Count (AC) Plates and E. coli/Coliform Count Plates. 

Results were reported as mean log APC counts and mean coliform counts by center, 

center size, area, surface type, and time of day. The frequency of E. coli and coliform 

positive samples by surface type and area sampled were also reported.  

Rapid sanitation assays included a commercial ATP bioluminescence assay, a 

protein detection assay, and a glucose detection assay. All rapid sanitation assays were 

done using a sterile, stainless steel template with a 50 cm2 area exposed. Sampling was 

 2



performed by swabbing an adjacent 50 cm2 area horizontally, from one side of the 

template to the other, and repeating vertically, and then horizontally again. Rapid assay 

results were read within 5 seconds to 10 minutes after sampling depending on 

manufacturer’s instructions. The efficiency of the rapid assays was evaluated by 

comparing the results of each assay with APC counts for surface type and area sampled 

based on percent agreement, i.e., the number of times the rapid sanitation assays and APC 

were in agreement of a “clean” or “dirty” surface. Surfaces and areas with < 1,000 

CFU/50 cm2 and < 300 RLU as detected by the ATP assay or a negative protein or 

glucose reaction were considered “clean.” Surfaces with > 1,000 CFU/50 cm2 and > 300 

RLU or a positive protein or glucose reaction were considered “dirty”. Correlations 

between the rapid assays and APC using Spearman’s rho analysis were also established 

to determine the efficiency of the rapid assays.  

 3



2 LITERATURE REVIEW 

2.1 Introduction to Foodborne Illness (FBI) 

The Centers for Disease Control and Prevention (CDC), estimates that 

approximately 76 million people within the United States contract a foodborne illness 

each year (CDC 2004). Of those 76 million cases, 325,000 hospitalizations, and 5,000 

deaths result. The CDC’s Preliminary FoodNet Data reports that in 2003, there were 

15,600 diagnosed cases of foodborne illness caused by bacterial pathogens and of that 

total, 6,017 cases were attributed to Salmonella, 5,215 to Campylobacter, 3,021 to 

Shigella, 443 to Escherichia coli, and 138 to Listeria (CDC 2004).  

Segments of the population, including the young, elderly, immunocompromised, 

and pregnant women, are among the highest risk groups for foodborne illness (Gerba et 

al., 1996). The CDC estimated in 2000, that there were 3,513,694 cases of foodborne 

illness among children, with 33,711 children hospitalized and 1,604 deaths. Comparing 

the latter figure to the total deaths attributed to foodborne illness in 2003, approximately 

one-third of all deaths caused by foodborne illness are children. Incidence of foodborne 

illness is relatively higher for children than healthy adults because of their 

underdeveloped immune systems and lower body weight. Lower body weight means 

fewer pathogens are necessary to cause illness (Buzby 2001).  

Most foodborne illnesses are classified as “acute”. They are usually self-limiting 

and of short duration with symptoms including mild gastroenteritis. However, some 

illnesses progress to life-threatening neurological or renal syndromes called sequelae. 

The U.S. Food and Drug Administration (FDA) estimates that 2-3 percent of all acute 

cases result in sequelae and children are more prone to these symptoms (Buzby 2001). 

Examples of chronic sequelae of foodborne illnesses include hemolytic uremic syndrome 

(HUS) and Guillain-Barré Syndrome (GBS). These illnesses will affect children for the 

remainder of their lives and may result in premature death. 
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2.2   Contributing Factors to Foodborne Illness Associated with Food Handling 

 The CDC has identified improper handwashing, cross-contamination, and 

ineffective cleaning and sanitizing as some of the major contributing factors to the spread 

of foodborne illness (NRAEF 2005). Therefore, it is necessary to take the proper steps to 

ensure that these improper practices are avoided at all times.  

2.2.1   Improper handwashing  

Handwashing has long been known to be a beneficial public health practice for 

preventing the spread of infectious disease. According to the CDC, “handwashing is the 

single most important procedure for preventing the spread of infection” (Anonymous 

2005). Bacteria, such as the foodborne pathogen Staphylococcus aureus, are found 

naturally on the human body and apparently healthy people may host foodborne 

pathogens, such as Salmonella, or viruses such as Hepatitis A. These people may be 

“carriers” and are capable of infecting others, yet they may not be aware that they are 

carriers because they may not show symptoms or become ill themselves. Therefore, it is 

necessary to utilize proper handwashing techniques after coughing, sneezing, blowing the 

nose, or touching any part of the body. Failure to use proper handwashing techniques 

increases the risk of transmission of foodborne illness.  

The Association for Professionals in Infection Control and Epidemiology (APIC) 

states that “handwashing causes a significant reduction in the carriage of potential 

pathogens on the hands” and recommends several steps for proper handwashing to 

prevent the spread of pathogens. During the handwashing procedure, failure to cover all 

surfaces on the hands because of poor techniques or use of insufficient cleansing agents 

may lead to subsequent contamination of surfaces. APIC indicates that handwashing 

associated with general patient care occurs in approximately half of the instances in 

which it is indicated and usually is of shorter duration than recommended. Pittet and 

others (1999) studied the compliance with handwashing guidelines in a teaching hospital. 

The authors concluded that compliance with handwashing guidelines was only 48 
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percent. The authors also concluded that the primary problem with handwashing was 

laxity of practice and that high workload among workers was associated with low 

compliance. Allwood and others (2004) conducted a survey of retail food establishments 

to investigate handwashing compliance among retail food establishment workers in 

Minnesota. According to the survey, only 52% of persons-in-charge could describe 

proper Minnesota Food Code handwashing techniques and only 48% of employees could 

demonstrate proper techniques. Results from the study indicated that the most common 

problems associated with handwashing practices were the lack of training and proper 

technique usage. As previously stated, failure to sufficiently cleanse hands can leave 

foods and food contact surfaces contaminated and this can lead to another contributing 

factor to foodborne illness, cross-contamination.  

2.2.2   Cross-contamination  

Cross-contamination between raw and cooked foods via food contact surfaces has 

also been identified as a significant risk factor for foodborne illness (DeCesare et al., 

2003). Cross-contamination is defined as the spread of bacteria between foods, surfaces 

or equipment. It is most likely to occur when raw food touches (or drips onto) other food, 

raw food touches (or drips onto) equipment or surfaces, or people touch raw food with 

their hands and then touch other surfaces or foods. Several studies indicate that various 

bacteria, including Escherichia coli, Staphylococcus aureus and Salmonella survive on 

hands for hours and days after initial contact with microorganisms (Scott and Bloomfield 

1990). Zhao and others (1998) conducted a study to develop a model for evaluation of 

microbial cross-contamination in the kitchen. The authors concluded that the surfaces of 

cutting boards can be heavily contaminated with Enterobacter aerogenes B199A, an 

indicator bacterium with attachment characteristics similar to that of Salmonella, after 

cutting and handling contaminated poultry. The bacterial counts transferred to these 

surfaces can approximate those on contaminated meat (Zhao et al., 1998). The U.S. Food 

and Drug Administration conducted a survey on the occurrence of selected food 

consumption and preparation behaviors which are associated with increased risk of 

foodborne diseases. The survey determined that 26% of American consumers do not 
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clean cutting boards after cutting raw meat or chicken (Klontz et al., 1995; Zhao et al., 

1998). Failure to clean cutting boards can lead to an increased risk of cross-contamination 

which in turn increases the risk of foodborne illness.  

2.2.3   Ineffective cleaning and sanitizing    

      Ineffective cleaning and sanitizing of food contact surfaces is another contributing 

factor to foodborne illness. Cross-contamination and therefore transmission of foodborne 

illness may be prevented through effective cleaning and sanitizing of food contact 

surfaces before, during, and after food preparation. Cleaning is defined as the complete 

removal of food soil using appropriate detergent chemicals under recommended 

conditions. Sanitizing is defined as the reduction of microorganisms to levels considered 

safe from a public health viewpoint (NRAEF 2005).  

2.3    Prevention of Cross-Contamination via Food Contact Surfaces 

In order to reduce or possibly eliminate the risk of cross-contamination it is 

necessary to properly clean and sanitize food contact surfaces before any type of food 

preparation takes place. Residues of raw meat, poultry exudates , and other food may 

remain on kitchen surfaces, serving as sources of microbial contamination for raw 

vegetables and other ready-to-eat (RTE) foods (DeCesare et al., 2003). Therefore, all 

food contact surfaces must be cleaned and thoroughly rinsed to remove any residues 

before the sanitizing process can begin.  

There are a number of sanitizers, such as quaternary ammonium compounds, 

iodophors, and chlorine, available for use in food processing and retail environments. 

However, the selection of a sanitizer depends on a number of factors, such as the type of 

equipment to be sanitized, the effectiveness of the sanitizer and cost. Quaternary 

ammonium compounds (QAC), in diluted form, are odorless, colorless, and nontoxic. 

They are stable at high temperatures, over a wide pH range, and in the presence of 

organic materials. QAC's are effective against some bacteria, but are slow-acting against 

some common spoilage bacteria. QAC solutions may leave films on equipment and are 
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not compatible with other common detergent compounds or chlorine sanitizers (Forwalter 

1980). 

 Iodophors are a combination of iodine and a solubilizing agent that releases free 

iodine when diluted with water. Iodophors are fast-acting and effective against all 

bacteria and in diluted form, they are non-staining, relatively nontoxic, nonirritating to 

skin, and stable. Iodophors are widely used in hand sanitizing solutions (Forwalter 1980).  

Chlorine-based sanitizers are the most commonly used sanitizers in food plants 

and are effective against all types of bacteria. In diluted form, chlorine-based sanitizers 

are colorless, relatively nontoxic, and non-staining. They are the easiest sanitizers to 

prepare and apply, are generally the most economical and they are best suited for food 

contact surfaces, water disinfection and smooth produce surfaces (Forwalter 1980). 

2.3.1   Sanitization of food contact surfaces using chlorine 

Sodium hypochlorite is the oldest and most widely used of the chlorine 

compounds employed in chemical sanitization (Lomander et al., 2004). Chlorine is the 

most commonly used sanitizer because of its efficacy at low concentrations and low cost. 

However, the sanitizing activity of chlorine is dependent upon concentration, 

temperature, amount of organic material present, pH and contact time (Kusumaningrum 

et al., 2003).  

Parnes (1997) investigated the efficacy of manufacturer’s recommended dilutions 

of sodium hypochlorite for the disinfection of inanimate surfaces contaminated with 

Staphylococcus aureus and Escherichia coli O157:H7. For this study, approximately 106 

CFU of each test organism were dried onto 2x2 inch glazed ceramic tiles and formica 

squares and then wiped with a sponge dipped into a 5,250 ppm sodium hypochlorite 

(5.25%) solution. After wiping, surfaces were exposed to the sodium hypochlorite 

solution for two minutes and then wiped with a sterile gauze pad dampened with sterile 

water to retrieve bacteria remaining on the surface. Plate counts were made from the 

gauze to determine the number of bacteria that remained on the test surfaces. Results of 
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the study indicated that the bleach solution was effective against both test organisms, 

with approximately 101 CFU remaining on both surfaces after only two minute exposure 

times to sodium hypochlorite solution. Results from this study indicate that commercial 

disinfectant products such as sodium hypochlorite can eliminate microorganisms such as 

S. aureus and E. coli. Mafu and others (1990) studied the efficiency of sodium 

hypochlorite against Listeria monocytogenes on stainless steel, glass, polypropylene and 

rubber surfaces. Ten millimeter cylinders of each surface type were dipped for 15 

minutes in 10 ml of bacterial suspension according to the AOAC use-dilution method and 

dried for 30 minutes. After drying each contaminated surface was exposed to sodium 

hypochlorite at concentrations between 5 and 500 ppm at 50 ppm intervals and greater 

than 10,000 and maintained for 10 minutes at 4° C or 20° C. Cylinders were transferred 

to culture medium and results were reported as positive or negative for growth after 

incubation. The critical sanitization point, or minimum concentration required to sanitize 

each surface, was obtained by testing the range of concentrations of sodium hypochlorite. 

Higher and lower concentrations were tested until the lowest limit value of five negative 

tubes was obtained indicating no bacterial growth. Results of the study indicated that 

lower concentrations of sodium hypochlorite were needed for the sanitization of surfaces 

to achieve this five tube limit. For stainless steel and glass a concentration of 200 ppm, 

the manufacturer’s recommended concentration, was more effective for inactivation of L. 

monocytogenes and for polypropylene and rubber a concentration of 800 ppm was more 

effective. The temperature of the sodium hypochlorite solution had an effect on the 

sanitizing performance, with 20°C requiring 130 ppm and 115 ppm for sanitization on 

stainless steel and glass, respectively, versus 450 ppm and 300 ppm at 4°C. Frank and 

Chmielewski (1997) conducted a study to evaluate the effectiveness of chlorine on the 

sanitization of stainless steel and other domestic food preparation surfaces. Squares (7.5 x 

11 cm) of stainless steel, polycarbonate, and mineral resin surfaces, either smooth and 

unused or abraded, were submerged into 1.0 liter of Staphylococcus aureus culture, to 

obtain an initial population of 104 to 105 CFU/cm2 attached to each surface. Upon 

completion of attachment, test surfaces were immersed into a 200 ppm sodium 

hypochlorite solution for 20 seconds. Surfaces were exposed to the sodium hypochlorite 
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solution for a total of 45 seconds. Direct surface agar plating was used to enumerate the 

amount of bacteria remaining on the surfaces. Results from the study indicated that the 

sodium hypochlorite solution was most effective on smooth stainless steel and 

polycarbonate surfaces by reducing cell populations to less than 1.0 log CFU/cm2. Cell 

populations remained greater than 1.0 log CFU/cm2 on abraded stainless steel and mineral 

resin surfaces.  

In general, the longer time a sanitizer is in contact with the food contact surface, 

the more effective the sanitizing effect. Chlorine sanitizers should remain on the surface 

for at least two minutes before rinsing or wiping. Assanta and others (1996) conducted a 

study that evaluated the efficiency of the sanitizing agents, Dettol, a sanitizer with the 

active agents of chloroxylenol,  Sterol, and Tor, at three time periods, 2, 5, and 10 

minutes, to destroy Listeria monocytogenes, Yersinia enterocolitica and Staphylococcus 

aureus on10 mm stainless steel surfaces. The authors found that contact time was 

important, with all three sanitizing agents being more effective in inactivating the three 

pathogens on stainless steel after 10 minutes of exposure time. These findings indicate 

that adequate contact time is necessary to inactivate pathogens that may be present on 

food contact surfaces. Researchers in this study also concluded that various species of 

foodborne pathogens may show varying resistance to sanitizers. For instance, the 

sanitizer Dettol, in order to inactivate L. monocytogenes, a concentration of 0.9% was 

required with a 10 minute contact time; however, for Y. enterocolitica and S. aureus, 

concentrations of 0.5% and greater than 25% were required for inactivation of these 

microorganisms, respectively. These findings are similar to those found in previous 

studies (Best et al., 1990). 

2.4  Food Contact Surface Microbiological Sampling Methods 

2.4.1   Comparison of sampling methods for pathogen detection 

Analyzing foods and food contact surfaces for the presence of both pathogenic 

and spoilage bacteria is a standard practice for ensuring food safety and quality (DeBoer 
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and Beumer 1999). If microorganisms are able to survive and grow on food contact 

surfaces, the risk for cross-contamination and foodborne illness is increased. In order to 

ensure that proper cleaning and sanitizing of food contact surfaces has occurred, there are 

a number of microbiological sampling methods available to monitor the presence of 

microorganisms or soil. Microbiological monitoring of food processing environments 

may be conducted to meet one or more of the following objectives:  “(1) verification of 

the effectiveness of cleaning and disinfection practices; (2) determination of the 

frequency required for cleaning and disinfection; (3) determination of the presence of 

foodborne pathogens in the environment; (4) discovery of environmental sources of 

spoilage organisms; (5) determination of the frequency required for special maintenance 

procedures; (6) evaluation of hygienic design and fabrication of food processing 

equipment and facilities” (Evancho et al., 2001).  

Traditionally, methods such as swabbing and plating on microbiological media or 

agar contact plates have been used to detect bacteria on food contact surfaces. The most 

commonly used methods for food contact surface assessment in food operations are the 

Swab/Swab-Rinse Method and the Contact Plate Method (Jay et al., 2005). The swab-

rinse method was developed by W.A. Manheimer and T. Yabanez and is the oldest and 

most widely used method for the microbiological examination of surfaces in the food and 

dairy industry and in hospitals and restaurants (Jay et al., 2005). The swab-rinse method 

utilizes either cotton or calcium-alginate swabs to examine a defined area of a surface. 

This method should be used for surfaces with cracks, corners, or crevices, areas where 

the swab will be more effective in recovering organisms. With this method, a sterile 

template is placed over the surface to be sampled and the area is swabbed thoroughly 

with the moistened swab in horizontal and vertical directions, reversing direction between 

strokes. The exposed swab is then returned to its holder containing the appropriate buffer 

solution and the buffer solution is surface or pour plated to enumerate the 

microorganisms. 

An alternative to agar pour plates is the rehydratable dry film method. This 

method can be used for nonselective as well as, selective methods to detect for specific 
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groups such E. coli and coliforms. In comparison to the pour plate and spread plate 

methods, the PetrifilmTM method has been found to be not significantly different in the 

detection and enumeration of coliforms and aerobic bacteria in studies with dairy 

products, such as milk, and other foods (Ginn et al., 1986; Morton 2001). High 

correlation coefficients, for APC, 0.99, 0.95, and 0.94, and coliforms, 0.83, 0.96, and 

0.81 for pork, beef, and chicken samples respectively, were found between the Petrifilm 

plate method and standard aerobic count method and violet red bile agar method for meat 

products (Park et al., 2001). A comparison between the Petrifilm rapid coliform count 

(RCC) plate method and the conventional method of violet red bile agar (VRBA) for 

enumerating coliforms concluded that the Petrifilm plate counts were not significantly 

different from VRBA counts, (p >0.05) in surimi-based imitation crab slurry (Chung et 

al., 2000). For food contact surfaces associated with ground beef processing, no 

significant differences (p > 0.05)  between swab-rinse methods coupled with pour plating 

techniques and PetrifilmTM methods was found in the recovery of aerobic bacteria, 

coliforms, or E. coli (Linton et al., 1997). 

