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ABSTRACT

The electrostatic problem of a conductive sphere on a charged conductive
plane has been solved using theoretical and experimental methods. From
elementary electrostatics it is seen that there will be a uniform electric field

- TP ! 2
E, volts/meter normal to a semi-infinite plane bearing 0, coulombs/meter”.
Based on an image charge approach, it was determined that a sphere of radius
. . ofle ° - 2 3R2
R meters will acquire a total equilibrium charge q = 3T R0, coulombs at
contact with the plane, and the uniform field will be perturbed, resulting in
a field strength E = 4.5E, volts/meter at the top of the sphere. An approxi-
mation, valid to within less than about | per cent, for the repulsive force
acting on the sphere was obtained by extrapolating to contact, series solutions
of the Laplace equation for finite separation between sphere and plane: the
° . - -Io 2 2
force at contact is estimated to be Fz = 1.537 x 10 ""kR“E's newtons; where
k is the dielectric constant of the surrounding medium. The charge distribution

on the sphere was determined experimentally by plating copper on a sphere -

plane cathode and, within about 10 per cent, is given by the empirical expression

o(8) =(0.8696 c052-92-+ 3.6304 cos4—g-) 0,; where 6 is the angle of colatitude in

spherical polar coordinates referred to the axis of contact and concentric with

the sphere.

vii



CHAPTER |
INTRODUCTION

I. STATEMENT OF THE PROBLEM

If a conductive sphere is placed in contact with a semi-infinite, conductive
plane, the configuration constitutes a three -dimensional equipotential surface.
Assuming an isolated plane to be electrically charged to a known surface charge
density (g,) originally, it is desired to determine the effect produced by placing
a sphere on the plane. Specifically, the purpose of this investigation is to deter-
mine the force exerted on the sphere normal to the plane, the total charge acquired
by the sphere and the perturbation in the electrical field due to its presence on the

plane.
Il, SCIENTIFIC JUSTIFICATION

Whereas there are classical solutions which are applicable to the problems
of a thin disk or af a hemisphere on a plane [e.g., Jeans(1941)], no such solution
exists for the sphere on a plane. Historically, the solutions to electrostatic problems
involving three-dimensional bodies, such as two finite spheres or a sphere and a
plane, have been approached by the method of images described by Maxwell(1892).
Weber(1965), says, for example, "The electrostatic field of two finite conducting
spheres can be described only by an infinite séquence of images." This restriction

is especially damaging in that the infinite series that result from the method of
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images are very unwieldy and have been made to converge in only a few
comparatively simple cases.

In a recent paper, Taylor (1966), pointed out that, despite the fact the first
observations that light objects lying on a surface will jump to a piece of rubbed
amber were recorded about 2500 years ago, there remain areas of work on electro-
statics not yet completely solved. He went on to indicate that the distribution of
charge on axisymmetric bodies is known for only a few cases: Taylor (1964), had
earlier published a derivation for the surface charge density over a spheroid of

finite eccentricity.
Il. TECHNOLOGICAL JUSTIFICATION

Beyond the esthetic challenge presented by the electrostatic problem of a
perfect conducting sphere on a charged semi-infinite plane, there are many areas
of technology in which a solution to this problem would be, at least, useful and,
in some cases, vital. The various mechanisms of adhesion of particles to surfaces
are impbrtant in understanding the behavior of airborne particles ofter they come
in contact with a solid surface. Electrical and aerodynamic forces are the only
ones that can influence particle deposition, contribute to preferred orientations of
the deposit and also exert a net repulsion tending to lessen adhesion after deposition.
These phenomena are important in connection with the retention and removal of
particles in air sampling and air cleaning devices. Obviously, any factor tending

to produce preferred locations and to affect orientation of particles collected in a
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sampling device could produce significant artifacts in the deposit, thus obscuring
important detail, as for example, the agglomeration of particles during deposition
yields a deposit that usually cannot be differentiated from a collection of previously
agglomerated particles.

Adventitious resuspension of deposited particles is of interest in such widely
divergent fields as the dispersion of radioactive surface contamination in laboratory
facilities or in open fields, the movement of microbial contaminants in hospital or
space environments, the movement of sands and dunes, and soil erosion
[e.g., Fish (1967)]. beliberafe decontamination requires knowledge of the adhesion
as well as the removal forces. In this connection, a number of persons have
attempted to utilize electrostatic forces to remove particles from solid surfaces,
unfortunately the required fields are so high that the method has shown very little
promise as a primary means of decontamination.

Electrical repulsive forces on spherical particles are important in numerous
areas of the space programs carried out by the National Aeronautical and Space
Administration. Recent discussions with personnel of the General Electric, Space
and Missile Systems Division, have emphasized the possible importance of adhesion
and repulsion of bacterial spores and other viable organisms on the surface of the
Voyager and other plonefary probes. There is even an electrical propulsion device

which utilizes small particles repelled from a plane electrode as the working

medium [e.g., Schultz (1961)].
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A considerable technology, recently discussed by Ralston (1961), has arisen
around the use of electrical means to separate minerals during benification of ores.
While most of the processes depend upon dielectric phenomena, still the repulsion
of conductive particles after contact with a charged electrode also plays a
significant role.

In the increasingly important field of air pollution control, it has been
recognized, for many years, that highly conductive particles can lead to serious
reduction in collection (i.e., retention) efficiency of electrostatic precipitators
[e.g., Lowe and Lucas (1953)]. Finally, the intrusion of dust into high voltage
systems, e.g., ionization chambers, is obviously undesirable because of the
spurious pulses produced when a particle suddenly is repelled from the surface of
a charged part of the assembly.

These fields, in addition to others such as aerodynamics, all have
significant problems for which an understanding of the sphere-on-a-plane problem

would be beneficial.

IV. PLAN OF ATTACK

~ First, estimates of the total charge acquired by the sphere, of the repulsive
force and of the magnitude of the electrical field will be obtained by comparison
with solutions of other sirﬁilar problems. Then, an image charge approach will be
attempted. A solution for an equipotential sphere very near, but not touching, a

charged plane will be derived based on a solution to the Laplace equation in a
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bispherical coordinate system. And, finally, an essentially experimental
approach utilizing a current-density-field analog will be used to verify results

obtained by other methods.

V. UNITS

When following the derivation of a given author, insofar as possible, the
same system of units will be used as employed in the referenced work. However,
for work originating in the present study and in computations based on the work of

others the rationalized MKS system will be used.



