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“Scientists discover the world that exists; engineers create the world that never was...”
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“To know that we know what we know, and that we do not know what we do not know,
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“There comes a time when the mind takes a higher plane of knowledge but can never

prove how it got there.” - Albert Einstein

“Imagination is more important than knowledge. Knowledge is limited. Imagination

encircles the world.” - Albert Einstein

“Beware of false knowledge; it is more dangerous than ignorance.” - George Bernard

Shaw

“Knowing others is wisdom, knowing yourself is enlightenment.” - Lao Tzu
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“A doctor can bury his mistakes but an architect can only advise his clients to plant

vines.” - Frank Lloyd Wright

“Make everything as simple as possible, but not simpler.” - Albert Einstein

“Learning LaTex is like learning to ride a bike. Once you do it, you look down upon

those who haven’t learned it yet and run them over.” - Unknown

‘In three words I can sum up everything I’ve learned about life: it goes on.” - Robert

Frost

‘Two roads diverged in a wood, and I–

I took the one less traveled by,

And that has made all the difference.”

- Robert Frost, The Road Not Taken
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Abstract

The object of this study is to canvas the literature for the purpose of identifying

and compiling a list of Gaps, Obstacles, and Technological Challenges in Hypersonic

Applications (GOTCHA). The significance of GOTCHA related deficiencies is

discussed along with potential solutions, promising approaches, and feasible remedies

that may be considered by engineers in pursuit of next generation hypersonic

vehicle designs and optimizations. Based on the synthesis of several modern

surveys and public reports, a cohesive list is formed, consisting of widely accepted

areas needing improvement and falling under several general categories. These

include: aerodynamics, propulsion, materials, analytical modeling, CFD modeling,

and education in high speed flow physics. New methods and lines of research inquiries

are suggested such as the homotopy-based analysis (HAM) for the treatment of strong

nonlinearities, the use of improved turbulence models and unstructured grids in

numerical simulations, the need for accessible validation data, and the refinement

of mission objectives for Hypersonic Air-Breathing Propulsion (HABP).
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Chapter 1

Introduction

Venturing into the realm of hypersonics can be both exciting and overwhelming. In

the past five decades, hypersonic global transport and cost effective access to space

have continued to drive this particular area of aeronautical and aerospace research.

However, by reviewing the building blocks that constitute a hypersonic flight system,

it becomes apparent that the complex tasks associated with the development of high

speed vehicle technology are more daunting than first anticipated. Across disciplines,

gaps seem to appear between theoretical projections and actual predictions. It is

therefore the purpose of this study to locate, compile, and discuss various Gaps, Ob-

stacles, and Technological Challenges in Hypersonic Analysis (GOTCHA), a play on

the National Aerospace Initiative (NAI) Technology Development Approach (TDA)

GOTChA (Goals, Objectives, Technical Challenges, and Approaches; Richman et al.

2005), with the hope of identifying and helping to overcome the critical barriers that

confront engineers in both industry and academe in the field of hypersonic technology

(HT) . Given the vast collection of HT literature, the present survey will not attempt

to provide comprehensive coverage of the subject but will rather seek to introduce

the reader to some of the critical challenges and opportunities in hypersonics. It

thus serves as an evaluation of the current state of knowledge in this field. Several

excellent surveys exist, but these are generally focused on either historical perspectives
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or specific areas of technology. In the spirit of synthesis, the present work will seek

to create a cohesive list of commonly encountered GOTCHAs. The effort will build

on the work of contributors who have experienced the waxing and waning phases of

hypersonic research. These works appear in the form of journal articles, book series,

NASA monographs, Air Force reports, textbooks, and periodicals.

Generally, the Mach number range of five and above describes the hypersonic

regime. However, some extreme phenomena can begin to appear at lower Mach

numbers of three and four. Thus, an excellent definition for hypersonic flows

illustrates the emergence and dominance of certain physical characteristics which do

not appear or are not as relevant at lower speeds. The hypersonic regime introduces

a number of flow attributes such as: extremely high turbulence, pressure,

temperature, density, vorticity, and energy, thin shock layers, viscous

interactions, entropy layers, changes in vehicle stability and control; and

physical-chemical gas changes such as ionization, dissociation, equilibrium

effects, and other molecular phenomena. In addition, the hypersonic designer

must remain aware of the other flow regimes since a hypersonic vehicle will have

to transition from rest to the designed hypersonic flight Mach number and

transition throughout the various characteristics of the atmosphere.

The large driving force behind hypersonic research emerges from the need to reduce

cost to space and faster global transportation for both military and civilian purposes.

Introducing an air-breathing propulsion stage to space transportation is hoped to

eventually reduce launch costs while reducing, from a military standpoint, global

strike and surveillance times.

Today the hypersonic sector has reached a new age. Figure 1.1 shows how the area

of hypersonics has blended space and air studies that Hallion (2005) calls "genuine

aerospace." This is an excellent portrait of how the hypersonic programs, research,

and goals have varied (from space ballistics to hypersonic planes) while remaining

intimately connected. In this diagram, various programs are displayed according to

their design realm with pure rocket, aeronautic, and hypersonic projects. Hallion gives
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Figure 1.1: The hypersonic confluence (Hallion 2005).

a good description of how the hypersonic flight realm traverses a complex environment

as,

"ranging from high in the stratosphere to operations into and cross the

demarcation of spaceflight, where the laws of aerodynamics cease to apply

and the laws of ballistic, Keplerian trajectories, and Hohmann transfers

take over."

This next sentence by Hallion beautifully describes the hypersonic research area,

"Hypersonics thus blends the twin stream of space and aeronautics

research into a confluence, the hypersonic revolution [emphasis

added]."

Broadly speaking, several GOTCHA categories may be envisioned that correspond

to those that are accepted by the majority of investigators. These include:

1. Aerodynamics.

2. Propulsion.

3. Materials and Structures.
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4. Testing and Modeling.

(a) Flight Testing.

(b) Ground Testing.

(c) Computational Testing & Numerical Modeling.

(d) Analytical Modeling.

5. Education.

Within these categories, it may be argued that deficiencies in propulsion,

configurations, and materials are chiefly responsible for restricting the viability of

a full scale hypersonic Single-Stage-to-Orbit (SSTO). As a result of GOTCHAs in

propulsion technology, designers are compelled to reduce payloads to a point where

new concepts offer no advantages over current or past designs. This challenge

seems to be common for several programs including, to some extent, the Space

Shuttle program, which has only provided a partial solution to the long-standing

SSTO objective (Ferri 1973; Freeman Jr. et al. 1995; Whitmore and Dunbar 2003;

Hallion 2005). In contrast, much has been accomplished in aerodynamics and

guidance/control from the lessons learned through such studies as the X-15 and

the Space Shuttle programs. The materials and structures sector also requires

continual progress to achieve better thermal effectiveness and overall weight reduction.

The most pressing need seems to concern the current state of engineering tools

for propulsion. It is only through diligence and focused research, the consensus

shows (Tang and Chase 2005), that the most conspicuous GOTCHA issues will

be mitigated, one-by-one, to the extent of promoting the development of a true

hypersonic workhorse. Some of the issues remain as relevant today as they were

nearly five decades ago, and so an effort is exerted here to present the material

cohesively to the extent that the key connections and common overlap areas among

various categories are illuminated.
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Chapter 2

Aerodynamics

Although much has been accomplished to date, the complexity of hypersonic vehicles

(HV) continues to push the boundaries of aerodynamic theory. The need to operate

in several flight regimes can lead to unforeseen aerodynamic conditions, especially

in air-breathing propulsion systems. While a certain shape or lift-to-drag (L/D)

configuration may be efficient at low hypersonic Mach numbers (say 4-8), it may

exhibit a severe degradation in aerodynamic performance outside this envelope. This

would be the case, for example, during the takeoff and landing phases of a space plane.