     In contrast to the swab-rinse method, the Contact Plate Method utilizes the 

replicate organism direct agar contact (RODAC) Petri plate. This method is used only on 

flat, impervious surfaces that are relatively easy to clean and disinfect and when 

quantitative data are desired. Disposable plastic RODAC plates may be purchased or they 

can be filled at the laboratory. With this method, the plastic cover of the RODAC plate is 

removed and the surface of the agar is gently pressed onto the surface being sampled 

using a rolling, uniform pressure to ensure the entire agar surface contacts the surface. 

After contact, the cover is replaced and the plate is incubated in an inverted position 

under the required time and temperature guidelines for the microorganism in question and 

the colonies are enumerated (Evancho et al., 2001).  

As with any method, there are advantages and disadvantages of using one method 

over another. The swab-rinse method has been shown to be a timely, simple, and 

inexpensive way to assess the microbiological quality of food contact surfaces allowing 

for results to be obtained within 24 to 48 hours. This method has been found to be most 
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suitable for flexible, uneven, and heavily contaminated surfaces (Jay et al., 2005; 

Niskanen and Pohja 1977). The ease of removal of organisms depends on the texture of 

the surface and the nature and types of microorganisms present on a surface. The contact 

plate method has been shown to be most effective on surfaces that are smooth, firm, 

nonporous, and have low numbers of microorganisms present. The most serious 

drawbacks to this method are the covering of the agar surface by spreading colonies, and 

its ineffectiveness for heavily contaminated surfaces (Jay et al., 2005).  

2.4.2   Rapid methods importance and usage 

 Traditional agar-based testing methods rely solely on microbiological media for 

isolation, detection, and enumeration of viable bacterial cells and require incubation 

periods of 24 to 48 hours. These methods are sensitive and provide both qualitative and 

quantitative information on the number and types of microorganisms present in a sample. 

However, preventative risk-based food safety management systems, such as Hazard 

Analysis Critical Control Points (HACCP), require that hygiene monitoring provide 

results rapidly and in time for remedial action so as to be able to regain control of a 

process and/or product (Griffiths 1997; Moore and Griffith 2001). Therefore, it may be 

necessary to implement rapid hygiene monitoring systems that allow for results to be 

obtained in a shorter time than conventional microbiological methods such as 

swabbing/plating or agar contact methods which require incubation for 24-48 hours 

(Davidson et al., 1999).  

The presence of microorganisms on food contact surfaces is important, but the 

hygienic status of the surface also depends on the presence or absence of product residues 

(Mackintosh 1990; Moore and Griffith 2001). If a surface is unclean because of residual 

food debris, this residue can become a good source of nutrients for microorganisms and 

therefore encourage and facilitate their growth and increase the risk for cross 

contamination. If sanitation results regarding total organic load can be obtained more 

rapidly than with traditional testing methods, this would be beneficial for initial hygiene 

monitoring in the case of receiving results faster. 

 13



There are several requirements which must be considered before adapting a new 

rapid method (DeBoer and Beumer 1999):  

1. Accuracy- false-positive and false-negative results must minimal, preferably zero. 

2. Validation- rapid methods should be validated against standard tests and 

evaluated by collaborative studies.  

3. Speed- should provide accurate results within hours and at the most within 8 

hours. Must provide information in time for corrective actions to be taken. 

4. Automation and computerization- ability to test many samples at one time. 

5. Sample matrix- new systems should give a good performance of environment to 

be tested. 

6. Cost- purchasing, reagents, supply, operational costs, upkeep. The initial financial 

investment may be high because many systems require expensive instruments. 

7. Simplicity- methods should be user friendly and easy to operate. 

8. Training and support is essential. 

The ATP bioluminescence method has been used as an estimation of microbial 

load as well as an index of general cleanliness of food production environments (Entis et 

al., 2001). The bioluminescence reaction, used to measure ATP, is based on the 

biological reaction that occurs naturally in fireflies to produce light (Figure 2.1). The 

bioluminescence reaction is catalyzed by the enzyme luciferase and occurs when this 

enzyme utilizes the chemical energy contained in the ATP molecule to drive the 

oxidative decarboxylation of luciferin (Hawronskyj and Holah 1997).  

 

 

LIGHT         Luciferin + ATP + O2                                  
Luciferase

 

Figure 2.1:  ATP Bioluminescence Reaction 
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The quantity of light is expressed in relative light units (RLUs) and directly correlates 

with the amount of ATP present and thus with the level of biological load on the sampled 

area (Deshpande 2001). The major drawback to the ATP bioluminescence method for 

determination of microorganisms is that it does not differentiate between sources of ATP. 

Therefore the ATP bioluminescence method may be better utilized for sanitation 

monitoring in the food production environment as an indicator of total biomass present. 

In sanitation monitoring both microbial ATP and ATP present from food debris are of 

relevance thus a total ATP estimation is desirable to evaluate hygiene levels and 

cleanliness. If an unsatisfactory surface is found it can immediately be re-cleaned and the 

ATP measurement repeated.  

  Since the amount of light produced can indicate the amount of soil present on the 

surface, ATP bioluminescence does not necessarily indicate the amount of bacterial 

contamination present. The limit of detection of some ATP monitoring systems may be 

higher than the amount of microbial ATP present on the surface; therefore, there is a risk 

for false negative results. The general amount of ATP per cell is generally constant at 3.6 

x 10-18 mole per bacterial cell. This number corresponds to approximately 3.6 x 10-13 M 

ATP/105 CFU bacteria (Thore et al., 1975). A number of studies have reported that the 

limit of detection for ATP bioluminescence assays is approximately 104 to 105 CFU 

(Davidson et al., 1999).  

Rapid hygiene monitoring kits which utilize ATP bioluminescence are available 

to the food industry and can provide a real-time estimate of total surface contamination 

and/or overall cleaning efficacy (Griffiths 1997; Moore and Griffith 2002). One of the 

first applications of ATP bioluminescence to detect microorganisms was in aerospace 

water systems. In the dairy industry ATP bioluminescence has been used to assess dairy 

processing cleaning and sanitizing programs as well as estimate and predict the shelf-life 

of milk and dairy products (Bautista et al., 1992; Hawronskyj and Holah 1997). Many 

attempts have been made to correlate ATP levels with total bacterial count methods, with 

mixed success. A study conducted in 2003 compared conventional swabbing methods for 

the detection of microorganisms to ATP bioluminescence on 225 kitchen table surfaces in 
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homes (Larson et al., 2003). No significant correlation between ATP and colony forming 

units (CFUs) from total plate counts (r = 0.004, P = 0.58) were found. Researchers in the 

study concluded that ATP bioluminescence is not a reliable substitute for conventional 

swabbing methods when the amount of microbial contamination on a surface is desired. 

Tebbutt (1999) compared conventional swabbing methods for the detection of 

microorganisms to ATP bioluminescence on 139 cutting boards used in hotel kitchens. A 

positive correlation was found between the bacterial count and the amount of ATP 

detected (r = 0.58). Due to the low correlation coefficient, researchers concluded that 

ATP bioluminescence is not fully reliable for highlighting the bacterial risk associated 

with food contact surfaces; however, this method does allow for on the spot-remedial 

action to be taken in the case of an unsanitary surface. Illsley and others (2000) compared 

standard surface swabbing techniques to ATP bioluminescence to determine the 

adequacy of the ATP methods for evaluating sanitation in a baking facility. The standard 

swabbing techniques and the ATP bioluminescence method were compared as to the 

percentage of times both methods agreed to pass or fail a surface, and based on percent 

agreement (81.6% - 83.3%), the study concluded that there was a good correlation 

between the results obtained using the plate count method and ATP bioluminescence and 

that the latter were reliable alternatives to traditional surface swabbing and plate count 

methods (Illsley et al., 2000). Seeger and Griffiths (1994) assessed the practical use of 

the ATP bioluminescence method to evaluate the effectiveness of cleaning and sanitizing 

food contact surfaces in eight health care institutions. In comparison to conventional 

swabbing techniques, results from the study indicated that there was an overall agreement 

of 74% for all surfaces tested between results obtained using ATP bioluminescence and 

standard plate count methods. The study concluded that ATP bioluminescence is a 

reliable alternative to standard plate count methods for evaluating the cleanliness and 

sanitation of food contact surfaces. In contrast to earlier studies, Moore and Griffith 

(2002) concluded that there was a significant difference (p < 0.05) between the results 

obtained using ATP bioluminescence method and a traditional agar-based 

microbiological method, dip slides, to evaluate the cleanliness of food contact surfaces 

within four different food processing environments. While there was a 55.6% agreement 
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between the ATP bioluminescence method and the traditional microbiological method, 

28.8% (13 of 45) of samples were considered unacceptable for food production using the 

ATP method despite being ‘passing’ by the dip slide method.  

In addition to ATP bioluminescence assays, there are also assays that detect either 

protein or glucose. These rapid detection methods are designed to be presence/absence 

tests that detect food residues containing proteins or sugars that may remain on a surface 

following cleaning. These methods utilize color indicators to indicate residues. Tebbutt 

(1999) compared conventional swabbing methods for the detection of microorganisms to 

protein detection methods on 139 cutting boards used in hotel kitchens. A positive 

correlation was found between the bacterial count and the amount of protein detected (r = 

0.67) and researchers concluded that the presence or absence of protein could not always 

be relied upon as an indicator of microbial contamination on surfaces. Moore and Griffith 

(2001) conducted a study to compare a rapid protein detection method to traditional agar-

based methods for standard plate counts. There was a 68.9% agreement between the 

results of the protein detection method and those obtained using the standard plate counts.  

These studies have demonstrated the value of rapid methods which allow for on 

the spot-remedial action to be taken in the case of an unsanitary food contact surface 

when food residues are found. As seen from the varying results from these studies, it is 

reasonable to conclude that rapid methods can be used as an indicator of cleanliness and 

sanitation on food contact surfaces.  

2.5    Food Safety in Child Care Centers (CCC) 

Child care facilities have become an integral part of today’s society. In 2000, the 

Children’s Defense Fund (2000) reported that 60 percent of all preschoolers, toddlers and 

infants attended child care facilities daily. Sixty five percent of mothers in the labor force 

have children under age six, and 78 percent have children age six to 13. Additionally, 51 

percent of mothers with infants (children under age one) are in the labor force (U.S. 

Department of Labor 2004).  
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While child care facilities provide a necessary and important service, they may 

serve as a focal point for certain types of infectious diseases. The increasing number of 

mothers of young children in the work force has resulted in an increase in use of child 

care facilities and has affected the epidemiology of infectious diseases in young children. 

Children attending child care are generally at higher risk for gastrointestinal tract 

illnesses than other youth (Young 1989). The Centers for Disease Control and Prevention 

have estimated that there are 3,713,000 cases of infectious diseases associated with day 

care facilities each year (Bennett et al., 1987; Gibson et al., 2002). Infants and children 

under the age of 10, have the highest reported incidence rates of E. coli O157:H7, 

shigellosis, campylobacteriosis, salmonellosis, and listeriosis. Children can be exposed to 

these pathogens through contaminated foods as well as secondary sources of exposure 

such as other ill children in child care facilities 

2.5.1 Characteristics of foodborne pathogens most associated with child care centers 

 E. coli O157:H7 and its link to food became well known to the public as a result 

of the 1993 E. coli O157:H7 outbreak caused by contaminated hamburgers. Over 700 

people became ill from this outbreak and 4 children died (Buzby 2001). E. coli O157:H7 

can be found on cattle farms and the pathogen can live in the intestines of healthy cattle. 

During slaughter, the pathogen can be passed to the beef thus contaminating the meat. E. 

coli O157:H7 may be acquired through the consumption of meat that has not been 

sufficiently cooked, unpasteurized milk, and person-to-person transmission can occur via 

the fecal-oral route (Belongia et al., 1993). Once either of these factors occur, like other 

foodborne pathogens, E. coli O157:H7 can be found in the diarrheal stool of infected 

persons. The pathogen can then be spread if personal hygiene and handwashing 

procedures are inadequate. Young children typically shed this organism in their feces 

between one to two weeks after their illness; therefore, precaution and appropriate 

personal hygiene measures must be taken in order to ensure the prevention of this 

pathogen even if symptoms have resided.  
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Most people infected with E. coli O157:H7 develop bloody diarrhea and 

abdominal cramps and the illness normally resolves in 5 to 10 days. However, in some 

people, especially children under the age of 5, a complication called hemolytic uremic 

syndrome (HUS) can develop. HUS is a severe, life-threatening sequellae associated with 

E. coli O157:H7 and its toxins and is a predominantly pediatric condition that consists of 

the simultaneous triad of hemolytic anemia, thrombocytopenia and acute renal failure. 

HUS develops after ingestion of E. coli O157:H7 and its Shiga toxin enters the body’s 

circulation by binding to special receptors. These Shiga-toxin receptors are distributed in 

major body organs, such as the kidneys, brain, and pancreas, allowing distinct thrombotic 

(blood clotting) effects. The greatest Shiga-toxin receptor concentration appears to be in 

the kidneys, especially in children. As the inflammatory reaction process accelerates, red 

blood cells are destroyed and the body’s clot breaking mechanisms are disrupted. 

Damaged red blood cells (Fig. 2.2) clog the tiny blood vessels in the kidneys, making 

them work harder to remove wastes and extra fluid from the blood. The body's inability 

to rid itself of excess fluid and wastes may in turn cause high blood pressure or swelling 

of parts of or the entire body resulting in acute renal failure (NKUDIC 2003).  

 

Figure 2.2:  Destruction of red blood cells by Hemolytic Uremic Syndrome (HUS). Healthy red blood cells 
(left) are smooth and round. Red blood cells destroyed by HUS are misshapen and broken (right). 
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Approximately 5-10% of individuals infected with E. coli O157:H7 develop HUS. 

HUS is now recognized as the principal cause of kidney failure in previously healthy 

children in the United States. Some children infected with HUS have abnormal kidney 

function many years later and a few require long-term dialysis (CDC-DBMD 2004). HUS 

has a mortality rate of 5–15%; however, approximately 85% of children recover if given 

supportive care. Children who survive kidney failure from HUS, often go on to develop 

other lifelong complications, such as high blood pressure, seizures, blindness, paralysis, 

and the effects of having part of their bowel removed. The high incidence rate of HUS in 

children could reflect the smaller infective dose and immune system development of 

children (Buzby 2001). 

Child care centers are an important channel for the transmission for E. coli 

O157:H7. Approximately 200,000 cases of foodborne illness associated with this 

pathogen occur each year in the U.S., of which 5% are estimated to be associated with 

child care centers (Van et al., 1991). Rangel and others (2004) studied the epidemiology 

of E. coli O157:H7 outbreaks in the United Sates from 1982 to 2002. The results from 

their study discovered a total of 350 outbreaks were reported from 49 states, accounting 

for 8,598 cases of E. coli O157:H7. During these years, 50 outbreaks were spread by the 

fecal-oral route and 40 (80%) of the outbreak settings were child day care centers. These 

settings were the most frequent carriers of person-to-person outbreaks. Belongia and 

others (1993) researched the transmission of E. coli O157:H7 in nine Minnesota child day 

care centers from July 1988 through December 1999 to assess the occurrence of person-

to-person transmission. According to the Minnesota Department of Health, between July 

1988 and December 1989, there were 110 cases of E. coli O157:H7 infection reported. 

There were 44 HUS cases, including 19 (43%) which tested positive for E. coli O157:H7. 

The outbreak investigation occurred in nine child care facilities where an infected child 

attended after the onset of symptoms. The children who attended day care after the onset 

of symptoms were classified as “primary cases”. During the study, a case of E. coli 

O157:H7 was defined as an individual who had E. coli O157:H7 isolated from a stool 

specimen, or a child who developed either HUS or bloody diarrhea while attending a day 
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care facility with other culture-confirmed cases. Results of the outbreak study indicated 

that of the 254 preschool children that attended the nine facilities, 38 (15%) met the case 

definition. Five (13%) of the infected children had HUS, 22 (56%) had bloody diarrhea, 

five (13%) had non-bloody diarrhea, and six (16%) were asymptomatic. At two facilities, 

the primary case child continued to attend at least one week after the onset of diarrhea 

and transmission may have occurred at any point during this time. At two of the facilities, 

children continued to shed the organism anywhere from 2 to 26 days after symptoms 

resided. The study concluded that person-to-person transmission of E. coli O157:H7 is 

common when infected preschool children attend day care while symptomatic.  