CHAPTER I

ESTIMATION OF CHARGE, FORCE AND FIELD

I. ESTIMATE OF CHARGE

Maxwell (1892) applied the methods of electrical images and electric
inversion to the problem of the distribution of charge on two spheres in contact.
Consider two contacting spheres of radii a and b, both at unit potential. If the
system is inverted with respect to the point of contact, the result is two parallel

planes located at A and -2—|B from the point of inversion and these planes are

2a
influenced by a unit positive point charge situated at the inversion point,

L R 4|
. o o . . L 4=+ 2+ ) e
Figure I. Similarly, negative images occur at BE (a E-), 2 2(¢: b)’

L +n( -Iq- +%) for integral n 20. Images of the point charge are located in

a

I, I, . |, | .

By ol Z+ —ta) e nl=+ -
plane A at (u b)' 2(0 E)’ 3(0 b)' n(a |:,) for integral values of
n 2 1. When the system is inverted back to the original geometry the first set
of positive images becomes negative and the amount of charge (assuming the
electrostatic system of units) is numerically equal fo its distance from the point

of contact. This distance, in sphere A, becomes ——, n=1, 2,*** =,

o+ P

The negative images become positive and are located at

| , n=0,1, .- The total charge on sphere A is

I I,
-+ -t
a n(a b)



SPHERE B
SPHERE A

BOTH AT UNIT
POSITIVE POTENTIAL

PLANE A PLANE B
1 i lal
. 50 !‘éb"—"(ll:"""i)—slo
-IQC T +¢ I;.
soa Pl
|
|
|

TWO PLANES RESULT FROM THE INVERSION OF TWO SPHERES

Figure I. Two contacting spheres showing the electrical images in the system
of planes formed as the electrical inversion of the spheres about their
point of contact.



Each of these series is divergent, but the combination

2

= ab
: : (1)
A z n(a+ b) [n(a+b) -a]

is convergent. Similarly, the total charge on sphere B is given by

ab2

| n(a+b) [n(a+b)-b] '

Q. =

: 2

L

For the special case when sphere A is very small with respect to sphere B

A E___' nb[nb]

and the charge on sphere B remains practically undisturbed, being approximately
the same as it would be at unit potential, uninfluenced by any other charged

body. Thus, (in electrostatic units),

Q R:SbX|=b.



Maxwell, pointed out that if one defines the mean surface density as the

total charge divided by the total surface area, then

E - QA ~ 11202 - m
A 4ra?  6x4mab 24b
and
. b |
B™ 4102 4nmb
or
2
- ﬂ -
O\~ T O - 3)

If a plane, which incidentally is a very large sphere, bears a surface
charge density o,, then a contacting sphere of radius r will accumulate a total
charge

L. g

q=41rr2(% Oo) = FTF o (4)

This result holds for any self consistent system of units and will be referred to as

Maxwell's solution.
Il. ESTIMATE OF NORMAL FORCE

By comparison with known solutions for other shaped conductors on a
charged plane, a plausible argument can be made to produce an estimate of the
force on a sphere. Basically the approach is to determine the amount of charge

acquired by the movable conductor and to estimate the effective electrical
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field of the fixed plane in the neighborhood of this charge. The force then may be
approximated as the product of the charge and the effective field strength.

In the case of a disk of radius r on a plane the normal pressure is given by

P =-'2 D-E,,
where IDI= the magnitude of the displacement vector = g, and f:'o = undisturbed
field above the plane.

At the surface of a conductor, both D and f:'o are normal to the surface;

thus the normal force on the disk is given by

Fn = area x P =2l(1rr2)lDl x |Egl cos0° = (‘rrr2 c:,,)(l—2 Eo),

but Trr2 0o = total charge on the disk = g;

_ _
therefore Fn =qE =q (-2- E,).

effective
The effective field operating on the charge acquired by the disk is "% Eo-
Similarly for the hemisphere, the total charge and the effective field can

be calculated from

E(6) = 3E, cos 6,

D(6) = € E(6), parallel to E(6),
and P(6) =L <E(®) 1E (8) cos 0° = 5 € EX(8);
where € is the permittivity of the surrounding medium. The total charge on the

hemisphere is obtained from

m/2 m/2 2 2
q =L€E(6)d(orea) = L €[3E,cos 8 I[2mr sin6d 8 ]=37r€E,. (5)
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The vertical component of force on the hemisphere is calculated by summing the

vertical component of the normal pressure on each differential area and is given by

m/2 m/2
Fn = J'cos 0 [—|2€ Ez(e)]d(area) = 91r€r2E¢2, I c0539 sin8d® =%1rr2€ E?,, (6)

or

F = @mrZeE)(JE).

N quffecﬁve
Thus the effective field acting on the total charge acquired by the hemisphere is
%Eo. It is seen that, although the total charge on the hemisphere is three times
greater than that on a disk of the same radius, the effective field is only 50 per
cent greater for the hemisphere. This effect results from the greater average
distance of the charge on the hemisphere from that on the plane as compared with
that of the charge on the disk.

The effective field arises as the result of all of f-he charge on the plane
except that which resides on the surface of the, presumed small, conductor in
question, and is an indication of the perturbation in the charge distribution on
the plane brought about by the charge on the small contacting body. If the body
is a non-interacting point charge, or if it is far enough away from the plane so as
to be treated as a point charge there will be no perturbation of the charge density
on the plane and the effective field will be simply E,.

Although somewhat more than twice as much total charge will be acquired

by a sphere than by a hemisphere of equal radius, still the charge is located, on

the average, further from the plane in the case of the sphere. Furthermore, in the
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case of the hemisphere a disk -shaped area of 17r2 lying under the hemisphere bears
no charge, while for the spherical conductor the surface charge density may be
expected to remain finite under the sphere, going to zero only at the point of
contact. Thus, it seems reasonable to assume that the charge on the sphere will
exert more influence on the plane than would a non-interacting point charge
hence the effective field is likely to be less than Eg; but, on the other hand,

the interaction would be expected to be less than that for a hemisphere
consequently the effective field should be greater than %Eo.

Without more detailed investigation, it would be unwise to guess exactly
where in the range %-Eo to E, the effective field might be for the sphere. However,
it seems unlikely that the factor would lie exactly on the extremes of the range;
fherefore, it is assumed that a first approximation of the effective field is —SZEO ,
it is not likely that the error would exceed £12.5 per cent at most and probably

would be less than £10 per cent. Then, on this basis, within about 10 per cent,

the vertical component of force is estimated to be

I:n -9 Eeffecfive,

where

32

q=5mr €Ey (Maxwell's solution);

wWIN

finally

3
2 39 7 7 5 9
an(gn r eEO)(-gEo)=—|21-er ES . )



13

I1l. ESTIMATE OF FIELD STRENGTH

As a first approximation the field at the top of a conductive sphere in
contact with a charged plane can be expected to be of the order of that at the
top of a hemisphere of equal radius. However, the sphere, having twice the
surface area of the hemisphere, will acquire somewhat more than twice the amount

of charge on the hemisphere. Thus,

2
q = 47 rz(%— Go) = -§N3r2 oo (sphere),

and
_ 2 .
q = 37", (hemisphere).

