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Abstract

The challenge of efficiently retrieving files that are broken into segments and replicated across the wide-
area is of prime importance to wide-area, peer-to-peer, and Grid file systems. Two different algorithms
addressing this challenge have been proposed and evaluated. While both have been successful in different
performance scenarios, there has been no unifying work that can view both algorithms under a single frame-
work. In this thesis, we define such a framework, where download algorithms are defined in terms of the
four dimensions that the client always controls: the number of simultaneous downloads, the degree of work
replication, the failover strategy, and the server selection algorithm. We then explore the impact of varying
parameters along each of these dimensions, testing the framework over several types of file distributions. In
addition, the additional dependencies and trends that arise when files are augmented with erasure codes rather
than replication are examined.
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Chapter 1

| ntroduction

1.1 Motivation

In wide-area, peer-to-peer and Grid file systems [9-11, 13, 16, 24, 28-30], the storage servers that hold data
for users are widely distributed. To tolerate failures and to take advantage of proximity to a variety of clients,
files on these systems are typically broken into blocks, which are then replicated across the wide area. As
such, clients are faced with an extremely complex problem when they desire to access a file. Specifically:

Given a file that is partitioned into blocks that are replicated throughout a wide-area file
system, how can a client retrieve the file with the best performance?

This problem was named the “Plank-Beck” problem by Allen and Wolski [1], who denoted it as one of
the two representative data movement problems for computational grids. In 2003, two major studies of this
problem were published [1, 23], and each presented a different algorithm:

e A greedy algorithm where a client simultaneously downloads blocks of the file from random servers,
and uses the progress of the download to specify when a block’s download should be retried. This is
termed Progress-Driven Redundancy [23].

¢ An algorithm where the client serially downloads blocks from the closest location and uses adaptive
timeouts to determine when to retry a download. [1] In this paper, we call this the Bandwidth-Prediction
Strategy.

In a wide-area experiment, Allen and Wolski showed that the two algorithms performed similarly in their
best cases [1], but their performance could differ significantly. Beyond that conclusion, neither their work,
nor the work in [23] lends much insight into why the algorithms perform the way they do, how they relate to
one another in a more fundamental manner, and how one can draw general conclusions about them.

We attempt to unify this work, providing a framework under which both algorithms may be presented
and compared. We then explore the following four facets of the framework and how their modification and
inter-operation impact performance.

1. The number of simultaneous downloads.
2. The degree of work replication.

3. The failover strategy.



4. The selection of server scheduling algorithm.

In Chapter 2, we explore this framework assuming that the blocks of the file are simply replicated. In
Chapter 3, we extend the work of Chapter 3 to include tests where erasure coding is used instead of replica-
tion.

1.2 Experimental Testbed

The testbed used for all of our experiments is the Internet Backplane Protocol (IBP). This section provides a
brief sketch of IBP and related software.

1.2.1 Logistical Networking

Logistical networking attempts to enhance data movement, computation, and storage by leveraging resources
that are available in large scale networks [7]. The label “logistical” plays off the similarities between digital
data movement over networks and physical content movement between producers, warehouses, and con-
sumers. One of the goals of logistical networking is to aggregate shared resources in order to provide ser-
vices that improve the performance of existing applications and in some cases make possible applications
that would not be achievable otherwise. Resources utilized by logistical networking must be generic so they
can be used for many applications, and they must be scalable so they can grow with the network.

1.2.2 Internet Backplane Protocol (IBP)

IBP was developed to fulfill the needs of logistical networking by providing a generic, best-effort storage
service [5,7]. IBP consists of a server daemon software and client API that allow IBP storage servers, or
depots, to accept requests from IBP clients to allocate, store, load and manage data. More recent versions of
IBP also allow the client to request transformations to storage allocations [6]. IBP is “best-effort” because
it does not make guarantees about the correctness of data or the persistence of storage. Instead, higher level
storage requirements such as replication, encryption, and checksumming, are pushed to the endpoints of
communication allowing IBP to remain simple and scalable.

1.2.3 EXnode, LBone, and LoRS

Several services depicted in figure 1.1 have been developed on top of IBP to improve the reliability and ease
of use for the client. IBP is the lowest layer from which clients can access globally sharable storage. At the
next level, the eXnode is used to represent a network file that may be made up of several blocks stored in
separate IBP allocations, each of which may be replicated to protect against server failures. The Logistical
Backbone (L-Bone) maintains an IBP server database that contains information about each server’s status,
capacity, location, etc. L-Bone servers may be queried by a client to determine which IBP servers can best
serve that client’s needs. The Logistical Runtime System (LoRS) provides storage tools using all of the
underlying layers and provide clients with a high level set of storage features that are conspicuously absent
in IBP but are desirable in storage such as encryption, checksumming, replication or erasure coding, and
buffering. Using LoRS, users may create and manipulate eXnodes as if they are simply files stored on the
network.
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1.2.4 ThisWork in the Context of Logistical Networking

In this work, IBP is used to create a number of different eXnodes that disperse the blocks of a large file across
the wide-area in several different geographical distributions. The framework of downloading algorithms
presented should be equally applicable to LoRS and to other distributed storage systems that break files into
blocks, use replication or erasure coding to add failure protection to the storage, and spread the blocks across
the wide-area.



Chapter 2

Downloading Replicated Wide-Area
Files

2.1 Framework

In this chapter, a framework is built under which Progress-Driven Redundancy and the Bandwidth-Prediction
Strategy can both reside [12]. The object of this exercise is not to prove ultimately that one approach is better
than the other, but instead to observe the ways in which the two algorithms are similar and different, and to
explore the successful aspects of each algorithm.

Given a file that is partitioned into blocks that are replicated throughout a file system, the challenge of
retrieving it is composed of four basic dimensions:

e The number of simultaneous downloads: How many blocks should be retrieved in parallel? The
trade-off in this decision is as follows: too few simultaneous downloads may result in the incoming
bandwidth not matching that of the client, and in the latency of downloads having too great an impact;
while too many simultaneous downloads may result in congestion, either in the network or at the client.
We quantify the number of simultaneous downloads by the variable 7', as simultaneous downloads are
usually implemented with multiple threads.

e The degree of work replication: Overall, what percentage of the work should be redundant? We
assume that blocks are retrieved in their entirety, or not at all. Thus, when multiple retrievals of the
same block are begun, any data collected in addition to one complete copy of the block from one source
is discarded. In our study, work replication is parameterized by the variable R, which is the maximum
number of simultaneous downloads allowed for any one block.

e The failover strategy: When do we decide that a block must be retried? Aside from a socket error,
timeout expiration is the simplest way to determine that a new attempt to retrieve a block must be
initiated. However, if timeouts are the only means of detecting failure, then they must be accurate if
failures are to be handled efficiently. While adaptive timeouts perform as well as optimally chosen
static timeouts [2, 27], their implementation is more complicated than the implementation of static
timeouts.

