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Abstract 

 

One concern with crop biotechnology is that there might be crop to weed transgene flow, 

which could result in more invasive and competitive weed populations.  Transgene 

expression, introgression of crop genes, and other ecological factors may alter the fitness 

or productivity of weed populations.  The Brassica napus (crop) to Brassica rapa (weed) 

model to assess transgene flow and consequences has been widely used. In this study, 

weedy accessions of Brassica rapa were transformed with Bacillus thuringiensis (Bt) 

cry1Ac- and green fluorescence protein (GFP)- coding transgenes using Agrobacterium to 

develop plants to be subsequently used in risk assessment research.  Regenerated 

transgenic B. rapa lines were characterized by progeny analyses, Bt protein enzyme-

linked immunosorbent assay (ELISA), Southern blot analysis, and GFP expression assays.  

GFP expression level and Bt protein concentration were significantly different among 

independently transgenic B. rapa events.  Seed yield of transgenic B. rapa events was 

compared to B. rapa × B. napus introgressed hybrids in greenhouse and field experiments 

as comparative tools to evaluate the genetic load of introgressed crop genes in weedy 

populations.  In a greenhouse study, the biotypes expressing the Bt transgene were 

significantly different from insect susceptible plants and insect resistance was the 

predominant factor in productivity under diamondback moth (Plutella xylostella) 

herbivore pressure.  No significant differences were observed, however, in vegetative 

growth or reproductive yield between the transgenic B. rapa lines and crop-weed hybrids 

under field conditions.  Directly transformed transgenic B. rapa plants were an essential 
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positive experimental control to begin to assess genetic load of crop genes in crop-weed 

hybrid populations.  This is the first report of the direct transformation of a weedy plant.  

Transgene movement via pollen is an important parameter for understanding and 

evaluating  possible out-crossing capacities of transgenic crop varieties.  Here, we 

describe the movement of oilseed rape (Brassica napus L. cv. Westar) pollen expressing 

a genetically encoded fluorescent tag.  Transgenic oilseed rape plants were produced 

using Agrobacterium-mediated transformation method with the pBINDC1 construct 

containing a GFP variant, mGFP5-ER, under the control of the pollen-specific LAT59 

promoter.  Transgenic pollen was differentiated from non-transgenic pollen in vivo by a 

unique spectral signature and was shown to be an effective tool to monitor pollen 

movement in proof-of-concept studies in the greenhouse and field.  GFP-tagged pollen 

also served as a practical marker to determine the zygosity of plants. In a greenhouse 

study, more pollen was captured at closer distances from the source plant plot with 

consistent wind generated by fans.  Under field conditions, GFP transgenic pollen grains 

were detected up to 15 meters from the source plants. No significant difference was 

detected under field conditions for pollen frequency among distances 0, 5, 10, and 15 m 

from the source plant plot with no consistent wind effects on the number of pollen grains 

detected on pollen traps.  No significant differences between transgenic pollen and non-

transgenic pollen were detected for pollen dispersal under field conditions. 
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Chapter one 

 

 

Literature Review 

 

 

Risk assessment of genetically modified crops 

The global transgenic crop acreage has increased yearly since the commercial 

introduction of agronomically-improved transgenic crops in 1996.  The majority of 

transgenic crops were grown in the US, Argentina and Canada, and many countries are in 

the process of assessing the risks of transgenic crops and considering legislation to 

regulate the use of commercially available transgenic crops (Dunfield and Germida 2003).  

A debated environmental concern posed by transgenic crops is transgene escape from 

transgenic crops to wild relatives or feral populations (Stewart et al. 2003).  Transgenic 

crops engineered with specialized traits such as insect resistance could transfer novel 

genes to nearby weeds through hybridization (Eber et al. 1994; Jorgensen and Andersen 

1994; Chevre et al. 1997).  Further, seed dispersal and plant persistence are other factors 

researched to cause movement of transgenes, and thus, should be evaluated for potential 

ecological risk (Crawley and Brown 1995; Crawley et al. 1993; Hails 2000).   
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Oilseed rape as a model plant for risk assessment 

Oilseed rape (Brassica napus L. AACC 2n=38) is now one of the largest oilseed 

crops in the world and widely used as a cooking oil, salad oil, and margarine ingredient.  

Oilseed rape is an appropriate crop for the study of transgene escape or movement, since 

oilseed rape has many wild relatives such as field mustard (Brassica rapa L.AA 2n=20) 

and wild radish (Raphanus raphanistrum) which occur as weed populations in or near 

oilseed rape cultivation areas and overlap the flowering period of oilseed rape (Simard et 

al. 2002; Halfhill et al. 2002; Chevre et al. 2003).  Unlike oilseed rape, crops such as corn, 

potato and cotton cannot be pollinated with their feral species (Mendelsohn et al. 2003).  

Oilseed rape is categorized as a moderate risk crop for introgression between crops and 

wild relatives (Stewart et al. 2003).  Oilseed rape pollen can move up to 3 kilometers 

between fields in the air (Stokstad 2002).  Oilseed rape is a partially self-fertilized species, 

and self-fertilization rate has ranged from 53-88% depending on cultivar and 

environmental conditions (Becker et al. 1992). Oilseed rape has been shown to persist at 

least 8 years outside of cultivated fields (Pessel et al. 2001).  Transgenes for herbicide or 

insect resistance likely transferred to nearby weeds, creating weeds resistant to insects or 

herbicides and thus, could be more difficult to control. Oilseed rape and field mustard are 

known to hybridize (Mikkelsen et al. 1996), and field mustard is the wild relative that 

most easily hybridizes with oilseed rape.   

Herbicide resistance has been engineered into B. napus and grown commercially, 

and insect resistance has been engineered in for experimental purposes with prospects for 

commercial release.  The transfer of herbicide tolerance genes from commercial oilseed 

rape to naturally occurring wild relative populations was reported in Quebec, Canada via 
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hybridization (Warwick et al. 2003).  Transgene flow from transgenic oilseed rape to 

wild relatives for insect resistance has been shown to occur under varied field conditions 

(Halfhill et al. 2004).  Genes transferred from transgenic crops to their weedy relatives 

could result in the creation of transgenic hybrid weeds; there is no doubt that this is the 

case with B. napus × B. rapa.  Therefore, quantifying the fitness of transgenic hybrid 

weeds is important for evaluating the potential risk of gene flow from transgenic crops to 

closely related weed species, i.e. determining the consequences of gene flow.   

The fitness of some crop-weed hybrids has been shown to be relatively higher 

when compared to their parents (Klinger and Ellstrand 1994; Hauser et al 1998a,b).  In 

contrast, some researchers have shown that crop-weed hybrids had lower fitness than 

wild genotypes (Snow et al. 1998; Halfhill et al. 2005).  Determination of whether 

transgenic hybrid weeds have higher fitness than non-transgenic weeds under field 

conditions will be beneficial in the understanding of the potential risk of gene flow from 

transgenic crops to weeds.  

 

 

Green fluorescent protein (GFP) as an in vivo marker for gene flow 

The potential escape of transgenes could result in fitness-enhanced weedy relatives 

(Klinger and Ellstrand 1994; Hauser et al. 1998a) that would warrant the need for an in 

vivo gene monitoring system to quantify and assess ecological risks in the field.  An 

important tool for monitoring possible introgression of genes such as herbicide, disease, 

insect, and drought resistance into weedy relatives is green fluorescent protein (GFP) 

tagging (Stewart 1996, 2005).  GFP was isolated and cloned in 1992 from a jellyfish, 
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Aequorea victoria.  GFP consists of 238 amino acids with wild type excitation peaks of 

395nm and 475nm and an emission peak of 508nm (Chalfie et al. 1992).  Several variants 

with increased fluorescence level and improved expression in eukaryotic cells have been 

developed by modifying codon usage or adding peptide targeting sequence (Haseloff et al. 

