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Abstract

Information exploitation schemes with high-accuracy and low computational cost

play an important role in Wireless Sensor Networks (WSNs). This thesis studies the

problem of target classification in WSNs. Specifically, due to the resource constraints

and dynamic nature of WSNs, we focus on the design of the energy-efficient solution

with high accuracy for target classification in WSNs.

Feature extraction and classification are two intertwined components in pattern

recognition. Our hypothesis is that for each type of target, there exists an opti-

mal set of features in conjunction with a specific classifier, which can yield the best

performance in terms of classification accuracy using least amount of computation,

measured by the number of features used. Our objective is to find such an optimal

combination of features and classifiers. Our study is in the context of applications

deployed in a wireless sensor network (WSN) environment, composed of large number

of small-size sensors with their own processing, sensing and networking capabilities

powered by onboard battery supply. Due to the extremely limited resources on each

sensor platform, the decision making is prune to fault, making sensor fusion a neces-

sity.

We present a concept, referred to as dynamic target classification in WSNs. The

main idea is to dynamically select the optimal combination of features and classifiers

based on the “probability” that the target to be classified might belong to a certain

iv



category. We use two data sets to validate our hypothesis and derive the optimal

combination sets by minimizing a cost function.

We apply the proposed algorithm to a scenario of collaborative target classifi-

cation among a group of sensors which are selected using information based sensor

selection rule in WSNs. Experimental results show that our approach can significantly

reduce the computational time while at the same time, achieve better classification

accuracy without using any fusion algorithm, compared with traditional classification

approaches, making it a viable solution in practice.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

1.1.1 Introduction

Since the first decade of the 21st century, the Wireless Sensor Network (WSN) has

been a very active research field. Due to the small size of sensors and the untethered

communication ability, it becomes a very promising area. It can be envisioned that

wireless sensor networks will play a key role to the real ubiquitous computing. Sensor

networks will eventually permeate the physical world and provide grounding for the

Internet [45].

The WSN is composed of spatially distributed autonomous sensor nodes which

are responsible for sensing, data processing and communication. From the function-

ality point of view, the goal of wireless sensor network is to make decision or gain

knowledge based on the data it has sensed. Unlike the traditional computer networks,

sensor networks are designed to detect events and monitor environments, collect and

fuse the data, report events or information to interested users [19]. Owing to the

characteristics such as self-organizing, fast deploying, changing topology, short-range
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broadcasting and multihop routing, collaborative information processing, localization

and tracking capabilities, WSNs have captured more attention of researchers and will

create a digital skin that senses a wide variety of phenomena of interest in all kinds of

fields of applications [46]. MIT’s Technology Review magazine called sensor networks

as “One of the ten technologies that will change the world” [4].

The features of the WSN determine its uniqueness which makes it different from

current information services provided by the Internet from the following aspects.

1. The WSN is data − centric [46], which means that the network collects, routes

or accesses data based on the external information such as physical location,

environment temperature, humidity, etc. This makes a vivid contrast with the

internet that is an address − centric network, which exchanges information via

logical properties of ends related to the network structure.

2. Unlike the Internet where a large amount of information is worldwide oriented

and it might be worthless for most of users and easy to be stale, sensor networks

can sense the properties of the environments, detect the physical phenomena,

and provide the precisely localized information in time or space to a couple of

interested users.

3. WSNs bridge the discrepancy between the Internet and the physical space.

The sensor internet will extend human’s vision from the virtual world into

the physical world and integrate them into a global information space through

sensor nodes and actuator technologies [46].

4. The most fascinating features that WSNs have are self-configuration and self-

adaptability. In many application scenarios such as battlefield surveillance,

medical monitoring, WSNs need to change topology due to the uncertain en-

vironment or link/node failure. Thus, network sensors require to relocate and
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organize themselves to best obtain and deliver the information. On the con-

trary, the traditional networks always have a fixed structure once the users’

demands are settled.

5. The dynamic nature combined with power restriction determines the WSN’s dis-

tinctive protocol stack that is different from standard TCP/IP protocol stack in

many aspects. First, data-centric property requires network to address sensors

using their physical properties such as location instead of IP address. Second,

discovery protocols is in great need for sensor networks because it is an effec-

tive way for sensors to construct the local structure in order to implement self-

deployment according to the environmental change. Third, cross-layer protocols

need to be designed in order to get highly reliable communication with minimal

energy expenditure. Fourth, stack structure difference, as shown in Figure 1.1

[6], which requires new protocols to balance the power usage, movement detec-

tion, and task scheduling. Fifth, existing protocols in TCP/IP stack are lack of

energy-efficient solutions which are the necessity in the WSN protocol design.

Finally, mobility and dynamics in WSNs exclude all the existing edge-network

gateway protocols for internetworking IP and sensor networks [46].

6. Compared with the Internet nodes, the nodes composed of WSNs have limited

energy capacity, a small amount of memory and restricted computational capa-

bility. They also have limited communication bandwidth and finite longevity.

1.1.2 WSN’s applications

Over the past years, with the fast development in MEMS and wireless communi-

cations, low-cost sensing ability and computing devices, a large-scale, low power,

inexpensive sensor network starts to be deployed in many applications. This kind of
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Figure 1.1: The sensor network protocol stack [7].

sensor deployment not only extends the spatial coverage and achieves higher resolu-

tion, but also increases the fault tolerance and robustness of the system [3]. WSNs

may consist of many different types of sensors such as acoustic, seismic, magnetic,

infrared, and radar. The various sensing modalities are able to monitor a wide variety

of ambient conditions that include the following [17]: temperature, humidity, vehic-

ular movement, lightening condition pressure, soil makeup, noise levels, the presence

or absence of certain kinds of objects, mechanical stress levels on attached objects,

and the current characteristics such as speed, direction, and size of an object.