An alternative to failure identification via timeouts is the approach used in Progress-Driven Redun-
dancy, where the success of a given retrieval attempt is evaluated in comparison to the progress of
the rest of the file. When the download of a block is deemed to be progressing too slowly, additional
attempts are simultaneously made to retrieve the block. The first attempt need not be terminated when



new attempts begin, and thus, all of the work of the first attempt is not lost if it finishes shortly after
the new attempts begin. We quantify the notion of download progress with the parameter P, which
specifies how much progress needs to be made with the file after a block’s first download begins before
that block requires replication.

e The selection of server scheduling algorithm: Which replica of a block should be retrieved? When
blocks of a file are distributed, especially over the wide area, the servers where different copies of
the same block reside have different properties. Each server possesses two traits by which it may be
characterized, speed and load. A server’s speed is approximately bandwidth, or more specifically, the
time the server takes to deliver one MB. A server’s load is the number of threads currently connected
to the server from our client application. We investigate seven server scheduling algorithms, each of
which is described in section 2.2.3

2.2 Algorithms

Now that a framework is established for the comparison of wide-area download algorithms, the Progress-
Driven Redundancy and Bandwidth-Prediction Strategy algorithms are presented in sections 2.2.1 and 2.2.2.
Following that, several server scheduling algorithms are outlined.

In order to understand the details of the following algorithms, suppose the desired file is subdivided into
blocks, and the blocks are indexed by their offset in the file. Suppose also that each of the file’s blocks is
replicated C' times such that no two copies of the same block reside in the same place. The algorithms attempt
to acquire blocks by the order of their indices.

2.2.1 Progress-Driven Redundancy

As originally defined [23], with Progress-Driven Redundancy, a progress number P and a redundancy number
R are selected at startup. Strictly speaking, R cannot be greater than C. The number of threads, which
determines the maximum number of simultaneous downloads, is also chosen. Each block is given a download
number initialized to zero. The download number of a block is incremented whenever a thread attempts to
retrieve one of the block’s copies. When a thread is ready to select a new block to download, it first checks
to see if a block exists that has a download number less than R, such that more than P blocks with higher
offsets in the file have already been retrieved. If such blocks exist, then the thread chooses the block with the
lowest offset that meets these requirements. If not, then the thread selects the block with the lowest offset
whose download number is zero.

Since blocks near the end of the file can never meet the progress requirement, once a thread finds that no
blocks can be selected according to download number, P, and R; it selects the block with the lowest offset
whose download number is less than R. We call this a “swarm finish”.

Relating back to the previously outlined framework, the number of threads determines the number of
simultaneous downloads; the redundancy number determines the degree of work replication; and the progress
number determines the failover strategy. When Progress-Driven Redundancy was initially presented, it was
assumed that the file was fully replicated at every site, and threads were assigned to individual servers [23].
This was augmented in [1] so that server selection was performed randomly. In this work, we explore a
variety of server selection algorithms.

2.2.2 Bandwidth-Prediction Strategy

To proceed with the Bandwidth-Prediction Strategy, we simply need a means to determine which server is
the closest, or the fastest. The original authors assume that the Network Weather Service [32] is implemented



at each site, and employ that to determine server speed. Then, the blocks are retrieved in order, one at a
time, from the fastest server. Timeouts, whose values are determined by the NWS, are used as the failover
strategy. Thus, relating back to the previously outlined framework, 7" is one, R is one, failover is determined
by timeouts, and server selection is done with an external bandwidth predictor.

2.2.3 Server Scheduling

The original work on Progress-Driven Redundancy did not address server scheduling. The work of Allen and
Wolski employed the Network Weather Service for the Bandwidth Prediction Algorithm, and random server
selection for Progress-Driven Redundancy. In this paper, we explore a wider variety of server selection
algorithms. We assume either that there is a bandwidth monitoring entity such as the Network Weather
Service, or that the client has access to previous performance from the various servers, and can augment that
with performance metrics gleaned from the download itself. With this assumption, we outline seven server
selection algorithms:

1. The random strategy chooses a random server.

2. The forecast algorithm uses monitoring and forecasting to select the server that should have the best
performance.

3. The lightest-load algorithm assigns a current load [ to each server. This is equal to the number of
threads currently downloading from the server, and is monitored by the client. With lightest-load, the
server with smallest value of [ is selected. In the case of ties, server speed is employed, and the fastest
server is selected.

4. The strict-load algorithm enforces TCP-friendliness by disallowing multiple simultaneous connections
to the same server. It works just like lightest-load, except it always chooses servers where [ = 0. If
there are no unloaded servers, then no servers are selected.

5. The remaining three algorithms use a combination of load and speed to rank the servers. Specifically,
they select the server with smallest values of time * (a * I + 1), where time is the predicted time to
download one block of the file when there is no contention. For o = 0, we call this algorithm fastesty.

6. fastest; minimizes time * (I + 1).

7. fastest; ;o minimizes time  (1/2 + 1).

2.3 Experiment

During May and June 2004, we conducted a series of experiments in order to study the dynamics of the
Progress-Driven redundancy algorithm. The goal of the experiments was to determine the impact of mod-
ifying parameters of the four dimensions when downloading a 100 MB (megabyte) file distributed on the
wide area. Specifically, we tested all combinations of the ranges of parameters detailed in Table 2.1. Note
that R cannot exceed T', and that if R = 1, then blocks are only retried upon socket failure (host unreachable
or socket timeout). For speed determination and prediction, we employed a static list of observed speeds
from each server. For the forecast algorithm, this list was used as the starting point, and subsequent block
download speeds were fed into the Network Weather Service’s forecasting software, to yield a prediction of
the speed of the next download.

