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Abstract 

Whitebark pme (Pinus albicaulis) is a long-lived tree species that exists 

throughout high elevation forest communities of western North America. It is the 

foundation of a diminishing ecosystem that supports Clark's nutcrackers, red squirrels, 

grizzly bears, and black bears. The decline of this species is directly related to mortality 

from widespread mountain pine beetle outbreaks and infestation by the invasive white 

pine blister rust, and may be exacerbated by fire suppression. Prescribed fire will be a 

primary management tool in efforts to preserve whitebark pine on the landscape. My 

research used dendrochronology to investigate the fire history of whitebark pine stands 

on three mountains in the Lolo National Forest, Montana, via fire-scar and age structure 

analyses. I then used these data to assess the USDA Fire Regime Condition Classification 

(FRCC) fire regime types for my sites. Additionally, I utilized traditional superposed 

epoch analysis techniques in a novel manner to develop a multi-decadal superposed 

epoch analysis for fire-climate and fire-tree establishment analyses. I sampled between 40 

and 50 fire-scarred trees, snags, and remnants, and collected age structure data in two 0.5 

ha plots at each site. Samples at all sites recorded a frost event in AD 160 I related to 

southern hemisphere volcanic activity. The fire-history and stand-structure data indicate 

all three sites were characterized by mixed-severity fire regimes and generally agreed 

with the FRCC classifications. However, fires occurred with greater frequency than 

previously found in whitebark pine forests and distinct differences existed between the 

fire regimes of each of the three sites that are likely related to topography, forest cover, 

and climate conditions. A period of widespread fire activity at all three sites occurred 

from the mid- l 700s to the early 1800s and may be the expression of interactions between 
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several climate variables. Fire suppression led to a decline in fire activity in the 1900s, 

but subalpine fir trees began establishing between 300 and 140 years ago at all three sites. 

This suggests fire suppression may not be responsible for the advance9 succession found 

in these whitebark pine forests and management decisions based on that assumption are 

inappropriate for these sites. In addition, the spatial and temporal variability in fire 

activity between these sites requires a refinement in the Fire Regime Condition 

Classification methods if they are to be used for managing whitebark pine forests. 

Keywords: Whitebark pine, Pinus albicaulis, fire history, dendrochronology, age 
structure, subalpine, MDSEA, mixed-severity, fire regime, FRCC, 1601, climate, Lolo 
National Forest, Montana, N orthem Rocky Mountains. 
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Chapter One 

1. Fire, Ecosystems, and Land Management in the Western United States 

1.1 Introduction 

Fire plays a major role in shaping nearly every forest ecosystem in North 

America. This includes the vast tracts of yellow pine that stretch from the American 

Southwest (Dieterich 1983, Baisan and Swetnam 1990, Grissino-Mayer et al. 2004) up 

through the Columbia Plateau (DeBano et al. 1998, Heyerdahl et al. 2002), the coastal 

rainforests of California and the Pacific Northwest (Morrison and Swanson 1990, Agee 

1993, Brown and Swetnam 1994), the pine and oak forests of the East and Midwest 

(Clark and Royal 1996, Shumway et al. 2001, Welch and Waldrop 2001), the boreal 

forests of Alaska and Canada (Dansereau and Bergeron 1993, Lesieur et al. 2002), and 

the diverse forest systems of the Rocky Mountain cordillera (Arno 1980, Wright and 

Bailey 1982, Goldblum and Veblen 1992, Sherriff et al. 2001 ). The historical fire 

regimes of these ecosystems varied widely across the landscape, from frequent surface 

fires in the American Southwest that recurred on 2- to 15-yr intervals (Dieterich 1983, 

Grissino-Mayer 1995, Swetnam and Baisan 1996), to the infrequent, stand-replacing fires 

that burned across thousands of hectares in the northern boreal forests at intervals of 150 

years or more (Viereck 1973, Johnson 1992). 

Over the past century, many of these ecosystems that historically experienced a 

frequent fire regime have undergone extraordinary changes in species composition and 

forest structure. The current paradigm, born out of the American Southwest, is that 100 

years of fire suppression have allowed forests to become increasingly dense while 

advancing successionally toward shade-tolerant, fire-intolerant species, decreasing forest 



health while increasing susceptibility to high-severity, stand-destroying fires (Cooper 

1960, Gruell 1983 , Covington and Moore 1994, Steele 1994). These ecological changes 

are documented in ponderosa pine (Pinus ponderosa Douglas ex. C. Lawson) forests of 

the Four Comers region (Cooper 1960, Covington and Moore 1994), the Colorado Front 

Range (Mast et al. 1998), and eastern Oregon and Washington (Weaver 196 1 ,  West 

1969, McNeil and Zobel 1980, Bork 1984), and many believe that the severe fire seasons 

of the 1990s and 2000s were a result of these changes (Arno 1996, Keane et al. 2002). 

As with many environmental processes, some uncertainty surrounds the 

relationship between anthropogenic activity (i.e. fire suppression) and fire regimes. 

Research in some forest systems suggests that the effects of fire suppression are not 

pervasive on the landscape and that some modem fire regimes are still operating within 

their historical range of variability (Baker and Ehle 2001 ,  Johnson et al. 2001 ,  Sherriff et 

al. 2001 ,  Veblen 2003 ). Additionally, research is increasingly implicating regional- and 

hemispheric-scale climate variability as a significant driver that affects the timing and 

extent of fires throughout the West (Swetnam and Betancourt 1990, 1998, Grissino

Mayer and Swetnam 2000, Kitzberger et al. 2001 ,  Heyerdahl et al. 2002, Veblen and 

Kitzberger 2002), including in modem fire regimes (Wester ling and Swetnam 2004). The 

situation is further complicated by the relatively unknown impacts of extensive landscape 

level changes, such as forest fragmentation and the expansion of the urban-wildland 

interface (Reed et al. 1996, Tinker et al. 1998, Knight et al. 2000). 

In this climate of uncertainty, land management agencies are being spurred by 

both public and private interests to implement management practices that restore the 

ecological health of these systems while protecting human life and property (Teensma 
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1996, Brown 2000). The response to these pressures has been a shift toward ecosystem 

management throughout the federal system (Brown 1994, Arno 1996, Brown 2001 ). The 

difficulties now faced by land managers stem from incomplete understandings of the 

ecosystems being managed, while a growing sense of urgency surrounds many forest 

communities at risk of severe and rapid decline. 

1.2 Objectives of the Thesis 

My thesis research investigates the role of fire in whitebark pine forests on three 

mountains in the Lolo National Forest, western Montana. My objectives are to: 

• Reconstruct the fire history and age structure of whitebark pine forests on 

three mountains in the Lolo National Forest, western Montana. 

• Describe the historical fire regimes of these forests in terms of the 

frequency, severity, and seasonality of past fires. 

• Determine whether distinct spatial and/or temporal patterns exist in the 

fire regimes of these forests locally, at the individual site level, and 

regionally, by comparing and contrasting the sites with each other. 

• Describe the fire-tree establishment and fire-tree growth relationships that 

exist in these forests. 

• Describe the fire-climate relationships for my sites. 

• Use my results as a framework to examine the current management of 

whitebark pine in the Lolo National Forest. 

3 



1.3 Organization of the Thesis 

This thesis consists of seven chapters written in response to a pressing need to 

understand the fire ecology of the whitebark pine (Pinus albicaulis Engelm.) ecosystem. 

In Chapter One, I introduce my thesis research with an overview of the ecology and 

management of fire in forest systems of western North America, focusing specifically on 

the Northern Rocky Mountains. I then describe the biogeography, fire ecology, and 

significance of whitebark pine and the community it supports, addressing the current 

management provisions for the species and the research needed to better understand this 

at-risk ecosystem. I introduce my primary method of investigation for my thesis research, 

dendrochronology, and then conclude Chapter One with a list of my research objectives. 

Chapter Two provides a comprehensive review of the literature on the fire 

ecology of whitebark pine and the dendroecological research focused on this species. 

Chapter Three describes the general setting of my research in the Lolo National Forest, 

including the flora, climate, geology, and land-use history of the region. I briefly review 

the current Lolo National Forest Plan in terms of managing both fire and whitebark pine, 

and then describe my three study sites within the Lolo National Forest. 

Chapter Four outlines the field and laboratory methods I used to collect and 

process my data, and the statistical methods I employed in my analyses. Chapter Five 

presents the results of my research. In Chapter Six, I discuss the significance of my 

research and its implications for the current paradigm of the role of fire in whitebark pine 

communities. I also use my results as a framework to analyze current management 

strategies relevant to whitebark pine forests. Chapter Seven contains my concluding 

remarks and suggestions for future research in the whitebark pine ecosystem. 
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1.4 Forest Types and Fire Ecology of the Northern Rocky Mountains 

Fire is the dominant disturbance throughout the Northern Rocky Mountains (Amo 

1980, Gruell 1983 , Alexander 1988, Amo and Allison-Bunnell 2002), and while the role 

of fire among different forest types varies, its effects are evident across the landscape 

(Fischer and Bradley 1987). The historical fire regimes of this region were products of 

climate, topography, forest type, and disturbance history (Amo 1980, Ryan 2002, 

Bassman et al. 2003 , Schoennagel et al. 2004), with Native American activity 

augmenting fire regimes and affecting vegetation patterns on a local to landscape scale 

(Barrett and Arno 1982, Amo 1985). Lightning storms are quite common during the mid

and late- summer months and provide the main ignition source for wildfires in the 

Northern Rockies (Barrows 1977, USFS 1986). The fire season in the Northern Rockies 

typically begins in July as precipitation decreases and convective thunderstorms become 

more common, and continues until precipitation increases in late September and early 

October (Brown et al. 1994 ). 

Historically, surface fires occurred throughout the lower elevations of the region 

at intervals of 15-30 years (Habeck and Mutch 1973 ,  Tande 1979). These fires 

maintained grass meadows and open stands of ponderosa pine in the valley bottoms and 

on the driest sites, shifting to mixed ponderosa pine-Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco) forests on the surrounding slopes (Pfister et al. 1977, Arno 1980, Habeck 

1987). Douglas-fir and western larch (Larix occidentalis Nutt.) make up a large 

component of stands on moister sites (Alexander 1988, Peet 1988) where mean fire-free 

intervals (MFI) ranged from 20-50 years (Arno 1980, Amo et al. 1997). 
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The forest communities of the middle elevations are dominated by nearly pure 

stands of Rocky Mountain lodgepole pine (P. contorta Douglas ex Loudon var. latifolia 

Engelm. in Watson) that blend with the ponderosa pine-Douglas-fir series at their lower 

limit and subalpine series at their upper limit (Alexander 1988, Peet 1988). These 

communities experienced a wide range of fire regimes, including relatively frequent (MFI 

of 25-50 years), mixed-severity fires on drier sites (Tande 1979), less frequent (MFI of 

approximately 150 years), higher-severity fire regimes on more moist sites (Barrett et al. 

1991), and high-severity, stand-replacing fires at intervals of 250+ years on harsh, high

elevation sites (Romme 1982). Evidence of large-scale stand-replacing fire events exists 

throughout all of the lodgepole-pine-dominated forest types in the region (Arno 1980). 

High-elevation forests that extend from the upper limits of the lodgepole pine 

zone to the treeline constitute the widest ranging forest types in much of the Northern 

Rockies (Pfister et al. 1977). These communities are composed of subalpine fir (Abies 

lasiocarpa (Hook.) Nutt.), Engelmann spruce (Picea engelmannii Parry ex Engelm. ), and 

whitebark pine, with occasional seral communities of lodgepole pine, Douglas-fir, 

western larch, and alpine larch (La.rix lyallii Parl.; Peet 1988). The fire regimes of these 

forest types are generally thought to be composed of high-severity, stand-replacing fires 

at MFI of 100-400+ years (Agee 1993). These fires are often spotty and erratic in 

behavior due to the role of weather in fire activity in this region (Bessie and Johnson 

1995), and create mosaics of single-age stands on the landscape (Tande 1979, Bebi et al. 

2003). One subalpine forest type that may be an exception to this dominant fire regime is 

the white bark pine community. The fire regime of white bark pine forests has recently 

been characterized as mixed-severity (Amo et al. 2000), and research shows fire may 
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occur much more frequently m these forests than m other subalpine communities 

(Morgan and Bunting 1990). 

1.5 Fire Management in the Northern Rocky Mountains and Western United 

States 

1.5.1 Early History and the Fires of 1910 

Fire management in the Northern Rocky Mountains began in the 1800s. Early 

Euro-American pioneers used fire extensively to clear and maintain pastures for cattle , 

and as mineral exploration spread across the region, fires were used to clear the land in 

preparation for mining activity (Smith 1992). As the pioneer era closed, large-scale 

logging operations spread across the region. In the economy of timber, fire was viewed as 

a destructive force, and by the late 1800s fire suppression was the dominant management 

strategy throughout the region (Kotok 1930). Initial fire suppression efforts were largely 

ineffective in the Northern Rocky Mountains. The complex terrain made vast tracts of 

land nearly inaccessible except by foot or by horse, and the number of ignitions during 

summer thunderstorms often overwhelmed the available fire fighting resources. Yet by 

the early 1900s, fire suppression techniques had matured to the point where a general 

sense of confidence was felt throughout the fledgling USDA Forest Service (Pyne 1982). 

The defming moment for fire management in the Northern Rocky Mountains and 

the nation as a whole came during the fire season of 19 10. The year 1910 was one of 

severe droughts across North America, and steady winds parched millions of hectares 

creating a virtual tinderbox throughout the West (Amo and Allison-Bunnell 2002). The 

fire season began in late summer, with lightning storms igniting hundreds of fires in 

7 



California, Oregon, Washington, Idaho, Montana, and Wyoming, overwhelming 

suppression efforts by the USDA Forest Service (Pyne 2002). The most severe of these 

fire complexes was labeled "The Big Blowup," which, fanned by gale winds, burned 

nearly 1.2 million hectares across western Montana and Idaho over the course of two 

days, incinerating several communities and killing 85 people (Davis 1959). As the fall 

rains brought the fire season to a close, national reactions to the catastrophe initiated a 

massive restructuring of fire management in the United States (Pyne 2002). 

1.5.2 The Era of Total Fire Suppression 

In the post-1910 setting, the approach to fire suppression took on the air of 

warfare, with almost exclusive control given to the USDA Forest Service (Pyne 1982). 

An attitude of total fire suppression, coupled with the development of the automobile, 

improved the effectiveness of fire suppression efforts following World War I, but forest 

access was still limited, and significant improvements in the efficacy of fire suppression 

did not arise until the New Deal and Civilian Conservation Corps era of the 1930s (van 

Wagtendonk 1991 ). During this period, extensive road and trail projects increased access 

throughout the nation's forests, allowing Forest Service personnel to rapidly attack and 

suppress wildfires. Following World War II, the use of aircraft for spotting and 

suppressing fires led to additional improvements in suppression effectiveness (van 

Wagtendonk 1991 ). The establishment of the Smoke Jumper program in 1940 in the 

Northern Rocky Mountain region (USFS 1968) facilitated the rapid attack of fires even in 

remote wilderness areas. The increasing success with which wildfires were controlled and 

extinguished led to a nearly annual decrease in the number of hectares burned and human 
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lives lost, yet with this success a century of dramatic ecological change was set in 

motion. 

1.5.3 Wildland Fire Management Guidelines and Ecosystem Management 

Widespread fires in 1967 burned 36,000 hectares in the Northern Rocky 

Mountains and brought fire management under renewed scrutiny. Research was 

beginning to illustrate the ecological impacts of fire suppression (Weaver 1959, Cooper 

1960), and with the social backdrop of the environmental movement, a growing number 

of land managers began to explore the use of fire in the management of ecosystems that 

seemed to be growing increasingly out of balance (van Wagtendonk 1991). In 1970, the 

Society of American Foresters created a task force to examine the role of fire in the 

Northern Rocky Mountains. The committee reported that fire could not be excluded from 

this region and suggested that fire could be used to advance and maintain productive and 

healthy forest conditions (Wellner 1970). Following this report, the use of prescribed fire 

gained increasing support across the nation, and especially in the N orthem Rockies (Pyne 

1982). 

In 1986, the national government issued the Wildland Fire Management 

Guidelines, which explicitly outlined the importance of fires in forest ecology and 

management, and described the procedures and standards to follow when attempting to 

manage both prescribed and naturally occurring fires on public lands (NPS 1986). The 

changes outlined by this policy increased the ecological considerations of forest 

management plans, but changes in the field were slow to materialize and the inertia of 

past fire suppression would prove difficult to rein in. A lull in severe fire activity during 
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the 1970s and 1980s was broken and the increasingly volatile condition of forests 

throughout western North America finally gained widespread public attention in the late 

1980s. The conflagration that erupted in Yellowstone National Park in 1988 captured the 

nation's interest (Lauber 1991  ), and even though these fires likely functioned within what 

most researchers consider normal for this fire regime (Romme and Despain 1989), the 

event focused media attention on the state of the environment and gave leverage to 

proponents of a more proactive fire management plan for public lands. The Wildland Fire 

Management Guidelines were opened to scrutiny and rewritten, renewing pressure on the 

USDA Forest Service to expand the use of prescribed fire and mechanical thinning to 

mimic historical disturbances in the absence of wildfires (Attiwill 1994). Yet even as land 

managers attempted to address the ecological concerns of the nation's forests, it quickly 

became evident that the Yellowstone Fire of 1988 was simply a harbinger of what was to 

come. 

1.5.4 The National Fire Plan: A Federal Fire Policy 

The 1990s and early 2000s saw a dramatic increase in the scale and intensity of 

wildfire activity in the Northern Rockies and across the western states of North America. 

Large wildfires continued to grow more common and widespread over this period as six 

of the 10 most severe fire seasons in the nation's history occurred over a 10-year span 

(Figure 1 . 1 ;  NIFC 2005). Economic losses skyrocketed over this time as suppression and 

firefighting costs reached record levels among federal agencies. Extensive media 

coverage brought attention to the situation, raising public concern and increasing pressure 

on politicians to act. As in 1988, the catalyst for action came in the flames of 1994, 
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Figure 1.1 Wildland fire statistics for the United States. Data for the total area burned 
across the nation include the years 1960-2004, and total fire suppression costs (in 
constant dollars) are available for the years 1994-2002 (NIFC 2005). 
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during which over 1.9 million hectares burned, nearly $850 million were spent on fire 

fighting activities, and 36 wildland fire fighters lost their lives (NWCD 1995). The 

following year, the 1986 Wildland Fire Management Guidelines were replaced by the 

1995 Federal Wildland Fire Management Policy (NWCD 1995). 

The new wildfire policy was a comprehensive plan founded on greater ecological 

understanding of the role of fire in forest systems and produced by a collaborative effort 

between the Department of the Interior and the Department of Agriculture. The document 

stressed the need for a cohesive ''umbrella" federal fire policy to enhance the 

effectiveness and efficiency of the numerous agencies affected by wildfires, and to 

encourage the involvement of tribal and state governments in fire management (NWCD 

1995). The plan emphasized proactive fire management through fuels treatments and 

prescribed burning, and under the new policy, management plans were to be developed 

using the "best available science" for "all areas subject to wildland fire," with risk 

assessments preceding all fire management decisions (NWCD 1995). 

The 1995 Federal Wildland Fire Management Policy was implemented in 

February of that year, and was followed by a relatively short and calm fire season. The 

following year, however, again brought wildfires to the forefront of the public eye as 

explosive fires burned 2. 7 million hectares across the United States. While fewer total 

hectares burned in 1997 and 1998, wildland fires continued to become more severe and 

dangerous to fight (NWCD 2001 ). The decade of the 1990s ended with fires consuming 

over 2.3 million hectares in 1999, with over half a billion dollars spent on fire fighting. 

The year 2000 followed with the most severe fire season in over 50 years, burning more 

than 3 .4 million hectares, costing billions of dollars in economic losses and insurance 
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claims, a record $ 1.6 billion dollars spent on fire fighting, and over 30 lives lost (NIFC 

2005). 

The severe fire seasons of 1999 and 2000 kept the issue of wildland fire in the 

news, and dramatic stories and images flooded the media. One event in particular drew 

heavy public criticism. In May 2000, an escaped prescribed burn in New Mexico grew 

into the 19,500 hectare Cerro Grande Fire, destroying 405 homes and creating a potential 

breach in national security at the Los Alamos National Laboratory (GAO 2000). The 

event spurred a great amount of concern over the planning and implementation of fire 

management and fuels treatment under the 1995 Federal Wildland Fire Management 

Policy, and was a significant factor in prompting additional fire policy reforms (Brown 

2001 ). 

The first initiative on fire policy taken in the new millennium occurred at the tail 

end of the record fire year of 2000, when President Clinton called for a review of the 

1995 fire plan to bring it up to date with the most recent science and technology. The 

review, conducted by the Department of the Interior and the Department of Agriculture, 

added language of ecosystem sustainability, restoration, and program evaluation to the 

1995 document, but found that "the policy is generally sound and continues to provide a 

solid foundation for wildland fire and natural resources management activities of the 

federal government" (NWCD 2001 ). The updated fire policy was submitted to Congress 

as the National Fire Plan. After mandating the development of a 10-year Comprehensive 

Strategy to supplement the plan (WLFC 2002), Congress signed the new policy and 

supported it in the Fiscal Year 2001 Appropriations Act (United States Congress 2000). 
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1.5.5 Proactive Fire Management 

The new era of fire management ushered in by the National Fire Plan integrated 

massive proactive fuels treatment efforts with existing prescribed fire and suppression 

policies (NWCD 2001 ). Over the course of 200 1 and 2002, nearly 1. 7 million hectares of 

fuels reduction projects were completed on federal lands, with another 1 .1  million 

hectares treated in 2003 following the announcement of the Healthy Forests Initiative 

(United States Congress 2003 ). The Healthy Forests Initiative aimed to streamline the 

process of developing and implementing fuels treatment projects in high-risk areas, and 

several sites in the Northern Rocky Mountains qualified as suitable pilot projects 

(Healthy Forests 2005). 

1.6 Fire Regime Classification and the Historical Range of Variability 

Understanding the modem roles of fire on the landscape depends on our ability to 

understand the historic roles of fire on the landscape (Swetnam et al. 1999). In response 

to this need, great amounts of time and money have been invested in research on the fire 

history of forested landscapes throughout North America (Wright and Bailey 1982, Agee 

1993 , DeBano et al. 1998). The knowledge gained from this research led to the creation 

of several fire regime classification systems that facilitate the description, 

comprehension, and management of fire-dependent ecosystems (Fischer and Bradley 

1987, Williams and Rothermal 1992, Brown 1994 ). The first classification system for fire 

regimes was based on fire intensity, fire size, and fire frequency, and described seven 

distinct fire regimes (Heinselman 1978, 1981  ). Fire regime classification has since 

included fire severity in place of fire intensity, and during the 1990s shifted toward using 
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three general fire regime descriptions: low severity, frequent fires; mixed-severity, 

mixed-frequency fires; and high-severity, infrequent fires (Brown 1994, Agee 1996). 

The classification of fire regimes has continued to evolve in response to recent 

increases in the sophistication of fire management and the growing importance of inter

agency communication spurred by the severe fire seasons of the late 1990s (Hann and 

Bunnell 2001 ). The current classification system used by federal agencies (Hann et al. 

2004) includes five fire regime types coupled with a Fire Regime Condition Class 

(FRCC) rating that describes the departure of a forest system from its historic fire regime 

(Hardy et al. 200 I ,  Schmidt et al. 2002). Incorporated in the FRCC methodology is the 

vital concept of the "historical range of variability" inherent to disturbance regimes 

(Morgan et al. 1994a). This concept emphasizes the dynamic nature of ecosystems and 

provides a framework to better understand ecosystem processes and ecological change 

over time. When used judiciously, it can guide management to achieve a range of 

desirable future conditions within the natural bounds of an ecosystem (Landres et al. 

1999). 

1.6.1 Fire Regime Types 

The FRCC guidebook describes five historical fire regime types based on fire 

frequency and fire severity (Table 1.1 ). Fire regime types are assigned to specific sites 

according to the "natural" role of fire on a landscape in the absence of modem human 

intervention, and are meant to guide management practices within the historical context 

of the ecosystem (Hann et al. 2004 ). 
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Table 1.1 Fire Regime Condition Class Guidebook fire regime type definitions. Fire 
regime type is based on the frequency and severity of fire on a landscape in the absence 
of modem human intervention (Hann et al. 2004 ). 

Mean Frre-
Fire Regime Free Interval 
Type I 0-35 yrs 

Type II 0-35 yrs 

Type III 35-100+ yrs 

Type IV 35-100+ yrs 

Type V 200+ 

Description 
Low to mixed severity frres replacing less than 75% of the 
dominant overstory vegetation 
High severity frres replacing at least 75% of the dominant 
overstory vegetation 
Mixed severity frres replacing less than 75% of the dominant 
overstory vegetation 
High severity frres replacing at least 75% of the dominant 
overstory vegetation 
High severity, stand replacing frres 

1.6.2 Fire Regime Condition Class 

The FRCC categories are defined by Schmidt et al. (2002) as: 

" . . . the degree of departure from historical fire regimes, possibly 
resulting in alterations of key ecosystem components such as 
species composition, structural stage, stand age, canopy closure, 
and fuel loadings. One or more of the following activities may have 
caused this departure: fire suppression, timber harvesting, livestock 
grazing, introduction and establishment of exotic plant species, 
introduced insects and disease, or other management activities." 

All ecosystems can be classified into one of three FRCC (Table 1.2), based on the 

relative degree of departure from the central tendency of its historical fire regime, given 

the historical range of variability for that regime (Hann and Strohm 2003 ). 
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Table 1.2 Fire Regime Condition Class categories. Used to describe the relative degree 
of departure of an ecosystem from the central tendency of its historical fire regime (Hann 
and Strohm 2003). 

Frre Regune 
Condition Class 
Condition Class 1 

Condition Class 2 

Condition Class 3 

Description 
Within the natural (historical) 

range of variability for vegetation 
characteristics, fuel composition, 

fire frequency, severity and 
pattern, and other associated 

disturbances 

Moderate departure from the 
natural (historical) regime of 

vegetation characteristics, fuel 

composition, fire frequency, 
severity and pattern, and other 

associated disturbances 

High departure from the natural 
(historical) regime of vegetation 

characteristics, fuel composition, 

fire frequency, severity and 
pattern, and other associated 
disturbances 
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Potential Risks 
Fire behavior, effects, and other associated 

disturbances are similar to those that occurred 
prior to fire exclusion and other types of 

management that do not mimic the natural fire 
regime and associated vegetation and fuel 
characteristics. 

Composition and structure of vegetation and 
fuels are similar to the natural (historical) 
regime. 

Risk of losing key ecosystem components ( e.g. 
native species, large trees, and soil) is low. 

Fire behavior, effects, and other associated 
disturbances are moderately departed (more 

severe or less severe). 

Composition and structure of vegetation and 

fuel are moderately altered. 

Risk of losing key ecosystem components is 

moderate. 

Fire behavior, effects, and other associated 
disturbances are highly departed (more severe 

or less severe). 

Composition and structure of vegetation and 
fuel are highly altered. 

Risk of losing key ecosystem components is 
high. 



1.7 Whitebark pine (Pinus albicaulis Engelm.) 

1. 7 .1 Biogeography 

Whitebark pine is a five-needle conifer found in many high-elevation forests of 

western North America (Amo and Hoff 1990). The species is one of five stone pines 

(section Strobus, subsection Cembrae) found among the mountainous regions of the 

northern hemisphere, and the only stone pine found in the western hemisphere (Jorgensen 

and Hamrick 1997). Genetic research shows that whitebark pine likely diverged from the 

Eurasian stone pines between 0.6 and 1 .3 million years ago (Krutovskii et al. 1990). The 

origin of the species and the timing of its arrival on the North American continent are still 

debated (Lanner 1996 ,  Mccaughey and Schmidt 2001  ). 

As is characteristic of other stone pines, whitebark pine seeds are large and 

wingless (Lanner 1990), and the species depends on a mutualistic ·relationship with the 

Clark's nutcracker (Nucifraga columbiana Wilson) for regeneration and dispersal 

(Tomback 1982). This relationship enabled relatively rapid adjustments in the range of 

whitebark pine during the periods of glacial advance and retreat throughout the 

Pleistocene {Tomback 2001), with macro- and micro-fossil evidence indicating the 

continuous presence of whitebark pine in the Yellowstone region for the past 100,000 

years (Baker 1990). Following the retreat of the Pleistocene glaciers, whitebark pine 

expanded northward rapidly until ca. 10,000 to 8,000 years ago when warming 

conditions restricted it to high-elevation sites (MacDonald et al. 1989). Whitebark pine 

distribution stabilized ca. 4,000 years ago during a relatively cool period, and has 

changed little since (Mccaughey and Schmidt 2001 ) . 
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The modem range of whitebark pine extends from the northern Canadian Rockies 

(55° N) to the southern Sierra Nevada (37° N) and from the Coast Range of the Pacific 

Northwest ( 1 28° W) to the eastern Rocky Mountains of Montana and Wyoming ( 107° W) 

(Figure 1 .2; Little 1971  ). Several disjunct populations exist in eastern Montana and 

northeastern Nevada (Weaver and Dale 1974). The elevational distribution of whitebark 

pine relates to latitude, with upper bounds ranging from 900 meters at the northern limits 

of the species in British Columbia to over 3,600 meters in the Sierra Nevada (Arno and 

Hoff 1990). The lower elevational limit of white bark pine varies throughout its range and 

is determined by competition with other tree species (Weaver 2001 ). 

Whitebark pine is associated with several community types determined by site 

conditions. On high-elevation sites that experience extreme temperatures, wind scouring, 

and drought, whitebark pine is commonly the only tree species able to withstand the 

environment and is considered a climax species (Pfister et al. 1977). These stands often 

develop into open forestland at the treeline and krummholz forests above treeline 

(Weaver and Dale 1974). On sites capable of supporting competing species in a limited 

number, whitebark pine can be found as a co-climax species growing alongside subalpine 

fir, Engelmann spruce, and lodgepole pine (Weaver and Dale 197 4 ). 

As a seral species in the upper and lower subalpine habitat types (Pfister and Arno 

1980), the partially shade-tolerant whitebark pine (Arno and Hoff 1990) depends on 

disturbances such as fire and windthrow to create forest openings suitable for 

regeneration. Clark's nutcrackers act as the main dispersal agent of whitebark pine by 

preferentially caching seeds in forest openings (Tomback 1982), giving whitebark pine 

seedlings a distinct advantage in these harsh environments over less hardy, wind-
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dispersed tree species (Tomback et al. 1990, Tomback 1994b ). The 1 ,000+ yr lifespan of 

whitebark pine (Perkins and Swetnam 1996, Luckman and Youngblut 1999) often 

maintains whitebark pine as a major seral species in the upper subalpine zone or a minor 

seral species in the lower subalpine zone long after a disturbance (Arno and Hoff 1990). 

1. 7 .2 Fire Ecology 

Whitebark pine is a fire-dependent species (Morgan et al. 1994b ). On sites where 

whitebark pine is a seral species, fire plays a major role in creating the forest openings 

that are required for whitebark pine regeneration (Morgan and Bunting 1990). On drier 

sites, surface fires can slow succession by removing competing species and undergrowth, 

creating open stands dominated by whitebark pine (Morgan and Bunting 1990, Arno 

2001 ). In the absence of fire, white bark pine forests shift to later successional, shade 

tolerant species (Keane et al. 1990a), with whitebark pine losing canopy dominance after 

150--400 years without disturbance, depending on site factors (Keane 2001b). Fire 

suppression may have altered the natural fire regime of forests dominated by whitebark 

pine, and is associated with the encroachment of fire-intolerant species throughout the 

range of whitebark pine (Arno 2001, Keane 200 1a). 

1. 7 .3 Significance of the Species 

Whitebark pine was historically regarded as a species of negligible value in terms 

of lumber due to its slow growth, often twisted and stunted form, and the general 

inaccessibility of whitebark pine forests (Losensky 1990). More recently, it has become 

highly regarded for its aesthetic value on the landscape and its role as shelter and a 
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resource base for wildlife (Tomback et al. 2001a). Ecologically, whitebark pine plays 

important roles in watershed dynamics and is regarded as a keystone species critical to 

the stability of subalpine ecosystems. The ability of white bark pine to act as a pioneer on 

recently disturbed sites greatly reduces erosion, and by facilitating the recovery of other 

plant communities, maintains the integrity of the headwaters of many important 

watersheds (Amo and Hoff 1990) while increasing the biodiversity of subalpine 

communities (Weaver 2001 ). Whitebark pine-dominated forests at treeline and the 

krummholz forests above catch and retain snow (Amo and Hammerly 1984), and provide 

a major source of moisture for lower-elevation ecosystems in the form of meltoff during 

the late spring and summer months (Fames 1990). 

Whitebark pine is the foundation of an ecosystem involving Clark's nutcrackers, 

red squirrels (Tamiasciurus hudsonicus Trouessart), grizzly bears (Ursus arctos L.), and 

black bears (Ursus americanus Pallas) (Mattson and Jonkel 1990, Tomback 1994a, 

Mattson and Reinhart 1997). Whitebark pine seeds are significantly larger than the seeds 

of other high-mountain conifers of North America (Lanner 1996), and contain high levels 

of fats and nutrients, making them a valuable food source for wildlife (Amo 1986). The 

cones of whitebark pine that hold these seeds do not open on their own, and remain on 

the tree until the seeds are picked out by Clark's  nutcrackers or when squirrels cut the 

entire cone from the tree (Lanner 1996). 

Red squirrels store the cones in middens that are up to several square meters in 

area and are scattered throughout stands of whitebark pine (Mattson et al. 2001 ). The 

nutritious whitebark pine seeds that fill these middens provide a readily available food 

source and are frequently excavated by grizzly bears and black bears as they prepare for 
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hibernation (Mattson et al. 1991 ,  Mattson and Reinhart 1997). Nutcrackers, after picking 

anywhere from 15 to > 90 seeds, travel up to several kilometers before selecting a site to 

create a cache (Tomback 1982, 1994b). Nutcrackers preferentially cache seeds in forest 

openings, between 1-3 cm under the surface of the soil (Tomback 2001 ). These site 

conditions are ideal for the successful establishment of whitebark pine, and the seeds not 

recovered by birds or eaten by rodents are in tum the main source of regeneration for 

whitebark pine throughout its range (Lanner 1982, Tomback et al. 1990). 

1.7.4 Status of the Species 

The whitebark pine ecosystem has undergone extraordinary declines over the last 

80 years. Mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks in the 

1930s and 1980s caused extensive mortality of whitebark pine in the central and northern 

Rocky Mountains (Bartos and Gibson 1990, Kipfmueller et al. 2002). The outbreaks 

commonly began in mature lodgepole pine forests (Stuart 1984), and as beetle population 

increased, spread upslope into neighboring stands of whitebark pine (Bartos and Gibson 

1990). Mortality is caused by girdling from the construction of egg galleries and the 

feeding of larvae on the inner phloem of infected trees (Cole and Amman 1980). The 

beetle also introduces the secondary pathogen blue stain fungus ( Ophiostoma spp.) that 

reduces the transport of water and nutrients within a tree, which places additional stress 

on infected individuals (Solheim 1995). The beetles tend to selectively attack larger trees 

that have thicker phloem to sustain beetle and larvae populations (Amman 1972). This 

leads to smaller trees often surviving outbreaks and acting as seed sources for the 

recovery of the forest (Cole and Amman 1980). Bark beetles have been a disturbance 
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agent in whitebark pine forests well into the past, as indicated by the J-shaped galleries 

engraved on sun-bleached snags of whitebark pine throughout the subalpine regions of 

western North America (Amo and Hammerly 1984). Research suggests, however, that 

the impacts of beetle outbreaks may be changing in response to shifts in forest structure 

and climate change, allowing beetles to affect larger areas, extend to higher elevations, 

and to potentially produce multiple generations per year (Logan et al. 1995, Logan and 

Powell 2001). 

The introduction of the exotic white pine blister rust ( Cronartium ribicola (A. 

Dietr.) J.C. Fisch.) in Vancouver, British Columbia, in the early 1900s brought an 

additional disturbance agent into whitebark pine forests (Hoff and Hagle 1990). Blister 

rust is a heteroecious fungus that alternates between five-needle pines and Ribes species 

(van der Plank 1963). The rust infects a tree through the needles, initially forming 

cankers on the outer branches, but eventually moving to the main trunk where it can 

girdle and kill the tree (Hoff and Hagle 1990). Over the past 90 years, blister rust has 

spread throughout the range of five needle pines along the west coast and Rocky 

Mountains (McDonald and Hoff 2001 ). 

Blister rust first appeared on whitebark pine in the coastal range of British 

Columbia in 1926 and spread to northern Idaho by 1938 (Childs et al. 1938). Since then, 

the range of whitebark pine affected by white pine blister rust has expanded and infection 

levels have intensified (McDonald and Hoff 2001 ). Whitebark pine is highly susceptible 

to the rust, with fewer than 1 in 10,000 trees showing resistance (Kendall 1994), and rust

caused mortality is extensive throughout the northern portions of its range (Hoff 1992). In 

the Pacific Northwest, 40-100% of the whitebark pine are dead in most forest stands, 
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with 50-100% of the live trees showing signs of infection (Campbell and Antos 2000, 

Goheen 2002). In the Columbia River Basin, 98% of the whitebark pine communities 

have disappeared since the tum of the century (Keane 1995). A project to reconstruct 

landscape patterns of whitebark pine in western Montana found that 14% of the stands 

were dominated by whitebark pine around 1900, but not one of these stands was 

dominated by whitebark pine in the 1990s (Keane and Amo 1993). Of the remaining live 

whitebark pine trees in these stands, 80% were infected with white pine blister rust, and 

the cone-bearing crowns of over one-third of them were dead. Whitebark pine 

populations have coexisted with mountain pine beetle for millennia, and if affected by 

blister rust alone would likely develop resistance over a relatively short evolutionary 

period. Faced with the synergistic impacts of both disturbances simultaneously, with 

potential complications from fire suppression (Amo 2001 ), whitebark pine is at serious 

risk of local and regional extinctions within the next 25 years (Tomback et al. 2001a). 

1.7.5 Management of Wbitebark Pine 

The plight of whitebark pine and its significance on the landscape have inspired 

several management initiatives focused on preserving the species and the community it 

supports (Tomback et al. 2001 b ). Ongoing projects include the breeding of rust-resistant 

whitebark pine (Burr et al. 2001 ), the development of silvicultural techniques to slow 

blister rust infection (Hoff et al. 2001 ), and the development of mountain pine beetle 

protection programs (Y andygriff et al. 2000). Efforts have also focused on developing a 

broad prescribed fire program to enable land managers to apply fire as a tool to achieve 

management objectives at the local and landscape scale (Keane 2001a). 
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1.7.6 Research Needs 

The status of our knowledge on whitebark pine ts improving, but several 

important knowledge gaps remain. Two important patterns emerge from the existing fire 

history data for whitebark pine. First, while fire suppression is widely cited as a major 

factor in advancing succession throughout whitebark pine forests, the evidence of such an 

effect is ambiguous at best in several fire history studies. Second, fire history studies that 

used crossdating, the main principle behind the science of dendrochronology (Fritts 

1976), reported more frequent fire activity than those studies that did not implement 

crossdating. Although the studies varied widely in area, both Morgan and Bunting ( 1 990) 

and Kipfmueller (2003) reported fire-free intervals ranging well below the values 

reported in other stu�ies. These two patterns indicate that, in some stands of whitebark 

pine, fire occurred more frequently than the current paradigm suggests, and at the same 

time fire suppression may not be solely responsible for the structural and compositional 

changes now occurring in whitebark pine forests. 

The uncertainties surrounding the role and occurrence of fire in whitebark pine 

forests may prove to be significant as prescribed fire programs advance with incomplete 

knowledge of the fire regimes of the species. The broad geographic and environmental 

distribution of whitebark pine must create regional variations in historical fire regimes, 

and a ne�d exists for precise and accurate descriptions of whitebark pine fire regimes to 

develop ecologically sound management practices. Additional uncertainty is introduced 

by the relatively unknown relationships between fire activity in the mixed-severity fire 

regimes of whitebark pine forests and inter-annual to multi-decadal shifts in climate (but 

see Kipfmueller 2003). Research is needed to describe the fire regimes and fire-climate 
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relationships in whitebark pine forests throughout the range of the species to enable land 

managers to develop prescriptions for the use of fire in managing whitebark pine forests 

within the historical context of the species. 