The concept of micro-sensing and wireless connection of these nodes promise many

new application areas [7]. We categorize the applications into military, environment,

and other commercial areas.

Military Applications: Wireless sensor networks can be an integral part of military

command, control, communications, computers, intelligence, surveillance, reconnais-

sance and tracking systems. The rapid deployment, self organization and fault toler-

ance characteristics of sensor networks make them a very promising sensing technique

for military applications. Since sensor networks are based on the dense deployment
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of disposable and low cost sensor nodes, destruction of some nodes by hostile ac-

tions does not affect a military operation as much as the destruction of a traditional

sensor. Some of the military applications are monitoring friendly forces, equipment

and ammunition; battlefield surveillance; reconnaissance of opposing forces and ter-

rain; targeting; battle damage assessment; and nuclear, biological and chemical attack

detection and reconnaissance [39].

Environmental Applications: Some environmental applications of sensor networks

include tracking the movements of species, i.e., habitat monitoring; monitoring en-

vironmental conditions that affect crops and livestock; irrigation; macro instruments

for large-scale Earth monitoring and planetary exploration; and chemical/biological

detection [21, 10, 39, 34, 31, 20, 9].

Commercial Applications: The sensor networks are also applied in many commer-

cial supplications. Some of them are building virtual keyboards; managing inventory

control; monitoring product quality; constructing smart office spaces; and environ-

mental control in office buildings [21, 39, 31, 9].

1.2 Motivations

Although wireless sensor networks have the superiority of low cost sensor device, on-

board sensing, and wireless communication, the number of potential applications of

wireless sensor networks is huge, the biggest impediment to widespread deployment

and adoption of sensor networks comes from the following core challenging issues [37].

First, scalability. With the rapid development of low cost, small size intelligent

sensors and the increased demand on the applications, dense deployment of sensor

networks become a reality. In order to obtain the compelling vision and accurate in-

formation, a number of hurdles about the scalability stringent to be surmounted such
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as the methodologies for scaling up sensors to get adequate but minimized coverage

of the interested region, the algorithms of scaling down the energy consumption to

eke out the longevity of the network with current battery technology.

Second, dynamics. Since WSNs are connected with the physical world which

fills with uncertainty, asynchrony, and unpredictability, they will experience extreme

dynamics [13]. Environmental variations such as temperature, humidity, node failure

can induce dramatic changes in network performance or structures. In addition,

sensors will change in their energy availability, sensing reachability, position or task

objectives. Therefore, the WSN must be self-adaptive and self-configuring in order

to perform task effectively and autonomously during its lifetime in the dynamic,

heterogeneous environment.

Third, accuracy. The objective of sensor networks is to detect environment, sense

and process the data in order to make an accurate decision. However, it adopts

untethered communication, which makes information and decision unreliable. To

meet this challenge, algorithms need to be improved through collaborative detection

and estimation.

Fourth, energy balance is a great concern in WSNs. To achieve a long-lived

network, energy load must be evenly distributed among all sensor nodes so that the

energy at a single sensor node or a small set of sensor nodes will not be drained out

quickly [42].

Finally, resource constraints. The superiority of sensor networks at the same time

balances with a unique set of resource constraints such as limited energy, communica-

tion bandwidth and memory. Energy management is pivotal since battery-driven sen-

sors directly influence the overall performance and longevity of the networks. Mean-

while, energy saving requires least information redundancy, which will lead to low
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fault tolerance. Furthermore, moldy memory and communication bandwidth will

degrade network’s accuracy which favors redundancy and collaborative processing.

1.3 Related work

In this section, we review the recent progress on target detection, localization, and

classification.

Recent target localization algorithms in WSNs address the problems in various

ways. On group focuses on the localization in an unsecured environment. The other

group proposed the solution for the environment with incomplete information. One

research direction is on building the real testbed for localization, the other direction

is on statistical learning theory for localization.

In “A Kernel-Based Learning Approach to Ad Hoc Sensor Network Localization”

[33], X. Nguyen et al. introduce a pattern recognition based localization method

using kernel methods from statistical learning theory. This is based on the fact that

the kernel function can be defined in terms of the matrix of signal strengths received

by the sensors. Therefore a simple and effective localization algorithm can be derived

in the natural coordinate system provided by the physical devices. The algorithm

is particularly applied for networks with densely distributed sensors. They evaluate

their algorithm on both simulation and physical sensor networks.

L. Lazos and R. Poovendran address the problem known as the secure localization

problem in their article “SeRLoc: Robust Localization for Wireless Sensor Networks”

[27]. This issue enables nodes of wireless sensor networks to determine their location

in an untrusted environment. They present the SEcure Range-independent LOCal-

izaion scheme (SeRLoc) [26] based on beacon information gathered by the locators

even when attack presents. They also describe well known security threats such as
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the wormhole attack [44, 35], the Sybil attack [23, 24] and evaluate the probabil-

ity of success for each type of attack using spatial statistics theory. The simulation

results demonstrate the accuracy of SeRLoc over other existing range-independent

localization schemes.

J. A. Costa et al. [15] introduce a distributed weighted-multidimensional scal-

ing (dwMDS) algorithm which is suitable for nodes localization in WSNs. DwMDS

algorithm incorporates network communication constraints in its design and this al-

gorithm is nonparametric: it cannot be influenced by any special channel or range

measurement models. This makes dwMDS suitable for a wide range of distance mea-

surements such as RSS, TOA. Through simulation, the algorithm shows excellent bias

and variance performance than CRB [32].

In the article, titled “Semidefinite programming based algorithms for sensor net-

work localization” [11], Biswas et al. developed an SDP relaxation based method

to solve the localization problem through inaccurate and incomplete information. In

order to yield a semidefinite program and solve it more efficiently, the authors relaxed

the nonconvex constraints in their formulation. They also extended the SDP method

to an iterative way and compare the results with different iteration numbers. Their

SDP relaxation and the overall distance geometry model can be applied to any other

problem with mutual distance and angle information between two points.