IBP [24] servers were used to store the blocks of the file. IBP is a software package that makes remote
storage available as a sharable network resource. IBP servers allow clients to allocate space on specific servers



Table 2.1: Ranges of parameters explored

Dimension Range of Parameters
Simultaneous Downloads T €1,2,3,5,10,15, 20,25, 30]
Work Replication R€[1,2,3,4]
Failover Strategy Pe1,2,3,5,10,15,20, 25, 30], static timeouts
Server Selection The seven selection strategies




and then manage the transfer of data to and from allocations. IBP servers use TCP sockets and can operate on
a wide variety of architectures. A list of publicly available IBP servers and their current status can be found
on the LoCl website;: htt p://l oci.cs. utk. edu. The client machine used for the experiments ran
Linux RedHat version 9, had an Intel (R) Celeron (R) 2.2 GHz processor, and was located at the University
of Tennessee in Knoxville. The downloads took place over the commodity Internet. The tests were executed
in a random order so that trends due to local or unusual network activity were minimized, and each data point
presented is the average of ten runs.

We tested two separate network files. Both are 100 MB files, broken into one MB blocks. Each block is
replicated at four different servers. The two files differ in the nature of the replication. The first, which we
call regional, has each block replicated in four network regions. This is typical of a piece of content that is
being managed so that it is cached in strategically chosen regions. The regions for this file are detailed in
Table 2.2. Note, there are multiple servers in each region, and since these are live servers in the wide-area,
they have varying availability, also denoted in the table.

The second file is called hodgepodge, as its blocks are stored at servers randomly distributed throughout
the globe. Specifically, fifty regionally distinct servers were chosen, and the blocks of the file were striped
across all fifty servers. A list of the set of servers used for the hodgepodge distribution along with a more
precise description of the distribution is available in the Appendix. In both files, no two copies of the same
block resided in the same region, and no blocks were stored at the University of Tennessee, where the client
was located.

2.4 Results

We present the results first as broad trends for each of the four dimensions presented. We then explore
more specific questions concerning the interaction between the parameters and some of the details of the
downloads.

2.4.1 Broad Trendsfor Each Dimension

Figures 2.1 and 2.2 show the best performing downloads when parameters for each dimension are fixed.
For example, in the leftmost graph of figure 2.1, T' ranges from one to thirty, and for each value of T, the
combination of P, R and scheduling algorithm that yields the best average download performance is plotted.

Two results are clear from the figures. First, the composition of the file affects both the performance of
downloading and the optimal set of parameters. The regional file has an optimal download speed of 82 Mbps
(Megabits per second), while the hodgepodge file achieves a lower optimal speed of 66 Mbps. Second, the
number of simultaneous downloads has far more basic impact on the performance of the algorithm than the
choice of R and P. However, it is not true that bigger values of T' necessarily translate into better perfor-
mance. In the regional file, the optimal performance comes when T' = 10, while in the hodgepodge, it occurs
when T' = 30. We surmise that the performance is best when the number of threads can utilize the capacity of
the network. Beyond that, contention and thread context-switch overhead penalize the employment of more
threads.

From figure 2.2, we conclude that the scheduling algorithms that incorporate some kind of speed predic-
tion are the most successful. Observe the poor performance of the random algorithm in both types of file
distributions. The strict-load algorithm also has low overall performance for both distributions. While in
some applications it may be necessary to adhere to limitations on the number of connections made to the
same server, such limitations clearly hinder performance for the following reasons: first, the client cannot
take advantage of multiple network paths from the server, and second, in cases where a great disparity exists
between the performance of servers, too few downloads are permitted from the faster servers.



Table 2.2: Regions used in regional distribution

Region Number of Servers Servers Typically Up
University of Alabama - Birmingham (UAB) 7 6-7
University of California- Santa Barbara (UCSB) 6 4-5
Wisconsin (WISC) 4 2-3
United Kingdom (UK) 7 3-4
80+ ¥ — 80-{eet®—¢— > —>—9o—+
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Figure 2.1: The best performance of threads, redundancy and progress
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Figure 2.2: The best performance of each server scheduling algorithm
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Figure 2.3: Best performance of each server scheduling algorithm plotted over threads

The forecast algorithm performs relatively poorly as well. A likely explanation of this behavior is that its
forecasts are too coarse-grained for this application and as a result, the algorithm cannot adapt quickly enough
to the changing environment. A finer grained forecaster may have better performance, and it is possible that
the coarse forecaster would perform better given a bigger file and thus more history for each server as the
download progresses.

While there does not appear to be an optimal scheduling algorithm per se, the three fastest,, algorithms
as a whole outperform the others.

242

Figure 2.3 gives a more in-depth picture of the interaction of the scheduling algorithms and the number of
threads. The best performance of each algorithm given the number of threads is plotted. The overall trends in
figure 2.2 still hold in most cases. However, in the regional distribution, the forecast algorithm experiences
a marked degradation as the number of threads increase. As noted before, the forecast algorithm appears to
adapt too sluggishly to the changing environment. As the number of threads increases, the degree to which
each server’s performance varies also increases, due to the fact that a wider range of concurrent connections
can be made to each server.

I nteraction of Server Selection and Threads

2.4.3 Wheredotheblocks comefrom?

Figures 2.4 and 2.5 display a breakdown of where blocks came from in some of the the best performing
instances of the fastestq, fastest; and strict-load algorithms. The instances of the regional distribution are
broken down over the regions, while the instances of the hodgepodge distribution are broken down over ranges
of average download speeds. From earlier figures, the strict-load algorithm performs poorly in comparison
to the other algorithms. In both the regional and the hodgepodge distributions, the strict-load algorithm is
forced to retrieve larger percentages of its blocks from slower servers. The reader may notice that the average
download speed from the UAB region is faster for the strict-load algorithm than it is for the fastesty and
fastest; algorithms. This is because the strict-load algorithm avoids congestion of TCP streams. However,
the fact that the performance of the other algorithms is faster shows the availability of more network capacity
from these sites than can be exploited by a single TCP stream.

This behavior is also apparent in figure 2.5 where the blocks are split up according to download speed.
Notice that the fastest, algorithm has a larger percentage of blocks in the 2.0 — 2.9 Mbps range and a
smaller percentage of blocks in the 4.0 — 4.9 Mbps range than the fastest; algorithm even though the fastestq
algorithm always chooses the faster server regardless of that server’s load.

11
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Figure 2.6: Relationship of progress and redundancy with 10 threads over the regional distribution

244 Thelnteraction of P and R

The interaction of progress with redundancy is shown in figures 2.6 and 2.7. While better performance does
tend to lean slightly to higher progress numbers in some cases, for the most part, as long as R > 2, the
performance does not change significantly with progress. In both distributions, the performance when R = 1
is very close to the performance when R = 2,3 or 4, when the fastesty and fastest; algorithms are used.
However, in the strict-load algorithm, where optimal choices are not always permitted, the ability to add
redundant work to a block proves to be advantageous.