1.8 The Science of Dendrochronology 

Dendrochronology is a science based on the annual formation of rings in woody 

plant species and the analysis of information they hold (Douglass 1920). Seven principles 

provide the scientific foundation for dendrochronology (Fritts 1976), and while all of 

these principles are crucial to dendrochronological research, one is of particular 

importance to my research, the principle of crossdating. Crossdating is accomplished by 

matching patterns of wide and narrow rings among the radii of one tree, and from that 

tree to other trees in the same stand, forest, or region (Fritts 1976). The variability in tree

ring widths required to crossdate is caused by climate-related annual fluctuations in the 

factors limiting to plant growth, such as moisture availability in the Southwest (Fritts 

1974) or temperature in high-elevation ecosystems (LaMarche and Stockton 1974). First 

applied in archeological research in the American Southwest (Douglass 192 1 ), 

crossdating is now used in tree-ring studies around the world to ensure the precise and 

accurate dating of individual growth rings within a tree. Crossdating between living and 

dead material also enables dendrochronologists to construct tree-ring chronologies 

beyond the lifespan of individual trees, with some chronologies extending up to several 

thousand years in length (Ferguson 1969, Pilcher et al. 1984, Feng and Epstein 1994). 

The accuracy, resolution, and temporal scale attainable by crossdating are 

essential for environmental research that examines processes that vary at inter-annual to 
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seasonal scales, such as fire-climate relationships (Brown and Swetnam 1994, Grau and 

Veblen 2000, Heyerdahl et al. 2002), and those that vary on decadal to millennial scales, 

such as extended periods of fire activity and global climate (Briffa et al. 1990, Campbell 

and McAndrews 1993, Grissino-Mayer 1995, Grissino-Mayer and Swetnam 2000, 

Westerling and Swetnam 2004 ). Additionally, crossdating allows the investigation of 

processes that lead to the demise of trees, such as fire (Ehle and Baker 2003), beetle 

outbreaks (Veblen et al. 1991 ), and pathogens (e.g. blister rust) (Daniels et al. in press). 

The need to accurately describe the historical disturbance regimes and the fire-climate 

relationships of whitebark pine forests can only be addressed through crossdated, 

dendrochronological research. 
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Chapter Two 

2. Literature Review of Whitebark Pine 

2.1 Fire and Whitebark Pine 

Several studies have examined the fire history of whitebark pine forests, and 

although a wide range in the frequency and severity of fire events has been reported for 

sites across the central and northern Rocky Mountains, the majority of these can be 

classified as Fire Regime Type III or Type IV {Table 2. 1 ). 

2.1.1 Fire and Whitebark Pine in the Northern Rockies 

Amo (1976) developed tree ring-based fire histories for three study areas in the 

Bitterroot National Forest in west central Montana. The study areas covered a wide range 

of elevations and forest types, and Amo used non-crossdated fire-scarred samples 

collected from living trees and age-structure data to describe the frequency and severity 

of fires in the Bitterroot Mountains before the era of fire suppression. Data were collected 

from five upper-subalpine stands that included the Abies lasiocarpa/Luzula hitchcockii 

habitat type, the Abies lasiocarpa-Pinus albicaulis/Vaccinium scoparium habitat type, 

and the Pinus albicaulis-Abies lasiocarpa habitat type from Pfister et al. ( 1977); 

however, the numbers of each habitat type sampled were not reported. Fire scarred 

samples were collected from thirty-one trees in the five upper-subalpine stands, and MFI 

from AD 1600-1910 of 4 1  years, 30 years, and 33 years were reported for the three 

habitat types, respectively. Amo mentioned that numerous whitebark pine trees in the 

study area contained multiple fire scars. Age structure data were relatively mixed-age, but 

still indicated several likely post-fire cohorts. Amo emphasized the spatial variability in 
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Table 2.1 Fire intervals reported for whitebark pine forests and the methods used for the 
reconstruction. Fire regime type is based on the Fire Regime Condition Class guidebook 
(Hann et al. 2004). Adapted from Arno 2001. See Table 1.1 for definitions of fire regime 
types. 

Fire-free Fire 
interval regime 

(yrs) we Methods Geographic area 
13-46 Type I Fire-scar and age- Russell Peak, Wyoming 

structure analyses 

Source 
Morgan and Bunting 1990 

2� 173 Type III Fire-scar and age- Selway-Bitterroot Wilderness, Kipfinueller 2003 
structure analyses Montana/Idaho 

57-94 Type III Fire-scar and age- Bitterroot Valley, West 
structure analyses Montana 

Amo and Petersen 1983* 

5 1-1 19  Type III Fire-scar and age- Big Hole Basin, SW Montana Murray et al. 1998* 
structure analyses 

55-304 Type IV Fire-scar and age- Bob Marshall Wilderness, NW Keane et al. 1994* 
structure analyses Montana 

8�300 Type IV Age-structure Yellowstone National Park, 
analysis Wyoming 

66-> 350 Type IV Fire-scar and age- Yellowstone National Park, 
structure analyses Wyoming 

300-400 Type V Fire-scar and age- Yellowstone National Park, 
structure analyses Wyoming 

* indicates crossdating was not used and fire intervals are estimates. 
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Mattson and Reinhardt 1990* 

Barrett 1994 * 
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the fire regimes of the study areas, and suggested mixed-severity fires played a more 

important role in the Northern Rockies than was recognized at the time. The effects of 

fire suppression were evident in the fire histories of lower elevation forests. Visual 

comparisons between fire activity and instrumental meteorological data showed a 

correlation between drought conditions and years of widespread fires. The potential 

impact of Native Americans on these fire regimes was tentatively broached. Amo 

concluded that fire has and will continue to be a major ecological component of forests in 

the Bitterroot Natiomil Forest and suggested several management techniques for reducing 

fuel loads and maintaining forest health. 

Arno and Petersen (1983) reexamined the fire history data collected by Amo 

(1976)  to illustrate the effects of different spatial scales on the reported fire frequencies. 

The original data that described MFI of 30-4 1 years were reanalyzed by Arno and 

Petersen and resulted in MFI of 106 years for single trees, 94 years for tree clusters of 

about 0.4 hectares, 6 1  years for small stands of 20-40 hectares, and 57 years for large 

stands of 80-320 hectares. Arno and Petersen used these results to emphasize the 

importance of using the appropriate scale when reporting results of fire history research. 

Keane et al. (1994) conducted a landscape assessment of the effects of blister rust 

and fire suppression on whitebark pine forests in the Bob Marshall Wilderness Complex, 

Montana. The study combined satellite imagery with field reconnaissance and plot data to 

evaluate the disturbance history and recent shifts in whitebark pine populations. The fire 

history was determined using non-crossdated, fire-scarred samples and age-structure data. 

A MFI of 144 years was found for the entire study area, with individual site MFis 

ranging from 55-304 years. Blister rust infections were identified on 83% of the 
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inventoried whitebark pine, and high mortality rates due to blister rust were reported for 

22% of the landscape containing whitebark pine. The study documented little to no 

white bark pine regeneration. Subalpine fir dominated 14 % of the total subalpine 

landscape, approximately 7% more than its historical composition. Regeneration 

throughout the study area was almost exclusively fir. Due to fire suppression and the 

blister rust-induced mortality of cone-producing whitebark pine, succession was 

accelerating from whitebark pine to subalpine fir throughout the Bob Marshall 

Wilderness Complex. 

Murray et al. (1998) reconstructed the fire history of subalpine forests of the 

relatively small, biogeographically isolated West Big Hole mountain range to test the 

hypothesis that their study area would be more affected by fire suppression than larger 

mountain ranges. The study area straddles the Continental Divide along the southwestern 

border of Montana and Idaho and includes six watersheds, three to the east and three to 

the west of the divide. Fire-scar and age-structure data were collected in plots centered on 

a transect from the base to the head of each watershed. Crossdating was not used, and fire 

dates were estimated to be accurate within 10 years. Maps for large fires were delimited 

from stand structure, but the indistinct boundaries of small surface fires restricted the 

effectiveness of mapping all fires. Fire history data extended back to AD 1754 for all 

sites. West side historical fire regimes were classified as mixed-severity and smaller 

relative to the more widespread, non-stand-replacing fires that characterized east side fire 

regimes. A dramatic shift toward smaller fires occurred on both sides of the divide in 

1874, with west side fires shifting toward non-stand replacing and east side fires 

becoming more variable and of mixed-severity. The authors suggested that fire 
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suppression was not likely the cause of these landscape level changes, but that the 

widespread introduction of cattle and sheep may have reduced fuels sufficiently to affect 

the fire regimes of the area. Compared to larger mountain ranges, fires in the West Big 

Hole area were generally smaller and more frequent, perhaps due to a concentration of 

lightning strikes and the proximity of the range to steppe communities. 

2.1.2 Fire and Whitebark Pine in the Greater Yellowstone Ecosystem 

Romme (1982) examined the diversity and evenness of species throughout a 

7,300-ha subalpine watershed in Yellowstone National Park in relation to its fire history. 

Whitebark pine made up a small component of the forest, but commonly displayed scars 

as evidence of past surface fires. Stand boundaries within the watershed were delimited 

using aerial photographs, and age-structure and fire-scar data were gathered for each 

stand. Fifteen fires were recorded in the watershed since AD 1600, seven of which 

burned over four hectares and were considered ecologically significant. The MFI of 

individual stands within the study area ranged from 300-400 years; however, if fires that 

only burned over small areas were included, the MFI would be 32-183 years. Romme 

suggested that the landscape is a non-steady-state system characterized by long-term, 

cyclic changes in diversity and composition that are driven by the development of a 

landscape scale fuel complex, and experiences a different fire regime than that of the 

Northern Rockies. It is unlikely that fire suppression affected the landscape processes of 

this area. 

Mattson and Reinhardt (1990) also examined the fire history of subalpine forests 

in the Greater Yellowstone Ecosystem. To evaluate the status of whitebark pine on the 
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Mount Washburn Massif, stands were first delineated from aerial photographs, then the 

age-structure, stand composition, and site characteristics were documented in 5-26 

variable radius forest inventory plots spaced evenly throughout each stand. The fire 

history was derived from stand age-structure and indicated a MFI of 80-300 years. The 

distribution of whitebark pine was closely related to a site warmth index, as opposed to 

subalpine fir and Engelmann spruce that were more sensitive to wind exposure. 

Whitebark pine and lodgepole pine were highly competitive where they coexisted, gained 

early dominance of most stands, and eventually lost stand dominance to shade tolerant fir 

and spruce. Extremely cold and exposed sites were dominated by whitebark pine. 

Barrett ( 1994a) investigated the fire history of three forest types on the Absaroka 

Mountains in the northeast comer of Yellowstone National Park. Fire-scar and age

structure data were gathered in low-elevation Douglas-fir forests, mid-elevation 

lodgepole pine forests, and high-elevation whitebark pine forests, and composite fire 

chronologies were constructed for all sites. The MFI reported for the Douglas-fir forest 

type was approximately 30 years, increased with elevation to about 200 years in 

lodgepole pine forests, and was > 350 years in most whitebark pine forests. Barrett noted, 

however, that several whitebark pines contained multiple fire scars, and that tree age was 

highly variable in whitebark pine stands, indicating a mixed-severity fire regime. Four 

stands of.whitebark pine at treeline experienced MFis of 66-204 years, and indicated a 

very patchy fire regime. Barrett concluded that fire suppression, while affecting low

elevation fire regimes, has not influenced high-elevation ecosystems. 
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2.1.3 Crossdated Fire History Research 

While these studies provided valuable information on the fire ecology of 

whitebark pine, a distinct pattern emerged between the reported MFI and the methods 

applied for each study. While non-crossdated fire histories conducted in stands of 

whitebark pine described relatively longer MFls, two studies that developed crossdated 

fire histories for whitebark pine found lower MFis. This suggests that fire was either 

more common at the sites of the crossdated studies, indicating spatial variability in the 

fire regimes of whitebark pine, or that non-crossdated fire history methods are not precise 

enough to accurately describe mixed-severity fire regimes. 

Morgan and Bunting ( 1990) found MFis of 13-46 years for whitebark pine 

forests on Russell Peak, Wyoming, based on 14 crossdated, fire-scarred samples. 

Coupled with age-structure data, the fire history illustrated a period of frequent fire 

activity from AD 1700-1850 that aligned with the establishment of a large cohort of 

whitebark pine. Fire activity began to decrease after 1850, and the last fire occurred in 

1894, after which the abundance of subalpine fir continually increased until the time of 

the study. Morgan and Bunting hypothesized that whitebark pine forests bum often when 

young with abundant fine fuels under an open canopy, go through a period of relatively 

infrequent fires as the canopy closes, and then bum in old age as fuel loads develop due 

to senescence, encroachment of fire intolerant species, and insect-caused mortality. 

Kipfmueller (2003) conducted the only other crossdated fire history of subalpine 

forests that contained whitebark pine, and examined the fire-climate relationships in four 

watersheds in the Selway Bitterroot Wilderness Area, on the border between Montana 

and Idaho. Fire dates were obtained from 96 crossdated fire-scarred samples collected 
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from lodgepole pine, whitebark pine, and Douglas fir, and fire extent was estimated using 

stand boundaries coupled with stand age-structure data. The fire history data illustrated 

mixed-severity fire regimes in all four watersheds, with numerous small fires and 

seventeen widespread fire years identified over the past 800 years. MFI values ranged 

from 20-170 years at the watershed scale to 139-34 1 years for individual stands. A 

reduction in fire activity occurred across all four sites ca. AD 1935, and was likely the 

result of fire suppression. Superposed epoch analyses (SEA) were used to assess the 

influence of climate prior to the fire events, and revealed a significant relationship 

between two consecutive dry years and widespread fire events. The relationship between 

El Nino-Southern Oscillation (ENSO) and fire activity was less distinct, and may have 

been masked by the occurrence of widespread fires related to non-ENSO conditions. 

Kipfmueller compared the fire history data to spatial patterns of drought across the 

United States, and suggested the existence of a relationship between ENSO and 

widespread fires, as well as the potential presence of other synoptic regimes related to 

fire activity. 

2.2 Dendrochronology of Whitebark Pine 

2.2.1 Dendroglaciology 

The longevity and environmental tolerance of whitebark pine make it a strong 

candidate for several lines of dendrochronological research, but relatively little work has 

taken advantage of this. The dendrochronological potential of whitebark pine gained 

recognition when Luckman et al. (1984) documented several whitebark pines with ages 

in excess of 700 years in the Canadian Rockies. Luckman followed his preliminary 
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assessment with several projects that used evidence obtained from subalpine tree species 

to describe periods of glacial advance in the Canadian Rockies (Luckman 1994 , 1995, 

2000). Two dendrochronological methods were employed in these studies. First, the 

establishment dates of tree stands on moraines were used to estimate the age of the 

surface, from which the date of glacial advance and retreat could be inferred. Second, 

remnant and sub-fossil trees and stumps in glacier fore-fields were crossdated to 

construct death-date charts, thereby giving an estimate of both the timing and rate of 

glacial advance. These data were synthesized, compared to reconstructions of 

temperature and precipitation, and provided evidence of region-wide glacial advances 

during AD 1200-1300 and 1400-1600, and abundant evidence of regionally synchronous 

advances in the early 1700s and early 1800s (Luckman and Villalba 2001). Summer 

temperature was the primary driver of these fluctuations, but precipitation also played a 

strong role in some areas. Luckman also directed research on extending chronologies 

throughout the Canadian Rockies, and eventually found two whitebark pine trees that 

were at least 1,013 and 1,049 years of age (Luckman and Youngblut 1999). 

2.2.2 Dendroecology 

Dunwiddie (1977) investigated tree invasion of a subalpine meadow in the Wind 

River Mountains of western Montana, and was the first dendroecologist to study 

whitebark pine. The study was conducted by cutting 347 trees and saplings of whitebark 

pine, lodgepole pine, and Engelmann spruce in a 13 x8 m plot that extended along a clear 

edge of mature forest, and determining the age and growth trends within these samples. 

Tree invasion was slow and relatively steady from AD 1889 to 1940, after which a 
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significant acceleration in tree establishment rates occurred until a sudden cessation of 

establishment after 1962. Growth rates of trees within the meadow were higher than 

growth rates of trees in the forests, indicating that factors other than climate may restrict 

tree regeneration within the meadow. When compared to the grazing records, meadow 

invasion increased slightly when the area was heavily grazed, and the shift to rapid 

invasion occurred when grazing pressure was reduced, but still present on the landscape. 

Cattle were removed from the landscape in the early 1960s. Dunwiddie hypothesized that 

heavy grazing during the early 1900s decreased competition from meadow vegetation, 

but also led to increased seedling mortality. Fewer cattle in the area during the 

l 940s-l 950s reduced competition from meadow vegetation but did not lead to high 

seedling mortality and instead facilitated the establishment of young trees and subsequent 

encroachment into the meadow. With the complete removal of cattle from the area, 

seedlings could no longer out-compete the meadow grasses and shrubs, and the meadow 

invasion ceased. 

Peterson et al. (1990) conducted a dendroecological assessment of long-term 

growth trends in the subalpine forests of the central Sierra Nevada. They focused on 

high-elevation lodgepole pine and whitebark pine because these trees, growing at their 

ecological limit, were likely sensitive to small changes in the environmental factors that 

dictate their growth. The study examined changes in basal area of each species, 

calculated from ring widths, for the late AD 1700s up to the 1980s. Principle components 

analyses found climate explained between 22-40% of the variance in basal area for 

whitebark pine, depending on age class. Climate-response analyses found tree growth 

was significantly affected by spring temperature and annual precipitation. A trend of 
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increasing basal area at an increasing rate and unrelated to climate was found in the 

chronologies of whitebark pine, similar to patterns of increased growth found in Great 

Basin bristlecone pine (Pinus longaeva D.K. Bailey) in the nearby White Mountains 

(Graybill and Idso 1993), suggesting the possible effects of atmospheric CO2 fertilization 

on growth in upper-elevation trees. 

Gartin ( 1998) used whitebark pine tree-ring data to examine the relationship of 

anomalous weather conditions and tree growth in the Sierra Nevada of California. He 

found winters that preceded years of high growth in whitebark pine were warm and wet, 

caused by anomalously low pressure in the northern Pacific Ocean, anomalously high 

pressure over northwestern Canada, and anomalously low pressure across the southern 

United States, all of which leads to a southwesterly flow of warm maritime air into 

California. Extreme low growth in whitebark pines was associated with a shift in the 

Westerlies north of their mean position and enhanced ridging in the northeast Pacific, 

which advects cool dry air into the Sierra Nevada. Garfin concluded that synoptic 

dendroclimatological studies such as his may provide insight about atmospheric 

circulation that will increase understanding of past climate variability derived from tree

ring studies. 

Murray et al. (2000) examined the historical trends and successional status of 

w�itebark pine over 240 years in six subalpine forests of the West Big Hole mountain 

range, where the fire history had previously been examined (Murray et al. 1 998). Size

class and species composition data were collected along a transect from the base to the 

head of each watershed, and species dominance was calculated at 20-yr intervals using 

ring-width-derived basal areas for distinct size classes. Mid-seral forests dominated all 
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six watersheds until 1950, when late seral stands became more dominant on the 

landscape. Overall, an 85% increase in basal area was found among all species since the 

1870s, while whitebark pine dominance had decreased steadily over the same period. The 

authors suggested fire suppression and grazing may be the cause of advancing 

succession, and proposed active management may be required to maintain the historical 

structure and composition of this landscape. 

2.2.3 Dendroclimatology 

Perkins and Swetnam ( 1996) evaluated the potential of white bark pine in central 

Idaho for reconstructing long-term climate and ecological processes. They constructed 

tree-ring chronologies from four sites in central Idaho that all extended at least 700 years, 

and included the oldest known living whitebark pine at the time (> 1270 years old). 

Crossdating with other tree-ring chronologies from the region was problematic due to 

relatively low inter-annual ring-width variability (chronology mean sensitivity ranged 

from 0.12-0.17), but the investigators succeeded by using several distinct marker rings. 

Correlation coefficients within and between sites ranged from 0.5-0.6, indicating strong 

statistical crossdating for high-elevation trees. Sites with similar aspects crossdated more 

strongly than sites in closer proximity. The peak mortality caused by a mountain pine 

beetle outbreak was determined by the outer ring of sampled snags to be 1930, and was 

synchronous at all four sites. Climate-response analyses revealed a similar signal among 

the four sites, with a positive correlation between ring-width and winter/spring 

precipitation, and a negative correlation between ring-width and May and July 

temperatures, indicating tree growth at these sites is both moisture and temperature 
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limited. The study concluded that whitebark pme has excellent potential for 

dendroclimatological and dendroecological research. 

Kipfmueller (2003) used whitebark pine to reconstruct climate and examine the 

fire-climate relationships of the Selway-Bitterroot Wilderness Area on the border 

between Idaho and Montana. He first examined the climate-tree growth relationships of 

whitebark pine and alpine larch within the study area, and then used these findings to 

reconstruct summer temperatures over the past 7 48 years. These analyses were conducted 

on six tree-ring chronologies, with individual chronologies of whitebark pine extending 

as far back as AD 721. Whitebark pine growth was significantly related to warm July 

temperatures, but a potential climate threshold was identified in the mid 1900s, when the 

response of whitebark pine to warmer summer temperatures diminished and was 

superseded by a negative relationship to spring temperatures. Kipfmueller hypothesized 

that this shift may be related to changing snow pack conditions and resulting moisture 

stress, and is potentially an expression of shifting ocean-atmospheric linkages. Despite 

the shifting climate-tree growth relationship, the climate reconstruction based on two 

alpine larch chronologies and one whitebark pine chronology explained 36% of the 

variance in summer temperature over the calibration period. Several distinct warm and 

cool periods were evident over the reconstruction, but no evidence of the Medieval Warm 

Period and limited evidence of cooling during the Little Ice Age were found. 
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Chapter Three 

3. Study Site Descriptions 

3.1 General Setting of the Lolo National Forest, Western Montana 

The Lolo National Forest was established as the Lolo Forest Reserve in 1906, and 

has since grown to over 8 10,000 hectares of mountainous forestland in western Montana 

(Figure 3 . 1 ; USFS 1998). The forest is divided into five ranger districts: the central 

Missoula and Ninemile Ranger Districts, the Plains/Thompson Falls Ranger District in 

the Northwest area of the forest, the Seeley Lake Ranger District in the eastern portion of 

the forest, and the Superior Ranger District just to the west of Ninemile. The forest 

headquarters are based in Missoula, and over 300 personnel are employed full time for 

day-to-day operations. The entire forest is on the western slope of the Continental Divide, 

which runs along the eastern edge of the forest. 

3.1.1 Climate 

The Lolo National Forest is affected by both North Pacific maritime and continental 

air masses, creating a diverse climate over the region (Amo and Hammerly 1984). The 

forest lies within the National Oceanic and Atmospheric Administration's Montana 

Climate Division 1 (Western). Average annual temperature is 6 ° C, with summer and 

winter temperatures averaging 13 ° C and -2° C, respectively. Annual precipitation 

averages 480 mm, with the majority falling over the winter and late spring months 

(NCDC 2005). A rain shadow fro� the Bitterroot Range creates a gradient of decreasing 

moisture from west to east, with some peaks on the Idaho-Montana border receiving 
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Figure 3.1 Locations of the three study sites in the Lolo National Forest, Western 
Montana. 
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nearly 760 mm of precipitation a year, compared to 250-430 mm for much of the eastern 

portion of the national forest (Owenby et al. 1991). 

Ocean-atmospheric teleconnections that source from the Pacific Ocean affect the 

region in several ways. The ENSO phenomenon occurs about every 3-7 years, and is 

caused by a shift in the pressure systems of the tropical Pacific. This shift weakens the 

Peru high, diminishing the east-west pressure gradient that drives the tradewinds, and in 

turn reduces the Peru current and coldwater upwelling along the western coast of South 

America (Allan 2000). The development of El Niiio conditions, the intrusion of a large 

body of warm water into the ocean along the equator adjacent to South America, 

modifies seasonal weather across western North America (Swetnam and Betancourt 

1990, D'Arrigo and Jacoby 1991, Haston and Michaelsen 1994, Dettinger et al. 2001, 

Kitzberger et al. 2001, Pohl et al. 2003). In the Northern Rockies, El Nino events bring 

relatively drier summers and warmer winters (Allan 2000). Widespread fire years may be 

linked to ENSO activity (Kipfmueller 2003), but this relationship is somewhat ambiguous 

as several factors affect fire behavior in the region (Bessie and Johnson 1995). 

ENSO activity is directly related to the Pacific/North American pattern (PNA), 

which is defined by the degree to which circulation patterns over North America are 

zonal or meridional (Keables 1992, Bell and Janowiak 1995). The PNA shifts on inter

seasonal, inter-annual, and inter-decadal scales. The positive phase is indicated by a 

deepening of the Aleutian low that forms ridges over Canada, leading to strong 

meridional flow and enhanced anticyclonic circulation over western North America 

(Leathers et al. 1991 ). Periods of positive phase PNA lead to the deflection of Pacific 
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storms to the north of the Northern Rockies, causing drier winters throughout the region 

(Cayan 1996). 

The Pacific Decadal Oscillation (PDO) is an ENSO-like phenomenon that 

involves the movement of warm and cold ocean water in the North Pacific on a multi

decadal scale (20-30-yr cycles), and creates regional to hemispheric influences on 

climate (Mantua and Hare 2002). The PDO affects the intensity of the Aleutian low. The 

positive (warm) phase indicates a strengthened low, which creates a blocking mechanism 

for the movement of Pacific storms into the interior of North America, much like the 

effects associated with a positive phase PNA (Bond and Harrison 2000) . This results in 

relatively wanner, drier winters in the Lolo National Forest region of the Northern 

Rockies (Mantua et al. 1997). The persistence of the PDO creates a modulating effect on 

the climate variability induced by ENSO and the PNA, accentuating or muting the 

expression of these phenomena when in or out of phase, respectively (Kipfmueller 2003). 

The recently described Atlantic Multidecadal Oscillation (AMO) is based on 

temperature variations in the Atlantic Basin on a scale of 60-100 years, and is linked to 

fluctuations in the intensity of the thennohaline circulation (Gray et al. 2003). Although 

the mechanisms are not fully understood, the AMO may have a modulating effect on 

ENSO activity and precipitation in the Rocky Mountains (Gray et al. 2004), and has been 

linked with increased fire activity in the Colorado Front Range during the positive phase 

of the AMO and decreased fire activity during the negative phase (Sibold and Veblen 

2005). 
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3.1.2 Geology 

The modem landscape of the Northern Rocky Mountains and the Lolo National 

Forest was sculpted by the weathering, erosion, and glaciations that have occurred since 

the original formation of the region approximately 40-70 mya during the Laramide 

orogeny (Peterson 1986). The bedrock of the region is composed of Proterozoic igneous 

rock, overlain in places with Devonian and Cambrian sedimentary rock (Alt and 

Hyndman 1972) and Quaternary sediments from glacial activity and glacial Lake 

Missoula (Alt 2001). Elevations of the Lolo National Forest range from 730 m below 

Thompson Falls on the Clark Fork River, up to 2,805 m on the summit of Scapegoat 

Mountain. The majority of the mountain ranges within the forest are between 

2,000-2,500 m in elevation. 

3.1.3 Soils 

The soils of the Lolo National Forest are relatively young and rocky, reflecting 

their mountainous setting (Pfister et al. 1977). Soil mantles are better developed on the 

windward slopes due to wind-deposited loess and volcanic ash from the west 

(Daubenmire and Daubenmire 1968). The USDA soil taxonomy divides the soils of 

Montana into five subgroups, including Cryoborolls on the lower elevation slopes, 

Cryoboralfs on mid-elevation slopes, Cryandepts on mid-elevation slopes with volcanic 

ash deposits, Cryochrepts on higher elevation and steep slopes, and Torriorthents on the 

steepest slopes (USDA Soil Conservation Service 197 5). 
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3.1.4 Plant Communities 

Forestland covers over 95% of the total area of the Lolo National Forest 

(DeBlander 2000). The complex geologic structure of the region creates a diverse array 

of site conditions, and fourteen coniferous forest types are identified throughout the 

forest, including 17 conifer species and five hardwood species (Figure 3 .2). Plant 

communities of the Lolo National Forest are modeled after Pfister et al. ( 1977), and 

include over 1 ,500 plant species grouped into a mosaic of co�munities, including non

forest (rock, meadow, and grassland), dry-warm and dry-cool Douglas-fir types, moist 

spruce-fir types, and cool and cold alpine fir types. Sagebrush and bunchgrass 

communities occupy the driest valley bottoms, with sparse grasses and undergrowth 

beneath the continuous canopies of the mid-elevation forests (Amo and Hammerly 1984). 

Near tree line, the forests open up, creating a park-like setting of white bark pine, 

subalpine fir, Engelmann spruce, and alpine larch growing over a heath of grouse 

whortleberry (Vaccinium scoparium Leib. ex Coville), red mountain-heath (Phyllodoce 

empetriformis (Sm.) D. Don), and smooth woodrush (Luzula hitchcockii Hamet-Ahti), 

interspersed with meadows of bear grass (Xerophyllum tenax (Pursh) Nutt.). Numerous 

shrubs and herbs compose the upper subalpine plant communities of the Lolo National 

Forest, including elk sedge (Carex geyeri Boott), pinegrass (Calamagrostis rubescens 

Buckl.), twin flower (Linnaea borealis spp. borealis L.), shooting star (Dodecatheon 

pulchellum (Raf.) Merr.), mountain blue-eyed grass (Sisyrinchium montanum var. 

montanum Greene), alpine fireweed (Epilobium latifolium L.), yellow avalanche-lily 

(Erythronium grandiflorum Pursh), mountain amica (Amica montana L.), arrowleaf 

ragwort (Senecio triangularis Hook.), and several other less common species. 
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Figure 3.2 Forest types and forestland cover of the Lolo National Forest, Montana. 
Adapted from DeBlander 2000. 
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3.1.5 Land Use History 

3.1 .5.1 Pre-Euro-American Settlement 

Several Native American groups used the region of the Northern Rockies 

currently included in the Lolo National Forest, including the Blackfoot, the Kootenai, the 

Nez Perce, and the Salish tribes (Hughes 1983, Sutton 2000). Native American impacts 

on the land included several permanent settlements, hunting, gathering, and maintaining 

an extensive trail system (Sutton 2000). One famous Native American trail network in the 

Lolo National Forest "is the Lolo Trail mentioned throughout the oral histories of the Nez 

Perce and Salish. In 1805, Lewis and Clark were guided along 250 km of this trail as they 

traveled across the Rocky Mountains, through what is now the Lolo National Forest 

(Space 2001). Seventy years later the trail again served history as the Nez Perce followed 

it when fleeing from General Oliver Otis Howard's army during the Nez Perce War of 

1877 (McWhorter 1984). This trail was often maintained with intentionally set fires 

(Lewis and Ferguson 1999, Barrett 2000), and is one example of the impacts on the 

landscape due to the use of fire by the indigenous people. Native Americans throughout 

the region used intentionally-set fires for a variety of reasons, including the clearing of 

land and forests surrounding settlements (Barrett and Arno 1982), travel corridors (Lewis 

and Ferguson 1999), driving wild game, preparing pastures, facilitation of food gathering 

(Lewis 1985), and for warfare (Hughes 1983). While the landscape-level effects of these 

actions are still debated (Vale 2002, Pyne 2003), significant impacts to local vegetation 

structure and communities around occupied sites have been documented throughout the 

region (Arno et al. 1997, Barrett and Arno 1999). 
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3.1.5.2 Mining History 

The Lolo National Forest is relatively rich in mineral resources, and mining 

operations have existed in the region nearly continuously following a gold and silver rush 

in the mid-1860s (Safford 2004). Prospecting occurred throughout the region, and several 

abandoned mines are now scattered across the landscape. Following the initial rush for 

precious metals, mining interests broadened to include numerous mineral resources 

including antimony, barite, copper, sapphire, gold, and silver. By the late 1980s, mining 

activity covered 107 hectares of the National Forest. Sand and gravel extraction also 

occurs at several sites, and while oil and gas have not yet been exploited within the forest, 

large-scale exploration began in the mid 1980s, with over 360,000 hectares under lease 

(USFS 1986). 

3.1 .5.3 Logging History 

While the area has been settled since the late 1800s, large-scale logging was 

restricted due to the rugged terrain and did not begin until the region was opened to rail at 

the turn of the century (Pyne 1982, DeBlander 2000). Since then, extensive harvesting 

has continued throughout the more productive low- and mid-elevation forests of 

ponderosa pine, Douglas-fir, western larch, and lodgepole pine, and the structural legacy 

of clear-cutting is still widely evident on the landscape (USFS 1986). Due to 

inaccessibility, many high elevation forests in the Lolo have never been logged 

(DeBlander 2000). 
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3.1 .5.4 Agriculture 

Agriculture has had a relatively minimal impact on the Lolo National Forest as 

natural resource utilization has focused primarily on timber (DeBlander 2000). The 

largest agricultural land use is for pasture, with cattle grazing permitted on just under 

90,000 hectares of bottomland range and forestland. The impacts of grazing on the fire 

regimes of this region have not been studied, but are likely similar to those found in the 

American Southwest, where research shows a reduction in fire occurrence due to the 

removal of fine fuels (Savage and Swetnam 1990, Grissino-Mayer and Swetnam 1995, 

Touchan et al. 1995). These impacts would predominantly occur in lower elevation 

forests where grazing was concentrated, but sheep and cattle pasturage at high elevations 

may have altered those regimes as well (Belsky and Blumenthal 1997). 

3.1.6 Forest Management 

The current forest plan for the Lolo National Forest was published in 1986 and an 

updated management plan is currently undergoing review. The 1986 Forest Plan 

delineated 28 management areas across the forest according to different management 

goals, resource potentials, and limitations (USFS 1986). Of the total area, 147,000 

hectares are designated as wilderness, and receive minimal management intervention. 

The management objectives of the remaining areas vary, but the following broad 

objectives apply to management decisions throughout the forest (USPS 1986): 

• Provide a sustained yield of timber and other outputs at a level that will help 

support the economic structure of local communities and provide for regional 

and national needs. 

5 1  



• Provide habitat for viable populations of all indigenous wildlife species and 

for increasing populations of big-game animals. 

• Provide for a broad spectrum of dispersed recreation involving sufficient 

acreage to maintain a low user density compatible with public expectations. 

• Provide a pleasing and healthy environment, including clear air, clean water, 

and diverse ecosystems. 

• Emphasize conservation of energy resources. 

• Encourage a "Good Host" concept when dealing with the public. 

• For threatened and endangered species occurring on the Forest, including the 

grizzly bear, gray wolf, peregrine falcon, and bald eagle, manage to contribute 

to the recovery of each species to non-threatened status. 

• Meet or exceed state water quality standards. 

3.1.6.1 Timber Management 

Over 410,000 hectares of the Lolo National Forest have been deemed suitable for 

timber production (USFS 1986). The estimated volume of saw timber on these lands, 

based on the annual average volume change from 1976--1985, is 8.8 billion board feet 

(USFS 1986), with Douglas-fir, western larch, and lodgepole pine accounting for 75% of 

this number (DeBlander 2000). The projected annual output of timber from 1996 through 

2035 is 131 million board feet, with reforestation and stand improvement projects on over 

1,000 acres per year (USFS 1986). 
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3.1 .6.2 Pest Management 

The major pest concern for the Lolo National Forest is the mountain pine beetle, 

and outbreaks in the early 1900s and the 1980s led to widespread mortality in lodgepole 

and whitebark pine forests throughout several regions of the Forest (Logan and Powell 

2001). Management of mountain pine beetle includes a risk-rating system, with treatment 

priorities applied accordingly (USFS 1986). Integrated pest management techniques 

include the removal of highly susceptible, heavily infected or infested individual trees 

and small-scale ( < 200 acres) clear cutting (USFS 1986). 

3.1.6.3 Fire Management 

The 1986 Forest Plan recognizes the ecological importance of fire on the 

landscape, and encourages the use of prescribed fire within the guidelines of the annually 

revised Fire Management Action Plan and federal fire policy (USFS 1986). The primary 

objectives of fire management in the Lolo National Forest are fire suppression to protect 

resources and property, habitat improvement for elk and grizzly bears, maintenance and 

restoration of the composition and structure of plant communities, and hazard reduction 

in high-risk areas. The goal for average annual acreage burned across the forest is 1,200 

hectares for wildfires and 3 ,800 hectares for prescribed fires and prescribed natural fires 

(USFS 1986), although this will likely change in the revised Forest Plan in response to 

recent extreme fire years. 
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3.1 .6.4 Whitebark Pine Management 

The 1986 Lolo Forest Plan makes no mention of whitebark pine as a resource or 

an at-risk species. Management Area 27 is composed of scattered parcels of steep, rocky 

forestland, and includes much of the whitebark pine in the forest (USFS 1986), but these 

sites are deemed not economically or environmentally suitable for timber extraction with 

current technologies, and the most recent forest resources survey found no white.bark pine 

in suitable timber production areas (DeBlander 2000). The revisions to the 1986 Forest 

Plan will include whitebark pine as an "at-risk" species, with special conservation 

considerations (Vick Applegate, Lolo National Forest Silviculturalist, personal 

communication). 

3.2 Morrell Mountain 

3.2.1 Environmental Setting 

Morrell Mountain (47° 11' N, 113° 21' W) is a 2,380 m peak at the southern edge 

of the Swan Range, within the Seeley Lake Ranger District of the Lolo National Forest 

(Figure 3.3). The mountain is composed of Precambrian argillite and quartzite, overlain 

by the Piegan group of limestone and shale and unconsolidated Quaternary glacial 

deposits of silt, sand, gravel, and hot spring tufa (Ross et al. 1955, Raines and Johnson 

1996). Slopes near the peak of the mountain (2,350-2,370 m) generally ranged from 

30-40% {Table 3 .1 ). 
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Figure 3.3 The study site on Morrell Mountain. 
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Table 3.1 General setting of the study sites in whitebark pine forests on three mountains 
in the Lolo National Fore st, Montana. 

Elevation Slope 

Site Lat./Lon. (m) (%) Community type t 
Morrell Mountain 47° 1 1 ' N, 2,350-2,370 30-40 Abies lasiocarpa -Pinus albicaulis I 

1 1 3°2 1 '  w Vaccinium scoparium 
Mineral Peak 47°00' N, 2,200-2,250 30-40 Pinus albicaulis-Abies lasiocarpa 

1 1 3°49' w 
Point Six 47°02' N, 2,250-2,350 25-45 Abies lasiocarpa I Luzula hitchcocldi 

1 14°00' w 
f from Pfister et al. 1977 

Western larch dominates the valley bottoms of this area, with ponderosa pine and 

Douglas-fir occupying the xeric and mesic lower slopes, respectively. Douglas-fir and 

lodgepole pine mix at the lower elevations, eventually moving to pure lodgepole pine 

stands from ca. 1 ,800 m to 2, 100 m. The subalpine zone extends from 2,100 m to 2,380 

m. The lower subalpine zone is characterized on the south side of the peak by a 

continuous canopy of mature whitebark pine and subalpine fir that opens up in the upper 

alpine zone into clusters of subalpine fir and whitebark pine, interspersed with alpine 

meadows (Figure 3.4). The northern slopes of the subalpine zone are covered with dense 

subalpine fir forests. A belt of the Abies lasiocarpa-Pinus albicaulis/Vaccinium 

scoparium habitat type covers the highest elevations of Morrell Mountain (Pfister et al. 

1977). Evidence of past disturbances exists throughout the subalpine zone, including fire 

scars, lightning scars, and injuries from tree and rock falls. Numerous beetle-killed 

whitebark pine snags are scattered across the forest, and the effects of blister rust are 

evident throughout, with dead crowns and red-needles on the majority of the living 

whitebark pine. 
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Figure 3.4 A south-facing alpine meadow in the transition between the lower and upper 
subalpine forest types on Morrell Mountain. The dead whitebark pine trees in the 
background were killed by a mountain pine beetle (Dendroctonus ponderosae Hopkins) 
outbreak in the 1980s and recent white pine blister rust ( Cronartium ribicola (A. Dietr.) 
J.C. Fisch.)  infections. 
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3.2.2 Land Use and Disturbance History 

Morrell Mountain has been a site of near continuous anthropogenic activity in 

recent history. Native American activity is evident in the middle elevation lodgepole pine 

stands on Morrell Mountain in the form of bark peel scars (Grissino-Mayer, personal 

communication), and research also suggests the fire regime of the lowlands near Seeley 

Lake was altered by anthropogenic activity (Arno et al. 1997). Timber has been extracted 

from the surrounding area since the early 1900s, and the Morrell Mountain fire lookout 

was established in 1921 (USFS 1986). Several stands in the area surrounding Morrell 

Mountain were harvested in the 1960s, including a clear cut of diseased lodgepole pine 

on the southwest flank of the mountain (Bill Oelig, Seeley Lake Ranger District, personal 

communication). The Bureau of Land Management issued resource exploration leases for 

the area from 1980 to 1985, but no mining or extraction has occurred (BLM 2001). 