The ratio is

Furthermore, most of the charge would be expected to reside on the upper half
sphere as a result of repulsion from the charges on the plane. On the basis of the
above it seems plausible to expect the charge density, hence the field, at the top

of the sphere to be greater than that at the top of a hemisphere; i.e.
Es >3E,.

Although more than half of the charge may lie above the midplane of the

sphere, It appears reasonable to assume that the charge distribution is continuous
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in such a way as to maintain the sphere as an equipotential surface and that not all
of the charge would be found on the upper half sphere. In addition, even if all of
the charge on the sphere were found on the upper half, the peak in the surface
charge distribution function would not be likely to be quite as pronounced as that
observed on the hemisphere because of the lessened interaction with the charges on
the plane. Following this line of argument, an upper limit to the field strength may
be assumed to be that which would be seen if all of the charge were distributed on

the upper half-sphere in the same way as on a hemisphere; i.e.
E <2193 x 3E, = 6.57E,.

If the midpoint of the range is chosen as a first approximation, the error
should not exceed about +37.5 per cent. Clearly, this is a poorer quality estimate
than that obtained for the repulsion force or for the amount of charge accumulated
on the sphere. Nevertheless, it is probably not far wrong and, perhaps, useful for

some purpoées to assume
E~48E, 8)

at the top of a conductive sphere in contact with a charged plane where E, is the

undisturbed field above the plane.

IV. SUMMARY OF ESTIMATES

At this point, estimates have been obtained of the total charge acquired,

the repulsion force and the field strength at the top of a spherical conductor
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residing on a charged conductive plane. Obviously, these estimatesare not of
uniform quality, although, even in the worse case, the expected precision of the
estimate is probably not so bod as to preclude its use for some purposes. These

approximations are summarized in Table | along with estimates of their precision.
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TABLE |

SUMMARY OF ESTIMATES FOR CONDUCTIVE SPHERE ON A CHARGED
CONDUCTIVE PLANE

Quantity Estimate Approximate Error
(per cent)
Total Charge (coulombs) %'nar2 Oo 0
71° 2
Normal Force (newtons) 2 +<l12.5

2¢'

Field at Top (volts/meter) 4.8E, +<37.5




CHAPTER 111
IMAGE CHARGE APPROACH

. BACKGROUND

Credit for developing the method of electrical images usually is given to
Sir William Thomson [e.g. Maxwell (1873)]. Basically, the method provides a
means of solving quite complex boundary value problems in electrostatics through
a series of approximations, each step of which requires only relatively simple
mathematical manipulations.

Justification for use of the method is rather simple and is well based
theoretically. Fundamentally, the classical electrostatic problem is to find a
charge distribution that will conform to some specified condition on the boundary
between a conductor and a charge-free space, and that will satisfy the Laplace
equation everywhere outside the charged boundary. The image charge distribution
usually consists of a series of point charges selected in such a way fhcf the boundary
conditions are met. Since the potential of a point charge satisfies the Laplace
equation, and a linear combination of solutions also is a solution, then any such
combination of point charges that can be found to conform to the fixed boundary
conditions will provide a solution to the potential field in the space outside the
boundary. Thus, whereas the electrical charge on an isolated sphere resides on its

surface, nevertheless an equivalent, imaginary, point charge located at the center
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of the sphere produces a potential on and outside of the spherical boundary which
is in every way the same as that produced by a real charge distribution on the

surface.

Il. BASIC PRINCIPLES

An electric image is defined by Maxwell (1892), "as an electrified point or
system of points on one side of a surface which would produce on the other side of
that surface the same electrical action which the actual electrification of that
surface really does produce.”

Consider a semi-infinite plane at zero potential under the influence of a
positive point charge q at a perpendicular distance z above the plane as shown in
Figure 2. There will be a local accumulation of charge on the plane but the means
of computing the charge distribution are quite difficult to apply. It is clear,
however, that if the plane is to be maintained as an equipotential surface then the
potential at every point on the plane must be nullified by an equal and opposite
pofenf.ial. It is easy to see that this can be accomplished by placing an equal but
opposite sign point charge —q at an equal distance z on the other side of the plane
surface. This "mirror image" charge is the electrical image of the original point
charge in a conductive plane.

Selection of the image charge necessary to maintain a spherical surface as
an equipotential under the influence of an external point charge is more difficult

than for the plane; however, the steps involved are nonetheless straightforward.
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POTENTIAL ON

PLANE
q
VIP) =5 -2 =0 ,1 + q POINT CHARGE
P
///,

NS

/
/
/
/
oG— N —Pli— N

— q IMAGE CHARGE

Figure 2. Image charge in a plane under the influence of a point charge
,outside the plane.
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Referring to Figure 3, a positive point charge is located at A, which is an axial
distance f from a sphere for which the potential of the surface is to be uniformly
zero. A point C can be selected such that an image charge q, may be found to
yield an equal but opposite potential at any point P on the surface as that produced
by the given point charge at A. It is seen that triangle ADP and CDP share the

same interior angle 8, and one side, r. Thus, from the geometry

p2=r2+A—D2-2r(m)cose, 9
|

and
02= 2+ TH2- 2 (CD) cos . (10)
2

Furthermore, to make the potential at P equal zero

qQ q.
VIP)=0= —+ —-. (1)
p p
)

If we choose CD in such a way that triangles APD and PDC are similar, then

2
Cr£= i, or CD=1—- (12)
AD AD

Substituting (12) in (10) yields

2 2
p2= r:z[ATDZ'F r2 - 2rAD cos 9:|=-r:2 p2,

2 AD AD™ |
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POTENTIAL OF
SPHERE V=0

Figure 3. Image charge in a spherical conductor under the influence of a
point charge outside the sphere.
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which, along with (ll), results in

I
o=— 4 (22 L,
B "
finally,
q; = A_Dq (57 a= -kaq, (13)
and
g=r -CD= () F=kf; (14)
=
where k—f -

The image of a charge q, located at a radial distance f from a sphere of radius r,
is a charge -kq located on the axis at a distance kf inside the sphere. Whereas
k=1 for a plane, it is less than one for a sphere and depends on the ratio of the
radius of the sphere to the distance of the exterior point charge from the center

of the sphere.
f1l. APPLICATION TO SPHERE ON A PLANE

In the case of a sphere near, but not touching, a grounded plane the
problem is approached by assuming a point charge to be located at the center of
the sphere. The point ch‘orge is taken to be the amount q necessary to produce a
uniform potential V = % on the surface of an isolated sphere, where V is the given

potential of the sphere with respect to the plane. Then, beginning with q, an
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infinite series of image charges is constructed in the plane and in the sphere as
described in section |l of this chapter.