   Shigella is a Gram-negative bacteria that is similar in behavior and habitat to 

Escherichia coli. This pathogen was discovered over 100 years ago by a Japanese 

scientist named Kiyoshi Shiga, for whom they are named. There are several different 

species of Shigella including: Shigella sonnei, also known as “Group D” Shigella,  

Shigella flexneri, or “Group B” Shigella. There are other types of Shigella that are rare in 

the U.S. but important in developing countries. For example, Shigella dysenteriae type 1 

causes deadly epidemics in developing countries (CDC-DBMD 2004). Shigella are rarely 

found in animals and are principally a disease of humans and other primates such as 

monkeys and chimpanzees. The pathogen is frequently found in water that has been 

polluted with human feces. Shigella are mostly associated with salads such as potato, 

tuna, macaroni, or chicken, raw vegetables, dairy products and poultry. Contamination of 

these foods is usually via the fecal-oral route and is most commonly due to fecally 

contaminated water and unsanitary handling by food handlers (CDC-DBMD 2004). As 

few as 10 cells depending on the age and condition of the host are necessary to cause 

disease. As with E. coli O157:H7, Shigella are present in the diarrheal stool of infected 

persons and can be transmitted during infection as well as one to two weeks after 

symptoms subside. Most infections that occur are the result of the bacterium passing from 

stools or soiled fingers of one person to the mouth or fingers of another person. Children 

are susceptible to this type of transmission within child care facilities due to children 

constantly placing their fingers in their mouths.  
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Shigellosis, is an infectious disease caused by Shigella sonnei or “Group D” 

Shigella. Approximately 300,000 cases occur each year in the U.S. Approximately 25% 

of cases are associated with child care centers and Shigella is the bacterium most 

frequently associated with outbreaks of infectious intestinal disease in child care settings 

(Gibson et al., 2002; Van et al., 1991). Most people infected with Shigella develop mild 

diarrhea, fever, and stomach cramps and usually recover within 5 to 7 days; however, in 

young children these symptoms, especially the diarrhea, can be so severe that the patient 

needs to be hospitalized. A severe infection with high fever may also be associated with 

seizures in children less than 2 years old (CDC-MMWR 2004).  

Shigella sonnei account for over two-thirds of the shigellosis in the United States 

(CDC-MMWR 2004). Between June 2001 and March 2003, outbreaks of Shigella sonnei, 

with approximately 3,081 laboratory-confirmed cases, were reported in six states, 

Delaware, Maryland, New Jersey, North Carolina, South Carolina, and Virginia, with 

median age ranges of  patients being 4, 6, 5, 5, 5, and 7 years of age for their respective 

states. These outbreaks occurred in multiple child care facility settings that became 

prolonged and communitywide. Delaware reported a total of 506 culture-confirmed cases 

between June 2002 and March 2003, with a total of 200 (40%) of cases being day-care 

related. Between the months of November 2001 and March 2003, a total of 1,222 culture-

confirmed cases were reported in Maryland, with a total of 250 (20%) known day care 

related cases. During an outbreak between October 2002 and March 2003, in 

Mecklenburg County, North Carolina, 729 cases of shigellosis were reported. 

Epidemiological investigations from this outbreak indicated that these outbreaks 

originated in day care facilities and then progressed to elementary schools. One hundred 

seventy-two culture-confirmed cases of shigellosis were reported in South Carolina 

between the months of June 2002 to March 2003. Approximately 55% of the cases were 

day care related. In Virginia, a day care related outbreak of shigellosis was attributed to S. 

sonnei being found in southeastern Virginia and subsequently becoming regional with a 

total of 876 laboratory-confirmed cases being reported. In all cases, health departments 
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excluded children with diarrhea from day care facilities and did not allow them to return 

until symptoms had subsided (CDC-MMWR 2004).  

Campylobacter jejuni has been recognized as a cause of disease in animals since 

1909. However, it is only in the last two decades of the twentieth century that the bacteria 

were identified as the cause of the human disease campylobacteriosis. Campylobacter 

bacteria naturally inhabit the intestinal tract of many animals, including swine, cattle, 

dogs, shellfish and poultry. These animals are often asymptomatic. The prevalence of 

Campylobacter jejuni in poultry carcasses results from the contamination of the meat by 

the intestinal contents of the bird (including the bacteria) when an infected bird is 

slaughtered (CDC-DBMD 2004). Studies monitoring poultry carcasses have 

demonstrated that over 30% of retail chickens are contaminated with Campylobacter 

(FDA 2004). A principle reason for the wide distribution of Campylobacter is the ability 

of the bacteria to survive anywhere there is moisture, food source, less than an 

atmospheric level of oxygen and room temperature conditions.  

Campylobacter is the most common cause of bacterial diarrhea in the United 

States with more occurrences than Salmonella (CDC 2004). According to active 

surveillance via FoodNet, approximately 15 cases of campylobacteriosis are diagnosed 

each year per 100,000 persons in the population; however, due to undiagnosed or 

unreported cases, it is estimated that over 1 million persons are infected every year 

(CDC-DBMD 2004). Unlike other pathogens, such as E. coli O157:H7 and Salmonella, 

Campylobacter is not usually spread from person-to-person; however, this can happen if 

the infected person is a small child or producing a large volume of diarrhea. Smaller 

outbreaks of campylobacteriosis, which are more common, are typically associated with 

handling raw poultry or eating raw or undercooked poultry; whereas, larger outbreaks 

typically occur from drinking unpasteurized milk or contaminated water.  

Fewer than 500 Campylobacter organisms are needed to cause illness in humans, 

and even one drop of juice from raw poultry can infect one person. Most people who 

become ill with campylobacteriosis, develop diarrhea, cramping, abdominal pain, and 
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fever within 2 to 5 days after exposure to the organism. The diarrhea may be bloody and 

can be accompanied by nausea and vomiting and the illness normally lasts one week. 

Sequela from this illness are rare; however, they have been associated with Guillain-

Barre syndrome (GBS). GBS is a neurological disorder that occurs when a person's own 

immune system begins to attack the body's own nerves. This disorder affects the 

peripheral nerves and causes weakness, paralysis, and occasionally death. It has been 

estimated that one in every 1,000 cases of campylobacteriosis leads to Guillan-Barre 

syndrome (CDC-DBMD 2004). Isolation of Campylobacter is much more common from 

children under five and young adults more frequently than other age groups. In children, 

diarrhea persisting for more than one week can lead to nutrient losses, which result in 

dehydration, and can also compromise their immune system (Young 1989). Outbreaks of 

campylobacteriosis in child care facilities are rare; however, in the United States, infants 

have the highest reported incidence of campylobacteriosis.  

Olsen and others (2001) reported an outbreak of Campylobacter jejuni infections 

associated with food handler contamination during a school luncheon. In 1998, the 

Kansas Department of Health and Environment was notified of an outbreak of C. jejuni 

infections and in order to determine the cause of the outbreak a case study was 

performed. Trace back studies were completed by investigation of the source of food 

items eaten during the luncheon. For the study, a clinical case patient was defined as 

having diarrhea more than three times within a 24 hour period, while a confirmed case 

was defined as a clinical case whose stool sample tested positive for C. jejuni. During the 

study, 129 persons were identified as case patients, 33 had stool samples obtained where 

27 samples were positive for C. jejuni. There were no particular foods linked to the 

outbreak; however, illness was traced back to a food handler who had severe abdominal 

cramps and profuse diarrhea during the time frame of the luncheon. Despite symptoms, 

the food handler continued to work during illness.  

Salmonella is a genus of Gram-negative bacteria that was discovered over 100 

years ago by an American scientist named Salmon, for whom they are named. There are a 

number of different strains of Salmonella; however, Salmonella serotype Typhimurium 
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and Salmonella serotype Enteritidis are the most common in the United States. 

Concerning food poisoning, Salmonella Enteriditis is of particular concern because this 

strain causes gastroenteritis and other problems because of several virulence factors the 

organism is armed with. One of the most important virulence factors displayed by 

Salmonella is the production of an enterotoxin. This is especially important due to the 

fact that the enterotoxin remains inside the bacteria, so the toxin concentration increases 

with the increase in bacterial numbers (CDC 2004).  

Salmonella spp. are typically found in animals, especially in poultry and swine 

and have also been linked to hamsters and reptiles. There are various environmental 

sources that include water, soil, factory surfaces, kitchen surfaces, and animal feces only 

to name a few. Foods associated with Salmonella spp. include poultry, eggs, red meat, 

diary products, processed meats, cream-based desserts, and salad-type sandwich filling 

(such as tuna salad or chicken salad) as these are prime targets for colonization by species 

of Salmonella. Inadequate cooking of eggs are a major concern due to the fact that 

poultry may be asymptomatic carriers of the bacteria, and due to vertical transmission, 

i.e., deposition of the bacteria in the yolk by an infected layer hen prior to shell 

deposition, eggs become carriers of the bacteria (FDA 2004). Raw eggs may be 

unrecognized in some foods such as ice cream, homemade mayonnaise and salad 

dressings, cookie dough and frostings. Ice cream, cookie dough and frostings are of 

concern with children since these are foods that are generally consumed by this 

population. Salmonella may also be found in the feces of some pets, such as hamsters and 

reptiles. This is of concern for child care centers as they may keep these animals in their 

facilities for children’s enjoyment. Children and adults should always wash their hands 

after handling a reptile or any other animal to eliminate the risk of illness from 

Salmonella. Salmonella are transmitted through the fecal matter of people or animals, and 

are usually transmitted to humans by eating foods that have been contaminated with fecal 

matter via cross-contamination. As few as 15 to 20 cells, depending on the age and health 

of the host and strain of bacteria are necessary to cause illness (FDA 2004).  
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  It is estimated that approximately 40,000 cases of salmonellosis are reported 

each year in the U.S. (FDA 2004). Infants have the highest risk of contracting 

salmonellosis, and the second highest risk group are children under the age of 10 (CDC 

2004). Most people infected with salmonellosis develop nausea, diarrhea, fever, and 

abdominal cramps and normally recover without treatment, with symptoms subsiding 

within 5 to 7 days depending on host factors, such as age and susceptibility, ingested dose 

and strain characteristics. In some patients, such as children and infants, prolonged 

diarrhea is dangerous, as the body can be depleted of fluids and salts that are vital for the 

proper functioning of organs and tissues. The resulting shock to the body can be lethal to 

infants and there is a possibility that the bacteria can spread from the intestinal tract to the 

bloodstream, leading to infections in other parts of the body. If this occurs, a person must 

be treated immediately for the infection because at this stage it may cause death (CDC-

DBMD 2004).  

 In 2002, the Ohio Department of Health reported that 2 children were infected 

with Salmonella from consuming raw milk from a combination dairy-restaurant-petting-

zoo. Further investigation revealed that 62 individuals were case patients, i.e., an 

individual infected with PFGE-matched Salmonella Typhimurium. Forty case patients 

were identified as dairy customers and were included in the case control study; 56 

controls were asymptomatic. Consumption of raw milk was found to be the cause of 

illness (Mazurek et al., 2004). In 1996, the Minnesota Department of Health detected an 

increase in the number of reports of Salmonella Enteritidis infections. Hennessy and 

others (1996) conducted a case-control study in order to investigate the increase in 

reports. Results from the study implicated a nationally distributed brand of ice cream 

(Schwan’s) in the outbreak. An estimated 224,000 persons nationwide developed S. 

Enteritidis gastroenteritis after consuming the Schwan’s ice cream. In Minnesota, where 

the study was based, a total of 150 confirmed cases of outbreak associated salmonellosis 

were identified, with the median age of the patients with outbreak associated 

salmonellosis being 13 years old. Cross-contamination of the ice cream premix most 

likely occurred via tanker trailers that previously carried unpasteurized eggs containing S. 
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Enteritidis immediately before transporting the premix. The study concluded that low-

level contamination of foods by Salmonella, and thus extremely low infectious doses, can 

cause disease in humans. The highest level of product contamination found in this study 

was only six organisms per half-cup (65 g) serving of ice cream.  

Listeria monocytogenes has been recognized as a human pathogen for more than 

60 years and can cause serious invasive illnesses in humans. L. monocytogenes are 

present in many animals and birds, and it has been found in soil, water, sewage, and 

animal feed. Five out of every 100 people carry Listeria monocytogenes in their 

intestines. This organism persists in food processing environments causing major concern 

for further contamination. Listeria has been found in a variety of raw foods, such as 

meats and dairy products, as well as in processed foods that have been contaminated after 

processing, such as soft cheeses and deli meats (CDC 2004). This poses a risk due to the 

fact that these foods do not require a final kill step once reaching the home.  

Listeriosis is the acute illness caused by an infection from the bacteria Listeria 

monocytogenes. Since the 1980’s, listeriosis outbreaks in the United States have been 

linked to cole slaw, milk, Mexican-style cheese, undercooked hot dogs, undercooked 

chicken, and delicatessen foods. While listeriosis has decreased nearly 50% since 1989, 

the organism remains a major concern for food processors since this infection has a 

mortality rate of 25-30% in infected individuals (Mastronicolis et al., 1998; Miller et al., 

1997). An estimated 2,500 people become seriously ill with listeriosis each year in the 

U.S. and of those approximately 500 die (CDC-DBMD 2004). Those at risk include 

pregnant women, newborns, and persons with weakened immune systems. Listeria 

monocytogenes infection rates are the highest for the very young and the very old. People 

become infected with Listeria monocytogenes by eating foods that are contaminated with 

the bacteria, and babies can be born with listeriosis if their mothers contract the illness 

during pregnancy. Symptoms from this illness include fever, muscle aches, severe 

headache, vomiting, and other influenza-type symptoms. Newborns infected with 

listeriosis have been shown to develop meningitis – inflammation of the tissue 

surrounding the brain and/or spinal cord (CDC-DBMD 2004). The infective dose L. 
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monocytogenes is unknown but it is believed that the number of organisms necessary to 

cause illness varies with the strain and susceptibility of the victim.  

  In 2000, the New York City Department of Health and Mental Hygiene notified 

the CDC of 9 patients who had been infected with Listeria monocytogenes over the 

previous two months. In order to identify risk factors for infection, a case-study was 

conducted, where a case was defined as a patient or a mother-infant pair from whom L. 

monocytogenes that matched the outbreak PFGE pattern was isolated from the blood. 

Control patients with L. monocytogenes infections with different PFGE patterns were 

taken from the same states and the same time period. Results of the case study were used 

to trace the product suspected of causing the infections. Thirty patients from various 

states in the case study were infected with the same strain of L. monocytogenes and trace 

back and environmental investigation results indicated that the outbreak was caused due 

to delicatessen turkey meat from a variety of locations (Olsen et al., 2005). In 2001, the 

Los Angeles County Department of Health Services/Public Health conducted a study of 

an outbreak of acute febrile gastroenteritis where 16 of 44 healthy attendees of a catered 

party became ill with diarrheal illness. In order to determine the cause of the outbreak, a 

case study was performed by at risk-consumers that attended the party as well as other 

customers of the delicatessen that supplied the party food. Stool and leftover food 

samples were requested from all ill party attendees. Of the 44 responding individuals who 

replied to the case study, 16 met the criteria for the definition of a “presumptive case”. 

Six of eight stool specimens yielded Listeria monocytogenes and leftover turkey yielded 

L. monocytogenes. The median age of the attendees who became ill was 15.5 years of 

age. Upon completion of the study, it was determine that illness was associated with the 

consumption of precooked, sliced turkey supplied by the delicatessen (Frye et al., 2002).  

There are special food handling behaviors associated with the consumption of 

potentially hazardous foods, such as hot dogs and lunch meats that have been shown to 

contain L. monocytogenes. Kendall and others (2003) studied the food handling behaviors 

that are important for reducing the risk of foodborne illness among pregnant women, 

infants and young children, elderly, and immunocompromised. Results from the study 
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indicated that behaviors for pregnant women and children were associated with L. 

monocytogenes and a number of other foodborne pathogens. One of the consumer food 

handling behaviors of special importance for infants and children associated with L. 

monocytogenes included avoiding hot dogs and lunchmeats that have not been reheated to 

165°F. This is important due to the fact that a number of infants and children eat these 

products cold. After review of the previous studies, it is clear that ready-to-eat meats, 

such as hot dogs and lunchmeat, are foods that pose health risks for foodborne illness due 

to Listeria monocytogenes. Since children consume these foods, it is necessary to ensure 

that the proper steps are taken to keep children safe from foodborne illness due to this 

pathogen.  

2.5.2   Potential contributions of CCC personnel and facilities to food safety 

Improper personal hygiene is major food safety risk in child care facilities. A 

study conducted by Simmons and others (1990) surveyed the frequency of handwashing 

by nurses in two intensive care units. A trained secret observer monitored the frequency 

of handwashing at necessary times, which included before intra venous care, before and 

after wound care, after touching a contaminated object, such as an endotracheal tube or 

urinary catheter, and before performing invasive procedures. Based on questionnaires 

completed by the nurses, self-reported handwashing frequencies as well as whether 

handwashing actually took place were recorded and used to calculate the percentage of 

appropriate handwashing. Handwashing intervention sessions were held to increase the 

frequency of handwashing. Results of the study indicated that handwashing frequencies 

increased towards the end of the study; however, results in overall frequencies were not 

statistically different (p=0.0015). Handwashing was observed in 22.0% of all necessary 

times before the intervention and 29.9% was observed after the intervention. The most 

prevalent reasons cited by nurses for not washing their hands as often as necessary were 

“they were too busy” (68%), “soaps cause skin irritation” (68%), “gloves usually worn” 

(55%) and “don’t think about it” (52%) . With this trend in healthcare workers, it is 

reasonable to believe handwashing practices are also insufficient in child care facilities 

for similar reasons. Bacteria in the diarrheal stools of infected persons can be transmitted 
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from person-to-person if handwashing is inadequate (CDC 2004). This is particularly 

important for toddlers within child care facilities who are not toilet trained. Such children 

typically shed the organism in their feces and may not perform adequate handwashing 

afterwards. Other children, as well as child care workers, attending the child care facility 

are at high risk for infection.  

The physical environment of the food preparation areas in a child care facility 

may influence hygienic food preparation. This in turn plays a role in the potential 

transmission of disease among children. The most critical aspects of the food preparation 

areas are the food contact surfaces and their cleanability. Environmental microbiological 

studies in child care centers have shown that use of easily cleaned surfaces could help 

reduce environmental contamination and thus its role in the transmission of disease 

(Petersen and Bressler 1986). There are a number of critical factors associated with food 

contact surfaces, such as susceptibility to scratching, ease of cleaning, type of food 

preparation, etc., that must be considered when developing a food contact surface. 