3.3 Mineral Peak 

3.3.1 Environmental Setting 

Mineral Peak (47° 00' N, 113° 49 ' W) rises to 2,270 m in the southeast comer of 

the 26,300 hectare Rattlesnake National Recreation Area and Wilderness (RNRA W), in 

the Missoula Ranger District of the Lolo National Forest (Figure 3.5). The peak is at the 

head of the Gold Creek valley, a primary watershed for the city of Missoula (USFS 

1986). The geology of Mineral Peak is composed of the Missoula Group of Precambrian 

argillite, quartzite, sandy or quartzitic argillite, impure quartzite, and impure limestone, 

with some Precambrian shale and siltstone deposits (Ross et al. 1955, Raines and 
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Figure 3.5 The study site on Mineral Peak. 
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Johnson 1996). Slopes generally range from 30-40% throughout the upper elevations 

(2,200-2,250 m) of the peak (Table 3.1). 

The mesic valley and lower slopes are covered with nearly pure western larch 

forests, with Douglas-fir and ponderosa pine occupying the more xeric aspects and 

ridges. The mid-elevation forests ( 1,500-1,800 m) are composed predominantly of 

Douglas-fir and lodgepole pine, and surround the 31 hectare Shoofly Meadows wetland, 

one of two locations in the contiguous United States where a rare moss, Sphagn.um 

riparium Angstr., has been documented (USFS 1986). Above the wetlands, the forest 

shifts through a belt of pure lodgepole pine (1,800-1,950 m) into subalpine forest types 

composed of subalpine fir, whitebark pine, and Engelmann spruce (2,000-2,270 m). 

Whitebark pine, fir, and spruce create a continuous canopy in the lower subalpine zone, 

thinning out in the upper subalpine zone to scattered clumps of living and dead whitebark 

pine, often surrounded by fir and spruce saplings and trees, with extensive layering in the 

lower branches (Figure 3 .6). Mature Pinus albicaulis-Abies lasiocarpa community type 

(Pfister et al. 1977) covers the uppermost elevations and extends downslope on the west, 

west-southwest, and southwest aspects from the peak in narrow bands separated by open 

talus. Evidence of past fires on Mineral Peak is common, with numerous whitebark pine 

trees displaying one or multiple fire scars. Lightning scars extending from the crown of a 

tree to the base are also common. The talus is generally stable, but some trees displayed 

injuries that were potentially caused by physical abrasion or impact. Whitebark pine 

snags are scattered throughout the forest and across the talus slopes, with beetle galleries 

evident on most. Blister rust is ubiquitous. 
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Figure 3.6 An example of the forest structure on the talus slopes of the upper subalpine 
forest zone on Mineral Peak. This area experienced high levels of mortality among 
whitebark pine due to mountain pine beetle activity and blister rust infections. The 
layering exhibited by the subalpine fir in this photograph is common throughout the study 
site. 

6 1  



3.3.2 Land Use and Disturbance History 

A fire lookout was constructed on Mineral Peak in 1920, and staffed continuously 

until the 1970s (NHLR 2005). The area was logged in the early 1900s (USFS 1986), and 

gold prospecting took place on the lower slopes of the mountain in the 1950s (USBM 

1992), but Mineral Peak has since experienced relatively little human disturbance. Due to 

the area's value as a municipal watershed for Missoula, the RNRA W was established in 

1980. Mineral Peak was incorporated into the non-wilderness portion of the reserve to 

function as a buffer between the wilderness area and the land directly to the east of 

Mineral Peak, which is owned and has been actively managed by the Plum Creek Timber 

Company for the past 50 years (USFS 1986). In 2003 ,  the Mineral-Primm Fire Complex 

burned over 10,000 hectares in the Gold Creek Valley, over half of which was on Plum 

Creek land and the rest in the Lolo National Forest, including several hundred hectares of 

the RNRA W (NIFC 2005). While Mineral Peak did not bum, the effects of the fire are 

clearly visible from the mountain (Figure 3 .  7). Suppression costs for the fire exceeded 

$22 million, and in 2004,  the bum site was designated as a Healthy Forests fire salvage 

project. 

3.4 Point Six 

3.4.1 Environmental Setting 

The peak of Point Six (47° 02' N, 1 14° 00' W) sits on the border between the Lolo 

National Forest and the Flathead Indian Reservation (Figure 3.8), and at 2,4 17 m is 

readily visible from downtown Missoula, Montana. The study site is within the Missoula 

Ranger District, and is classified as Lolo National Forest Management Unit 2 due to the 
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Figure 3. 7 The results of the 10,000-hectare Mineral-Primm fire complex that burned 
throughout the Gold Creek drainage in 2003 , as seen from the trail to the summit of 
Mineral Peak. The slopes directly across the Gold Creek Valley were nearly denuded, 
except for a few patches of unburned forest seen mid-slope on the right of the 
photograph. 
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Figure 3.8 The study site on Point Six. 
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presence of the Montana Snowbowl ski area on the southern and eastern slopes of the 

mountain (USFS 1 986). The headwaters of the Grant Creek Basin originate on the east 

slope of Point Six and the south slope of neighboring Murphy Peak, with Grant Creek 

joining the Clark Fork River in Missoula. Point Six is composed geologically of the 

Missoula group, but also includes part of a Precambrian pluton composed of diorite, 

alkali feldspar, metagabbro, and unconsolidated Cenozoic glacial till (Ross et al. 1955, 

Raines and Johnson 1 996). Upper-elevation slopes ranged from 25-30% at 2,250 m to 

40-45% at 2,350 m (Table 3 . 1 ). 

The lower forest zone is predominantly Rocky Mountain ponderosa pine and 

Douglas-fir, with some western larch along waterways and on the more mesic slopes. The 

forest shifts to a continuous canopy of mixed Douglas-fir/ponderosa pine stands at the 

mid-elevations ( 1 ,500-1 ,850 m), with lodgepole pine becoming increasingly common 

near the upper boundary. Lodgepole pine dominates a relatively narrow band 

(1 ,850-2,000 m), and shares dominance with Douglas-fir at the lower elevations, and 

whitebark pine on the upper elevations of this zone. The lower subalpine zone 

(2,000-2,250 m) is a mix of species and structures, including mature whitebark pine and 

subalpine fir, numerous saplings of both species, and a few mature lodgepole pine near 

the bottom of the zone. The canopy thins with elevation, and by the upper subalpine zone 

(2�250-2,350 m) the forest is predominantly of the Abies lasiocarpa/Luzula hitchcocldi 

habitat type (Pfister et al. 1 977), with mature whitebark pine and scattered subalpine fir 

of all ages. A remnant stand of weathered whitebark pine exists on the southwest-facing 

talus slope just below the peak and above the current treeline. Nearly every whitebark 

pine in the study site displayed single or multiple fire scars, but I did not observe any 
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scarred subalpine fir. Beetle-killed whitebark pine snags were scattered throughout the 

forest, but mortality levels appeared to be lower than at either Morrell Mountain or 

Mineral Peak. Blister rust infections were also less extensive, but several whitebark pines 

exhibited flagging (i.e. red needles due to the recent mortality of a branch or stem) in 

their upper canopies. 

3.4.2 Land Use and Disturbance History 

The subalpine zone is fragmented by several ski runs and a utility road to the 

radio facility on the peak of the mountain. Part of the Snowbowl ski area burned in 1988, 

but the fire did not spread to the slopes of Point Six (Guth 199 1) .  Several communities 

extend from Missoula onto the foothills of Point Six, reaching up to the border of the 

national forest. The Snowbowl ski area was established in 196 1, and includes over 385 

hectares of ski runs and facilities. Access to the area is provided by a public road that 

runs up the southeast flank of the mountain. Tree removal activities are limited to 

eliminating safety hazards or for permitted construction or expansion of facilities. The 

Management Area that includes Point Six is currently classified as unsuitable for timber 

production, but the mid-elevation forests and lower subalpine zone contain numerous 

stumps as evidence of past management. Leases exist for gold, copper, and silicon 

exploration in the area, but not on Point Six (USBM 1992). 
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Chapter Four 

4. Methods 

4.1 Field Methods 

4.1.1 Fire History 

Fire history data were collected from fire-scarred whitebark pines on each of the 

three mountains. I used a chainsaw to collect 10-15 partial cross-sections from living 

trees (Amo and Sneck 1977) and full cross-sections from snags, stumps, · or logs in three 

clusters on each mountain. Clusters were placed evenly through the whitebark pine stands 

on each site to provide fire history data for the complete stand. The area of each cluster 

depended on the density of the forest at the site, and varied from 0.5-1.5 hectares. I 

sampled all fire-scarred material within each cluster and did not specifically target trees 

that displayed multiple fire scars. 

A variety of disturbances can injure trees in the subalpine environment (Burrows 

and Burrows 1976, Stuart et al. 1983, Butler et al. 1986 ,  Morgan and Bunting 1990). I 

therefore sampled only trees that displayed classic characteristics of fire injury (Outsell 

and Johnson 1996), including: 

• the presence of charcoal on the scar face or on the bark of the tree 

• an inverted V-shaped scarred surface that extended to ground level 

• injuries located on the upslope side of the bole 

• smooth surface beneath the healing lobe of the scar 

Descriptions of the condition of each sampled tree (living, declining, or dead) were 

recorded to aid the crossdating process by providing a general estimate of the outer ring 
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date. Sketches were drawn of each cross section to facilitate reassembly of broken 

samples back in the laboratory. I recorded the presence or absence of beetle galleries and 

blue stain fungus on each sample as this information may be of interest to other 

researchers working in whitebark pine forests. All samples were labeled and then 

wrapped with plastic wrap for transport back to the laboratory. 

4.1 .2 Age Structure 

Stand age-structure d·ata were collected in two 0.05 ha fixed-radius (r = 12.66 m) 

plots within the areal distribution of fire history clusters on each mountain. The center of 

the first plot at each site was located by walking 50 m in a random direction, selected by 

the seconds hand on a watch, from a random point within the fire history clusters. The 

center of the second plot was located 100 m along the contour from the first plot center. I 

recorded the species and diameter at breast height (dbh; height = 1.47 m) of all trees 2'.: 5 .0 

cm dbh within each plot. I then collected increment cores from two radii of each tree by 

either coring the tree twice or by coring straight through the tree. All cores were taken at 

or below 30 cm above the root collar and along the contour of the slope to minimize the 

effects of reaction wood on the growth patterns in each sample (Fritts 1976). Saplings 

less than 5.0 cm dbh but greater than 1.3 cm diameter at ground level (dgl) were tallied 

by species in a nested 0.01 ha plot (r = 5.66 m). I cut 4--8 subalpine fir saplings in each 

plot to obtain general age estimates for the saplings at each site. 
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4.2 Laboratory Methods 

4.2.1 Sample Preparation 

All samples were frozen at -40° C for 48 hours to kill any pathogens and/or 

insects that may have been transported along with the samples. After allowing all samples 

to dry, fragile cross-sections were mounted on plyboard. Cores were glued to wooden 

core mounts, ensuring the cells were vertically aligned by examining the end and sides of 

the core for the "shiny sides" indicative of vertical wood cells (Stokes and Smiley 1996). 

Cross-sections were given an initial flat surface using a band saw to remove deep chain 

saw cuts prior to sanding, then each fire-scarred and core sample was sanded using a 

4"x24" belt sander, beginning with ANSI 80-grit (177-210 µm) and using progressively 

finer-grit belts until ANSI 400-grit (20.6-23.6 µm) (Orvis and Grissino-Mayer 2002). A 

final polish was applied to each sample by buffing the surface with superfine steel wool. 

This resulted in clear, cellular resolution under standard 7-1 Ox magnification to aid the 

identification of possible narrow and missing rings. 

4.2.2 Crossdating and Chronology Construction 

I used visual, graphical, and statistical crossdating to assign precise calendar years 

to the growth-rings of my samples. Visual crossdating relied on patterns of wide and 

narrow rings common to all three sites that were likely related to regional climate (Fritts 

197 6), graphical crossdating was accomplished using the skeleton-plot method (Stokes 

and Smiley 1996), and statistical crossdating was accomplished using ring-width 

measurements and the computer program COFECHA (Holmes 1983, Grissino-Mayer 
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2001a). Samples that did not conclusively crossdate with these methods were excluded 

from all additional analyses. 

I collected several fire-scarred samples from living trees, but extreme growth 

suppression in the outer 100+ years of most samples created uncertainty in the date of the 

outer rings of these samples. I therefore considered all of the fire-scarred cross-sections 

as floating, undated samples. To crossdate these samples, I first conducted ring-counts 

from the innermost ring to the outermost ring along two to four radii of each cross

section, and as far away from the fire scars as possible to minimize the effects of erratic 

growth that often occurs around an injury to a tree. I used a variable-power binocular 

microscope to facilitate ring identification, and marked every tenth ring along each 

radius. The number of radii per sample depended on the shape and condition of the 

sample, with more radii used when visible breaks in the tree-ring series were evident or 

when the scar tip was not visible and the healing lobe required individual dating. I 

visually crossdated the radii within each sample, then measured the rings along each radii 

to the nearest 0.001 mm using a Velmex measuring system interfaced with Measure J2X 

software. 

I began statistical crossdating by first crossdating the radii within each cross

section. To accomplish this, I used COFECHA to conduct correlation analyses on 50-yr 

ring-width segments, overlapped 25 years, between two radii at a time. Potential 

problems identified by COFECHA within the sample were visually checked and 

corrections were marked on the cross-section and made to the measurement series. After 

the radii of each sample were statistically crossdated, I conducted similar correlation 

analyses of 50-yr segments between the measurement series of two different samples to 
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date each relative to the other. Significant correlations for the majority of 50-yr segments 

indicated the most likely relative date for each sample, and I visually and graphically 

checked the suggested position before using the program EDRM (Holmes 1999) to shift 

the series to the new date. I combined the measurement series of the relatively-dated 

cross-sections into a single file, and dated additional undated samples relative to these 

dated samples. Once each sample was dated relative to the others, it was added to the file 

to create a floating tree-ring chronology for each site, eventually creating a master 

chronology that included the measurement series from all of the fire-scarred cross

sections. 

To anchor my floating chronologies, I crossdated them with a whitebark pine tree

ring chronology developed on Carlton Ridge in the northeast comer of the nearby 

Selway-Bitterroot Wilderness Area (Kipfmueller 2003). To facilitate the statistical 

crossdating of the chronologies, I maximized the climate-related growth patterns 

common among my samples by transforming each floating chronology into a 

standardized ring-width chronology with the computer program ARSTAN (Cook 1985). 

The standardization process included the removal of the age-related growth trend of each 

sample by fitting a negative exponential trend line to the growth of the sample using the 

least squares technique, then obtaining a ring-width index (RWI) by dividing the actual 

ring-width by the value predicted by the regression (Fritts 1976). The R WI were then 

averaged for each year of the chronologies to create a single RWI series for each 

chronology. Crossdating between the chronologies was conducted using overlapping 50-

yr segments, and the absolute dates suggested by the results were visually crossdated and 
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checked for realistic outer dates on the samples taken from living trees. All individual 

measurement series were adjusted to their absolute dates using EDRM. 

The cores collected from living trees in the age structure plots were first ring

counted using a variable-power binocular microscope, marked by decade from the 

outermost complete growth-ring toward the center of the core, and visually crossdated. 

As my field work was conducted in the early part of the 2004 growing season, the outer

most complete ring was formed during the 2003 growing season. The cores collected 

from dead trees were ring-counted from the innermost ring out and marked every tenth 

ring. I then measured the rings of each sample to the nearest 0.001 mm and statistically 

crossdated them to the ring-width chronology developed from fire-scarred samples at 

each site with COFECHA. I visually checked the suggested dates, and only assigned 

calendar years to the rings of samples that were conclusively dated. 

4.2.3 Fire History 

I used fire scars and trauma rings to identify disturbance events recorded in the 

rings of all absolutely dated samples (Grissino-Mayer 1995). An injury was only 

considered a fire scar if it followed a smooth path through a ring or along a ring 

boundary, while the remaining injuries were classified as "other injuries." The intra-ring 

position of each fire scar and injury was identified where possible and assigned a date 

and season (Baisan and Swetnam 1990) relative to the growing season of whitebark pine. 

Whitebark pine cambial activity in the Northern Rocky Mountains extends from ca. 24 

May to ca. 12 September in a typical year (Weaver 2001 ), and I used the following 

definitions to assign seasonality: 
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• Early season (E): The injury is located in the first one-third of the earlywood, 

indicating the injury occurred in the early spring (May). 

• Middle season (M): The injury is located in the middle one-third of the 

earlywood, indicating a late spring to early summer injury (June to early July). 

• Late season (L): The injury is located in the latter one-third of the earlywood, 

indicating an early to mid summer injury (late July to early August). 

• End of growing season (A): The injury is located in the latewood, indicating a late 

summer injury (late August to early September). 

• Dormant season (D): The injury is located on the boundary between the latewood 

of the previous tree ring and the earlywood of the following ring, indicating that 

the tree was in dormancy during the fire event. The fire season in the N orthem 

Rocky Mountains typically begins in the late summer or early fall (Brown et al. 

1994 ), near the end of the growing season for high elevation forests (Schmidt and 

Lotan 1980). Fire scars that occurred at this position were therefore assigned to 

the preceding year (September to October). 

Pine trees become more likely to record fire scars after an open wound is 

established on the bole of the tree due to the flammable resin created by the tree to 

compartmentalize the injury (Romme 1980). Therefore, the rings of each sample were 

designated as either "recorder" or "non-recorder" years based on the presence or absence 

of an open wound on the sample at that position in the rings (Figure 4.1 ). This method 

ensures the validity of subsequent statistical analyses (Grissino-Mayer 1995, Grissino 

Mayer 1999). I delineated the range of years considered suitable for statistical analyses, 

or the period of reliability (POR; Grissino-Mayer 1999), for each site as the first year 
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Figure 4.1 Illustration of recorder and non-recorder rings on a fire-scarred cross-section. 
Recorder years are indicated with a '+' and non-recorder years are indicated with a '-. '  
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with two or more recorder trees until the end of the chronology. Positively identified 

disturbance events and recorder/non-recorder status were entered into the fire history 

software FHX2 to construct fire charts, calculate descriptive statistics of the fire regimes, 

and conduct temporal and spatial analyses (Grissino-Mayer 2001b). I constructed four 

fire chronologies for my research, one for each of the three separate mountains, and a 

master fire chronology based on the combined data from all three sites to represent 

regional fire occurrence. 

4.2.4 Age Structure 

The age structure for each stand was determined by obtaining or estimating the 

establishment dates for the living and dead trees within each age-structure plot. I used the 

pith date to identify the establishment date of cores that included pith. Establishment 

dates were estimated for cores that did not contain pith by adding a correction to the 

innermost ring based on the curvature of the innermost rings and a pith estimator made of 

concentric circles that represented different growth rates (Applequist 1958). For solid 

cores that contained neither pith nor the curvature necessary to use pith estimators, the 

innermost ring was used to represent the minimum age of the tree (Soule and Knapp 

2000). If the inner date of any samples could not be determined due to rot, extremely 

tight growth rings, erratic ring structure, or lack of ring curvature, the sample was 

excluded from the age-structure data. Due to the variability in growth rates for seedlings 

and sapling at these sites (Daniels et al. in press), I did not apply a correction for the age 

at coring height and these data should be considered the minimum age of the stand rather 

than the absolute establishment date for the stand. 
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4.3 Graphical Analyses 

4.3.1 Fire History Charts 

I constructed fire charts for each fire chronology using the graphics module in 

FHX2 (Grissino-Mayer 2001b). Individual-site fire charts displayed the fire history 

information contained in each sample, while the master fire chart displayed the composite 

fire charts from the individual sites to illustrate the variability between sites. I visually 

examined each chart to identify changes in the temporal pattern of fires (i.e. changes in 

fire frequency) and the spatial patterns of fire activity (both intra-site and inter-site). 

4.3.2 Age Structure Charts 

I constructed age-structure charts to visually examine patterns in tree 

establishment at each individual site, as well as for the study area as a whole. To 

accommodate the uncertainty prevalent in tree establishment dates (Villalba and Veblen 

1997), the data were grouped into 20-yr age classes for construction of age-structure 

charts. I created a graphical representation of the relationship between periods of 

increased fire activity and tree establishment by overlaying the 20-yr moving average of 

the number of fire scars in the fire history data for each site over the respective age

structure data. I used a 20-yr moving average to emphasize prolonged periods of 

increased. fire activity while still maintaining sufficient resolution to observe peak fire 

years. 
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4.4 Statistical Analyses 

My statistical analyses of the four fire chronologies included calculating 

descriptive statistics, assessing possible temporal and spatial changes in fire regimes, 

conducting seasonality analyses, and examining the relationship between fire and tree 

growth at individual-site and regional scales (Grissino-Mayer 2001b). All statistical 

analyses were conducted using the composite fire chronologies (Dieterich 1980) of each 

site over the POR. 

4.4.1 Fire History Descriptive Statistics 

I used eleven statistical descriptors for the central tendency, dispersion, range, and 

shape of the fire interval distributions (Table 4. 1 )  to characterize the historical range of 

variability of each fire chronology. 

4.4.1.1 Measures of Central Tendency 

I used four statistics to describe the central tendency within the fire interval 

distribution of each site: 1) Mean Fire-free Interval (MFI); 2) Median Fire-free Interval 

(MDI); 3 )  Weibull Median Interval (MEI); and 4) Weibull Modal Interval (MOI). The 

MFI is a simple mean calculated by dividing the total number of recorder years by the 

number of fire events in a chronology. The MDI is the mid-point of a distribution of fire

free intervals, and is more resistant to outliers than the MFI. The MEI and MOI are 

derived by modeling the fire-free interval data with the Weibull distribution (Weibull 

195 1 ), which is more flexible than the normal distribution and has been shown to provide 

a superior fit for the often positively-skewed distributions of fire-free intervals (Grissino-
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Table 4.1 Abbreviations and definitions of the descriptive statistics used to characterize 
the fire regimes and their historical range of variability on three mountains in the Lolo 
National Forest, Montana. 

Statistic Name 

Mean Fire-free Interval 

Median Fire-free Interval 

Weibull Median Interval 

Weibull Modal Interval 

Minimum Fire-free Interval 

Maximum Fire-free Interval 

Lower Exceedence Interval 

Upper Exceedence Interval 

Maximum Hazard Interval 

Standard Deviation 

Coefficient of Variation 

Skewness 

Kurtosis 

Abbreviation Description 

MFI The average number of years between fire events. 

MDI The middle value of the distribution of fire-free 

intervals, more resitant to outliers than the mean. 

MEI 

MOI 

MIN 

MAX 

LEI 

UEI 

MHI 

SD 

CV 

SKW 

KUR 

The fire interval associated with the 50
th 

percentile of 

the Weibull distribution. 

The theoretical mode of the Weibull distribution that 

represents the greatest area under the probability 

distribution function. 

The shortest fire-free interval at a site. 

The longest fire-free interval at a site. 

The interval that delimits a significantly short fire-free 

interval, derived from the Weibull distribution. 

The interval that delimits a significantly long fire-free 

interval, derived from the Weibull distribution. 

The maximum theoretical fire-free interval that an 

ecosystem can experience before the event of a fire 

becomes highly probable; derived from the Weibull 

hazard function. 

The dispersion of fire intervals around the mean. 

A standardized measure of dispersion within a data 

set; enables comparisons between distributions with 

different means and/ or variances. 

Describes the symmetry of a distribution. 

Describes the peakedness of a distribution. 
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Mayer 1999). The MEI is the fire interval associated with the 50th percentile of the fitted 

distribution, providing a measure of central tendency that is highly resistant to outliers 

(Grissino Mayer 1999). The MOI represents the theoretical mode in the frequency 

distribution that represents the greatest area under the probability distribution function 

(Grissino-Mayer 2001b). 

4.4.1.2 Measures of Range 

I described the range in fire interval data using five statistics: 1 )  minimum fire

free interval; 2) maximum fire-free interval; 3 )  Lower Exceedence Interval (LEI); 4)  

Upper Exceedence Interval (UEI); and 5) Maximum Hazard Interval (MHI). The 

minimum and maximum fire-free intervals are the shortest and longest fire-free intervals 

at a particular site, as described by the actual data. The LEI and UEI correspond to the 

12.5 and 87 .5 percentiles of the Weibull distribution, respectively, and delimit 

significantly short and long fire-free intervals (Grissino-Mayer 1999). The MHI 

represents the maximum theoretical fire-free interval that an ecosystem can experience 

before a fire becomes highly probable based on the preceding fire-free intervals, and is 

derived from the Weibull hazard function (Grissino-Mayer 1999). 

4.4.1.3 Measures of Dispersion 

The variability about the mean of the fire interval distributions for each site was 

described using the standard deviation (SD) and the coefficient of variation (CV). The 

SD, calculated by taking the square root of the variance, describes the dispersion of fire 

intervals around the mean, with plus or minus one SD bracketing 68% of the fire-free 
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intervals, and plus or minus two SD bracket 95% of the fire intervals. The CV, calculated 

by dividing the mean by the standard deviation, provides a standardized value and 

enables comparisons between fire-free interval distributions with different means or 

variances (Grissino-Mayer 2001b). 

4.4.1.4 Measures of Shape 

I calculated the skewness and kurtosis to describe the shape of the fire-free 

interval distributions for each site. Skewness describes the symmetry of a distribution. 

Due to the lower bound of fire-free intervals (a fire-free interval can be no less than 1 yr) 

distributions of fire-free interval data are often positively skewed (skewness > 0). 

Kurtosis describes the peakedness of a distribution relative to the normal distribution 

(kurtosis = 0). Clustered data with few outliers are highly peaked, or leptokurtic (kurtosis 

> 0), and diffuse data, or data with numerous outliers are flat, or platykurtic (kurtosis < 

0). I also graphed each distribution and the Weibull probability density function (pdf) for 

each fire chronology to provide a visual display of the shape of each fire interval 

distribution (Grissino Mayer 1999). 

4.4.2 Temporal Analyses 

Each fire chronology was examined for changes in fire frequency over the 

following periods based on historical records and settlement patterns (USFS 1986, Smith 

1992): 1) Pre-settlement period, POR-1850; 2) Settlement period, 1851-1920; and 3) 

Fire suppression period, 1921-POR. To determine if fire activity during any of these 

periods was statistically unique, I conducted three statistical tests on the normalized fire 
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interval data (Grissino-Mayer 1995): I )  Student's t-tests to test whether differences exist 

in MFI of periods; 2) folded F-tests to test whether differences exist in the variability 

about the MFI from one period to the next; and 3 )  two-sample Kolmogorov�Smimov 

tests to test for differences in the distributions of fire-free intervals between periods. 

4.4.3 Spatial Analyses 

My spatial analyses included the same tests as my temporal analyses to compare 

the fire chronologies of each site to one another. The analyses were conducted over the 

common set of years for which both chronologies contained data. 

4.4.4 Fire Seasonality Analyses 

I analyzed the seasonality of fire activity for each chronology by grouping fires as 

either early-season (seasons E, M, and L) or late-season (seasons A and D). I then 

determined the historically dominant season of fire activity at each site and for the master 

composite chronology by calculating the percent of fire events that were included in each 

seasonality group. 

4.4.S Fire-Tree Establishment Relationships 

I quantitatively analyzed the fire-tree establishment relationships in my study area 

by using a variation on the traditional superposed epoch analysis (SEA). SEA are 

conducted by stacking events, in this case fire events, then examining the average 

conditions of a particular variable (such as tree growth or climate) before, during, and 

after each event (Baisan and Swetnam 1990, Grissino-Mayer 1995). The window of 
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analysis, as traditionally used in fire history research, commonly includes the 5 years 

leading up to the event, the event year, and up to two years after the event. Bootstrapped 

confidence intervals are calculated for the window of analysis from 1000 randomly 

selected events from the population of observations. To examine trends that occur on 

longer time scales, I extended the window of analysis to include 40 years; the 19 years 

leading up to the event, the event year, and the 20 years following the event. While 

individual statistically significant values become less meaningful as more years are 

included in the analysis, this multi-decadal superposed epoch analysis (MDSEA) can 

identify meaningful trends in data. 

To conduct my analyses of fire-tree establishment relationships, I created an event 

chronology from the composite fire history of the master chronology, filtered to include 

only those fires that scarred � 10% and � 2 sampled trees during any given year. I used 

two tree-establishment chronologies as input variables for my analyses. The first 

chronology was the total number of tree establishments for all samples in the study area 

for each year from AD 1300-2000. The second chronology was the five-year moving 

average of the first chronology. Because I wished to conduct these analyses on the study 

area as a whole, I included the establishment dates from the fire-scarred samples with the 

age structure data to increase the sample depth. 

I conducted my MDSEA using the event analysis module in FHX2 (Grissino

Mayer 2001 b ). The maximum extent for the window of analysis in this program is 40 

years, including at least 1 year before the event, and the year of the event itself. To 

expand this window, I first conducted my MDSEA from one year before each fire event 

(t-1) to 38 years after the event (t+38). I then adjusted the tree-establishment chronologies 
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to lags of 20 years, 40 years, and 60 years (Figure 4.2)  and used the same window (t-1 to 

t+38) on each of the lagged chronologies. This resulted in four separate MDSEA output 

files that spanned 100 years, with 20-yr overlaps between each analysis. After ensuring 

the overlaps were identical, I compiled the results into one output file, in effect creating a 

continuous MDSEA window, with bootstrapped confidence intervals, of 100 years (t-1 to 

t+98). 

4.4.6 Fire-Tree Gr.owth Relationships 

I examined trends in tree growth at the local and regional scales with respect to 

fire events to determine if local tree growth would decrease directly after a fire event due 

to damage to the roots, bole, and branches of the tree, but then shift to above average 

growth due to decreased competition and the release of nutrients associated with 

wildfires. In contrast, I expected regional growth trends to show no relationship to the fire 

event. I used MDSEA to test this relationship. 
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Figure 4.2 Graphical representation of the years included in the multi-decadal 
superposed epoch analyses examining the relationship between fire and tree 
establishment. Shaded regions indicate the years included in each successive analysis. 
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I used two event chronologies in my MDSEA. First, I conducted the analyses 

using the composite master fire chronology that included all fires recorded in my study 

area. I then focused my analyses on more widespread fire events by using a filtered 

composite master fire chronology that included only those fires that scarred � 10% and � 

2 recorder trees in the master fire chronology during a particular year (Swetnam 1990). 

My condition variable for the local fire-tree growth analyses was the standardized master 

ring-width chronology developed from the fire-scarred samples collected in my study 

area. The condition variable I used to explore the relationship between regional trends in 

tree growth and the occurrence of fire events was a tree-ring chronology developed from 

non-fire-scarred whitebark pine in the nearby Selway-Bitterroot Wilderness Area 

(Kipfmueller 2003). All of my MDSEA examined a 40-year window around the 

respective fire events: the 19 years leading up to the fire (t-19), the fire year (t =O), and 

the 20 years following the fire (t+20). 

4.5 Fire-Climate Relationships 

I assessed possible relationships between fire activity and specific climate 

variables (temperature, precipitation, the Palmer Drought Severity Index (PDSI), the 

Southern Oscillation Index (SOI), the Nino3 index, PDO, and the AMO) by constructing 

charts that displayed the trends of each climate variable with a 20-yr moving average of 

the number of fire scars recorded across all three sites. I also plotted the fire events that 

scarred multiple trees in my study area to examine the relationship between climate and 

specific years when fire was likely more widespread. The climate data used in my 

analyses were tree-ring based reconstructions available from the National Climatic Data 
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Center World Data Center for Paleoclimatology (http://www.ngdc.noaa.gov/paleo/) and 

included: 

• Temperature for station 14 (45° N, 1 10° W; Briffa et al. 1992); 

• Precipitation for Kalispell, Montana (48° N, 1 14 ° W; Fritts 199 1); 

• PDSI for grid point 83 (47.5° N 1 12 .5° W; Cook et al. 1999); 

• Southern Oscillation Index (Stahle et al. 1998); 

• Nino3 index (D'Arrigo et al. in press); 

• PDQ (D'Arrigo et al. 2001 ); 

• AMO (Gray et al. 2004). 

I first plotted all data by annual values, and then used a moving average of 5 years 

for the climate variables with short-term (< 10 years) variability (temperature, 

precipitation, and PDSI) and 20 years for the climate variables with longer-term (2: 10 

years) variability (PDQ and AMO) to smooth the series and highlight trends in the data. 

To facilitate my interpretations of ENSO activity, I transformed the reconstructed SOI 

values into z-scores, and then multiplied the z-scores by -1 to compensate for the inverse 

relationship between the SOI and the Nino3 index. This resulted in positive SOI and 

_Nino3 values being associated with El Nifio events, and negative values being associated 

with La Nifia events. I conducted my analyses from 1650 to 2000 because few of the 

climate reconstructions extended beyond AD 1650. 

4.6 Fire Regime Type Classification 

I used the results of my analyses to assess the accuracy of the FRCC fire regime 

types (Schmidt et al. 2002) assigned to my study sites. I examined the fire regime type of 
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each site with respect to the actual frequency and severity of fires recorded in the fire 

chronologies and age structure of each stand. For the sites that did not match their 

classification, I placed the stands in the appropriate fire regime type as defined by Hall:11 

and Schmidt (2003). I then used the results of my statistical analyses as a framework to 

examine these classifications within the natural range of variability of my study sites. 
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Chapter Five 

5. Results 

5.1 Crossdating and Chronology Construction 

I collectedl 10 fire-scarred samples and 41 1 age-structure samples from the three 

sites. Visual and graphical crossdating were aided by especially narrow growth rings 

formed in AD 164 1 , 1688, 1782, 1799, 1817, 1838, 1899, and 1906 ,  and a light ring (i.e. 

extremely narrow latewood) in 1801.  A pattern of consecutive narrow rings in 1753 ,  

1754, and 1755, followed by a wide ring in 1756, also provided a strong ring signature at 

all three sites. Visual crossdating was further facilitated by a frost injury in AD 1601 that 

provided an excellent marker ring in 33 of the 4 7 fire-scarred samples that extended 

beyond the year 1600 (Figure 5 . 1  ). The cellular damage caused by this event led to a 

separation in the ring structure of stumps and logs throughout the study sites (Figure 5 .2), 

and enabled rough estimations of tree age in the field for many samples. 

The ring-width chronologies were constructed from 233 measurement series from 

the 1 10 fire-scarred samples (Table 5. 1 ). The site chronologies varied in length, with the 

shortest record from Point Six and the longest from Mineral Peak. Individual series 

ranged from 60-726 years in length. The mean inter-series correlations and mean 

sensitivity of the three individual site chronologies and the master ring-width chronology 

were relatively similar, and correlations between all four chronologies and the Carlton 

Ridge chronology were highly significant at the anchored dates (Morrell Mountain: r = 

0.3 19, n = 52 1 ,  p < 0.001;  Mineral Peak: r = 0.483, n = 9 1 1 , p < 0.001 ;  Point Six: r = 

0.286 ,  n = 417,  p < 0.001 ;  combined chronology: r = 0.46, n = 9 1 1 , p < 0.001). 
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Figure 5.1 A frost event in 1601 damaged 17 of 22 samples from Morrell Mountain, 15 
of 25 samples on Mineral Peak, and the only sample on Point Six alive that year. The 
image was taken under 40x magnification. 

Figure 5.2 A weathered stump near the summit of Morrell Mountain. The ring separation 
indicated by the arrow is the result of a weak layer in the structure of the tree due to frost 
damage in AD 1601. 
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Table 5.1 Statistics for tree-ring chronologies developed from fire-scarred whitebark 
pines on three mountains in the Lolo National Forest, Montana, and for all sites 
combined. 

Morrell Mmeral Pomt All 
Mountain Peak Six Sites 

No. Trees/Series 30/60 38/82 42/9 1 1 10/233 

Time Span 1467-1999 1087-2000 1 58 1-2003 1087-2003 

M.S.L. 1 283 307 202 259 

1.s.c.2 
0.484 0.426 0.43 1 0.404 

M.S.3 0.24 0.22 0.23 0.23 

Mean series length (yrs) 
2 Mean inter-series correlation 
3 Mean sensitivity 
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S.2 Fire History 

I identified 152 fire scars recorded in the fire-scarred samples, representing 68 

unique fire events between the three sites (Table 5.2). I assigned seasonality to 89% (n = 

116) of the fire scars, with the majority of those in the dormant season (89%, n = 103). 

Several fire events only scarred 1-3 trees, but each fire chronology included at least one 

fire that scarred trees throughout the site. Indications of mortality related to mountain 

pine beetle were present on 86% (n = 95) of the samples. 

S.2.1 Morrell Mountain 

The fire history data from Morrell Mountain suggest a fire regime dominated by 

relatively frequent, patchy fires (Figure 5.3). Few fires were recorded during the first 150 

years of the fire history, but fires became increasingly frequent during the late 1600s and 

early 1 700s until a widespread fire in 17 54 that scarred most trees throughout the stand. 

This fire was followed by a period of less frequent but moderately widespread fires from 

1796 to 1898. Only two fires were recorded in the study site in the 20th century, in 1919 

(n = 2) and 1974 (n = 1). Multiple trees were scarred in 1711 (n = 2), 1751 (n = 2), 1754 

(n = 7), 1796 (n = 3), 1830 (n = 3), 1836 (n = 3), 1843 (n = 4), 1898 (n = 3), and 1919 (n 

= 2). Beetle-caused mortality peaked in the 1970s and 1980s, but a cluster of mortality 

dates in the early 1900s suggests the stand may have been affected by previous outbreaks. 
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Table 5.2 Descriptive statistics for fire history chronologies developed from whitebark 
pines on three mountains in the Lolo National Forest, Montana. 

Morrell Mineral Point All 
Statistic 1 .2 Mountain Peak Six Sites 
No. Trees . 30 38 42 1 10 

No. Fire Scars/Events 54/33 40/20 59/15 1 53/68 
Earliest Fire 153 1  1488 1661  1488 

POR 1613-1999 1497-2000 1 7 1 9-2003 1497-2003 
MFI (yrs) 14 25 1 5  7 
MDI (yrs) 10  20 1 1  6 
MEI (yrs) 10  22 1 1  6 
MOI (yrs) 2 1 5  2 2 
MIN (yrs) 1 5 2 1 
MAX (yrs) 55 64 67 35 
LEI (yrs) 2 8 3 1 
UEI (yrs) 27 44 30 14 
MHI (yrs) >1000 >1000 >1000 >1000 

SD 12.97 1 6 .96 16 .67 6.27 
CV 0.94 0.69 1 . 1 1 0.86 

SKW 1 .62 0.89 2.27 1 . 82 
KUR 2.39 -0.32 4.37 4.56 

1 
Descriptive statistics calculated over the POR 

2 
See table 4. 1 for definitions 

91 



1601 
Fr9st Ring 

i 

......... ·-·-·· ·····- •· .....  ··-··-· · 
.
. . ......... ·ti . * 

.. ... ........ ........ .... ....... I . . ' * 
., ............ ., ............... .. . .. .. .. ...... I ' ·* 

, .... . . . .............. ---------� 
* ... . . < ... . ........ ..... . .. . . . + .......... · .. ....... 1.1 ., 

.. 4--+-................................... ............. " • .......... · .... 1--f--··· . ····· · .... . ......... ¼ .. � .• 
,. ••<., • •  .. . . . ......... :. .•• .,__ :\, * 

, . .. . . .. . .. . µ .. .. . . .. .. . .. . .. . .. .. . .. .. . .. .. .... .. .. .. . . . . ..  · ·····-·· '.I ,. 
,. ........................................... .. -. I I ·, * 1----................ ......... .. . . .... I I . ,. * 

,, . ..... ... , ................................................ ................ �. ·* 

, .... ................ ..... +------... _ -_ -_ -_-_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -- * 
.t ........ .... .. .. .......................................... � > * 
, ..... .. ....... :, ............... 1----�-..... ................... ...................... . ............... � * 

.. .; ......... - .... �,. ... .;.;;.  ........ ,.,. ...... �, I I * � ............. ...... ...... ..................... ............ 1-----............. 1 I I >.. * , ................ + ..... ,. ............. 11 I . . . . ... * , .... ..... ........ ............. ............ ....... .... ............... ... ··1 j i!: l I 1 

I-'------��---�� .
. 
�-�·-··--�--:-.--��--�-.-----.:-----:-· ..... ·�-.---··:--.· -·. ..-........... -............

.
.... , * .. . .t........ ...  .. ... , . ....... .. .. ' ....... .. ........... ....... . ..................... -----------...11.-

t J-+
. 
... : . ! .. +-·.:· " . .  :· :::· .. :· .. · _- . : · 1--· ::< . � -- .·· . . . .. · .. '· · & . . .. � *  

,. .......................... . . -· , ........ ,. ..... ... ,, . . -·1---· ' * f- . ...... # . ... .. . .... . .. ... 
, ... .. .. ..... .. ..  · .:f... . . -•• . . ,-/ ..... .... + . .  •-•• .. w .. ....  