For the conductive sphere in contact with a conductive plane, the
potential of the spherical surface is zero with respect to the plane. External to
the sphere there is a uniform field E, which produces a variation in potential over
a hypothetical sphere. The distribution of charge necessary to maintain an isolated
sphere at zero potential in a uniform field is known from classical electrostatics

[e.g., Jeans(1941)], to be
c(8) =3 €k, cos §; (15)

where 6 is the angle from the direction of the field at the center of the sphere.
For the purpose of the problem at hand it would be conceivable that one could
start with either the full surface charge distribution given by (15) and its images,

or with an equivalent dipole of moment
M= €rE, (16)

located at the center of the sphere. In view of the obvious complexity of treating
images of three -dimensional charge distributions, it is tempting to begin with the
equivalent dipole. Unfortunately, although the first image required to return the
plane to zero potential is a mirror image dipole in the plane, the first image in the
sphere is no longer a simple dipole, nor are succesive images in either the plane
or the sphere. Consequently, it is necessary to examine the images of the three-

dimensional charge distribution.
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The origin of the uniform field E, above the undisturbed plane is the

uniform surface charge distribution
gy =€E, ;
thus, from (15)
o(6) =30, cos 0.

Referring to Figure 4 one can see in principle how the first and successive images
in the sphere can be derived from the geometrical distribution of each "generator"

image in the plane. Thus, the distribution on the first image in the sphere is given

by
o(p) = --:;(-3 0 cos 87), (17)
where
p—ﬂ2f+fCO593 '*'r sin 0 J5+4cose
and finally
a(@)=B0, =20 8)
V5+4cos8’

However, a difficulty arises when one tries to express the angle 8° in terms of the
angle B in the new image. There is, of course, a relationship between the two
angles, and this can be derived from Figure 4; thus

sine”  __sinf

2+cos®” 2 -cosP

(19)
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FIRST 3 DIMENSIONAL
IMAGE IN THE PLANE

Figure 4. Three dimensional image charge distributions in the plane and
in the sphere.
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Although (I9) may be solved as an explicit function and a graphical relationship
between B and 8 “ may be obtained, there is no simple functional form relating the
two which could be used in a recursion equation for successive images in the sphere.
It is possible to perform a graphical derivation of each new image, treating each
point of the generator surface as a point charge and using the relations given in
(13) and (14). This has been done for the first and second images in the sphere, and
the new distributions c|(B|) and 02([32) are comp;:red with the starting distribution
o(8) in Figure 5. This procedure could be carried on through, perhaps, the 5th
image, the height of which is only about 0.4 per cent of the height of the original
sphere; however, in addition to the tedium and the inaccuracies of the graphical
method, there would still remain the problem of determining graphically the
potential on and near the spherical surface and, from this, calculating the field
at many points of the surface. There seems to be little to recommend this method
over a frankly experimental approach such as that of measuring the potential
distribution in an electrolytic tank.

Despite the difficulty in applying the method of images to solve the complete
problem, it is possible to obtain an exact solution for the electrical field at the top
of the sphere. By successive applications of the recursion relations (13) and (14) the
total field at the top of the sphere may be readily obtained as a linear superposition
of the fields at the top of all of the image charge distributions, and can be
expressed as

E0) =3E, + 3E, ) (%)". (20)

n=|
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Figure 5. Results of graphic solution for the surface charge distribution on
the first and second three-dimensional images in the sphere, as
compared with the starting distribution of charge.
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This can be written as

E0) = 3E,) (3",
n=0

which is in the form

|+x+x2+x3+ x4+...= l r
| -x
and, for x <1, converges to
5 3, _
E(0) =3 E.,(-2—) = 4.5E,. (21)

The simple linear superposition of fields used in (20) is valid only for points of
azimuthal symmetry on the sphere. This is limited to the top and bottom where
0 equals 0 dnd 7 radians. In the case of the bottom of the sphere, it is seen that
there are two equal and opposite series of images in contact and superposition

leads to
E(m) =0. (22)

The rough estimate, 4.8 E,, given in section ||l of Chapter Il, was made before
the result of (21) was known, and is less than 7 per cent in error despite the broad

assumptions used to justify it.



CHAPTER IV
LAPLACE EQUATION IN BISPHERICAL COORDINATES
I. THE LAPLACE EQUATION

In connection with his study of Saturn's rings, Laplace (1785), gave a
complete solution of the general problem of the attraction of a spheroid on an
external particle and introduced the concept of the potential function and what
is termed the Laplacian. It is shown, in the calculus of variations, that the

Laplace equation

vV =0 (23)
expresses the condition that the function V have the minimum mean gradient in
space. This symbolizes the universal tendency to reduce any departure from
uniformity fo a minimum. Also equation (23) represents the difference between
the local and average values of V in an infinitesimal neighborhood of the point.

The Laplace equation arises in electrostatics as a special case of the

Poisson equation

V2 = -

.
’

mlo

where p is the volume density of charge in a homogeneous medium. This equation

is a result of applying Gauss' flux law to the displacement vector D, such that
J. V ° 6 dV = Q’
v

29
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but
Q= J‘ pdv;
v

thus

V-D=p.
The displacement relationship for the potential V is
D=¢E =-¢ grad V= -€VYV,

from which

VPv=_L

€

for a medium in which € is uniform. For charge free regions, such as the space
outside of a charged conductor, the volume density of.chorge p is zero and the
Laplace equation is seen to apply.

The Laplace equation is an elliptic, linear, homogeneous, partial
differential equation and requires either Dirichlet (known potential), or
Neumann (known potential gradient), conditions on a closed boundary. For the
problem at hand, the potential is known on the semi-infinite conductive boundary
(V=0), and the potential gradient is specified on the boundary at infinity
(-grad V=E,); thus the boundary conditions are of a mixed type.