The solution lies, perhaps, in the use of a booster that is capable of accelerating the

hypersonic vehicle to the proper conditions at which the air-breathing portion may be

effectively engaged. Mission requirements add yet another element of complexity that

must be taken into account. In this category, a number of parameters or hypersonic

technological areas (HypTAs) must be studied due to their impact on aerodynamic

performance. These include, but are not limited to those shown in the following list.
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Aerodynamic GOTCHAs & HypTAs

Fluid mechanics/dynamics

Inviscid effects

Viscous effects

Boundary layers

Laminar/Transition/Turbulence

Flow regimes

Subsonic/Transonic

Supersonic/Hypersonic

Compressibility effects

Heat transfer effects

Conduction/Convection

Radiation

Thermodynamics

Low density

Non-equilibrium

Combustion and reactions (Chemistry)

Lift to drag ratios (L/D)

Low - blunt bodies/ballistics

High - gliders/lifting bodies/waveriders

Shape/geometry of the vehicle

Conical

Two-dimensional (2-D)/rectangular

Ellipitcal

Axisymmetric/Semi-axisymmetric

Propulsion system integration

Continued on the next page. . .
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Aerodynamic GOTCHAs & HypTAs (continued)

Aerodynamic loads

Volumetric efficiency

Airframe integration

Structural and thermal loads

Vibrations/Flutter

Materials

Lighter, stronger, cheaper

Thermal protection

Flowpath geometry heavily based on aerodynamic shape

Inlet/Intake

Isolator

Ellipitcal

Combustor

Nozzle

Mission requirements

Hypersonic missile

Hypersonic bomber

Hypersonic transport

Hypersonic space access

Flight trajectories Ballistic

Boost glide

Skip

Orbital insertion

SSTOs vs TSTOs (Two-Stage-to-Orbit)

Reusable Launch Vehicle (RLVs) vs Expendable Launch Vehicles (ELVs)
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Figure 2.1: Hypersonic aerodynamic effects on the HV (Anderson 2000, 2006).

Designing a HV often appears daunting and difficult. Numerous attempts have

been made in the past with many successes and failures. Only a few programs ever

became operational vehicles. Two hurdles which essentially link into a co-hurdle

are the extreme hypersonic flight conditions and hypersonic mission objectives. For

example, mission objectives include space access and global transportation. Space

access not only requires the attainment of very high vehicle velocities but also must

traverse the varying atmospheric layers to reach an orbital path. Global access

missions also benefit from hypersonic speeds but do not require the large orbital

altitudes. Therefore, HV systems provide the desired speeds but demand complexity.

Figure 2.1 demonstrates possible aerodynamic effects in hypersonic flight as previously

mentioned.

Figure 2.2 from Bowcutt (2003) and Bertin and Cummings (2003; 2003) illustrates

the complexity when dealing with HV aerodynamics. A conglomeration of figures and

tables appear in Figure 2.2 delineating the types of HV at mission specific altitudes
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Figure 2.2: Complexity of the aerodynamics associated with the HV (Bertin and
Cummings 2003; Bowcutt 2003).
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and speeds and the various aerodynamic phenomena that occur at the corresponding

altitude and flight speeds. Figure 2.2 also displays the various flight speed regimes

and some analogous flow phenomenon that occur in these regimes. Finally, the flow

regimes involving the range of Knudsen numbers shows how molecular effects emerge

in aerodynamic phenomena.

Much work has been accomplished in hypersonic aerodynamics. A large body of

test data has been collected and compiled by successful programs such as the X-15

and Space Shuttle as mentioned by Launius (2003a). Due to the increasing flight

speeds created by missiles and spacecraft, the fifties and sixties saw a large research

effort directed to hypersonic aerodynamics (Clarke 1991); Louie and Ockendon

(1991) even call this era the golden age of theoretical hypersonic flow research.

With the hypersonic flight regime as a new area of aerodynamic research, scientists

turned their attention to the additional complexities of the flow through the use of

fundamental physic principles such as the "kinetic theory of gases, thermodynamics

and statistical thermodynamics of gas mixtures, radiation, and the kinetics of chemical

and internal-molecular energy change (Clarke 1991)." After this boom in hypersonic

research a lull dominated until a rekindling of interest in the eighties and nineties

due to projects such as the National Aerospace Plane (NASP), which once again

needed to identify and conquer hypersonic flow/flight problems (Cheng 1993). Thus,

even though much has been accomplished in previous projects and programs, the

hypersonic aerodynamics area still has posed a problem due to the complexity of

HVs. Ferri (1959) compares the hypersonic aerodynamics to the classical chicken and

egg problem. He says,

"The field of hypersonic aerodynamics is dominated by two conflicting

characteristics: The phenomena to be investigated are much more complex

and less amenable to simplified schemes of analysis and to experimental

investigation than other fields of fluid dynamics while at the same time
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much more precise detailed knowledge of the flow field is required in order

to obtain the information necessary for practical applications."

Bletzinger et al (Bletzinger et al. 2005) describe hypersonic flight as being

substantially difficult. Scaling laws related to required energy and thermal loading

present hardship since nonlinearities appear in consensus with the Mach number. For

example, the aerodynamic drag correlates with the increase of ρM2 and aerodynamic

heating with ρM3. Bletzinger et al (Bletzinger et al. 2005) also note that the

speed of sound remains closely the same until the edge of space. For every 50

km in altitude, the density decreases on an order of 103. Thus, the Mach number

range for atmospheric flight remains around a Mach number of 10. Higher Mach

numbers require vehicles to fly at higher altitudes. When considering the range and

limits of hypersonic flight the space access corridor graph demonstrates possible HV

trajectories as shown in Figure 2.3. The area marked with hatch designates the limit

of aerodynamic lift. The lower limits determine the equilibrium skin temperature and

maximum possible loading of the HV.

Much of the data on hypersonic aerodynamics may be derived from keystone

projects such as the X-15, the Space Shuttle program (Launius 2003a) and even the

man-in-the-can Apollo-Gemini-Mercury programs. Furthermore, beginning in the

eighties, several studies on waverider (WR) research have been conducted by the

University of Maryland group including Capriotti et al. (1987), Corda and Anderson

(1988), Anderson et al. (1991a), Anderson et al. (1991b), O’Neill and Lewis (1992),

Anderson and Lewis (1993), Burnett and Lewis (1993), Lewis and Gupta (1995),

Gillum and Lewis (1996), McRonald et al. (1999), Lewis et al. (1998), Santos and

Lewis (2002), Lewis (2003), and Chauffour and Lewis (2004), to name a few. These

studies have uncovered some of the lingering elements that continue to plague vehicle

aerodynamics, viz.

• Limited capabilities of ground testing facilities for the simulation of hypersonic

flows.
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Figure 2.3: Space access and flight trajectories for HVs (Bletzinger et al. 2005).

• The limited aerothermodynamic flight test database.

• The stringent access restrictions to existing databases.

• The limited verification efforts of computational fluid dynamics (CFD) aerother-

modynamic codes against ground test data.