In the paper, titled “Coherent Acoustic Array Processing and Localization on

Wireless Sensor Networks” [25], Chen et al. implement a Linux-based wireless net-

worked acoustic sensor array testbed successfully using COTS products [41]. They

consider the coherent acoustic sensor array processing and localization problem in dis-

tributed wireless sensor networks. Then they review localization algorithms based on

time-delay followed by least-squares estimations and the maximum-likelihood method
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and built the testbed using iPAQs. The experiments show their localization and time

synchronization algorithms can yield good results.

In recent years, continuous efforts have been made in the target tracking research

field. For example, Brooks et al. [38] present collaborative signal processing (CSP)

framework for target classification and tracking in sensor networks. The framework

uses location-aware data routing which restricts the range of CSP to relevant subset

of nodes conserving network resources. They use the simple Euclidean metric to

compute the difference of the last target track estimate projected to the time of

current detection. If a track is continued, the manager node defines a new cell.

The tracking process repeats at this point. They outline a CSP approach to target

classification based on node measurements within a cell. They discuss that Gaussian

classifiers also apply to arbitrary classifiers.

Several research groups work on target detection and classification in WSNs. In

this research field, due to the resource constraints that WSNs inherently has, the

design of feature extraction and classification algorithm with high accuracy at low

computational cost becomes the most challenging problem. Therefore, the research

mainly focuses on these two aspects: feature extraction and classification.

In “Vehicle classification in distributed sensor networks” [16], Duarte et al. com-

piled SITEX02 [16] data set, extracted spectral feature vectors, and baseline classifica-

tion results using the maximum likelihood classifier. They detailed the data collection

procedure, the feature extraction and pre-processing steps, and baseline classifier de-

velopment. Their contribution benefits a lot to the subsequent researchers whose

focus is on target classification area.

Qi’s group [1] developed several techniques on collaborative target classification.

For collaborative target classification, they developed a general purpose multi-modality,

multi sensor fusion hierarchy for information integration using a mobile-agent-based
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framework in sensor networks [36]. They also developed several algorithms on single

target, multi-target, and unknown target identification [1].

1.4 Contribution of the thesis

This thesis discusses the benefit of dynamic target classification in wireless sensor

networks. More specifically, the following contributions are made:

1. Dynamic target classification algorithm is proposed in the context of wireless

sensor networks based on the hypothesis that for each type of target, there exists

an optimal set of features combining with a specific classifier, which can yield

the best performance in terms of classification accuracy using least amount of

features.

2. In order to find the optimal combination of features and classifiers, we set up a

cost function, and the solution is obtained by minimizing this cost function.

3. In the thesis, we describe an application scenario in order to illustrate how dy-

namic classification algorithm works. Furthermore, we reconstruct the scenario

using the real data collected at the SensIT situational experiments carried out

at the Marine Corps Air Ground Combat Center in Twenty-nine Palms, CA.

4. Information-based sensor selection rule is introduced in this thesis.

1.5 Outline of the thesis

The outline of the thesis is as follows:

In chapter 1, we review the wireless sensor network including the introduction

of WSNs and their applications. We also address the motivation of this thesis and
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related works that have been done in target detection, localization, and classification.

At the end of the chapter, we give the synopsis of the thesis.

In chapter 2, we review the basic knowledge on signal processing, several tech-

niques such as sampling the signal, time, frequency, and time-frequency domain signal

analysis will be discussed in this chapter.

In chapter 3, we propose the dynamic target classification mechanism based on

our hypothesis that for each type of target, there exists an optimal set of features in

conjunction with a specific classifier, which can yield the best performance in terms of

classification accuracy using least amount of computation, measured by the number

of features.

In chapter 4, we use a target classification scenario to illustrate how the dynamic

classification algorithm works. In addition, the information-based sensor selection rule

is explained and applied to the scenario in order to assist the dynamic classification

scheme to achieve the better performance.

In chapter 5, two experiments are performed and the results are analyzed. Exper-

imental results generated from the target classification scenario show the hypothesis’

validity, and demonstrate the proposed approach is an energy-efficient algorithm with

the accuracy as high as 95.57% without applying any fusion algorithms.

In chapter 6, we made a conclusion that dynamic classification approach can sig-

nificantly reduce the computational time and at the same time, achieve better classi-

fication accuracy, compared with traditional classification approaches. The proposed

algorithm can also be extended to other application fields of pattern recognition.
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Chapter 2

Signal Processing

2.1 Overview

Time-frequency signal analysis and processing concerns the analysis and processing

of signals with time-varying frequency content. Such signals are best represented by

a time-frequency distribution. which is intended to show how the energy of the signal

is distributed over the two-dimensional time-frequency space. Processing of the signal

may then exploit the features produced by the concentration of signal energy in two

dimensions (time and frequency) instead of only one (time or frequency).

The following sections present the key concepts needed to formulate time-frequency

methods. They also explain why time-frequency methods are referred for a wide range

of applications in which the signals have time-varying characteristics or multiple com-

ponents.

2.2 Time-Frequency Concepts

The two classical representations of a signal are the time-domain representation s(t)

and the frequency-domain representation S(f). In both forms, the variables t and f
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are treated as mutually exclusive: to obtain a representation in terms of one variable,

the other variable is “integrated out”. Consequently, each classical representation

of the signal is non-localized with respect to the excluded variable; that is, the

frequency representation is essentially averaged over the values of the time represen-

tation at all times, and the time representation is essentially averaged over the values

of the frequency representation at all frequencies. In the time-frequency distribution,

denoted by ρ(t, f), the variables t and f are not mutually exclusive, but are present

together. The time-frequency distribution representation is localized in t and f .