Unfortunately fhé symmetry of the problem also is of a mixed type. The
natural coordinate system to use for planar boundaries is the rectangular Cartesian

system; on the other hand, when dealing with spherically symmetric boundaries,
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spherical polar coordinates would be the system of choice. The closest approxima-
tion to a system which includes both a sphere and a plane as natural boundaries is
the bispherical coordinate system described by Morse and Feshbach (1953). Although
the sphere degenerates into a plane at contact with the base plane in the bispherical
coordinate system, still asymptotic solutions may be possible for the sphere almost

in contact with the plane.
Il. BISPHERICAL COORDINATES

The geometry of the bispherical coordinate system is shown in Figure 6.
Following the nomenclature of Morse and Feshbach the coordinates are ¢, n, and
H. It is difficult intuitively ta relate these coordinates to the more familiar
rectangular or simple polar systems. In this system, @ is the azimuthal angle as
in spherical polar coordinates and ranges from 0 to 27. However, N and p have
no direct counterpart in the simple systems, combining the properties of angle and
shape in the case of N for the range 0 to m, and the properties of radius and
position in the case of p which ranges from -« to + =,

In Figure 6 the sphere is represented by a surface of constant p = po. The

sphere has a radius of

r=alcshp,l, (24)
and the center is located on the z-axis at

b = a coth p,.- (25)
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Figure 6. Sphere and plane in the bispherical coordinate system.
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Solving (24) and (25) for the coefficient a results in

a= Vbz -r2 1 (26)

The plane is the xy -plane and is given by p = 0. An arbitrary point P, outside

the sphere and above the plane, in cylindrical coordinates, is at a distance

_ / 2 2 sinh
gis M= coshp - cosn (27)

above the plane, and at a radial distance

b2 2 ____sinmp___ (28)

coshp - cosn
from the axis of symmetry.

The differential area on the surface of the sphere is given by

dA = 27rdz,
but
di, SNaE asinhy, - asinh A% ;
cosh po = cosn (coshipgr="cosi)
thus
(r sinh po)d 27a2
A1y - 2aE pjﬁcosn L dcosn. (29)

(cosh pg - cos‘r]) {cosh pg -cos™m)

In any coordinate system a component of the gradient such as Ep is given by

I -\"
Ep"T\a—
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where hp is the metric scale factor related to the coordinate p. In bispherical

coordinates

h = =

M coshp - cosn’

hence the field normal to a surface of constant p is given by

E = _coshy - cosn (él/)
M a op”

From this it is seen that the field at the spherical surface is

E =- cosh g = cosn (BV) (30)

Ho m O H=Hor

and the field over the plane is

I n Cosﬂ(i/)

N bz-r2 i

The Laplace equation separates in bispherical coordinates if a function F

Bo = - u=0. (3))

is chosen such that

V =/coshpu - cosn F.

Equation (23) transforms fo one which separates into three equations, each

involving only one of the coordinates; thus, setting

 F = M(u) Hn) ®(9),



leads to

and
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ﬂ__% & -m2<1>,
d
2
diliul =(n+ L)2Mr
2 2
dy
2
| d d m H
— —(sinn —) - = -n(ntl)H.
sinn dn dn sin2'r]

Because of azimuthal symmetry, the potential is not a function of ® and typical

solutions of the original Laplace equation for V are products such as

|
A coshp - cosm ei(n+ -2-)"‘ Pn(cosn), (32

where Pn(cos'n) are the Legendre polynomials.

Application of (32) to the problem of the conductive sphere near a charged

conductive plane, limited by the boundary condition that V =0 on both surfaces,

yields

@ | |
V(u, n) = =Eg z + E, /cosh p = cosn Z(An e(n+_§)"' + Bn e-(n+7)p) Pn(cosn); (33)

where

n=0

|
22 aln+=)
A="2,

n |
e(n+ 7)P° -|
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and

|
(n+—)P°+
B =—A/2_a(n+12 g < l.

n

|
e(n +7)p° - |

If one sets M = (n+12) for economy of space, (33) can be written

: 2 M
v___ asth +2~/-2-0m ZMZe e -Pn(cos'f']). (34)

I
E,  cosh H =cos™
n=0 (e2Mp° -1

This potential function may be tested by determining its value on the plane, where

p=0, sinhp =0, and coshp = 1I.

Thus,
3 2Mp,
..'. (V) _=0 +2ﬁm/| - COSTM Z MP (cosn)[_l__i—]
Eo' "p=0 n
n=0 e2M|.I° = |

= -2/2 a/l = cosn Z MPn(cosT]). (35
n=0

Referring fo the generating function of the Legendre polynomials,

| o
(1-2px+x)72=) P (),

n=0

and setting x=a ",

and M = cosn,
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we can arrive at the relation

[ ® |
(cosp - cosm) 2= ﬁz e-(n * .2-)an(¢0$1'1). (36)
n=0

Differentiating both sides of (36) with respect to p gives

l =3 S M
-=sinhp(coshp - cosn) 2 = -ﬁz Me PPn(cosn). (37)

2
n=0
On the plane, p =0 and sinh p = 0; thus the summation given in (35) becomes
(-]
z MPn(cosn) =0.
n=0
Therefore, on the plane

M -0=0

as required.

On the sphere, p =po and the potential function is

I = asinhpe T = -Mu,
Eo(V)l-':Po —Lcosh i 24/2 ay/cos pg - cosn z Me Pn(cosn). (38)
n=0

From (37) the second term on the right of (38) can be written in the form

an/cosh po = cos M ':2J2_z Mé-MP°Pn(cosn)] = asinh po

coshpo - cosn *
n=0
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When this is substituted back into (38) it is seen that, on the sphere,

V) _ =o.
H~ Mo

Next, it is necessary to examine the behavior of the given potential

function at distances far from the sphere. From (27) and (28) it is seen that the

distance D from the origin is given by

Z 2
. iy
D=q sinh“u + sin"n

(coshpu - cos 'r])2- (39)

It is noted that
'sinh2p+ sin21’] =(cosh2p =N+(l - cos2n) = cosh2p - coszn
=(coshu - cosn)(coshp + cosn),

-and (39) becomes

D=gq [coshu+ cosn
V coshp -cosn

Since the maximum value of cosn is 1.0 it can be seen that
D-aascoshp-o,

but a is a constant and not necessarily very large. However,
D- = as(coshp - cosm) + 0.

Therefore, at large distances from the origin, the term (coshp - cosm) becomes

very small and the first term of the potential function, (34), predominates, thus
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at large distances from the sphere

V - -Eo Z,

as was required.