To promote the creation of a European resource, the German Aerospace Center

(DLR) has initiated an experiment, the Sharp Edge Flight Experiment II (SHEFEX

II), which would permit the collection of usable flight data from a controllable reentry

vehicle as seen in Figure 2.4. The second of the SHEFEX experiments plans to

examine key technologies such as a facetted ceramic thermal protection system,

ceramic based aerodynamic control elements (canards), mechanical actuators and

an automatic flight control unit. Some secondary experiments include an actively

cooled thermal protection element, advanced sensor equipment for temperature, heat

flux and pressure, and high temperature antenna inserts.
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Figure 2.4: SHEFEX II staged flight experiment concept (Weihs et al. 2008).

In addition to database creation, fundamental fluid dynamics analysis of hy-

personic flow motions constitutes another essential aspect of aerodynamic research.

Specific topics include boundary layer transition in hypersonic flight and boundary

layer effects around vehicles that directly impact surface heating. Understanding

boundary layer transition is vital not only from a theoretical standpoint but also from

a practical aspect due to its substantial bearing on design considerations. At Sandia

National Laboratories, Kuntz and Potter (2007; 2008) have reported on boundary

layer transitioning experiments that have been conducted under the auspices of

such programs as the Slender Hypersonic Aerothermodynamic Research Program

(SHARP) (Hallion 2005). In connection with the theoretical challenges associated

with this problem, another issue that is identified here is the need for multiple, well-

calibrated instruments to detect the onset of transition. This in turn requires:

• Global instrumentation:

– Flight dynamics instrumentation (accelerometers).

– Base instrumentation (calorimeters and pressure transducers at the base

of the test vehicle).

• Local instrumentation:

– Near-surface thermocouples.
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Figure 2.5: The SHARP-B2 flight experiment (Kuntz and Potter 2008).

– Photodiode transition indicators.

– Boundary layer acoustic monitors.

Note that careful post-processing of acquired data poses a challenge in its own

right as the signals obtained from the collection of instruments are often obscure to

the extent of requiring separate analysis before interpretation can be made. The

reader may consult Kuntz and Potter (2007; 2008) for a excellent report on the

SHARP-B2 flight experiment illustrated in Figure 2.5. The need for improved, cost

effective instrumentation hardware and interpretive techniques seems to be essential

for advancing hypersonic flight technology. Furthermore, collaboration through CFD,

ground testing, and analytical modeling will greatly assist in data interpretation.

Other relevant areas that fall under this category consist of control surfaces such

as fins, elevons, tailerons, flaperons, etc. The technological factors associated with

these control surfaces include:

• The requirement to employ thin structures that reduce drag.

• The need to overcome the thermal protection barriers imposed by the thin

surface requirement.
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• The need to design for longer life cycles and mitigate oxidation.

• The need to integrate both hot and cold structures (e.g., in actuators).
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Chapter 3

Propulsion

Propulsion driven challenges are similar to those affecting aerodynamic performance,

thus tying the two areas closely together. Despite the effort poured into rocket and

ramjet technologies, the disparities among HV flight regimes have no easy propulsion

solutions. What has been deemed suitable for one flight speed corridor has not been

for others. At the outset, a combination of propulsion systems has been suggested to

facilitate engine operation at various flight speeds using different modes of propulsion.

For example, the Turbine Based Combined Cycle (TBCC) unites the turbine and

ramjet/scramjet propulsion systems. In this context, the turbine portion of the engine

is used to power the vehicle at flight speeds leading up to ideal ramjet operation.

However, combined cycle engines incur additional difficulties in implementation such

as the effective integration and transition through the multiple propulsion cycles.

Since the development of air-breathing engines (ramjets/scramjets) continues to lag

behind rocketry, advancements in both areas are needed because of their interlocking

uses and similarities. Desirable areas of investigation include those in the following

list.
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Propulsion GOTCHAs & HypTAs

Materials

Lighter

Stronger

Cheaper

Thermal protection

Engine components

Bearings

Seals

Turbomachinery - compressor and turbine blades

Air-breathing engines (ABE)

Dual-mode ramjet/scramjets

High speed turbines

No operational HV (except missiles) despite the appreciaple work done on

ramjets/scramjets

Encouraged by success of NASA’s X-43 and encouraged by current programs

such as X-51, FALCON, HyCAUSE, and many others

Transatmospheric vehicles (TAV)

Internal flowfield modeling

Rocket propulsion

Improvements to solids, liquids, hybrids used in RBCC or booster stages

Internal flowfield modeling

Combustion instability

Booster stages - make more efficient and cost effective

TSTO system

Flight testing

Continued on the next page. . .
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Propulsion GOTCHAs & HypTAs (continued)

Combined cycles

Turbine based combined cycles (TBCC)

Transitioning and integration

Variable geometry

High speed turbines/turbojets

Thermal management

Materials

Improve engine components

Rocket based combined cycles (RBCC)

Linear aerospike rockets and nozzles

Rocket-scramjet integration

Fuels and combustion

Hydrogen

Hydrocarbon

Alternate fuels

Mixed fuels

Environmentally friendly - exhaust and noise

Plasma research to recoup energy/power in flight from ionization and

dissociation in internal flowfield through flowpath

Radical farming

Shock wave interactions

Airframe-propulsion integration

Engine Performance

Engine flowpaths

Inlet/Intake

Isolator

Continued on the next page. . .
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Propulsion GOTCHAs & HypTAs (continued)

Various geometrical shapes

Combustor

Nozzle

Acoustics

Structure

Drag/Viscous effects

Heat/thermal management

Mission requirements

Hypersonic missile

Hypersonic bomber

Hypersonic transport

Hypersonic space access

Flight trajectories

Ballistic

Boost glide

Skip

Orbital insertion

SSTO vs TSTO
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Figure 3.1: Comparison of engine and fuel performance for HypPS (Tang and Chase
2008). Also see (Kors 1988; Cheng 1989; Townend 1991; Bertin 1994; Blankson 1994;
Orton et al. 1997; Carter II et al. 1998a,b; Daines and Segal 1998; Anderson et al.
2000; Cockrell Jr. et al. 2002; Bertin and Cummings 2003; Fry 2004; Heppenheimer
2006).

As mentioned before, designing a HV may be viewed as a daunting endeavor,

especially when considering the numerous attempts in the past that have led to

a number of successes and failures but only a few operational vehicles. Similar

to hypersonic aerodynamics, two compounding hurdles that plague HV technology

(HVT) are the extreme hypersonic flight conditions and the strict mission objectives.

Mission objectives can include space access and global transportation that demand

superlatively high vehicle velocities. Achieving the necessary speeds and altitudes

gives rise to harsh and unforgiving environmental conditions which, in turn, demand

complex vehicle systems. Solid, liquid, and hybrid rockets, in conjunction with

turbine, ramjet, and scramjet engines, embody some of the available propulsion

concepts that are capable of hypersonic flight. Two branches emerge as the dominant

hypersonic engine mechanisms, the rocket motor and the air-breather.