* ,· . ..... . ........ .... . . ..... ,, . .. ...... , __________ ,.__ _______ __.., 
..... · . . · ... d :  ..... .......... / . . . ............. .. ...... --···· -· ........... ... ... . 

f--.. .... . · ·-. .... .. :-- ....... .. ..  ); * 

.... ·-¼ ........... ¼ ¼ • + - ·  ....... · ...... . .. .. . . . . . . . . .. . . ... - - - - -·- .. --- ...... Jo. * 
.

.

... ! ........... _ .... _ , · . .
.
. ·.� . ... . . 

. 
. 

. 
. 

.. ........ � ........ � ..... �: .. __ ......... ........... ! .. _"'"""--� ; * 

I" Ii! I II I I II II I II II I IIJ l.t II II J J JllLUJlUl l .J LI ltt II Jlt L Ii I' II l. 11p 

ML2014 
ML2013 
Ml.2016 
ML3008 
MOR010  
ML2009 
ML2008 
ML2006 
MOR008 
MOR019  
.ML2003 
ML3004 
ML2007 
MOR003 
MOR007 
MOR01 6 
MOR01 7 
MOR01-4 
MOR004 
MOR02 1 
MOR012 
MOR001 
MOR0 1 3  
MOR015 
MOR018 
MOR006 
MOR020 
Ml.3006 
ML2002 
MOR022 

1 400 1 450 1 500 1 550 1 600 1 650 1 700 1 750 1 800 1 850 1 900 1 950 2000 

Figure 5.3 The fire history chart for Morrell Mountain in the Lolo National Forest, 
Montana. Each horizontal line represents a tree. Dashed portions of the line indicate non
recorder years and solid lines indicate recorder years. Long tic-marks indicate a year 
when that sample recorded a fire, and short tic-marks indicate other injuries. A star at the 
end of a sample indicates evidence of beetle-caused mortality. The composite fire 
chronology at the bottom of the chart uses vertical lines to represent years during which 
at least one tree within the study site recorded a fire event. 
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5.2.2 Mineral Peak 

Although the fire chronology for Mineral Peak is the longest of the three sites, it 

includes the fewest number of fire events (Figure 5.4). The majority of fire activity 

occurred during the late 1700s and early 1800s, with relatively few fires recorded before 

or after this period. Most of the fires recorded in the site scarred only a single tree. Two 

or more trees recorded fire events in the south-facing cluster in AD 1781 (n = 4), the 

southwest-facing cluster in 1497 (n = 2) and 1889 (n = 3 ), and all three clusters in 1834 

(n = 14). Only two fire events were recorded in the 1900s (1901 and 1965), both of which 

scarred only single trees. Signs of beetle-caused mortality were identified on individual 

samples dated to the 1700s and 1800s, and a distinct period of widespread mortality 

during the late 1900s suggests beetle activity throughout the site. 

5.2.3 Point Six 

The fire chronology for Point Six suggests a fire regime characterized by higher 

severity and more widespread fires than the other two sites (Figure 5.5). Two large fire 

events scarred trees throughout the site in 1719 (n = 6)  and 1816 (n = 37). Potential post

fire cohorts are evident in the age-structure of the fire-scarred samples ca. 1600 to 1650 

and again after the 1719 fire. A shift toward patchier fires occurred after the 1816 fire. 

Additional years when multiple trees were scarred include 1861 (n = 2) and 1930 (n = 2). 

The 1930 fire was the last recorded within the study site. The majority of dead trees 

displayed evidence of mortality related to mountain pine beetle activity in the 1920s and 

1970s. 
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Figure 5.4 The fire history chart for Mineral Peak, in the Rattlesnake National 
Recreation Area and Wilderness, Lolo National Forest, Montana. See Figure 5 .2 for an 
explanation of symbols used in the chart. The (A) south-facing cluster, (B) southwest
facing cluster, and (C) west-facing cluster are plotted separately to emphasize spatial 
variability in fire activity. 
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Figure 5.5 The fire history chart for Point Six, in the Lolo National Forest, Montana. See 
Figure 5.2 for an explanation of the symbols used in the chart. 
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5.2.4 All Sites 

The composite master fire chronology provides evidence of relatively continuous 

fire activity throughout the study area from ca. AD 1500 to ca. 1920 (Figure 5.6A), but 

the majority of fires that scarred multiple trees in the study area occurred from ca. 1700 

to ca. 1850 (Figure 5.6B). A near-complete cessation of fire activity occurred at all three 

sites after 1930. The Morrell Mountain fire chronology included the greatest number of 

fires that scarred multiple trees grouped in the tightest clusters. Fires that scarred multiple 

trees on Point Six and Mineral Peak were temporally more dispersed. 
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Figure 5.6 The master fire charts of (A) all fires and (B) fires that scarred multiple trees 
on three mountains in the Lolo National Forest, Montana. The horizontal lines represent 
the individual site composite fire chronologies, and the composite master fire chart at the 
bottom of both figures includes all of the fire years for the three sites at each respective 
level of analysis. POS = Point Six, MOR = Morrell Mountain, and MPK = Mineral Peak. 
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5.3 Age Structure 

The age-structure data are based on an inventory of 862 trees and saplings, with 

372 trees � 0.05 cm dbh (Table 5.3). Subalpine fir was the most common species at all 

three sites. For trees � 0.05 cm dbh, whitebark pines were more numerous than subalpine 

firs at Mineral Peak and Point Six. Subalpine fir saplings outnumbered whitebark pine 

saplings at all sites. I was able to crossdate 263 of the cores collected for age-structure 

analyses. The average correction for cores that did not contain pith was 6-7 years, with a 

maximum correction of 12 years on one sample. Inner-ring dates varied by site and 

species, but the oldest trees at all three sites were whitebark pines, with a general shift 

toward increasing subalpine fir establishments in the 19th and 20th centuries. 

5.3.1 Morrell Mountain 

The majority ( 6 1  %, n = 14) of white bark pine establishment occurred on Morrell 

Mountain from AD 1480--1559, while I identified only two whitebark pine trees that 

established in the plots more recently than 1640 (Figure 5.7A). Establishment levels were 

consistently low from 1560-1679, although the inner rings of several of the fire-scarred 

samples dated to this period (Figure 5.3). The oldest subalpine fir trees in the plots 

established ca. 1 700, after which the presence of subalpine fir increased through the I 8th
, 

19th
, and 20th centuries despite several periods of increased fire activity in the 1700s and 

1800s. The subalpine fir saplings on Morrell Mountain contained inner dates as early as 

1 769. Because these small trees are highly susceptible to fire, this suggests that a 

widespread fire has not burned throughout the stand since the 1 754 fire event. 
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Table S.3 Age-structure data from three stands in the Lolo National Forest, Montana. 

Morrell Mineral Point All 

Whitebark Pine Mountain Peak Six Sites 

Saplings Inventoried 45 1 8  24 87 

No. Crossdated * * * * 
Inner Dates * * * * 

Trees Inventoried 39 58 80 177 

No. Crossdated 24 34 35 93 

Inner Dates 1333-1 843 1 392-1937 1753-1 879 1 333-1937 

Subal2ine Fir 
Saplings Inventoried 1 2 1  50 232 403 

No. Crossdated 1 5  7 17 39 

Inner Dates 1769-1 975 1 880-1976 187 1-1966 1769-1976 

Trees Inventoried 79 48 68 195 

No. Crossdated 79 29 62 170 

Inner Dates 1703-1 978 1784-1 984 1 847-1953 1703-1 984 

* no whitebark pine saplings were cut 
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Figure 5.7 Age structure of trees on (A) Morrell Mountain, (B) Mineral Peak, (C) Point 
Six, and (D) all three sites combined. The dark line represents the 20-yr moving average 
of the number of fire scars recorded in the tree-ring based fire history of each site. 
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5.3.2 Mineral Peak 

Whitebark pine establishment peaked on Mineral Peak ca. AD 1 580-1640, with 

occasional minor establishments up to the early 1900s (Figure 5. 7B). The majority of 

subalpine firs established in the plots after the 1 834 widespread fire, with peak 

establishment from ca. 1 880-1920. Only two fir trees predate the 1 834 fire event. The 

plots on Mineral Peak contained the lowest number of saplings for both species, which 

reflects the relatively open, harsh environment at the site. Similar to Morrell Mountain, 

the oldest fir saplings established soon after the most recent widespread fire. 

5.3.3 Point Six 

The majority of inner dates for both whitebark pine and subalpine fir on Point Six 

are clustered from ca. AD 1 840-1 880 (Figure 5.7C). Several whitebark pines established 

before this period, while subalpine fir dominated the age structure after this period. The 

earliest whitebark pine inner dates followed the 1 7 19  fire, and the peaks in whitebark and 

fir establishment directly followed the widespread 1 8 1 6  fire event (Figure 5 .5). 

Whitebark pine dominated the age-structure for the first 20 years after the fire, and 

subalpine fir dominated the age-structure from 40-80 years after the fire. Patchy fire 

activity in the late 1 800s and early 1900s coincided with decreasing levels of 

establishment, although the abundance of subalpine fir saplings at the site suggests fir is 

still regenerating. 

5.3.4 All Sites 

The age structure for all sites combined was dominated by whitebark pine from 

AD 1 300-1700, after which subalpine fir dominated these stands (Figure 5.7D). The 
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period of increased whitebark pine establishment between 1840 and 1880 is associated 

with the post-fire cohort on Point Six, and provides evidence of the pioneering nature of 

whitebark pine. Fire scars are rare before 1500, with small peaks in fire activity before or 

concurrent with the earliest tree establishments at all three sites. Fire activity in the study 

area peaked in the early to middle 1800s. This period coincided with relatively low levels 

of tree establishment and was immediately followed by the peak in tree establishment for 

the study area. The absence of subalpine fir in these data prior to AD 1 700 may occur 

simply because evidence of earlier cohorts no longer exists due to subsequent fires and 

decay, and is not direct evidence of past forest composition. 

5.4 Statistical Analyses 

5.4.1 Descriptive Statistics 

Fire was a common disturbance across the study area, with 68 fire events that 

occurred within the study area during the last 506 years (Table 5 .2). The characteristics of 

fire activity among the three sites varied, however. Fire events were most frequent on 

Morrell Mountain and Point Six according to all measures of central tendency, while 

Mineral Peak showed fire-free intervals that were approximately twice as long. The 

measures of central tendency on Morrell Mountain and Point Six followed patterns 

similar to those found in other fire history studies (Grissino-Mayer et al. 2004), where the 

MFI � MDI � MEI � MOI. The measures of central tendency of the Mineral Peak fire 

chronology were an exception to this pattern, however, with a MDI (20 years) lower than 

the MEI (22 years). 'TTtis difference is related to the relatively long fire-free intervals 

recorded on Mineral Peak. 
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The minimum fire-free intervals of the three fire chronologies ranged from 1 to 5 

years, while the maximum fire-free intervals ranged from 55 to 67 years. The LEis of the 

Morrell Mountain and Point Six fire chronologies were 2 and 3 years, respectively, while 

the LEI of the Mineral Peak fire chronology was 8 years. The UEis followed a similar 

pattern, with Morrell Mountain and Point Six fire chronologies recording lower values 

than the Mineral Peak fire chronology. The MHis for all of the fire chronologies were 

> 1000 years. These high values are related to the skewed, amodal distributions of the 

fire-free intervals of the fire· chronologies (Figure 5 .8), suggesting that a better measure 

for the upper limit in fire-free intervals at these sites is the UEI (Grissino-Mayer 1999). 

The SD of the fire-free intervals was lowest on Morrell Mountain, while Mineral 

Peak and Point Six showed nearly identical standard deviations. The SD of a distribution, 

however, is highly affected by skewed data (Grissino-Mayer 1995), and the CV often 

provides a better measure to compare the variability of fire-free intervals between sites. 

The CV indicated that the variability of fire-free intervals was greatest on Point Six and 

least on Mineral Peak, with the variability of fire-free intervals on Morrell Mountain 

between the two. The distributions of all three sites were positively skewed (Figure 5.8). 

Kurtosis varied considerably between sites, with the distribution of fire-free intervals on 

Mineral Peak being platykurtic while distributions for Morrell Mountain and Point Six 

were mor� peaked (leptokurtic ). 
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Figure 5.8 Fire-free interval distributions for (A) Morrell Mountain, (B) Mineral Peak, 
(C) Point Six, and (D) all sites combined. The probability density functions of the 
distributions are represented by f(t), and the hazard rates by h(t). 
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S.4.2 Temporal Analyses 

The temporal analyses were limited by a lack of fire-free intervals during the fire 

suppression era (Table 5.4A), but still identified some trends in fire frequency. Mineral 

Peak and Point Six had similar MFis during the pre-settlement period (22 years) and 

shorter MFis during the settlement period (11 years and 10 years, respectively). In 

contrast, Morrell Mountain increased from a pre-settlement MFI of 10 years to a 

settlement period MFI of 14 years (Table 5.48). The MFI based on all sites combined 

shows a decrease in MFI from 7 years during the pre-settlement era to 5 years during the 

settlement period. None of the individual site fire chronologies contained sufficient fire

free intervals to include the fire suppression era in the analyses (Table 5.5A, Table 5.6A), 

but analysis of the combined data for all three sites showed an increase in MFI from the 

pre-settlement period (7 years) to the fire suppression period (22 years; Table 5.58), and 

a significant shift (p < 0.01) to less frequent fires throughout the study area from the 

settlement period (MFI = 5 years) to the fire suppression period (MFI = 22 years; Table 

5.6B). The analyses of variances (Tables 5.4C, 5.5C, and 5.6C) and distributions (Tables 

5.4D, 5.5D, and 5.6D) found no statistical differences between any periods. 

S.4.3 Spatial Analyses 

The spatial analyses illustrated two relationships among the individual site fire 

chronologies (Table 5.7). The fire histories for Morrell Mountain and Point Six were 

similar in terms of MFI, variance, and the distribution of fire-free intervals. The MFis of 

Mineral Peak and Morrell Mountain were significantly different (p < 0.01), as were their 

distributions (p < 0.05). No differences were found between Mineral Peak and Point Six. 
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Table 5.4 Results of the temporal analyses between the pre-settlement (POR-1850) and 
settlement ( 185 1-1920) periods. (A) number of fire-free intervals in period; (B) 
difference in means; (C) differences in variance; (D) difference in distributions. 

Morrell Mineral Point All 
Mountain Peak Six Sites 

A 

POR-1850 22 15 6 48 
185 1-1920 5 2 6 14 

B 

POR-1850 10 22 22 7 
185 1-1920 14 1 1  10 5 

It I-value 0.52 1. 18 0. 75 0.90 

E > t 0.6 1  0.25 0.48 0.3 7  

C 

POR-1850 66 193 592 34 
185 1-1920 145 5 27 8 

F-value 1. 13 1 1. 16 6.82 1.64 

E > F 0.65 0.46 0.06 0.34 

D 

K-S d-statistic 0. 22 0.80 0.33 0. 29 
p > d 0.99 0.2 1  0.89 0.32  
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Table 5.5 Results of the temporal analyses between the pre-settlement (POR-1850) and 
fire suppression (1921-POR) periods. (A) number of fire-free intervals in period; (B) 
difference in means; (C) differences in variance; (D) difference in distributions. 

Morrell Mineral Point All 

Motmtain Peak Six Sites 

A 

POR-1850 22 15 6 48 
1921-POR * * * 2 

B 

POR-1850 10 22 22 7 
1921-POR * * * 22 

It I-value * * * 1 .73 
E > t * * * 0.32 

C 

POR-1850 66 193 592 34 
1921-POR * * * 338 

F-value * * * 1.21 
E > F * * * 0.54 

D 

K-S d -statiitic * * * 0.69 
p > d * * ·  * 0.32 

* too few intervals to test between periods 
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Table 5.6 Results of the temporal analyses between the settlement ( 1851-1920) and fire 
suppression (1921-POR) periods. (A) number of fire-free intervals in period; (B) 
difference in means; (C) differences in variance; (D) difference in distributions. Bold 
indicates significantly different (p � 0.01 ). 

Morrell Mineral Point All 
Mountain Peak Six Sites 

A 

1851-1920 (n) 5 2 6 14 
1921-POR !n} 0 0 0 2 

B 

1851-1920 mean (yrs) 14 11 10 5 
1921-POR mean (yrs) * * * 22 

It I-value * * * 3.22 
p > t * * * 0.01 

C 

1851-1920 var (yrs) 145 5 27 8 
1921-POR var (yrs) * * * 338 

F-value * * * 4 .63 

E > F * * * 0.10 

D 

K-S d-statistic * * * 0.86 
p > d * * * 0.15 

* · too few intervals to test between periods 
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Table 5. 7 Results of the spatial analyses of fire chronologies developed from whitebark 
pine on three mountains in western Montana. The analyses tested for differences between 
sites in (A) MFI (!�-value); (B) variance (F-value); and (C) distributions (K-S d-statistic). 

A 

B 

C 

Morrell Mountain 
Mineral Peak 

Morrell Mountain 
Mineral Peak 

Morrell Mountain 
Mineral Peak 

* p � 0.05 
** ' p � 0.01 

Mineral Peak 

2.90** 

1 .99 

0.45* 
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Point Six 

0.79 
1 .52 

1 .31 
1 .07 

0. 1 9  
0.30 



5.4.4 Fire Seasonality Analyses 

The majority of fire events recorded in the fire chronologies of all three sites 

occurred during the late portions of the growing season, i.e. late August to October 

(Table 5 .8; Figure 5.9), which agrees with the modem late-summer fire season of the 

Northern Rocky Mountains (Brown et al. 1994). The fire chronologies of Point Six and 

Mineral Peak showed little variability within the dominant fire seasonality for the sites, 

with only one (2%) and two (8%) early season fire events, respectively. Seasonality of 

fire events in the Morrell Mountain fire chronology was more variable, however, with 10 

early season fire events (28% ). 

5.4.5 Fire-Tree Establishment Relationships 

The MDSEA conducted on overlapping 40-yr windows resulted in identical tree 

establishment values during the overlaps for both the annual tree-establishment 

chronology (Figure 5. 10) and the 5-yr moving average tree-establishment chronology 

(Figure 5. 1 1  ). The confidence intervals varied slightly between the 40-yr windows, but 

the level of statistical significance was identical for all values in the overlaps. These 

findings justified the union of these results into two 100-yr MD SEA windows. 

In general, the trends displayed by both the MDSEA of annual tree establishments 

(Figure 5. 12A) and the 5-yr moving average (Figure 5 . 12B) are similar. An initial period 

of low establishment followed the fire event, after which the number of tree 

establishments increased steadily and peaked ca. 50-75 years after the fire event. Tree 

establishment frequencies decline after the peak period, but are still above the level of 

establishments that immediately followed the fire event. The relatively erratic values in 
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Table 5.8 Fire seasonality in whitebark pine forests on three mountains in the Lolo 
National Fore st, Montana, and all sites combined. 

Morrell 
Fire season Mountain 

E: May 9 (25) 
M: June to early July 1 (3) 
L: late July to early August 0 (0) 
A: late August 0 (0) 
D: September to October 26 (72) 

Early Season I Late Season 

Morrell 
Mountain 

n = 36 

Mineral 
Peak 

n = 24 

Point Six 
n = 57 

All Sites 
n = 116 

0 20 40 

No. fire scars (% of total) 
Mineral Point 

Peak Six 
0 (0) 0 (0) 
1 (4) 0 (0) 
1 (4) 1 (2) 
0 (0) 0 (0) 

22 (92) 55 (98) 

60 80 

Percent 

All 
Sites 
9 (8) 
2 (2) 
2 (2) 
0 (0) 

103 (88) 

100 

Figure 5.9 Fire seasonality in whitebark pine forests on three mountains in the Lolo 
National Forest, Montana, and all sites combined. 
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Figure 5.10 Results from four multi-decadal superposed epoch analyses examining the 
relationship between fire and annual tree establishment. The analyses included tree 
establishment dates lagged (A) 0 years, (B) 20 years, (C) 40 years, and (D) 60 years. 
Dotted lines connect the first and last year of each overlapping segment. See Figure 4.2 
for the methods used to create the lagged chronologies. 
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Figure 5.11  Results from four multi-decadal superposed epoch analyses examining the 
relationship between fire and the 5-yr moving average of tree establishments. See Figure 
5 . 1 2  for explanations of the methods used. 
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Figure 5.12 Fire-tree establishment relationships over the 98 years following fire events 
in study sites on three mountains in the Lolo National Forest, Montana. Results are from 
multi-decadal superposed epoch analyses using (A) annual tree establishments and (B) 5-
yr moving average of tree establishments. 
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the annual tree establishment resulted in several years of significantly above-average tree 

establishments that range from t+'24 to t+87, with a cluster of significant values during 

the peak period of establishment (t+52, t+53 , t+59, t+62,  t+66, t+69, and t+72), but these 

individual years mean little statistically compared to the overall trends of the data. 

Although the MDSEA using the 5-yr moving average introduced some · 

autocorrelation into the analysis, the overall pattern provided a smoother representation 

of the trends in tree establishment following fire. The peak in tree establishment, centered 

on years of significantly above-average tree establishments at t+53 , t+54, t+64, t+67 ,  

t+ 7 1 , includes several independent 5-yr periods and indicates the results are likely not a 

result of autocorrelation. Variations from the overall trend of the data include periods of 

relatively more frequent tree establishments from t+ 16 to t+26, t+35 to t+40, t+50 to 

t+55, and t+81 to t+89. 

5.4.6 Fire-Tree Growth Relationships 

The MDSEA found several relationships between fire and both local- and 

regional-scale tree growth, as well as similarities between the two scales. Results of the 

MDSEA based on all fire events identified a pattern of below-average tree growth for 39 

of 40 years at the local scale (Figure 5. 13A) and 35 of 40 years at the regional scale 

(Figure 5. 13B). A trend of strongly below-average growth from t-15 to t-7 is present in 

both local and regional tree growth, with significantly below average growth in both 

analyses at t- 14 (p < 0.05) and t- 13 (local = p < 0.05; regional = p < 0.01). Local tree 

growth was significantly below average (p < 0.05) one year after the fire (t+ 1 ), but this 

relationship was not identified at the regional scale. While the dominant pattern of tree 
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Figure 5.13 Results from multi-decadal superposed epoch analyses of the relationship 
between all fires and tree growth at (A) local and (B) regional scales. The local analysis 
used the standardized master ring-width chronology developed from the fire-scarred 
samples collected in the Lolo National Forest, while the regional analysis used a 
standardized ring-width chronology developed from whitebark pine on Carlton Ridge in 
the neighboring Selway-Bitterroot Wilderness Area (Kipfmueller 2003). Bars represent 
the departure of the average actual ring-width indices (RWI) from the chronology mean 
RWI of 1 .00. The dashed vertical lines indicate the year of the fire event (t = 0). 
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growth was below average, the magnitude of this trend increased and decreased on ca. 4-

10-yr intervals, with the year of the fire occurring at a transition from near-average 

growth rates to relatively lower growth rates at both scales. 

The MDSEA conducted with the filtered composite master fire chronology 

indicated widespread fire events occurred during a transition from near-average growth to 

strongly below-average growth at both the local (Figure 5. 14A) and regional (Figure 

5. 14B) scales. The trends of below-average growth following the fire lasted several years 

at both scales, with significantly below-average growth at both scales identified at t+ 1 

(local = p < 0.05; regional = p < 0.01) and t+4 (local = p < 0.01 ;  regional = p < 0.001). 

The years t+7 to t+ 12  are relatively nearer to average growth for both scales, and are 

followed by a trend of increasingly above-average growth from t+ 15 to t+20. An 

oscillation between above- and below-average growth on a periodicity of ca. 20--25 years 

is evident at the local scale (Figure 5 . 14A), but less so at the regional scale (Figure 

5. 14B). 

5.5 Fire-Climate Relationships 

I identified several relationships between fire activity and climate at multiple 

scales in my study area over the past 350 years. The overall relationship between 

temperature and fire activity showed relatively little association (Figure 5. 15A). Fires 

occurred during cool years ( e.g. the fires of 1 781 and 1816) and warm years ( e.g. the fires 

of 17  54 and 1889), but were not associated with years of either extreme. Generally cooler 

temperatures occurred during the period of peak fire activity in my sites. Precipitation 

showed a relatively weak association with fire activity (5. 15B). A period of above-
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Figure 5.14 Results from multi-decadal superposed epoch analyses of the relationship 
between widespread fires and tree growth at (A) local and (B) regional scales. See Figure 
5. 10 for explanation. 
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Figure 5.15 Visual representation of the relationships between: (A) temperature (annual 
and 5-yr moving average; Briffa et al. 1 992); (B) Precipitation (annual and 5-yr moving 
average; Fritts 1 991); (C) Palmer Drought Severity Index (annual and 5-yr moving 
average; Cook et al. 1 999); and (D) fire activity, including a 20-yr moving average of the 
number of fire scars recorded at all sites. Triangles represent years when multiple trees 
recorded fire events . 
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average precipitation coincided with a gap in fire activity from ca. 1725-1750, but the 

wettest period in the reconstruction directly overlapped with the period of peak fire 

activity in the study area. Comparisons with the reconstructed PDSI showed a somewhat 

stronger relationship, as several widespread fires (e.g. 1719, 1889, and 1919) were 

recorded during drought years (5.15C). However, both the fires that scarred the greatest 

numbers of trees (1754, 1816, and 1834) and the peak period of fire activity (ca. 

1816-1850) occurred during years of generally average to above-average moisture 

availability. 

Several fires were closely timed with specific periods of ENSO activity, but my 

analyses did not find a consistent pattern between the two (Figure 5 .16). Widespread fires 

occurred during or near strong El Nifio events (1719, 1889, and 1919) and La Nifia events 

(1751, 1754, and 1898), but the largest fires (1816 and 1834) and the peak in fire activity 

coincided with a period of dampened ENSO variability from ca. 1810-1850, during 

which no El Nifio events occurred (Cleaveland et al. 1992). 

Fire activity in my study area appears to be strongly influenced more by 

multidecadal climate variability (Figure 5 .1 7). No fire events were recorded during the 

warm phase of the AMO from ca. AD 1650-1700. The two widespread fires that burned 

in the early 1700s occurred during a short cool phase of the AMO, and the widespread 

fire in 1754 coincided with a transition to a period of extremely low PDQ indices in both 

PDO reconstructions. A strong relationship exists between widespread fire events and the 

PDO, with 14 of 15 widespread fire events occurring during cool phases of the PDO, and 

10 of these within one year of the lowest PDO index of the respective oscillations. The 

peak period of fire activity is nested within synchronous prolonged, deep-cool phases of 
119 



3.0 ------------------------------

2.5 

2.0 
1 .5 
1.0 
0.5 

A -- 8 --

0.0 �l,,ffr,,J!Hft+H++-111--¼f,filffl 

-0.5 
-1 .0 
-LS 
-2.0 (� 

J 650 1 675 1700 J 725 1 750 1 775 1 800 1 825 . t 850 1 875 1900 1925 J 950 1975 2000 

Calendar Year 

Figure 5.16 Visual representation of the relationship between: (A) Nino3 (D'Arrigo et al. 
in press) and (B) Southern Oscillation Index (inverse z-scores; Stahle et al. 1998), with 
(C) fire activity, including a 20-yr moving average of the number of fire scars recorded at 
all sites. Triangles represent years when multiple trees recorded fire events. 

120 



l .S A 

1 .0 

0.5 

0.0 

..o.s 
-l.O 

-l.5 

1650 I 675 1 700 1 725 1 750 1 775 1 800 1825 1850 1 875 1900 1925 1950 1975 2000 

Calendar Year 

1 .5 

1 .0 

0.5 

0.0 

-0.5 

- 1 .0 

- 1 .5 

Figure 5.17 Visual representation of the relationship between (A) Pacific Decadal 
Oscillation (annual and 20-yr moving average; D' Arrigo et al. 2001), and (B) the Atlantic 
Multidecadal Oscillation (Gray et al. 2004), with (C) fire activity, including a 20-yr 
moving average of the number of fire scars recorded at all sites. Triangles represent years 
when multiple trees recorded fire events. 
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the AMO and the PDO. This period is followed by ca. 50 years during which only one 

fire scarred multiple trees and coincided with a strongly low PDO index and a downturn 

in the AMO. The fire activity recorded during the late 1800s occurred during generally 

cool phases of the PDO, but as all three multi-decadal oscillations moved to warm phases 

in the early- to mid-1900s, fire activity ceased. The only two fires that scarred multiple 

trees in the 20th century occurred during drought years (Figure 5 .15) that were related to 

El Nino events (Figure 5.16). 

5.6 Fire Regime Type Classification 

The study sites were located within areas designated as one of two fire regime 

types by Schmidt et al. (2002). Morrell Mountain was located within an area designated 

as a type I fire regime, while Mineral Peak and Point Six were within areas designated as 

type III fire regimes (Figure 5.18). Areas of fire regime type III bordered the Morrell 

Mountain study site, and Mineral Peak and Point Six were bordered by regions of fire 

regime type V. Using the LEI and UEI to delineate the range of fire intervals for each 

site, coupled with evidence of post-fire cohorts in the age-structure data to describe fire 

severity, the study site on Morrell Mountain would be classified as fire regime type I, 

while the study sites on Mineral Peak and Point Six could be classified as either fire 

regime type I or III due to the ranges in fire frequency (Table 5.9). 
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Fire Regime Ty1pe 
• Type·t: ,0.35 yrs; Low Severity -

Type 11: -0-35 yr$; Stand Replacement 
Type lll: 3S-1oo+ yrs; Mixed Sev.erny· 
Type JV: 35-10o+- yrs; Stand ReplJ�ment 
Type 'ti 200+ yrs; Stand Repfa·ce·ment-

Figure 5.18 Fire regime types for three study sites in the Lolo National Forest, Montana. 
Classified by Schmidt et al. (2002). The national forest is outlined in black, and triangles 
represent the individual study sites. See Table 1 .1 for descriptions of the fire regime 
types. 
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Table 5.9 Fire regime classifications for study sites on three mountains in the Lolo 
National Forest. See Table 1 .  1 for FRCC fire regime type definitions. 

Site Range
1 

Morrell Mountain 2-27 yrs 

Mineral Peak 8-44 yrs 

Point Six 3-30 yrs 

1 As defined by the LEI and UEI 

Fire Severity2 

Low to mixed severity, replacing 
less than 75% of the dominant 
overstory vegetation 

Low to mixed severity, replacing 
less than 75% of the dominant 
overstory vegetation 

Mixed severity fires replacing less 
than 75% of the dominant overstory 
vegetation 

2 As indicated by age-structure data 
3 As defined by Schmidt et al. 2002 
4 As derived from dendrochronological research 
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Fire regime type 

FRCC3 Site Specific 4 

Type I Type I 

Type III Type I/ Type 

III 

Type III Type I/ Type 

III 



Chapter Six 

6. Discussion 

6.1 Fire History and Age Structure of Whitebark Pine Forests 

The fire regimes of all three of my study sites were clearly mixed-severity. The 

stand structure, fire frequency, and fire severity descriptions that I derived from the fire

scar and age-structure data fit the descriptions of forests maintained by this fire regime 

type (Amo et al. 2000). These descriptors include a generally uneven age structure with 

limited evidence of one or more post-fire cohorts, and fire histories that include numerous 

small, patchy fires punctuated by less frequent, widespread fires. Fire-scar data alone are 

insufficient to characterize many subalpine fire regimes (Kipfmueller and Baker 1998), 

but coupling crossdated fire-scar data with age-structure data proved effective in 

describing the forests in my study sites. 

Comparisons to Previous Fire History Research in Whitebark Pine Forests 

While previous research has described the fire regimes of whitebark pine forests 

as mixed-severity (Arno 200 I ), fire events recorded in my study sites are more frequent 

than reported by nearly all other fire history studies conducted in this ecosystem 

(however, see Morgan and Bunting 1990). When compared to the findings of previous 

research in whitebark pine forests, the LEI, each measure of central tendency, and the 

UEI were all lower for my sites than values reported in the studies that did not implement 

crossdating (Table 2. 1 ). Additionally, the MFls found by Kipfmueller (2003) were for 

entire watersheds, and at the scale of individual stands, fire was more common in my 

study sites. 
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The disparity between fire frequency at my sites and previous research in 

whitebark pine forests may be related to several factors, including geographic location, 

elevation, topography, and the research methods used. The relatively broad geographic 

range represented by these different studies may create sufficiently different local climate 

regimes that contribute to different disturbance regimes. In general, the MFis found in 

previous fire history studies shift from longer intervals in the southern areas in and 

around Yellowstone National Park to shorter intervals in the Northern Rockies (Table 

2.1 ). However, latitudinal differences are unlikely to be the main cause of variation in 

MFis between sites. Morgan and Bunting ( 1990) reported a very short MFI in Wyoming, 

while Keane et al. (1994) reported relatively long MFis for their sites in the Northern 

Rockies, most of which were within ca. 50 km of Morrell Mountain. The lack of a 

consistent relationship between fire frequency and the geographic location of previously 

studied whitebark pine forests suggests that other factors likely cause differences in these 

fire regimes. 

Elevation �nd topography both influence fire regimes in the Pacific Northwest 

(Heyerdahl et al. 2001), the American Southwest (Grissino-Mayer et al. 2004), and the 

Colorado Front Range (Hadley 1994). With respect to the fire regimes of whitebark pine 

in the Northern Rockies, elevation is unlikely to be the sole source of variation in fire 

frequency because whitebark pine forests are already limited to elevations above ca. 1850 

m throughout the region (Amo and Hoff 1990) .  However, the elevational relief of a site 

relative to the surrounding area may play an important role in determining fire activity. 

Many of the previous studies on fire history in whitebark pine forests were conducted 

within watershed basins, but my sites were located on the upper slopes of peaks that were 
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the highest points in the immediate area. The concave topography of watersheds likely 

reduces lightning activity in the basin, while the convex topography of my sites creates 

"islands" of higher elevation that may act as focal points for lightning strikes and lead to 

more frequent fires, similar to the "Sky Islands" of southern Arizona (Grissino-Mayer 

and Fritts 1995, Grissino-Mayer et al. 1996) and the lake islands of Quebec (Bergeron 

199 1  ). Some of the previous studies included fire history data from ridge tops ( e.g. Amo 

and Petersen 1983, Keane et al. 1994, and Barrett 1994), but only one study specifically 

collected fire-scarred samples on a peak (Morgan and Bunting 1990), and they in fact 

reported the shortest MFis. Additional evidence for increased fire activity on ridges and 

peaks in whitebark pine forests comes from Barrett ( 1994a ), who noted several white bark 

pine trees with multiple fire scars on ridge tops near his study area. The high relief and 

convex topography of my study sites may therefore have led to the short MFis recorded 

at my sites. 

While the location, elevation, and topography may have played a role in creating 

the exceptionally short fire-free intervals recorded at the sites examined using crossdating 

methods, the fact that all three studies that used crossdating reported lower MFis than any 

study that did not use crossdating (Table 2. 1) suggests that this pattern is also likely 

related to the research methods applied. Extremely narrow and locally absent rings are 

common in high-elevation trees due to episodes of extreme climate and disturbance 

events (Fritts 1976, Romme 1982), and many of my samples included narrow or missing 

rings directly after a fire scar (Figures 5. 13A and 5 . 14A). The combined effects of a harsh 

climate and the relatively high frequency of small, patchy fires in subalpine forests 
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(Barrett 2000), introduces a large amount of uncertainty in ring counts of fire-scarred 

samples collected from high-elevation trees such as whitebark pine. 

Several studies explicitly stated that uncertainty existed in their fire-scar dates 

( e.g. Romme 1982 and Murray et al. 1998), and used age-structure data to corroborate 

fire dates. However, fire history reconstructions that rely on age-structure data often 

provide confident reconstructions of large fire events in ecosystems dominated by stand

replacing fire regimes (Kipfmueller and Baker 1998), but tend to underestimate the 

frequency of small fires that leave minimal or obscure evidence of their passage on the 

landscape (Murray et al. 1998). In addition, the methods for non-crossdated fire-scar

based fire history reconstructions were developed in forest systems where fires were 

commonly widespread, and some researchers suggested that fire scars in close succession 

be shifted to represent a single fire event rather than separate events (Amo and Sneck 

1977). While this may be appropriate in some ecosystems, this technique would lead to 

underestimations of fire frequency and overestimations in fire size if applied to the 

mixed-severity fire regimes of the whitebark pine ecosystem. The combination of the 

uncertainty in fire-scar dates, the low resolution of age-structure data, and the adjustment 

of multiple fire dates to represent single fire events could be responsible for some of the 

differences in MFis reported by studies that either used or did not use crossdating. 

Fire Seasonality and Anthropogenic Influences on the Fire Regime of Mo"ell Mountain 

The dominance of dormant season fires at all three sites agrees with the modem 

fire season of the Northern Rockies (Barrows 1977, Brown et al. 1994). However, the 

greater variability in the seasons of past fires on Morrell Mountain provides an interesting 
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contrast to the other two sites. Lightning appears to be the dominant ignition source in my 

study sites due to the seasonality and patchy nature of most fire events recorded in my 

study area (Barrows 1977). The proximity and overall similarity in geographic setting of 

Morrell Mountain, Mineral Peak, and Point Six suggest the sites are affected by similar 

weather patterns, such as the late-summer lightning storms common to the region. The 

similarity in settings and ignition sources among these three sites would seemingly lead 

to similarity in fire seasonality. However, the variability in fire seasonality on Morrell 

Mountain suggests that other factors affected the occurrence of fire events at this site, 

potentially including anthropogenic activity and land use history (Barrett and Amo 1982, 

Amo 1985). 

Research in the American Southwest has investigated anthropogenic influences 

on local fire regimes by defining the dominant fire season of an ecosystem, then 

identifying areas of fire activity that are consistently outside the normal fire season 

(Seklecki et al. 1996,  Kaye and Swetnam 1999, Grissino-Mayer et al. 2004). The greater 

variation from the dominant fire season on Morrell Mountain may therefore indicate a 

fire regime modified by human activity. Supporting evidence for this hypothesis is 

provided by the presence of bark-peeled lodgepole pines on the flanks of Morrell 

Mountain (Grissino-Mayer et al. in press). Culturally modified trees are associated with 

Native American activity throughout the West (Swetnam 1984), and have been identified 

along several major Native American trails in the northwestern U.S. (Bergland 1992, 

Merrell and Clark 2001 ). This suggests Morrell Mountain may have been along a travel 

corridor associated with the settlement near Seeley Lake identified by Amo et al. (1997). 
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Additional supporting evidence for anthropogenic influences on the fire regime of 

Morrell Mountain comes from the diary of Captain William Clark, of the Lewis and 

Clark expedition, when camping near Lolo Pass with a group of Flathead Indians 

(DeVoto 1997): 

Wednesday June 25th 1 806 
last evening the indians entertained us with setting the fir trees on 

fire. they have a great number of dry limbs near their bodies which 
when Set on fire create a very sudden and emmence blaize from 
bottom to top of those tall trees. they are a boutifull object in this 
situation at night. this exhibition remi[ n ]de[ d] me of a display of 
firewo[r]ks. the nativs told us that their object in Setting those trees 
on fire was to bring fair weather for our journey. 

The Morrell Mountain fire tower was built due to the broad view it commanded of the 

surrounding area, and trees set ablaize on the mountain top would be visible for miles in 

several directions, including the valley around Seeley Lake. The usefulness of this 

location for communication, the culturally modified trees, and the intentional use of fire 

by Native American tribes that inhabited this area all suggest that human activity may be 

responsible for the variability in fire seasonality on Morrell Mountain. 

Age Structure Trends in Whitebark Pine Forests and Periods of Increased Fire Activity 

The majority of whitebark pine trees in the study plots on Morrell Mountain and 

Mineral Peak established during a relatively synchronous period during the AD 1500s 

and early 1600s. Several lines of evidence suggest these trees represent climate and 

disturbance related cohorts. The relatively close timing of the establishment of numerous 

trees suggests that conditions were ideal for establishment during this period. The 

pioneering nature of whitebark pine (Tomback et al. 1993) suggests the occurrence of a 

widespread disturbance that created suitable openings for whitebark pine establishment. 
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The lag that occurs in tree establishment following a fire (Figure 5. 12) has been identified 

in other high elevation forests (Little et al. 1994), and suggests that widespread 

disturbances likely affected my sites in the mid- to late- l 400s. Disturbances that affect 

the landscape on a broad scale that could lead to increased establishment of whitebark 

pines include mountain pine beetle outbreaks, drought, and fire. 