245 WhenisAggressive Failover useful?

Given that it is sometimes advantageous to make retries, how often is a failover necessary? Figures 2.8
and 2.9 show the number of failovers versus the progress number when R = 2 and there are 10 threads over
the regional distribution and 30 threads over the hodgepodge distribution. The total number of failovers is
shown along with the total number of useful failovers, that is, the number of times a retry was attempted
and number of times the retry completed before the original attempt. Clearly, small progress numbers lead
to excessive numbers of failovers, while larger progress numbers result in a higher percentage of useful
failovers. It is also clear that a higher percentage of retries are useful to the strict-load algorithm, which is
constrained to choose slow servers at times because of the restriction of permitting only single TCP streams.

2.5 Conclusions

Given a file that is distributed across a system, how can we best leverage the properties of the system to re-
trieve the file as quickly as possible? With regard for the two previously proposed approaches to this problem,
Progress-Driven Redundancy and Bandwidth-Prediction, we have explored the impact and interrelationships
of the following download parameters: the number of simultaneous downloads, the degree of redundancy,
the failover strategy, and the server selection algorithm.

As an obvious result, we found that performance tends to improve as the number of simultaneous down-
loads increases to a point, and that the distribution of the file across the system impacts the way the download
parameters perform and interact.

With respect to the Bandwidth-Prediction approach, some form of bandwidth prediction greatly improves
performance, and with respect to Progress-Driven Redundancy, some form of redundancy is very useful
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when poorly-performing servers are selected for downloads. Concerning performance prediction, in our
tests, exploiting knowledge from the client (concerning the load from each server) is more beneficial to
performance than having an external prediction engine try to react to the observed conditions. However, as
stated above, this may be an artifact of the monitoring granularity, and more fine-grained monitoring may
lead to better performance of predictive algorithms.

We anticipate that the results of this work will be implemented in the Logistical Runtime System [5],
which already implements a variant of Progress-Driven Redundancy as the major downloading algorithm
for its file system built upon faulty and time-limited storage servers, and has seen extensive use as a Video
delivery service [3] and medical visualization back-end [14].

This work does have limitations. First, we did not employ an external monitoring agent such as the
Network Weather Service. This is because we did not have access to such as service on the bulk of the
machines in our testbed. With the availability of such a service, we anticipate an improvement in the fastest,,
algorithms; however, we also anticipate that these algorithms should still incorporate knowledge of server
load.

Second, we did not test the performance from multiple clients. However, we anticipate that the results
from the one client are indicative of performance from generic clients, when the clients are not co-located
with the data.

Finally, we did not assess the impact of timeout-based strategies, which have been shown to be important
in some situations [1, 27]. Instead, we have focused on algorithm progress and socket timeout as the failover
mechanism. We intend to explore the impact of timeouts as a complementary failover mechanism in the
future.
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Chapter 3

Erasure Codesin the Wide-Area

3.1 Introduction

The most natural method of adding redundancy to a file’s storage is replication. When a file is broken into
blocks and replicas of its blocks are stored in a wide-area file system, if every block has m copies, then
m — 1 server failures can occur before the file becomes unavailable. Though straightforward, replication is
expensive in terms of physical storage, and it is limiting in the sense that a client can only retrieve a block by
retrieving one of the block’s copies. Erasure codes have arisen as a viable alternative to replication for both
caching and fault-tolerance in wide-area file systems [8, 26, 31, 33]. In this chapter, we intend to see how the
downloading algorithms apply to file systems based on erasure codes, what additional considerations apply,
and what the performance impact is.

With erasure coding, n data blocks are used to construct m coding, or check, blocks, where data and check
blocks have the same size. The encoding rate is —*—, and some subset of the data and coding blocks may
be used to reconstruct the original set of data blocks. Ideally, this subset is made up of any n data or check
blocks, though this is not always the case. In comparison to replication, erasure coding techniques reduce the
burden of physical storage required to maintain high levels of fault tolerance. However, erasure coding
introduces computationally intensive encoding and decoding operations. We focus mainly on download
time as a performance metric and not so much on fault tolerance, though performance with respect to both
download time and fault tolerance is related. Consider the following: assuming that server speeds follow a
uniform distribution, if n remains fixed, then while the m increases, more blocks are being used for the storage
of an n-sized data set - improving fault tolerance. On the other hand, since the set can be reconstructed from
any n (or approximately any n) blocks, as m increases, the average speed of downloading the fastest n blocks
in the entire set will also increase - most likely improving download time. Given an encoding rate, the coding
schemes and choice of n and m that result in the best download time may vary depending on underlying
system properties such as network and processor speeds. Note that erasure coding is actually a generalization
of replication, since replication corresponds to the case when n = 1 and decoding and encoding are identity
operations.

In the experiments in Chapter 2 that use replication, a file is broken into blocks and four replicas of each
block are stored across the wide-area. Erasure coding can be applied to a file broken into blocks by first
partitioning the blocks of the file into several sets of size n blocks, and then computing m check blocks for
each set independently.
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Figure 3.1: Example LDPC code — data blocks on the left and check blocks on the right

3.2 ErasureCoding

We explore erasure codes in the wide-area primarily with Reed-Solomon codes, because they are widely
understood and used in a number of applications [15,17, 18,21, 33], and because generalizing replication to
Reed-Solomon codes in our downloading framework is relatively uncomplicated. Next, we briefly compare
Reed-Solomon coding to Low Density Parity Check (LDPC) coding, because LDPC codes have recently
arisen that greatly outperform Reed-Solomon codes in some cases [19, 20]. In sections 3.2.1 and 3.2.2, we
briefly sketch Reed-Solomon and Low Density Parity Check coding.

3.2.1 Reed-Solomon Coding

Reed-Solomon coding creates m check blocks from n data blocks where any n blocks of either type may be
used to reconstruct the set. The check blocks are computed by treating the data blocks like a vector and taking
the dot product of the n length data vector and m encoding vectors that compose a Vandermonde-derived
matrix. Decoding the data blocks from a set of n data and check blocks requires taking the inverse of an
naxn matrix, and computing dot products for each of the missing data blocks. All operations are Galois-field
operations. A tutorial written by Plank [21, 25] provides a more complete description of the mathematical
details of Reed-Solomon coding.