1997; Siemering et al. 1996).  GFP is a valuable tool used to assess the frequency of 

stable transformation during tissue culture as well as to monitor the gene flow from 

transgenic plants in the environment (Stewart 1996; Harper et al. 1999).  GFP does not 

require a co-factor for fluorescence, which makes it an effective, noninvasive, in vivo 

marker for gene expression (Leffel et al. 1997).  GFP had a low risk of allergenicity in an 

orally administered experiment with rats and is not likely to cause a health risk (Richards 

et al. 2003).  GFP variant mGFP5-ER is a good variant as a visual marker to detect plants 

that express GFP in pollen or throughout the whole plant under the control of the CaMV 

35S promoter (Halfhill et al. 2001).  GFP also has been shown to serve as a vital 

screenable marker in rice transformation (Vain et al. 1998).  The mGFP5-ER is an 

appropriate variant for this study since it has been shown to work well under field 

conditions and is strongly visible in plant cells (Harper et al. 1999, Stewart 2001).  The 

inheritance and expression stability of foreign genes has been studied in different 

transgenic plants (Duan et al. 1996).  The expression of GFP and its inheritance were 

studied in transgenic oat (Avena sativa L.) plants transformed with a synthetic GFP gene 

[sgfp(S65T)] driven by a rice actin promoter (Cho et al. 2003).  GFP expression was 

stably inherited in some plants, but some plants had transgene silencing – the gene was 

present as determined by PCR but expression of the transgene was not observed (Cho et 

al. 2003).  GFP has become an invaluable tool in plant research and it has been to be an 
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effective tool to monitor the expression and possible introgression of transgenes from 

crops into their wild relative species (Stewart 1996; 2005; Halfhill et al. 2001; 2003a).  

GFP may be a suitable marker for the direct detection of pollen-mediated gene flow 

(Hudson et al. 2001). 

 

 

Transgene flow via pollen movement 

Transgene movement via pollen flow is a prominent mode for transferring 

transgenes in the environment.  The use of transgenic plants has proven to be an effective 

tool to quantify gene flow (Messeguer 2003).  Gene flow is likely to occur via pollen 

movement since reproductive organs are intended to create gene movement (Saeglitz et al. 

2000).  Transgene movement occurs by pollen dispersal into their wild relatives, 

potentially resulting in enhanced weed populations (Scheffler and Dale 1994).  Gene flow 

through pollen has been demonstrated in sugar beet, oak, rice, oilseed rape, and barley 

(Alibert et al. 2005; Dutech et al. 2005; Rieger et al. 2002; Damgaard and Kjellsson 

2005; Chen et al. 2004; Song et al. 2004; Ritala et al. 2002).  Oilseed rape and weedy B. 

rapa are able to hybridize and backcross spontaneously in both experimental plots and 

cultivated fields (Mikkelsen et al. 1996; Wilkinson et al. 2000). Approximately half of 

the transgenic oilseed rape pollen, which is heavy and sticky, fell onto plant surfaces and 

the ground within 3 m, but a small percentage became airborne in the wind (Lavigne et al. 

1998).  In plants, gene flow can occur through seed or pollen dispersal.  Gene flow via 

pollen dispersal was found to be greater than would be inferred from pollinator 
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movement alone (Schaal 1980).  However, pollen dispersal by either wind or pollinator is 

an important mode of transgene escape or movement. 
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Chapter Two 

 

 

Characterization of directly transformed weedy Brassica rapa and 

introgressed B. rapa with Bt cry1Ac and gfp genes* 

 

 

* This chapter has been submitted to Plant Cell Reports with authors Hong S. Moon, 

Matthew D. Halfhill, Laura L. Good, Paul L. Raymer, and C. Neal Stewart, Jr. 

 

 

Abstract 

Crop to weed transgene flow, which could result in more competitive weed populations, 

is a transgenic plant biosafety concern.  Transgene expression, introgression of crop 

genes, and other ecological factors may alter the productivity of weed populations. 

Directly transformed weeds are apt comparisons for introgressed transgenic hybrids.   

Weedy Brassica rapa accessions were transformed with Bacillus thuringiensis (Bt) 

cry1Ac and green fluorescence protein (GFP) transgenes using Agrobacterium to produce 

plants to be used in risk assessment research.  Regenerated B. rapa events were 

characterized by Southern blot, Bt protein ELISA, and GFP expression assays.  

Productivity of transgenic B. rapa events was compared to Brassica crop-weed 

introgressed hybrids in greenhouse and field experiments. GFP expression level and Bt 
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protein concentration were significantly different among independently transgenic B. 

rapa events.  In the greenhouse study, insect resistance was the predominant factor in 

productivity under diamondback moth (Plutella xylostella) pressure.  This is the first 

report of the direct transformation of a weedy plant. 

 

 

Introduction 

While transgenic plants have been grown commercially for over ten years, there is 

continued debate about their risks and regulation (Stewart 2004).  Some level of gene 

movement in commercial transgenic crop field is likely to be inevitable (Timmons et al. 

1996).  However, the risk of transgene movement from oilseed rape (Brassica napus, 

OSR) to its relatives is quite low, with the exception of gene flow to Brassica rapa, 

where interspecific hybridization occurs readily (Legere 2005).  It has long been thought 

that hybridization of transgenic crops with other crop cultivars or with related weed 

species could result in the creation of more competitive and invasive hybrid populations 

(Mikkelsen et al. 1996; Stewart et al. 2003; Al-Ahmad et al. 2004).   

Hybridization between transgenic OSR and wild relatives has been confirmed by 

the presence of crop-specific markers and transgenes in hybrid populations (Legere 2005).  

The transfer of an herbicide (glyphosate) tolerance gene from commercially cultivated 

fields of OSR to a naturally occurring wild population of B. rapa producing F1 hybrids 

was reported in Quebec, Canada (Warwick et al. 2003).  In field experiments, the flow of 

an insect resistant transgene such as Bacillus thurigiensis (Bt) cry1Ac from transgenic 

OSR to wild relatives occurred under varied field conditions (Halfhill et al. 2004).  The 
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fitness of some Brassica crop-weed hybrids has been shown to be relatively high 

compared to their parents (Klinger and Ellstrand 1994; Hauser et al. 1998a,b).  In contrast, 

crop-weed hybrids have had lower fitness than wild genotypes of their parents (Snow et 

al. 1998; Halfhill et al. 2005).  Lower fitness of hybrid plants may be caused by the 

presence and expression of transgenes, introgressed crop genes, or other ecological 

factors.   

To date, many researchers have attempted to determine the consequences of 

hybridization and introgression between transgenic crops and their wild relatives (Snow 

and Moran-Palma 1997; Gueritaine et al. 2002; Chevre et al. 2003; Halfhill et al. 2005; 

Legere 2005), but little is known about the persistence or ecological effects of crop genes 

that enter wild populations through pollen movement (Snow and Moran-Palma 1997).  

Halfhill et al. (2005) have reported that crop-weed hybrids, with or without transgene 

introgression, had lower fitness and competitive ability than their parent populations 

suggesting that the fitness depression of crop-weed hybrids may be caused by crop genes 

in hybrids or other factors rather than the presence of the transgene itself.  The expression 

of  Bt cry1Ac transgenes have no fitness penalty in transgenic OSR (Mason et al. 2003), 

and GFP is also an ecologically neutral transgene (Harper et al. 1999; Stewart 2006).  

Changes in fitness of crop-weed hybrids could be caused by a transgene spread in 

association with other crop genes during the hybridization and introgression process 

(Landbo and Jorgensen 1997).  In some crop species such as sugar beet, the genetic 

background was found to be much more important than the presence of transgenes for 

fitness or productivity (Crawley et al. 2000). 
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OSR is an important oilseed crop worldwide with transgenic OSR encompassing 

a large percentage grown of commercially-grown crop (Warwick et al. 2003).  OSR is 

cultivated in close proximity to and shares an overlapping flowering period with wild 

relatives, making oilseed rape an appropriate crop for the study of transgene escape 

(Holm et al. 1997; Chevre et al. 2003).  B. rapa is the genetically closest wild or weedy 

related species with high risk of gene flow from cultivated oilseed rape plants (Legere 

2005).  Transgenic insecticidal OSR carrying the Bt transgene has shown increased 

fitness under insect selection conditions (Stewart et al. 1997).  Transgene flow from Bt 

transgenic OSR to its wild relatives via hybridization and backcrossing has been reported 

in experimental field conditions using GFP expression as a marker in plants (Halfhill et al. 

2002).  

The purpose of our study was several-fold.  First, in order to control for genetic 

background to assess the effect of introgression to weedy B. rapa in subsequent 

experiments, we produced directly transgenic B. rapa events with Bt cry1Ac and gfp 

transgenes via an Agrobacterium-mediated transformation method.  A directly 

transformed B. rapa is an essential positive experimental control to use as a transgenic 

weed that would not carry any crop-specific genes which could be introgressed in crop-

weed hybrids.  Second, we characterized the transgenic events using molecular methods.  