Therefore, the type of materials used in food contact surfaces and their surface 

characteristics must be thoroughly tested in order to determine which material is best 

suited for use as a food contact surface. Several materials that are typical for use as food 

contact surfaces are stainless steel, plastic laminate, wood, grouted tile, etc. All of these 

materials have different properties which make them better or worse suited for use as 

food contact surfaces.  

Prerequisites for kitchen surfaces are durability and cleanability. with the liberal 

use of stainless steel, laminated plastic-covered cabinets, vinyl floors, and polyamide wall 

paint (Petersen and Bressler 1986). Stainless steel is the material of choice for food 

contact surfaces and work surfaces because of its mechanical strength, corrosion 

resistance, longevity and ease of fabrication (Holah and Thorpe 1990; Kusumaningrum et 

al., 2003). Numerous researchers have studied the survival of foodborne pathogens on 

stainless steel and other surfaces and their contribution to cross-contamination 

(Kusumaningrum et al., 2003; Moore et al., 2003). A study by Kusumaningrum and 

others (2003) indicated that pathogens, such as Salmonella Enteritidis, Staphylococcus 
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aureus, and Campylobacter jejuni are capable of surviving for hours or days after 

contamination on stainless steel surfaces. In addition, the presence of residual food 

debris, such as milk or chicken residues on the surface is an important factor in the 

increased survival of these pathogens on the surface. Prolonged survival presents a long-

term cross-contamination hazard since the pathogens were readily transferred from the 

kitchen sponges to stainless steel surfaces and then to foods. Moore and others (2003) 

studied the transfer rate of Salmonella Typhimurium and Campylobacter jejuni from 

stainless steel to Romaine lettuce. Stainless steel coupons (25cm2) were inoculated with a 

20µl of either S. Typhimurium or C. jejuni to provide an inoculum level of ~ 106 

CFU/28mm2. The inocula were dried for up to 80 min for C. jejuni and 120 min for S. 

Typhimurium. Bacterial transfer rates ranged from 23 to 31% for S. Typhimurium on wet 

lettuce. For C. jejuni transfer rates ranged from 16 to 38% for dry lettuce and from 15 to 

27% for wet lettuce. Results indicated that relatively high numbers, 3 to 4 log, of S. 

Typhimurium or C. jejuni may be transferred to ready-to-eat foods at least one to two 

hours later after surface contamination has occurred.  

The effect of various types of food contact surfaces, on the survival and 

persistence of various foodborne pathogens has been studied. A study conducted by 

Tebbutt (1991) compared five types of surfaces, formica, stainless steel, marble, 

polypropylene, and wood to assess the cleaning efficiency of food contact surfaces. A 

two-stage cleaning process was utilized in the study, using a detergent solution and a 

hypochlorite solution of 200 ppm. After spraying with the detergent solution, surfaces 

were wiped in a uniform manner with a 3-ply paper. After wiping, the surfaces were then 

sprayed with the hypochlorite solution and wiped with a separate 3-ply paper. Agar 

contact plates were utilized as the method of recovery and growth of total viable bacterial 

counts (APC) were classified as scanty (25 or fewer colonies), light (up to 75 colonies), 

moderate (up to 200 colonies) and heavy (confluent or almost confluent growth). Results 

from the study indicated that the wood and polypropylene surfaces were particularly 

difficult to clean. Forty of 47 wood surfaces remained heavily contaminated after 

cleaning and 39 of 72 polypropylene pads still had moderate numbers of bacteria on 
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them. Formica, stainless steel, and marble surfaces were more easily cleaned (Tebutt 

1991). DeCesare and others (2003) studied the survival and persistence of Campylobacter 

jejuni and five strains of Salmonella species under various organic loads on 5 cm2 

samples of stainless steel, formica laminate, and glazed ceramic tile food contact 

surfaces. Surfaces were individually inoculated with an initial population of 

approximately 106 CFU/5 cm2 of each type of organism suspended in trypticase soy broth 

or phosphate-buffered saline. Results were expressed as the time to achieve a 3 log 

reduction of C. jejuni and Salmonella cells per ml of phosphate-buffered saline (PBS) or 

trypticase soy broth (TSB). The overall time to achieve a 3-log reduction for 

Campylobacter, was the greatest for formica followed by stainless steel and ceramic tile, 

with averages of 207 ± 22 minutes, 169 ± 12, and 136 ± 13 minutes. For Salmonella, the 

same trend was seen with average times of 2,805 ± 731 minutes, 1,021 ± 282 minutes, 

and 344 ± 76 minutes for the same respective surfaces. The reduction times were 

influenced by the amount of organic load that was present on the surface which was 

simulated by using TSB (high organic load conditions) or PBS (low organic load 

conditions). The type of surface and the amount of organic load markedly influenced the 

amount of bacterial contamination remaining on the surface.  

The bacterial retention of plastic and wood cutting boards was studied by (Ak et 

al., 1994). Cutting board test surfaces (25 cm2) were inoculated with approximately 108 

CFU/25 cm2 of E. coli O157:H7. After inoculation was completed, boards were washed 

in 300 ml of hot water (116°F) with 2 ml of commercial dish detergent by scrubbing with 

a new sponge. After washing, boards were rinsed in 116°F water. Recovery of bacteria 

was achieved by surface plating by pressing board samples on blood agar. For new 

wooden boards inoculated with E. coli O157:H7, after 1 hour a dramatic reduction in 

CFUs was observed, with counts decreasing from approximately 108 CFU to 105 CFU. In 

comparison, CFUs on new plastic cutting boards seemed to remain constant with no 

reduction in numbers during the first hour. Results from this study indicate that with 

reasonable cleaning effort, wooden cutting boards can be safely used in home kitchens 

and are unlikely to create undue risks of cross-contamination to foods.  
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2.5.3   Surveys of microbiological quality of surfaces in CCC 

 Since the 1980’s, a few microbiological studies have been conducted in order to 

assess the sanitation in child care centers. Petersen and Bressler (1986) studied the design 

and construction of the day care environment by conducting an environmental 

microbiological survey of commonly touched surfaces within child care facilities. 

Surfaces included floors, tables and chairs, cots and cribs, diaper changing areas, and 

toilet areas. Prevalence rates of fecal coliforms were determined for all surfaces. For fecal 

coliforms prevalence was defined as the percentage of total samples in which the 

microorganisms were detected. The mean prevalence rates of fecal coliforms from 

surface samples were 22.5% (264 of 2,082 samples). Results from the study illustrate that 

fecal contamination is present on environmental surfaces within child care facilities.  

Weniger and others (1983) determined the prevalence of fecal coliforms on 

environmental surfaces in two day care centers. Approximately 70 children were enrolled 

full-time and 15 children were enrolled part-time at each center. Ages of all children at 

each center ranged from infancy to 5 years of age. Staff members at each center received 

no prior notice of sampling days and times. Therefore, no changes in the cleaning and 

sanitation routines were applied. Surface samples, using RODAC plates, were taken 

during the late afternoon before closing. Results from the study indicated that 

environmental surfaces within child care centers may be contaminated with fecal 

coliforms. Of the total 398 surfaces sampled in the study, 17 (4.3%) were positive for 

fecal coliforms. Positive samples were obtained from toilets, diapering items, floors, 

furniture, and refrigerator handles.  

The prevalence of rotaviruses was studied by Keswick and others (1983) on 

environmental surfaces and teacher’s hands in child care facilities. Rotavirus is the most 

common cause of diarrhea in children worldwide and the leading cause of diarrhea in 

children less than 2 years old in day care centers (Keswick et al., 1983; Parashar et al., 

1998). Samples from 25 areas or objects in an adjacent toilet and kitchen area were 

collected over a three day period in a single child care facility where 6 to 18-month old 

 33



children were enrolled. Results from the study indicated that 4 out of 25 total samples 

(16%) were positive for rotaviruses by fluorescence assays (FA). However, no fecal 

contamination was obviously present on any of the surfaces. The positive surfaces 

included a refrigerator door handle, a diaper pail lid, and sink, as well as the hand of a 

teacher who frequently diapered the children. The diaper changing counter was sampled a 

total of three times and was found negative each time.  

Similar studies have been performed to evaluate the microbiological quality of 

food contact surfaces in schools and assisted-living facilities. Henroid and others (2004) 

conducted a microbiological evaluation of 40 school foodservice operations assessing the 

effectiveness of cleaning and sanitation programs of five food contact surfaces in Iowa 

schools. The surfaces evaluated included food preparation tables, cooking equipment, and 

serving trays which could cross-contaminate foods. For this study, microbial count limits 

were based partly on standards set by the U.S. Food Code for cleaned and sanitized 

equipment. The limits for acceptance were: APC < 1.3 log10 CFU, Enterobacteriaceae 

count < 1.0 log10 CFU, and Staphylococcus aureus < 1.0 log10 CFU per sample. Mean 

aerobic plate counts for all surfaces sampled (food preparation counter, mixing bowl or 

steam-jacketed kettle, handwashing sink handle, refrigerator or freezer handle, and meal 

tray) were high and ranged from 1.33 to 4.65 log10 CFU/cm2. Mean ranges for the 

Enterobacteriaceae count were 0.16 to 1.22 log10 CFU/cm2 and for the S. aureus count, 

mean counts ranged from 0.16 to 3.07 log10 CFU/cm2. The handwashing sink had the 

highest mean bacterial counts followed by the refrigerator/freezer handle. For APC of the 

food contact surfaces, 36 of 40 (90%) school kitchens had an acceptable number on at 

least one of the food contact surfaces. For Enterobacteriaceae and S. aureus, all 40 

schools achieved acceptable limits for the food preparation table and the meal trays 

sampled. Results of the study indicated that microbial standards for surface sanitation are 

achievable in schools.  

In a similar study, Sneed and others (2004) studied 40 assisted-living facilities in 

Iowa to assess the microbiological quality of food contact surfaces (food preparation 

tables, cutting boards, etc.) and a surface that could cross-contaminate food (refrigerator 
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handles) to determine the effectiveness of the cleaning and sanitation programs within the 

facilities. As in the previous study, limits were set for the APC, Enterobacteriaceae, and 

Staphylococcus aureus. Mean aerobic plate counts for all surfaces sampled (work 

table/counter, cutting boards, mixing bowl/equipment, and refrigerator/freezer handle) 

ranged from 1.51 to 3.25 log10 CFU/cm2. Mean ranges for the Enterobacteriaceae count 

were 1.34 to 2.55 log10 CFU/cm2 and for S. aureus, mean counts ranged from 0.50 to 2.79 

log10 CFU/cm2. The cutting board sample had the highest mean APC, while the mixing 

bowl/equipment had the highest Enterobacteriaceae and S. aureus mean bacterial counts. 

For APC, the majority of facilities exceeded the set standards for cutting boards (72.5%) 

and mixing bowl/equipment (70%). For Enterobacteriaceae 33 facilities met the set 

standard for all five samples and for S. aureus 17 facilities achieved acceptable limits for 

all five samples. Results from this study indicate that cross-contamination from these 

surfaces is a risk for foodborne illness within these facilities.  
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3 MATERIALS AND METHODS 

3.1 Sampling Sites and Surface Selections 

A microbiological survey was conducted in six (6) Knoxville area child care 

facilities. The facilities represented three large (> 100 children) and three small (< 50 

children) centers. Each child care facility was tested twice monthly over the course of an 

eight (8) month period for a total of 16 sampling periods per center. Four areas, one food 

service area, one diaper area, and two food preparation areas, within the child care 

facilities were sampled. The food service area and the food preparation areas consisted of 

three food contact surfaces, two food preparation surfaces (i.e. kitchen counters) and one 

food service surface (i.e. children’s eating table), while the diaper changing area 

consisted of one non-food contact surface (i.e. diaper changing surface). All surfaces 

were tested three times daily, pre-opening, during lunch, and following final clean-up of 

the day, to monitor the microbiological quality of each surface throughout the day.  

Surfaces of each area varied with surface types including:  plastic laminate for 

food service surfaces, stainless steel, grouted tile, plastic laminate, and wooden laminate 

for food preparation surfaces, and acrylic solid surface and plastic padding for diaper 

changing surfaces.  

3.2 Sample Preparation for Microbiological Analysis 

Microbiological analysis of surfaces was done by swabbing a 50cm2 area using a 

sterile stainless steel template. Sampling was performed by swabbing the area 

horizontally, from one side of the template to the other, and repeating vertically, and then 

horizontally again using 3M™ Quick Swabs (3M™ Microbiology; St. Paul, MN) 

following manufacturers instructions. Samples were transported to the laboratory and 

then plated onto Aerobic Count (AC) Plates (Petrifilm, 3M™ Microbiology) and E. 

coli/Coliform Count Plates (Petrifilm, 3M™ Microbiology) following manufacturer’s 

instructions. Plates were incubated with the clear side up in stacks of up to 20 at 32°C for 

48 hours. After incubation the plates were counted on a standard colony counter as per 
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manufacturers instructions and the results were recorded number of colony forming units 

(CFU) per 50 cm2. 

3.3  Rapid Sanitation Assays  

All rapid sanitation assays were done using a sterile, stainless steel template with 

a 50 cm2 area exposed. Sampling was performed by swabbing the 50 cm2 area 

horizontally, from one side of the template to the other, and repeating vertically, and then 

horizontally again using AccuPoint ATP Surface Samplers with the AccuPoint ATP 

Sanitation Monitoring System (Neogen®, Inc.; Lansing, MI), Pro-tect® hygiene surface 

swabs (Biotrace, Neogen®, Inc.; Cincinnati, OH), and SpotCheck™ glucose swabs 

(Weber Scientific, Hygiena LLC; Camarillo, CA) following manufacturer’s instructions 

for each swab. Rapid method results were read within 5 seconds to 10 minutes after 

sampling depending on manufacturer’s instructions.  
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4 MICROBIOLOGICAL ANALYSIS OF FOOD CONTACT SURFACES IN 

CHILD CARE CENTERS 

4.1   Abstract 

According to the CDC, foodborne illness causes approximately 5,000 deaths each 

year and approximately one-third of those are children (CDC 2004). Since child care 

centers are an important part of society, there is a need to survey and assess sanitation of 

potential food contact and non-food contact surfaces within these facilities. A study of six 

child care centers in Knoxville, TN was conducted to assess the microbiological quality 

of three food contact surfaces, (food service surfaces and food preparation surfaces) and 

one non-food contact surface (diaper changing surfaces) to determine the effectiveness of 

cleaning and sanitization procedures within the facilities. Bacterial counts, aerobic plate 

counts, and E. coli/coliform counts of a 50 cm2 area on all surfaces were determined 

using standard microbiological swabbing methods. Analysis was performed on all 

surfaces for a total of 1,149 samples. Samples were taken three times a day, pre-opening, 

lunch time, and following final clean-up, twice per month for eight months in each child 

care center (n = 288).  

Mean log APC counts over the survey period were 3.04, 3.93, 3.08, 4.50, 3.45 and 

4.16 log10 CFU/50 cm2 for centers 1 through 6, respectively. Mean coliform counts were 

1.35, 17.96, 5.59, 87.55, 10.22, and 20.43 CFU/50 cm2 for the same respective centers. 

There was a significant difference between counts for center size based on mean log APC 

with large centers having lower mean log APC (3.55 log10 CFU/50 cm2) than small 

centers (3.81 log10 CFU/50 cm2). As for coliform counts, large centers had higher mean 

coliform counts (35.62 CFU/50 cm2) than small centers (10.72 CFU/50 cm2). However, 

there was no significant difference between counts for center size based on coliform 

counts. Coliforms were detected on 283 of 1,149 (24.7%) samples with counts ranging 

from 1 to 2,000 CFU/50 cm2 while E. coli was detected on 18 of 1,149 (1.6%) samples 

with counts ranging from 1 to 35 CFU/50 cm2.  
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These findings demonstrate that microbial contamination is present on food 

contact surfaces of child care centers. Due to the high risk of foodborne illness associated 

with children, the possibility of cross-contamination from food contact or non-food 

contact surfaces to foods is an aspect of food safety that requires more attention. 

Emphasis on training and the development of modified standard sanitation operating 

procedures (SSOPs) for child care centers is needed to reduce potential hazards. 

4.2   Introduction 

Safe food handling in child care centers is important because children are one of 

the highest risk groups for foodborne illness (Gerba et al., 1996). Food handling practices 

within these facilities have a great impact on food safety; however, little research has 

been done to assess the facilities or their practices. Petersen and Bressler (1986) 

suggested that the food preparation area of a child care center may play a role in the 

transmission of disease among children. Effectively cleaned and sanitized food contact 

surfaces could help reduce environmental contamination and thus its role in the 

transmission of disease in child care centers.  