3.2.2 Low Density Parity Check Coding

Low Density Parity Check (LDPC) coding creates check blocks using only the XOR operation. Figure 3.1
shows an example of a bipartite graph or code that represents the relationship between the data and check
blocks. In this example, the value of check block ¢l is d1 & d2 & d3 @ d4, ¢2 is d2 ® d3 & d5, and ¢3 is
d3 @ d4 & d5 & d6. A check block can only be used to reconstruct data blocks that it is adjacent to in the
graph. For example, c1 is only useful for decoding d1, d2,d3, or d4. Given these limitations, if we assume
that the blocks are downloaded randomly, sometimes more than n blocks are required to reconstruct all of the
data blocks. A graph G’s overhead, o(G), is the average number of blocks required to decode the entire set.
Unlike Reed-Solomon coding, there can be many different codes for the same m and n. Clearly, a code that
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Table 3.1: Reed-Solomon Experiment Space

Parameter Range of Parameters
Simultaneous Downloads T € [20,30]
Work Replication and Failover Strategy {R, P} € [{1,1},{2,(30/n)}], static timeouts
Server Selection Fastestq, Fastest;
Coding n€[l,2,3,4,5,6,7,8,(9)],m € [1,2,3,4,5,6,7,8,(9)],

such that m/n <=3

minimizes o(G) for m and n is desirable, but optimal codes are currently known only for small values of n
and m [22].

3.3 Reed-Solomon Experiments

During August 2004, we extended the experiments detailed in Chapter 2 to include erasure coding in addition
to replication. Based on the previous results and some preliminary testing, we experimented over the range of
parameters in the four dimensions of the framework that were expected to produce the best results; they are
listed in table 3.1. We employ regional and hodgepodge network files as described in section 2.3, except that
in our regional network file, the UK region is replaced with a Texas region. Also tested is a third network file
made up of four regions that are slow relative to the University of Tennessee: Southeastern Canada, Western
Europe, Singapore, and Korea. The regional distributions are slightly different from those of replicated
network files since each block no longer has 4 copies that can be distributed among the 4 regions. Instead,
the blocks of a set are distributed among the regions in a round robin fashion, where region order is chosen
randomly for each set in the file.

3.3.1 Expected Trends

There are several trends that we anticipate in our experiments with Reed-Solomon codes:

e Performance should improve as m increases while n is fixed. Having more redundancy means that
there is more choice of which n blocks can be used to decode, and more choice means that the average
speed of the fastest n blocks in the set is probably faster. A related trend is that performance should
decline as n increases while m remains fixed.

o As the set increases and the encoding rate remains fixed, performance will be better or worse based on
the impact of two major factors:

1. Alarger set implies a larger server pool from which n blocks can be retrieved, and should improve
performance for the following reason: if it is assumed that slow and fast servers are distributed
randomly among the sets, then when sets are larger, it is less likely that any one set is composed
entirely of slow servers.

2. Sets with larger n have larger decoding overheads, and we expect performance to decrease when
n gets too big. This is somewhat masked for smaller sets because there are many sets in a file
and the decoding overhead of one set can overlap the data movement of future sets. However,
as n increases, the time it takes to decode a set will eventually overtake the time it takes to
download a set. Furthermore, sets near the end of the file often end up being decoded after all of
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Figure 3.2: Best overall performance given n and m over the Slow Regional Distribution

the downloading has taken place - with larger n, this amounts to larger leftover computation that
cannot overlap any data movement.

In the rest of this section, empirical results are presented and compared to the anticipated trends.

3.3.2 Reaults

Figures 3.2, 3.3, and 3.4 show the best performance of the three distributions when Reed-Solomon coding
isused. The trends proposed in section 3.3.1 emerge in several ways, but the different distributions of the
blocks appear to strengthen and weaken different trends.

The slow regional distribution shown in figure 3.2 produces a very regular pattern with diagonal bands
of performance across the grid. The two trends that dominate are that performance improves as m increases
and n remains fixed and performance degrades as n increases and m remains fixed. Furthermore, both trends
seem to have equal weight. Performance improves whenever the rate of encoding decreases, but does not
show significant changes when the set size increases and the encoding rate stays the same - more specifically,
increased set size does not significantly harm performance in smaller sets, nor does it improve performance
due to a more advantageous block distribution.

The only difference between the regional distribution and the slow regional distribution is that all of the
blocks in the regional distribution are nearby, and none of the blocks in the slow regional distribution are
nearby. As such, the performance per block of the regional network file is quite good, and the only trend that
emerges in figure 3.3 is that performance degrades as n, and thus the decoding time per set, increases.

The hodgepodge distribution exhibits more interesting behavior in figure 3.4 than either of other distribu-
tions. In general, performance improves as m increases and n remains fixed; the columns where n = 5 and
6 are good examples of this behavior. Performance also diminishes as n increases; observe for example, the
rows where m = 5 and 8. These are the same trends that turned up in the slow regional distribution; however,
the upper right quadrant of the grid has better performance relative to the rest of the grid than the upper right
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Table 3.2: Summary of Reed-Solomon and LDPC Coding

Reed-Solomon LDPC
Primary Operation Galois-Field Dot Products XOR
Quality of Encoding Optimal Suboptimal
Decoding Complexity 0(n?) O(n In(1/¢)), where € € R [19]

Table 3.3: LDPC vs. Reed-Solomon Experiment Space

Parameter Range of Parameters
Simultaneous Downloads T € [20,30]
Work Replication and Failover Strategy {R, P} € [{1,1},{2,(30/n)}], static timeouts
Server Selection Fastestq, Fastest;
Block Selection Db-first, Dont-care
Coding {n,m} € [{5,5},{10,10}, {20, 20}, {50, 50}, {100, 100}]

quadrant of the slow regional grid. There are two possible reasons for this: first, the performance is improving
due to distribution advantages that arise in larger sets, and second, the trend that performance improves as m
increases is stronger than the trend that performance declines as n increases. (these observations are entirely
focused with “small” sets; as n increases beyond a point, decoding will take much longer than downloading,
regardless of set size or distribution) The hodgepodge distribution spreads the blocks across 50 servers that
are not related to each other in any way, while the regional and slow regional distributions spread the blocks
across only 4 regions that typically contain less that 50 servers. Thus, it is likely that the loads of servers in
the same region interfere with each other, and the hodgepodge distribution may have performance advantages
because of this that are not visible in the regional and slow regional network files.