2.2.1 Time-Domain Representation

Any signal can be described naturally as a function of time, which we may write s(t).

This representation leads immediately to the instantaneous power, given by |s(t)|2,
which shows how the energy of the signal is distributed over time; the total signal

energy is

E =

∫ ∞

−∞
|s(t)|2dt (2.1)

But the time-domain description has limitations, as may be seen by applying it to

a musical performance example [12]: A musical performance can be represented

as an air pressure curve a t a particular pint in space. Each such curve is a time-

varying pressure, and may e converted by a microphone and amplifier into an electrical

signal of the form s1(t). Indeed, music is routinely recorded and broadcast in this

way. However, the function s1(t) is nothing like the form in which a composer would

write music, or the form in which most musicians would prefer to read music for the

purpose of performance. Neither is it of much use to a recording engineer who wants

to remove noise and distortion form an old “vintage” recording. Musical waveforms

are so complex that a graph of s(t) vs. t would be almost useless to musicians and

engineers alike.
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This example show that the time-domain representation tends to obscure informa-

tion about frequency, because it assumes that the two variables t and f are mutually

exclusive.

2.2.2 Frequency-Domain Representation

Any practical signal s(t) can be represented in the frequency domain by its Fourier

transform S(f), given by

S(f) = Ft→fs(t) ,
∫ ∞

−∞
s(t)e−j2πftdt (2.2)

For convenience, the relation between s(t) and S(f) may be written “s(t) ↔ S(f)”.

The Fourier transform (FT) is in general complex; its magnitude is called the mag-

nitude spectrum and its phase is called the phase spectrum. The square of the

magnitude spectrum is the energy spectrum and shows how the energy of the signal

is distributed over the frequency domain; the total energy of the signal is

E =

∫ ∞

−∞
S(f)2df =

∫ ∞

−∞
S(f)S∗(f)df (2.3)

where the superscripted asterisk (*) denotes the complex conjugate. Although the

representation S(f) is a function of frequency only–time having been “integrated out”–

the FT is a complete representation of the signal because the signal can be recovered

form the FT by taking the inverse Fourier transform (IFT):

s(t) = F−1
t←fS(f) =

∫ ∞

−∞
S(f)ej2πftdf. (2.4)

But the “completeness” of the FT representation does not make it convenient for all

purposes, as may be seen by considering the same example.
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The musical performance has a magnitude spectrum which tells us what frequen-

cies are present, but not when they are present; the latter information is again en-

coded in the phase. The magnitude spectrum may exhibit as many as 120 peaks

corresponding to the notes of the chromatic scale in the audible frequency range, and

the relative heights of those peaks may tell us something about the tonality of the

music (or whether it is tonal at all), but the timing of the notes will not be represented

in the magnitude spectrum and will not be obvious from the phase spectrum.

The examples show that the frequency-domain representation “hides” the infor-

mation about timing, as S(f) does not mention the variable t.

2.2.3 Joint Time-Frequency Representation

As the conventional representations in the time domain or frequency domain are

inadequate in the situations described above, an obvious solution is to seek a rep-

resentation of the signal as a two-variable function or distribution whose domain is

the two-dimensional (t, f) space. Its constant-t cross-section should show the fre-

quency or frequencies present at time t, and its constant-f cross-section should show

the time or times at which frequency f is present. Such a representation is called a

time-frequency representation (TFR) or time-frequency distribution (TFD).

Non-stationary signals for which a TFD representation may be useful occur not

only in broadcasting, seismic exploration and audio, from which our examples are

taken, but also in numerous other engineering and interdisciplinary fields such as

telecommunications, radar, sonar, vibration analysis, speech processing and medical

diagnosis. Time-frequency signal processing (TFSP) is the processing of signals

by means of TFDs.
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2.3 Signal Analysis Techniques

2.3.1 Fast Fourier Transform

The fast Fourier transform (FFT) is a discrete Fourier transform algorithm. Although

the DFT is the most straightforward mathematical procedure for determining the

frequency content of a time-domain sequence, it’s terribly inefficient. As the number

of points in the DFT is increased to hundreds, or thousands, the amount of necessary

number crunching becomes excessive. In 1965 a paper was published by Cooley and

Tukey describing a very efficient algorithm to implement the DFT [22]. The algorithm

is now known as fast Fourier transform (FFT).

FFT reduces the number of computations needed for N points from N2 to N/2 lg N

( lg is the base-2 logarithm). To appreciate the FFT’s efficiency, let’s consider the

number of complex multiplications necessary for our old friend, the expression for an

N -point DFT:

X(m) =
N−1∑
n=0

x(n)e−j2πnm/N (2.5)

where X(m) is the mth DFT output component, m is the index of the DFT output

in the frequency domain, x(n) is the sequence of input samples, n is the time-domain

index of the input samples, j =
√−1 and N is the number of samples of the input

sequence and the number of frequency points in the DFT output.

For an 8-point DFT, Eq. 2.5 tells us that we’d have to perform N2 or 64 com-

plex multiplications. For an N -point FFT, the number of complex multiplications is

approximately:

N

2
log N (2.6)

Figure 2.1 compares the number of complex multiplications required by DFTs and

radix-2 FFTs as a function of the number of input data points N . When N = 512,
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Figure 2.1: Number of complex multiplications in the DFT and the radix-2 FFT as
a function of N [28].

for example, the DFT requires 200 times more complex multiplications than those

needed by the FFT.