The Relationship Between Age-Structure and Mountain Pine Beetle Activity 

Epidemic-scale mountain pine beetle outbreaks occasionally lead to widespread 

mortality in the forests of the Northern Rockies (Bartos and Gibson 1990, Kipfmueller et 

al. 2002). Documented outbreaks in the early 1900s and 1980s affected hundreds of 

thousands of hectares of subalpine forests in this region (Bartos and Gibson 1990), with 

the ghost forests of whitebark pine that are scattered across the landscape serving as 

evidence of these outbreaks (Amo and Hammerly 1984). While the mortality caused by 

these outbreaks undoubtedly created forest openings suitable for regeneration of the 

disturbance-dependent whitebark pine (Arno 2001 ), mountain pine beetles preferentially 

attack larger, seed producing trees which leads to greatly diminished white bark pine seed 

sources following beetle epidemics (Kendall and Keane 2001 ). White bark pine trees can 

produce cones at 20-30 years of age, but large cone crops typically do not occur until a 

tree is 60-80 years old (Mccaughey and Tomback 2001). The potential delay in 

whitebark pine regeneration following beetle outbreaks likely provides an opportunity for 

competitive species that commonly coexist with whitebark pine and are unaffected by 

mountain pine beetle, such as subalpine fir and Engelmann spruce, to gain dominance in 

stands previously dominated by whitebark pine (Bartos and Gibson 1990). 
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Mountain pine beetle activity is also strongly affected by climate and weather 

(Amman 1972). Beetle larvae are susceptible to short term, extremely cold weather 

events (Bentz et al. 1991, Bentz and Mullins 1999), and extended periods of cooler 

temperatures can limit the potential for widespread outbreaks in subsequent years (Bartos 

and Gibson 1990, Safranyik and Linton 1998, Kipfmueller et al. 2002). A tree-ring based 

reconstruction of summer temperature in the Selway-Bitterroot Wilderness Area 

(Kipfmueller 2003) shows below average temperatures for the region during the second 

half of the 15th century. While these relatively cooler temperatures suggest mountain pine 

beetle outbreaks likely were not responsible for the whitebark pine establishment in the 

16th and 17th centuries, few studies have reconstructed long-term records of previous 

beetle outbreaks of this region (Perkins and Swetnam 1996, Kipfmueller et al. 2002) and 

the relationship between mountain pine beetle outbreaks and the age structure of my sites 

is uncertain. 

The Relationship Between Age Structure and Drought 

Drought conditions can affect forest structure both directly, by killing trees due to 

a moisture deficiency (Kitzberger et al. 1995), and indirectly, by weakening the 

resistance of trees to mountain pine beetle attacks (Kipfmueller et al. 2002) and by curing 

fine and coarse fuels that facilitate the spread of fires (Kipfmueller 2003) . Regeneration 

pulses would be related to the end of drought conditions and the establishment of trees on 

the recently disturbed sites. The 1400s were a period of drought in the Northern Rocky 

Mountains (Cook et al. 1999), but relative to the history of the region, this was not a 

period of severe moisture deficiency. Although whitebark pine is commonly found on 
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dry, exposed sites (Amo and Hoff 1990), the species is extremely drought tolerant 

(Weaver 2001) and it is unlikely that a drought of this scale would lead to widespread 

mortality and the resulting pulse in regeneration. The dry conditions were also coupled 

with below average temperatures that would limit mountain pine beetle regeneration. The 

most likely relationship between drought and the regeneration pulse of the 16th and 17th 

centuries that remains is through drought-related fire activity. 

The Relationship Between Age Structure and Fire Activity 

While relatively little fire history data in the Northern Rockies extend into the late 

1400s and early 1500s (Barrett et al. 1997), Amo ( 198 1 )  suggested that a large fire may 

have burned near Mineral Peak in the 1500s. Additionally, fire history studies conducted 

in the Lolo National Forest in lower-elevation forest types that are not susceptible to 

mountain pine beetle also showed cohorts that established in the early- to mid-l 500s 

(Amo et al. 1995, Amo et al. 1997). This suggests that the late 15th century may have 

been a period of widespread fire activity, similar to the peak in fire activity in my study 

area ca. 18 16-1850, followed by a period of widespread whitebark pine regeneration in 

the burned areas. Additional research utilizing the long life-span of whitebark pine may 

be able to provide information on the causes of this broadly-synchronous period of cohort 

establishment. 

The 1601 Frost Ring and Volcanic Climate Forcing 

The presence of the AD 1601 frost ring in the majority of samples alive in that 

year coincides with a known period of increased global volcanic activity, culminated by 
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the eruption of Huaynapatina in the central Peruvian Andes in 1600 (Thouret and Davila 

1999, Thouret et al. 2002). This eruption affected global climate by ejecting enough 

material into the upper atmosphere to cause the summer of 1601 to be the coldest in the 

Northern Hemisphere over the past 600 years (Briffa et al. 1998a, de Silva and Zielinski 

1998, Gervais and MacDonald 2001 ). The event is associated with widespread frost 

damage recorded by bristlecone pine trees on the White Mountains of California 

(LaMarche and Hirschboeck 1984) and extremely low latewood density in tree-ring 

chronologies for northern North America (Jones et al. 1995, D'Arrigo and Jacoby 1999, 

Luckman and Wilson 2005). 

Ring-width based temperature reconstructions in central Idaho and along the 

Idaho-Montana border identified generally cooler temperatures during this period, and 

while 1601 was the coldest year of the surrounding decades, the event was not as extreme 

as recorded in other regions (Biondi et al. 1999, Kipfmueller 2003). Neither of these 

studies reported the presence of frost damage in 1601 to the extent that is evident in my 

samples. Several factors may be responsible for these differences in site sensitivity. Many 

of the whitebark pine trees on my sites were relatively young in 1601, and, if a 

widespread disturbance had affected my sites in the late 15th century, they were likely 

growing in relatively open and harsh environments. The increased occurrence of frost 

damage at my sites may therefore be related to the physiological characteristics of 

immature trees (e.g. relatively thinner bark) growing in an exposed environment 

(Schweingruber 1996). 

Another factor that may have played a role in the distribution of frost rings in the 

region is the landscape itself. If the extreme cold associated with the 1601 growing 
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season followed the crest of the Rocky Mountains similarly to polar outbreaks common 

to this region (Dalavalle and Bosart 1975), the Bitterroot Range may have blocked the 

cold air to the east. The resulting temperature differences between my sites in the Lolo 

National Forest and the sites in the Selway-Bitterroot Wilderness Area and central Idaho 

could explain the differences in the occurrence of frost damage. A gridded network of 

high-elevation chronologies between these sites could be used to map the occurrence of 

widespread frost damage and describe the varying effects of this event on the region. 

6.2 Spatiotemporal Variations in Fire Activity 

Temporal Variations in Fire Regimes of Whitebark Pine Forests 

The shift from more frequent fires prior to the settlement era to almost no fire 

events following the onset of fire suppression documented in my study sites follows the 

general trends identified in other ecosystems characterized by short-interval fire regimes 

throughout western North America (Kilgore and Taylor 1979, Dieterich 1983 , Swetnam 

1983, Barrett 1994b, Grissino-Mayer 1995, Murray et al. 1998, Kipfmueller and Baker 

2000, Heyerdahl et al. 2001 ,  Grissino-Mayer et al. 2004). However, research in subalpine 

and boreal forests characterized by infrequent, severe fires found little evidence of 

changes in the fire regimes of these ecosystems due to anthropogenic activity (Romme 

and Despain 1989, Johnson et al. 2001 ,  Sherriff et al. 2001). The whitebark pine forests 

in my study area provide an interesting contrast between these findings, as they are both 

subalpine forests and characterized by short-interval fire regimes. 

Comparisons of the MFis between the pre-settlement and settlement periods for 

individual sites were limited due to the small number of fire events recorded during the 
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settlement period, but little overall change in fire frequency was found between these 

periods. Although studies in both short-interval fire regimes (Goldblum and Veblen 1992, 

Hadley 1 999) and long-interval fire regimes (Johnson et al. 1990) have identified 

increased fire activity during initial Euro-American settlement, the activities associated 

with these changes (e.g. mining, road construction) did not take place near my study sites 

until the 20th century, and therefore had no impact on the settlement-period fire regimes 

of my sites. 

The near-cessation of fire activity after 1920 in my study sites coincides with 

several improvements in the effectiveness of fire suppression in the Northern Rocky 

Mountains. The fire towers on Morrell Mountain and Mineral Peak were constructed in 

the 1920s (NHLR 2005), and the ensuing continual human presence would make fire 

suppression highly effective in extinguishing the small fires that commonly occurred on 

these sites. This was also a period of extensive road and trail construction throughout the 

national forest system (Dilsaver 1994), and with its proximity to Missoula and improved 

access, fire suppression was also likely effective at minimizing the spread of spot fires on 

Point Six. Technological advances during this time increased the efficacy of fire 

suppression in lower-elevation ecosystems (Pyne 1982, van Wagtendonk 1 99 1  ), which 

limited the upslope migration of fires into the subalpine zone (Tomback et al. 2001 a). 

These fac�ors likely combined to be highly effective at reducing the number of small fires 

that burned in my study sites. 

Similar changes in fire occurrence have been identified in subalpine forests near 

my study area. Kipfmueller (2003) recorded no fire events that burned more recently than 

1934 in three watersheds in the Selway-Bitterroot Wilderness Area. A landscape-scale 
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analysis of the Selway-Bitterroot Wilderness Area found the modem average annual area 

burned is nearly half of the area burned each year during pre-settlement times (Brown et 

al. 1994). Keane et al. ( 1994) suggested that 60 years of fire suppression significantly 

reduced fire activity throughout the Bob Marshall Wilderness Complex, just north of the 

Lolo National Forest. Although fire suppression offers a reasonable explanation for the 

reduced fire activity at my sites, other potentially influential factors require consideration 

as well, including stand structure, fuel availability, and climate. 

Morgan and Bunting ( 1990) found fire activity to be greatest in the early and late 

portions of the life-history of individual stands, and proposed that trends in fire activity 

were related to successionally determined stand structure and fuel availability. The cycle 

they describe includes frequent, low-severity fires in young, post-disturbance whitebark 

pine forests due to the abundant fine fuels provided by the herbaceous species that 

commonly establish under the relatively open conditions created by high-intensity fires. 

As the stand develops and canopy cover increases, the herbaceous species become less 

abundant, and the resulting reduction in fine fuels leads to fewer spreading ground fires. 

This in tum allows subalpine fir to begin establishing in the site. As subalpine fir 

becomes increasingly common in a stand, the canopy becomes denser and the amount of 

available light on the forest floor lessens, further decreasing the growth of grasses and 

other fine fuels. The reduced light levels also lead to less evaporation at the forest floor 

and increases total moisture availability. This results in minimal fire activity during the 

middle age of the stand. As the subalpine fir mature and grow into the canopies of the 

mature whitebark pine, they provide ladder fuels that, under extreme weather conditions, 

can lead to stand-replacing fires that begin the cycle over again. 
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While the age-structure data of my sites generally agree with this proposed cycle 

of stand development, the fire-scar data do not. In all of my sites, whitebark pine 

established first following severe fire events, after which subalpine fir began moving into 

the stand, as suggested by Morgan and Bunting ( 1990). Fire activity showed little 

temporal variation related to the age of the stands in my study sites. However, the largest 

fires recorded in my study area occurred within a period from ca. AD 17 19-1850, which 

is nearly synchronous with the period of greatest fire activity from ca. AD 1700-1850 at 

Russell Peak (Morgan and Bunting 1990). While the timing of these fires may be related 

to many factors, this may be evidence of regional-scale climate forcing on the fire 

regimes of whitebark pine. 

The Effects of Fire Suppression on the Structure of Whitebark Pine Forests 

The dominant paradigm states that modem fire suppression has exacerbated 

structural changes and advancing succession in whitebark pine forests throughout its seral 

distribution (Keane et al. 1990b, Amo et al. 2000, Tomback et al. 2001a). The 

suppression of lightning ignitions in the subalpine zone has reduced the number of fires 

that grow and spread through upper-elevation forests, and fire suppression in low 

elevation forests has limited the upslope migration of fires that may have historically 

moved into the subalpine zone (Tomback et al. 2001a). While fire suppression may be 

partially responsible for the decreased fire frequency in my study area during the 20th 

century (Table 5.6), the structural and compositional effects of the shift to less frequent 

fires are unclear. 
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The age-structure data indicate that subalpine fir began establishing in my study 

sites well before fire suppression affected the landscape. Subalpine fir trees are highly 

susceptible to fire-related damage and mortality (Flint 1925). While the majority of the 

oldest fir trees on Mineral Peak and Point Six established following widespread and 

likely severe fires, the numerous small fires recorded at these sites, as well as the fires 

recorded on Morrell Mountain, showed little reflection in the age-structure data. While 

fire suppression may have contributed to the reduced occurrence of small fires over the 

past 70-80 years, the fire-scar and age-structure data indicate that widespread, severe 

fires were rare in these stands over the past several centuries. This suggests that despite 

the fact that all three stands are now advancing toward later successional stages, the time 

since the last widespread fire, and hence age structure, are within the historical range of 

variability for these sites. 

Spatial Variability in the Fire Regimes of Whitebark Pine 

Variations in land cover and topography strongly affect fire behavior at local 

scales (Hadley 1994, Grissino-Mayer 1995, Beaty and Taylor 2001 ,  Heyerdahl et al. 

2001 ,  Arabas et al. in prep). The differences between the fire histories of my three study 

sites reflect the variability of these site characteristics. The lack of differences identified 

between the fire histories of Morrell Mountain and Point Six is related to the placement 

of both study sites within relatively continuous forests on west/southwest-facing slopes of 

both peaks. In contrast, the more dissimilar study site on Mineral Peak was located within 

a highly dissected forest that spread in fingers to the south, southwest, and west. The 

continuity of the land cover on Morrell Mountain and Point Six led to both a greater 
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number of fires and a greater number of fires that scarred multiple trees throughout the 

sites. The open structure of the forest on Mineral Peak provided limited fuels as ignition 

sources, and the talus acted as a fire barrier, limiting three of four fires that scarred 

multiple trees to individual clusters. 

The smaller number of fires recorded on Mineral Peak may also be related to the 

southerly aspect of the clusters compared to the more west-facing sites on Morrell 

Mountain and Point Six. Aspect has commonly been correlated to fire activity via 

moisture gradients and forest types (Beaty and Taylor 2001,  Heyerdahl et al. 2001 ), but I 

suggest that in my study sites aspect is more important with respect to ignitions. If 

weather moves into these sites from the west, storms would break more heavily upon the 

west-facing slopes, which would lead to higher rates of lightning strikes and ignitions on 

these aspects. 

Additional differences in fire regimes exist among the sites related to topographic 

effects that warrant discussion. The fire-scar and age-structure data show that Point Six 

experienced two or three severe fires in the past 400 years (ca. AD 1600, 17 19, and 1816) 

compared to Mineral Peak that showed two potential post-fire cohorts (ca. AD 1550 and 

1880), and Morrell Mountain that showed evidence of one post-fire cohort (ca. AD 

1500). This change in fire severity may be related to topography and moisture 

availability. Local relief affects both the severity and pattern of burns (Hadley 1994), and 

the relatively less steep portion of the study site on Point Six may have led to less patchy 

fires that burned with more intensity than fires on the other, steeper sites. Another factor 

that may have contributed to the differences in fire severity between sites is the rain 

shadow of the Bitterroot Range that extends over much of the Lolo National Forest 
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(Owenby et al. 1991). This rainshadow creates a gradient of moisture from the relatively 

drier conditions on Point Six, to slightly more moist conditions on Mineral Peak, to the 

wettest conditions on Morrell Mountain. This gradient is amplified by the orographic 

influences of the Continental Divide that lies just to the east of Morrell Mountain and 

further increases precipitation at that site. The drier conditions at Point Six may have 

facilitated the spread and increased the severity of fire events, while the moderately moist 

conditions on Mineral Peak may have limited the spread and severity of fires, and the 

moist conditions on Morrell Mountain inhibited the growth of fires. 

To sum up these differences, the fire history of Point Six included the most wide

spread and severest fires due to the relatively drier conditions, less steep topography, and 

more continuous forest cover. The fire history of Mineral Peak indicated relatively low 

average fire severity due to the drier conditions, steep topography, and dissected forest 

cover. The fire history of Morrell Mountain indicated low to moderate fire severity due to 

the relatively wetter conditions, steep topography, and continuous forest cover. 

6.3 Relationships Between Fire Activity, Tree Establishment, and Tree Growth 

Fire-Tree Establishment Relationships in Whitebark Pine Forests 

The ca. 50-75-yr lag I identified in peak tree establishment that followed 

widespread fires is similar to rates of tree establishment following disturbances in other 

subalpine ecosystems (Agee and Smith 1984, Little et al. 1994). The harsh conditions of 

my sites would be exacerbated by the exposed site that likely existed after experiencing a 

widespread fire. The rate of tree regeneration is likely a function of several site 

conditions, including the depth of the winter snow pack and timing of the spring meltoff 
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(Douglas 1972), winter and summer desiccation (Hadley and Smith 1983 ,  1989, Cui and 

Smith 1991 ), and microsite conditions (Vale 198 1 ). Individual species appear to respond 

differently to these conditions, and the age structure of Point Six shows whitebark pine is 

the first to regenerate following a fire and is soon followed by subalpine fir (Figure 

5. 7C). In my study, I outlined a use of MDSEA that may prove useful in future research 

that examines long-term ecosystem responses to disturbance events. 

Fire-Tree Growth Relationships in Whitebark Pine Forests 

The original intent of my analyses of the relationship between fire events and tree 

growth was to quantitatively describe the effects of fire on the growth of whitebark pine 

trees. Instead, I found growth trends in the years that surround the fire events that could 

only be caused by regional climate. When considering all fires, the trend of nearly 40 

years of below-average growth cannot be a response to damage from fire, as tree growth 

is strongly below average for nearly 20 years leading up to the fire event. Furthermore, 

the growth trends in the fire-scarred samples from my study sites are nearly identical to 

the growth trends of the whitebark pines used to develop the Carlton Ridge chronology 

from the Selway-Bitterroot, which were not scarred by fire (K.ipfmueller 2003 ). The trend 

of significantly below-average growth during the years after widespread fires that then 

shifts to strongly above-average growth by the 20th year after the fire must also be a result 

of climate due to the synchrony and similarity of these trends between the local fire

scarred whitebark pine trees and the regional non-fire-scarred trees. While individual 

years of significantly above- or below-average growth mean relatively little statistically, 
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the overall trends in the data provide valid evidence of the role of climate in the timing of 

fire events. 

While the actual climate events responsible for these patterns in tree growth are 

not identified by these analyses, conclusions can be drawn about their nature from the 

trends in the data with respect to the climate response of whitebark pine trees in the 

Northern Rocky Mountains. Perkins and Swetnam (1996) found whitebark pine growth to 

be positively correlated with winter and spring precipitation and inversely correlated with 

May temperatures in ·central Idaho. They suggested that, due to the arid environment of 

their sites, these correlations are likely a response to seasonal snow pack, with increased 

winter and spring precipitation increasing moisture availability throughout the growing 

season and higher May temperatures speeding the onset of summer droughts. 

Kipfmueller (2003) identified summer temperature as the primary limiting factor 

of whitebark pine growth in the Selway-Bitterroot Wilderness Area, and in contrast to the 

findings of Perkins and Swetnam, found the strongest relationship to be a positive 

correlation between tree growth and average maximum July temperatures. Water stress is 

less likely in the relatively moist Northern Rocky Mountains, and therefore warmer 

summer temperatures led to increased levels of growth throughout the growing season. 

July precipitation was negatively correlated with tree growth, but Kipfmueller suggested 

this could be due to the effects of cloud cover lowering temperatures rather than 

increased moisture reducing tree growth. Kipfmueller also examined whitebark pine 

growth with respect to the PDO, and suggested tree growth may be enhanced during 

positive phases of the PDO, and climate sensitivity may be dampened during negative 

phases of the PDO due to greater snowfall. 
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A shift in the climate response of whitebark pine m the Selway-Bitterroot 

Wilderness Area occurred in the latter half of the 20th century, as an inverse relationship 

with spring temperatures became the dominant signal in tree growth (Kipfmueller 2003). 

During this time, warmer spring temperatures would be accompanied by more early 

spring precipitation, likely in the form of snow. The insulating layer of snow would keep 

the ground and soil moisture frozen, while the warmer days would induce respiration and 

transpiration in the tree when photosynthesis is not occurring, causing a net loss in 

photosynthates (Fritts 1976). The mechanisms behind this shift in climate-response are 

complex, but Kipfmueller suggests it may be related to a shorter growing season due to 

shifting snow pack conditions potentially related to PDQ phase changes. While nearly all 

of the fire events recorded in my study area occurred prior to the identified shift in 

climate response of whitebark pine, interpretations of the growth trends identified in my 

MDSEA should be cautious because of the potentially shifting climate response of 

subalpine tree growth (Briffa et al. 1998b, Biondi 2000). 

Due to the moist climate of the Lolo National Forest, the climate response of trees 

in my study area will likely be more aligned with that of the Selway-Bitterroot 

Wilderness Area than with central Idaho. However, the signal may be somewhat different 

due to the drying effects of the Bitterroot rainshadow on my sites. I therefore propose that 

below-average growth identified in my analyses may be the result of: 1) above-average 

summer temperatures and the resulting moisture stress; 2) lower summer temperatures 

and the resulting lower growth rates; or 3 )  warmer spring temperatures, increased snow 

pack, and a net loss of photosynthates. Above-average growth identified in my analyses 

may be the result of: 1) cooler summers and more moisture availability; 2)  higher 
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summer temperatures and higher growth rates; or 3 )  cooler spring temperatures, less 

precipitation, and a longer growing season. 

The trend of nearly 40 years of below-average growth indicates that the majority 

of the fires recorded in my sites occurred during a phase of climate variability that 

consistently limited growth for multiple decades. The increasing and decreasing 

amplitude of the below average growth evident from the analyses suggests that another 

climate oscillation is operating on a shorter wave length within the context of the lower 

frequency variability. The growth trends that surround the widespread fires also provide 

evidence of a climate oscillation that operates on a shorter, 20-30  year wavelength. 

Widespread fires occurred during a transition of this oscillation from a phase that 

encouraged average to above-average growth to a phase that caused below-average 

growth. 

6.4 Fire-Climate Relationships 

Effects of Climate on Whitebark Pine Fire Regimes 

Variability of fire regimes in nearly all ecosystems has been linked to climate 

(Clark 1989, Johnson and Larsen 199 1 , Swetnam 1996 ,  Swetnam and Betancourt 1998, 

Grau and Veblen 2000, Grissino-Mayer and Swetnam 2000, Veblen et al. 2000, 

Kitzberger et al. 2001 ,  Sherriff et al. 2001 ,  Heyerdahl et al. 2002, Kipfmueller 2003 ,  

Westerling and Swetnam 2004). Increasingly, ocean-atmospheric teleconnections that 

operate on different time scales and source from different regions of the world are shown 

to affect regional climate and fire activity in the high-elevation forests of North America 

(Gray et al. 2003, Schoennagel et al. 2005, Sibold and Veblen 2005). The fire regimes of 
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my sites were influenced by a multi-scale hierarchy of interacting climate conditions that 

affected fire occurrence. 

At the annual scale, widespread fires in the Rocky Mountains are commonly 

associated with individual years of significant drought (Kipfmueller and Swetnam 2000, 

Sherriff et al. 2001  ). Precipitation also plays a significant role in the fire regimes of dry 

forests throughout western North and South America (Baisan and Swetnam 1990, Grau 

and Veblen 2000, Veblen and Kitzberger 2002, Norman and Taylor 2003), with years of 

above average precipitation increasing the growth of fine fuels, and subsequently 

increasing the likelihood of fires in the years that follow. The relatively limited 

relationships between temperature, precipitation, drought, and fire activity in my sites 

(Figure 5. 15) may be related to the limited spatial scale of my study area. No clear 

relationship between precipitation and fire activity was found in my data. Some fire 

events were preceded by several years of below-average precipitation ( e.g. 1889 and 

19 19), while other individual fire events occurred during years of above-average 

precipitation (e.g. 1754, 178 1, and 1817). The association between extended periods of 

precipitation and fire activity also varied, with a gap in widespread fires aligning with a 

period of above-average growth from 1725-1750, and the peak in fire activity for the 

study area coinciding with the wettest period of the reconstruction ( ca. 18 15-183 5). 

Temperature and drought, on the other hand, both show stronger relationships 

with fire activity when considered on a broader temporal scale and in the context of 

additional climatic conditions. At the semi-annual scale, years of drought that coincided 

with El Nino events were more likely to result in regionally widespread fires ( e.g. 1889 

and 1919; Kipfmueller 2003 )  than when either of these conditions occurred alone. The 
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generally cooler than average temperatures that occurred during the peak period of fire 

activity in my sites did not likely increase fire activity, but were rather a local expression 

of a climate event that encouraged fire activity on a multi-decadal time scale. 

My fire-tree growth analyses found that most fires were associated with 

prolonged periods of decreased growth, perhaps associated with cooler temperatures, 

which compares well with the phases of the PDO and AMO during the peak period of fire 

activity (Figure 5.13). Additionally, the 20-30 year oscillation in tree growth identified in 

my MD SEA match the synchroneity of widespread fire events with periods of cool phase 

PDO (D'Arrigo et al. 2001 ), and suggest that conditions immediately surrounding and 

following the minima of PDO cool phases reduce tree growth and are conducive to 

widespread fire events in my study sites. 

The period of cool PDO and AMO centered on the early 1800s, coupled with 

decreased ENSO variability from ca. 1810-1850, appears to have acted synergistically to 

create the peak period of fire activity in my site. This directly contrasts the findings of 

nearly all other fire history research in western North and South America that identified a 

distinct gap in fire activity during this time (Swetnam 1990, Grissino-Mayer and 

Swetnam 2000, Veblen et al. 2000, Kitzberger et al. 2001, Heyerdahl et al. 2002, 

Grissino-Mayer et al. 2004, Sibold and Veblen 2005). Additionally, the relatively less 

frequent fires prior to this time in my study sites contrasts with a period of more frequent 

fires in several of these studies (e.g. Grissino-Mayer 1 995). The location of my study site 

is at the convergence of contrasting regional climate boundaries and influences of some 

ocean-atmospheric teleconnections (Dettinger et al. 2001 ). While this may partially 
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explain the inverse pattern of fire activity at my sites in comparison with other research, 

the mechanisms behind these differences are unclear. 

6.5 Management of Whitebark Pine 

Fire Regime Condition Classification Fire Regime Types for Whitebark Pine Forests 

The FRCC fire regime types assigned to my study sites were generally 

appropriate with respect to the fire regime types identified by my data, and portrayed 

some spatial differences between the sites. My data from the three sites portrays mixed

severity fire regimes similar to those assigned by the FRCC data. The FRCC data also 

delineated the difference in fire severity between the relatively more severe fires that 

burned on Point Six and Mineral Peak and the less severe fires that burned on Morrell 

Mountain. However, potentially important inadequacies included an underestimation of 

the fire frequency in the forests on Mineral Peak and Point Six and a failure to account 

for the temporal variability in past fire activity. 

The FRCC fire regime type III assigned to Mineral Peak and Point Six described 

fire return intervals that ranged from 35-100+ years, but both sites recorded fire 

frequencies well below this range with lower bounds of 8 and 3 years, respectively (Table 

5.9). The discrepancies between the FRCC fire frequency and the actual data for Mineral 

Peak and Point Six are due to the high number of small fires recorded at these sites. The 

ecological significance of such small fires in subalpine forests is thought to be relatively 

minor (Romme 1982), but this conclusion is drawn from research conducted in subalpine 

forests predominantly composed of lodgepole pine and spruce. Relatively little research 

has addressed the role of small fires in the whitebark pine ecosystem, and the research 
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that has examined whitebark pine fire regimes may have underestimated the frequency of 

fire occurrence in this ecosystem (Table 2.1 ). The use of these data for FRCC fire regime 

type assignments would explain the underestimation of fire frequency in these stands, but 

site-specific differences in the fire regimes of these sites relative to their surroundings are 

lost in the coarse scale of the FRCC data. The precarious situation and ecological 

importance of the whitebark pine ecosystem warrants a site-specific approach to 

management practices that may be beyond the scope of the FRCC guidelines. 

The temporal variation in fire activity at these three sites highlights a critical 

aspect of fire management. Statistical measures of central tendency, such as MFI, are 

often integrated into management plans as static targets that do not account for the 

dynamic nature of fire regimes (Whitlock et al. 2003). While the concept of the natural 

range of variability in disturbance regimes (Morgan et al. 1994a) is increasingly being 

applied in ecosystem management, this perspective must be based on sound scientific 

data (Brown 2000). In the case of whitebark pine, these data are lacking for much of the 

range of the species. Additionally, the variability in the fire regimes of my sites was 

strongly related to changing climate conditions that operated on annual to multi-decadal 

time-scales that are difficult to integrate into management plans. While the suite of 

descriptive statistics provided by my research creates a frame for the historical range of 

variability of the fire regimes for these three sites, these data must be viewed within the 

context of a continually shifting climate. The role of a variable climate is substantial in 

subalpine forest fire regimes (Sherriff et al. 2001, Kipfmueller 2003, Schoennagel et al. 

2005, Sibold and Veblen 2005), and efforts to integrate fire-climate relationship data into 

the FRCC will be critical for its appropriate application to the landscape. 
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Implications for the Management of Whitebark Pine Forests 

The influence of fire suppression on the forest systems of western North America 

is a pervasive topic in modem forest management (Arno 1996, Zimmerman 2003 ), and is 

particularly salient to the management of whitebark pine. Changes in fire severity and 

forest structure induced by fire suppression are readily apparent in niany fire-dependent 

ecosystems (e.g. Weaver 1959, Covington and Moore 1994, Grissino-Mayer 1995, 

Swetnam and Baisan 1996), but these changes are less evident in the mixed-severity fire 

regimes of the Northern Rockies. Due to extensive natural variations in fire activity 

within this broad and rather enigmatic classification (Arno et al. 2000), the sources of 

change in fire activity and advancing succession are difficult to ascertain. A cautious 

approach has been suggested for managing subalpine forests (Veblen 2003, Schoennagel 

et al. 2004 ), but due to the urgency of the situation facing whitebark pine (Kendall and 

Keane 2001) and based on past research (Arno 1980, Fischer and Bradley 1987), 

researchers generally accept that fire suppression has reduced the growth and spread of 

fires and encouraged advancing succession in stands historically dominated by whitebark 

pine {Tomback et al. 2001a). 

My results offer contrasting information. While fire suppression did have an 

effect on fire frequency in my sites, subalpine fir had been established for at least 

140-300 years on all three of my sites and did not require fire suppression to begin 

establishing in these stands. Instead, it appears the ongoing succession at these three sites 

is related to the time since the last large fire, which is likely climatically driven. Although 

the unknown effects of past fires that were suppressed introduces uncertainty to this 

debate (Brown et al. 1994 ), the overall trends of my data suggest fire suppression has not 
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significantly affected the structure or successional status of my sites. These findings 

complicate the design and implementation of management objectives for whitebark pine 

forests. 

Fire suppression is cited as a major cause for advancing succession in whitebark 

pine stands throughout the Northern Rocky Mountains (Murray et al. 1995, Arno 2001, 

Keane 2001a). This belief is used to justify the call for active management intervention 

under the assumption that whitebark pine forests are outside their historical range of 

variability in terms of forest structure. While this may be true in some areas, my data 

show it does not apply to all sites. Management efforts focused on preserving whitebark 

pine forests by returning them to a static, predetermined historical structure are 

inappropriate for whitebark pine forests that may not have deviated from their "natural" 

structure. Keane and Arno (2001) suggest that management plans should focus on 

restoring ecosystem processes to whitebark pine forests rather than historical stand 

structure. This is a more appropriate approach for my sites, for while the stand structure 

may be within the historical range of variation, the current fire-free interval at each site is 

approaching or has surpassed the UEI delineated by the respective fire history data. 

However, vast tracts of the environment inhabited by whitebark pine have changed 

significantly with the invasion of white pine blister rust, and replicating the relatively 

limited size and severity of most fires at my sites may not achieve the conditions required 

for the preservation of whitebark pine on the landscape. 

Management objectives for areas of rapidly diminishing whitebark pine 

populations must explicitly state the goal of creating conditions that are conducive to 

whitebark pine regeneration through methods that may not necessarily be in line with 
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historic disturbance patterns, but the sociopolitical ramifications of such an approach are 

formidable. Nearly all of the range of whitebark pine occurs in areas prized for 

recreational and aesthetic values (Cole 1990), and much of this range lies within the 

boundaries of national parks and wilderness areas (Tomback et al. 2001a). The 

philosophical debate over active management in such places is highly contentious 

(Stankey and McCool 1995, McCool and Freimund 2001). To meet the social, political, 

and ecological challenges associated with the plight of the whitebark pine, management 

efforts must couple collaboration among scientists, land managers, conservationists, and 

the public with transparency in decision making (Mills and Clark 2001, Salwasser and 

Huff 2001 ). This will create a solid foundation for the development of management 

techniques, while building trust among stakeholders that will be of utmost importance for 

the efficient and timely application of efforts to preserve whitebark pine on the western 

landscape. 
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Chapter Seven 

7. Conclusions and Future Research 

7.1 Conclusions 

The fire regimes of the whitebark pine forests in my study area are mixed-severity, but 

variations in fire activi'ty existed both temporally and spatially. 

The fire-scar and age-structure data collected in the whitebark pine forests of my 

study area showed that the fire regimes of these sites were historically mixed-severity, 

with numerous small fires interspersed with less frequent and more severe widespread 

fires. Trees were of relatively mixed ages, but at least one post-fire cohort existed at each 

site. While the broad classification of mixed-severity could be applied to the fire regimes 

of these sites, variations existed both temporally and spatially that created unique fire 

histories for each stand. 

Fires burned more frequently in my study sites compared to nearly all other fire history 

projects conducted in whitebark pine forests. 

All measures of central tendency and the UEI were lower for my study sites than 

the MFI reported for all but two fire history studies conducted in the whitebark pine 

ecosystem. While the relief and topography of my sites may be the cause of these 

differences, another consideration is the resolution of the research methods used. The 

dendrochronological technique of crossdating was applied in only two other studies, both 

of which reported a range of MFI with lower bounds comparable to those found at my 

sites. This technique ensures fire events are accurately and precisely dated, and is critical 

1 53 



for research in ecosystems that experience numerous small, patchy fires such as the 

whitebark pine forests. 

Historical fires burned predominantly during the dormant portion of the growing season, 

and variability in fire seasonality may indicate anthropogenic influences on the fire 

regime of Morrell Mountain. 

The majority of fires recorded within all of my sites burned during the dormant 

portion of the growing season, which includes late summer and early fall. This agrees 

with the modern fire season for the Northern Rocky Mountains. Fire seasonality varied 

little on Mineral Peak and Point Six, but numerous early season fires were recorded by 

the trees sampled on Morrell Mountain. The relatively higher variability in fire 

seasonality may be a function of unique site characteristics, but evidence of Native 

American activity in the area suggests anthropogenic influences may also have played a 

role in forming the fire regime of Morrell Mountain. 

The age structure of whitebark pine forests showed similarly timed pulses of regeneration 

that may be related to periods of widespread disturbance. 

The age-structure data of my sites showed pulses of regeneration between ca. AD 

1500-1600 and ca. 1840-1900. The ca. 1840-1900 pulse included post-fire cohorts that 

established following the period of increased fire activity in my sites in the early 1800s. 

The ca. 1500-1600 pulse may also have been related to a regional period of increased 

disturbance, similar to the mountain pine beetle activity that affected my sites during the 

20th century or the fires of the early 1800s. This may be evidence of a pattern of periodic, 
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landscape-scale episodes of whitebark pine establishment following widespread 

disturbance activity, and if so, has significant implications for the management of this 

declining species. Additional research on the long-term stand dynamics of white bark pine 

forests is required to further explore this issue. 

The 1601 frost ring recorded in samples from all three sites was related to volcanic 

activity in the southern hemisphere and indicates sensitivity to global-scale climatic 

events. 

The widespread occurrence of the AD 1601 frost ring in my samples indicates 

that these sites were relatively more sensitive to the extreme temperature events related to 

the eruption of Huaynapatina in the central Peruvian Andes than other nearby high

elevation trees analyzed in Idaho and western Montana. These sites may therefore 

provide potential locations to examine the spatial characteristics of the climatic 

influences of this and other global-scale cold events associated with volcanic activity. 

Fire activity varied temporally, with the peak in widespread fires occurring in the early 

1800s followed by a near cessation of recorded fires after ca. 19 20. 

The peak in widespread fire activity in my study sites ca. AD 1800-1850 

contrasted with the gap in fire activity identified around this time in nearly all other fire 

history studies conducted in western North and South America. The timing of these 

widespread fire events may have been related to stand dynamics and the development of 

fuels, but regional- and hemispheric-scale climate patterns also likely influenced the 

character of fire events at my sites during this time. The decreased fire activity 
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documented during the 20th century at all of my sites has been documented in other high

elevation forests in the region, and is most likely the result of active fire suppression. 

Fire suppression may have reduced fire activity on my sites, but is unlikely to be related 

to ongoing changes in the succession of these forests. 

Fire suppression may have reduced the number of fires recorded in my study sites 

during the 20th century, but the age-structure data indicate that subalpine fir trees have 

been present in these stands for at least the past 130 years on Mineral Peak and Point Six, 

and over 300 years on Morrell Mountain. The age structures of these stands are more 

related to the time since the last major fire event than the onset of fire suppression. 

Widespread, severe fires are rare at these sites, suggesting that fire suppression is not 

accelerating or changing the successional patterns in these stands. 

The fire regimes of each site varied by fire frequency and severity and were most likely 

the result of differences in topography, forest cover, and local climate. 

Varying site characteristics led to different fire regimes for each of my study sites. 

Fire frequency was highest on Morrell Mountain, but average fire severity was the lowest 

with only one post-fire cohort ca. AD 1500 and numerous patchy fire events. Mineral 

Peak experienced the lowest fire frequency, but showed evidence of moderate fire 

severity, with post-fire cohorts developing ca. AD 1600 and 1880. Fire activity on Point 

Six was moderately frequent, but relatively severe with post-fire cohorts establishing ca. 

AD 1600, ca. 1750, ca. 1840. The distinct fire regimes of each site were created by the 

influences of moisture availability, topography, and forest cover on fire activity. 
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The newly-developed Multi-Decadal Superposed Epoch Analysis provided a viable 

method to examine tree establishment following fire events, and indicated that the peak in 

tree establishment occu"ed between 50 and 75 years following widespread fire events. 

The combination of multiple 40-yr windows from separate MDSEA analyses 

proved feasible and created a continuous I 00-yr MD SEA of tree establishment following 

widespread fire events. Tree establishment peaked ca. 50-75 years after fires, although 

fluctuations in this trend may be related to species-specific responses to the disturbance 

event. These analyses showed MDSEA provides a viable tool for quantitatively 

examining the long-term trends in tree establishment following forest disturbance events. 

The effects of fire on the growth of whitebark pine trees are not significant when 

compared to the effects of climate on tree growth. 

The effects of fire on the growth of fire-scarred whitebark pine could not be 

distinguished from the overall trends in growth present in non-fire-scarred whitebark pine 

trees from the Selway-Bitterroot Wilderness Area. The majority of fire events recorded in 

my study sites occurred during prolonged periods of below-average tree growth, while 

widespread fires occurred at a transition from near-average growth to significantly 

below-average tree growth. The environmental conditions that caused similar growth 

trends at both the local and regional scales could only be climatically driven. Changes in 

the amplitude of the growth trends show that fire activity is related to shifts in climate 

that occur on a multi-decadal time scale of 20-30 years and > 40-80 years. 
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Climate played an important but complex role in the fire regimes of my study sites, and 

the strong visual relationship between fire activity and multidecadal-scale oscillations is 

quantitatively reinforced by the results of my MDSEA. 

My analyses of the fire-climate relationships highlighted the complexity in the 

fire regimes of whitebark pine forests in my sites. I identified multiple environmental 

factors that were potentially related to individual fire events at some point in the past, 

including drought, El Nifio and La Nifia conditions, and variations in the PDO. However, 

fire activity was more strongly related to interactions between these conditions, and the 

majority of widespread fire events were driven by cool phases of the PDO, set within the 

broader context of environmental conditions related to the AMO. The time-scales on 

which the PDO and AMO operate agree with the oscillations identified in the fire-tree 

growth MDSEA. 

The Fire Regime Condition Classification fire regime types assign.ed to my sites require 

refinement to capture the spatial and temporal variations in the fire regimes of these 

whitebark pine forests. 