3.4 Reed-Solomon vs. LDPC

Table 3.2 summarizes some of the key differences between Reed-Solomon and LDPC coding. When compar-
ing the two types of coding, the properties of key importance are the encoding and decoding times, and the
average number of blocks that are necessary to reconstruct a set. LDPC codes have a great advantage in terms
of encoding and decoding time over Reed-Solomon codes; in addition, Reed-Solomon decoding requires n
blocks from a set before decoding can begin, while LDPC decoding can take place on-the-fly. However,
for small n, the extra blocks that LDPC codes incur can cause substantial performance degradation, and for
systems where the network connection is slow, Reed-Solomon codes can sometimes outperform LDPC codes
despite the increased decoding penalty [26].

Table 3.3 shows the parameter space explored in the next set of experiments, which compare Reed-
Solomon coding to LDPC coding. Since LDPC coding may fare poorly in very small sets, sets up to size 200
were tested. The experiments test the same values for 7', R, P, and server selection algorithm that were used
in the Reed-Solomon experiments. In addition, a new block selection criteria based on the type of block is
introduced, and will be detailed in section 3.4.1.
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Figure 3.5: Distribution Woes. The performance of different server scheduling algorithms can vary greatly
depending on the distribution of a file with LDPC coding. In distribution 1, the Lightest-load algorithm
performs best, while in distribution 2, the Fastestq algorithm performs best.

3.4.1 Subtletiesof LDPC Implementation

The implementation of LDPC coding involves several subtleties that are not present in that of Reed-Solomon
coding. First, the fact that LDPC coding sometimes requires more than n blocks affects not only how many
blocks must be retrieved, but also limits which blocks the client application can choose. A wide range of
block scheduling strategies may be applied to an LDPC coding set. At one extreme, blocks are downloaded
randomly, until enough blocks have been retrieved to decode the set. It is likely that some of the coding blocks
will become useless by the time they are retrieved, and that some data blocks may be decoded before they
are retrieved. Both of these possibilities increase the number of blocks that are needlessly downloaded. At
the other extreme, a download is simulated in order to determine an “optimal” set of blocks that can be used
to decode the set. Note that it is possible every time to choose a set of exactly n blocks that can be used for
decoding. The difficulty here is that it must be determined up front which blocks are coming from the fastest
servers. In our previous experiments we tested a number of different server selection algorithms that judged
servers based on speed and on load. The speed of servers remains fixed in most of the server scheduling
algorithms, but the load is always dynamic, and any optimal schedule would have to approximate the load of
servers not only throughout the download of a given set, but between the downloads of different sets in the
file, since they often overlap. Moreover, such a scheduling algorithm is somewhat complicated to implement
and may not offer significant performance enhancements once its own computation time is factored into
performance. The following experiments use a compromise between the two extreme scheduling options:
when selecting a block to download, the downloading algorithm will skip over check blocks that can no
longer contribute to decoding and data blocks that are already decoded. The algorithm also allows one of the
two block preference to be specified:

e Data blocks first (db-first): data blocks are always preferred over check blocks

e Don’t care (dont-care): the type of blocks is ignored, and blocks are chosen solely based on the speed
and load of the servers on which they reside

In the previous experiments over only Reed-Solomon codes, only the dont-care algorithm is used.

The second major subtlety in the implementation of LDPC coding is that the distribution of the file can
have a great impact on the performance of different server scheduling algorithms. Consider the example
depicted in figure 3.5, where n = 2, and m = 2, and there are two regions. Figure 3.5 shows two possible
distributions of the blocks, and which blocks would be chosen from each distribution by the Fastesty and
Lightest-load server scheduling algorithms. Depending on the distribution, one of the algorithms results
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Figure 3.6: Reed-Solomon vs. LDPC coding (performance including both download and decoding times)

in two blocks that can be used to reconstruct the entire set, and the other does not. The unfortunate con-
sequence of this characteristic is that the performance can vary greatly between different server scheduling
algorithms not because of the algorithms themselves, but because of the file’s distribution. The following
experiments use the Fastestg, and Fastest; server scheduling algorithms, and same distributions described in
section 3.3, which do not address the distribution subtleties of LDPC coding - a decision based on time and
sanity constraints.

3.4.2 Broad Trends

The best performing instances of Reed-Solomon and LDPC coding are shown in figure 3.6. LDPC coding
performs no better than, and in some cases much worse than Reed-Solomon coding when n is less than 50;
however, when n is greater than 50, LDPC coding vastly outperforms Reed-Solomon coding. As n increases
past 20, the performance of Reed-Solomon coding steadily declines, while the performance of LDPC coding
tends to improve, as in the hodgepodge distribution, or level off, as in the regional distribution. Concerning
the best overall performance, the best data point over all set sizes in the hodgepodge distribution occurs
at n = m = 100 for LDPC coding, while in both the regional and the slow regional distributions, Reed-
Solomon achieves the best data point over all at n = m = 5 and n = m = 10, respectively. When judging
the merits of either type of coding scheme in this particular application, it is important to remember that any
size set can scale to arbitrarily large files without incurring additional overhead per set. In general, given an
application and a choice between Reed-Solomon or LDPC coding it is probably best to choose the scheme
and set n,m that:

e is able to scale in the future along with the application.
e does not exceed physical storage limitations.

e meets desired levels of fault tolerance; note that Reed-Solomon coding has stronger guarantees than
LDPC coding in this respect.

o satisfies each of the three previous criteria with the best performance where performance consists of
both download time and decoding time.
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3.4.3 Block Preferences

In these experiments, blocks can be downloaded selectively based on their type. Data blocks are generally
preferable to check blocks since fewer data blocks require less decoding, but when check blocks are much
closer than data blocks, sometimes the advantage of getting close blocks is worth the decoding penalty.
Table 3.4 shows which block preference algorithm is used in the best performing instances of the codes over
the three distributions. A trade-off between download time and decoding time is apparent: the dont-care
algorithm is favored in the Slow Regional distribution and in the Hodgepodge distribution, while the db-first
algorithm is favored in the Regional distribution; in addition, whenn > 50 (i.e., the decoding time is greater),
the db-first algorithm is slightly favored.