FFT algorithms generally fall into two classes: decimation in time, and decima-

tion in frequency. The radix-2 algorithms are the simplest FFT algorithms. The

decimation-in-time (DIT) radix-2 FFT recursively partitions a DFT into two half-

length DFTs of the even-indexed and odd-indexed time samples. The outputs of

these shorter FFTs are reused to compute many outputs, thus greatly reducing the

total computational cost. The equation is shown as follows:

X(m) =

(N/2)−1∑
n=0

x(2n)W nm
N/2 + Wm

N

(N/2)−1∑
n=0

x(2n + 1)W nm
N/2 (2.7)

and

X(m + N/2) =

(N/2)−1∑
n=0

x(2n)W nm
N/2 −Wm

N

(N/2)−1∑
n=0

x(2n + 1)W nm
N/2 (2.8)

where we define WN = e−j2π/N to represent the complex phase angle factor that is

constant with N , all the rest parameters are the same as in Eq. 2.5. Figure 2.2 shows

Radix-2 Decimation-in-Time FFT algorithm for a length-8 signal.
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Figure 2.2: Radix-2 Decimation-in-Time FFT algorithm for a length-8 signal [2].

2.3.2 Wavelet Transform

The Fourier transform is a tool widely used for many scientific purposes, but it is well

suited only to the study of stationary signals where all frequencies have an infinite

coherence time. The Fourier analysis brings only global information which is not

sufficient to detect compact patterns. Morlet introduced the Wavelet Transform in

order to have a coherence time proportional to the period [30].

The wavelet transform presents a time-frequency representation of the signal. It

replaces the Fourier transform’s sinusoidal waves by a family generated by translations

and dilations of a window called a wavelet. It takes two arguments: time and scale.

It is defined by: ∫
ψ(t)dt = 0, ψa,b(t) =

1√
a
ψ

(
t− b

a

)
(2.9)

where a is the scaling factor and b is the translation factor. The translation and

scaling of the mother function will generate a family of functions. a changes the scale

of the wavelet and b controls the translation of the wavelet.

18



2.3.3 Spectrogram Analysis

Spectrogram analysis is based a quadratic time-frequency transform on the short-

time (windowed) Fourier transform (STFT) [8]. Let x(t) ∈ L2(R) and let w(t) be a

window function. The spectrogram with respect to w(t), written XS,w(µ, ω), is:

XS,w(µ, ω) = |X(µ, ω)|2 =

∣∣∣∣
∫ ∞

−∞
x(t)w(t− µ)e−jωtdt

∣∣∣∣
2

(2.10)

where XS,w(µ, ω), is the STFT of x(t) with respect to w(t).

Thus, the spectrogram of x(t) is the squared magnitude of the STFT of x(t) with

respect to w(t). The spectrogram is thus a natural generalization of the windowed

Fourier methods we have been comfortable in using. However, despite the more intu-

itive feel, spectrograms are far from being the most popular quadratic time-frequency

transforms. For one thing, XS,w relies on a window function. But it also has some

other undesirable traits that have motivated signal theorists to search out other trans-

form techniques. Among these better transforms is the classic transform of Wigner

and Ville.

19



Chapter 3

Dynamic Target Classification

Generalization comes at the cost of redundancy. In the context of target classifica-

tion, same feature set has been used for the classification of different types of targets

in the training set even though certain feature(s) might perform significantly better

for certain target. Generalization is not an issue in resource-abundant environments,

however, it becomes a big concern in resource-constraint environments where redun-

dancy should be eliminated. Wireless sensor networks (WSNs) provide a typical

example of the latter.

WSNs have unique superiority in monitoring the physical world via a network

of low-cost wireless sensor nodes equipped with sensing, processing, and networking

capabilities. The sensor nodes are powered by an on-board battery, thus energy

becomes the major constraint of individual sensor node since battery replacement

is not an option once the sensor is deployed. Computation is one of the operations

that would consume energy. The longer the computation, the more energy consumed.

Target detection and classification is an important pattern recognition application in

WSNs. Due to the resource constraints that WSNs inherently present, the design

20



of an energy-efficient classification algorithm with high accuracy becomes a highly

challenging problem.

Signal processing algorithms such as frequency or time-frequency analysis are the

most commonly used feature extraction techniques for target classification. However,

traditional signal analysis techniques often prove too complex for energy-and-cost-

effective WSN nodes[18]. For example, in [16] and [41], they perform classification

based on 50 and 26 features respectively. This large size of feature space incurs high

computational cost, which is a big hurdle when applying the algorithm to sensor

networks in realistic environments.

In this section, we propose dynamic target classification algorithm. In this ap-

proach, each sensor performs classification by dynamically changing the feature set

and the classifier according to the “probability” that the potential target might be of

certain class. Although the algorithm follows the traditional signal processing tech-

niques, in the feature extraction phase, it only uses the most compact set of features

for certain target. Thus the average dimension of the problem would be dramatically

reduced, resulting in low computational complexity. In addition, We study if the

above hypothesis holds. We also design a cost function to determine the optimal

combination of features and classifiers selection.

In the following paragraphs, we abbreviate the term “optimal combination of

features and classifiers” as “optimal combination set”. We use two data sets to

generate the optimal combination set for each type of target.
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3.1 Feature extraction

3.1.1 The normal curve analysis

The normal curve has long been important in statistics[29]. It has been described

as a mathematical model defined by a particular equation that depends on two spe-

cific numbers: the mean and the standard deviation, signifying that many normal

distributions exist and each has different mean or standard deviation[5]. These two

statistics are then used to calculate the other two statistics: skewness and kurtosis.

These four elements, the mean, the standard deviation, the skewness, and the

kotosis, are called the first four moments of a normal distribution.

Both the amplitude statistics and the shape statistics belong to normal curve anal-

ysis. These two methods remove the influence of distribution variability. Therefore,

we use these two analysis to extract features. Eq. 3.1 and Eq. 3.2 show the calculation

of these two statistical analysis.