Food contact surfaces are a major concern for food service facilities in controlling 

the spread of foodborne pathogens. Food service areas are considered critical to health, 

and therefore the microbiological quality of these surfaces as well as non-food service 

surfaces in child care facilities must be surveyed and assessed. Although many cases of 

foodborne illness have been attributed to inadequate cooking, temperature abuse, and the 

use of contaminated raw ingredients, cross-contamination between raw and cooked foods 

via food contact surfaces has also been identified as a significant risk factor (DeCesare et 

al., 2003). Survey and surveillance data indicate that 25% of people do not clean and 

sanitize surfaces after cutting raw meat or poultry (National Center for Health Statistics 

1995). Without adequate cleaning and sanitizing, residues of raw meat, poultry exudates, 

and other foods may remain on kitchen surfaces, serving as sources of microbial 

contamination for raw vegetables or other ready-to-eat (RTE) foods (DeCesare et al., 

2003).  
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Studies have shown that both the type of contact surface and the level of organic 

matter can influence the survival of foodborne pathogens on food contact surfaces. Frank 

and Chmielewski (1997) conducted a study to evaluate the effectiveness of chlorine on 

the sanitation of stainless steel and other domestic food preparation surfaces. Results 

from the study indicated that sodium hypochlorite solution was most effective on smooth 

stainless steel and polycarbonate surfaces reducing cell populations to less than 1.0 log 

CFU/cm2. Cell populations remained greater than 1.0 log CFU/cm2 on abraded stainless 

steel and mineral resin surfaces. Mafu and others (1990) studied the efficiency of sodium 

hypochlorite against Listeria monocytogenes on stainless steel, glass, polypropylene and 

rubber surfaces. For stainless steel and glass a concentration of 200 ppm, the 

manufacturer’s recommended concentration, was effective for inactivation of L. 

monocytogenes. However, for polypropylene and rubber a concentration of 800 ppm was 

required. These results indicate that certain types of food contact surfaces may be better 

suited for use as food contact surfaces within child care centers.  

Although numerous investigators have reported the survival of various enteric 

viruses on food preparation surfaces, there has been few attempts to evaluate the 

persistence of foodborne bacterial pathogens on those same surfaces (DeCesare et al., 

2003). The objective of this study was to survey the microbiological quality of food and 

non-food contact surfaces in child care centers to determine the sanitation quality of these 

surfaces.  

4.3     Materials and Methods 

4.3.1   Sampling sites and surface selections 

A microbiological survey was conducted in six (6) Knoxville area child care 

facilities. The facilities represented three large (> 100 children) and three small (< 50 

children) centers. Each child care facility was tested twice monthly over the course of an 

eight (8) month period for a total of 16 sampling periods per center. Four areas, one food 

service area, one diaper area, and two food preparation areas, within the child care 
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facilities were sampled. The food service area and the food preparation areas consisted of 

three food contact surfaces, two food preparation surfaces (i.e. kitchen counters/cutting 

boards) and one food service surface (i.e. children’s eating table), while the diaper area 

consisted of one non-food contact surface (i.e. diaper changing surface). All surfaces 

were tested three times daily, pre-opening, during lunch, and following final clean-up of 

the day, to monitor the microbiological quality of each surface throughout the day. 

Surface types of each area within each center varied and included  plastic laminate for 

food service surfaces, stainless steel, grouted tile, plastic laminate, and wooden laminate 

for food preparation surfaces, and acrylic solid surface and plastic padding for diaper 

changing surfaces (Table 4.1). 

 

Table 4.1:  Sampling area surface types by center 

 Surface Types (Area Number)  

 

Center # 

Food Service 

(No. 1) 

 Diaper Area 

(No. 2) 

 Food Prep No. 1 

(No. 3) 

Food Prep No. 2 

(No. 4) 

1 (Large) Plastic Laminate Solid-Surface Stainless Steel Stainless Steel 

2 (Small) Plastic Laminate Plastic Pad Grouted Tile Grouted Tile 

3 (Small) Plastic Laminate Plastic Pad Plastic Laminate Wood Laminate 

4 (Small) Plastic Laminate Plastic Pad Plastic Laminate Plastic Laminate 

5 (Large) Plastic Laminate Solid-Surface Plastic Laminate Plastic Laminate 

6 (Large) Plastic Laminate Plastic Pad Stainless Steel Stainless Steel 
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4.3.2   Sample preparation for microbiological analysis 

Sampling was done using a sterile stainless steel template, which exposed a 

surface area of 50 cm2. Flat food contact surfaces and non-food contact surfaces were 

swabbed using 3M™ Quick Swabs (3M™ Microbiology; St. Paul, MN). Sampling was 

performed by swabbing the area horizontally, from one side of the template to the other, 

and repeating vertically, and then horizontally again using 3M™ Quick Swabs following 

manufacturer’s instructions to determine the aerobic plate count (APC). Swabs contained 

1 ml of Letheen broth which aided in the neutralization of possible sanitizers on surfaces. 

After sampling, the swabs were marked with an identification code and placed in food 

storage bags in an insulated tote bag and transported to the Food Microbiology 

Laboratory at The University of Tennessee. The total transport time was less than 30 

minutes and samples were stored at 4°C until testing. All samples were analyzed within 1 

hour of arrival at the laboratory. Using Aerobic Count (AC) Petrifilm Plates (3M™ 

Microbiology; St. Paul, MN), the samples were plated and incubated according to 

manufacturers instructions. Swab samples were vigorously shaken and 1 ml of broth was 

plated onto the Aerobic Count (AC) Petrifilm Plates. The plates were incubated with the 

clear side up in stacks of up to 20 at 32°C for 48 hr. After incubation all red colonies, 

regardless of size or intensity, on the plates were counted on a standard colony counter.  

Sampling procedures for E. coli/Coliform Counts were done in a similar manner 

to that of the aerobic plate count. After surface swabbing was completed, samples were 

plated and incubated according to manufacturers instructions. Swab samples were 

vigorously shaken and 1 ml of broth was plated onto E. coli/Coliform Count Petrifilm 

Plates (3M™ Microbiology; St. Paul, MN). The plates were incubated with the clear side 

up in stacks of up to 20 at 32°C for 48 hr. For this method, all red colonies on the plate 

surrounded by one or more gas bubbles were counted as coliforms; whereas, all blue 

colonies were counted as E. coli colonies. Results for all counts were reported as the 

number of colony forming units per 50 cm2.  

 

 42



4.3.3    Statistical analysis 

Tukey’s multiple range test and ranking analyses were performed to determine 

significant differences (P<0.05) between centers, center sizes (small vs. large centers), 

area, surfaces, and time of day. Least squares means were analyzed using Statistical 

Analysis System (SAS Institute, Cary, NC).  

4.4   Results  

Results for various microbiological analyses were expressed as the mean number 

of total bacteria (APC) and coliforms per 50 cm2 area and by prevalence rates of the 

presence of coliforms and E. coli, i.e., the percentage of total samples in which coliforms 

or E. coli were detected, per 50 cm2 area.  

Mean log APC counts over the survey period were 3.04, 3.93, 3.08, 4.50, 3.45 and 

4.16 log10 CFU/50 cm2 for centers 1 through 6, respectively (Table 4.2). Mean coliform 

counts were 1.4, 18.0, 5.6, 87.6, 10.2, and 20.4 CFU/50 cm2 for the same respective 

centers (Table 4.2). Centers 1, 3 and 5 were similar and had significantly lower (p < 0.05) 

mean log APC counts and mean coliform counts than centers 2, 4 and 6. Center 4 had 

both the highest mean log APC and coliform counts of other centers.  

Mean bacterial counts by center size per 50 cm2, small (< 50 children) versus 

large (> 100 children) are shown in Table 4.3. Large centers had a significantly lower 

mean (p < 0.05) log APC (3.55 log10 CFU/50 cm2) than small centers (3.81 log10 CFU/50 

cm2). As for coliform counts, large centers had higher mean coliform counts (35.6 

CFU/50 cm2) than small centers (10.7 CFU/50 cm2). However, there was no significant 

difference between counts for center size based on coliform counts.  
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Table 4.2: Mean bacterial counts by child care center for all surfaces.  

 

Center 

Mean Aerobic Plate Count  

(log10 CFU/50cm2) *

Mean Coliform Count 

(CFU/50cm2) 

1 3.04C 1.4D

2 3.93B 18.0C

3 3.08C 5.6D

4 4.50A 87.6A

5 3.45C 10.2D

6 4.16AB 20.4B

* log10 CFU = number of colony-forming units in logs; Letter groupings within columns indicate 

significance difference at P<0.05; Mean separation results for log APC derived from Least Squares Means 

test. Mean separation results for coliforms derived from non-parametric ranking analysis. 

 

Table 4.3: Mean bacterial counts by child care center size for all surfaces 

 

Center Size†

Mean Aerobic Plate Count 

(log10 CFU/50cm2) *

Mean Coliform Count 

(CFU/50cm2) 

Small 3.81A 10.7 

Large 3.55B 35.6 
* log10 CFU = number of colony-forming units in logs; † Center Size: large centers (> 100 children) = 1, 5, 

and 6 and small centers (< 50 children) = 2, 3, and 4; Letter groupings within columns indicate significance 

difference at P<0.05; Mean separation results for log APC derived from Least Squares Means test. Mean 

separation results for coliforms derived from non-parametric ranking analysis. 
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Mean bacterial counts by area per 50 cm2 within centers are shown in Table 4.4. 

Mean log APC counts were 3.78, 3.63, 3.54 and 3.78 log10 CFU/50 cm2 for food service, 

diaper changing, food preparation 1, and food preparation 2, respectively. Mean coliform 

counts by area were 23.2, 5.2, 18.0, and 45.6 CFU/50 cm2 for the same respective areas. 

There was no significant difference between areas for mean log APC counts or mean 

coliform counts. For mean log APC counts, least squares means were generated in order 

to determine if center size had an effect on mean log APC counts of areas within centers.  

Mean log APC counts by area for small centers were 3.86, 3.51, 3.73, and 4.15 

log10 CFU/50 cm2 for areas 1 through 4, respectively (Table 4.5). For areas within larger 

centers, mean log APC counts were 3.70, 3.76, 3.34, and 3.42 log10 CFU for the same 

respective areas. The diaper changing area and food preparation area 1 were similar but 

were significantly different (p < 0.05) than the food preparation area 2 within small 

centers. Food preparation area 2 had the highest mean log APC counts within small 

centers. In comparison to small centers, the diaper changing area and food preparation 

area 1 in large centers were significantly different (p < 0.05) from each other but were 

similar to the food service area and food preparation area 2. The diaper changing area had 

the highest mean log APC counts within large centers.  

In order to determine if significant differences exist between surface types, plastic 

laminate, acrylic solid surface, wood laminate, stainless steel, plastic padding, and 

grouted tile within each center least squares means of log APC and mean coliform counts 

were analyzed. Table 4.6 shows mean log APC and mean coliform counts by surface 

type. Mean log APC counts were 4.05, 3.90, 3.81, 3.39, 3.08, and 3.07 (log10 CFU/50 

cm2) for grouted tile, plastic padding, plastic laminate, stainless steel, acrylic, and 

wooden laminate, respectively. Significant differences (p < 0.05) were found between 

surface types with plastic laminate, plastic padding, and grouted tile being similar, but 

significantly different from acrylic, wood laminate, and stainless steel surfaces.   
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Table 4.4: Mean bacterial counts in child care centers by sampling area 

 
Mean Aerobic Plate Count  

(log10 CFU/50cm2) *

Coliform Count 

(CFU/50cm2) 

Area Mean Mean 

Food Service 3.78 23.2 

Diaper Changing 3.63 5.2 

Food Preparation 1 3.54 18.0 

Food Preparation 2 3.78 45.6 
* log10 CFU = number of colony-forming units in logs; Letter groupings within columns indicate 

significance difference at P<0.05; Mean separation results for log APC derived from Least Squares Means 

test. Mean separation results for coliforms derived from non-parametric ranking analysis. 
 
 

Table 4.5:  Mean bacterial counts in child care centers by center size and area within 

centers  

Center Size† Area 
Mean Aerobic Plate Count 

(log10 CFU/50cm2) *

Food Service 3.86AB

Diaper Changing 3.51B

Food Preparation 1 3.73BSmall 

Food Preparation 2 4.15A

Food Service 3.70AB

Diaper Changing 3.76A

Food Preparation 1 3.34BLarge 

Food Preparation 2 3.42AB

* log10 CFU = number of colony-forming units in logs; † Center Size: large centers (> 100 children) = 1, 5, 

and 6 and small centers (< 50 children) = 2, 3, and 4; Letter groupings within center size columns indicate 

significance difference at P<0.05; Mean separation results for log APC derived from Least Squares Means 

test. 
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Table 4.6: Mean bacterial counts in child care centers by surface type 

 

Surface/(n)†

Mean Aerobic Plate Count  

(log10 CFU/50cm2) *

Mean Coliform Count 

(CFU/50cm2) 

Plastic Laminate (480) 3.81A 37.5 

Acrylic  (96) 3.08B 2.6 

Wood Laminate  (95) 3.07B  9.1 

 Stainless Steel (192) 3.39B 10.7 

Plastic Padding (143) 3.90A 7.5 

Grouted Tile (143) 4.05A 16.6 

* log10 CFU = number of colony-forming units in logs; † (n) =total number of samples per surface type; 

Letter groupings within columns indicate significance difference at P<0.05; Mean separation results for log 

APC derived from Least Squares Means test. Mean separation results for coliforms derived from non-

parametric ranking analysis. 

 

Grouted tile had higher mean log APC counts than all other surfaces. Mean coliform 

counts were 37.5, 16.6, 10.7, 9.1, 7.5, and 2.6 CFU/50 cm2 for plastic laminate, grouted 

tile, stainless steel, wood laminate, plastic padding, and acrylic, respectively. Non-

parametric ranking analysis indicate that plastic laminate surfaces have higher coliform 

counts than all other surfaces.  

Based on surface type samples, coliforms were detected in 283 of 1,149 (24.7%) 

samples and ranged from 1 to the maximum detectable level of 2,000 CFU/50 cm2 (Table 

4.7). Plastic laminate and plastic padding surfaces had the highest percentage of positive 

coliforms compared to other surfaces.  

E. coli was detected in 18 of 1,149 (1.6%) samples and ranged from 1 to 35 

CFU/50 cm2 (Table 4.8). Plastic padding and grouted tile surfaces had the highest 

percentage of E. coli counts compared to other surfaces. Statistical analysis using the 

Fisher’s Exact test indicated that there was a significant association between the 

presence/absence of E. coli and the type of surface tested (exact p=0.0015). 
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Table 4.7:  Frequency of coliform positive samples on surfaces in child care centers by 

surface type 

Surface Coliform count/(n)* % positive  Range‡  

Plastic Laminate 137/480 28.5 1 – 2000 

Acrylic 13/96 13.5 1 – 195 

Wood Laminate 20/95 21.1 1 – 600 

 Stainless Steel 35/192 18.2 1 – 573 

Plastic Padding  44/143 30.8 1 – 398 

Grouted Tile 34/143 23.8 1 – 2000 
* Coliform counts CFU per 50 cm2/ number of coliform positive samples per total number of samples; 

‡Range of coliform CFU’s or actual count for area; Statistical analysis for % coliform by surface type 

derived from Chi-Square test (p< 0.0018). 

 

Table 4.8:  Frequency of E. coli positive samples on surfaces in child care centers by 

surface type 

Surface  E. coli count/(n)* % positive  Range‡  

Plastic Laminate 1/480 0.2 7 – 27 

Acrylic 1/96 1.0 3 

Wood Laminate 1/95 1.1 35 

 Stainless Steel 2/192 1.0 2 

Plastic Padding  8/143 5.6 1 – 12 

Grouted Tile 5/143 3.5 1 
* E. coli counts CFU per 50 cm2/ number of E. coli positive samples per total number of samples 

‡ Range of E. coli CFU’s or actual count for area; Statistical analysis for % E. coli by surface type derived 

from Fisher’s Exact Test (exact p=0.0015). 

 

 

 48



Mean log APC counts by time were 3.71, 3.88 and 3.46 log10 CFU/50 cm2 for pre-

opening, lunch time, and final clean-up, respectively (Table 4.9). Mean coliform counts 

were 12.3, 40.8, and 16.0 CFU/50 cm2 for the same respective times (Table 4.9). For 

mean log APC counts, pre-opening and lunch time were significantly higher than final 

clean-up. For mean coliform counts, pre-opening and final clean-up were significantly 

lower than lunch time.  

Tables 4.10 and 4.11 show the frequency of coliform and E. coli positive samples 

by time per area. Coliforms were detected in 283 of 1,149 (24.6%) samples and ranged 

from 1 to the maximum detectable level of 2,000 CFU/50 cm2. 47.7% of the positive 

samples were detected in the food preparation areas and 26.3% in the food service area. 

The diaper changing area had the lowest percentage (24.3%). E. coli was detected in 18 

of 1,149 (1.6%) samples and ranged from 1 to 35 CFU/50 cm2. 50% of the positive 

samples were from the diaper changing area and 44% from the food preparation areas. 

   

 

Table 4.9: Mean bacterial counts on surfaces in child care centers by time of sampling 

 

Time 

Mean Aerobic Plate Count  

(log10 CFU/50cm2) *

Mean Coliform Count 

(CFU/50cm2) 

Pre-opening 3.71A 12.3B

Lunch  3.88A 40.8A

Final Clean-up 3.46B 16.0B

* log10 CFU = number of colony-forming units in logs; Letter groupings within columns indicate 

significance difference at P<0.05; Mean separation results for log APC derived from Least Squares Means 

test. Mean separation results for coliforms derived from non-parametric ranking analysis. 
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Table 4.10: Frequency of coliform positive samples in child care centers by sampling 

time and area sampled  

Area 

Food Service 

(n = 289)†

Diaper Area 

(n = 288) 

Food Preparation 1 

(n = 289) 

Food Preparation 2

(n = 286) 

Time POS‡ Range* POS Range POS Range POS Range 

Pre-opening 16 1-133 19 1-398 24 1-980 27 1-970 

Lunch 36 1-2000 31 1-78 23 1-1260 34 1-1980 

Final Clean-up 24 1-354 20 1-53 14 1-560 15 1-1030 

† n = total number of samples taken for each area; ‡ Number of positive samples for coliforms;* Range of 

coliforms CFUs or actual counts for area. 