Third, this study also aimed to begin to test the effect of crop genetic load in introgressed 

crop-weed hybrids by comparing these to transgenic B. rapa lines under greenhouse and 

field conditions.   
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Materials and Methods 

A synopsis of Brassica plant types used in this study are listed in Table 1.  Essentially we 

used a oilseed crop-type Brassica napus cv. ‘Westar’ along with transgenic derivatives 

and weedy Brassica rapa along with transgenic derivatives and backcrossed hybrids 

between the two species.  

 

Plant transformation 

Plant accessions 

Plant material from three weedy accessions of B. rapa were used for plant transformation, 

including CA from Irvine, CA, USA (33° 40’N 117° 49’W; courtesy of Art Weis), 

QC2974 from Milby, QC, Canada (45° 19’N 71° 49’W), and QC2975 from Waterville, 

QC, Canada (45° 16’N 71° 54’W; courtesy of Suzanne Warwick). 

 

Vectors 

Two gene constructs were used for plant transformation, including pBin-mGFP5-ER 

(GFP gene only) and pSAM12 (mGFP5-ER-Bt Cry1Ac; described in Harper et al., 1999).  

The pSAM12 construct contains mGFP5-ER, synthetic Bt Cry1Ac, and kanamycin 

resistant nptII genes carried in the T-DNA, enabling all three traits to be inserted into a 

single, genetically linked locus.  The Bt and GFP transgenes were expressed under the 

control of the separate CaMV 35S promoter in separate cassettes on a single T-DNA 

vector. 
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Table 1  List of plant biotypes used in this study. Three weedy B. rapa accessions and 

one B. napus cultivar were used as parents. Two different constructs (pSAM12 contains 

GFP/Bt genes and pBIN-mGFP5-ER contains GFP gene) were used. All are under the 

control of the 35S promoter. 

Plant biotype Construct Event Gene-
ration

Trans-
genic 

Name 
used in 

this study 

Used in 
greenhouse 

study 

Used in 
field 
study 

B. napus 
(cv.Westar)   Parent  Westar  √ 

B. napus 
(cv.Westar) pSAM12 Event1 T4 √ BnGT1  √ 

BnGT1×  
B.rapa (QC2974) pSAM12  BC2F2 √ Bt BC2F2 √ √ 

BnGT1× 
B.rapa(QC2974)   BC2F2  BC2F2 √ √ 

B. rapa 
(ac.QC2974)   Parent  QC2974 √ √ 

B. rapa 
(ac.QC2974) 

pBIN-
mGFP5-ER Event2 T2 √ 74-GFP2  √ 

B. rapa 
(ac.QC2974) 

pBIN-
mGFP5-ER Event3 T2 √ 74-GFP3 √ √ 

B. rapa 
(ac.QC2974) 

pBIN-
mGFP5-ER Event5 T2 √ 74-GFP5  √ 

B. rapa 
(ac.QC2974) pSAM12 Event1 T2 √ 74-GT1  √ 

B. rapa 
(ac.QC2974) pSAM12 Event2 T2 √ 74-GT2 √ √ 

B. rapa 
 (ac.CA)   Parent  CA   

B. rapa 
 (ac.CA) 

pBIN-
mGFP5-ER Event1 T2 √ CA-GFP1   

B. rapa  
(ac.CA) pSAM12 Event1 T2 √ CA-GT1   

B. rapa 
(ac.QC2975)   Parent  QC2975   

B. rapa 
(ac.QC2975) pSAM12 Event1 T2 √ 75-GT1   

B. rapa 
(ac.QC2975) pSAM12 Event2 T2 √ 75-GT2   
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Weedy B. rapa transformation  

The transformation method and tissue culture system were based on an existing protocol 

for B. napus (Stewart et al. 1996).  All the cultures were maintained at 24±2ºC under a 

16/8hr light/dark photoperiod.  Rooted shoots were transferred to soil for an acclimation 

period of 2 weeks.  Following acclimation transgenic B. rapa plants were grown 

separately in 4 L pots filled with soil in a growth chamber.  Number of explants, GFP 

sectors, shoots recovered, rooted shoots, and fertile plants were recorded to assess 

efficiency.  Because of self incompatibility of B. rapa plants, T1 seeds were produced by 

hand-crossing between T0 transgenic B. rapa and the respective wild B. rapa in growth 

chambers.  T1 plants were grown for 2 weeks and transgenic T1 plants were retained if 

they were GFP positive by screening under a hand-held longwave ultraviolet (UV) light 

(UVP model B-100AP 100W 365nm), which is indicative of moderate-to-high transgene 

expression.  Hand-crossing among the selected GFP positive T1 plants produced T2 seeds.  

A subsample of randomly chosen T2 seeds was planted from each transgenic event, and 

after 2 weeks, seedlings were screened under UV light.  

 

Southern blot analysis 

A southern blot analysis was performed to confirm transgene presence in directly 

transformed B. rapa. Genomic DNA was extracted from frozen leaf tissue of GFP 

transgenic B. rapa events and wild QC2974 B. rapa using CTAB (Dellaporta et al. 1983).  

After digestion of 10 µg of genomic DNA with HindIII, fragments were purified with 

QIAquick PCR purification columns (QIAGEN, Valencia, CA, USA).  Control plasmid 

DNA from the binary vector pBIN-mGFP5-ER was also digested with HindIII. The 
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HindIII was chosen as a restriction enzyme since HindIII cuts once within the pBIN-

mGFP5-ER T-DNA, 5’ to the CaMV 35S promoter.  DNA fragments were seperated on a 

1% agarose gel.  Fragments were transferred to Zeta-Probe GT membrane (Bio-Rad, 

Hercules, CA, USA) according to manufacturer’s instructions.  A PCR product 

containing the full length open reading frame of mGFP5-ER was radio-labeled with α-32P 

dCTP using Prime-It II Random Primers Labeling Kit (Stratagene, La Jolla, CA, USA).  

Labeled probe was purified using mini Quick Spin DNA columns (Roche Diagnostics, 

Indianapolis, IN, USA).  Southern blots were hybridized with labeled probe in 

ULTRAhyb hybridization buffer (Ambion, Austin, TX, USA) and washed according to 

manufacturer’s protocol.  Hybrized signal was visualized by exposure to phosphor-

imaging screens (Storage Phosphor Screen GP, Eastman Kodak, Rochester, NY, USA) 

and scanned using Personal FX (Bio-Rad, Hercules, CA, USA).  Image analysis was 

undertaken using Quantity One software (Bio-Rad, Hercules, CA, USA). 

 

GFP fluorescence detection and analysis 

Quantification of GFP fluorescence was performed using a Fluoromax -2 fluorescence 

spectrophotometer (Instruments S.A., Edison, NJ, USA) utilizing DataMax software 

(Galactic Industries Corporation, Salem, NH, USA).  A 2 m bifurcated fiber cable was 

used to transmit excitation light and detect emission transmission from the leaves.  

Fluorescence spectrometry was performed in the middle of third leaf at four-leaf stage of 

GFP B. rapa events (transformed B. rapa with GFP gene), GT B. rapa events 

(transformed B. rapa with GFP/Bt genes), Bt BC2F2 hybrid, and wild B. rapa QC2974 

accession plants.  All plants were excited with UV light (385 nm) and scanned from 440 
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to 600 nm.  For this study, the 450 nm wavelength served as the anchor point (Millwood 

et al. 2003).  GFP fluorescence of the transgenic B. rapa events at 508 nm was subtracted 

from the anchor point average value for multiple measurement of wild QC 2974 B. rapa 

plants. 

 

Bt expression analysis 

Expression of Cry1Ac protein in the transgenic B. rapa events was quantified by Bt 

enzyme-linked immunosorbent assay (ELISA) using a QualiplateTM kit for 

Cry1Ab/Cry1Ac (Envirologix Inc, Portland, ME, USA).  Total soluble protein was 

extracted from leaves using the protein extraction method described in Stewart et al. 