µamp = 1
N

∑N
j=1 rj

σamp =
√

1
N

∑N
j=1(rj − µamp)2

γamp = 1
N

∑N
j=1(

rj−µamp

σamp
)3

βamp = 1
N

∑N
j=1(

rj−µamp

σamp
)4

(3.1)

µshape = 1
S

∑N
j=1 jrj

σshape =
√

1
S

∑N
j=1(j − µshape)2rj

γshape = 1
S

∑N
j=1(

j−µshape

σshape
)3rj

βshape = 1
S

∑N
j=1(

j−µshape

σshape
)4rj

(3.2)
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where S =
∑N

j=1 rj, rj is the summation of features over the whole range of feature

space, rj is the feature value for a specific sample j, and N is the total number of

sampled used in the feature vector.

3.1.2 Feature extraction process

In the sensor network, each sensor node collects time series signals from the environ-

ment. In order to obtain the signal characteristics, we apply fast Fourier transform

(FFT), wavelet transform (WT), and spectrogram analysis on the sampled data set.

We apply shape statistics (with four features) and amplitude statistics (another four

features [40]) to derive the global features in FFT. The frequencies corresponding

to the peaks in the FFT indicate the dominant frequencies of the vehicle’s vibra-

tions. Therefore, we extract frequency locations of the three largest peaks and the

corresponding magnitudes as another 6 features in FFT. Since FFT does not contain

time-domain information which is crucial for non-stationary signal analysis, we apply

wavelet transform on the data set. We use the average, the standard deviation, and

the energy of the four levels of wavelet coefficients as the 12 feature vectors from WT.

In the spectrogram analysis, we extract locations of three largest peaks and their

magnitudes as the rest 6 feature vectors. After these analysis the dimension of the

feature space becomes 32. Figure 3.1 summarizes the feature extraction process.

3.2 Classification

We use two types of supervised classification algorithms, one is the simple nonpara-

metric approach–k-Nearest Neighbor estimation (kNN), which assigns the unknown

sample to the class i if more samples belong to class i within the k nearest neighbors

of the unknown. The other is a parametric technique–Maximum Posterior Probability
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Figure 3.1: Block diagram of the feature extraction procedure.
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(MPP), which assumes both the training and the test set are Gaussian distributed

and assigns the unknown to the class that has the largest posterior probability than

the others.

3.3 Optimal combination of features and classifiers

As we mentioned before, the dynamic classification is based on the hypothesis, in

which each specific target corresponds to an optimal combination of features and

classifiers that can yield the best classification performance using as small number of

features as possible.

The key issue of dynamic classification lies in the optimal combination set selec-

tion. Hence, our task is to set up a rule to find this optimal set for each target. Note

that the dimension of the feature space is N = 2M−1 corresponding to all possibilities

for the presence or absence of each feature except for the all-absence case, where M

is the number of feature vectors. For the sake of simplicity, we grouped the feature

vectors into 7 subcategories: in FFT, 4 shape statistics, 4 amplitude statistics, and 6

peaks are abbreviated to FFT1, FFT2, and FFT3, respectively; in wavelet transform,

WT1, WT2, WT3 indicate 4 average vectors, 4 standard deviations vectors, and 4

energy vectors respectively; Spec denotes 6 peaks in spectrogram analysis (Refer to

Fig. 3.1). Consequently, the dimension of the feature space is reduced from 4.295×109

to 127.

When we select the optimal combination set for each type of target, our ma-

jor concern is on two parameters: accuracy and computational cost. Therefore, we

construct the cost function F as:

Fmin(x, y) =
f1(x, y)

f2(x, y)
(3.3)
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Type Method Optimal set Threshold Accuracy Time Cost

AAV MPP FFT1 0.8 0.8204 1.1367 1.3856
DW MPP WT2, WT3 0.7 0.7463 0.7850 1.0518

HMMWV MPP WT3 0.7 0.7325 0.6288 0.8584

Table 3.1: Optimal combination set results validated on SITEX00 and SITEX02 data
sets.

where f1 denotes the computation time function and f2 is the accuracy function.

x is a binary string denoting the feature combination. It has the form of x =

(FFT1, FFT2, FFT3,WT1,WT2,WT3, Spec), with each parameter being either 1

or 0, with the value of 0 indicating the absence of the feature set or 1 the presence of

the feature set. For example, x =(0 0 1 0 1 0 0) indicates we only select FFT3 and

WT2 feature vectors for classification. y denotes the classifier with the value of 1 for

kNN and 0 for MPP. We apply exhaustive search on the entire combination space to

generate the accuracy and the computation time. The combination corresponding to

the minimum cost is our solution. However, the minimum cost corresponding to the

poor accuracy is not desirable, therefore, we set a threshold for the accuracy for each

target type based on the validation results.
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Chapter 4

A Target Classification Scenario

4.1 Scenario description

To illustrate how dynamic classification strategy works, we consider a task of vehicles

running through the sensing field. We assume at each run only one target will present

in the field. We reconstruct the site and test dynamic classification algorithm based

on SITEX series data sets which we used to generate the optimal combination set.

The network map accords with Figure 4.1 which depicts the entire sensor field in

SITEX02 experiment. The emphasis of the paper is on dynamic target classification,

hence, we only focus on the dynamic classification phase, skipping the detection phase

and sensor selection details. The following lists the steps that dynamic classification

follows:

1. A target enters the sensor network.

2. The first node (denoted as A) is activated to sense the event and performs local

classification using the full set of features.

3. Node A selects the next best sensor which is node B and hands off the classifi-

cation result to node B.
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Figure 4.1: Sensor field layout [16].
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4. Node B looks up the optimal combination set table which is stored in each node

and selects the one according to the predicted target type it has received from

node A to make a new decision.

5. If the decisions made by both node A and B agree with each other, then go to

step 3, till the target is out of the region.

6. Otherwise, node B uses the entire feature set and performs the classification

process again, then go to step 3.