 

Table 4.11: Frequency of E. coli positive samples in child care centers by sampling time 
and area sampled 

Area 

Food Service 

(n = 289)†

Diaper Area 

(n = 288) 

Food Preparation 1 

(n = 289) 

Food Preparation 2

(n = 286) 

Time POS‡ Range* POS Range POS Range POS Range 

Pre-opening 0 - 2 1-10 1 27 2 1-35 

Lunch 0 - 3 1 0 - 4 1-2 

Final Clean-up 1 7 4 1-12 1 1 0 - 

† n = total number of samples taken for each area; ‡ Number of positive samples for E. coli;* Range of E. 

coli CFU’s or actual count for area. 
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4.5   Discussion 

Environmental microbiological surveys have been widely used as a means of 

assessing the presence of bacterial contamination on food contact surfaces within food 

processing and retail facilities. Even though these surveys have some limitations in terms 

of receiving results in a timely manner, they do allow for a quantitative assessment of the 

number of bacteria present on a surface. Results from this survey indicate that microbial 

contamination is present on food contact and non-food contact surfaces in child care 

facilities and possibly result from inadequate cleaning and sanitizing practices as well as 

inadequate personal hygiene by facility personnel. As indicated by the results, there were 

a number of factors, such as center size, area within the facilities, surface type, and time 

of day that influenced the bacterial contamination present on food contact and non-food 

contact surfaces within these facilities.  

Significant differences between centers and center size may be due to the design 

and construction of facilities which may in turn affect the availability of handwashing 

facilities and the separation of various age groups of children within the centers. The 

various facility design characteristics of each center in this study are shown in Table 4.12.  

 

Table 4.12:  Facility design characteristics of child care centers 

 Center # †

Facility Design 1 2 3 4 5 6 
Handwashing Y Y N Y Y Y 

Age Grp. Sep.a Y Y Y/N Y Y Y 
Bathroom in Room Y Y N N Y N 

Cafeteria Y N N N N N 
Mult. Duties b N Y Y N N Y 

†Center sizes: small centers (<50 children) = 2, 3, and 4; large centers (>100 children) = 1, 5, and 6 
a Children within center separated by age group; b Staff with multiple duties, i.e. diaper changing, food 

preparation, etc. 
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All centers except center 3 had easily accessible handwashing facilities in the 

classrooms. Allwood and others (2004) investigated the availability of handwashing 

facilities in 123 retail food establishments (RFEs) and determined that inaccessibility of 

handwashing facilities within the RFE’s had an impact on the frequency of handwashing. 

Only 68 (55%) of RFE’s in the study were fully equipped with proper and accessible 

handwashing facilities according to the Minnesota food code. Petersen and Bressler 

(1986) performed an environmental microbiological study in child day care centers where 

hands of care givers within the centers were sampled. The authors concluded that hands 

comprise a major focus for fecal contamination and that handwashing facilities should be 

readily available to staff and children. This is particularly necessary in diaper changing 

areas and food preparation areas. While center 3 had no easily accessible handwashing 

facilities, it had the second lowest mean log APC counts (3.08 log10 CFU/50 cm2) and 

mean coliform counts (5.6 CFU/50 cm2) throughout the study. Therefore accessibility of 

handwashing facilities was not the only factor in the amount of bacterial contamination 

found on food contact surfaces within the facilities. 

Another factor that may have affected the amount of bacterial contamination 

present in centers was the separation of children by age group within centers. All child 

care centers in this study had separate rooms for each age group, i.e., infants, toddlers, 

and young children. Petersen and Bressler (1986) found that the amount of fecal 

coliforms in surface, air and hand samples was related to the age of children. This was 

due to the fact that fecal coliforms are generally associated with diaper changing and as 

children become toilet trained this factor lessens. With children being separated by age 

group, diaper changing areas can be restricted to locations designated for infants. Toddler 

rooms can also have restricted, designated diaper changing areas as well. However, they 

are also equipped with training toilets and junior size toilets to begin the toilet training 

process. In the present study, centers 1, 2 and 5 were equipped with bathrooms 

designated for toilet training, while center 3, 4, and 6 were not. Based on significant 

difference results for log APC and coiforms, center 1 and center 5 were similar having 

significantly lower (p < 0.05) counts than center 2. Therefore, whether or not classrooms 
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were equipped with toilet training facilities did not seem to have an effect on the amount 

of bacterial contamination present.  

  In the present study only one center was equipped with a designated cafeteria 

(Center 1). The dual usage of rooms as classrooms and food service areas in child care 

centers may have an effect on mean log APC counts. Center 1 had the lowest mean log 

APC counts of all centers. Thompson (1994) studied the control and transmission of 

infectious diarrhea in child care settings. The author concluded that the design and 

construction of child care centers were of importance and indicated that the separation of 

diaper changing and toilet areas from food handling and eating areas is necessary. The 

low mean log APC and coliform counts in Center 1 could possibly be attributed to the 

separation of the cafeteria from all other areas in the center. Food preparation areas 

within all centers were centrally located, except for center 4 where the kitchen was 

located in a basement. After preparation, meals were transported and distributed to the 

classrooms. Center 4 had the highest mean log APC counts (4.50 log10 CFU/50 cm2) out 

of all centers. This difference in location of the food preparation area may have had an 

effect on mean log APC counts in this study. 

Staff, i.e., teachers and directors, at some centers (2 and 3) had to perform 

multiple duties, such as diaper changing and food preparation. There is an increased risk 

of transmission of infectious diarrhea where staff combine diaper changing and food 

preparation duties (Ekanem et al., 1983; Thompson 1994). Center 2 had the second 

highest mean log APC counts (3.93 log10 CFU/50 cm2) and center 3 had the lowest mean 

log APC counts (3.08 log10 CFU/50 cm2). However, center 3 was similar to centers 1 and 

5 whose staff did not have multiple duties. Therefore, the factor of multiple duties for 

staff may have had little effect on the mean log APC counts found in this study.  

In addition to facility design and construction, the association of improper 

cleaning and sanitizing and handwashing procedures within these facilities may be linked 

to various demographic variables, such as gender, ethnicity, age, education, and 

environmental setting, i.e., metropolitan versus rural.  
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The various demographic characteristics of individuals working in child care 

centers in this study are shown in Table 4.13. Klontz and others (1995) studied the 

prevalence of food preparation behaviors associated with increased risk of foodborne 

illness by various demographic characteristics. The study indicated that one-fourth (423 

out of 1,620 respondents) do not clean and sanitize cutting boards after cutting raw meat 

or chicken. Males and individuals between the ages of 18 and 39 are more likely to use an 

unwashed cutting board (p< 0.01) as compared to females and individuals over 40 years 

of age. There was no significant difference between education, having less than a high 

school education versus more, and race, white versus non-white, demographics. Patil and 

others (2005) conducted a meta-analysis to study consumer food safety knowledge and 

practices based on demographic differences. Demographic characteristics included 

gender, ethnicity (Caucasian, Hispanic, African American, Asian, and others), age 

(young, 18-29, mid-age, 30 to 54, senior), education (less than high school, high school, 

more than high school), and metropolitan (metro, greater than 1,000,000) versus 

nonmetropolitan (nonmetro, <1,000,000). 

 

Table 4.13:  Demographic characteristics of individuals working in child care centers 

 Center # †

Demographic 
Characteristics 

1 2 3 4 5 6 

Gender Female Female Female Female Female/Male Female/Male 
Ethnicitya W/AA W/AA W W AA/W AA/W 

Ageb All 
 

All 
 

All Mid-age 
(30 - 54) 

All Young (18-29) 
Mid-age (30- 54) 

Educationc 

 
> HS 

 
= HS 
> HS 

= HS > HS > HS = HS 
> HS 

Metropolitan vs 
Rural 

Metro. 
 

Metro. Rural Rural Metro. Rural 

† Center Sizes: Small centers (< 50 children) = 2, 3, and 4; Large centers (> 100 children) = 1, 5, and 6;      
a Ethnicity: AA= African American, W= White; b Age: Young = 18-29, Mid-age = 30-54, Senior = 55 +;     
c Education: < High school, = High school, > High School. 
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Results from the study indicated that significant differences (p <0.05) among various 

demographic categories were evident. For good hygiene practices, that included washing 

hands before and after handling raw meat and poultry, before and after food preparation, 

and after bathroom use, females (71.4%) were more likely to use good hygiene practices 

than males (58.1%). Significant differences between Caucasians and Hispanics, and 

African Americans and Asians were not significantly different. 72.0% of African 

Americans reported using good hygiene practices, followed by Asians (70.6%), 

Hispanics (65.9%), and Caucasians (65.7%). For the age demographic, 70.3% of seniors 

(55 +) reported using good hygiene practices as opposed to 63.1% of young people (18 – 

29). For the prevention of cross-contamination, which included washing cutting boards 

before reuse and washing counter tops with soap and water, results for the various 

demographics were also generated. 81.7% of females use techniques that prevent cross-

contamination as opposed to 63.9% of males. For ethnicity, 83.0%, 80.0%, 80.0%, and 

74.0%, for African American, Caucasian, Hispanic, and Asian respectively, report using 

cross-contamination prevention techniques. Again, as seen for good hygiene practices, 

seniors (82.4%) have the highest percentage of using cross-contamination prevention 

techniques, with young age group individuals with the lowest percentage. Metropolitan 

status had the highest percentage, 81.0% of prevention technique usage; however, non 

metropolitan had a percentage of 80.0%. As compared to the demographic studies 

previously discussed, interpretation of educational demographics in this study differed.  

Due to the majority of the staff at all centers being female, a mixture of either 

African American and/or White, and a mixture of various age groups, the impact of 

gender, ethnicity, and age on food safety could not be sufficiently analyzed.  

Varying degrees of education received by facility staff may affect the level of 

sanitation within centers. Continuing education and training of child care center staff is 

necessary to update knowledge on food safety and to encourage the use of appropriate 

preventative measures during food preparation and food service. It is necessary for 

directors within these facilities to be able to properly describe and demonstrate proper 
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cleaning and sanitizing and handwashing procedures to all staff within the facility in 

order to ensure that appropriate procedures are taking place at all times. If directors are 

not able to properly demonstrate and describe handwashing and sanitizing procedures, 

then staff at child care centers will not have the knowledge to be able to perform these 

procedures correctly due to improper training. Allwood and others (2004) surveyed the 

effect of handwashing training, and the ability of the person-in-charge (PIC) to 

demonstrate proper handwashing techniques to staff in retail food establishments (RFE). 

Of 123 RFE’s, handwashing training ranged from no formal training in 14% of 

establishments to six different methods in one establishment. RFE’s that used one method 

of training, such as demonstration and explanation, employees were two to three times 

more likely to demonstrate proper technique than were employees who received no 

formal training. However, the PIC’s ability to demonstrate proper technique was a major 

factor in the effectiveness of all training methods. In the study, 60 to 80% of employees 

were able to demonstrate proper handwashing techniques when they received training 

from a PIC who demonstrated handwashing techniques correctly; however, 30% of 

workers could not demonstrate proper techniques due to improper training by PIC’s.  

Based on the literature as well as bacterial contamination trends seen within each 

center in this study, there is an indication that demographics may have an effect on the 

amount of bacterial contamination found in child care centers.  

The mean log APC and coliform counts for all areas within centers were not 

significantly different. There was an expectation that the diaper changing areas would 

have higher bacterial counts than other areas. However this was not the case. The mean 

coliform counts for diapering areas were notably lower with an overall mean count of 

5.18 CFU/50 cm2. The lower levels of bacterial counts found in the diapering area might 

be attributed to the heavy use of sanitizers in this area. Diapering areas may be more 

regularly sanitized due to common knowledge of the health risk associated with these 

areas, whereas other areas are not as frequently sanitized. Using RODAC plates, Petersen 

and Bressler (1986) had similar findings of lower mean numbers of coliforms on 

commonly touched surfaces, such as diaper changing areas and tables, in seven child care 
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centers. Results of their study indicated that mean counts of coliforms were comparable; 

however, the diaper changing areas were noticeably lower (77 CFU/ RODAC plate) than 

the overall mean of 240 CFU per RODAC plate as compared to all other surfaces.  

Within small centers, the diaper changing area had the lowest mean log APC 

counts (3.51 log10 CFU/50 cm2) (Table 4.5). However, for larger centers the diaper 

changing area had the highest mean log APC counts (3.76 log10 CFU/50 cm2). This may 

be due to the fact that there is a greater chance of contamination due to larger numbers of 

children. Attendance at larger child care centers has been shown to be a significant risk 

factor for the transmission of bacterial pathogens such as E. coli (Belongia et al., 1993). 

The individual areas, i.e., food service, diaper changing, and food preparation, 

sampled during the study were made of materials including plastic laminate, acrylic solid 

surface, wood laminate, stainless steel, plastic padding, and grouted tile (Table 4.1). 

Prerequisites for food preparation surfaces emphasize durability and cleanability, with the 

liberal use of stainless steel and plastic laminate counter tops. Food service areas should 

consist of easily cleanable tile and plastic laminate surfaces. Surfaces of diaper changing 

areas should be covered with plastic laminate, easily cleaned, and light color so that soil 

can be detected (Petersen and Bressler 1986). 

Mean log APC counts for all surfaces were lowest for acrylic solid surface, 

wooden laminate, and stainless steel (Table 4.6). Plastic laminate, plastic padding, and 

grouted tile had significantly higher mean log APC counts. Higher coliform counts were 

found on plastic laminate followed by grouted tile and plastic padding. The lowest 

coliform counts were for stainless steel and acrylic. Stainless steel has been reported to be 

the ideal material for food processing since it is chemically and physiologically stable at 

various food processing temperatures, easy to clean, and has a high resistance to 

corrosion (Lomander et al., 2004; Zottola and Sasahara 1994). It was expected that 

stainless steel would have a low bacterial count due to its ease of cleaning. Additionally, 

it was expected that grouted tile would have a high bacterial count due to the difficulty of 

cleaning the crevices between tiles making the removal of bacteria more difficult. 
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Stainless steel had high APC counts and coliform counts (DuPont 2005; Lomander et al., 

2004). Grouted tile had both high APC and coliform counts confirming it to be difficult 

to clean and sanitize. One point that should be mentioned is that the total number of 

samples varied by surface type. The total number of samples per surface varied due to the 

fact that there were a larger number of centers containing stainless steel surfaces as 

opposed to only one center containing acrylic surfaces. In addition, certain types of 

surfaces such as grouted tile were only in a single center. Therefore, the level of 

contamination could have been due as much to center as surface. 

Results of prevalence rates of coliforms were somewhat similar to mean coliform 

counts for each surface (Table 4.7). Plastic padding had the highest percentage of 

coliform positive samples by surface type followed by plastic laminate and grouted tile. 

The lowest prevalence rates were seen with acrylic and stainless steel surfaces. Results of 

prevalence rates of E. coli were comparable for plastic laminate, acrylic, stainless steel, 

and wood laminate surfaces (Table 4.8). Based on the percentage of E. coli positive 

samples, it was seen that plastic laminate had the lowest percentage of E. coli positive 

samples, followed by acrylic and stainless steel. Plastic padding and grouted tile had the 

highest percentage of E. coli positive samples. There is a noticeable disparity in the 

number of E. coli positive samples between all other surfaces and plastic padding and 

grouted tile. Again, this could have been due as much to center as surface type. 

Information available for acrylic, plastic laminate, and stainless steel indicates that these 

surfaces are easily cleanable, and non-porous (DuPont 2005; Lomander et al., 2004). 

These factors affect the level of bacterial contamination on the surface. All three surfaces 

had the lowest percentage of E. coli positive samples. It is reasonable to conclude that the 

plastic padding had a higher percentage of E. coli positive samples due to the fact that the 

surface was located in a diaper changing area. The higher percentage of E. coli positive 

samples on the grouted tile can again possibly be attributed to the difficulty in cleaning 

the surface. Therefore, food contact surfaces in child care centers should be free of cracks 

or crevices therefore making them easy to clean. 
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One concern that child care center staff may have after learning of the prevalence 

rates of E. coli within the centers is whether these findings indicate the presence of 

pathogenic E. coli O157:H7. For the detection of E. coli, the PetrifilmTM method was 

employed. E. coli/coliform PetrifilmTM incorporates the substrate 5-bromo-4-chloro-3-

indoyl- β- D-glucuronide (BCIG is a chromogenic GUD substrate). Presumptive E. coli 

colonies may be identified through production of β –glucuronidase (GUD). GUD is 

commonly produced by E. coli and has been utilized as a differential characteristic in 

coliform recovery media containing various β-D-glucuronic acid substrates, such as 4-

methylumbellifery- β- D-glucuronic acid (MUG is a fluorogenic substrate) and BCIG. 

On Petrifilm, E. coli is distinguished from other colonies by the formation of blue 

colonies. Reports indicate that 92-99% of E. coli isolates produce GUD. The pathogenic 

serotype (type II) of E. coli, E. coli O157:H7, differs metabolically from other strains of 

E. coli in that they are slow or non-fermenters of sorbitol and lack the enzyme β –

glucuronidase indicating that these colonies are not E. coli O157:H7 (Kornacki and 

Johnson 2001). Therefore, E. coli on E. coli/coliform PetrifilmTM are not serotype 

O157:H7.  

Mean log APC counts by sampling time showed that pre-opening and lunch time 

were significantly higher (p < 0.05) than following final clean-up of the day. It was 

expected that lunch time would have the highest mean log APC counts. This finding can 

be attributed to the fact that during this time, there is increased traffic and activity within 

the centers. The final clean-up of the day had the lowest mean log APC counts and this 

can be attributed to the decreased traffic and activity after children and staff have left for 

the day. No significant difference between sampling times was found for coliform counts. 