(1996).  Fresh leaf tissue (0.2 g) from the transgenic B. rapa events and Bt BC2F2 

(transgenic backcrossed generation between BnGT and QC2974; described in Halfhill et 

al. 2005) was collected and homogenized in 400 µl of 0.1 N NaOH using a power drill in 

a microcentrifuge tube.  The samples were incubated on ice for 30 min, and 80 µl of 1 M 

Tris-HCl (pH 4.5) was then added for neutralization.  Each sample was clarified by 

centrifugation at 8,765 ×g for 5 min.  The supernatant was discarded and the remaining 

fraction was quantified by a Bradford assay.  Total soluble protein per sample was 

quantified by Coomassie Plus™ Bradford Assay kit (Pierce Biotechnology Inc., 

Rockford, IL, USA).  Soluble protein from each sample was diluted to 50 µg of protein 

per ml and 5 µg of soluble protein was put into each respective sample well.  

Qunatification of Bt protein by ELISA was then performed using a Qualiplate™ kit for 

Cry1Ab/Cry1Ac according to manufacturer’s instructions.  
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Transgenic B. rapa plants under insect pressure in greenhouse 

To compare the productivity of transgenic B. rapa with crop-weed hybrids under 

herbivory pressure, a greenhouse experiment was performed at the Racheff research 

greenhouse at the University of Tennessee at Knoxville in the spring of 2005.  Because B. 

rapa are self-incompatible, honeybees (Apis mellifera) were placed and served as 

pollinators during the experiment. 

 

Plant types 

Five plant types were used in this study.  Wild B. rapa (QC2974), transgenic GFP B. 

rapa event, transgenic GT B. rapa event, Bt BC2F2, and BC2F2 (non-transgenic 

backcrossed segregant between transgenic B. napus containing GFP and Bt transgenes 

(BnGT) and QC2974; described in Halfhill et al. 2005) (Table 1) were planted 

individually in 4 L pots.  After 14 days, three different transgenic plants including 74-

GFP3, 74-GT2 and Bt BC2F2 were screened under UV light in the dark to select for 

transgenics.  GFP positive seedlings were retained and grown to maturity. 

 

Plot design and application of insects 

One hundred fifty 4 L pots were arranged based on a randomized complete block design 

(RCBD) and divided into three replicates.  Thirty pots were assigned to each block.  Five 

pots in each block were designated to each plant type.  Randomly half of six blocks were 

under herbivory pressure.  A strain of diamondback moth (DBM) (Plutella xylostella) 

(Benzon Research Inc. Charlisle, PA, USA) susceptible to Bt was used as the herbivore.  

At 8-12 leaf stage of plant, 10 neonate diamondback moths at the 3rd instar were applied 
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to each plant using a small paint brush.  After 2 weeks, the insecticide Marathon® 1% 

Granular (Olympic horticultural products Co., Mainland, PA, USA) was applied to all 

plants in order to prevent immigration of DBM to other blocks.  Because of the toxicity 

of insecticide to DBM, no more damage was expected by DBM after insecticide 

application on both treatment blocks. 

 

Quantifying herbivory damage 

Seven days after DBM application, the number of damaged leaves out of total countable 

leaves greater than 3 cm diameter was recorded.  The percentage of damaged area on 

each leaf was estimated by visual assay based on the following categorical scale of 

damage (1 = no damage; 2 = < 1% damage; 3 = < 5% damage with 1 attempt; 4 = < 5% 

damage with more than 1 attempt; 5 = 6 - 20% damage; 6 = 21 - 50% damage; 7 = 51 - 

90% damage; 8 = > 90% damage) (Halfhill et al. 2005). 

 

Harvesting and analyses 

At maturity, plant above-ground biomass was harvested and each plant was stored in a 

separate mesh bag for a month at 36±2ºC until the plants were completely dried.  Dry 

weight of each individual plant was recorded and then seeds were cleaned.  The number 

of total seeds per plant was calculated based on average weight of 100 seeds.  Plant 

vegetative and reproductive productivity were estimated by plant dry weight and number 

of seeds, respectively.  Plant productivity data for insect applied blocks and no insect 

blocks were analyzed by analysis of variance (ANOVA) using SAS version 9.1.  

Differences of productivity among plant types were also analyzed.  
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Productivity of transgenic B. rapa events under field conditions 

To compare the productivity between transgenic B. rapa events and crop-weed hybrids 

under field conditions, a field experiment was performed at the Lang Research Farm, 

Tifton, GA, USA (31° 27’N 83° 30’W).  

 

Plant types 

Ten types of plants were used in this study.  Wild B. rapa (QC2974), 3 events of 

transgenic GFP B. rapa (74-GFP2, 74-GFP3, and 74-GFP5), 2 events of transgenic GT B. 

rapa (74-GT1 and 74-GT2), Bt BC2F2, and BC2F2 crop-weed hybrids, homozygous 

transgenic B. napus for GFP/Bt genes (BnGT1; described in Halfhill et al. 2001), and B. 

napus (cv. Westar) (Table 1). All transgenic B. rapa events and Bt BC2F2 and were 

screened with a hand-held UV light in the dark to confirm expression of the GFP 

transgene. 

 

Plot design 

The field experiment was designed based on a RCBD with 8 replicates. A total of 80 

plots were sown (10 plant types × 8 replicates).  Each plot size was 1 m2 and the isolation 

between plots was 1 m.  Seeds were scattered by hand into each respective plot at a 

density of 200 seeds per m2.  After 72 days post seed sowing, all GFP and GT events of 

transgenic B. rapa plants and Bt BC2F2 were screened with a hand-held UV light.  The 

plant number in each plot was thinned to 15 plants.  
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Harvesting and statistical analyses 

At maturity, the above-ground vegetative biomass from each plot was harvested 

separately using a line trimmer (Weed Eater 22” Excalibur, Electrolux Group, Nashville, 

AR, USA).  Plant productivity was measured and the data were analyzed as described 

previously for the greenhouse experiment.  Differences of productivity among plant types 

were compared by ANOVA and contrasts using SAS version 9.1.  

 

 

Results 

Weedy B. rapa transformation and regeneration 

Fifteen independent transgenic B. rapa events were generated from three weedy B. rapa 

accessions (QC2974, QC2975 and CA).  Callus was induced from the ends of the 

chopped hypocotyl segments within 14 days on callus induction medium.  Transformed 

callus sectors fluoresced green under UV light.  The pBIN-mGFP5-ER and pSAM12 

constructs generated 21 and 14 independent fluorescent sectors, respectively (Table 2).  

Roots formed on shoots from all accessions with both constructs.  Wild weedy B. rapa 

QC2974 transformed with the pBIN-mGFP5-ER construct had relatively higher 

transformation efficiency calculated based on the number of fertile plants out of total 

explants.  Transformed plants were confirmed by GFP screening under UV light and 

were easily distinguished from wild B. rapa plants (Fig. 1).  T1 seeds from each 

transgenic event were acquired from a hybrid cross between T0 transgenic B. rapa plants 

and the respective wild B. rapa accession via hand-crossing.  Each T1 transgenic B. rapa 

event segregated for GFP expression, except 74-GFP5 event which was all positive for  
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Table 2  Summary of weedy Brassica rapa accessions transformation efficiency using 

Agrobacterium-mediated method. Three weedy accessions of B. rapa were transformed 

with two different constructs including pBIN-mGFP5-ER and pSAM12. The pBIN-

mGFP5-ER contains GFP gene and the pSAM12 contains GFP/Bt genes; all are under 

the control of the 35S promoter. 

Accession Construct Explantsa Sectorsb Shootsc Rootsd Fertilee 

pBIN-mGFP5-ER 451 71 19 7 5 
QC2974 

pSAM12 625 98 11 4 2 

pBIN-mGFP5-ER 347 53 9 3 2 
QC2975 

pSAM12 445 37 9 5 4 

pBIN-mGFP5-ER 204 43 3 1 1 
CA 

pSAM12 276 39 1 1 1 

a  Number of chopped hypocotyl segments initially infected by Agrobacterium inoculum 

b  Number of GFP fluoresced sectors 

c  Number of shoots regenerated 

d  Number of shoots that formed roots 

e  Number of transgenic plants that produced T1 seeds 
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Figure 1  Detectable GFP fluorescence in transformed B. rapa plants.  QC2975 plant 

transformed with Agrobacterium containing mGFP5-ER was transferred to soil and 

photographed under normal light (A), under UV light (B).  Non-transgenic QC2975 plant 

was photographed under normal light (C), under UV light in the dark (D). 
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GFP expression (data not shown).  Plants within each transgenic event were crossed 

among GFP positive T1 transgenic plants from independent event to acquire T2 seeds. 

Only 9 transgenic B. rapa events out of total 15 established events were used for the 

analysis or characterization. 