From the above steps, we notice that the previous sensor’s decision is very im-

portant since it will affect all the rest decision making. Therefore in the following

section, we employ the information-based sensor selection rule to the scenario to assist

dynamic target classification algorithm to yield the best performance.

4.2 Information-based sensor selection

In sensor selection, we try to incorporate those sensors which can provide the most

useful information. The criterion is based on the information gain of individual sensor

contributions. The goal of selection is to maximize this information gain [14].

We assume there are N sensors labeled from 1 to N and the corresponding mea-

surements of the sensors are {θi}N
i=1. Denote the state of a target we wish to estimate

is x, in the scenario, it is the position of the target. The belief is defined as a repre-

sentation of the current a posteriori distribution of x given measurements θ1,...,θN :

p(x|θ1, ..., θN)

Let U ⊂ {1, ..., N} denote the set of sensors which have been incorporated into the

belief. Our task is to choose a sensor which has not been incorporated into the belief
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yet, but provides the most information. Incorporating a measurement θj, where j /∈ U

with the current belief state which yields the new belief state:

p(x|{θi}i∈U ∪ {θj})

Furthermore, define the information gain function based on the Mahalanobis Dis-

tance (MD) of the sensors as:

MD(xj) = (xj − µ)T Σ−1(xj − µ) (4.1)

The MD measures the distance to the center of the error ellipsoid, normalized by the

covariance matrix Σ. Smaller distance means more reduction in the uncertainty of

the current belief [14]. So we choose the smallest MD which we believe will provide

the most uncertainty reduction. Therefore, our information gain function should be:

IGj = −MD(xj) (4.2)

Thus, the selection of sensor ĵ ∈ A = {1, ..., N} − U can be expressed as:

ĵ = argj∈A max IGj (4.3)

which equals to:

ĵ = argj∈A max(−(xj − µ)T Σ−1(xj − µ)) (4.4)

where the mean and the covariance of the belief state are calculated by

µ =

∫
xp(x|θ)dx (4.5)
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Σ =

∫
(x− µ)(x− µ)T p(x|θ)dx (4.6)

The above selection rule is a generic approach and especially for densely deployed

sensor networks. Since our scenario belongs to the small and relative sparse network,

we simplified the information gain in the experiments as:

IGj =
aj

(EDj)γ
+ cej (4.7)

where a is the amplitude of the signal detected from the target, γ is a known atten-

uation coefficient, c is a constant factor to scale the remaining energy e of sensor j.

ED is the Euclidean Distance between the sensor j and the mean:

ED(xj) = (xj − x̂)T (xj − x̂)) (4.8)

Where j ∈ A and x̂ is the state mean of sensors in the neighborhood.

Thus the selection rule is simplified as:

ĵ = max
j∈A

(
aj

(EDj)γ
+ cej

)
(4.9)

31



Chapter 5

Performance Evaluation

5.1 Experiment description

Following chapter 4’s procedures, we carried out the experiments on SITEX02’s data

set using seismic signals captured by the geophone on each local WINS NG 2.0 sensor

node. The seismic time series are sampled at 5 KHz (4960.32 Hz to be exact) and

are down-sampled to 512 Hz in our experiments. The training set is a 540 by 513

matrix and the test set is 180 by 513 matrix with each row a sample and each column

a feature, the last column is the true label of the target. Each sample is a 1-second

segment extracted from the event signal. The training set are composed of 180 samples

from each target.

The experiments are composed of two parts: one is for hypothesis validation

(refer to Chapter 3), the other is for dynamic classification. After feature extraction,

we perform 4-cross validation on the data set to get the validation results for the

hypothesis. Then we simulate the site and position the nodes according to Figure 4.1.

A subset of sensors is chosen using information-based sensor selection rule for each

target in dynamic classification case, as shown in Figure 5.1- 5.3.
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Figure 5.1: The selected nodes in AAV run. Red node indicates the first activated
sensor, green ones indicate the rest selected sensor using simplified information-based
sensor selection rule.

Figure 5.2: The selected nodes in DW run. Red node indicates the first activated
sensor, green ones indicate the rest selected sensor using simplified information-based
sensor selection rule.
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Figure 5.3: The selected nodes in HMMWV run. Red node indicates the first acti-
vated sensor, green ones indicate the rest selected sensor using simplified information-
based sensor selection rule.
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Figure 5.4: Accuracy comparison between normal and dynamic classification for AAV.
Solid line: dynamic classification; Dash line: normal classification. X-axis: selected
nodes Index, Y-axis: accuracy

5.2 Accuracy and response time comparison

In our experiments, the target types include AAV, DW, and HMMWV. The accuracy

comparison of using normal classification and dynamic classification is evaluated in

Figure 5.4, Figure 5.5, and Figure 5.6. The response time comparison of using normal

classification and dynamic classification is evaluated in Figure 5.7, Figure 5.8, and

Figure 5.9. In each figure, the solid line indicates the results from dynamic classifica-

tion and the dash line indicates the results from normal classification. X-axis denotes

the index of the selected nodes for each type of target. As we observed from these two

figures, at each node, the accuracy is improved and the response time is decreased

using dynamic classification algorithm.
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Figure 5.5: Accuracy comparison between normal and dynamic classification for DW.
Solid line: dynamic classification; Dash line: normal classification. X-axis: selected
nodes Index, Y-axis: accuracy
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Figure 5.6: Accuracy comparison between normal and dynamic classification for
HMMWV. Solid line: dynamic classification; Dash line: normal classification. X-
axis: selected nodes Index, Y-axis: accuracy
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Figure 5.7: Response time comparison between normal and dynamic classification
for AAV. Solid line: dynamic classification; Dash line: normal classification. X-axis:
selected nodes Index, Y-axis: response time
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Figure 5.8: Response time comparison between normal and dynamic classification
for DW. Solid line: dynamic classification; Dash line: normal classification. X-axis:
selected nodes Index, Y-axis: response time
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Figure 5.9: Response time comparison between normal and dynamic classification for
HMMWV. Solid line: dynamic classification; Dash line: normal classification. X-axis:
selected nodes Index, Y-axis: response time
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The following lists the numerical data that generated from the dynamic classi-