The coarse-scale FRCC fire regime type classifications provide a strong starting 

point for land managers, and were generally successful in classifying the mixed-severity 

fire regimes that existed at my three study sites. However, potentially important spatial 

and temporal variations in fire frequency and fire severity were not included in the FRCC 

data due to the coarse-scale data and lack of consideration for the role of climate in fire 

regimes. While the FRCC fire regime type is appropriate for some forest systems, the 

critical ecological role and complex fire regimes of whitebark pine ecosystems 
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necessitates site-specific information for ecologically sound management decisions. The 

current FRCC data require refinement if they are to be used in developing management 

objectives for whitebark pine forests. Due to the economic limits faced by many land 

managers, the major challenge for managing whitebark pine ecosystems will be balancing 

the needs for rapid, efficient management practices with the continued acquisition of site

specific ecological data. 

Fire suppression has· had a limited effect on the whitebark pine forests in my study area, 

and a blanket approach toward the restoration of fire to this ecosystem is inappropriate. 

My data indicate that the successional status of the whitebark pine forests in my 

study area is within the historical range of variation for these sites. If management 

objectives are to maintain these sites within their historical range of variation, active 

intervention on the assumption that fire suppression has led to unnatural stages of 

succession is inappropriate. Management objectives must focus on restoring ecosystem 

processes and encouraging whitebark pine regeneration. A collaborative effort that spans 

the public and private sectors will be required to successfully meet the challenges faced 

by managers of whitebark pine forests. 

7 .2 Future Research 

With fire scars dating as early as the AD 1400s, and several individual samples 

recording multiple fire events, whitebark pine shows a strong potential for providing 

long-term fire history data over a broad spatial extent in an ecosystem that has been the 

subject of relatively little research in the past. Additionally, the abundance of white bark 
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pme snags and downed logs across the subalpine forests of western North America 

provides a source of dendroecological data obtainable with relatively little impact on this 

at-risk ecosystem. Urgency exists, however, to collect as much data as possible as rapidly 

as possible. As wildfires and prescribed fires continue to bum across the landscape, 

valuable dendroecological information is consumed in flames. These data may prove 

critical in the development of management prescriptions for whitebark pine across its 

distribution. 

Crossdating will be critical for future fire history research in whitebark pine 

ecosystems. Crossdating will enable the inclusion of remnant wood in analyses and will 

ensure that accurate and precise dates are assigned to fire events. This will further 

facilitate analyses on the role of climate in fire regimes of whitebark pine forests. 

Extending the spatial scope of this study to include fire history data from previously 

unexamined areas of whitebark pine forests in central Idaho, eastern Oregon, and 

northern California will provide a broad spatial network to examine the long-term 

dynamic influences of regional climate on the fire regimes of whitebark pine forests. 

The urgency that surrounds the status of whitebark pine creates an immediate 

need for additional fire history research in areas of the highest priority for management 

intervention. Because of this need, extensive collaboration with both federal and private 

land management agencies will be critical for the efficient transfer of data and application 

of site-specific ecological knowledge in management activities. Research over the central 

range of the species will provide data to managers in previously unstudied areas, and will 

facilitate the development of restoration and management plans. 
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Future research should also address the utility of the MDSEA for quantitatively 

describing long-term ecological trends in relation to climate and disturbance events. A 

major critique of using the traditional SEA over longer periods is the uncertainty inherent 

in the calculation of the confidence intervals. Statistical methods exist that can account 

for the shifting of actual confidence intervals as the analyzed period increases, and these 

methods should be integrated into the MDSEA before widespread application of the 

technique. 
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Appendix A. Statistical descriptions for the 214 measurement series from fire
scarred cross-sections collected on three mountains in the Lolo National Forest. 
MOR, ML: Morrell Mountain; PS: Point Six; MP: Mineral Peak. 

No. Correl w/ Std Auto Mean 
Seg Seres Interval Years Maste dev corr sens 

1 m12002a 1488 1974 487 0.336 0. 193 0.807 0.202 
2 m12002b 1488 1976 489 0.420 0. 1 74 0.679 0.262 
3 ml2003a 1 599 1764 1 66 0.450 0.301 0.648 0.259 
4 m12003b 1599 1899 301 0 .378 0.245 0.801 0.234 
5 ML2006a 1 643 1950 308 0.375 0.416  0.829 0.282 
6 ML2006b 1652 1857 206 0 .520 0.502 0.81 2  0.257 
7 ML2007a 1625 1800 176 0.338 0.429 0.838 0.2 1 2  
8 ML2007b 1 584 1825 242 0.369 0.329 0.838 0.201 
9 ML2007c 1659 19 14  256 0.406 0.431 0.885 0.249 

10  ML2008a 1 678 1 900 223 0.342 0.481 0.897 0.2 1 0  
1 1  ML2008b 1678 1843 166 0 .405 0.372 0.839 0. 1 87 
1 2  ML2009a 1 685 1 865 18 1  0.570 0.322 0.758 0.202 
1 3  ML2009b 1705 1 875 171 0.561 0.399 0.798 0.203 
14  m1201 3a 1726 1 975 250 0.31 1 0.528 0.9 18  0.269 
15  m1201 3b 1780 1 960 18 1  0.457 0.377 0.90 1 0.258 
16  m12014a 1743 1 965 223 0.286 0.343 0.880 0.26 1 
17 m12014b 1743 1 900 1 58 0.445 0.243 0.69 1 0.255 
18  m12016b 1770 1 852 83 0.338 0.286 0.635 0.29 1 
19 ml3004a 1725 1 875 15 1  0.368 0.400 0.802 0.2 1 0  
20 ml3004b 1701 1882 1 82 0.503 0.530 0.698 0.220 
21  ml3006a 1624 1840 2 17  0.520 0. 174 0.745 0.200 
22 ml3008a 1732 1 969 238 0.557 0. 1 38 0.633 0.26 1 
23 ml3008b 1 697 1 968 272 0.542 0. 183 0.768 0.307 
24 lllOrO0 la 1 540 1947 408 0.389 0. 1 57 0.862 0.246 
25 lllOrO0lb  15 18  1 965 448 0.376 0. 1 63 0.769 0.258 
26 lll0r003a 1567 1885 3 19  0 .443 0.202 0.773 0.2 1 0  
27 lll0r003b 1 591  1 887 297 0.526 0. 174 0.71 4  0.248 
28 lll0r004a 1 520 1 880 36 1 0.456 0. 1 92 0.856 0.224 
29 lll0r004b 1600 1 900 301 0.486 0.097 0.690 0.204 
30 lll0r006 1 526 1 956 431 0.434 0. 19 1  0.79 1 0.248 
31  lll0r007 1564 1809 246 0.380 0. 167 0.676 0.254 
32 lll0r008a 1646 1 820 175 0.574 0. 1 28 0.598 0.325 
33 lll0r()08b 1628 1 851  224 0 .493 0. 167 0.777 0.339 
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Appendix A. continued. 

No. Correl. w/ Std Auto Mean AR 

Seg Series Interval Years Maste dev corr sens {l 
34 morOl0a 1694 1977 284 0.315 0.216 0.784 0.293 1 
35 mor0l la  1801 1946 146 0.497 0.175 0.461 0.220 2 
36 mor0l lb 1802 1946 145 0.498 0.234 0.592 0.211 3 
37 mor012a 1518 1916 399 0.544 0.219 0.835 0.227 1 
38 mor012b 1520 1697 178 0.496 0.308 0.910 0.191 1 
39 mor012b 1790 1900 111 0.502 0.068 0.482 0.289 1 
40 mor013a 1515 1930 416 0.471 0.246 0.898 0.272 1 
41 mor013b 1519 1839 321 0.502 0.291 0.888 0.237 1 
42 mor014a 1587 . 1917 331 0.527 0.246 0.858 0.290 2 
43 mor014b 1549 1831 283 0.436 0.276 0.839 0.262 1 
44 mor015a 1514 1865 352 0.491 0.325 0.850 0.255 1 
45 mor015b 1520 1930 411 0.512 0.362 0.776 0.231 1 
46 mor016a 1520 1982 463 0.499 0.188 0.786 0.234 1 
47 mor016b 1600 1983 384 0.522 0.200 0.839 0.220 1 
48 mor017a 1572 1958 387 0.495 0.270 0.854 0.224 1 
49 mor017b 1562 1946 385 0.488 0.262 0.803 0.282 1 
50 mor018a 1513 1713 201 0.458 0.560 0.878 0.237 1 
51 mor018b 1514 1680 167 0.544 0.525 0.923 0.199 1 
52 mor019a 1603 1879 277 0.464 0.206 0.797 0.175 1 
53 mor019b 1556 1843 288 0.415 0.239 0.813 0.169 1 
54 mor020a 1517 1976 460 0.567 0.220 0.884 0.194 1 
55 mor020b 1508 1825 318 0.475 0.336 0.913 0.215 1 
56 mor02 la 1520 1760 241 0.504 0.252 0.817 0.234 1 
57 mor02 lb 1567 1954 388 0.433 0.181 0.740 0.229 1 
58 mor022a 1466 1960 495 0.368 0.291 0.910 0.211 1 
59 mor022b 1480 1925 446 0.426 0.318 0.880 0.221 1 
60 mpl00lfa 1510 1696 187 0.351 0.363 0.896 0.148 1 
61 mpl00lfb 1521 1733 213 0.429 0.406 0.932 0.146 1 
62 mpl002fa 1603 1776 174 0.366 0.140 0.648 0.203 1 
63 mp l002fb 1603 1989 387 0.333 0.168 0.748 0.213 1 
64 mpl003fa 1670 1962 293 0.386 0.255 0.869 0.188 1 
65 mpl003fb 1670 1962 293 0.345 0.225 0.875 0.203 1 
66 mp1004fa 1351 1867 517 0.445 0.223 0.879 0.188 1 
67 mp1004fb 1344 1957 614 0.434 0.210 0.876 0.184 2 
68 mp1004fc 1331 1590 260 0.297 0.250 0.854 0.236 1 
69 mp1008fa 1541 1673 133 0.450 0.353 0.768 0.206 1 
70 mp1008fb 1531 1686 156 0.415 0.338 0.825 0.164 2 
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Appendix A. continued. 

No. Correl. w/ Std Auto Mean AR 

Seg Series lnteival Years Maste dev corr sens 
7 1  mp1009fa 16 10  1 780 1 7 1  0.3 12 0.295 0.672 0.293 I 

72 mp1009fb 1 62 1  1 778 1 58 0.298 0.293 0.696 0.238 1 
73 mp1 009fc 179 1  1 983 193 0.393 0.375 0.820 0.222 1 
74 mp1010fa 1623 1 97 1  349 0.5 12 0.354 0.744 0.230 1 
75 mp10 10fb 1622 1 785 1 64 0.507 0.307 0.554 0.2 1 6  1 
76 mp10 10fc 1 8 12 1974 1 63 0.493 0.355 0.808 0.209 1 
77 mpl0l  lfa 1 566 1 7 12 147 0.388 0.675 0.892 0. 1 54 1 
78 mpl0 l  lfb 1 587 1 77 1  1 85 0.430 0.494 0.799 0. 1 89 2 
79 mp10 12fa 1 1 7 1  1396 226 0.543 0.658 0.838 0.243 3 
80 mp10 12fb 1 1 79 1 383 205 0.476 0.505 0.825 0.232 1 
8 1  mp1013fa 1 687 1 922 236 0.403 0.470 0.8 13  0.288 1 
82 mp1 0 1 3fb 1678 1 922 245 0.423 0.424 0.763 0.258 1 
83 mp1 014fa 16 1 3  1 742 1 30 0.638 0.435 0.7 1 6  0. 197 2 
84 mp1014fb 16 19  1 738 1 20 0.630 0.467 0.740 0. 1 57 1 
85 mp10 17fa 1467 1 736 270 0.393 0. 1 78 0.785 0.234 1 
86 mp1 0 1 7fb 144 1  1690 250 0.373 0.259 0.702 0.235 1 
87 mp200 1fa 1589 1 825 237 0.4 10 0 .703 0.846 0.229 1 
88 mp2002fa 1 562 1 786 225 0.468 0.577 0.901 0.2 1 3  1 
89 mp2002fb 1 562 1 970 409 0.350 0.444 0.920 0.200 1 
90 mp2004fa 1 664 1 892 229 0.420 0. 1 89 0.828 0.227 1 
9 1  mp2004fb 1 658 1 967 3 10 0.346 0.286 0.893 0.235 1 
92 mp2005fa 1 320 1 9 1 0  59 1 0.309 0.494 0.928 0.244 1 
93 mp2008fa 1 63 1  1 829 199 0.373 0.363 0.864 0.248 3 
94 mp2008fb 1 638 1 98 1  344 0.344 0.350 0.835 0.288 1 
95 mp2009fa 1 522 1 792 27 1 0.345 0.288 0.794 0.247 1 
96 mp2009fb 1 522 1 834 3 1 3 0.321 0.259 0.844 0.272 1 
97 mp2009fc 1 785 1962 1 78 0.421 0.325 0.880 0.228 1 
98 mp201 0fa 1 554 1 823 270 0.437 0.441 0.85 1 0.208 1 
99 mp201 0fb 1555 1 790 236 0.5 19 0.428 0.875 0.226 2 

100 mp201 lfa 1 558 1 964 407 0.339 0. 1 26 0.733 0.233 1 
1 0 1  mp201 lfb 1 558 2000 443 0.338 0. 1 59 0.8 13  0.254 1 
1 02 mp2012fa 1404 1497 94 0.532 0.241 0.576 0.237 1 
103 mp201 2fb 14 19  1 976 558 0.560 0.225 0.820 0.208 2 
1 04 mp2012fc 1 508 1976 469 0.62 1 0.303 0.860 0. 1 94 1 
1 05 mp201 3fa 1 537 1 952 4 16  0.459 0.273 0.853 0. 1 76 1 
106 mp201 3fb 1 588 1 952 365 0.469 0.242 0.898 0. 1 70 1 
107 mp300 1fa 1 660 1 834 1 75 0.4 1 8  0 .290 0.883 0.203 3 
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Appendix A. continued. 

No. Correl w/ Std Auto Mean AR 

Seg Series Interval Years Maste dev corr sens !l 
108 mp300lfb  1841  1978 1 38 0.320 0.363 0.9 15  0. 197 1 
109 mp300l fc  1891  1997 107 0.508 0.542 0.889 0.221 1 
1 10 mp3002fa 1087 1812 726 0.343 0. 190 0.923 0.249 2 
1 1 1  mp3002fb 1087 1725 639 0.376 0. 163 0.828 0.2 12 2 
1 1 2 mp3003fa 1 522 1984 463 0.327 0.280 0.899 0.169 2 
1 13 mp3003fb 1526 1816 29 1 0.302 0.305 0.887 0. 169 1 
1 14 mp3004fa 1 506 1816 3 1 1 0.45 1 0. 1 54 0.703 0.193 1 
1 1 5 mp3004fb 1464 1679 216 0.453 0. 198 0.8 16 0.233 1 
1 16 mp3005fa 1 561  1979 419 0.292 0.397 0.903 0.272 1 
1 17 mp3005fb 1 561  1834 274 0.379 0.125 0.5 14 0.3 10 1 
1 18 mp3006fa 1434 195 1  5 18 0.394 0. 145 0.732 0.206 1 
1 19 mp3006fb 1434 1853 420 0.4 10  0. 190 0.826 0.200 1 
120 mp3007fa 1265 1409 145 0.445 0.2 1 5  0.682 0. 180 1 
1 2 1  mp3007fb 1263 1805 543 0.372 0.2 13  0.836 0.179 1 
122 mp3007fc 1421  1809 389 0.349 0.123 0.657 0. 168 1 
123 mp3009fa 1 591  1832 242 0.449 0.267 0.869 0.186 1 
124 mp3009fb 1 597 1964 368 0.409 0.265 0.873 0.2 18 1 
125 mp3010fa 1 550 1992 443 0.34 1 0.172 0.783 0.243 1 
126 mp3010fb 1 550 180 1  252 0.405 0.289 0.789 0.293 1 
127 mp301 l fa  1 579 1828 250 0.45 1 0.304 0.740 0.246 1 
128 mp30 l l fb  1 579 1832 254 0.549 0.552 0.861 0.242 1 
129 mp301 l fc  1845 1998 1 54 0.435 0.4 12 0.821 0.255 1 
1 30 mp3012fa 1635 1 956 322 0.332 0.297 0.806 0.278 1 
13 1 mp3012fb 1638 1828 1 9 1  0.399 0.190 0.672 0.250 1 
132 mp3013fa 1268 1762 495 0.374 0.273 0.9 1 1 0.239 2 
133 mp3013fb 1268 1801 534 0.394 0.285 0.892 0.224 2 
134 mp301 5fa 1630 1 964 335 0.495 0.436 0.891 0. 186 1 
135 mp3015fb 1628 1830 203 0.432 0.463 0.892 0. 183 1 
1 36 mp3016fa 1601 1982 382 0.4 19  0. 140 0.652 0.283 2 
137 mp3016fa 1 596 1981 386 0.473 0. 1 57 0.720 0.276 1 
1 38 psl O0 lfa  1753 1950 198 0.456 0.605 0.836 0.218 1 
139 psl O0 lfc  1753 1957 205 0.4 17 0.670 0.879 0.201 1 
140 psl 002fa 1735 1898 164 0.485 0.341 0.604 0. 194 1 
14 1  psl 002fb 1735 1949 2 1 5  0.380 0.503 0.843 0.231 1 
142 ps1003fa 1764 1878 1 1 5  0.399 0.3 17 0.575 0.173 1 
143 ps1 003fb 1764 1926 163 0.531 0.507 0.778 0.204 1 
144 ps1003fc 1764 1923 160 0.487 0.444 0.787 0.189 2 
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Appendix A. continued. 

No. Correl. w/ Std Auto Mean AR 
Se9 Series Interval Years Maste dev corr sens 
145 psl004fa 1759 2003 245 0.394 0.689 0.909 0.202 1 
146 ps1004fb 1818 1996 179 0.509 0.587 0.920 0.180 1 
147 psl005fa 1760 2002 243 0.439 0.759 0.851 0.207 1 
148 ps1005fb 1830 2003 174 0.369 0.852 0.884 0.202 2 
149 ps1006fa 1757 1952 196 0.427 0.526 0.835 0.216 1 
150 ps1006fb 1757 1816 60 0.555 0.300 0.756 0.135 4 
15 1  ps 1007fa 1761 1977 2 17 0.348 0.712 0.910 0.236 1 
152 ps1007fb 1761  1976 216 0.408 0.722 0.904 0.233 1 
153 ps1008fa 1617 2003 387 0.447 0.575 0.900 0.290 2 
154 ps1008fb 1617 1808 192 0.389 0.186 0.773 0.31 1 1 
155 ps1008fc 1824 2003 180 0.484 0.526 0.802 0.246 1 
156 ps1009fa 1645 1724 80 0.327 0.4 16 0.758 0.226 1 
157 ps1009fb 1650 1812 163 0.432 0.253 0.734 0.240 1 
158 ps1009fc 1828 1985 158 0.39 1 0.499 0.882 0.210 1 
159 ps1009fd 1828 1985 158 0.398 0.534 0.849 0.222 1 
160 psl0l0fb 1647 1926 280 0.402 0.365 0.903 0.197 1 
16 1  psl0l  lfb 1840 1969 1 30 0.4 15 0.272 0.653 0.174 1 
1 62 psl0 12fa 1835 2002 168 0.340 0.59 1 0.871 0.233 1 
163 ps10 13fa 1633 181 1 179 0.385 0.190 0.838 0.237 1 
164 ps10 13fb 1633 1929 297 0.375 0.297 0.788 0.238 2 
165 ps10 14fa 1608 1897 290 0.3 12 0.369 0.665 0.213  3 
166 ps1014fb 1608 1846 239 0.341 0.342 0.770 0.2 17 1 
1 67 ps1015fa 1581  1928 348 0.380 0.260 0.701 0.229 1 
168 ps1016fa 1618 1976 359 0.45 1 0.350 0.905 0.222 1 
169 ps1016fb 1618 1816 199 0.440 0.4 12 0.870 0.236 1 
170 ps200 1fa 1629 1913 285 0.456 0.266 0.791 0.250 1 
171  ps2001fb  1643 1906 264 0.420 0.294 0.799 0.221 1 
172 ps2002fa 1662 1926 265 0.448 0.309 0.785 0.184 2 
173 ps2002fb 1671 1814 144 0.446 0.351 0.802 0.185 1 
174 ps2003fa 1615 1975 36 1 0.4 13  0.308 0.372 0.273 1 
175 ps2003fb 1615 1866 252 0.382 0.186 0.818 0.266 1 
176 ps2003fc 1882 1973 92 0.461 0.145 0.852 0.248 4 
177 ps2004fa 1655 1926 272 0.440 0.297 0.845 0.294 1 
178 ps2004fb 1654 1816 163 0.468 0.292 0.846 0.231 1 
179 ps2005fa 1614 1930 317 0.401 0.279 0.838 0.245 1 
180 ps2005fb 1614 1917 304 0.475 0.240 0.801 0.258 1 
18 1  ps2007fa 1612 1983 372 0.344 0.372 0.860 0.222 1 
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No. Correl. w/ Std Auto Mean AR 
Seg Series Interval Years Maste dev corr sens 
1 82 ps2007fb 1612  1 980 369 0.392 0.406 0.86 1 0.2 1 8  1 
1 83 ps20 10fa 1626 1 993 368 0.382 0.429 0.898 0.243 2 
1 84 ps20 10fb 1626 1 8 1 5  1 90 0.399 0.483 0.857 0.232 1 
1 85 ps20 1 l fa  162 1  1 73 1  1 1 1  0.359 0. 1 89 0.584 0.256 1 
1 86 ps20 1 lfc 1 867 1 985 1 1 9 0.361  0. 1 96 0.54 1 0.272 2 
1 87 ps2012fa 1762 1 972 2 1 1 0.528 0.2 16 0.793 0. 1 82 1 
1 88 ps2012fb 1643 1 8 1 3  1 7 1  0.388 0.3 10 0.805 0.23 1 1 
1 89 ps2013a 1606 1 8 1 6  2 1 1 0.373 0.278 0.782 0.228 1 
1 90 ps2013b 1606 1 980 375 0.45 1 0.273 0.855 0.226 1 
1 9 1  ps20 14a 162 1  1 979 359 0.549 0.377 0.850 0.205 1 
1 92 ps20 14b 1621  1 979 359 0.509 0.350 0.830 0. 190 1 
1 93 ps20 1 5a 1684 1 961  278 0.354 0.297 0.843 0.234 1 
194 ps20 1 5b 1652 1 960 309 0.3 12 0.292 0.843 0.232 1 
1 95 ps201 6a 1 659 1 776 1 1 8 0.422 0.427 0.823 0. 1 77 2 
1 96 ps20 16b 1 672 1 929 258 0.484 0.353 0.770 0. 1 86 1 
1 97 ps20 1 6c 167 1  1 897 227 0.568 0.4 13  0.799 0. 1 95 1 
1 98 ps2extra 1689 1 8 14 126 0.3 16  0.260 0.747 0.252 1 
199 ps300 1 fa  1 82 1  1 949 129 0.380 0.686 0.809 0.297 1 
200 ps300 1 fb  1 756 1 938 1 83 0.370 0.7 1 7  0.905 0.255 1 
201 ps3002fa 1734 1 907 1 74 0.345 0.553 0.896 0.230 1 
202 ps3002fb 1734 1 852 1 1 9 0.402 0.444 0.849 0. 1 95 1 
203 ps3003fc 1 763 1 885 123 0.373 0.340 0.828 0.208 3 
204 ps3004fa 1 742 1 877 136 0.380 0.597 0.876 0.2 1 8  2 
205 ps3004fb 1742 1 889 148 0.383 0.385 0.808 0.225 1 
206 ps3006fb 1737 1 837 10 1  0.395 0.573 0.838 0. 1 8 1  1 
207 ps3007fa 1 768 1 925 158  0.372 0.423 0.850 0.2 16  1 
208 ps3007fb 1 768 1 924 1 57 0.393 0.48 1 0.852 0. 1 84 1 
209 ps3008fa 1 757 1 929 1 73 0.4 1 5  0.509 0.86 1 0.239 2 
2 1 0  ps3008fb 1757 1 929 1 73 0.430 0.493 0.804 0.29 1 1 
2 1 1 ps3009fa 1 762 1 929 168 0.364 0.544 0.884 0. 1 92 1 
2 12  ps3009fb 1 762 1901 140 0.360 0.523 0.859 0. 1 58 2 
2 13  ps301 0fa 1 750 1 930 1 8 1  0.494 0.583 0.801 0.239 1 
2 14  ES30 10fb 1 750 1 929 1 80 0.483 0.721 0.775 0.24 1 1 

Total or mean: 56652 0.423 0.3 18  0.8 1 4  0.227 
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Appendix B. Fire-scar data from 1 1 1  fire-scarred cross sections collected from three 
mountains in the Lolo National Forest. 
MOR, ML: Morrell Mountain; PS: Point Six; MP: Mineral Peak. 

Series 1 : ML2002 
Pith Date : 1489 
Outer Ring : 197 6 
Length of sample : 488 
Number in final analysis : 78 
Information on fire history : 

1601 M inj ury 
1900 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 78.0 

Series 2 : ML2003 
Pith Date : 1599 
Outer Ring : 1899 
Length of sample : 301 
Number in final analysis : 172 
Information on fire history : 

1 728 D fire scar 
1769 U fire scar FI = 41 

Total number of fire scars : 2 
Total number all indicators : 2 
Average number years per fire : 86.0 
Sample mean fire interval : 41.0 

Series 3 : ML2006 
Inner Ring : 164 3 
Outer Ring : 1952 
Length of sample : 310 
Number in final analysis : 203 
Information on fire history : 

1655 U injury 
1751 M fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 203.0 

Series 4 : ML2007 
Inner Ring : 1571 
Outer Ring : 1914 
Length of sample : 344 
Number in final analysis : 260 
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Information on fire history : 
1655 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 260.0 

Series 5 : ML2008 
Pith Date : 1678 
Outer Ring : 1915 
Length of sample : 23 8 
Number in final analysis : 3 7 
Information on fire history : 

1 734 D fire scar 
1739 U injury 
1 7 51 D fire scar FI = 1 7 

Total number of fire scars : 2 
Total number all indicators : 3 
Average number years per fire : 18.5 
Sample mean fire interval : 17.0 

Series 6 : ML2009 
Pith Date : 1685 
Outer Ring : 1875 
Length of sample : 191 
Number in final analysis : 24 
Information on fire history : 

1694 D fire scar 
1 711 D fire scar FI = 1 7 

Total number of fire scars : 2 
Total number all indicators : 2 
Average number years per fire : 12.0 
Sample mean fire interval : 17.0 

Series 7 : ML2013 
Pith Date : 1 726 
Outer Ring : 197 6 
Length of sample : 251 
Number in final analysis : 134 
Information on fire history : 

184 3 D fire scar 
Total number of fire scars : 1 
Average number years per fire : 134.0 
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Series 8 : ML2014 
Pith Date : 1743 
Outer Ring : 1965 
Length of sample : 223 
Number in final analysis : 6 
Information on fire history : 

1754 D fire scar 
Total number of fire scars : 1 
Average number years per fire : 6 .0 

Series 9 : ML2016 
Pith Date : 1 704 
Outer Ring : 193 2 
Length of sample : 229 
Number in final analysis : 82 
Information on fire history : 

1851 D fire scar 
Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 82.0 

Series 10 : ML3004 
Inner Ring : 1593 
Outer Ring : 1882 
Length of sample : 290 
Number in final analysis : 55 
Information on fire history : 

1601 M injury 
1640 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 55.0 

Series 11 : ML3006 
Pith Date : 1500 
Outer Ring : 1840 
Length of sample : 341 
Number in final analysis : 1 
Information on fire history : 

1601 M injury 
Total number all indicators : 1 

Series 12 : ML3008 
Inner Ring : 1697 
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Outer Ring : 1969 
Length of sample : 273 
Number in final analysis : 203 
Information on fire history : 

1767 D fire scar 
Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 203.0 

Series 13 : MOR00l 
Pith Date : 1519 
Bark Date : 1965 
Length of sample : 44 7 
Number in final analysis : 89 
Information on fire history : 

1531 D fire scar 
1544 D fire scar FI = 9 
1588 E injury 
1601 M injury 
1868 U injury 
1898 D fire scar FI = 7 

Total number of fire scars : 3 
Total number all indicators : 6 
Average number years per fire : 29.7 
Sample mean fire interval : 8. 0 

Series 14 : MOR003 
Inner Ring : 1567 
Outer Ring : 1915 
Length of sample : 349 
Number in final analysis : 164 
Information on fire history 

1601 M injury 
1642 L injury 
1754 E fire scar 

Total number of fire scars : 1 
Total number all indicators : 3 
Average number years per fire : 164.0 

Series 15 : MOR004 
Inner Ring : 1521 
Bark Date : 1999 
Length of sample : 4 79 
Number in final analysis : 248 
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Information on fire history : 
1 562 E injury 
1701 U injury 
1754 U fire scar 
1796 E fire scar FI = 42 
1836 D fire scar FI = 40 
19 19 U fire scar FI = 8 3 
1974 E fire scar FI = 55 

Total number of fire scars : 5 
Total number all indicators : 7 
Average number years per fire : 49.6 
Sample mean fire interval : 5 5. 0 

Series 16  : MOR006 
Inner Ring : 1 5 1 3 
Outer Ring : 1987 
Length of sample : 475 
Number in final analysis : 31 5 
Information on fire history : 

1 560 E injury 
1585 E injury 
1675 E injury 
1 706 D injury 
17 54 U fire scar 
1762 D injury 
1806 D fire scar FI = 52 
1829 U injury 

Total number of fire scars : 2 
Total number all indicators : 8 
Average number years per fire : 1 57.5 
Sample mean fire interval : 52.0 

Series 17 : MOR007 
Inner Ring : 1 565 
Outer Ring : 1966 
Length of sample : 402 
Number in final analysis : 128 
Information on fire history : 

1601 M injury 
1613  E fire scar 
1624 D injury 
1644 E injury 
1681 D injury 
1754 D fire scar FI = 97 
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1804 E injury 
1 963 U injury 

Total number of fire scars : 2 
Total number all indicators : 8 
Average number years per fire : 64.0 
Sample mean fire interval : 97 .0 
Series 18  : MOR008 
Inner Ring : 1628 
Outer Ring : 1959 
Length of sample : 332 
Number in final analysis : 65 
Information on fire history : 

1684 D injury 
1692 D injury 
1787 D injury 
1898 U fire scar 

Total number of fire scars : 1 
Total number all indicators : 4 
Average number years per fire : 65.0 

Series 1 9  : MOR0l0  
Pith Date : 1694 
Outer Ring : 1 977 
Length of sample : 284 
Number in final analysis : 95 
Information on fire history : 

1883 D fire scar 
1889 U fire scar FI = 6 

Total number of fire scars : 2 
Total number all indicators : 2 
Average number years per fire : 47.5 
Sample mean fire interval : 6.0 

Series 20 : MOR012  
Inner Ring : 1 5 1 9  
Outer Ring : 1 981 
Length of sample : 463 
Number in final analysis : 188 
Information on fire history : 

1 537 U injury 
160 1  D injury 
1796 E fire scar 
1830 E fire scar FI = 34 
1848 E injury 
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Total number of fire scars : 2 
Total number all indicators : 5 
Average number years per fire : 94.0 
Sample mean fire interval : 34.0 

Series 21 : MOR01 3 
Inner Ring : 1 5 1 6  
Outer Ring : 1 956 
Length of sample : 441 
Number in final analysis : 20 
Information on fire history : 

1 531 E inj ury 
1 601 M injury 
1 768 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 3 
Average number years per fire : 20.0 

Series 22 : MOR01 4 
Inner Ring : 1 537 
Outer Ring : 1 967 
Length of sample : · 431 
Number in final analysis : 304 
Information on fire history : 

1555 D injury 
1 573 E injury 
1 601 D injury 
1 66 7 D fire scar 
1 675 E fire scar FI = 8 
1694 U injury 
1 698 U injury 
1 724 U fire scar FI = 49 

Total number of fire scars : 3 
Total number all indicators : 8 
Average number years per fire : 1 0 1 .3 
Sample mean fire interval : 28.5 
Series 23 : MOR015  
Pith Date : 1 5 15  
Outer Ring : 1 865 
Length of sample : 3 5 1  
Number in final analysis : 77 
Information on fire history : 

1 562 E injury 
1 601 D injury 
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1 643 L injury 
1 700 U injury 
1 748 U fire scar 
1 754 U fire scar FI = 6 
1 782 U injury 
1 788 U injury 
1 836 E fire scar FI = 54 

Total number of fire scars : 3 
Total number all indicators : 9 
Average number years per fire : 2 5. 7 
Sample mean fire interval : 30.0 

Series 24 : MOR01 6 
Pith Date : 1 562 
Bark Date : 1 982 
Length of sample : 421 
Number in final analysis : 273 
Information on fire history : 

1 601 E injury 
1 71 1 U fire scar 
1 754 D injury 
1 796 D injury 

Total number of fire scars : 1 
Total number all indicators : 4 
Average number years per fire : 273.0 

Series 25 : MORO 17  
Inner Ring : 1 561 
Outer Ring : 1 964 
Length of sample : 404 
Number in final analysis : 1 68 
Information on fire history : 

1 562 U injury 
1 601 D injury 
1 754 U fire scar 
1 789 U injury 
1 830 U fire scar FI = 28 
1 843 U fire scar FI = 1 3  
1 867 U injury 
1 898 U fire scar FI = 55 

Total number of fire scars : 4 
Total number all indicators : 8 
Average number years per fire : 42.0 
Sample mean fire interval : 32.0 
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Series 26 : MOR018 
Pith Date : 1514 
Outer Ring : 1820 
Length of sample : 307 
Number in final analysis : 10 
Information on fire history : 

1531 E injury 
1566 D injury 
1601 M injury 
1642 L injury 
1660 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 5 
Average number years per fire : 10.0 

Series 27 : MOR019 
Inner Ring : 1600 
Outer Ring : 1891 
Length of sample : 292 
Number in final analysis : 160 
Information on fire history : 

1601 M injury 
1658 D injury 
1698 D injury 
1736 U injury 
1796 U fire scar 
1811 U injury 
1843 U fire scar FI = 47 

Total number of fire scars : 2 
Total number all indicators : 7 
Average number years per fire : 80.0 
Sample mean fire interval : 47.0 

Series 28 : MOR020 
Pith Date : 1509 
Outer Ring : 1963 
Length of sample : 455 
Number in final analysis : 26 
Information on fire history : 

1601 M injury 
1632 D injury 
1639 D fire scar 
1669 D injury 
1733 E injury 
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1843 E fire scar FI = 11 
Total number of fire scars : 2 
Total number all indicators : 6 
Average number years per fire : 13.0 
Sample mean fire interval : 11. 0 

Series 29 : MOR021 
Pith Date : 1520 
Outer Ring : 1954 
Length of sample : 435 
Number in final analysis : 24 
Information on fire history : 

1562 E injury 
1573 L injury 
1601 D injury 
1699 U injury 
1754 U injury 
1830 D fire scar 
1836 D fire scar FI = 6 
1849 U injury 
1903 U injury 
1919 U fire scar FI = 9 

Total number of fire scars : 3 
Total number all indicators : 10 
Average number years per fire : 8.0 
Sample mean fire interval : 7.5 

Series 30 : MOR022 
Pith Date : 1467 
Outer Ring : 1960 
Length of sample : 494 
Number in final analysis : 132 
Information on fire history : 

1564 D fire scar 
1601 M injury 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 132.0 

Series 31 : LP3009 
Inner Ring : 1591 
Bark Date : 1964 
Length of sample : 374 
Number in final analysis : 131 
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Information on fire history : 
1 834 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 13 1 .  0 

Series 32 : MP1001  
Inner Ring : 1 508 
Outer Ring : 1 733 
Length of sample : 226 
Number in final analysis : 4 
Information on fire history : 

1 509 L injury 
1 520 E injury 
1601 U injury 

No information in this range. 
Total number all indicators : 3 

Series 3 3 : MP 1002 
Pith Date : 1603 
Bark Date : 1989 
Length of sample : 387 
Number in final analysis : 2 1 0  
Information on fire history : 

17 12  M injury 
178 1  U fire scar 
1 802 U injury 
1 804 U injury 
1 83 7 D injury 
1 841 D injury 
1 866 U injury 
1 897 U injury 
1907 U injury 
1935 L injury 

Total number of fire scars : 1 
Total number all indicators : 10  
Average number years per fire : 2 10. 0 

Series 34 : MP1 003 
Inner Ring : 1664 
Bark Date : 1962 
Length of sample : 299 
Number in final analysis : 299 
Information on fire history : 
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1665 U fire scar 
Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 299.0 

Series 35 : MP1004 
Inner Ring : 1331 
Outer Ring : 1957 
Length of sample : 627 
Number in final analysis : 4 71 
Information on fire history : 

1406 U injury 
1488 U fire scar 
1497 U injury 
1 502 U injury 
1 5 1 8 U fire scar FI = 30 
1 529 U injury 
1 542 U injury 
1 547 U injury 
1601 U injury 
1661  U injury 
1675 L injury 
1679 L injury 
1682 D fire scar FI = 164 
1 745 D fire scar FI = 63 
1 756 U injury 
1 78 1  U fire scar FI = 36 
1822 U fire scar FI = 4 1  
1834 U fire scar FI = 1 2  

Total number of fire scars : 7 
Total number all indicators : 1 8  
Average number years per fire : 67.3 
Sample mean fire interval : 57.7 

Series 36 : MP1007 
Inner Ring : 1 780 
Bark Date : 1922 
Length of sample : 143 
Number in final analysis : 89 
Information on fire history : 

1 834 D fire scar 
Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 89.0 
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Series 37 : MPl 008 
Inner Ring : 1531 
Outer Ring : 1686 
Length of sample : 156 
Number in final analysis : 96 
Information on fire history : 

1591 M fire scar 
1601 M injury 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 96.0 

Series 38 : MPl 009 
Inner Ring : 1610 
Bark Date : 1983 
Length of sample : 374 
Number in final analysis : 203 
Information on fire history : 

1781 U fire scar 
Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 203.0 

Series 39 : MPl 010 
Inner Ring : 1622 
Bark Date : 197 4 
Length of sample : 353 
Number in final analysis : 2 
Information on fire history : 

1791 U injury 
1803 U injury 

No information in this range. 
Total number all indicators : 2 

Series 40 : MPl 011 
Inner Ring : 1566 
Outer Ring : 1771 
Length of sample : 206 
Number in final analysis : 2 
Information on fire history : 

1601 L injury 
1669 L injury 

No information in this range. 
Total number all indicators : 2 
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Series 41 : MP1012 
Inner Ring : 1171 
Outer Ring : 13 96 
Length of sample : 226 
Number in final analysis : 1 
Information on fire history : 

134 7 U injury 
No information in this range. 
Total number all indicators : 1 

Series 42 : MP1013 
Inner Ring : 1678 
Bark Date : 1922 
Length of sample : 245 
Number in final analysis : 142 
Information on fire history : 

1781 U fire scar 
1839 L injury 
1882 D injury 
1885 D injury 

Total number of fire scars : 1 
Total number all indicators : 4 
Average number years per fire : 142.0 

Series 43 : MP1014 
Inner Ring : 1613 
Outer Ring : 1742 
Length of sample : 130 
Number in final analysis : 1 
Information on fire history : 

1637 D injury 
Total number all indicators : 1 

Series 44 : MPl 017 
Inner Ring : 1441 
Outer Ring : 1 736 
Length of sample : 296 
Number in final analysis : 0 
Information on fire history 
No information in this range. 

Series 45 : MP2001 
Inner Ring : 1589 
Bark Date : 197 5 



Appendix B. continued. 