 

Number of transgenes integrated in transgenic B. rapa 

Independent T2 GFP transenic B. rapa events were analyzed through Southern blot 

analysis using HindIII digested genomic DNA (Fig. 2).  Since HindIII restricts the T-

DNA insert before 5’ to the mGFP5-ER gene, probing with GFP yields a single 

hybridizing band for each T-DNA insert.  Southern blot analysis results confirmed 

multiple transgene integrations in several events, including 74-GFP2, with two insertions, 

and 74-GFP5 and CA-GFP1, which both appear to contain four T-DNA inserts.  The 

hybridizing bands in genomic digests varied in size between transgenic events and were 

not identical to hybridizing bands in HindIII digested binary vector control, indicating the 

GFP transformants were independent and transgenes were stably integrated in the B. rapa 

genome.  

 

GFP fluorescence of transgenic B. rapa events 

GFP expressions from transgenic B. rapa T2 plants of each GFP and GT events were 

measured using a fluorescence spetrophotometry.  There were significant differences for 

emission intensity at 508 nm among transgenic B. rapa events and hybrid Bt BC2F2 

(ANOVA, P<0.05) (Fig. 3).  The CA-GFP1 event exhibited the highest average 508 nm 

emission peaks at 3.6±0.3 cps (105) (Fig. 3).  Transgenic B. rapa plants and Bt BC2F2 had  
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Figure 2  Southern blot analysis of T2 GFP B. rapa events.  Southern blot analysis of 

HindIII digested genomic DNA hybridized to GFP probe.  Genomic DNA from 

untransformed B. rapa QC2974 (lane 1), three independent GFP transgenic events of B. 

rapa QC2974 (74-GFP2, 74-GFP3, 74-GFP5, lanes 2-4), and a GFP transgenic event of 

B. rapa CA (CA-GFP1, lane 5).  HindIII digested binary vector pBIN-mGFP5-ER used 

for the transformation of B. rapa is shown in lane 6. 
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Figure 3  Fluorescence average at 508 nm for T2 9 independent transgenic B. rapa events 

and Bt BC2F2 hybrid.  Wild weedy accession (QC2974) B. rapa served as a experimental 

control.  Emission intensity was recorded in counts per second (105).  Different letters 

represent significant difference between plant types (ANOVA, P<0.05). 
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a GFP expression at 508 nm from 2.5±0.4 to 3.6±0.3 cps (105) (all units in 105 counts per 

second).  

 

Bt cry1Ac protein quantification 

Transgenic GT B. rapa events and Bt BC2F2 hybrid expressed Bt Cry1Ac protein at 

varying levels from 0.016 to 0.045% of total soluble protein (Fig. 4).  As expected, no Bt 

protein was detected from wild B. rapa and transgenic GFP B. rapa events.  Significantly 

different Bt concentrations were shown among independent GT B. rapa events (ANOVA, 

P<0.05).  Bt BC2F2 hybrid expressed less Bt protein than transgenic GT B. rapa events 

(ANOVA, P<0.05). 

 

Productivity of transgenic B. rapa events under insect pressure 

Estimated herbivory damage by visual assay varied between types of plants (Fig. 5).  

Little herbivory damage was observed on the plants containing Bt transgene, including 

74-GT2 and Bt BC2F2 plants; however non-Bt plants QC2974, 74-GFP3, and BC2F2 had 

significant herbivory damages on leaves (ANOVA, P<0.05).  Herbivory damage was 

observed only in insect applied blocks. 

When the comparison of vegetative productivity was made within a single biotype 

plant, most biotypes had similar vegetative weight in the presence or absence of insect 

pressure (Fig. 6).  Significant difference was detected for vegetative productivity among 

different plant types (ANOVA, P<0.05).  Reproductive productivity within a single plant 

type was significantly different between insect and no insect pressure (ANOVA, P<0.05) 

(Fig. 6).  Wild B. rapa and BC2F2 plants grown under herbivory pressure had a lower  
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Figure 4  Bt cry1Ac protein concentration of transgenic B. rapa events and Bt BC2F2 

hybrid from enzyme-linked immunosorbent assay (ELISA).  Different letters represent 

significant differences between independent transgenic lines (ANOVA, P<0.05).  Error 

bars represent ± standard error of the mean.  
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Figure 5  Herbivory damage of plants used in greenhouse study under diamondback 

moth (DBM) pressure.  Different letters represent significant differences between plant 

types (ANOVA, P<0.05).  Error bars represent ± standard error of the mean. 
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Figure 6  Productivity of transgenic B. rapa events in greenhouse with diamondback 

moth (DBM) pressure.  Five plant types were planted and grown including wild QC2974, 

74-GFP3, 74-GT2, BC2F2, and Bt BC2F2 hybrids. Panel (A) represents vegetative 

productivity, and panel (B) represents reproductive productivity.  Different letters 

represent significant differences between treatments (ANOVA, P<0.05).  Error bars 

represent ± standard error of the mean. 
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reproductive productivity (ANOVA, P<0.05) than those grown under no insect pressure, 

indicating that hybrid status was the main factor in decreased productivity (Halfhill et al. 

2005).  Wild QC2974 produced significantly more seeds than Bt BC2F2 under no insect 

pressure; however, wild QC2974 had similar vegetative weight with Bt BC2F2 under the 

same condition.  

 

Transgenic B. rapa plants productivity under field conditions 

Significant differences for vegetative productivity among different plant types under field 

conditions were observed (ANOVA, P<0.05) (Fig. 7).  As expected, Westar and BnGT1 

had significantly higher plant dry weight than all B. rapa plants and crop-weed hybrids 

(ANOVA, P<0.05).  No significant differences for vegetative productivity between wild 

QC2974 and transgenic B. rapa events were evident (Contrast, P=0.53).  Both Bt BC2F2 

and BC2F2 crop-weed hybrids were not significantly different from wild QC2974 for 

vegetative productivity (Contrast, P=0.2).  No significant difference for reproductive 

productivity was detected between different plant types (ANOVA, P=0.65) (Fig. 7).  

Westar and BnGT1 produced similar number of seeds per plot to wild and transgenic B. 

rapa plants; however, both had significantly higher vegetative dry weight than wild and 

transgenic B. rapa plants. 
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Figure 7  Vegetative and reproductive productivity of transgenic B. rapa events under 

field conditions.  Wild QC2974, 74-GT and GFP events, BC2F2, Bt BC2F2 hybrids, and 

Brassica napus (BnGT1 and non-transgenic B. napus) were planted and grown under 

field conditions with few herbivorous insect pressure.  Panel (A) represents vegetative 

productivity, and panel (B) represents reproductive productivity.  Different letters in 

panel (A) represent significant differences between different plant types (ANOVA, 

P<0.05).  No significant difference for vegetative fitness was detected between different 

plant types (ANOVA, P = 0.65).  Error bars represent ± standard error of the mean. 
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Discussion 

Transformation of weedy B. rapa accessions 

B. rapa, which commonly grows in or near B. napus cultivated areas, is known as 

one of the most recalcitrant members of the Brassica genus to regenerate shoots in vitro 

(Murata and Orton 1987; Narashmhulu and Chopra 1988).  Several B. rapa crop types, 

such as oleifera, chinensis, and pekinensis, have been transformed via Agrobacterium-

mediated methods (Kuvshinov et al. 1999; Wahlroos et al. 2003; Qing et al. 2000; Zhang 

et al. 1998).  This paper describes the first transgenic weedy accessions of B. rapa to 

have been produced and characterized.  Relatively low transformation efficiency of B. 

rapa was reported (i.e. ca. 0.4% efficiency—nearly one-tenth the rate of our typical 

transformation efficiency with B. napus).  Transformation efficiency may have been 

influenced by several factors, including genotype, explant type, donor plant age, and the 

Agrobacterium culture parameters (Poulsen 1996).  Kuvshinov et al. (1999) showed that 

the shoot recovery efficiency of B. rapa spp. oleifera was highly dependent on the tissue 

used as explants.  Another possibility is that wild weedy B. rapa may be recalcitrant to 

transformation in vitro because of its weedy genetic background and the tissue culture 

and transformation conditions have never been optimized for weedy genotypes. 