Figure 3.1 compares the performance of air-breathing and rocket engines per Mach

number for hydrocarbon and hydrogen fuels. This graph illustrates the wide range of
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choices and performance characteristics of each. Since the WWII era, much progress

has been made in both of these areas. While the turbine engine has brought the

world closer together with jet airliners, the ramjet has allowed high powered weapons

and aircraft to be developed, and the rocket has sent men, scientific equipment, and

satellites into space. The rocket stands out as the most successful at propelling test

articles and vehicles to hypersonic speeds. The X-15, Mercury, Gemini, Apollo, and

Space Shuttle round out some of the well known hypersonic vehicles. However, despite

the milestones achieved thus far, the dream of a pure hypersonic craft still eludes

researchers, engineers, and designers alike. Today, emphasis is placed on systems

that are reusable, reliable, affordable, and efficient. Although the Apollo program

worked well for its objectives and the Space Shuttle experienced a remarkable run,

several issues, which designers of the next generation HVs are hoping to avoid, still

plague these systems. Some of these issues will be recapitulated in the context of

scramjets, TBCC, and RBCC engines.

3.1 Scramjets

Since the fifties and sixties and even back to the late forties (Anderson et al. 2000)

researchers have been trying to create an engine that runs efficiently for larger Mach

numbers than ramjet engines. Ramjets become less efficient at higher Mach numbers

due to the ramjet’s subsonic combustion. In fact, the natural progression forces the

switch from subsonic to supersonic combustion due to the increase in flight speed

and in turn the increase in stagnation pressure and temperature within the engine

for reasonable mass (Townend 1999). Thus, combustion transitions take place in

supersonic flowfields which are known as scramjet engines. Scramjets potentially hold

the capability to realize the objective of a long range airliner at hypersonic speeds and,

as is discussed later, complement the traditional rocket in space launchers. Waltrup et

al (1996; 2002) contend that supersonic combustion ramjets operate in the Mach 4+

range and cannot operate at subsonic speeds. In fact, higher speeds on orbital levels
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Figure 3.2: Scramjet illustration (Fry 2004).

(Mach 26) theoretically prove possible. However, Waltrup et al provide an upper

limit for practical purposes of around Mach 20. Using hydrogen fuel and variable

geometry, the scramjet potentially operates from M0 = 4 to M0 = 15+.

Waltrup et al (1996; 2002) describe the process for the scramjet as beginning with

supersonic or hypersonic free stream air entering the inlet. In the inlet, the air flow

diffuses to lower speeds yet remains supersonic. Liquid or gaseous fuel enters from

the wall through holes, slots, pylons, or by other means and/or by injectors located

within the flowpath through struts, tubs, pylons, or other alternative means. The

addition of heat, a diverging combustor, and no nozzle throat creates a shock train

from the combustor entrance back into the inlet unlike the terminal normal shocks

in ramjets. The strength of the shock train ranges between a normal shock and no

shock and relies on flight conditions, the inlet compression or exit Mach number, M4,

overall engine fuel-air ratios, ER0, and combustor area ratios, A5/A4.

Before the X-43, the SR-71 held the record for fastest air-breathing propulsion

(ABP) at just above Mach 3, and the X-15 carried the title for fastest aircraft type

flight at just under Mach 7. Other tests where the engine was simply mounted

to the nose or forefront of the boosting system (instead of being integrated into

the aerodynamic body) include Russia’s Central Institute Aviation Motors (CIAM)

scramjet tested on the Kholod Hypersonic Flying Laboratory (HFL) (Voland et al.

1999; Fry 2004) and the Freeflight Atmospheric Scramjet Test Technique (FASST,

not to be confused with another program with the same acronym known as the

Flexible Aerospace Solution for Transformation; Blocker et al. 2003). Stalker et al

(2005) discuss how five to six decades ago AB hypersonic flight seemed to be on the
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edge of everyday reality. Supersonic missiles with ramjet propulsion became utilized

during the fifties and sixties, and the next logical step was for supersonic combustion

to propel missiles to hypersonic speeds. The trends would then continue in which

the hypersonic missiles provides hypersonic data, produces piloted HVs, and then

provides propulsion for the eventual air-breathing orbital spaceplane. Stalker et al

(2005) additionally points out that researchers were not overly excited as this was just

the expected turn of events. However, many stumbling blocks have held back progress

to reach HAB spaceplanes as researchers and designers are still struggling to obtain

hypersonic data. The steps may still pan out in the same predicted way but at a much

longer timescale. The hypersonic ABP (HABP) evolution may be disappointing even

to those unfamiliar with the subject. The HABP evolution reminds us of the adage,

“Where’s my flying car?”

Heitmeir et al (1996) also state that ABP was deemed favorable at the beginning

of spaceflight exploration. Combined with reusable vehicles, the economic and

operational pros make ABP auspicious. However, Heitmeir et al also highlight that

a primary agent for unsuccessful endeavors is due to lacking technology. Even at the

time, 1996, Heitmeir et al conclude that many technologies are still insufficient. At

that time and even today in 2012, space transportation systems (STSs) rely on ELVs

or partially RLVs. Rocket systems provide all thrust to propel the vehicle. The cost

to operate current systems causes the search for reducing cost in STSs which point

to SSTO or TSTO AB vehicles.

Townend (1991) points out how ABP spans the myriad of flight regimes usually

operating at non-optimized conditions. A HABV travels through a large range of

speeds which makes engine efficiency difficult much like the variable nozzle efficiency

in rocket systems over a range of atmospheric pressures.

An excellent graph depicting the viable range of flight parameters for AB engines

shows the Mach number vs. altitude for constant lines of pressure, temperature, and

dynamic pressure as illustrated in Figure 3.3. Fry continues by observing that the

higher the speed, the more AB engines require special attention in design since flight
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Figure 3.3: AB flight corridor (Fry 2004).

characteristics such as internal duct pressure, skin temperature, and dynamic pressure

loading become increasingly complex. The extreme boundaries limit the vehicles in

the AB corridor and delineates perimeters for operation at ram compression; this

solicits higher dynamic pressure than a rocket engine for adequate chamber pressures

(1/2+ atm) to ensure efficient combustion and thrust. The AB corridor encompasses

an upper limit due to inefficient combustion and strict fuel/air ratio ranges. A lower

limit provides the severe spectrum of high skin temperature and pressure loading

where materials begin to fail. For high Mach numbers, intense dissociation results in

NE flow and causes sever effects on the compression ramp flow, enormous LE heating

rate, alterations to the inlet flow, an impact on fuel injection and fuel-air mixing,

effects on combustion chemistry, changes within the nozzle flow, and an influencing

factor on performance. Finally, in the low Mach number regime the compression

ratios decrease where compression increases occur mechanically and the ramjet no

longer sustains enough pressure to function efficiently.

Moses et al (1999) explain that a large focus of hypersonic technology research

lies in airbreathing engines. In their views, the focus lies in ramjets and, especially,

scramjets. However, improving turbine and/or turbojet engines will be beneficial to
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the hypersonic propulsion community due to the use of the turbojet in the combined

cycle engine. Bushnell (2002) projects that one of the advantages of AB engines will

be to double the in-atmospheric cruise range for an air-launched device. A major

HypTA focus area that Bushnell foresees involves ABP systems. AB systems used for

space access allow for space war battles between forces enabling vehicles to cruise at

hypersonic speeds, to utilize large cross range maneuvers, provide many options for

launch, orbital inclination change, and the capability to orbit, deorbit, and reorbit.

Olds (1994) states that airbreathing SSTOs contain advantages such as incorporating

low overall gross weights, high average Isp, several abort options, mission flexibility

including cruise, and aircraft-like characteristics. Fry (2004) adds to the list of pros

for using AB engines in lieu of rockets, factors such as not needing to carry oxidizers,

high engine efficiencies, thrust throttling for better cruise and acceleration, better

control over flight path changes, and reusability. Fry also notes more efficient mission

times (turnaround times for space access) and cost savings between 10 to 100 times

per pound of payload.