Length of sample : 387 
Number in final analysis : 143 
Information on fire history : 

1601 U injury 
1834 U injury 
1845 U injury 
1938 U injury 

No information in this range. 
Total number all indicators : 4 

Series 46 : MP2002 
Inner Ring : 15 62 
Bark Date : 1970 
Length of sample : 409 
Number in final analysis : 83 
Information on fire history : 

1576 U injury 
1889 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 83.0 

Series 4 7 : MP2003 
Inner Ring : 1569 
Bark Date : 197 4 
Length of sample : 406 
Number in final analysis : 90 
Information on fire history : 

1591 E injury 
1593 E injury 
1596 E injury 
1795 U injury 
1889 L fire scar 
1934 D injury 

Total number of fire scars : 1 
Total number all indicators : 6 
Average number years per fire : 90.0 

Series 48 : MP2004 
Inner Ring : 165 8 
Bark Date : 196 7 
Length of sample : 310 
Number in final analysis : 79 
Information on fire history : 
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1889 D fire scar 
Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 79.0 

Series 49 : MP2005 
Pith Date : 1320 
Outer Ring : 1951 
Length of sample : 632 
Number in final analysis : 475 
Information on fire history : 

1323 U injury 
1344 U injury 
1351 U injury 
1369 U injury 
1481 D injury 
1489 D injury 
1585 D fire scar 
1705 U fire scar FI = 120 

Total number of fire scars : 2 
Total number all indicators : 8 
Average number years per fire : 237.5 
Sample mean fire interval : 120.0 

Series 50 : MP2007 
Pith Date : 1657 
Bark Date : 1919 
Length of sample : 263 
Number in final analysis : 43 
Information on fire history : 

1668 E injury 
1670 U injury 
1738 E injury 
1880 U fire scar 

Total number of fire scars : 1 
Total number all indicators : 4 
Average number years per fire : 43.0 

Series 51 : MP2008 
Inner Ring : 1631 
Bark Date : 1981 
Length of sample : 3 51 
Number in final analysis : 148 
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Information on fire history : 
1834 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 148.0 

Series 52 : MP2009 
Pith Date : 1522 
Bark Date : 1962 
Length of sample : 441 
Number in final analysis : 133 
Information on fire history : 

1529 U injury 
1534 U injury 
1601 U injury 
1812 U injury 
1834 U fire scar 

Total number of fire scars : 1 
Total number all indicators : 5 
Average number years per fire : 133.0 

Series 53 : MP2010 
Inner Ring : 15 54 
Outer Ring : 1823 
Length of sample : 270 
Number in final analysis : 1 
Information on fire history : 

1601 U injury 
No information in this range. 
Total number all indicators : 1 

Series 54 : MP2011 
Pith Date : 1558 
Bark Date : 2000 
Length of sample : 443 
Number in final analysis : 105 
Information on fire history : 

1561 U injury 
1591 U injury 
1601 U injury 
1625 U injury 
1836 U injury 
1901 U fire scar 
1907 U injury 
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1965 U fire scar FI = 64 
Total number of fire scars : 2 
Total number all indicators : 8 
Average number years per fire : 52.5 
Sample mean fire interval : 64.0 

Series 55 : MP2012 
Inner Ring : 1404 
Bark Date : 1976 
Length of sample : 573 
Number in final analysis : 480 
Information on fire history : 
No information "in this range. 

Series 56 : MP2013 
Inner Ring : 14 70 
Bark Date : 1952 
Length of sample : 483 
Number in final analysis : 456 
Information on fire history : 

1497 U fire scar 
1555 L injury 
1568 U injury 
1601 U injury 
1668 U injury 

Total number of fire scars : 1 
Total number all indicators : 5 
Average number years per fire : 456.0 

Series 57 : MP3001 
Pith Date : 1660 
Bark Date : 1997 
Length of sample : 338 
Number in final analysis : 166 
Information on fire history : 

1705 E injury 
1757 D injury 
1834 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 3 
Average number years per fire : 166.0 

Series 58 : MP3002 
Inner Ring : 1087 



Appendix B. continued. 

Outer Ring : 1812 
Length of sample : 726 
Number in final analysis : 1 
Information on fire history : 

1601 U injury 
Total number all indicators : 1 

Series 59 : MP3003 
Inner Ring : 1520 
Bark Date : 1984 
Length of sample : 465 
Number in final analysis : 152 
Information on fire history : 

1522 U injury 
1834 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 152.0 

Series 60 : MP3004 
Inner Ring : 1464 
Outer Ring : 1816 
Length of sample : 353 
Number in final analysis : 14 
Information on fire history : 

1497 D injury 
1601 U injury 
1805 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 3 
Average number years per fire : 14.0 

Series 61 : MP3005 
Pith Date : 1561 
Bark Date : 1979 
Length of sample : 419 
Number in final analysis : 148 
Information on fire history : 

1582 U injury 
1731 U injury 
1834 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 3 
Average number years per fire : 148.0 

210 

Series 62 : MP3006 
Inner Ring : 1434 
Bark Date : 1951 
Length of sample : 518 
Number in final analysis : 119 
Information on fire history : 

1601 U injury 
1834 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 119.0 

Series 63 : MP3007 
Inner Ring : 1263 
Outer Ring : 1805 
Length of sample : 543 
Number in final analysis : 0 

Series 64 : MP3010 
Pith Date : 1550 
Bark Date : 1992 
Length of sample : 443 
Number in final analysis : 286 
Information on fire history : 

1562 M injury 
1580 D injury 
1609 D injury 
1627 D fire scar 
1642 D injury 
1645 D injury 
164 7 D injury 
1648 D injury 
1658 D injury 
1834 D fire scar FI = 123 
1893 D injury 

Total number of fire scars : 2 
Total number all indicators : 11 
Average number years per fire : 143 .0 
Sample mean fire interval : 123 .0 

Series 65 : MP3011 
Pith Date : 1579 
Bark Date : 1998 
Length of sample : 420 
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Number in final analysis : 166 
Information on fire history : 

1601 U injury 
1834 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 166.0 

Series 66 : MP3012 
Inner Ring : 1635 
Bark Date : 1956 
Length of sample : 322 
Number in final analysis : 296 
Information on fire history : 

164 7 D fire scar 
1834 D fire scar FI = 172 

Total number of fire scars : 2 
Total number all indicators : 2 
Average number years per fire : 148.0 
Sample mean fire interval : 172.0 

Series 67 : MP3013 
Pith Date : 1268 
Outer Ring : 1801 
Length of sample : 534 
Number in final analysis : 472 
Information on fire history : 

1330 D injury 
1410 D injury 
1498 D injury 
1518 E injury 
1520 E injury 
1571 D injury 

No information in this range. 
Total number all indicators : 6 

Series 68 : MP3015 
Inner Ring : 1628 
Bark Date : 1964 
Length of sample : 337 
Number in final analysis : 131 
Information on fire history : 

1834 D fire scar 
Total number of fire scars : 1 

2 1 1 

Total number all indicators : 1 
Average number years per fire : 131. 0 

Series 69 : MP3016 
Inner Ring : 1596 
Bark Date : 1982 
Length of sample : 3 87 
Number in final analysis : 175 
Information on fire history : 

1601 U injury 
1774 D injury 
1810 D fire scar 
1834 D fire scar FI = 24 

Total number of fire scars : 2 
Total number all indicators : 4 
Average number years per fire : 87.5  
Sample mean fire interval : 24.0 

Series 70 : PS 1001 
Pith Date : 1753 
Bark Date : 1957 
Length of sample : 205 
Number in final analysis : 142 
Information on fire history : 

1816 D fire scar 
1861 D fire scar FI = 45 
1934 D injury 

Total number of fire scars : 2 
Total number all indicators : 3 
Average number years per fire : 71.0 
Sample mean fire interval : 45.0 

Series 71 : PS 1002 
Pith Date : 1735 
Bark Date : 1949 
Length of sample : 215 
Number in final analysis : 135 
Information on fire history : 

1751 E injury 
1816 D fire scar 
1835 D injury 
1848 L fire scar FI = 32 
1861 D fire scar FI = 13 
1872 D fire scar FI = 11 
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1874 D injury 
1879 D injury 

Total number of fire scars : 4 
Total number all indicators : 8 
Average number years per fire : 33.8 
Sample mean fire interval : 18. 7 

Series 72 : PS 1003 
Pith Date : 17 6 4  
Bark Date : 1926 
Length of sample : 163 
Number in final analysis : 114 
Information on fire history : 

1772 M injury 
1778 E injury 
1783 E injury 
1816 D fire scar 
1843 D fire scar FI = 27 

Total number of fire scars : 2 
Total number all indicators : 5 
Average number years per fire : 57.0 
Sample mean fire interval : 27.0 

Series 73 : PS 1004 
Pith Date : 1759 
Bark Date : 2003 
Length of sample : 245 
Number in final analysis : 188 
Information on fire history 

1816 D fire scar 
Total number of fire scars : 1 
Average number years per fire : 188.0 

Series 74 : PS1005 
Pith Date : 1760 
Bark Date : 2003 
Length of sample : 244 
Number in final analysis : 189 
Information on fire history : 

1772 E injury 
1816 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 189.0 
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Series 7 5 : PS 1006 
Pith Date : 1757 
Bark Date : 1952 
Length of sample : 196 
Number in final analysis : 137 
Information on fire history : 

1816 D fire scar 
Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 13 7 .0 

Series 7 6 : PS 1007 
Pith Date : 1761 
Bark Date : 1977  
Length of sample : 21  7 
Number in final analysis : 162 
Information on fire history 

1816 D fire scar 
1967 D injury 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 162.0 

Series 77  : PS 1008 
Pith Date : 1617 
Bark Date : 2003 
Length of sample : 387 
Number in final analysis : 189 
Information on fire history 

1794 U injury 
1816 D fire scar 
1969 D injury 

Total number of fire scars : 1 
Total number all indicators : 3 
Average number years per fire : 189.0 

Series 78 : PS 1009 
Inner Ring : 1645 
Bark Date : 1985 
Length of sample : 3 41 
Number in final analysis : 170 
Information on fire history : 

1816 U fire scar 
Total number of fire scars : 1 
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Total number all indicators : 1 
Average number years per fire : 1 70.0 

Series 79 : PS 1010 
Pith Date : 164 7 
Outer Ring : 1926 
Length of sample : 280 
Number in final analysis : 1 14 
Information on fire history : 

1649 E injury 
1665 U injury 
1684 D injury 
1816 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 4 
Average number years per fire : 1 14 .  0 

Series 80 : PS 101 1 
Pith Date : 1840 
Bark Date : 1969 
Length of sample : 130 
Number in final analysis : 4 1  
Information on fire history : 

1858 E injury 
1930 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 4 1.0 

Series 81  : PS1012 
Inner Ring : 1835 
Bark Date : 2003 
Length of sample : 169 
Number in final analysis : 73 
Information on fire history : 

193 1  D injury 
1963 D injury 

No information in this range. 
Total number all indicators : 2 

Series 82 : PS 1013 
Pith Date : 1633 
Bark Date : 1929 
Length of sample : 297 

2 13 

Number in final analysis : 1 16 
Information on fire history : 

1642 E injury 
16 7 1  U injury 
1816 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 3 
Average number years per fire : 1 16.0 

Series 83 : PS 1014 
Pith Date : 1608 
Bark Date : 1897 
Length of sample : 290 
Number in final analysis : 180 
Information on fire history : 

1625 E injury 
1 7 19 D fire scar 
1816 D fire scar FI = 97 

Total number of fire scars : 2 
Total number all indicators : 3 
Average number years per fire : 90.0 
Sample mean fire interval : 97.0 

Series 84 : PS1015 
Pith Date : 1581 
Bark Date : 1928 
Length of sample : 348 
Number in final analysis : 2 15 
Information on fire history : 

1583 E injury 
1584 E injury 
1601 U injury 
1625 E injury 
16 79 D injury 
1 7 19 D fire scar 
1 750 U injury 
1816 D fire scar FI = 97 

Total number of fire scars : 2 
Total number all indicators : 8 
Average number years per fire : 107 .5 
Sample mean fire interval : 97.0 

Series 85 : PS 1016 
Inner Ring : 16 18 
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Bark Date : 197 6 
Length of sample : 359 
Number in final analysis : 260 
Information on fire history 

1640 U injury 
169 1 U injury 
1 7 19 D fire scar 
1 723 D injury 
1 75 1  U injury 
1816 D fire scar FI = 97 

Total number of fire scars : 2 
Total number all indicators : 6 
Average number years per fire : 130.0 
Sample mean fire interval : 97.0 

Series 86 : PS2001 
Inner Ring : 162 9 
Outer Ring : 1913 
Length of sample : 285 
Number in final analysis : 101 
Information on fire history : 

17  45 U injury 
1774 U injury 
1781 D injury 
1816 D fire scar 
1880 D injury 

Total number of fire scars : 1 
Total number all indicators : 5 
Average number years per fire : 101. 0 

Series 87 : PS2002 
Inner Ring : 1662 
Bark Date : 1926 
Length of sample : 265 
Number in final analysis : 1 1 1  
Information on fire history : 

1816 D fire scar 
Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 1 1 1. 0 
Series 88 : PS2003 
Pith Date : 16 15 
Bark Date : 197 5 
Length of sample : 36 1 

2 14 

Number in final analysis : 162 
Information on fire history : 

1653 M injury 
1 752 D injury 
1816 D fire scar 
193 1 D injury 
1932 D injury 

Total number of fire scars : 1 
Total number all indicators : 5 
Average number years per fire : 162.0 

Series 89 : PS2004 
Inner Ring : 1654 
Bark Date : 1926 
Length of sample : 273 
Number in final analysis : 1 1 2 
Information on fire history : 

1 7  52 D injury 
1816 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 1 12.0 

Series 90 : PS2005 
Pith Date : 16 14 
Bark Date : 1930 
Length of sample : 3 1  7 
Number in final analysis : 1 1 7 
Information on fire history 

1625 E injury 
1 752 U injury 
1816 U fire scar 
1882 D injury 

Total number of fire scars : 1 
Total number all indicators : 4 
Average number years per fire : 1 1  7. 0 

Series 9 1  : PS2007 
Pith Date : 16 12 
Bark Date : 1983 
Length of sample : 3 72 
Number in final analysis : 1 70 
Information on fire history : 

1625 E injury 
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163 7 E injury 
1816 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 3 
Average number years per fire : 170.0 

Series 92 : PS2008 
Pith Date : 1778 
Bark Date : 1891 
Length of sample : 114 
Number in final analysis : 42 
Information on fire history : 

1 789 E injury 
1816 U injury 
1852 D fire scar 
1865 U fire scar FI = 13 

Total number of fire scars : 2 
Total number all indicators : 4 
Average number years per fire : 21.0 
Sample mean fire interval : 13.0 

Series 93 : PS2009 
Pith Date : 1861 
Bark Date : 1994 
Length of sample : 134 
Number in final analysis : 66 
Information on fire history : 

1866 E injury 
1930 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 66.0 

Series 94 : PS2010 
Inner Ring : 1624 
Outer Ring : 1993 
Length of sample : 3 70 
Number in final analysis : 183 
Information on fire history : 

1625 U injury 
1633 D injury 
1651 E injury 
1758 D injury 
1816 D fire scar 
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Total number of fire scars : 1 
Total number all indicators : 5 
Average number years per fire : 183.0 

Series 95 : PS2011 
Pith Date : 1621 
Bark Date : 1985 
Length of sample : 365 
Number in final analysis : 176 
Information on fire history : 

1625 E injury 
1629 L injury 
163 7 E injury 
1640 E injury 
1671 M injury 
1752 U injury 
1816 D fire scar 
1967 D injury 

Total number of fire scars : 1 
Total number all indicators : 8 
Average number years per fire : 176.0 

Series 96 : PS2012 
Inner Ring : 1643 
Bark Date : 1972 
Length of sample : 330 
Number in final analysis : 163 
Information on fire history : 

1651 E injury 
1671 E injury 
1708 D injury 
1710 M injury 
1752 U injury 
1801 D injury 
1816 D fire scar 
1841 U injury 

Total number of fire scars : 1 
Total number all indicators : 8 
Average number years per fire : 163.0 

Series 97 : PS2013 
Pith Date : 1606 
Bark Date : 1980 
Length of sample : 3 7 5 
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Number in final analysis : 169 
Information on fire history : 

16 12  E injury 
1 6 1 3  E injury 
1625 E injury 
1637 M injury 
1 8 1 6  D fire scar 

Total number of fire scars : 1 
Total number all indicators : 5 
Average number years per fire : 1 69.0 

Series 98 : PS2014 
Pith Date : 1621  
Bark Date : 1 979 
Length of sample : 359 
Number in final analysis : 6 
Information on fire history : 

1625 E injury 
1 632 E injury 
1640 D injury 
1649 E injury 
1653 E injury 
1771 D injury 

No information in this range. 
Total number all indicators : 6 

Series 99 : PS20 1 5  
Inner Ring : 1 652 
Bark Date : 1 96 1  
Length of  sample : 3 1 0 
Number in final analysis : 30 1  
Information on fire history : 

1661  D fire scar 
17 19  D fire scar FI = 58  
1 749 D fire scar FI  = 30 
1 8 16  D fire scar FI = 67 
1 827 U injury 
1 855 D injury 
1 879 U injury 
1 891  D fire scar FI = 75 
1 901  U injury 
1 904 D fire scar FI = 1 3  
1 9 1 3  D fire scar FI = 9 
1921  D injury 

2 1 6  

Total number of fire scars : 7 
Total number all indicators : 1 2  
Average number years per fire : 43 .0 
Sample mean fire interval : 42.0 
Series 1 00 : PS20 16  
Inner Ring : 1 659 
Bark Date : 1929 
Length of sample : 27 1 
Number in final analysis : 2 1 1 
Information on fire history : 

1 7 1 9  D fire scar 
1 776 U injury 
1 8 1 6  D fire scar FI = 97 

Total number of fire scars : 2 
Total number all indicators : 3 
Average number years per fire : 105 .5 
Sample mean fire interval : 97.0 

Series 1 0 1  : PS2EX 
Inner Ring : 1 689 
Outer Ring : 1 8 1 6  
Length of sample : 1 28 
Number in final analysis : 98 
Information on fire history : 

1 7 1 9  D fire scar 
1 752 U injury 
1 774 U injury 
1 8 1 6 D fire scar FI = 97 

Total number of fire scars : 2 
Total number all indicators : 4 
Average number years per fire : 49.0 
Sample mean fire interval : 97 .0 

Series 1 02 : PS300 1 
Pith Date : 1 756 
Bark Date : 1 949 
Length of sample : 1 94 
Number in final analysis : 1 3  5 
Information on fire history : 

1 768 E injury 
1 8 1 6  D fire scar 
1 829 D fire scar FI = 1 3  
1 904 U injury 

Total number of fire scars : 2 
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Total number all indicators : 4 
Average number years per fire : 6 7.5 
Sample mean fire interval : 13 .0 

Series 1 03 : PS3 002 
Pith Date : 1 734 
Outer Ring : 1938 
Length of sample : 205 
Number in final analysis : 123 
Information on fire history 

18 16 D fire scar 
Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 123 .0 

Series 1 04 : PS3003 
Pith Date : 1763 
Bark Date : 1984 
Length of sample : 222 
Number in final analysis : 169 
Information on fire history : 

1816 D fire scar 
1940 U injury 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 169.0 

Series 1 05 : PS3004 
Pith Date : 1742 
Outer Ring : 1889 
Length of sample : 148 
Number in final analysis : 7 5 
Information on fire history : 

1794 E injury 
1816 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 75.0 

Series 106 : PS3 005 
Pith Date : 1743 
Outer Ring : 1858 
Length of sample : 1 16 
Number in final analysis : 43 

2 17 

Information on fire· history : 
1816 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 43.0 

Series 1 07 : PS3 006 
Pith Date : 1737  
Bark Date : 1897 
Length of sample : 16 1 
Number in final analysis : 85 
Information on fire history : 

1739 D injury 
174 1  D injury 
1 750 D injury 
1816 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 4 
Average number years per fire : 85.0 

Series 1 08 : PS3 007 
Pith Date : 17  68 
Bark Date : 1925 
Length of sample : 158 
Number in final analysis : 1 12 
Information on fire history : 

1772 E injury 
1 780 E injury 
18 16 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 3 
Average number years per fire : 1 12.0 

Series 1 09 : PS3 008 
Pith Date : 1757 
Bark Date : 1929 
Length of sample : 173 
Number in final analysis : 1 14 
Information on fire history : 

18 16 D fire scar 
18 3 1  D fire scar FI = 15  

Total number of fire scars : 2 
Total number all indicators : 2 
Average number years per fire : 57.0 
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Sample mean fire interval : 15.0 

Series 110 : PS3009 
Pith Date : 1762 
Bark Date : 1929 
Length of sample : 168 
Number in final analysis : 115 
Information on fire history : 

1 772 E injury 
1816 D fire scar 

Total number of fire scars : 1 
Total number all indicators : 2 
Average number years per fire : 115. 0 

Summary Information: 

Beginning year 
Last year 
Length of fire chronology 
Total number of samples 
Total number of recorder years 
Total number of fire scars 
Total number of all indicators 

: 1092 
: 2003 
: 1004 
: 111 
: 15353 
: 150 
: 409 

Series 111 : PS3010 
Inner Ring : 1750 
Bark Date : 183 0 
Length of sample : 81 
Number in final analysis : 15 
Information on fire history : 

1816 D fire scar 
Total number of fire scars : 1 
Total number all indicators : 1 
Average number years per fire : 15 .0 

Avg number of years per fire : 102.4 
Avg number of years per all injuries : 37.5 
Avg all sample mean fire intervals : 15 .3 
Total number of years with fire : 68 
Percentage of years with fire : 6.8 
Percentage of years without fire : 93 .2 
Percentage of years MFI : 14.8 
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Appendix Cl. Fire--tree establishment MDSEA output for annual tree 
establishment. 

Limits Limits Limits 
Index Yr Mean n Std dev +/- 1 .96 SD +/-2.575 SD +/-3.294 SD Min Max 
0 0 0.625 8 0.9 161  - 1 . 1706 2.4206 - 1 .734 2.984 -2.3927 3.6427 0 2 
1 1 0.625 8 0.744 -0.8333 2.0833 - 1 .2909 2.5409 - 1 .8258 3 .0758 0 2 
2 2 0.375 8 0.5 175 -0.6394 1 .3894 -0.9577 1 .  7077 - 1 .3298 2.0798 0 1 
3 3 0.75 8 1 . 1 65 - 1 .5333 3 .0333 -2.2498 3. 7498 -3.0874 4.5874 0 3 
4 4 0. 125 8 0.3536 -0.568 0.8 18 -0.7854 1 .0354 - 1 .0396 1 .2896 0 1 
5 5 0.375 8 0.744 - 1 .0833 1 .8333 - 1 .5409 2.2909 -2.0758 2.8258 0 2 
6 6 1 . 1 25 8 0.991 -0.8 174 3 .0674 - 1 .4269 3.6769 -2. 1395 4.3895 0 3 
7 7 0.25 8 0.4629 -0.6573 1 . 1 573 -0.942 1 .442 - 1 .2748 1 .7748 0 1 
8 8 0.25 8 0.4629 -0.6573 1 . 1 573 -0.942 1 .442 - 1 .2748 1 .7748 0 1 
9 9 0.75 8 0.7071 -0.6359 2. 1 359 - 1 .0708 2.5708 - 1 .5792 3 .0792 0 2 
10  10 1 8 0.7559 -0.48 16 2.4816  -0.9465 2.9465 - 1 .49 3.49 0 2 
1 1  1 1  0.5 8 0.5345 -0.5477 1 .5477 -0.8764 1 .8764 - 1 .2607 2.2607 0 1 
12  12 0.5 8 0.5345 -0.5477 1 .5477 -0.8764 1 .8764 - 1 .2607 2.2607 0 1 
1 3  13  0.375 8 0.744 - 1 .0833 1 .8333 - 1 .5409 2.2909 -2.0758 2.8258 0 2 
14 14 0.625 8 0.744 -0.8333 2.0833 - 1 .2909 2.5409 -1 .8258 3 .0758 0 2 
1 5  1 5  1 8 0.9258 -0.8 146 2.8 146 - 1 .384 3 .384 -2.0497 4.0497 0 3 
16  16  0.5 8 0.7559 -0.98 16  1 .98 16  - 1 .4465 2.4465 -1 .99 2.99 0 2 
17  17  0.625 8 0.9 161  - 1 . 1 706 2.4206 - 1 .734 2.984 -2.3927 3.6427 0 2 
1 8  1 8  0.875 8 0.8345 -0.7607 2.5 107 - 1 .2739 3.0239 - 1 .8739 3.6239 0 2 
19  19  1 .25 8 1 .7525 -2. 1 85 4.685 -3 .2628 5 .7628 -4.5229 7 .0229 0 5 
20 20 0.75 8 0.7071 -0.6359 2. 1359 - 1 .0708 2.5708 - 1 .5792 3.0792 0 2 
2 1  2 1  0.875 8 1 .3562 - 1 .7832 3 .5332 -2.6172 4.3672 -3.5923 5 .3423 0 4 
22 22 0.5 8 1 .069 - 1 .5953 2.5953 -2.2528 3.2528 -3.02 14 4.0214 0 3 
23 23 0.75 8 0.7071 -0.6359 2. 1 359 - 1 .0708 2.5708 - 1 .5792 3 .0792 0 2 
24 24 1 .625 8 1 .685 - 1 .6776 4.9276 -2.7 139 5 .9639 -3.9254 7. 1754 0 5 
25 25 0.75 8 1 .3887 - 1 .97 19  3.4719 -2.826 4.326 -3 .8245 5.3245 0 4 
26 26 0.75 8 0.7071 -0.6359 2. 1 359 - 1 .0708 2.5708 - 1 .5792 3.0792 0 2 
27 27 0.75 8 0.8864 -0.9874 2.4874 - 1 .5325 3.0325 -2. 1698 3.6698 0 2 
28 28 0.75 8 0.8864 -0.9874 2.4874 - 1 .5325 3.0325 -2. 1698 3.6698 0 2 
29 29 0.375 8 0.744 - 1 .0833 1 .8333 - 1 .5409 2.2909 -2.0758 2.8258 0 2 
30 30 0.75 8. 1 .035 1  - 1 .2788 2.7788 - 1 .9 1 54 3.4 1 54 -2.6596 4. 1 596 0 3 
3 1  3 1  1 8 0.7559 -0.4816  2.4816 -0.9465 2.9465 - 1 .49 3.49 0 2 
32 32 0.5 8 0.7559 -0.98 16  1 .98 16  - 1 .4465 2.4465 - 1 .99 2.99 0 2 
33 33 0.75 8 1 .035 1 - 1 .2788 2. 7788 - 1 .9 154 3.4 1 54 -2.6596 4. 1 596 0 3 
34 34 1 . 1 25 8 1 .4577 - 1 .7322 3 .9822 -2.6287 4.8787 -3.6768 5.9268 0 4 
35 35 0.25 8 0.4629 -0.6573 1 . 1 573 -0.942 1 .442 - 1 .27 48 1 .  77 48 0 1 
36 36 1 . 1 25 8 0.991 -0.8174 3 .0674 - 1 .4269 3 .6769 -2. 1 395 4.3895 0 3 
37 37 1 .375 8 1 .7678 -2.0898 4.8398 -3 . 1 77 5 .927 -4.448 7. 198 0 5 
38 38 1 .375 8 0.9 161  -0.4206 3 . 1706 -0.984 3.734 - 1 .6427 4.3927 0 3 
39 -1  0.875 8 1 .4577 - 1 .9822 3.7322 -2.8787 4.6287 -3.9268 5 .6768 0 4 
40 0 1 8 1 .069 - 1 .0953 3 .0953 - 1 .7528 3.7528 -2.52 14 4.52 14 0 3 
4 1  1 0.875 8 0.8345 -0.7607 2.5 107 - 1 .2739 3.0239 - 1 .8739 3.6239 0 2 
42 2 0.75 8 0.8864 -0.9874 2.4874 - 1 .5325 3 .0325 -2. 1698 3.6698 0 2 
43 3 0.625 8 1 .0607 - 1 .4539 2.7039 -2. 1 062 3 .3562 -2.8688 4. 1 1 88 0 3 
44 4 1 8 1 . 1 952 - 1 .3426 3.3426 -2.0777 4.0777 -2.9371  4.9371 0 3 
45 5 0.875 8 0.991 - 1 .0674 2.8 174 - 1 .6769 3.4269 -2.3895 4. 1 395 0 2 
46 6 1 .25 8 1 .3887 - 1 .47 19 3.9719 -2.326 4.826 -3.3245 5 .8245 0 4 
47 7 0.75 8 0.7071 -0.6359 2. 1359 - 1 .0708 2.5708 - 1 .5792 3.0792 0 2 
48 8 1 . 125 8 1 . 1 26 - 1 .08 19 3 .33 19 - 1 .7744 4.0244 -2.584 4.834 0 3 
49 9 0.875 8 1 . 126 - 1 .33 19  3.0819  -2.0244 3 .7744 -2.834 4.584 0 3 

50 10 0.625 8 0.744 -0.8333 2.0833 - 1 .2909 2.5409 - 1 .8258 3 .0758 0 2 
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Limits Limits Limits 
Index Yr Mean n Std dev +/-1 .96 SD +/-2.575 SD +/-3.294 SD Min Max 

5 1  1 1  1 8 0.7559 -0.48 16 2.4816 -0.9465 2.9465 - 1 .49 3.49 0 2 
52 12  1 .625 8 1 . 1 877 -0.703 3.953 - 1 .4334 4.6834 -2.2874 5 .5374 0 4 
53 1 3  1 .625 8· 1 . 1 877 -0.703 3.953 - 1 .4334 4.6834 -2.2874 5.5374 0 3 
54 14 1 . 125 8 1 . 126 - 1 .08 19 3.33 19 -1 .  7744 4.0244 -2.584 4.834 0 3 
55 1 5  1 . 125 8 1 . 126 - 1 .08 19 3.33 19 -1 .7744 4.0244 -2.584 4.834 0 3 
56 1 6  1 8 1 . 1952 -1 .3426 3.3426 -2.0777 4.0777 -2.937 1 4.9371 0 3 
57 1 7  1 8 1 .6903 -2.3 13  4.3 13 -3.3525 5.3525 -4.5679 6.5679 0 5 
58 1 8  0.75 8 1 .035 1 - 1 .2788 2. 7788 - 1 .9 1 54 3.41 54 -2.6596 4. 1 596 0 3 
59 1 9  1 .75 8 1 .669 - 1 .52 13  5.0213  -2.5478 6.0478 -3.7478 7.2478 0 4 
60 20 0.625 8 0.744 -0.8333 2.0833 - 1 .2909 2.5409 -1 .8258 3.0758 0 2 
61 2 1  1 .25 8 1 .035 1 -0.7788 3.2788 - 1 .4 1 54 3.9 1 54 -2. 1 596 4.6596 0 3 
62 22 1 .5 8 1 .3093 -1 .0662 4.0662 - 1 .87 1 5  4.87 15  -2.8 129 5.8 129 0 4 
63 23 1 . 125 8 0.8345 -0.5 107 2.7607 - 1 .0239 3.2739 - 1 .6239 3.8739 0 2 
64 24 0.875 8 1 .3562 - 1 .7832 3.5332 -2.6 172 4.3672 -3.5923 5.3423 0 4 
65 25 1 .375 8 1 . 1 877 -0.953 3.703 - 1 .6834 4.4334 -2.5374 5.2874 0 3 
66 26 1 .5 8 1 .3093 -1 .0662 4.0662 - 1 .87 1 5  4.87 15  -2.8 129 5.8 129 0 3 
67 27 1 8 1 .069 -1 .0953 3.0953 - 1 .7528 3 .7528 -2.5214 4.52 14 0 3 
68 28 0.75 8 1 .035 1  -1 .2788 2.7788 - 1 .9 1 54 3.4 1 54 -2.6596 4. 1 596 0 3 
69 29 1 .75 8 1 .581 1 - 1 .349 4.849 -2.32 14 5 .8214 -3.4583 6.9583 0 5 
70 30 0.875 8 0.8345 -0.7607 2.5 107 - 1 .2739 3.0239 - 1 .8739 3.6239 0 2 
71 3 1  1 . 1 25 8 0.991 -0.8174 3.0674 -1 .4269 3.6769 -2. 1395 4.3895 0 3 
72 32 1 .625 8 1 .8468 -1 .9948 5.2448 -3. 1 305 6.3805 -4.4584 7.7084 0 5 
73 33 1 . 125 8 0.991 -0.8 174 3.0674 -1 .4269 3.6769 -2. 1 395 4.3895 0 3 
74 34 1 .25 8 1 .58 1 1  - 1 .849 4.349 -2.8214 5 .32 14 -3.9583 6.4583 0 4 
75 35 0.75 8 1 .035 1 - 1 .2788 2.7788 - 1 .9 1 54 3 .4 1 54 -2.6596 4. 1 596 0 3 
76 36 0.875 8 1 . 126 - 1 .33 1 9  3.0819  -2.0244 3 .7744 -2.834 4.584 0 3 
77 37 1 8 1 .4142 - 1 .77 19  3.7719 -2.6416  4.6416 -3.6584 5 .6584 0 4 
78 38 0.75 8 1 .035 1 - 1 .2788 2. 7788 - 1 .9 154 3.4 1 54 -2.6596 4. 1 596 0 3 
79 19  0.875 8 0.8345 -0.7607 2.5 107 - 1 .2739 3 .0239 - 1 .8739 3.6239 0 2 
80 20 1 .25 8 1 .3887 - 1 .47 19  3.9719  -2.326 4.826 -3.3245 5.8245 0 4 
81  21  1 8 1 . 1952 - 1 .3426 3.3426 -2.0777 4.0777 -2.9371 4.937 1 0 3 
82 22 0.875 8 0.8345 -0.7607 2.5 107 -1 .2739 3.0239 - 1 .8739 3.6239 0 2 
83 23 1 .25 8 1 .035 1 -0. 7788 3.2788 - 1 .4 1 54 3.9 1 54 -2. 1 596 4.6596 0 3 
84 24 1 .5 8 1 .4142 - 1 .27 19  4.2719 -2. 1416 5 . 14 16  -3. 1 584 6. 1 584 0 4 
85 25 0.5 8 0.7559 -0.9816  1 .98 16 - 1 .4465 2.4465 - 1 .99 2.99 0 2 
86 26 1 .25 8 1 .488 - 1 .6666 4. 1666 -2.58 17  5 .08 17  -3.65 1 6  6. 1 5 1 6  0 3 
87 27 2 8 1 .85 16 - 1 .6292 5.6292 -2.768 6.768 -4.0993 8.0993 0 5 
88 28 0.375 8 0.5 175 -0.6394 1 .3894 -0.9577 1 .7077 -1 .3298 2.0798 0 1 
89 29 1 8 1 .069 -1 .0953 3.0953 - 1 .7528 3.7528 -2.5214 4.52 14 0 3 
90 30 1 8 1 .069 -1 .0953 3.0953 - 1 .7528 3.7528 -2.52 14 4.52 14 0 3 
91 3 1  1 . 125 8 1 .2464 - 1 .3 1 8  3.568 -2.0845 4.3345 -2.9807 5 .2307 0 3 
92 32 0.5 8 0.5345 -0.5477 1 .5477 -0.8764 1 .8764 - 1 .2607 2.2607 0 1 
93 33 1 . 1 25 8 1 . 126 - 1 .08 19  3.33 19 - 1 .7744 4.0244 -2.584 4.834 0 3 
94 34 0.625 8 0.744 -0.8333 2.0833 - 1 .2909 2.5409 - 1 .8258 3.0758 0 2 
95 35 1 8 0.9258 -0.8 146 2.8 146 - 1 .384 3.384 -2.0497 4.0497 0 3 
96 36 1 8 1 .069 - 1 .0953 3.0953 - 1 .7528 3.7528 -2.5214 4.5214 0 3 
97 37 1 .375 8 1 .3025 - 1 . 1 778 3.9278 - 1 .9789 4.7289 -2.9 153 5.6653 0 4 
98 38 0.625 8 0.9 16 1  -lJ'.206 2=4206 - 1 .734 2:984 -2.3927 316427 0 2 
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Appendix C2. Fire-tree establishment MDSEA bootstrapped confidence intervals 
for annual tree establishment. 

Limits Limits Limits 
Index Yr Mean n Std dev +/- 1 .96 SD +/-2.575 SD +/-3 .294 SD Min Max 
0 0 0.6346 1000 0.373 -0.0965 1 .3658 -0.3259 1 .5952 -0.5942 1 .8634 0 2.5 
1 1 0.638 1 000 0.3717 -0.0905 1 .3665 -0.3 19 1  1 .595 1 -0.5864 1 .8624 0 2.25 
2 2 0.623 1 1000 0.3568 -0.0763 1 .3225 -0.2957 1 .542 -0.5523 1 .7985 0 2 
3 3 0.6369 1 000 0.3796 -0. 107 1 1 .3809 -0.3405 1 .6143 -0.6135 1 .8872 0 2.25 
4 4 0.658 1000 0.3783 -0.0834 1 .3994 -0.3 16 1 .632 -0.588 1 .904 0 2.25 
5 5 0.6436 1000 0.3743 -0.0901 1 .3773 -0.3203 1 .6075 -0.5894 1 .8767 0 2 
6 6 0.6304 1000 0.3557 -0.0669 1 .3276 -0.2857 1 .5464 -0.5414 1 .8022 0 2 
7 7 0.65 16  1000 0.371 3  -0.0761 1 .3793 -0.3044 1 .6077 -0.5714 1 .8746 0 2. 125 
8 8 0.645 1000 0.366 -0.0724 1 .3624 -0.2974 1 .5874 -0.5606 1 .8506 0 2 
9 9 0.6521 1000 0.3641 -0.0614 1 .3657 -0.2853 1 .5896 -0.547 1 1 .85 13 0 2.25 
10 10 0.6635 1000 0.365 -0.052 1 .379 -0.2764 1 .6034 -0.5389 1 .8659 0 1 .875 
1 1  1 1  0.6594 1000 0.3763 -0.078 1 1 .3968 -0.3095 1 .6282 -0.58 1 .8988 0 2.375 
12 12 0.676 1000 0.3774 -0.0637 1 .4 1 57 -0.2959 1 .64 79 -0.5672 1 .9 1 92 0 2.375 
13  13  0.6774 1000 0.3776 -0.0628 1 .4 1 75 -0.295 1 .6498 -0.5665 1 .92 13  0 2.25 
14 14 0.6593 1000 0.3808 -0.0871 1 .4056 -0.321 3  1 .6398 -0.595 1 1 .9 1 36 0 2. 125 
1 5  1 5  0.676 1000 0.3854 -0.0793 1 .43 1 3  -0.3 163 1 .6683 -0.5934 1 .9454 0 2.25 
16  1 6  0.6901 1000 0.3677 -0.0306 1 .4 109 -0.2568 1 .637 -0.52 12  1 .9014 0 2 
17  17  0.6691 1 000 0.374 1  -0.064 1 .4023 -0.2941 1 .6324 -0.563 1 1 .9013  0 2 
18  18  0.6766 1000 0.3746 -0.0576 1 .4 109 -0.288 1 .6413  -0.5573 1 .9 106 0 2. 125 
19  19 0.701 1 1000 0.381 1 -0.0459 1 .4482 -0.2803 1 .6826 -0.5544 1 .9566 0 2.375 
20 20 0.6854 1000 0.3765 -0.0526 1 .4233 -0.2841 1 .6549 -0.5549 1 .9256 0 2.375 
2 1  2 1  0.691 1000 0.3795 -0.0528 1 .4348 -0.2862 1 .6682 -0.559 1 .941 0 2.25 
22 22 0.7021 1000 0.3749 -0.0327 1 .4369 -0.2632 1 .6675 -0.5328 1 .9371  0 1 .875 
23 23 0.6801 1000 0.3774 -0.0596 1 .4 198 -0.291 7  1 .65 19 -0.563 1 .9233 0 2. 125 
24 24 0.7 185 1000 0.3849 -0.0359 1 .4 729 -0.2726 1 .7096 -0.5494 1 .9864 0 2 
25 25 0.7069 1000 0.3682 -0.0 149 1 .4286 -0.2414 1 .655 1  -0.5061 1 .9 1 99 0 2.375 
26 26 0.7097 1000 0.395 1 -0.064 7 1 .4842 -0.3077 1 .7272 -0.591 8 2.0 1 13  0 2.5 
27 27 0.6934 1000 0.375 1 -0.0417  1 .4285 -0.2724 1 .6591 -0.5421 1 .9288 0 2.375 
28 28 0.6971 1000 0.3861 -0.0597 1 .4539 -0.2971 1 .69 14 -0.5748 1 .969 0 2.5 
29 29 0.724 1000 0.3913  -0.043 1 .491 -0.2837 1 .73 17 -0.565 2.0 13  0 2. 125 
30 30 0.7 124 1000 0.3807 -0.0337 1 .4585 -0.2678 1 .6926 -0.5415  1 .9663 0 2.375 
3 1  3 1  0.7013 1000 0.3692 -0.0224 1 .4249 -0.2495 1 .652 -0.5 15  1 .9 1 75 0 2.25 
32 32 0.7309 1000 0.3885 -0.0306 1 .4923 -0.2695 1 .73 12 -0.5488 2.0 106 0 2. 125 
33 33 0.6841  1000 0.3668 -0.0348 1 .403 -0.2603 1 .6286 -0.5241 1 .8923 0 2 
34 34 0.7 1 53 1 000 0.3756 -0.0209 1 .45 14 -0.25 19  1 .6824 -0.5219  1 .9524 0 2. 125 
35 35 0.7003 1000 0.3806 -0.0456 1 .4461 -0.2797 1 .6802 -0.5533 1 .9538 0 2.375 
36 36 0.7064 1000 0.3807 -0.0397 1 .4525 -0.2739 1 .6866 -0.5476 1 .9603 0 2.375 
37 37 0.73 14 1 000 0.3783 -0.010 1  1 .4729 -0.2428 1 .7055 -0.5 148 1 .9776 0 2.25 
38 38 0.726 1000 0.383 -0.0247 1 .4767 -0.2602 1 .7 122 -0.5356 1 .9876 0 2.625 
39 -1 0.7 1 1 1  1 000 0.3478 0.0295 1 .3927 -0. 1844 1 .6065 -0.4344 1 .8566 0 2 
40 0 0.7 167 1000 0.3828 -0.0335 1 .467 -0.2689 1 .  7024 -0.5442 1 .9777 0 2.5714 
41 1 0.721 1 1000 0.3796 -0.023 1 .4652 -0.2564 1 .6987 -0.5294 1 .97 17  0 2. 125 
42 2 0.7493 1000 0.3667 0.0305 1 .468 -0. 195 1 .6936 -0.4587 1 .9572 0 2.625 
43 3 0.733 1000 0.3695 0.0088 1 .4572 -0.2 184 1 .6845 -0.4841 1 .9501 0 2. 125 
44 4 0.746 1000 0.3947 -0.0277 1 .5 196 -0.2705 1 .7624 -0.5543 2.0462 0 2.375 
45 5 0.7344 1000 0.3692 0.0 107 1 .458 -0.2 164 1 .685 1 -0.48 1 8  1 .9506 0 2.25 
46 6 0.7324 1 000 0.3683 0.0106 1 .4543 -0.21 59 1 .6807 -0.4807 1 .9455 0 2.25 
47 7 0.727 1 000 0.3715  -0.00 1 1  1 .455 -0.2295 1 .6835 -0.4966 1 .9505 0 2. 125 
48 8 0.7304 1000 0.3767 -0.0078 1 .4687 -0.2395 1. 7004 -0.5 103 1 .97 12 0 2. 125 
49 9 0.7455 1000 0.3774 0.0058 1 .485 1 -0.2262 1 .  7 1 72 -0.4975 1 .9885 0 2 
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Appendix C2. Continued. 