 

Characterization of transgenic B. rapa events 

Relatively high GFP expression T2 plants were selected by visual assay for 

characterizations.  These selected T2 plants were assumed to be homozygous plants for 

the GFP gene, since homozygous and hemizygous could be differentiated by 

visualization of different GFP intensity in Nicotiana tabacum seedlings (Molinier et al. 
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2000) and B. napus (Halfhill et al. 2003a).  The 74-GFP5 event that was all GFP positive 

in the T1 generation may have multiple transgene integrations that occurred on both 

chromatids of the same chromosome.  Inheritance of GFP and Bt transgenes in T2 

generations of transgenic B. rapa events were confirmed by measurement of GFP 

expression and Bt ELISA analysis.  Many possible factors can account for varying 

intensity of GFP fluorescence, including positional effect of inserted transgene, leaf age, 

or unknown physiological variability (Molinier et al. 2000; Halfhill et al. 2001; Halfhill 

et al. 2003b).  Fluorescence intensity at 508 nm varied among the independent 

transformation B. napus events (Halfhill et al. 2003b).  

Zhu et al. (2004) reported that Bt transgene expression was stable and persistent 

in F1 and subsequent backcrossed B. rapa populations.  Different Bt concentrations of GT 

B. rapa events is likely the result of position effects and number of transgenes inserted.  

Although previous studies in transgenic GT B. napus events strongly associated GFP 

fluorescence intensity with Bt concentration at maturity (Halfhill et al. 2003b), in this 

study no correlation was detected between the GFP fluorescence and Bt concentration in 

transgenic GT B. rapa events.  This discrepancy with previously described transgenic 

events could be a matter of sampling at different plant age, as all our transgenic plants 

were analyzed 24 days after planting.  No correlation between copy number of transgenes 

and GFP fluorescence intensity was observed which contrasts with Stewart et al. (1996) 

for Bt-transgenic B. napus.  Another study by Hobbs et al. (1993) has reported that copy 

number of GUS transgene in tobacco was associated with transgene expression either 

positively or negatively. 
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Toxicity of Bt transgene to diamondback moth (DBM) 

Insecticidal genes such as Bt cry1Ac have been used to genetically engineer many 

agricultural crops (Schuler et al. 1998).  Several Bt crystal protein endotoxins have been 

proven effective in reducing insect damage in crop plants (Hofte and Whiteley 1989).  Bt 

susceptible diamondback moth strain was used in this study, however, several Bt cry1Ac 

resistant diamondback moth strains were developed (Roush 1994; Metz et al. 1995; 

Tabashnik et al. 1993).  Bt transgenic OSR can be effective for management of 

diamondback moth (Ramachandran et al. 1998a,b,c).  However expression of Bt 

transgene in weed populations may increase the difficulty of weed control under insect 

selection pressure.  Transgene escape from crop species into wild weedy populations has 

been observed, and the fitness or productivity of crop-weed hybrid populations caused by 

transgene escape has been studied (Hauser et al. 1998a; Gueritaine et al. 2002; Warwick 

et al. 2003; Mason et al. 2003; Halfhill et al. 2005).  In this study, expression of Bt gene 

in Bt transgenic weedy plants and crop-weed hybrids was effective in limiting damage 

caused by DBM.  We concluded that the protection of the Bt transgene stabilized 

productivity of transgenic B. rapa plants or crop-weed hybrid populations under 

herbivore pressure.  However, it was apparent that as in Halfhill et al. (2005), 

interspecific hybridization was a greater factor affecting productivity than transgenic 

status.  In that prior study, it was noted that one missing plant type that would be useful 

for comparisons was a directly transformed B. rapa that is the subject of this study.  
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Transgenic B. rapa productivity under greenhouse and field conditions 

Seed production from Bt transgenic OSR in plots infested with DBM was 15 

times higher than the non-Bt oilseed rape (Ramachandran et al. 1998c).  However, in our 

greenhouse study, Bt transgenic plants produced about twice as many seeds as the non-

transgenic plants.  This maybe explained by the insufficient number of applied DBM or 

insufficient frequency of DBM application to cause large differences.  In the field trial, 

few herbivorous insects were observed during the experiment.  Crop-weed hybrids, with 

or without the insecticidal transgene, had similar productivity as both directly 

transformed B. rapa and wild B. rapa in the absence of herbivorous insect field 

conditions.  However, crop-weed hybrids containing the Bt transgene have had 

significantly less reproductive productivity than their non-transgenic parents in the 

absence of herbivore pressure (Vacher et al. 2004; Halfhill et al. 2005).  The material 

generated in this study will be valuable in future field experiments for testing the 

influence of insect pressure on productivity in transgenic B. rapa and crop-weed hybrids. 

Directly transformed weedy lines will act as ultimate controls to assess the genetic 

load of crop genes moving into weedy populations.  In the case of the directly 

transformed weed, the transgene of interest lies in the midst of other weedy genes, which 

contrasts with the case of introgressed transgenic weeds.  The latter transgenes are 

surrounded by crop genes (Halfhill et al. 2003a; Stewart et al. 2003).  In the current study, 

the directly transformed weeds had equivalent productivity to the non-transgenic weeds. 

We observed little variation among transgenic B. rapa events for production under mild 

insect pressure, indicating that any might be suitable for comparative field experiments.  
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We will perform advanced field studies with these plants to continue to better define the 

risk that introgression plays in transgenic agriculture.  
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Chapter Three 

 

 

Expression of green fluorescent protein (GFP) in pollen of oilseed rape 

(Brassica napus L.) and direct measurement of pollen dispersal* 

 

 

* This chapter has been submitted to Theoretical and Applied Genetics with authors  

Hong S. Moon, Matthew D. Halfhill, Laura C. Hudson, and C. Neal Stewart, Jr. 

 

 

Abstract 

Transgene movement via pollen is an important parameter for understanding and 

evaluating  possible out-crossing capacities of transgenic crop varieties.  Here, we 

describe the movement of canola (Brassica napus L. cv. Westar) pollen expressing a 

genetically encoded fluorescent tag.  Transgenic canola plants were produced using an 

Agrobacterium-mediated transformation method with the pBINDC1 construct containing 

a green fluorescent protein (GFP) variant, mGFP5-ER, under the control of the pollen-

specific LAT59 promoter.  Transgenic pollen was differentiated from non-transgenic 

pollen in vivo by a unique spectral signature and was shown to be an effective tool to 

monitor pollen movement in proof-of-concept studies in the greenhouse and field.  GFP-

tagged pollen also served as a practical marker to determine the zygosity of plants. In a 
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greenhouse study, more pollen was captured at closer distances from the source plant plot 

with consistent wind generated by fans.  Under field conditions, GFP transgenic pollen 

grains were detected up to a distance of 15 meters. No significant differences were 

detected under field conditions for pollen frequency among distances 0, 5, 10, and 15 m 

from the source plant plot, and no consistent wind effects were detected on the number of 

pollen grains on pollen traps.  No significant differences between transgenic pollen and 

non-transgenic pollen were detected for pollen dispersal under field conditions.   

 

 

Introduction 

Pollen flow is a prominent mode for transgene movement in the environment, and it is 

desirable to track transgene movement under field conditions to assess potential 

ecological risks such as the interspecific hybridization with weedy relatives (e.g. 

Warwick et al. 2003).  The pattern of pollen movement from a transgenic crop variety is a 

direct measure of out-crossing potential to conspecific crops and wild relatives.  To date, 

most gene flow studies have been performed by progeny analysis using conventional 

molecular techniques.  Although these studies reflect actual hybridization events, the 

capacity of the pollen to move within the environment has been measured indirectly, with 

little information on pollination vector (i.e., wind or insect).  We proposed that green 

fluorescent protein (GFP) expressed in pollen grains may be used as a marker to directly 

measure pollen movement within the environment (Hudson et al. 2001), and here we test 

this proposal in an agronomic crop with the propensity for intra-and interspecific 

hybridization: Brassica napus.  
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Oilseed rape (Brassica napus L. AACC 2n=38) transgene flow research under 

field conditions has often been performed using an herbicide tolerance trait as a detection 

method (e.g., Damgaard and Kjellssion 2005) that requires seed collection and progeny 

analysis using a destructive method. Green fluorescent protein (GFP) can replace 

conventional molecular techniques and herbicide resistant markers as a real-time in vivo 

marker for the presence and expression of transgenes (Stewart 1996, 2001, 2005).  Using 

GFP expressed in vegetative tissues under the control of the CaMV 35S promoter, 

transgene flow has been assessed in transgenic oilseed rape using progeny analysis 

(Halfhill et al. 2001); however, GFP was not expressed in the pollen.  A system including 

pollen tagged with GFP could be used in monitoring transgene movement to better 

understand pollen distribution biology.  The tomato LAT59 promoter (Twell et al. 1991), 

which is preferentially expressed in the anthers and pollen of tomato, was effectively 

used to express GFP in tobacco pollen (Hudson et al. 2001).  Using pollen traps to 

measure pollen movement from transgenic varieties has been considered an inappropriate 

technique because it is almost impossible to distinguish from one variety of pollen from 

another (Wang et al. 2004).  GFP-tagged pollen may allow researchers to distinguish 

between the pollen of transgenic and non-transgenic plants within the same species in 

relatively complex environmental mixtures.  