Next, we overview the aerothermodynamic issues connected with AB engines

(scramjets) as noted by Park (1990). These may be summarized in:

• Problems surrounding inlet fluid dynamics and thermodynamics such as how

molecular excitation and dissociation affects the airflow.

• Boundary layer displacement thickness effects and inlet performance caused by

thermochemical phenomena occurring inside the BL.

• The thermodynamic state of the gas in the nozzle.

Additionally, one may enumerate several deficiencies and hurdles of the scramjet

engine according to Curran (2001); these are:

• Energy limitations of fuels.

• Inefficient propulsion for orbital speeds.
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• Low component efficiencies.

• Understanding the scramjet process.

• Inconsistent funding.

Although Curran’s paper was written in 2001 there have been a few additional

scramjet flight test, the X-43A (Tang and Chase 2008), HyShot (Smart et al.

2006; Steelant et al. 2006), the Hypersonic Collaborative Australia/United States

Experiment (HyCAUSE) (Walker et al. 2008a), and the X-51A (X-5 2010; Lewis

2010; Sec 2011). While researchers continue to overcome obstacles, much work lies

ahead. These and additional scramjet technologies need to mature before deployment

in HVs. Other noteworthy challenges include:

• Axisymmetric flowpaths instead of traditional 2-D designs.

• Flight test and flight test data.

• Adequate ground test facilities.

• CFD and analytical modeling.

• Effective use of materials for strength, weight reduction, and thermal manage-

ment throughout the engine.

In the ramjet survey by Fry (2004) the top ten influential advances in ramjet

technology areas are reproduced in the following list.

26



Top 10 advances in ramjet propulsion technology

1) High speed aerodynamics analysis

CFD code analysis and validation methodologies (external and internal flow)

Improved design tools and techniques

2) Air induction system technology

Fixed and variable geometry

Subsonic, internally/externally ducted supersonic and dual-flowpath designs

Mixed cycle flowpath development

Improved design tools/integration with the airframe

Improved materials, especially in the cowl region

3) Combustor technology

Improved design tools and techniques, such as mapping fuel and heat-transfer

distributions

Improved insulators (ablative, nonablative)

Advanced structural materials

Combustion ignition, piloting and flameholding, and mixing

4) Ramjet/scramjet fuels

Higher-energy liquid and solid fuels

Low-temperature liquid fuels

Endothermic fuels

5) Fuel management systems

Liquid fuel injection and mixing

Improved injectors; wider range of operation, tailoring of atomization, and

spray distribution

Solid ramjet and ducted rocket fuel grain design

Solid ducted rocket fuel value design

Continued on the next page. . .
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Top 10 advances in ramjet propulsion technology (continued)

Variable-geometry injection systems, especially for the ducted rocket (DR)

Improved feed systems, including turbopumps

Improved feedback control systems

6) Propulsion/airframe integration, materials, and thermal management

CFD code analysis and validation methodologies

High-temperature metals and alloys

High-temperature structures

Passive and active cooling

Carbon-carbon and ceramic metal matrix composites

7) Solid propellant booster technology

Tandem boosters

Integral rocket-ramjet boosters

Self-boosted ramjet (mixed cycle RBCC, TBCC, etc.)

8) Ejectable and nonejectable component technology

Inlet and port covers

Fixed- and variable-geometry nozzle technology

9) Thermochemical modeling and simulation development

Thermochemical tables

Ramjet cycle analysis and performance modeling

10) Ground-test methodologies

Direct-connect

Semifreejet and freejet

Airflow quality improvements

Instrumentation advances

Computational tools and flight-test correlation
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Efforts to promote scramjet research in Australia have been ongoing since the

nineties (Paull 1993; Stalker et al. 1994; Paull et al. 1995; Paull and Stalker 1998;

Paull 1999). This program later on developed into the HyCAUSE project where much

work is being done on scramjet engines between the US and Australia (Stewart et al.

2005; Walker et al. 2005, 2008a).

Other programs advancing scramjet technology are the X-51A (Hank et al. 2008),

the Forced Application and Launch from CONUS (Continental US) or FALCON

program (Walker and Rodgers 2005; Walker et al. 2008b,c), the Hy-V (pronounced

“high five”) (Goyne et al. 2006; Craig 2007; Goyne and Cresci 2008; Goyne et al. 2009),

the Hypersonic International Flight Research Experimentation (HIFiRE) (Kimmel

et al. 2007; Dolvin 2008; Kimmel 2008; Adamczak et al. 2009; Jackson et al. 2009;

Smart and Suraweera 2009), and the HyShot (Hass et al. 2005; Smart et al. 2006). The

X-51A program is part of a smaller step approach to developing scramjet technology.

The scramjet engine under research is a derivative of the Hypersonic Technology

(HyTech) program, a 2-D design. Plans of the X-51A successes are to one day power

a cruise missile (small missile) to hypersonic speeds. Further development from the

X-51A has the potential to easily scale to medium applications such as large missiles,

reconnaissance or strike aircraft, and small launch systems. The FALCON program

uses a different approach for a different mission. A TBCC propulsion system uses

a combination of turbojets, ramjets, and scramjets to one day propel a global reach

vehicle. Research efforts from the HyCAUSE program directly benefit the FALCON

program due to the use of similar scramjet flowpath and engine technology. The Hy-V

program focuses on developing and flight testing a dual-mode scramjet (DMSJ) which

is also called a dual-mode ramjet (DMRJ) and a Dual Combustor Ramjet (DCR).

Instead of pursuing a technology demonstration like the X-51, the Hy-V team aims to

collect data from the three testing areas of CFD, ground, and flight for the purpose

of validation/verification and to advance predictive methods.
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Figure 3.4: Graph illustrating various propulsion systems and weight (Olds 1994).

3.2 Rocket Based Combined Cycle (RBCC)

Combined cycle engines (CCE) or multi-cycle engines (MCE) may be the best of low

speed to high speed propulsion systems. CCEs and MCEs also lead the pack for the

best viable option for future hypersonic cruise and space access vehicles. As mentioned

by Olds (1994) and illuminated by Figure 3.4, multi-cycle and combined-cycle engines

provide a combination of advantages from each separate propulsion system. Combined

systems meet in the middle of the propulsion spectrum by balancing between low dry

and low gross weights.

It may be useful to note that a difference exists between multi-cycle and combined

cycle engines. One the one hand, a multi-cycle system employs individual systems

for every operating mode such as a turbojet and a rocket engine that can either work

in parallel or separately. One the other hand, a combined cycle engine incorporates

operation modes into a single system so that efficiency is higher and weight is lower.

Fry (2004) breaks down engine types in an alternate means. He defines combined cycle

engines as systems that consist of a single flowpath and integrated engines equipped

for operating in two or more modes. In constrast, combination cycle systems bifurcate

the flowpath for two or more modus operandi.
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Figure 3.5: Specific impulse and Mach number graph highlighting RBCC and TBCC
possible ranges (Cockrell Jr. et al. 2002).

Figure 3.6: Diagram of a type of RBCC (Tang and Chase 2008). Also see (Daines
and Segal 1998).

Time and time again, the literature produces the infamous graph depicting specific

impulse over Mach number flight speeds and compares different propulsion systems as

shown in Figure 3.1. Figure 3.5 essentially depicts the same graph except for ranges

of RBCCs and TBBCs that are indicated by dotted and dashed lines to emphasize

the importance of combined cycle propulsion.