The increase in APC counts from the end of the day to the start of the next day indicates 

surfaces are being contaminated after the centers are cleaned and sanitized. This could be 

explained for some centers by the fact that they are used for other purposes in the evening 

such as churches of community centers. Also, after final clean-up of the day by facility 

staff, after-hours janitorial staff could possibly be placing chairs or equipment on tables 
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in order to clean and sanitize floors. Where no such use could be identified, 

contamination via air or pests is possible. 

Frequency of coliform positive samples by time within area reflected the overall 

coliform results seen for the areas. The lowest number of positive coliform samples for 

the food preparation areas was following clean-up. For the food service area there were 

lower numbers of positive coliform samples at the pre-opening and for the diaper 

changing area the pre-opening and following final clean-up samples were approximately 

equal. For E. coli, the positive samples that occurred in the diaper changing area were 

spread throughout the day. The next most prevalent E. coli site was at lunch on one of the 

food preparation areas. It must be noted that there were a maximum of 2 E. coli detected 

at the latter site. Results for E. coli indicate that only the diaper changing area may be a 

site that needs to be better sanitized immediately following use.  

4.6    Conclusions 

These findings demonstrate that microbial contamination is present on food 

contact surfaces and non-food contact surfaces of child care facilities. Results of this 

study indicate that there are a number of factors such as center size, area within the 

facility, surface type, and time of day that affect the amount of bacterial contamination 

that may be present within the facilities. Due to the high risk of foodborne illness 

associated with children, the possibility of cross-contamination from food contact or non-

food contact surfaces to foods is an aspect of food safety that requires more attention. 

Effective cleaning and sanitizing of food contact and non-food contact surfaces in child 

care facilities is critical if cross-contamination is to be reduced. One of the ultimate 

challenges is to raise the level of awareness of child care facility staff about the risks 

associated with ineffective cleaning and sanitizing of these surfaces. More emphasis on 

training and the development of standard sanitation operating procedures (SSOP’s) is 

needed to reduce potential hazards.  
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5 ASSESSMENT OF RAPID SANITIATION ASSAY USAGE ON FOOD 

CONTACT SURFACES IN CHILD CARE CENTERS 

5.1 Abstract  

Young children are one of the most susceptible groups to foodborne illness 

(Gerba et al., 1996). Therefore, the results of cleaning and sanitization practices of child 

care facility food preparation and food service surfaces must be obtained in timely 

manner in order to allow for immediate remedial action to be taken. The objective of this 

study was to evaluate the sanitation of food preparation and service areas in child care 

facilities using three rapid sanitation assays and compare them to standard 

microbiological evaluation methods. A study of six child care centers in Knoxville, TN 

was conducted to assess the applicability of using three rapid sanitation assays on food 

contact (food service and food preparation) and non-food contact (diaper changing) 

surfaces to determine the effectiveness of cleaning and sanitization procedures within the 

centers. Samples were taken three times a day (pre-opening, lunch time, and following 

final clean-up) twice per month for eight months in each center. A 50 cm2 area was 

swabbed using methods designed to detect ATP bioluminescence, protein or glucose. In 

addition, aerobic plate counts (APC) were done for each area. 

Microbial data and ATP, protein and glucose results were available from 1,129 

samples. Correlations between rapid sanitation assays and microbiological analysis 

(APC) were determined using Spearman’s rho analysis. Correlations (p < 0.01) were 

found, using Spearman’s rho analysis between the APC and the ATP (r = 0.26) and 

protein assays (r = 0.16). Results were also reported as percent agreement, i.e., the 

number of times the rapid sanitation assays and APC were in agreement of a “clean” or 

“dirty” surface or area. Surfaces and areas with less than 1,000 CFU/50 cm2 and less than 

300 RLU or a negative protein or glucose reaction were considered “clean” and greater 

than 1,000 CFU/50 cm2 and greater than 300 RLU or a positive protein or glucose 

reaction were considered “dirty”. The overall percent agreement between APC and the 

ATP bioluminescence was 24.3%, between APC and the protein assay was 68.7%, and 
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between APC and the glucose assay was 81.9%. Results for the ATP bioluminescence 

assay were also expressed as frequency range percentages of sample relative light units 

(RLUs). Manufacturer’s pre-set limits indicate that less than 200 RLU detected was 

“clean”, 200 to 300 RLU was marginal, and greater than 301 RLU was “dirty”. 

Frequency range percentages for ATP indicate that 85.0% of samples were “dirty”, with 

the greatest percentage (34.7%) between 1,000 and 5,000 RLU. However, 16.2% of 

samples were “clean” with RLU counts less than 200.  

Although, not highly reliable indicators of microbial contamination, these 

findings indicate that rapid assays may be useful for monitoring the sanitation of food 

contact surfaces in child care centers. These tests could assist in improving sanitation and 

preventing cross-contamination by detecting unsanitary surfaces with food residues 

remaining on the surfaces. 

5.2   Introduction 

Preventative risk-based food safety management systems, such as HACCP, 

require that hygiene monitoring provide results rapidly and in time for remedial action so 

as to be able to regain control of a process and/or product (Griffith et al., 1997; Moore 

and Griffith 2002). Therefore, it may be necessary to implement rapid hygiene 

monitoring systems that allow for results to be obtained in a shorter time than 

conventional microbiological methods such as swabbing/plating or agar contact methods 

which require incubation for 24-48 hours (Davidson et al., 1999).  

Rapid hygiene monitoring instruments and kits that utilize ATP bioluminescence 

are available to the food industry. These systems can provide a real-time estimate of total 

surface contamination resulting in an indication of overall cleaning efficacy (Griffiths 

1997; Moore and Griffith 2002). In the ATP bioluminescence test, ATP in the sample 

drives the production of oxyluciferin and light from luciferin via the enzyme luciferase 

(Larson et al., 2003). The quantity of light is expressed in relative light units (RLUs) and 

directly correlates with the amount of ATP present and thus the biological load on the 
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sampled area (Deshpande 2001). While some have argued that the main concern should 

be the level of bacterial contamination on a surface, organic matter as food soil remaining 

on a surface can serve as a source of nutrients for microorganisms thus supporting their 

growth (Davidson et al., 1999). The ATP bioluminescence therefore provides an 

estimation of total cleanliness of the surface, not only detecting bacterial contamination 

but also organic materials remaining on the surface as well.  

Several studies have compared the ATP bioluminescence method to traditional 

microbiological methods. Some studies have reported a positive correlation between the 

two methods while others have found the opposite (Illsley et al., 2000; Larson et al., 

2003; Tebbutt 1999). Larson and others (2003) compared conventional swabbing 

methods for the detection of microorganisms to ATP bioluminescence on 225 kitchen 

table surfaces in homes. No significant correlation between ATP and colony forming 

units (CFUs) from total plate counts (r = 0.004, P = 0.58) were found. Researchers in the 

study concluded that ATP bioluminescence is not a reliable substitute for conventional 

swabbing methods when the amount of microbial contamination on a surface is desired. 

Tebbutt (1999) compared conventional swabbing methods for the detection of 

microorganisms to ATP bioluminescence on 139 cutting boards used in hotel kitchens. A 

positive correlation was found between the bacterial count and the amount of ATP 

detected (r = 0.58). Due to the low correlation coefficient, researchers concluded that 

ATP bioluminescence is not fully reliable for highlighting the bacterial risk associated 

with food contact surfaces but the method did allow for on the spot-remedial action to be 

taken. Illsley and others (2000) compared standard surface swabbing techniques to ATP 

bioluminescence to determine the adequacy of the ATP methods for evaluating sanitation 

in a baking facility. The standard swabbing techniques and the ATP bioluminescence 

method were compared as to the percent of times both methods agreed to pass or fail a 

surface. Based on percent agreement (81.6% to 83.3%), the study concluded that there 

was a good correlation between the results of the two methods (Illsley et al., 2000).  

In addition to ATP bioluminescence assays, there are also kits that detect either 

protein or glucose and utilize color indicators to indicate residues. These rapid detection 
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methods are designed to be presence/absence tests that detect food residues containing 

proteins or glucose that may remain on a surface following cleaning. Tebbutt (1999) 

compared conventional swabbing methods for the detection of microorganisms to protein 

detection methods on 139 cutting boards used in hotel kitchens. A positive correlation 

was found between bacterial counts and the amount of protein detected (r = 0.67). As 

with ATP, the researchers concluded that the presence or absence of protein could not 

always be relied upon as an indicator of microbial contamination on surfaces. Moore and 

Griffith (2001) conducted a study to compare a rapid protein detection method to 

traditional agar-based methods for standard plate counts. There was a 68.9% agreement 

(28.9% passing tests and 40% failing tests) between results of the two methods. 

The objective of this study was to assess three rapid sanitation assays to evaluate 

their applicability for usage in child care centers to determine the sanitation quality of 

food contact and non-food contact surfaces. The ultimate goal was to determine if one of 

the rapid sanitation assays could be used by centers to monitor sanitation. 

5.3  Materials and Methods 

5.3.1   Sampling sites and surface selections 

The study was conducted in six (6) Knoxville, TN area child care centers. The 

centers represented three large (> 100 children) and three small (< 50 children) centers. 

Each child care center was tested twice monthly over the course of an eight (8) month 

period for a total of 16 sampling periods per center. Four areas, one food service area, 

one diaper changing area, and two food preparation areas, within the child care centers 

were sampled. The food service area and the food preparation areas consisted of three 

food contact surfaces, two food preparation surfaces (i.e. kitchen counters/cutting boards) 

and one food service surface (i.e. children’s eating table), while the diaper changing area 

consisted of one non-food contact surface (i.e. diaper changing surface). All surfaces 

were tested three times daily(pre-opening, during lunch, and following final clean-up of 

the day) to monitor the microbiological quality of each surface throughout the day.  
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Table 5.1:  Sampling area surface types by center 

 Surface Types (Area Number)  

 

Center # 

Food Service 

(No. 1) 

 Diaper Area 

(No. 2) 

 Food Prep No. 1 

(No. 3) 

Food Prep No. 2 

(No. 4) 

1 (Large) Plastic Laminate Solid-Surface Stainless Steel Stainless Steel 

2 (Small) Plastic Laminate Plastic Pad Grouted Tile Grouted Tile 

3 (Small) Plastic Laminate Plastic Pad Plastic Laminate Wood Laminate 

4 (Small) Plastic Laminate Plastic Pad Plastic Laminate Plastic Laminate 

5 (Large) Plastic Laminate Solid-Surface Plastic Laminate Plastic Laminate 

6 (Large) Plastic Laminate Plastic Pad Stainless Steel Stainless Steel 

 

Surfaces of each area within each center varied with surface types including:  

plastic laminate for food service surfaces, stainless steel grouted tile, plastic laminate, and 

wood laminate for food preparation surfaces, and acrylic solid surface and plastic 

padding for diaper changing surfaces. Table5.1 shows all surface types by area by center.  

5.3.2 Sample preparation for rapid sanitation assays    

Three rapid sanitation assays were used to monitor sanitation of surfaces within 

child care centers, ATP bioluminescence assay, protein assay, and glucose assay. For 

ATP detection, a bioluminescence assay, the AccuPoint ATP Sanitation Monitoring 

System (Neogen®, Inc.; Lansing, MI), was utilized and a 50 cm2 area was swabbed using 

AccuPoint ATP Surface Samplers. Sampling was performed by swabbing the area 

horizontally, from one side of the template to the other, and repeating vertically, and then 

horizontally again using the AccuPoint ATP Surface Samplers. After sampling the swab 

was placed back into the cartridge to the first stop and then placed into the reader. The 

swab sampling pad was then pressed completely into the cartridge where it then mixed 

with the luciferase at the bottom of the cartridge. The reader’s door was then closed and 
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results, reported in relative light units (RLU), were reported within 10 seconds and 

recorded. Frequency ranges of ATP counts for areas in the six centers were calculated.  

For protein detection, Pro-tect® hygiene surface swabs (Biotrace, Neogen®, Inc.; 

Cincinnati, OH) were utilized. Sampling was performed by swabbing a 50 cm2 area 

horizontally, from one side of a sterile template to the other, and repeating vertically, and 

then horizontally again using the protein detection swab. After sampling, to activate the 

colorimetric reaction, the swab was inserted back into the tube and pressed to immerse 

the tip into the solution at the bottom of the tube. Results were compared to the Pro-tect 

label and reported in 10 minutes and then recorded.  

SpotCheck™ glucose swabs (Weber Scientific, Hygiena LLC; Camarillo, CA) 

were utilized for the detection of simple sugars, i.e. glucose remaining on the surface. 

Sampling was performed by swabbing a 50 cm2 area horizontally, from one side of a 

sterile template to the other, and repeating vertically, and then horizontally again using 

the detection swab. The swab was then placed back into the tube and the snap valve was 

broken and the bulb was squeezed to expel the liquid so that it bathes the swab tip. The 

device was then shaken to release the product residue from the swab to wait for the 

colorimetric reaction to take place. Results were reported after 1 minute and then 

recorded.  

In order to determine if correlations exist between the rapid sanitation assays and 

bacterial counts, microbiological analysis, using Aerobic Count (AC) Petrifilm plates 

(3M Microbiology, St. Paul, MN), was performed in adjacent 50 cm2 areas to determine 

aerobic plate counts.  

5.3.3  Statistical analysis 

Correlations between rapid sanitation assays and standard microbiological 

analysis were determined using Spearman’s Rho analysis (P<0.01). Frequencies were 

calculated for all rapid methods to determine the percentage of positive and negative 

samples within a specified range of APC.  
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5.4   Results 

Correlations were determined between the rapid assays and standard 

microbiological analysis (APC) (Table 5.2). Correlations (p < 0.01) were found between 

the APC and the ATP (r = 0.26) and protein (Pro-tect®) assay (r = 0.16). There was no 

correlation between the APC and glucose (SpotCheckTM) assay.  

In order to determine the efficacy of the rapid sanitation assays surveyed, results 

were reported as the percentage of times the rapid assays and APC agreed a test surface 

or area was “clean” or “dirty” For APC, acceptable limits for child care centers were 

established based on standards defined for cleaned and sanitized food service equipment 

by the U.S. Public Health Service (USPHS) (U.S. Public Health Service/Food and Drug 

Administration (US PHS/FDA) 1997). Limits of < 1.3 log10 (20 CFU/cm2) are considered 

“clean” by the USPHS which is equal to 1,000 CFU/50 cm2. For the ATP 

bioluminescence assay, the manufacturer’s recommendations are that that a surface with 

< 200 RLU is “clean”, 200 to 300 RLU is marginal, and > 301 RLU is “dirty.” Therefore, 

the limits used in the present study were <300 RLU was considered clean and >301 RLU 

was defined as “dirty.” For protein and glucose assays, a negative color reaction was 

considered “clean” and a positive reaction as “dirty.”.An example of how results between 

rapid methods (using the ATP assay) and APC were compared is shown in Table 5.3.  

 

Table 5.2: Correlations between APC and rapid sanitation assays 

 APC ATP Pro-tect® SpotCheckTM

APC - .26* .16* -.06 

ATP .26* - .06 -.03 

Pro-tect® .16* .06 - -.08 

SpotCheckTM -.06 -.03 -.08 - 

* Correlation at p< 0.01; Correlation results derived from Spearman’s rho analysis.  
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Table 5.3: Example table of comparison results between APC and ATP assay according 

to “clean” versus “dirty” 

 ATP Assay 
RLU‡

APC (CFU 50/cm2) ≤ 300 > 301 

≤ 1,000  Agree (clean)* Disagree  
(false-positive) 

> 1,001  Disagree  
(false-negative) Agree (dirty)* 

% Agreement % 
  ‡ Relative light units = RLU, range: clean = 0 to 300 and dirty = > 300; * Number of samples 

that were “clean” or “dirty” by both methods.  

 

Agreement for a “clean” surface was defined as an APC ≤ 1,000 CFU/50 cm2 and an 

RLU ≤ 300 or a negative protein or glucose colorimetric reaction. A “dirty” surface was 

defined as an APC > 1,001 CFU/50 cm2 and RLU > 301 RLU or a positive protein or 

glucose color reaction. The number of times in which the APC agreed with the ATP 

assay is indicated by an asterisk. Disagreement could be classified as either a false-

positive or false-negative. False-positive result was when the APC was ≤ 1,000 CFU/50 

cm2 and the rapid assays indicated an RLU > 301 or a positive protein or glucose color 

reaction. A false-negative result was when the APC was > 1,001 CFU/50 cm2 and an 

RLU of < 300 or a negative result from the protein or glucose color reactions occurred. 

Microbial data, ATP, protein and glucose readings were available from 1,129 

samples. The overall percent agreement between APC and the ATP bioluminescence 

assay was 24.3% (Table 5.4). The greatest disagreement was in the “false-positive” 

category, i.e., 847 samples were “dirty” according to the ATP bioluminescence assay but 

were “clean” according to APC.  
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Table 5.4: Comparison of the ATP bioluminescence assay and aerobic plate counts on 

surfaces from child care centers 
  

‡ Relative light units range: clean ≤ 300 and dirty > 301; *Samples that were “clean” or “dirty” by 

both methods.  

 ATP Assay, RLU‡

APC (CFU 50/cm2) ≤ 300 > 301 

≤ 1,000  246* 847 

> 1,001  7 28* 

% Agreement* 24.3% 

 

The overall percent agreement by surface type between APC and the ATP 

bioluminescence assay was 32.3% for acrylic, followed by 31.3%, 27.9%, 24.3%, 21.4%, 

and 14.8% for grouted tile, plastic padding, stainless steel, plastic laminate, and wooden 

laminate respectively (Table 5.5). Percent disagreement between both methods by surface 

type was 85.2% for wooden laminate followed by 78.6%, 75.7%, 72.1%, 68.8%, and 

67.7% for plastic laminate, stainless steel, plastic padding, grouted tile, and acrylic 

respectively. The greatest disagreement for all surface types was the false-positive, i.e., a 

larger number of samples for each surface were “dirty” according to the ATP 

bioluminescence assay but were “clean” according to APC, with percentages being 

84.2%, 77.9%, 75.7%, 71.4%, 68.8%, 65.6% for the same respective surfaces. 