Oilseed rape is an appropriate crop for the study of transgene escape or 

movement, since it has many wild relatives such as birdseed rape (Brassica rapa L.) 

which occurs as weed populations in or near canola cultivation areas and has an 

overlapping flowering period (Simard et al. 2002; Halfhill et al. 2002; Chevre et al. 2003).  

Oilseed rape is a partially self-fertilizing species, at rates ranging from 53-88% 
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depending on cultivar and environmental conditions (Becker et al. 1992).  Approximately 

half of oilseed rape pollen grains, which are heavy and sticky, have been found to fall 

onto plant surfaces and the ground within 3 m from the source plant (Lavigne et al. 1998).  

A small percentage of oilseed rape pollen becomes airborne and can move via the wind 

(Lavigne et al. 1998).  In addition, insect pollinators, especially bees, can transmit oilseed 

rape pollen for long distances. Pollen dispersal of oilseed rape up to 3 km has been 

reported (Rieger et al. 2002). 

In this study, we describe the generation of transgenic oilseed rape lines that 

express GFP in pollen grains, and demonstrate that GFP pollen dispersal patterns can be 

detected under greenhouse and field conditions.  GFP fluorescence in pollen grains also 

allowed the determination of the zygosity of transgenic oilseed rape plants by the 

segregation of GFP-tagged pollen and inferring the parent’s zygosity status.  The LAT59 

promoter coupled to GFP may serve as a practical marker to track pollen movement 

directly for risk assessment research. 

 

 

Materials and Methods 

Plant transformation  

Plant transformation and regeneration methods were based on an existing protocol 

(Stewart et al. 1996).  Plant transformation was carried out with oilseed rape (B. napus L. 

cv. Westar).  The pBINDC1 construct (described in Hudson et al. 2001) that contains the 

mGFP5-ER variant under the control of the LAT59 pollen specific promoter was used for 

Agrobacterium-mediated transformation.  All cultures were maintained at 24±2ºC under a 
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16/8hr (light/dark) photoperiod.  The recovered number of explants, shoots, rooted shoots, 

and fertile plants were recorded.  Transformed oilseed rape events with the pBINDC1 

plasmid were designated as LH B. napus.   

 

Zygosity determination  

Twenty-six T1 transgenic seeds from the transformed oilseed rape event 1 (LH1) were 

planted and grown in the greenhouse.  Five flowers were collected separately from each 

individual T1 LH1 plant to assay pollen.  Collected flowers were tapped by hand on clean 

microscope slides (Fisher Scientific, Pittsburgh, PA, USA) to collect the pollen.  

Collected pollen from each individual plant was observed using an epifluorescent (FITC 

filtered) microscope (Olympus BX51 model) with blue light excitation at 200x 

magnification to score pollen for GFP and infer zygosity status of the parent.  The pollen 

population was inferred to come from homozygous, hemizygous, or non-transgenic 

isogenic lines for the GFP transgene based upon Mendelian expectations and 

observations. 

 

Greenhouse experiment 

A greenhouse experiment was conducted in the Racheff research greenhouse at the 

University of Tennessee at Knoxville, USA.  Homozygous LH1 and Westar were planted 

in 4 L pots and placed alternately. In total there were 15 transgenic and 15 non-transgenic 

plants in the experiment. The LH1 and Westar plants were set up in the greenhouse with 

a fan to generate air currents (Aloha 30” Pedestal fan).  Pollen dispersion was measured 

when each individual plant had more than 30 open flowers.  Pollen traps were 
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constructed by covering microscope slides with petroleum jelly and attaching them to 

wooden stakes with twist ties.  The slides were attached to wooden stakes at 1 m from the 

greenhouse floor.  Pollen traps were placed at 2, 4, 6, 8, 10, and 12 m from the source 

plants.  Wind speed was measured at each distance using a portable wind meter using the 

‘Avg10’ function, which allowed the measurement of average wind speed for 10 seconds 

(Skymate, Speedtech Instruments, Great Falls, VA, USA).  New pollen traps were placed 

at 9:00 am in the morning and collected at 5:00 pm within the same day.  Pollen 

collection was conducted for 3 consecutive days.  Collected pollen traps were assessed 

under an epifluorescent microscope with blue light.  The number of LH1 and Westar 

pollen grains in each pollen trap was recorded. 

 

Field experiment 

A field experiment was performed at the Knoxville Experiment Station, Knoxville, TN, 

USA (35°58’N, 83°55’W) in the spring of 2005.  The array of plots was based on 

Saeglitz et al. (2000) (Fig. 1).  Each center quadrant was 3 m2 and contained 150 plants. 

Methods used in the field experiment for the construction of pollen traps were the same 

as described in the greenhouse study.  Pollen traps were placed in different directions (N, 

S, E, W, NW, SW, NE, SE) at distances of 0, 5, 10, 15 m from the center plant source 

plot.  Fresh pollen traps were placed at 8:30 am and collected at 5:30 pm within the same 

day.  Pollen traps were collected for 4 consecutive days.  Wind direction and speed were 

acquired from the wind information recorder located at the Knoxville Experiment Station.  

Collected pollen traps were screened under an epifluorescent microscope with blue light  
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Figure 1  Field design consisted of a central plot split into 4 quadrants.  Two quadrants 

contained LH1 and the remaining two contained Westar.  Pollen traps were placed in 

different directions (N, S, E, W, NW, SW, NE, SE) at distances of 0, 5, 10, 15 m from the 

center of the source plant plot. 
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at 200x magnification.  The numbers of LH1 and Westar pollen grains were recorded in 

each pollen trap.  

 

 

Results 

Plant transformation  

Two LH B. napus events were regenerated from separate callus sectors using the 

Agrobacterium-mediated transformation method.  Out of 1,024 explants, 7 shoots were 

recovered.  From these recovered shoots, 3 formed roots.  Two rooted T0 plants produced 

T1 seeds and the T1 generation plants were phenotypically identical to Westar by visual 

inspection.   

 

Zygosity determination 

The zygosity of plants was determined based on the GFP pollen to non-GFP pollen ratio 

under epifluorescent microscopy using a FITC filter set.  T1 generation seeds from self-

pollinations were germinated, and these plants were categorized as homozygous, 

hemizygous, and isogenic lines for the transgene according to the frequency of GFP 

expression in the pollen (Fig. 2). Both transgenic events apparently harbored transgenes 

in single loci based upon pollen segregation.  Homozygous T1 plants had all transgenic 

pollen and hemizygous plants had 50% transgenic pollen as was observed in single-locus 

tobacco transgenic for the same construct (Hudson et al. 2001). 
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Figure 2  Determination of zygosity based on green fluorescent pollen.  Pollen of T1 LH1 

and Westar. (A), (B), and (C) represent pollen of homozygous, hemizygous, and isogenic 

LH1 respectively.  (D) represents Westar pollen.  These pictures were taken under white 

light (left column) and blue light (right column) with exposure times of 16.7 ms and 1.54 

s respectively with 200x magnification. 
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Greenhouse experiment 

Pollen grains detected in the pollen traps were categorized into GFP-tagged transgenic 

and non-transgenic pollen.  Ninety-two GFP-tagged pollen grains were detected at 2 m 

from the source plants on each of  3 consecutive days.  GFP-tagged pollen grains were 

distinguished from non-transgenic pollen grains using blue light under the 

epifluorescence microscope.  Pollen traps placed at closer distances to the center source 

plants trapped more pollen from both LH1 and Westar (Table 1).  LH1 pollen traveled up 

to 10 m from the source plants; however wind from the fan was not detected at the 10 m 

distance.  Westar pollen was detected at a distance of 8 m from the source plot on the 

second day. 