Limits Limits Limits 
Index Yr Mean n Std dev +/- 1 .96 SD +/-2.575 SD +/-3.294 SD Min Max 
50 10 0.7554 1000 0.3757 0.0 191  1 .4917 -0.2 1 19 1 .  7227 -0.482 1 .9928 0 2.25 
5 1  1 1  0.769 1000 0.3976 -0.0104 1 .5484 -0.255 1 .7929 -0.5409 2.0788 0 2.625 
52 12 0.75 17 1000 0.3793 0.0082 1 .495 1 -0.225 1 1 .7284 -0.4978 2.001 1 0 2.375 
53 13 0.757 1000 0.3749 0.0222 1 .4918 -0.2084 1 .7224 -0.4 779 1 .992 0 2.57 14 
54 14 0.7599 1000 0.3755 0.024 1 .4959 -0.2069 1 .  7268 -0.4768 1 .9967 0 2 . 125 
55 1 5  0.7556 1000 0.3828 0.0053 1 .5059 -0.2301 1 .74 13 -0.5053 2.0 165 0 2.375 
56 16 0.7358 1000 0.3662 0.0 18 1  1 .4535 -0.207 1 1 .6787 -0.4703 1 .942 0 2 
57 1 7  0.7345 1000 0.3816 -0.0 135 1 .4824 -0.2482 1 .7 171  -0.5225 1 .99 1 5  0 2. 125 
58 1 8  0.7434 1000 0.3759 0.0067 1 .4802 -0.2245 1 .7 1 14 -0.4948 1 .98 17  0 2.375 
59 19 0.7543 1000 0.3743 0.0206 1 .488 -0.2097 1 .7 182 -0.4788 1 .9874 0 2.25 
60 20 0.7544 1000 0.3775 0.0146 1 .4943 -0.2 176 1 .7264 -0.489 1 .9979 0 2.25 
61  21  0.7642 1000 0.3737 0.03 18 1 .4965 -0. 198 1 .7263 -0.4667 1 .995 0 2 
62 22 0.7533 1000 0.3704. 0.0273 1 .4793 -0.2005 1 .  707 1 -0.4668 1 .9734 0 2.375 
63 23 0.7585 1000 0.3824 0.009 1 .508 -0.2261 1 .743 1 -0.501 1 2.0 1 8 1  0 2.2857 
64 24 0.76 14 1000 0.3762 0.024 1 .4989 -0.2074 1 .7302 -0.4 779 2.0008 0 2. 125 
65 25 0.7303 1000 0.3615 0.0218  1 .4387 -0.2005 1 .66 1 -0.4604 1 .9209 0 1 .875 
66 26 0.7487 1000 0.383 1 -0.002 1 1 .4995 -0.2376 1 .735 1 -0.5 13 1 2.0 105 0 2.25 
67 27 0.7562 1000 0.3724 0.0263 1 .4861 -0.2028 1 .7 1 52 -0.4705 1 .983 0 2 
68 28 0.7723 1000 0.3797 0.028 1 1 . 5 165 -0.2054 1 .75 -0.4784 2.023 0 2.5 
69 29 0.7788 1000 0.3856 0.023 1 1 .5345 -0.2 14 1 .77 16 -0.4912 2.0488 0 2.375 
70 30 0.7552 1000 0.3673 0.0353 1 .475 -0. 1906 1 .  7009 -0.4546 1 .965 0 2.25 
7 1  3 1  0.7564 1000 0.3798 0.01 19 1 .5009 -0.2217  1 .  7345 -0.4948 2.0076 0 2 . 125 
72 32 0.7791 1000 0.3837 0.027 1 .53 12 -0.209 1 .7672 -0.4849 2.043 1 0 2 . 125 
73 33 0.7489 1000 0.375 1 0.0 137 1 .4842 -0.2 17 1 .7 149 -0.4867 1 .9846 0 2 . 125 
74 34 0.7619 1000 0.3888 -0.0002 1 .524 -0.2394 1 .7632 -0.5 189 2.0428 0 2.375 
75 35 0.7486 1000 0.3812 0.0015  1 .4957 -0.2329 1 .7301 -0.507 2.0042 0 2 . 125 
76 36 0.7787 1000 0.3861 0.02 19 1 .5355 -0.2 1 55 1 .773 -0.4932 2.0506 0 2.375 
77 37 0.7636 1000 0.3847 0.0096 1 .5 176 -0.227 1 .7542 -0.5036 2.0308 0 2.25 
78 38 0.7649 1000 0.384 0.0 122 1 .5 176 -0.224 1 .7538 -0.5001  2.03 0 2.875 
79 19  0.78 14 1000 0.4008 -0.0042 1 .5669 -0.2507 1 .8 134 -0.5389 2. 10 16  0 2.25 
80 20 0.7791 1000 0.3625 0.0685 1 .4896 -0. 1 545 1 .7 126 -0.4 152 1 .9733 0 2.25 
8 1  2 1  0.799 1000 0.3996 0.0 158 1 .5822 -0.2299 1 .828 -0.5 172 2. 1 153 0 2.375 
82 22 0.7892 1000 0.3934 0.0 18  1 .5603 -0.224 1 .8023 -0.5068 2.0852 0 2 . 125 
83 23 0.7839 1000 0.3857 0.0279 1 .5398 -0.2093 1 .  777 -0.4866 2.0543 0 2.5 
84 24 0.7747 1000 0.3878 0.0 146 1 .5347 -0.2238 1 .7732 -0.5026 2.052 0 2.375 
85 25 0.7785 1000 0.3855 0.023 1 .5341 -0.2 141 1 .77 12 -0.4912 2.0483 0 2.25 
86 26 0.8002 1000 0.406 0.0045 1 .596 -0.245 1 1 .8456 -0.537 2. 1 375 0 2.5 
87 27 0.7744 1000 0.3841  0.02 16 1 .5271 -0.2 146 1 .7633 -0.4907 2.0395 0 2.25 
88 28 0.805 1000 0.3828 0.0547 1 .5554 -0. 1 808 1 .7908 -0.456 2.0661 0 2 
89 29 0.7866 1000 0.375 1 0.05 13 1 .5219 -0. 1 794 1 .7526 -0.449 1 2.0224 0 2 . 125 
90 30 0.7587 1000 0.3735 0.0267 1 .4907 -0.203 1 .7204 -0.471 5  1 .989 0 2.25 
9 1  3 1  0.78 1 1  1000 0.3813 0.0338 1 .5284 -0.2007 1 .7629 -0.4748 2.037 0 2.5 
92 32 0.7725 1000 0.3834 0.02 1 1 1 .524 -0.2 147 1 .7597 -0.4904 2.0354 0 2. 125 
93 33 0.7619 1000 0.3662 0.0441 1 .4797 -0. 1 8 12 1 .7049 -0.4445 1 .9683 0 2.5 
94 34 0.7836 1000 0.3749 0.0488 1 .5 1 84 -0. 1 8 17  1 .749 -0.45 13  2.0 1 85 0 2.375 
95 35 0.7786 1000 0.3799 0.0341 1 .5232 -0. 1995 1 .7568 -0.4727 2.0299 0 2.375 
96 36 0.8078 1000 0.3904 0.0427 1 .573 -0. 1974 1 .8 1 3 1  -0.478 1 2.0937 0 2. 125 
97 37 0.7753 1000 0.379 0.0324 1 .5 1 82 -0.2007 1 .75 13 -0.4733 2.0238 0 2.25 
98 38 0.7678 1000 0.3806 0.02 18  1 .5 138 -0.2 122 1 .7479 -0.4859 21Q2 15  0 2.375 
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Appendix D1. Fire-tree establishment MDSEA for 5-yr mean tree establishment. 

Limits Limits Limits 
Index Yr Mean n Std dev +/-1 .96 SD +/-2.575 SD +/-3.294 SD Min Max 

0 0 0.55 8 0.3964 -0.227 1 .327 -0.4708 1 .5708 -0.7558 1 .8558 0.2 1 .2 
1 1 0.65 8 0.5099 -0.3494 1 .6494 -0.663 1 .963 -1 .0296 2.3296 0.2 1 .6 
2 2 0.5 8 0.4408 -0.3639 1 .3639 -0.635 1 .635 -0.95 19 1 .95 19 0 1 .2 
3 3 0.45 8 0.3338 -0.2043 1 . 1043 -0 .4096 1 .3096 -0.6496 1 .5496 0 1 
4 4 0.55 8 0.4504 -0.3328 1 .4328 -0.6098 1 .  7098 -0.9336 2.0336 0 1 .4 
5 5 0.525 8 0.44 -0.3373 1 .3873 -0.6079 1 .6579 -0.9243 1 .9743 0 1 .4 
6 6 0.425 8 0.42 -0.3983 1 .2483 -0.6566 1 .5066 -0.9586 1 .8086 0 1 .2 
7 7 0.55 8 0.53 18  -0.4924 1 .5924 -0.8195 1 .9 195 - 1 .2019  2.30 19 0 1 .6 
8 8 0.675 8 0.565 1 -0.4325 1 .7825 -0.78 2 . 13  - 1 . 1 863 2.5363 0 1 .6 
9 9 0.55 8 0.3665 -0. 1682 1 .2682 -0.3936 1 .4936 -0.657 1  1 .7571 0.2 1 .2 
10  10 0.6 8 0.3024 0.0074 1 . 1926 -0. 1 786 1 .3786 -0.396 1 .596 0.2 1 .2 
1 1  1 1  0.625 8 0.2712 0.0934 1 . 1 566 -0.0734 1 .3234 -0.2685 1 .5 1 85 0.2 1 
12  12 0.6 8 0.2619  0.0868 1 . 1 132 -0.0743 1 .2743 -0.2626 1 .4626 0.2 1 
13  1 3  0.6 8 0.2619 0.0868 1 . 1 1 32 -0.0743 1 .2743 -0.2626 1 .4626 0.4 1 .2 
14 14 0.6 8 0.4276 -0.238 1  1 .438 1  -0.501 1  1 .70 1 1 -0.8086 2.0086 0.2 1 .6 
1 5  1 5  0.625 8 0.4713 -0.2988 1 .5488 -0.5886 1 .8386 -0.9275 2. 1775 0 1 .6 
16  16  0.725 8 0.4528 -0. 1624 1 .6 124 -0.4409 1 .8909 -0.7664 2.2 164 0 1 .6 
1 7  17  0.85 8 0.7764 -0.671 8  2.37 1 8  - 1 . 1493 2.8493 - 1 .7076 3.4076 0 2.4 
1 8  1 8  0.8 8 0.6047 -0.3853 1 .9853 -0.7572 2.3572 - 1 . 192 2.792 0.2 2 
19 19  0.875 8 0.6923 -0.4819  2.23 19 -0.9077 2.6577 - 1 .4055 3. 1 555 0.2 2.4 
20 20 0.85 8 0.7838 -0.6862 2.3862 - 1 . 1682 2.8682 - 1 .73 1 7  3.43 17 0.2 2.6 
2 1  2 1  0.825 8 0.6882 -0.5238 2. 1 738 -0.947 2.597 - 1 .4418  3.0918  0.4 2.4 
22 22 0.9 8 0.5757 -0.2284 2.0284 -0.5824 2.3824 -0.9964 2.7964 0.4 1 .8 
23 23 0.9 8 0.835 -0.7365 2.5365 - 1 .25 3.05 - 1 .8503 3.6503 0.4 2.6 
24 24 0.875 8 0.7555 -0.6057 2.3557 - 1 .0703 2.8203 - 1 .6 135 3.3635 0.2 2.6 
25 5 0.925 8 0.565 1 -0. 1 825 2.0325 -0.53 2.38 -0.9363 2.7863 0.2 2 
26 6 0.925 8 0.6585 -0.3656 2.2 1 56 -0. 7705 2.6205 - 1 .244 3.094 0 1 .8 
27 7 0.675 8 0.5007 -0.3064 1 .6564 -0.6143 1 .9643 -0.9744 2.3244 0 1 .6 
28 8 0.675 8 0.6228 -0.5457 1 .8957 -0.9287 2.2787 - 1 .3764 2.7264 0 1 .6 
29 9 0.725 8 0.5 12 -0.2785 1 .7285 -0.5934 2.0434 -0.961 5  2.4 1 15  0.2 1 .6 
30 10 0.675 8 0.5007 -0.3064 1 .6564 -0.6143 1 .9643 -0.9744 2.3244 0 1 .6 
3 1  1 1  0.675 8 0.4773 -0.2606 1 .6 106 -0.5542 1 .9042 -0.8974 2.2474 0 1 .4 
32 12 0.825 8 0.6274 -0.4046 2.0546 -0.7904 2.4404 - 1 .2415  2.8915  0 1 .8 
33 13  0.725 8 0.575 1 -0.4022 1 .8522 -0.7558 2.2058 - 1 . 1 693 2.6193 0.2 1 .6 
34 14 0.75 8 0.6655 -0.5543 2.0543 -0.9636 2.4636 - 1 .4421 2.9421 0.2 2 
35 15 0.925 8 0.868 1 -0.7764 2.6264 - 1 .3 1 03 3 . 1603 - 1 .9345 3.7845 0.2 2.4 
36 16 1 .05 8 0.8 194 -0.556 2.656 - 1 .06 3 . 16  - 1 .649 1 3.7491 0.2 2.6 
37 17  1 8 0.7709 -0.5 1 1  2.5 1 1  -0.985 1 2.985 1 - 1 .5393 3.5393 0 2.4 
38 1 8  1 . 1 5  8 0.8928 -0.5999 2.8999 - 1 . 149 3 .449 - 1 .791 4.09 1  0.2 2.6 
39 19 1 . 1  8 0.7928 -0.4539 2.6539 -0.94 15 3 . 14 15  - 1 .5 1 16  3.71 16 0.2 2.4 
40 20 0.975 8 0.6089 -0.2 184 2. 1684 -0.5928 2.5428 - 1 .0306 2.9806 0.2 1 .8 
41  2 1  0.825 8 0.6541 -0.457 1 2. 107 1  -0.8593 2.5093 - 1 .3296 2.9796 0 1 .8 
42 22 0.85 8 0.699 -0.52 2.22 -0.9499 2.6499 - 1 .4524 3 . 1524 0 2 
43 23 0.825 8 0.7046 -0.556 2.206 -0.9893 2.6393 - 1 .4959 3 . 1459 0 1 .8 
44 24 0.9 8 0.84 18  -0.7499 2.5499 - 1 .2675 3 .0675 - 1 .8728 3.6728 0 2.4 
45 5 0.9 8 0.82 1 1 -0.7095 2.5095 - 1 .2 145 3.0145 - 1 .8049 3.6049 0 2.4 
46 6 1 8 0.8 -0.568 2.568 - 1 .06 3 .06 - 1 .6352 3.6352 0 2.4 
47 7 0.975 8 0.8582 -0.707 2.657 -1 .2347 3 . 1 847 - 1 .85 1 8  3.8018 0 2.6 
48 8 0.925 8 0.7402 -0.5257 2.3757 -0.9809 2.8309 - 1 .5 13 1 3.363 1 0 2.2 

49 9 0.875 8 0,5651 -0,2325 1.9825 -0.58 2.33 -0.9863 2.7363 0.2 1 .8 
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Appendix D1. Continued. 

Limits Limits Limits 
Index Yr Mean n Std dev +/- 1 .96 SD +/-2.575 SD +/-3.294 SD Min Max 

50 10 1 .05 8 0.6024 -0. 1307 2.2307 -0.501 1 2.601 1 -0.9342 3.0342 0.4 1 .8 

5 1  1 1  1 . 1 5  8 0.487 0. 1955 2. 1045 -0. 104 2.404 -0.4541 2.7541 0.4 1 .8 
52 12 1 .2 8 0.478 1 0.2629 2. 1371 -0.03 1 1 2.43 1 1  -0.3748 2.7748 0.6 2 

53 13  1 .3 8 0.5345 0.2523 2.3477 -0.0764 2.6764 -0.4607 3.0607 0.6 2.2 
54 14 1 .3 8 0.659 0.0084 2.59 16 -0.3969 2.9969 -0.8708 3.4708 0.6 2.6 
55 1 5  1 . 175 8 0.7285 -0.2529 2.6029 -0.7009 3.0509 - 1 .2247 3.5747 0.4 2.4 
56 16 1 8 0.8 -0.568 2.568 - 1 .06 3.06 - 1 .6352 3.6352 0.2 2.4 
57 17  1 . 125 8 0.8345 -0.5 107 2.7607 - 1 .0239 3.2739 - 1 .6239 3.8739 0 2.4 
58 1 8  1 .025 8 0.8 172 -0.5768 2.6268 - 1 .0794 3. 1294 - 1 .6669 3.7 1 69 0 2.6 
59 19 1 .075 8 0.7246 -0.3452 2.4952 -0. 7908 2.9408 - 1 .3 1 1  7 3 .46 17 0 2.4 
60 20 1 . 175 8 0.6798 -0. 1574 2.5074 -0.5755 2.9255 - 1 .0643 3.4143 0.2 2 
61 2 1  1 .25 8 0.6024 0.0693 2.4307 -0.301 1  2.80 1 1 -0.7342 3 .2342 0.4 2 
62 22 1 .075 8 0.6042 -0. 109 1 2.2591 -0.4807 2.6307 -0.9 1 5 1  3.065 1 0.4 2.4 
63 23 1 .225 8 0.6798 -0. 1074 2.5574 -0.5255 2.9755 - 1 .0143 3 .4643 0.6 2.4 
64 24 1 .275 8 0.667 1 -0.0325 2.5825 -0.4427 2.9927 -0.9224 3 .4724 0.6 2.4 
65 5 1 . 1 75 8 0.6882 -0. 1738 2.5238 -0.597 2.947 - 1 .09 18  3 .44 1 8  0.4 2.6 
66 6 1 . 1  8 0.6503 -0. 1745 2.3745 -0.5745 2.7745 - 1 .042 3.242 0.2 2.2 
67 7 1 .275 8 0.7 166 -0. 1296 2.6796 -0.5703 3 . 1203 - 1 .0856 3 .6356 0.2 2.4 
68 8 1 . 175 8 0.7363 -0.2682 2.6 182 -0.721 3.07 1 - 1 .2504 3.6004 0 2 
69 9 1 . 1  8 0.6414 -0. 1572 2.3572 -0.55 17  2.75 17 - 1 .0 129 3.2 129 0 1 .8 
70 10 1 .225 8 0.744 -0.2333 2.6833 -0.6909 3 . 1409 - 1 .2258 3.6758 0 2.4 
7 1  1 1  1 .3 8 0.6676 -0.0085 2.6085 -0.4 19 1 3.0191  -0.899 1 3.499 1 0.2 2 
72 12  1 .2 8 0.8 -0.368 2.768 -0.86 3.26 - 1 .4352 3.8352 0.2 2.4 
73 1 3  1 . 1 75 8 0.9 16 1  -0.6206 2.9706 - 1 . 1 84 3.534 - 1 .8427 4. 1 927 0.2 2.6 
74 14 1 . 125 8 0.9 13  -0.6645 2.9 145 - 1 .226 3.476 - 1 .8824 4. 1 324 0.2 2.6 
75 1 5  1 8 0.709 1 -0.3899 2.3899 -0.826 2.826 - 1 .3359 3.3359 0 1 .8 
76 16 0.925 8 0.8548 -0.7504 2.6004 - 1 .2762 3 . 1262 - 1 .8908 3.7408 0 2.4 
77 1 7  0.85 8 0.6655 -0.4543 2. 1 543 -0.8636 2.5636 - 1 .342 1 3.042 1 0 2 
78 1 8  0.95 8 0.6655 -0.3543 2.2543 -0.7636 2.6636 - 1 .2421 3 . 142 1  0 2 
79 19  0.975 8 0.75 17  -0.4983 2.4483 -0.9605 2.9 105 - 1 .50 1 3.45 1 0 2 
80 20 0.95 8 0.6568 -0.3374 2.2374 -0.7413 2.6413  - 1 .2 136 3. 1 1 36 0.2 2 
81  2 1  1 .05 8 0.6024 -0. 1307 2.2307 -0.501 1 2.601 1 -0.9342 3 .0342 0.4 1 .8 
82 22 1 . 1 75 8 0.7363 -0.2682 2.6 182 -0.721 3.07 1 - 1 .2504 3 .6004 0.4 2.4 
83 23 1 .025 8 0.7046 -0.356 2.406 -0.7893 2.8393 - 1 .2959 3.3459 0.4 2.4 
84 24 1 .075 8 0.6756 -0.2492 2.3992 -0.6647 2.8 147 - 1 . 1 504 3 .3004 0.4 2.4 
85 25 1 .3 8 0.9 134 -0.4902 3.0902 - 1 .052 3.652 - 1 .  7087 4.3087 0.4 2.6 
86 26 1 . 125 8 0.7402 -0.3257 2.5757 -0. 7809 3.0309 - 1 .3 1 3 1  3.563 1 0.4 2.2 
87 27 1 .025 8 0.7363 -0.4 182 2.4682 -0.871 2.921 - 1 .4004 3.4504 0 2 
88 28 1 . 125 8 0.7479 -0.3408 2.5908 -0.8007 3.0507 - 1 .3384 3.5884 0.2 2.2 
89 29 1 . 1  8 0.8552 -0.5763 2.7763 - 1 . 1022 3.3022 - 1 . 7 17 1  3 .9 1 7 1  0.2 2.6 
90 30 0.8 8 0.5657 -0.3087 1 .9087 -0.6566 2.2566 - 1 .0634 2.6634 0.2 1 .8 
91  31  0.95 8 0.7838 -0.5862 2.4862 - 1 .0682 2.9682 - 1 .63 1 7  3.53 17  0.2 2.4 
92 32 0.875 8 0.7005 -0.498 2.248 -0.9288 2.6788 - 1 .4325 3 . 1 825 0 2 
93 33 0.875 8 0.6 135 -0.3275 2.0775 -0. 7049 2.4549 - 1 . 146 2.896 0 1 .8 
94 34 0.85 8 0.5732 -0.2735 1 .9735 -0.626 2.326 - 1 .0382 2.7382 0 1 .6 
95 35 1 .025 8 0.6882 -0.3238 2.3738 -0.747 2.797 - 1 .2418  3 .29 1 8  0.2 2 
96 36 0.925 8 0.5946 -0.2405 2.0905 -0.6061 2.4561 - 1 .0337 2.8837 0.2 1 .8 
97 37 1 . 1  8 0.875 1 -0.6 1 5 1  2.8 1 5 1  - 1 . 1 533 3.3533 - 1 .7824 3 .9824 0.2 2.4 
98 38 1 .075 8 0.894 -Q.6773 2.8273 - 1 .2271 3.377 1  - 1 .8699 4.0 199 0.2 2.4 
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Appendix D2. Fire-tree establishment MDSEA bootstrapped confidence intervals 

for 5-yr mean tree establishment. 

Limits Limits Limits 
Index Yr Mean n Std dev +/-1 .96 SD +/-2.575 SD +/-3.294 SD Min Max 

0 0 0.6267 1000 0.2684 0. 1005 1 . 1 528 -0.0646 1 .3 1 79 -0.2576 1 .5 1 09 0. 1 1 .5 
1 1 0.6296 1 000 0.2669 0. 1065 1 . 1 527 -0.0576 1 .3 1 68 -0.2495 1 .5087 0. 1 1 .5 
2 2 0.6342 1000 0.2677 0. 1096 1 . 1 589 -0.055 1 .3235 -0.2474 1 .5 1 59 0. 1 1 .4 
3 3 0.6374 1 000 0.2652 0. 1 176 1 . 1 572 -0.0455 1 .3203 -0.2362 1 .5 1 1 0. 1 1 .4 
4 4 0.6434 1 000 0.2658 0. 1224 1 . 1 644 -0.04 1 1 1 .3278 -0.2322 1 .5 1 9  0. 1 1 .3 
5 5 0.6435 1000 0.2612  0. 1 3 1 5  1 . 1 555 -0.0292 1 .3 1 62 -0.2 17  1 .504 0. 1 1 .3 
6 6 0.6465 1000 0.2635 0. 13 1 . 1 63 1  -0.032 1 1 .3252 -0.22 16  1 .5 147 0. 1 1 .4 
7 7 0.6469 1 000 0.2672 0. 123 1  1 . 1 706 -0.0412 1 .3349 -0.2333 1 .527 0. 1 1 .3 
8 8 0.65 1 3  1000 0.27 0. 122 1 . 1 806 -0.044 1 .3467 -0.2382 1 .5408 0. 1 1 .4 
9 9 0.652 1000 0.2649 0. 1328 1 . 17 12  -0.0301 1 .3341 -0.2206 1 .5246 0.2 1 .5 
IO  10  0.6523 1000 0.2692 0. 1246 1 . 1 8  -0.041 1 .3456 -0.2345 1 .5392 0.2 1 .4 
1 1  1 1  0.6552 1000 0.2642 0. 1373 1 . 1 732 -0.0252 1 .3357 -0.2 1 52 1 .5257 0.2 1 .5 
12 12  0.6587 1 000 0.2619 0. 1455 1 . 1 72 -0.0 1 56 1 .333 -0.2038 1 .52 13  0.2 1 .4 
13  1 3  0.6602 1 000 0.2617 0. 1472 1 . 1 732 -0.01 38 1 .3341 -0.2019 1 .5223 0.2 1 .4 
14 14 0.662 1000 0.2628 0. 147 1 . 1 77 -0.0 146 1 .3386 -0.2035 1 .5275 0. 1 1 .4 
1 5  1 5  0.6677 1000 0.261 8  0. 1545 1 . 1 809 -0.0065 1 .3419 -0. 1947 1 .5301 0.2 1 .5 
1 6  1 6  0.672 1 000 0.261 1 0. 1602 1 . 1 838 -0.0004 1 .3443 -0. 1881  1 .5321 0. 1 1 .4 
1 7  1 7  0.6753 1000 0.2633 0. 1594 1 . 19 13  -0.0025 1 .3532 -0. 19 18  1 .5425 0.2 1 .5 
1 8  1 8  0.6799 1000 0.2655 0. 1595 1 .2003 -0.0038 1 .3636 -0. 1947 1 .5545 0.2 1 .4 
19  1 9  0.68 1 1000 0.265 1 0. 16 14 1 .2006 -0.0017 1 .3637 -0. 1923 1 .5543 0.2 1 .6 
20 20 0.6853 1 000 0.2648 0. 1663 1 .2042 0.0035 1 .367 -0. 1 869 1 .5574 0.2 1 .5 
2 1  2 1  0.6905 1000 0.2704 0. 1605 1 .2206 -0.0058 1 .3869 -0.2003 1 .58 13  0.2 1 .5 
22 22 0.6898 1000 0.2679 0. 1647 1 .2 149 -0.0001 1 .3797 -0. 1927 1 .5723 0.2 1 .4 
23 23 0.6897 1000 0.2648 0. 1707 1 .2086 0.0079 1 .3714 -0. 1 825 1 .5618 0.2 1 .5 
24 24 0.6947 1 000 0.2658 0. 1 738 1 .2 157 0.0103 1 .3792 -0. 1 808 1 .5703 0.2 1 .5 
25 5 0.7094 1000 0.2591 0.201 5  1 .2 172 0.0421 1 .3766 -0. 1442 1 .5629 0.2 1 .5 
26 6 0.7 1 14 1000 0.2587 0.2044 1 .2 185 0.0453 1 .3776 -0. 1407 1 .5636 0. 1 1 .5 
27 7 0.7 146 1 000 0.258 1 0.2087 1 .2206 0.0499 1 .3793 -0. 1 357 1 .5649 0. 1 1 .4 
28 8 0.7 1 82 1000 0.261 7  0.2052 1 .23 1 1 0.0443 1 .392 -0. 1439 1 .5802 0.2 1 .5 
29 9 0.7204 1000 0.263 1 0.2046 1 .2361  0.0428 1 .398 -0. 1464 1 .5872 0.2 1 .5 
30 10  0.7 1 8  1 000 0.26 19 0.2046 1 .23 14 0.0435 1 .3925 -0. 1448 1 .5808 0.2 1 .4 
3 1  1 1  0.7236 1000 0.2636 0.2069 1 .2402 0.0448 1 .4023 -0. 1447 1 .59 19 0.2 1 .5 
32 12  0.7272 1000 0.2663 0.2052 1 .2492 0.0414 1 .413 -0. 15 1 .6044 0.2 1 .4 
33 1 3  0.7269 1000 0.261 5  0.2 143 1 .2394 0.0535 1 .4002 -0. 1 345 1 .5882 0.2 1 .5 
34 14  0.7262 1000 0.2549 0.2265 1 .2259 0.0697 1 .3827 -0. 1 136 1 .566 0.2 1 .4 
35 1 5  0.7303 1000 0.2574 0.2258 1 .2347 0.0675 1 .393 -0. 1 1 76 1 .578 1 0.2 1 .4 
36 1 6  0.7287 1000 0.2582 0.2226 1 .2348 0.0638 1 .3936 -0. 12 19  1 .5792 0.2 1 .5 
37 1 7  0.73 1000 0.2579 0.2244 1 .2355 0.0658 1 .394 1  -0. 1 196 1 .5795 0.2 1 .5 
38 1 8  0.734 1000 0.2582 0.228 1 .24 0.0692 1 .3988 -0. 1 1 65 1 .5845 0.2 1 .5 
39 1 9  0.739 1 1000 0.26 13 0.2269 1 .25 12  0.0662 1 .4 1 19  -0. 12 16  1 .5998 0.2 1 .5 
40 20 0.7403 1000 0.2619  0.2269 1 .2537 0.0658 1 .4 148 -0. 1225 1 .6032 0.2 1 .5 
4 1  2 1  0.7439 1000 0.2632 0.228 1 .2598 0.0661 1 .421 7  -0. 123 1 1 .6 1 1 0.2 1 .5 
42 22 0.7463 1000 0.2632 0.2304 1 .2622 0.0685 1 .4241 -0. 1208 1 .6 134 0. 1 1 .5 
43 23 0.7475 1000 0.2625 0.233 1 .262 0.07 16  1 .4235 -0. 1 172 1 .6 122 0. 1 1 .5 
44 24 0.745 1 1000 0.2593 0.2368 1 .2534 0.0773 1 .4128 -0. 109 1  1 .5993 0.2 1 .5 
45 5 0.7329 1000 0.2567 0.2297 1 .2361 0.07 1 8  1 .394 -0. 1 128 1 .5786 0.2 1 .6 
46 6 0.736 1 1000 0.2636 0.2 194 1 .2527 0.0573 1 .4 148 -0. 1322 1 .6043 0.2 1 .5 
47 7 0.7367 1000 0.2632 0.2209 1 .2525 0.059 1 .4144 -0. 1 302 1 .6036 0.2 1 .6 
48 8 0.7404 1000 0.263 0.225 1 .2559 0.0632 1 .4 177 -0. 1259 1 .6067 0.2 1 .5 
49 9 0.7402 1000 0.258 0.2344 1 .2459 0.0758 1 .4046 -0. 1098 1 .5901 0.2 1 .5 
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Appendix D2. Continued. 

Limits Limits Limits 
Index Yr Mean n Std dev +/- 1 .96 SD +/-2.575 SD +/-3 .294 SD Min Max 
50 10 0.7469 1000 0.2619 0.2335 1 .2603 0.0724 1 .4213 -0. 1 159 1 .6097 0.2 1 .5 
5 1  1 1  0.7464 1000 0.2616 0.2337 1 .2592 0.0728 1 .4201 -0. 1 153 1 .6082 0.3 1 .5 
52 12  0.748 1000 0.2579 0.2425 1 .2536 0.0839 1 .4 122 -0. 10 16  1 .5976 0.2 1 .5 
53 13 0.7489 1000 0.2566 0.2461 1 .25 18  0.0883 1 .4096 -0.0962 1 .594 0.2 1 .5 
54 14 0.7544 1000 0.2559 0.2527 1 .256 0.0954 1 .4 134 -0.0887 1 .5974 0.2 1 .5 
55 15 0.7525 1000 0.2533 0.256 1 .2489 0. 1002 1 .4047 -0.08 19  1 .5868 0.2 1 .5 
56 16 0.7588 1000 0.2543 0.2604 1 .2571 0. 104 1 .4 135 -0.0788 1 .5963 0.2 1 .6 
57 17 0.7615  1000 0.2565 0.2588 1 .2642 0. 101  1 .42 19 -0.0834 1 .6063 0.2 1 .5 
58 18 0.7656 1000 0.2575 0.2608 1 .2704 0. 1024 1 .4288 -0.0828 1 .6 139 0.2 1 .5 
59 19 0.7635 1000 0.2587 0.2564 1 .2706 0.0973 1 .4297 -0.0887 1 .6 157 0.3 1 .7 
60 20 0.7668 1000 0.2614 0.2544 1 .2791 0.0937 1 .4398 -0.0943 1 .6278 0.2 1 .5 
61  21  0.766 1000 0.2588 0.2588 1 .2733 0.0996 1 .4325 -0.0865 1 .6 1 85 0.3 1 .5 
62 22 0.7668 1000 0.2569 0.2633 1 .2703 0. 1053 1 .4283 -0.0794 1 .6 13  0.2 1 .5 
63 23 0.7647 1000 0.2562 0.2626 1 .2668 0. 105 1 .4244 -0.0792 1 .6086 0.2 1 .5 
64 24 0.7653 1000 0.2548 0.266 1 .2646 0. 1093 1 .42 13  -0.0739 1 .6045 0.2 1 .6 
65 5 0.7635 1000 0.2592 0.2554 1 .27 16 0.096 1 .43 1 -0.0904 1 .6174 0.2 1 .5 
66 6 0.7675 1000 0.2601 0.2577 1 .2773 0.0978 1 .4373 -0.0892 1 .6243 0.2 1 .5 
67 7 0.7734 1000 0.2558 0.272 1 .2747 0. 1 147 1 .432 -0.0692 1 .6 159 0.2 1 .4 
68 8 0.7746 1000 0.2601 0.2649 1 .2844 0. 1049 1 .4443 -0.082 1 .63 13 0.2 1 .6 
69 9 0.7781 1000 0.2609 0.2668 1 .2894 0. 1064 1 .4499 -0.08 12 1 .6375 0.2 1 .5 
70 10  0.7758 1000 0.2633 0.2597 1 .292 0.0978 1 .4539 -0.0916  1 .6432 0.2 1 .6 
7 1  1 1  0.777 1000 0.2586 0.2701 1 .2839 0. 1 1 1  1 .4429 -0.0749 1 .6289 0.3 1 .5 
72 12 0.7748 1000 0.2626 0.26 1 .2895 0.0985 1 .45 1 -0.0903 1 .6398 0.2 1 .5 
73 13 0.7752 1000 0.2645 0.2568 1 .2937 0.0942 1 .4563 -0.096 1 .6465 0.2 1 .5 
74 14 0.7772 1000 0.2637 0.2604 1 .294 0.0982 1 .4562 -0.0914 1 .6458 0.2 1 .6 
75 15  0.7795 1000 0.2603 0.2692 1 .2897 0. 109 1  1 .4498 -0.0781 1 .637 0.2 1 .5 
76 16  0.7807 1000 0.2579 0.2753 1 .2861 0. 1 167 1 .4447 �0.0687 1 .6301 0.3 1 .5 
77 17  0.783 1000 0.2624 0.2686 1 .2974 0 . 1072 1 .4588 -0.08 15  1 .6475 0.2 1 .7 
78 1 8  0.7836 1000 0.259 0.2759 1 .2913 0. 1 166 1 .4507 -0.0697 1 .6369 0.2 1 .6 
79 19 0.7841 1000 0.2577 0.279 1 1 .2892 0. 1206 1 .4477 -0.0647 1 .633 0.3 1 .5 
80 20 0.7864 1000 0.2561 0.2845 1 .2884 0. 1269 1 .4459 -0.0572 1 .6301 0.2 1 .6 
8 1  2 1  0.7861 1000 0.2586 0.2792 1 .293 0. 1201 1 .4521 -0.0658 1 .638 0.2 1 .5 
82 22 0.7836 1000 0.2586 0.2767 1 .2906 0. 1 176 1 .4496 -0.0683 1 .6356 0.2 1 .5 
83 23 0.7865 1000 0.2561 0.2846 1 .2885 0. 1271 1 .446 -0.0571 1 .6301 0.2 1 .5 
84 24 0.7884 1000 0.25 12  0.2962 1 .2807 0. 1417 1 .435 1 -0.0389 1 .6 157 0.2 1 .4 
85 25 0.7886 1000 0.2488 0.301 1 .2762 0. 148 1 .4292 -0.0309 1 .6081 0.2 1 .5 
86 26 0.79 15  1000 0.2487 0.3041  1 .2789 0. 1 5 12 1 .43 19 -0.0276 1 .6 107 0.2 1 .5 
87 27 0.794 1000 0.249 0.3059 1 .2821 0. 1 528 1 .4353 -0.0263 1 .6143 0.2 1 .4 
88 28 0.7908 1000 0.249 0.3027 1 .2789 0. 1496 1 .432 -0.0295 1 .61 1 1  0.2 1 .5 
89 29 0.7882 1000 0.2477 0.3027 1 .2736 0. 1 504 1 .4259 -0.0276 1 .604 0.3 1 .5 
90 30 0.7864 1000 0.2478 0.3006 1 .2721 0. 1482 1 .4245 . -0.0299 1 .6026 0.2 1 .5 
91  3 1  0.7833 1000 0.247 0.299 1 1 .2675 0. 1472 1 .4 195 -0.0304 1 .5971 0.2 1 .6 
92 32 0.7828 1000 0.2473 0.2981 1 .2675 0. 1461  1 .4 196 -0.03 1 7  1 .5974 0.2 1 .5 
93 33 0.7799 1000 0.2453 0.2991 1 .2607 0. 1482 1 .41 15  -0.0282 1 .5879 0.2 1 .5 
94 34 0.78 16  1000 0.2502 0.2913 1 .272 0. 1375 1 .4258 -0.0424 1 .6057 0.2 1 .5 
95 35 0.78 1000 0.25 14 0.2873 1 .2727 0. 1327 1 .4273 -0.048 1 1 .608 0.2 1 .4 
96 36 0.7797 1000 0.2541 0.28 17 1 .2776 0 . 1255 1 .4339 -0.0572 1 .6 165 0.2 1 .6 
97 37 0.777 1000 0.2493 0.2885 1 .2656 0. 1352 1 .4 189 -0.044 1 .5981 0.2 1 .5 
98 38 0.78 1 1  1000 0.25 12  0.2888 1 .2734 0. 1343 1 .4278 -0.0462 1 .6084 0.2 1 .5 
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