One type of combined cycle utilizes a rocket-scramjet propulsion system or the

RBCC. Typically the design consists of a single flowpath with a rocket built into

a DMRJ engine flowpath located at the aft-end of the isolator and the fore-end of

the combustor (see Figure 3.6). Component operation entails a rocket only mode for

initial acceleration, then a combined ramjet/scramjet-rocket mode, followed by a final
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rocket boost into space. Evidently, this sequence depends on the configuration and

mission goals. For example, if a first stage is available to boost the vehicle, the cycle

can begin with a combined ramjet/scramjet-rocket firing and end with a rocket only

firing. Some benefits of this design include:

• Good throttling capabilities in the lower Mach number range

• A good piloting structure due to the rocket placement in the flowpath

• Higher thrust levels for the combined rocket and scramjet mode over each

individual mode taken separately (rocket only or scramjet only)

• The capability of the rocket engines to take advantage of the flowpath structure,

namely the large scramjet exit nozzle (during an exoatmospheric climb this

increases the rocket only mode specific impulse)

• System takes advantage of high impulse AB portion instead of traditional pure

multiple stage rocket design

However, many challenges remain and stand in the way of creating an efficient

RBCC vehicle. Specifically, for the RBCC propulsion system the hurdles consist of:

• Increased drag with the larger rockets acting as pilot structures within the

flowpath.

• Mass fractions/payload issues if AB portion is carried to orbit (solution: lighter

materials, reduce complexity, TSTO).

• Optimal Mach number operation modes (i.e. when to fire combined rocket

and scramjet mode; also if multiple stages are used then how large should the

booster be).

• Reentry heating effects on AB structure (possible solution is to invert on reentry

to where the AB portion is on top and not directly exposed to the high heating

environment).
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Other gaps are the same as the scramjet or HV as a whole:

• Airframe/structure/engine heating involves multiple materials with various

thermal expansion rates and also various heating loads; will need to design

with space in between joints and structures while minimizing the area where

heat leakage can occur (overall will need complex thermal protection system

(TPS) or super material)

• Need for individual improved components such as turbomachinery:

◦ Need to handle larger range of flowrates, temperatures, and pressures.

◦ Long feed lines may produce transient effects between operating modes.

◦ High performance bearings and seals.

• Overall thermal management at high Mach number (∼ 10 ).

• Structural issues.

◦ Thin walled flowpaths.

◦ Inlet types such as the sugar scoop (this type breaks the hoop stress which

then may need additional support such as ribs, however, this in turn adds

weight); the same applies to the nozzle frame.

• If, for instance, a design with a linear plug nozzle is used at the rear of the

scramjet then additional support is needed to compensate for additional thrust

vectors.

• Need for possible bleed injection to improve rocket only mode.

• Ground test facilities are limited to smaller scales.
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3.3 Turbine Based Combined Cycle (TBCC)

Innovative yet complex, the TBCC takes advantage of a multi-engine cycle in order to

transition from an airplane-like take off to high altitude and possibly space. Currently,

the joint initiative by the Defense Advanced Research Projects Agency (DARPA) and

the United States Air Force (USAF) aims to take advantage of a TBCC propulsion

system for the Task 2 of the FALCON program (Walker and Rodgers 2005). The

FALCON’s Task 2 involves the Hypersonic Technology Vehicle (HTV) which has the

goal of overcoming hypersonic technology issues. The program task plans to reach an

eventual target of a reusable Hypersonic Cruise Vehicle (HCV) designed by Lockheed

Martin Advanced Development Projects. A set of TBCC engines power the vehicle in

the conceptual stage. The flowpath constitutes an inward-turning inlet connected to

a dual mode ramjet (see Figure 3.7). Using the dual TBCC engines allows designers

optimal space for the payload bay, landing gear, and other major subsystems. Another

benefit stems from the independent aerodynamic and propulsion optimization. In

2005, propulsion technologies remains on the top of the list for enabling hypersonic

technologies for the FALCON HCV. Critical areas of research include:

• Efficient inward turning inlet from takeoff to cruise of Mach 10.

• Transitioning from the turbojet to the ramjet/scramjet.

• Thermal and operating designs of the scramjet engine need work since the overall

design is much different than the NASP and NASA’s 2-D X-43A engine.

Additional generic hurdles are analogous to those associated with scramjet engines:

• Flight test and flight test data.

• Adequate ground test facilities.

• CFD and analytical modeling.
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Figure 3.7: The concept of a TBCC from FALCON (Tang and Chase 2008).

• Effective use of materials for strength, weight reduction, and thermal manage-

ment throughout the engine.
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Chapter 4

Materials & Structures

The need for strong, light-weight, heat resistant, and cost effective materials has long

been considered one of the most critical in high speed propulsion applications. If

such materials could be developed, then many hypersonic vehicle problems could be

solved. In this vein, a judicious balance between weight and strength is desirable,

and this poses a unique problem. Recalling Launius (2003a), in order to compensate

for payload weight designers prefer lighter materials, but these may not be strong

enough to withstand the operational thrust, moments, and pressure loads. Thermal

protection adds another complication as HVs often require special materials, such

as heat resistant paints, to assist with thermal shielding. These “add ons” inevitably

result in increased vehicle weight. Striking the right balance between strength, weight,

and thermal protection must be carefully achieved. The following list summarizes the

specific properties and needs associated with materials and structures.

Thornton (1990; 1992) notes that severe challenges cause difficulties for designers

of hypersonic vehicles. Material selection and structure configurations needed to

compensate for the aerothermal loads comprise the two leading decisions that

designers face. Forces encountered in high speed flight include pressure, skin friction

or shearing stresses, and aerodynamic heating. Of course, pressure and skin friction

participate in lift and drag coefficients whereas aerodynamic heating influences the
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HypTAs and GOTCHAs for materials and structures.

Lighter
Stronger
Thermal protection systems (TPS)
Cheaper - manufacturability, availability
Synthetic - lab grown, lab discoveries
Environmentally friendly
Bioengineering inspired materials that can withstand heat, self-repair, etc.
Morphing shapes to accommodate aerodynamic performance and variable inlet
geometries
Manufacturing hypersonic vehicle and parts/components

structure of the craft. Aerothermal heating raises temperatures which in turn affects

elastic properties such as decreasing Young’s modulus and ultimately reducing the

materials capability to handle aerodynamic loads. Additional concerns consist of a

decrease in allowable stress and the time-dependent phenomenon creep. Thermal

stresses then become prevalent due to local or global expansions or contractions that

induce increased deformation, a change in buckling loads, and flutter behavior.

Glass in 2008 discusses the latest material technology and problems and challenges

for the hypersonic material community. A key issue for hypersonic materials is the

approach or method of thermal management. At this point in time, air-breathing

technology needs to be matured, specifically scramjets. Unfortunately, the older

thermal systems used for rocket based hypersonic vehicles do not handle certain loads

an air-breather would see in flight. Hence, a combination of old and new materials and

methods provide the best thermal protection. The main challenges for air-breathing

hypersonic vehicles are illustrated in the following list.

As Glass states reviewing the hypersonic vehicle materials in the past leads us to

believe that advancing materials will in turn result in the advancement of hypersonic

vehicles. Glass advocates the use of ceramic matrix composites for hypersonic vehicle

applications due to their combination of high temperature endurance, strength, and
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GOTCHAs for HAPV in the materials and structures HypTAs.