Based on sampled area, the overall percent agreement between APC and the ATP 

bioluminescence assay was 25.7%, 25.1%, 24.2%, and 21.5% for the diaper changing, 

food preparation 1, food preparation 2, and food service, respectively (Table 5.6). As 

with surface samples, the greatest disagreement for all areas was the false-positive, with 

percentages being 72.9%, 73.5%, 75.4%, and 78.5% for the same respective areas. 
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Table 5.5:  Comparison between the ATP assay and aerobic plate counts of various 

surface types in child care centers 

 ATP Assay 

RLU‡

 

Surface/(n)†

APC 

(CFU/50 cm2) 

 

≤ 300 

 

> 301 

 

% a

≤ 1,000 84* 364 Plastic Laminate (467) 

> 1,001 3 16* 
21.4 

≤ 1,000 29* 61 Acrylic (93) 

> 1,001 2 1* 
32.3 

≤ 1,000 14* 80 Wood Laminate (95) 

> 1,001 1 0* 
14.8 

≤ 1,000 43* 143 Stainless Steel (189) 

> 1,001 0 3* 
24.3 

≤ 1,000 33* 100 Plastic Padding (140) 

> 1,001 1 6* 
27.9 

≤ 1,000 43* 99 Grouted Tile (144) 

> 1,001 0 2* 
31.3 

 † n= total number of samples per surface type; ‡ Relative light units range: “clean” ≤ 300 and “dirty” > 300; 
a Total percentage of surface samples in agreement by both methods; * Number of samples that were 

“clean” or “dirty” by both methods by surface type. 
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Table 5.6:  Comparison between the ATP assay and aerobic plate counts of various areas 

in child care centers  

 ATP Assay 

RLU‡

 

Surface/(n)†

APC 

(CFU/50 cm2) 

 

≤ 300 

 

>301 

 

% a

≤ 1,000 54* 223 Food Service (284) 

> 1,001 0 7* 
21.5 

≤ 1,000 65* 204 Diaper Changing (280) 

> 1,001 3 7* 
25.7 

≤ 1,000 64* 208 Food Prep 1 (283) 

> 1,001 1 7* 
25.1 

≤ 1,000 62* 212 Food Prep 2 (281) 

> 1,001 1 6* 
24.2 

† n= total number of samples per area; ‡ Relative light units range: “clean” ≤ 300 and “dirty” > 300;  a Total 

percentage of surface samples in agreement by both methods; * Number of samples that were “clean” or 

“dirty” by both methods by area. 

 

 

 

 

 

 71



The overall percent agreement between APC and the protein and glucose assay 

was 68.7% for protein and 81.9% for glucose (Table 5.7). The greatest disagreement 

between methods was the false-positive, i.e., 312 samples were “dirty” according to the 

protein assay and 177 were “dirty” according to the glucose assay but were “clean” 

according to APC.  

The overall percent agreement between APC and the protein assay by surface type 

sampled was 81.1% for wooden laminate, followed by 73.6%, 73.1%, 70.4%, 67.4%, and 

55.6% for plastic padding, acrylic, plastic laminate, grouted tile, and stainless steel, 

respectively (Table 5.8). For the glucose assay, overall percent agreement by surface type 

was 93.7% for wooden laminate, followed by 93.5%, 94.3%, 89.6%, 80.1%, and 60.3% 

for acrylic, plastic padding, grouted tile, plastic laminate, and stainless steel, respectively. 

For both the protein and glucose assay, percent disagreement varied by surface type. 

Disagreement for the majority of surfaces was classified as a false-positive; however, for 

acrylic surfaces false-negative results were higher for the protein assay and an equal 

number of false-negative and false-positive results for the glucose assay, and for plastic 

padding false-negative results for the glucose assay were higher. 

 

Table 5.7: Comparison of protein and glucose assays and aerobic plate counts on 

surfaces from child care centers 

 Proteina Glucose b

APC (CFU/50 cm2) Negative Positive Negative Positive 

≤ 1,000 764 * 312 920* 177  

> 1,001 41 12* 27 5* 

% Agreement 68.7% 81.9% 
a,bnegative = “clean” no protein or glucose residue present and positive = “dirty” protein or glucose residues 

present; * Number of samples that were in agreement by both methods.  

 

 72



    

 

 

Table 5.8:  Comparison of protein and glucose assays and aerobic plate counts on 

various surface types in child care centers  

  Protein Glucose 

 

Surface/(n)†

APC  

(CFU/50 cm2) 

 

NEG 

 

POS  

 

%a

  

NEG 

 

POS 

 

% 

≤ 1,000 326* 127 372* 75 Plastic Laminate (467) 

> 1,001 7 3* 
70.4 

13 2* 
80.1 

≤ 1,000 68*  9 87* 3 Acrylic (93) 

> 1,001 16  0* 
73.1 

3 0* 
93.5 

≤ 1,000 77*  19 89* 6 Wood Laminate (95) 

> 1,001 0 0* 
81.1 

1 0* 
93.7 

≤ 1,000 101* 77 112* 77 Stainless Steel (189) 

> 1,001 10  4* 
55.6 

3 2* 
60.3 

≤ 1,000 103* 38 132* 2 Plastic Padding (140) 

> 1,001 0 0* 
73.6 

6 0* 
94.3 

≤ 1,000 89*  42 128* 14 Grouted Tile (144) 

> 1,001 5 8* 
67.4 

1 1* 
89.6 

† n= total number of samples per area; a Total percentage of surface samples with specified APC with 

negative results for protein or glucose; * Number of samples that were in agreement by both methods by 

surface type.  
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The overall percent agreement between APC and the protein assay by area was 

82.1% for diaper changing, 71.5% for food service, 67.1% for food preparation 1, and 

63.0% for food preparation 2. The overall percent agreement between APC and the 

glucose assay was 96.4% for diaper changing, followed by 80.1%, 78.5%, and 74.2% for 

food preparation 2, food service, and food preparation 1, respectively (Table 5.9). For the 

majority of areas sampled, percent disagreement was classified as false-positive, except 

for the glucose assay on the diaper changing area. This area resulted in a false-negative, 

i.e., 10 samples were “clean” according to the glucose assay but were “dirty” according 

to APC.  

 

Table 5.9:  Comparison of protein and glucose assays and aerobic plate counts of various 

areas in child care centers  

  Protein Glucose 
Area/(n)† APC  

(CFU/50 cm2) 
 

NEG 
 

POS 
 

%a
  

NEG 
 

POS 
 

% 
≤ 1000 201* 73 223* 54 Food Service (284) 

> 1001 5 2* 71.5 4 0* 78.5 

≤ 1000 225* 47 270* 2 Diaper Changing 

(280) > 1001 5 5* 82.1 10 0* 96.4 

≤ 1000 184* 89 207* 66 Food Prep 1 (283) 

> 1001 3 6* 67.1 6 3* 74.2 

≤ 1000 175* 100 223* 52 Food Prep 2 (281) 

> 1001 6 2* 63.0 6 2* 80.1 

† n= total number of samples per area; a Total percentage of surface samples with specified APC with 

negative results for protein or glucose; * Number of samples that were in agreement by both methods by 

area.  
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Figure 5.1:  Frequencies of relative light unit (RLU) counts per 50 cm2 area obtained with the ATP 

Sanitation Monitoring System on surfaces in child care centers (n =1,129 ). Manufacturer limits for 

acceptability of cleanliness of a surface are: pass (clean) = 0 to 200, marginal = 201 to 300, fail (dirty) = > 

300. 

 

Figure 5.1 shows the sample RLU count frequency range percentages per 50 cm2 

area for the AccuPoint ATP Sanitation Monitoring System. For food manufacturers, the 

pre-set limits of the ATP monitoring system are pass, marginal, or fail, with pass being 0 

to 200, marginal between 201 to 300, and fail > 301. Of a total of 1,129 samples, the 

majority (85.0%) were failing, with 34.7% between 1000 and 5000. However, 16.2% of 

samples were passing with RLU counts less than 200. 

5.5   Discussion 

Environmental microbiological sampling has been widely used as a means of 

assessing the presence of bacterial contamination on food contact surfaces within food 

processing and retail facilities. However, due to the time involved in obtaining results 

from microbiological sampling analysis, it may be necessary to implement rapid hygiene 

monitoring systems that allow for results to be obtained in a shorter time than 

conventional microbiological methods which require incubation for 24-48 hours 

(Davidson et al., 1999).  
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In contrast to the food processing and food service industries, sanitation in child 

care food service is generally much less defined. Rapid sanitation assays, such as ATP 

bioluminescence, protein, and glucose can be used to provide an on-the-spot assessment 

of surface contamination; however, whether contamination is bacterial or food residue is 

unknown. Before any type of rapid sanitation assay can be used to monitor the sanitation 

of food contact surfaces, it is necessary to assess its performance by comparison to 

traditional methods such as microbiological sampling (Griffith et al., 1997). How well a 

new rapid sanitation assay correlates with results of traditional methods will usually 

determine how well it is accepted and can be implemented to monitor sanitation. The link 

between bacterial counts and rapid sanitation assays has been studied by various 

researchers to determine if rapid sanitation assays have the potential to monitor sanitation 

within food processing or food service facilities (Poulis et al., 1993; Tebbutt 1999).  

  Many attempts have been made to correlate ATP levels with total bacterial count 

methods, with mixed success. In this study, weak correlations were found between APC 

and the ATP bioluminescence assay (r = 0.26) and protein assays (r =0.16) (Table 5.2). 

There may be several reasons why correlation results in this study were lower than 

expected. ATP is present in all living cells and organic material, i.e. microorganisms, 

food residue, body secretions, etc., and one limitation to ATP bioluminescence is that it 

detects ATP found from all sources and is not able to differentiate between sources of 

ATP. Therefore, the total amount of ATP detected by the ATP bioluminescence method 

will be inclusive of both microbial ATP as well organic ATP.  

A second reason why there was a low correlation between the ATP 

bioluminescence assay and APC counts is the limits of detection for the ATP 

bioluminescence assay maybe lower than the amount of microbial contamination present 

on the surface. Most ATP bioluminescence assays have been reported to have a limit of 

detection of 104 to 105 CFU (Davidson et al., 1999). Various samples in this study may 

have had lower amounts of bacteria present on the surface than the ATP bioluminescence 

assay was able to detect. Due to this reason, some researchers have indicated that the 

ATP bioluminescence assay should not be used as an estimator of microbial load but 
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more as a monitor of overall sanitation. For example, Poulis and others (1993) reported a 

poor relationship between ATP bioluminescence and APC counts from food processing 

facilities. Despite weak correlations ATP results indicate that there is a risk for cross-

contamination via food contact surfaces and re-cleaning of the surface is necessary since 

the type of ATP present, i.e. microbial or food residue is unknown. The presence of any 

food residues may serve as a source of nutrients for microorganisms providing an 

opportunity for growth.  

For the ATP, protein, and glucose assays, percent agreement with the APC on 

whether a surface was “clean” or “dirty” was 24.3%, 68.7% and 81.9%, respectively. 

Results indicate that the glucose assay, SpotCheck™, had the highest percent agreement 

with APC of the other two assays. However, it must be noted that RLU limits on the ATP 

assay can be adjusted; therefore, the low percent agreement between the ATP assay and 

APC may be improved if RLU limits indicating a “clean” surface were adjusted to be 

slightly higher for child care centers than the manufacturer’s limits used for food 

processing facilities.  

    Percent disagreement could be broken down into false-positive and false-

negative results. The percentage of false-negatives, or cases where small amounts of 

ATP, protein, or glucose were present and high numbers of microorganisms were present, 

were very low with percentages being 0.6%, 3.6% and 2.4%, for the respective assays. 

However, the percentage of false-positives, or cases where high amounts of ATP, protein, 

or glucose were present and lower numbers of microorganisms were present, were higher 

with percentages being 75.1%, 27.6% and 15.7% for the same respective assays (Table 

5.4 and 5.7). False-negative results indicate that there is an increased risk for cross-

contamination due to the fact the assays are not detecting microbial contamination on a 

surface. In this study, lower percentages of false-negatives are good due to the fact that 

this result is potentially more serious. In this situation, it is much better to receive a false-

positive indicating an unclean surface based on the ATP, protein, or glucose assay as 

opposed to a false-negative and these assays not detect microbial contamination present. 

In this study, the false-positive is much less costly since the sample is “clean” by APC 
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indicating that the rapid sanitation assays are detecting food residues remaining on a 

surface.  

To determine if the rapid sanitation assays would be less or more effective on 

various surface types or areas within child care centers comparisons between ATP, 

protein and glucose assays and APC counts were made. Percent agreement of all surfaces 

sampled, plastic laminate, acrylic solid surface, wood laminate, stainless steel, plastic 

padding, and grouted tile varied for each assay with ranges between 14.7% to 32.3% for 

the ATP assay (Table 5.5), 55.6% to 81.1% for protein, and 60.3% to 93.7% for glucose 

(Table 5.8). These variations in trends in percent agreement between surface samples 

indicate that the effectiveness of the rapid sanitation assays may be affected by the type 

of surface sampled. Based on false-negative results, acrylic surfaces and plastic padding 

surfaces had a higher percentage of false-negatives than false-positives for the protein 

assay than all other surfaces. This trend may indicate that the protein assay may be less 

capable of detecting a “dirty” surface on acrylic and plastic padding surfaces than all 

other surface types. This trend is also seen for the glucose assay with the acrylic surfaces.  

Percent agreement between APC and ATP bioluminescence for all areas sampled, 

food service, food preparation, and diaper changing within child care centers were 

comparable ranging from 21.5% to 25.7% (Table 5.6). This trend indicates that the ATP 

bioluminescence assay was not affected by the type of area sampled. However, for the 

protein and glucose assays, percent agreement with APC for areas sampled varied (Table 

5.9). With percent agreement ranging from 63.0% to 82.1% for protein and 74.2% to 

96.4% for glucose, trends indicate that these methods may be affected by the type of area 

sampled within child care centers. As for the false-negative results, the diaper changing 

area had a higher percentage of false-negative results for the glucose assay than all other 

areas. This result indicates that the glucose assay may not be less effective in the diaper 

changing areas due to the fact that this method is designed for the detection of glucose 

residues as opposed to microbial contamination. The glucose assay may not be capable of 

detecting microbial contamination present in this area.  
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For the ATP bioluminescence assay, frequency count range percentages (Figure 

5.1) indicate that lower manufacturer’s limits for “passing” or “failing” samples, despite 

being set for food processing facilities, are achievable by child care centers. However, as 

previously stated, the percentage of “passing” samples may increase if the manufacturer’s 

pre-set limits are adjusted to be slightly higher for child care centers than those used for 

food processing facilities.  

    In this study, all rapid sanitation assays were easy to use. However, the protein 

assay relied on matching one of four distinct color changes with only the first grade being 

“clean”. At times it was difficult to decipher the color changes associated with the protein 

assay. Despite this fact, due to the ease of usage, non-technically trained staff within the 

child care centers would have the ability to carry out sanitation monitoring using these 

methods. Training on the correct usage and interpretation of all methods should be 

available through University Extension and manufacturer’s support. Before these rapid 

sanitation assays can be implemented within child care facilities the cost associated with 

purchasing and supply of equipment must be considered. For example, the AccuPoint 

ATP Sanitation Monitoring System used in this study cost approximately $1,400. This 

initial investment maybe too considerable for smaller facilities to manage. However, 

centers must decide if this initial investment is too costly in relation to failing to identify 

an unsanitary food contact surface.  

 5.6 Conclusions 

 This study has demonstrated the efficacy of rapid sanitation assays for usage 

within child care centers. Although not fully reliable for identifying the bacterial risk 

associated with food contact surfaces within these facilities, these methods do allow for 

on-the-spot remedial action to be taken in the case of an unsanitary food contact surface 

is found. This immediate action will aid in the reduction of cross-contamination via food 

contact surfaces and will reduce the risk of foodborne illness associated with it. Based on 

the ease of usage, the ATP assay and the SpotCheck™ assay are the easiest to read and 
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interpret. However, based on cost, the ATP assay may be too costly for smaller centers to 

purchase. The SpotCheck™ assay will be more affordable.  
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6 CONCLUSIONS 

Microbial contamination is present on food contact and non-food contact surfaces 

within child care centers and therefore increases the risk of cross-contamination of 

foodborne pathogens. Due to this fact it is necessary to monitor the cleaning and 

sanitation practices within these facilities.  

The incorporation of rapid sanitation assays such as ATP bioluminescence, 

protein assays, and glucose assays will aid in the reduction of surface contamination by 

allowing for on-the-spot remedial action to be taken in the case of an unsanitary food 

contact surface. These assays will provide information as to the overall sanitary condition 

of food contact and non-food contact surfaces within the child care centers, not only 

detecting possible sources of bacterial contamination but also detecting food residues that 

may act as a source of nutrients for microorganisms.  

Due to the high risk of foodborne illness associated with children, the possibility 

of cross-contamination from food contact or non-food contact surfaces to foods is an 

aspect of food safety that requires more attention. These findings demonstrate that 

microbial contamination is present on food contact surfaces and non-food contact 

surfaces of child care centers. Modified SSOP’s for child care centers and training in 

conjunction with rapid sanitation assays may prove to be beneficial tools in improving 

food safety within child care centers.  
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