3.44 HowBadisthe LDPC Block Overhead?

With LDPC coding, if blocks are downloaded randomly, sometimes more than n blocks must be retrieved to
decode a set. As discussed earlier, scheduling can be applied in varying degrees to reduce the number of extra
blocks, and hopefully improve performance. The experiments presented here simply keep track of which data
blocks are already downloaded, and which check blocks can no longer aid in decoding, and these blocks are
not downloaded, or are halted in the case that they have already begun. Figure 3.7 shows the total number of
blocks started and finished in both of the coding schemes. LDPC codes start many more blocks than Reed-
Solomon codes start, and LDPC codes usually require more than 100 blocks while Reed-Solomon codes only
retrieve more than 100 blocks when the downloads of two blocks end at the same time when redundancy has
been added to a set. But even though LDPC codes seem to be downloading quite a few more blocks than
Reed-Solomon codes, the downloads of extraneous blocks that are started and not finished do not seem to
live very long. Figure 3.8 shows the actual time spent downloading for each of the coding schemes measured
from the beginning of the first IBP_load() to the ending of the last. Note that unlike figure 3.6, figure 3.8
shows only the time taken to download the blocks, and does not include any additional time required to finish
decoding the file. In both the Hodgepodge and the Regional distribution, the time spent downloading by
the LDPC codes is actually less than the time spent by the Reed-Solomon codes when n = 100, which is a
by-product of the db-first preference that dominates Reed-Solomon performance when n gets large. When
a dont-care block preference is used along with server selection algorithms that strongly favor the fastest
servers, any additional blocks that must be downloaded will typically come from slow servers. So even
though more blocks are started and finished when LDPC coding is used, the overall difference in download
time is not that great.

3.5 Conclusions

When downloading algorithms are applied to a wide-area file system based on erasure codes, additional
considerations must be taken into account. First, performance depends greatly on the interactions of encoding
rate, set size, and file distribution. The predominant trend in our experiments is that performance improves as
the rate of encoding decreases, and that performance ultimately diminishes as n increases, but to a somewhat
lesser extent, it appears that larger sets do have an advantage in terms of download time depending on the
distribution of the file. Performance amounts to a balance between the time it takes to download the necessary
number blocks and the time it takes to decode the blocks that have been retrieved, and thus distribution, which
is intimately related to download time, strengthens and weakens the trends that arise from encoding rate and
set size.

Though less thoroughly explored in this work, the type of erasure codes being used also has interactions
with encoding rate, set size, and distribution, that shift performance. LDPC codes outperform Reed-Solomon
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Table 3.4: Block Preferences

Distribution n, m LDPC preference | RS preference
Slow Regional 5,5 dont-care dont-care
Slow Regional 10,10 dont-care dont-care
Slow Regional 20,20 dont-care dont-care
Slow Regional 50,50 db-first dont-care
Slow Regional 100,100 dont-care dont-care
Hodgepodge 5,5 dont-care dont-care
Hodgepodge 10,10 dont-care dont-care
Hodgepodge 20,20 dont-care dont-care
Hodgepodge 50,50 db-first db-first
Hodgepodge 100,100 dont-care db-first
Regional 5,5 db-first db-first
Regional 10,10 db-first db-first
Regional 20,20 db-first dont-care
Regional 50,50 db-first db-first
Regional 100,100 db-first db-first
200+ 200+ 200+
—=— started RS —=— started RS —=— started RS
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Figure 3.7: Number of Blocks Started and Finished in Best Performances of Reed-Solomon (RS) and LDPC

coding
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codes in large sets because LDPC decoding is very inexpensive, but LDPC codes also require more blocks
than Reed-Solomon codes and mildly limit which blocks can be used.

In the end, given a specific application or wide-area file system based on erasure codes, decisions about
set size, encoding rate, and coding scheme should be based on the following issues: first, what kind of
distribution is being used, and can it be changed; second, what level of fault tolerance is necessary, and what
set size and coding scheme can achieve this level given the available physical storage; last, given the set size
and coding scheme pairs that meet storage constraints and fault tolerance requirements, which has the best
performance and the best ability to scale in ways that the file system is likely to scale in the future.
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Chapter 4

Conclusions

When downloading a file that is broken into blocks and replicated across a wide-area file system, a client
must make decisions along four dimensions:

e How many blocks should be retrieved in parallel?

e Overall, what percentage of the work should be redundant?
e When do we decide that a block must be retried?

e Which replica of a block should be retrieved?

The results in Chapter 2 show that the number of simultaneous downloads and the server selection algo-
rithm have the greatest influence on performance of the first four dimensions. With regard to the two pre-
viously studied download strategies, Bandwidth Prediction and Progress-Driven Redundancy, some form of
bandwidth prediction proves advantageous, and while little difference occurs between algorithms that used
additional redundancy and those that used no additional redundancy in their best performing instances, in
average and worst performing instances, a small amount additional redundancy can improve performance
with virtually no cost.

Beneath the downloading framework and seeping into every one of the results is the distribution of the
file. What is the mixture of geographical distance and underlying network capacity and speed? How close
are the blocks? And what kind of pattern do they have relative to the client? In every instance, distribution
affected the overall performance, and in many cases it also had an effect on the performance trends. The
client may or may not have control over the distribution of the file, and similarly, the client may or may not
have control over whether replication or erasure codes are used, and if erasure codes, what kind.

Chapter 3 explores the implications and additional considerations that arise when erasure codes are used
instead of replication. Encoding rate and set size are the parameters of interest, and now the blocks stored on
the network are classified as either data blocks or check blocks. Performance tends to improve as the encoding
rate decreases, since more choices are available in the network, though as the size of the set increases, the
best performance is often achieved by discarding the advantage of close check blocks in favor of data blocks
that do not require decoding. Finally, the type of coding scheme also has a great impact on performance
because as the size of n increases beyond a point, Reed-Solomon decoding becomes very inefficient, while
the complexity of LDPC decoding grows almost linearly with n. Though LDPC codes outperform Reed-
Solomon codes whenever n gets very large, there are instances in which Reed-Solomon codes are still the
best choice. The results of these experiments provide insight not only into what the client should do when
faced with a file that is stored with erasure coding across a wide-area network, but also what size set and
distribution that the distributor of data should use.

28



A topic not addressed in this work, but certainly applicable to erasure codes in the wide-area is the use
of distributed computation to decode sets as they travel across the network to the client [6]. Reed-Solomon
codes have an advantage with smaller sets since they require fewer blocks for decoding, but LDPC codes
have both the advantage of a very simple computation that is easier to deploy, and also the ability to decode
on the fly.