 

Field experiment 

Over 4 consecutive days, 417 LH1 pollen grains and 583 non-transgenic Westar pollen 

grains were detected.  Collected pollen traps were screened and LH1 pollen grains were 

identified by visual assay of GFP fluorescence under an epifluorescent microscope with 

blue light.  GFP-tagged pollen grains were distinguished from non-transgenic pollen 

grains by GFP fluorescence.  No significant difference was detected for the number of 

pollen grains per trap on average between LH1 and Westar (ANOVA, P=0.34).  The 

number of pollen grains collected on traps from LH1 and Westar in each direction on 

each day varied; however, no significant difference was observed between the number of 

pollen grains collected for each distance (ANOVA, P=0.26) (Fig. 3).  Significant 

differences were shown for the number of pollen grains per trap among different 

directions (ANOVA, P<0.05) (Fig. 4).  No consistent effect of wind direction or wind 
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Table 1  Number of pollen grains collected from LH1 and Westar under greenhouse 

conditions.  Distance refers to meters from the source plants to pollen traps.  Experiment 

was performed for 3 consecutive days.  Detected pollen was screened and counted under 

epifluorescent microscope with blue light. 

1st day 2nd day 3rd day Distance 
(m) 

Wind 
speed 
(m/s) Westar 

pollen 
LH1 

pollen 
Westar 
pollen 

LH1 
pollen 

Westar 
pollen 

LH1 
pollen 

2 0.76 99 58 85 4 0 30 

4 0.58 78 0 1 0 0 0 

6 0.36 9 0 0 0 0 0 

8 0.18 0 6 12 0 0 1 

10 0 0 0 0 1 0 0 

12 0 0 0 0 0 0 0 
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Figure 3  Average number of pollen grains detected per day at each distance under field 

conditions.  Distance indicates the distance from the center of the source plant plot. 

Standard errors of the mean are shown.  No significant difference was detected among 

distances (ANOVA, P=0.26). 
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Figure 4  Average number of pollen grains collected in different directions under field 

conditions.  Central indicates the average number of pollen grains collected in 2 pollen 

traps at the center of the plot.  The remaining directions represent the number of pollen 

grains collected on average of 3 pollen traps at 5, 10, and 15 m.  Standard errors of the 

mean are shown. Different letters represent significant differences for the number of 

pollen grains between directions (ANOVA, Fisher’s LSD, P<0.05). 
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speed for number of pollen was detected (Fig. 5).  On day 1, most wind blew toward the 

west direction and speed ranged from 0.29 to 5.16 m/s, however, no pollen grains were 

detected on pollen traps placed west from the center plot.  On day 3, most wind blew 

between northeast and southeast, and pollen traps placed east from the source plot caught 

more than 10 pollen grains on average per trap. 

 

 

Discussion 

Transgenic plants have been used as an effective tool to quantify gene flow (Messeguer 

2003).  Among marker genes used in previous transgenic research, GFP is among the 

most suitable in vivo markers to track transgene movement via pollen for the purpose of 

risk assessment purpose and to study reproductive biology. GFP transgene is a neutral 

reporter gene and non-toxic to plants, making it especially useful for studying the 

development of functional pollen (Harper et al. 1999; Stewart 2001; Ottenschlager et al. 

1999; Hudson and Stewart 2004).  In tobacco (Nicotiana tabacum), when GFP is 

expressed under the control of the pollen- specific LAT59 promoter, pollen fitness and 

tube germination frequencies were not different from pollen of non-transgenic plants 

(Hudson and Stewart 2004).  The LAT59 promoter coupled with the GUS gene in plant 

showed high GUS expression in pollen but low level of GUS expression in roots and 

seeds (Twell et al. 1990).  GFP-tagged pollen provides an efficient method to 

differentiate between transgenic and non-transgenic pollen from the same species 

(Hudson et al. 2001).  
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Figure 5  Number of pollen grains collected under field conditions and wind information. 

Pollen grains were collected in each direction on each day with wind direction and speed 

measured every hour from 9:00 am to 5:00 pm.  (a), (b), (c), and (d) represent wind 

direction and speed measured at every hour and average number of pollen grains 

collected from pollen traps for each direction.  (a), (b), (c), and (d) represent day 1, day 2, 

day 3, and day 4 respectively.  Standard errors of the mean are shown. 
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Determining the transgene zygosity status of individual plants is important in 

plant breeding, and GFP-expressing pollen may be another tool to enable this process.  

Zygosity in transgenic plants can be visualized based on difference in the intensity of 

GFP fluorescence when driven by the constitutive 35S CaMV promoter (Molinier et al. 

2000; Halfhill et al. 2003b).  Also, zygosity in transgenic plants can be analyzed by real-

time PCR (German et al. 2003; Bubner and Baldwin 2004).  The method using the 

LAT59::GFP construct was shown here to be an efficient method for determination of 

zygosity in transgenic plants.  Our GFP-tagged pollen method requires relatively little 

time to prepare the samples and is a rapid, reagent-free alternative to other methods such 

as real-time PCR. 

Agrobacterium-mediated transformation has been the most common method of 

gene transfer in oilseed rape (DeBlock et al. 1989).  Relatively low transformation 

efficiency (0.16%) was shown from oilseed rape transformation with the pBINDC1 

construct, because transformation efficiency may have been influenced by several factors 

such as cultivar, donor plant age, explant type, experimental conditions, and the 

Agrobacterium culture parameters (Poulsen 1996).  

Oilseed rape normally produces an abundant amount of pollen for approximately 

4-5 weeks (Damgaard and Kjellsson 2005).  The majority of the pollen is dispersed over 

a short distance (Lavigne et al. 1998).  In commercial oilseed rape fields, cross-

pollination occurred at higher frequencies at short distances from the source field (Rieger 

et al. 2002).  The greenhouse pollen dispersal study is important because several factors 

that can have an effect on pollen movement such as wind speed and direction could be 

controlled and kept consistent during the experimental process.  In the greenhouse study, 
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more pollen was detected at shorter distances from the pollen source plants.  Scheffler et 

al. (1993) estimated the frequency of oilseed rape pollen dispersal to be approximately 4 

times higher at a distance of 1 m than at 3 m from the transgenic pollen source when 

surrounded by non-transgenic plants acting as recipients at varying distances.  However, 

in our study, no significant differences in the number of pollen grains were found in the 

traps at different distances (0, 5, 10, and 15 m) from the source plant plot under field 

conditions.  The estimation of pollen frequency by Scheffler et al. (1993) may be 

explained by the close proximity of non-trasngenic plants to the pollen source plot 

creating a buffer zone and then preventing the spread of transgenic pollen to greater 

distances. 

Wind direction and number of pollen grains were not correlated.  Four days 

might not be a sufficient period to prove a correlation between wind directions and pollen 

flow.  Wind direction and speed were recorded every hour from 9:00 am to 5:00 pm, so 

wind direction and speed were not known between the hourly measurements.  In future 

studies, continuous measuring of wind direction and speed may be required to detect a 

correlation between number of pollen grains and either wind direction or wind speed.  

Also, larger experimental plots generating larger pollen clouds would provide more 

realistic dispersal patterns and may allow for the upper limit of pollen flight to be 

detected experimentally.  

Other constitutive promoters, such as the maize Adh1 promoter, which have 

shown activity in root, shoot meristems, and pollen (Kyozuka et al. 1991) could be 

potential candidates for future risk assessment studies in monocots. There are no 

promoters that regulate strong constitutive expression to that degree in dicots.  In this 
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study, GFP under the control of the LAT59 promoter allowed pollen to be distinguishable 

from the same species based the GFP expression in the pollen.  Experimental 

improvements are also possible to enhance the ability to detect pollen movement via 

fluorescence. For example, GFP might not be the optimal fluorescent protein to tag 

pollen because of autofluorescence in blue light (Stewart 2005). Other fluorescent 

proteins such as a red fluorescent protein (RFP) might be good markers for expression in 

plants (Eckert et al. 2005; Stewart 2005) including pollen grains having different colors 

from non-transgenic pollen of oilseed rape.  Also, new technology such as laser-induced 

fluorescence spectroscopy (Stewart et al. 2005) that allows visualization of GFP in 

ambient light may be a more efficient tool to detect GFP-tagged pollen movement.  GFP-

tagged pollen may be an efficient tool to directly track transgene movement via pollen in 

real-time for the purpose of risk assessment in ecological studies. 
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