To summarize, at this stage the following points may be noted. First, ‘it is
well known that a uniférm field is a solution of the Laplace equation. Similarly,
the indicated linear combination of Legendre polynomials is a solution. Consequently,
since a linear sum of solutions is also a solution, the potential function V, given
in (34), is a solution of the Laplace equation. Furthermore, V is zero on all portions
of the conductive sphere and plane boundary and the gradient of V approaches the
constant -E, at large distances from the sphere. It is clear that V is the appropriate

potential function for the electrostatic problem as stated.
[1l. SOLUTION FOR THE FIELD

Straightforward differentiation of (34) with respect to u, taking into

account the metric scale factor, yields the result

_e [} = coshucosn
Ep E°[ cosh p = cosm

e‘Mp( e2M

= My _ Mo
-/Zsinh p/'é?)'iﬁ'p-cosnz M[2e +|]Pn(cosn)

n=0 e2Mp° -

M2 [2 oMby oMy (esz°+ |

" ) ]Pn(cosn) :| (40)

i ©
-2/2 (cosh p -cosn)2 z

n=0 i
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The normal component of the field on the surface of the sphere is

| - cosh pe cosn
E =E e
Ho °[ cosh p =cosn

- /7 sinhpg /cosh pe -cosnz Me-Mp°Pn(cosn)
n=0

M

p°+ e-M

Mo
) Pn(cosn)] ,
_1

3=
-2/Z(coshp - cos'n)fz M2( e

n=0 e2MP°

which, using (37), reduces to

E °= E°[2 -2cosh o cosn - | sinh2p° ]

H 2 (cosh po —cosn)

3 Mpo . ~Muo
-2/2Eq(cosh pg —cosm) 2 z M2(3e k= )Pn(cosn). (41)
n=0 e2Mpo
Similarly, the field normal to the plane is
3= 2Mu
- x5 2e¢" T°+ 3 :
EP=0 Es [l 2/7(1 =cosn) 22 M —2—';:— Pn(cos‘n)]. (42)
° -

n=0 e
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IV. ASYMPTOTIC SOLUTION FOR THE FORCE

The upward component of force acting on the sphere can be found by

integration of the z-component of the electrical pressure at the boundary, thus

I 2
F =
. I 7 € Epod(area) cos B

sphere

m
2€ (I - cosh pe cosm) E2 dlcosn).  (43)

=ma 3
(cosh po-cosn)®  He

The solution of (43) leads to a formidable array of infinite series that must be

solvéd by computer; however, the cost of such a solution would be prohibitive.
Fortunately, a similar problem has been solved by Davis (1962), for two

equal spheres and computer solutions were tabulated for relative separations from

| to 0.00I radii. In that work, the force acting on one of a pair of charged spheres

in a uniform field is given by

2.2

" | 2 2
Fz ". -R™E, F| 'Eo(cq2 - q 'Bql) - Ez(Dq| » Fq|q2 g qu ), (44

where F| , C, B, D, Fand G are the results of computer solutions of the relevant
series. The geometry of the two -sphere problem and its relationship to the sphere -

plane problem are illustrated in Figure 7.
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Figure 7. The problem of two charged spheres of equal radii can be related
to the problem of a conductive sphere on a charged plane.
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Assuming the validity of Maxwell's solution for the charge acquired by a

sphere contacting a charged plane, the charge on sphere | is taken to be

o 2 3. 02
9, 31T€R Egs

In analogy with the image charge approach, sphere 2 is assumed to have a charge

equal to that of sphere | but of opposite sign; thus
9 = 9

After making the substitutions for q and G and noting that, for equal radii

spheres,
and

equation (44) for the force becomes

2.2

F = -R%EL[F + (-§-n3e)2(2o+r:) -(En’(28+1) | = -R%EZ[H1. (49)

Using the solutions tabulated by Davis (1962), the bracketed quantity H in (45)
was calculated and the results are listed in Table IlI.

Despite some uncertainty in the computed results for the closest spacing,
as evidenced by the values of H for S = 0.0l and 0.00I, still the new estimate of
force is almost certainly within less than | per cent, and possibly within 0.5 per
cent of the true value. The rough estimate, given in section Il of Chapter Il is

high by only 4 per cent.



TABLE I

ESTIMATE OF FORCE ON A SPHERE IN CONTACT WITH A CHARGED PLANE BASED

ON AN ANALOGY WITH THE PROBLEM OF TWO SPHERES

(b -R) S (2B + ) (2D + F) FI -H

R . (meters/farad) (farads/meter) (farads/meter)

5 10 1.002 7.12x 10 ~2x 10714 1.808 x 10~1°
0.5 | 1.190 1.213 x 10° 1.031 x 107 1.667 x 10710
0.05 0.1 2.948 6.831 x 10° 1.557 x 10710 1.549 x 10710
0.005 0.0l 12.99 3.469 x 10'° 1.062 x 10”7 1.531 x 10710
0.0005 0.00! 73.78 2.01 x 10" 6.616 x 1077 1.544 x 10710
Estimate for (b =R) =0 1.537 x |0-|0
Rough Estimate given in Table |, page 16 1.599 x |0—|0




CHAPTER V
EXPERIMENTAL STUDIES

I. INTRODUCTION

So far, exact solutions have been obtained for the charge acquired by a
sphere in contact with a charged plane and for the electric field at the top of the
sphere. Furthermore, the extrapolated value obtained in Chapter IV for the force
exerted on the sphere is probably within less than | per cent of the true value.
Thus, it is unlikely that an experimental approach will improve on the precision
of the estimates. Nevertheless, there is much advantage in confirming, even

approximately, the theoretical results by experimentation.
Il. CHARGING OF A SPHERE ON A PLANE

A convenient way to study the charge on a small sphere is to observe its
movements in a cell such as the one described by Millikan (1924), in connection
with his study of the charge on oil droplets. A small cell was constructed of
plexiglas having two gold plated electrodes spaced three millimeters apart. There
is an advantage in using a fairly large sphere because it is more readily observed
microscopically and can more readily be confirmed to be a smooth sphere than can
small particles on the order of one micron. Also, to reduce possible artifacts
related to contact potential charging, it is necessary to select spheres having the

same composition as the surface of the electrodes, in this case gold. The

45
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combination of large size and high specific gravity precludes the use of air as a
medium for several reasons, chief among which is the fact that the air resistance
to motion deviates significantly from Stokes' law at the Reynolds numbers involved
and there are no adequate theoretical treatments of the drag force in this range.
Consequently, the cell was filled with a viscous silicone oil and a 50 micron
diameter smooth gold sphere was selected as the test object.

The experimental setup is illustrated in Figure 8. A toothed wheel was
used to provide a pulsed source of light and the repetition rate was determined by
‘observation of the rotating wheel using a calibrated strobe light. The light source
was a high intensity zircon arc lamp which was directed into the chamber at 90°
to the line of sight so that only scattered light is observed through the microscope.
During an experimental run the microscope substage is moved slowly to insure
separation of the images of one traverse of the sphere between the plates from
those of successive trips across the field of view. In a typical run, the potential
difference between the electrodes was set using a precision DC voltage source.
After the light and the microscope focuses were adjusted, and the strobe frequency
was set to give well separated images of the sphere, the camera lens was opengd
long enough to record photographically several trips between electrodes. The
photograph in Figure 9 illustrates the appearance of the photographic record.
Measurements of the average vertical distance between images on the photograph
were made and, with these results and a knowledge of the strobe rate, the

vertical velocity was calculated.
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Figure 8. Experimental setup for measurement of charge acquired by sphere
contacting a charged plane.
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Figure 9. Strobe photograph* of 50 micron diameter gold sphere oscillating
(vertically in silicone oil) between gold electrodes held at constant
potential.