Future directions of research in this area could include more extensive comparisons of erasure codes
and distributions. In addition, much of the performance is dependent on a balance of data movement and
computation; testing the algorithms on several different architectures would shed light into which aspects of
the system have the greatest clout. Finally, Progress Driven Redundancy has been applied to dynamic job
scheduling in a parallel computing application [4]; an exploration of what other aspects of the dynamic data
movement algorithms presented here could apply to distributed computing may prove fruitful.
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Hodgepodge Distribution Specifi cs

When a file is distributed with the hodgepodge
distribution, fifty regionally distinct servers are cho-
sen, and four copies of the file are striped across all
fifty servers. Two servers are considered to be re-
gionally distinct if the last two elements of their urls
do not match. Of approximately 300 IBP servers, the
133 listed below were determined to be up fairly fre-
quently during May and June 2004, and of the 133
servers in the list, between 59 and 75 regionally dis-
tinct servers were typically up at a given moment.
Due to the instability of such a large set of globally
distributed servers, an additional two copies of the file
were striped across the fifty chosen for experimenta-
tion. The download tool would tolerate failures as
long as each block had at least four available copies,
and the tool would only use four copies to complete
a download.

The following set of IBP servers was used to generate
a hodgepodge distribution of the file:
200.19.119.112

206.220.241.47
aladdin.planetlab.extranet.uni-passau.de
charcoal.cs.ucsb.edu

cisa.cs.ucsh.edu

csplanetlab3.kaist.ac.kr
disk2.lab.ac.uab.edu

disk3.lab.ac.uab.edu

disk5.lab.ac.uab.edu

disk6.lab.ac.uab.edu

disk7.lab.ac.uab.edu

disk8.lab.ac.uab.edu
dschinni.planetlab.extranet.uni-passau.de
dsi.i2.hawaii.edu

dsj2.uits.iupui.edu

i2tools.cookman.edu

ibp-rm.6net.garr.it

ibp.caspur.6net.garr.it

ibp.doshisha.ac.jp

ibp.ibcp.fr

ibp.unifi.6net.garr.it
ibpl.lab.ac.uab.edu
itchy.cs.uga.edu

kupll.ittc.ku.edu

kupl2.ittc.ku.edu
lefthand.eecs.harvard.edu
pll.unm.edu

plabl.nec-labs.com
planetl.berkeley.intel-research.net
planetl.cs.huji.ac.il
planetl.cs.rochester.edu
planetl.cs.ucsh.edu
planetl.scs.cs.nyu.edu
planet2.berkeley.intel-research.net
planet2.cs.huji.ac.il
planet2.cs.rochester.edu
planet2.ecse.rpi.edu
planetlab-01.bu.edu
planetlab-1.it.uu.se
planetlab-1.scla.nodes.planet-lab.org
planetlab-2.cmcl.cs.cmu.edu
planetlab-2.cs.princeton.edu
planetlab-2.it.uu.se
planetlab-2.scla.nodes.planet-lab.org
planetlab-3.scla.nodes.planet-lab.org
planetlab02.cs.washington.edu
planetlab03.cs.washington.edu
planetlabl.arizona-gigapop.net
planetlabl.bgu.ac.il
planetlabl.cis.upenn.edu
planetlabl.cnds.jhu.edu
planetlabl.cs.arizona.edu
planetlabl.cs.cornell.edu
planetlabl.cs.northwestern.edu
planetlabl.cs.purdue.edu
planetlabl.cs.ucla.edu
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planetlabl.cs.uiuc.edu
planetlabl.cs.unb.ca
planetlabl.cs.virginia.edu
planetlabl.cs.vu.nl
planetlabl.cs.wayne.edu
planetlabl.cse.nd.edu
planetlabl.csres.utexas.edu
planetlabl.diku.dk
planetlabl.eecs.umich.edu
planetlabl.enel.ucalgary.ca
planetlabl.flux.utah.edu
planetlabl.frankfurt.interxion.planet-lab.org
planetlabl.iis.sinica.edu.tw
planetlabl.it.uts.edu.au
planetlabl.koganei.wide.ad.jp
planetlabl.millennium.berkeley.edu
planetlabl.postel.org
planetlabl.ucsd.edu
planetlabl.xeno.cl.cam.ac.uk
planetlab10.millennium.berkeley.edu
planetlab11.millennium.berkeley.edu
planetlab2.bgu.ac.il
planetlab2.cnds.jhu.edu
planetlab2.cs.dartmouth.edu
planetlab2.cs.purdue.edu
planetlab2.cs.ubc.ca
planetlab2.cs.ucla.edu
planetlab2.cs.unb.ca
planetlab2.cs.uoregon.edu
planetlab2.cs.wayne.edu
planetlab2.csres.utexas.edu
planetlab2.dcs.bbk.ac.uk
planetlab2.di.unito.it
planetlab2.flux.utah.edu
planetlab2.inria.fr
planetlab2.it.uts.edu.au
planetlab2.millennium.berkeley.edu
planetlab2.postel.org
planetlab2.tamu.edu
planetlab2.ucsd.edu
planetlab3.cambridge.intel-research.net
planetlab3.cs.uoregon.edu
planetlab3.csres.utexas.edu
planetlab3.flux.utah.edu
planetlab3.millennium.berkeley.edu
planetlab3.ucsd.edu
planetlab3.xeno.cl.cam.ac.uk
planetlab4.millennium.berkeley.edu

planetlab6.millennium.berkeley.edu
planetlab6.nbgisp.com
planetlab7.millennium.berkeley.edu
planetlab7.nbgisp.com
planetlab8.idsl.nodes.planet-lab.org
planetlab8.millennium.berkeley.edu
planetlab9.millennium.berkeley.edu
planetslugl.cse.ucsc.edu
planlabl.cs.caltech.edu
planlab2.cs.caltech.edu
plil-crl-1.crl.hpl.hp.com
plil-crl-2.crl.hpl.hp.com
plil-pa-3.hpl.hp.com
pli2-pa-1.hpl.hp.com
pli2-pa-2.hpl.hp.com
portal.grid.csp.it

raven.cs.ucsh.edu

recall.snu.ac.kr

ricepl-2.cs.rice.edu
righthand.eecs.harvard.edu
scratchy.cs.uga.edu
silo.showcase.surfnet.nl
valnure.cs.ucsb.edu
video.ils.unc.edu

vnl.cs.wustl.edu
vrvs-ag.internet2.edu
vrvs3.internet2.edu
w20gva.inria.datatag.org
watson.ecs.baylor.edu
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