fication experiment. Table 5.1 shows the numerical results of normal classification

and dynamic classification in terms of response time and accuracy for AAV. Table

5.2 shows the numerical analysis of normal classification and dynamic classification

in terms of response time and accuracy for DW. Table 5.3 shows the experimental

results of normal classification and dynamic classification in terms of response time

and accuracy for HMMWV. From these tables we can clearly see that no matter what

kind of military vehicle presents in the experiment, dynamic classification performs

better than normal classification in terms of both accuracy and response time.

Selected Node Normal Dynamic
ID Time Accuracy Time Accuracy

First 42 0.1215 0.8667 0.1233 0.8667
41 0.1270 0.8462 0.0273 0.9231
59 0.1656 0.7000 0.0354 1.0000
56 0.1667 0.6000 0.0354 0.8000
52 0.1677 0.8000 0.0354 1.0000

Rest 53 0.1397 0.7500 0.0291 1.0000
50 0.1510 0.9091 0.0322 1.0000
49 0.1656 0.9000 0.0354 1.0000
48 0.1286 0.9231 0.0273 1.0000
47 0.1286 0.7692 0.0272 1.0000
46 0.1334 0.8462 0.0276 0.9231

Average 0.1450 0.8100 0.0396 0.9557

Table 5.1: Comparison of normal classification and dynamic classification in terms of
response time and accuracy for AAV.
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Selected Node Normal Dynamic
ID Time Accuracy Time Accuracy

first 50 0.0269 0.5354 0.0258 0.5354
53 0.0260 0.5667 0.0035 0.6556
58 0.0261 0.4667 0.0038 0.6762

Rest 60 0.0274 0.6444 0.0084 0.7778
56 0.0263 0.4167 0.0044 0.8095
52 0.0298 0.5700 0.0042 0.7800

Average 0.0298 0.5333 0.0083 0.7057

Table 5.2: Comparison of normal classification and dynamic classification in terms of
response time and accuracy for DW.

Selected Node Normal Dynamic
ID Time Accuracy Time Accuracy

first 50 0.0248 0.7273 0.0264 0.7273
53 0.0258 0.8333 0.0029 1.0000
58 0.0266 0.8462 0.0028 0.9231
61 0.0324 0.8182 0.0031 1.0000

Rest 60 0.0441 0.9091 0.0051 1.0000
59 0.0249 0.9000 0.0029 1.0000
56 0.0255 0.4000 0.0029 0.5000
52 0.0257 0.5000 0.0030 1.0000

Average 0.0287 0.7418 0.0061 0.8938

Table 5.3: Comparison of normal classification and dynamic classification in terms of
response time and accuracy for HMMWV.

5.3 One run comparison

Figure 5.10 and Figure 5.11 shows the accuracy and the response time of one-run com-

parison for each type of target, respectively. The statistical results show that using

dynamic classification, the average accuracy for AAV is 95.57% compared with 81%

using normal classification; for DW is 70.57% compared with 53.33% using normal

classification; for HMMWV is 89.38% compared with 74.18% using normal classifi-

cation. The total response time is reduced to less than 30% of the one in normal

case.
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Figure 5.10: Normal and dynamic target classification average accuracy comparison
for AAV, DW, HMMWV. X-axis denotes the type of the target, Y-axis indicates the
accuracy.

In the experiments, we use the computation time to represent the response time.

For the energy consumption, we can roughly computed by[43]:

Econsumed = Texec × Paverage (5.1)

For WINS NG 2.0 sensor node, the power dissipation for the processor at active status

is 360mW. Therefore, we can calculate the total energy saved in dynamic classification

for each target: for AAV, it is 417.528 mJ; for DW, it is 234.54 mJ; for HMMWV, it

is 346.104 mJ.
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Figure 5.11: Normal and dynamic target classification total response time comparison
for AAV, DW, HMMWV. X-axis denotes the type of the target, Y-axis indicates the
response time in second.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this paper, we presented dynamic target classification in an energy constrained

network and applied it to a target classification scenario. The experimental results

showed that using dynamic classification approach, the accuracy can reach as high

as 95.57% at a very low computational cost. The idea of the proposed algorithm can

also be extended to other applications, making it a practical solution.

In the context of WSNs, unlike other dimension reduction techniques which are

applied to the feature space after deriving all features from the raw time series sig-

nals, such as principal component analysis (PCA), dynamic classification reduce the

computational complexity right at the feature derivation stage. In our experiments,

the dimension can be directly reduced from 32 to 4 or 8 by applying the proposed

algorithm and at the same time, the accuracy even much better than before. If PCA

is applied to the experiment, actually the computational cost will be increased and

the accuracy will remain the same level.
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6.2 Future work

1. In feature extraction phase, If we keep the original 32 features in the feature

space, then the optimization problem becomes NP-hard since the total com-

bination of features is 4.295 × 109. We can try to apply genetic algorithm to

find the global minimum approximation. If this works, it is possible that the

accuracy will be further improved and the computational cost will be further

reduced as well.

2. Compare the results of using sensor selection rule with the one without using

sensor selection rule to show the importance of sensor selection rule in dynamic

classification.

3. In dynamic target classification experiment, which data have been transmitted

during the whole precess.

4. By involving information-based sensor selection rule, more energy will be con-

sumed, find the balance between the performance improvement and the energy

consumption.

“A journey of a thousand miles begins with a single step.”

—Confucius
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