*
This is a simulation of the appearance of the photographs used
in the study. Original photographs are no longer available.
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The calculation of the charge is illustrated in Figure 10. It is noted that
for a sphere having a charge of 1.828 x |0-|0R250, the force, unaffected by image
charge interactions with the plane, produced by a uniform field E, is

1.828 x IO-IOR2E2° ;whereas, from Table |, page 44, it is seen that the force is

1.808 x |0-|0R2E2,_,, or within one per cent of qE,, at a separation of only

5 radii from the plane. As a general rule, no measurements were made within

I0 diameters of the electrodes; thus the assumption that the electrical force is
equal to qE, is well justified. Comparison of distances between successive images
shows that the sphere moves at a constant velocity in the interval used for measure-

ment. In no case did the Reynolds number exceed 0.0001; thus the assumption of

Stokes' law for the drag force is well founded. Consequently,

Drag Force = 6 TnRv;
where n = 9.35 poise (cgs units),
and v = the observed velocity.
Finally, the force due to gravity was calculated, including a correction for
buoyancy, and was verified by observing the terminal velocity of the sphere
settling under zero electrical field.
The electrical force on the upward moving sphere is equated to the drag

plus the gravity forces and an expression for the charge is found to be

q= O'E44 (v + 2.68 x |0-5) coulombs. (46)
-]
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Figure 10. Diagram of charged capacitor used to determine velocity of a
gold sphere as a function of applied field. (plate spacing = 3 millimeters)
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Equation (46) was used to compute the values of q related to the observed velocities
listed in Table Ill. These results are plotted in Figure || and are compared with the

amount of charge predicted by Maxwell's solution,

which, for R =25 x |0-6 meters, and € =2.42 x IO-“fcrads/mefer, becomes

q =3.130 x |0-|9E°.

Comparison of the calculated charge based on the observed velocity with
that calculated on the assumption of Maxwell's solution suggests that the data are
none too éood; however the disparities seem to be distributed with little tendency
to follow a definite trend. The observed velocities are quite slow, ranging from
| to, at most, 18 particle diameters per second. No special precautions were taken
to prevent thermal convection in the cell and, because of the intense and non-
uniform illumination which was used, convective currents are likely to have
occurred. The algebraic sum of the deviations from the indicated line is only 0.96.
Although the mean deviation from the line, 1.38, and the root-mean-square
deviation, 1.53, represent about 8 per cent of the mean ordinate, it may be noted
that the ordinate of the line, 18.689, and of the values from Table Ill, page 52,
18.594, differ by only 0.5 per cent. The conclusion being that, despite obvious
error arising from the experimental technique, the data support the estimate of

charge accumulation based on Maxwell's solution.
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TABLE 11

CHARGE ACQUIRED BY A 50 MICRON DIAMETER GOLD SPHERE,
CALCULATED FROM THE OBSERVED UPWARD SPEED IN AN
APPLIED FIELD

Applied Field Observed Speed Calculated Charge
(volts /meter) (meters/second) (coulombs)
0.3 x 10° 5.3x 107 1.7 x 1074
0.333 6.3 1.9
0.4 9.6 13.5
0.5 14.4 15.1
0.577 18.5 16.2
- 0.667 29.3 21,1
0.833 44,7 25.1

1.167 '88.0 34.2
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Figure Il, Charge acquired by a 50 micron diameter gold sphere contacting

a charged gold electrode.
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I1l. COULOMETRIC ANALOG STUDY OF SURFACE CHARGE DENSITY

Of the various methods discussed so far, the only one showing much promise
for producing information about the distribution of charge on the sphere and the
plane is the technique employing bispherical coordinates. A solution was derived
in Chapter IV for the field strength at the surface of the sphere and the plane, and
the surface charge density is directly proportional to the field strength. However,
numerical solution of the given result would be expensive and there is not much -
advantage in having a precise determination of the surface distribution of chorge,.
assuming the fotal charge, the field at the top and the repulsion force are well
enough determined. For whatever academic interest there may be in the surface
charge distribution, it will probably suffice to obtain a first order approximation
using experimental methods.

The most common experimental approach used to solve three-dimensional
electrostatic problems is the, so-called, electrolytic trough. The basic theory for
the electrolytic trough analog is well known [e.g., Kennedy and Kent (1956), and
Hartill, McQueen and Bobson (1957)]. For an isotropic, homogeneous, conducting

medium, Ohm's law may be stated as
i =gE=-gVV; (47)

where | is the current density in <:mperes/mefer,2 E is electric field in

2 . -l '
volts/meter, g is conductivity in (ohm meters) , and V is the potential in volts.
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Since, in a conductive medium,
V.-7=gV-VV=0, (48)

equation (48) reduces to the Laplace equation

v2v =0,

The electrolytic trough analog has been used extensively to simulate the potential
distributions for many physical situations which are governed by the Laplace
equation [Dadda (1951), and Hackenschmidt (1963)]. This includes electric and
magnetic fields, hydrodynamic and aerodynamic fields, temperature fields,
elastic stress fields, diffusion and others. The analog method is used to determine
fields which cannot be solved analytically or for which numerical relaxation
. methods [Southwell (1946) ], would be extremely tedious. In practice, precision
measurements are made of the spatial distribution of potential in the model, and
by numerical or graphical analysis of the observed equipotentials, the field is
determined in the space between the given electrodes. When the field intensity
at a boundary is required, for example at the surface of an electrode as described
by Loeb et al. (1950), the usual procedure is to plot the equipotentials in the
intervening space, calculate field intensities by numerical methods and extra-
polate to the boundary.

A more direct measurement of the electric field at a complicated boundary
is possible with the electrolytic tank if one carries out the procedure so as to

electrodeposit a metal on the surface of interest. When equation (47) is
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multiplied by the electrochemical equivalent z (kilograms/coulomb) of the metal

ion in the electrolyte, the (esulf is
27= (3% =(g2)E, (49)
and the area density of metal electrodeposited during time t seconds on a surface

at which the field is Es’ ideally, is given by

%n;\) =(ng)Es=|f<Js~ (50)

The area density of metal can be determined by stripping known areas from definite
positions and weighing the metal or determining the mass chemically. The constants
of proportionality in equation (50) can be determined by measuring the conductivity
and time or by determining the area density of metal at places within the model
where the field is well known from theoretical considerations.