Large thermal gradients (cryogenic tanks to high surface temperatures) cause
differences in thermal expansions on structures
Thermal-mechanical loads on structures such as sharp leading edges, gaps, and
steps
Surface and airframe connection, thermal expansion issues
Cheaper - manufacturability, availability
Affordability of materials for vehicle

Costs involving life cycle and safety such as inspection/maintenance
Damage tolerance
Low speed impact such as tool drops, runway debris
High velocity impacts such as small debris particles
Weather
Reuse potential

density. However, the material in question has some key issues that need to be

resolved:

• Manufacturing and processing to include a coating which increases strength and

toughness and allows for a graceful failure.

• The coating would also have to prevent oxidation at high temperatures.

Sharp leading edges needed for air-breathing engines pose challenges for proper

thermal protection. Other systems, such as the Space Shuttle and the once proposed

VentureStar X-33, have blunter leading edges that work well for the application but

may complicate manufacture and maintenance (such as replacement of TPS tiles

for the Space Shuttle). Over the past several years, one such program, SHEFEX,

has played a leading role in collecting essential data on sharp leading edges for

hypersonic vehicles along with possible TPS arrangements (Eggers et al. 2005; Weihs

et al. 2008). The SHEFEX group favors a sharp-edged configuration to reduce TPS-

related expenses (for fabrication, inspection, and repair), and these, in turn, can

result in a trickle-down effect on overall developmental costs. In addition, an effective
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TPS allows for potential mass payload increases, and the sharp edged configuration

tested by the SHEFEX team shows virtually no difference in aerodynamic properties

when compared to a contoured vehicle. Glass points out that since air-breathing

vehicles experience higher temperatures due to the utilization of sharp leading edges

the materials for heat protection use could be:

• Carbides.

• Oxides.

• Diborides of hafnium (Hf) and zirconium (Zr).

• Coatings of iridium (Ir).

Evidently, additional issues and research for material applications remain a current

topic in the hypersonic community as shown in the following list.

Recently, Zuchowski et al (2011) haver reviewed some issues concerning hypersonic

vehicles and structure, materials, and thermal management. Based on their findings,

the most significant areas for improvement appear in the following list.
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Additional GOTCHAs for materials and structures.

Thermal conductivity and fiber/weave architecture
Thermal-mechanical loads on structures such as sharp leading edges, gaps, and
steps
Emissivity of materials
Catalytic efficiency
Oxidation
All composite actively-cooled structures

Optimum through-the-thickness conductivity
Cooling containment
Manifolding
Lifespan
Material compatibility

Transferring the aero-loads and not the thermal loads using a stand-off TPS
approach and handling vibrations and acoustic loads
Internal insulation for the stand-off TPS
Load bearing aeroshells (potential to reduce weight) such as the FALCON
HTV-2 and the United Kingdom’s Sustained Hypersonic Flight Experiment
(SHyFE)
Structurally integrated TPS (potential for lower maintenance but should be a
low priority approach)

The propulsion-airframe integration (PAI) HypTA fits with both the aerodynamics

and propulsion HypTAs. However, with a separate materials and structures HypTA,

PAI fits well in consolidating all three aspects, especially since aerodynamics and

propulsion are previously covered. Placing PAI into the materials and structures

chapter avoids repetition or choosing either aerodynamics or propulsion where one is

favored over the other.

Robinson et al (2006) begin their article by noting how new hypersonic cruise

and space access vehicles ideally have a light, efficient, and cost effective propulsion

system. These researchers point to solutions of superior propulsion for hypersonic

cruise and space access missions in the scramjet and ramjet engines. Then given, the

degree of difficulty in developing scramjet and ramjet technology they propose that
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GOTCHAs for materials and structures by Zuchowski et al.

Predicting aeroelastic characteristics of very thin metallic as well as non-
metallic structure at high temperatures for sustained periods of time
Actuator stiffness predictions
Sonic fatigue under elevated temperature and accurate prediction of the
acoustic environment
Damage tolerance under elevated temperatures, dynamic pressure levels, and
acoustic spectrums
Interaction of fuselage dynamics in flutter analysis and how to model the
fuselage, as a flat plate or body of revolution, and do current methods represent
fuselage aerodynamics well
Adequately characterizing stiffness of vehicle at hypersonic temperatures,
under complexities of stiffened panels and TPS
Hypersonic vehicle airframe analysis needs to be heavily validated with testing
and a building block test approach to validate analytical tools is essential
Accurately characterizing the mass, stiffness, and damping of a hot structure
and/or thermal protection system

scramjet engines could greatly benefit being tightly fused to the craft. In agreement,

Bowcutt (2001) opens his paper stating that designing a hypersonic vehicle requires

close connectivity between multiple disciplines especially for large L/D and a scramjet

engine due to the highly integrated airframe-propulsion system. O’Neill and Lewis

(1992) go as far as stating that in order to achieve a successful air-breathing hypersonic

vehicle an emphasis upon PAI is crucial. Figure 4.1 demonstrates a vehicle that

utilizes PAI.

Lewis (2003) acknowledges that a looming issue for hypersonic vehicle designers

persists as,

“A key challenge in hypersonic vehicle design is balancing the inte-

grated requirements for efficient propulsion with highly efficient aerody-

namics while providing good volumterics, structural efficiency, control-

lability, and heating survivability. The degree of coupling, and close

integration, raise many questions about practical designs for hypersonic
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Figure 4.1: Illustration of PAI (Cockrell Jr. et al. 2002).

flight, including some of the most basic issues regarding fuel selection,

engine cycle, and off-design performance.”
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Chapter 5

Education & Research

Proper education is quintessential to the advancement of HT research. A great source

of concern today is the attrition in the workforce in addition to the waning interest

in aerospace engineering at the college level. Due to the pressing competition to

produce more engineers in less time, the number of credit hours required to obtain a

degree is being constantly reduced at various institutions (Musselman 2011). Many

valuable courses are no longer offered in a standard academic curriculum. This

includes electives in propulsion and hypersonics, which are often dropped in favor

of more traditional core courses. Consequently, numerous graduates are finding

themselves ill-prepared to confront the challenges of HT research. This issue is

further exacerbated by the lack of adequate Science, Technology, Engineering and

Math (STEM) preparation during secondary education. The problem affecting the

aerospace industry is quite serious because (a) fewer students are graduating in this

field and (b) even those graduating do not seem to be adequately prepared. The

need to revitalize interest in propulsion at the high school and college levels cannot

be overstated; in fact, it may be one of the most effective endeavors that our national

agencies can recognize and support. Recommended actions include:

• Bolster aerospace industry by investing in advanced technologies.

• Continue and create interest in space and science.
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• Keep pace with other countries.

• Prepare students with superior educational curricula.

• Continue investments in programs such as HyCAUSE.

• Understand past mistakes and successes - disseminate history with theory.