As in the case of many other simplistic solutions to complex problems, there
are difficulties with the electrolytic plating method. Equation (49) only tells
part of the story, leaving out the important consideration of ionic diffusion effects.
A more complete description of the current density field in an electroplating bath

is given by
zT = -D grad C +(g 2)E; (51)

. e . 2 -
where D is the diffusion constant of the ion (meters“/second), and C is its con-
centration. Although various steps can be taken o minimize the effect of concen-
tration gradient, it cannot be eliminated and, consequently, analog solutions based

on this approach must be considered to be only first order approximations.
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Where applicable, the method is especially suited to problems for which
the field at certain boundaries must be determined and for which the field in the
space between electrodes is of no interest. Extensive measurements of the three
dimensional potential distribution within the model are not required. Such a
coulometric analog tank hosl been constructed for the determination of surface
charge distributions on various shaped conducting particles in contact with a
conducting plane. It consists of a cylindrical polyethylene tank, open at the top,
66 centimeters high, 45 centimeters in diameter and filled to a height of about
60 centimeters with a copper plating solution. Circular copper electrodes,

0.64 centimeters thick and closely fitting the inside diameter of the tank, are
spaced about 60 centimeters apart in the solution with the lower electrode resting
on the bottom. The bottom plate is covered with a polyethylene sheet, painted
with sflver paint and tHen very lightly "flashed" with copper in the plating bath

to insure a uniform, low resistance equipotential surface. Models are made of the
particle shapes to be tested, they are coated with silver paint, "flashed" with
copper and attached to the bottom plate. Tests are ﬁcde to insure zero resistance
from any part of the particle surface to representative points on the plane. The
electrode assembly is then placed in the tank and copper is electrodeposited on the
test configuration at room temperature, with | to 3 volts DC, and 2 to 4 amperes,
corresponding to about 2 milliamperes/cenfimeterz. The plating liquid is periodi-
cally circulated through a charcoal and fiber—glass filter. Copper is plated to
sufficient thickness that it may be cut from specific areas and weighed directly on

an analytical balance.
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To explo.re.-. the validity of the method, preliminary tests were made with a
hemisphere at the center of the bottom electrode. The charge distribution for this
configuration is well documented in texts on electrostatics [Jeans (1941)]. Using
the coordinate system shown in Figure 12, where the radius of the hemisphere is a,
and 0, is the charge density on the plane at a very large distance from the origin,

the charge density on the hemisphere as a function of the angle & from the axis is

0(8)=30, cos 6, (52)

while on the plane, at 8 = 90° and a distance r >a from the origin, the charge

distribution is

3
o(r) = 0ol - %). (53)

r

Equation (52) can be integrated to yield an expression for the cumulative fraction
of the charge residing on the sector from 0 to 6, and by applying the coulometric
analog equation, a sirr‘1i|c1r expression can be obtained for the fraction of the total
copper mass deposited on the hemisphere which should be found on the sector

0to 6. Thus,

zAm

M() = =

3 JO (8) d(area) = sm29 (54)
fotal m 9°

By a similar treatment, it can be shown that, on the plane,

M(r) =J.r2dm =ko, {‘n [rg - r|2 - 2—035:—%:.!) ]}: ko, f(r). (55)
r
I
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ra.a.

0=ws2

Figure 12. Coordinates for a hemisphere on a plane.
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The electrodeposited copper is stripped from the hemisphere and the plane
in known sectors as shown in Figure I3, and each segment is weighed. The
fractional distribution of the copper on the hemisphere was calculated and is
compared with the theoretical distribution in Figure 14. Similarly, the total
quantity deposited on the plane from f = 4 centimeters to r is compared with the
theoretical f(r) in Figure 15.

It is obvious from the results of this study of the hemisphere that the
elecfrodeposiﬁon analog is far from perfect; nevertheless, it also seems clear
that the degree of error resulting from diffusion effects is not so great as to
preclude the use of this method for many purposes.

Application of the electroplating method to the sphere -plane geometry
has been made and the results of two separate runs are plotted in Figure 16. With
the exception of the four pairs of points indicated in the figure, the results of the

two runs are indistinguishable on the scale used for plotting.
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Figure 13. Segments of copper plated on a hemisphere in contact with a
plane electrode.
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Figure 14. Distribution of electrodeposited copper on a hemisphere in contact
with a plane cathode in a plating tank. (hemisphere radius = 3.825 cm.)
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Figure 15. Distribution of electrodeposited copper on a plane in the vicinity
of a hemisphere. ‘
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Figure 16. Distribution of copper deposited on a sphere in contact with a

plane cathode in a plating tank.
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CHAPTER VI
SUMMARY AND CONCLUSION

. SUMMARY

The three major goals of this study have been met within a useful degree
of precision. Exact solutions were obtained for the charge acquired by a conductive
sphere in contact with a charged plane, and for the field at the top of the sphere.
An approximate solution, with less than about | per cent error, has been derived
for the repulsive force on the sphere. In addition a first order estimate was

developed for the relative charge density as a function of location on the sphere.
Il. DISCUSSION

In the application of these results it must be borne in mind that everything
that has been said presupposes that the sphere remains in contact with the plane
long enough for the equilibrium charge distribution to be attained. This will be
realized in the case of good conductors, but for some materials having a finite
relaxation time for surface charge, it may be possible for the sphere to be repelled
from the surface before the equilibrium charge is transferred.

Further manipulation of the data obtained by plating copper on a sphere -
plane cathode suggests that the surface charge density may be approximated by a
fﬁncfion of the form

2

o(0) =(CI cos g- s C2cos4 —2—)0‘0. (56)

65
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There are two adjustable constants and if the function is forced to be 4.5 g, at the
top of the sphere, and if the total integrated charge is set equal to the charge

predicted by Maxwell's solution, then the result is

20

7 + 3.6304 cos4 %) g,. (57)

0(8) =0.8696 cos

Using (57), the repulsion force is calculated to be

F = 1572 10'0R2¢2 | (58)

which is 2 per cent higher than the best estimate available. Equation (57) also
was integrated from O to 6 and the result was divided by the total charge on the

sphere to yield

£(68) = 0.2643 (1 - cos4%) +0.7357 (1 - cos® %). (59)

Equation (59) is plotted in Figure 16 and is seen o be a fair approximation to the

experimental data obtained from two separate runs using spheres of different radii.
I1l. CONCLUSION

In conclusion, for a conductive sphere in contact with a charged con-

ductive plane, the charge acquired by the sphere will be -

q= %1;35R2E° = %ﬂacho (coulombs),
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the field at the top of the sphere will be

E(0) = 4.5E4(volts/meter),

the repulsive force will be, within about | per cent,

F_=1.537 x 10708 2E2 (newtons),

and the charge distribution may be approximated, to within about 10 per cent,
by

o () =(0.8696 coszg- + 3.6304 cos4%) O, (coulombs/meterz).
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