Not every challenge hindering progress in hypersonic vehicle development is

technological in nature. In Hallion’s (2005) historical survey, some interesting yet

concerning issues are brought to light. One of these cannot be over-emphasized as

it refers to education and public interest in aerospace engineering as a whole, and

hypersonics in particular. The U.S. aerospace community, especially in the field of

hypersonics, is shrinking. This is driven on the one hand by retirements from an

aging workforce, and on the other by difficulties in encouraging young generations of

Americans to pursue aerospace engineering careers. In hindsight, this problem may

be traced to the appreciable lack of enthusiasm for and inadequate K-12 preparation

in mathematics, science, and technology. Essential knowledge is continually lost

as seasoned generations retire and fewer newcomers enter the workforce. This

generational gap is causing studies to be repeated and resources, time, and effort to

be squandered. While others, including both emerging (China, India, Brazil, Russia,

Ukraine) and more established countries (Australia, the European Union, Japan), are

investing heavily in advanced technologies and aerospace, the prospect of aerospace

domination in the U.S. remains leveraged on previous achievements. Tirres (1999)

even goes as far as stating that, "Aerospace plays a key role in the United States’

economy and national security." After mentioning the remarkably fast foundation

building of ground test facilities during the forties through the seventies and the

success of Operation Desert Storm and commercial airline travel, Tirres points out

that, “Aerospace, no doubt, has played a significant role in the United States becoming

a ’Super Power.’ ” What we need is to breathe new life into the U.S. aerospace

industry through innovative educational, research, and outreach initiatives that can
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be promoted at the K-12 level and further sustained in college. This particular point

is echoed in the report submitted by a Federal commission that reviewed the U.S.

aerospace industry in November of 2002. Accordingly,

“The contributions of aerospace to our global leadership have been

so successful that it is assumed U.S. preeminence in aerospace remains

assured. Yet the evidence would indicate this to be far from the case. The

U.S. aerospace industry has consolidated to a handful of players . . . . The

U.S. airlines that rely upon aerospace products find their very existence is

threatened . . . . The industry is confronted with a graying workforce . . . the

U.S. K-12 education system [has failed] to properly equip U.S. students

with the math, science, and technological skills needed to advance . . . .

We noted with interest how other countries that aspire for a great global

role are directing intense attention and resources to foster an indigenous

aerospace industry. This is in contrast to the attitude present here in

the United States. We stand dangerously close to squandering the

advantage bequeathed to us, by prior generations of aerospace

leaders. We must reverse this trend and march steadily towards

rebuilding the industry. The time for action is now.”

Action has been taken in the form of the NAI, a 2001 joint effort of the US

Department of Defense (DOD) and the National Aeronautics and Space Administra-

tion (NASA) that is intended to sustain the nation’s long term aerospace leadership,

improve science education, boost the economy, and stabilize the nation’s global

position. The NAI program seeks to encourage NASA and DOD to continue leading

efforts in three critical aerospace areas: high-speed hypersonic flight, space access, and

space technology. However, “the program has many technical and financial hurdles,”

according to a public NAI announcement. “This initiative is certainly worthwhile,

but some of the challenges it faces are formidable,” said NAI committee chair E.

Dunford, “In particular, sharply higher budgets will be required to achieve long-term
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objectives, which could significantly impact other programs of DOD and NASA.” It

can thus be seen that with NASA’s waning interest in HABP activities the situation

may be more dire than it seems (Hallion 2005; Canan 2007).

Outside the U.S., several initiatives have been taken that reflect a growing

interest in aerospace education. In September 2001, Russia, France, Germany, and

the Netherlands assembled a team of experts to form the European Hypersonics

Association (EHA). EHA strives to research and encourage hypersonic reentry,

ramjet/scramjet, and hypersonic vehicle research. In late 2003, Australia engendered

the Australian Hypersonic Initiative (AHI) to promote hypersonic and scramjet

technologies. Subsequently, through the spirit of mutual cooperation between the US

and Australia, the HyCAUSE program was conceived (Walker et al. 2005; Ho 2006;

Walker et al. 2008a). These particular efforts were inspired by the widely acclaimed

achievements of HyShot, a pioneering hypersonic program that was launched in

1997 at the University of Queensland. The HyCAUSE program fosters a unique

environment for research and technical exchange between academe and industry. A

team of US and Australian academic leaders from universities such as the University

of Queensland, the University of New South Wales along with support from the

Defense Advanced Research Projects Agency (DARPA) leade the HyCAUSE joint

efforts. It is through such collaborations that vibrant activities may be vigorously

pursued with graduate students, faculty, and field experts. (Boyce et al. 2003; Hass

et al. 2005; Ho and Paull 2006; Neuenhahn et al. 2006; Smart et al. 2006). The names

from the US and Australian team members show up frequently in hypersonic research

literature (see Table 5.1), and the program consists of several universities, agencies,

and companies.

An additional international collaboration, the HIFiRE, combines forces from

the Australian Defence Science and Technology Organization, the United States

Air Force Research Lab (AFRL), and NASA (Jackson et al. 2009). The purpose

of HIFiRE and the difference from other flight testing programs is the focus

on the phenomena of combustor mode transition. Additionally, HIFiRE plans
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Table 5.1: HyCAUSE contributors and affiliations.

Contribuors Affiliation
Allan Paull Defense Science and Technology Organization (DSTO),

Brisbane, Australia
University of Queensland

Steven Walker DARPA, Arlington, Virginia, USA
David M. Van Wie Johns Hopkins University Applied Physics Laboratory

(JHU/APL), Laurel, Maryland, USA
Frederick Rodgers Centra Technologies Inc., Arlington, Virgina, USA
Russell Boyce University of New South Wales,

Australian Defence Force Academy,
Canberra, 2600, Australia

Sook-ying Ho Defence Science and Technology Organisation,
P.O. Box 1500, Edinburgh, SA 5111, Australia

Michael S. Holden Calspan-University of Buffalo Research Center (CUBRC),
Buffalo, NY, 14225

Timothy P. Wadhams CUBRC, Buffalo, NY, 14225
Matthew MacLean

to study stable supersonic combustion of hydrocarbon fuel for free-stream Mach

numbers of 7 and greater. Completing the study, an investigation of measurement

techniques exploring boundary layer transition and shockwave turbulent/boundary

layer interaction (SWTBLI) is planned utilizing both flight test and ground test

(Holden et al. 2008).

A good example of government and educational synergy comes from NASA’s

Bantam-X program (Olds et al. 1999). The purpose of this program identifies

GOTCHAs that immensely help to reduce launch costs for the ultra-lite and small

payload community. The payload type ranges from 300 to 500 lbs, which usually

classifies University Explorer scientific missions. The budgets range from $1M to

$1.5M for a dedicated flight which remain much lower compared to larger endeavors.

The Bantam-X program exposes the need for aggressive new concepts and technologies

for the described payload missions. An excellent example of a large governmental

based space agency involves scaled aerospace vehicle research. One example of

a Bantam-X inspired study involves a team from Georgia Tech’s Space Systems
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Design Laboratory in collaboration with NASA’s Marshall Spaceflight Center (MSFC)

technical group in Huntsville, AL who, together, investigated a TSTO RBCC vehicle

called Stargazer.

More recently, in May of 2008 Japan’s law makers have passed a law called the

Basic Space Law (Fujii and Ishimoto 2009). Japan had not enacted a law related

to space activities since 1970. Japan then in 2009 moved on to establish the so

called Basic Plan, a derivative of the Basic Space Law. The Plan foresees the

period between 2009 and 2013 to direct the government and country towards space

research. Some keystone objectives from the Plan include “Better Quality of Life,”

“contribution to the international community,” and “be fostering Strategic Industries

for the 21st Century.” It is abundantly clear that Japan considers space exploration as

one important industry that is worthy of attention. In fact, Japan’s chief research and

development focus aims at constructing a future space transportation system. Two

systems and their technologies are thus under development by the Japan Aerospace

Exploration Agency (JAXA). The first system consists of an ELV while the second

system relies on an RLV. Developing these technologies is planned to be completed

by 2015 with vehicle operations by 2020-25.

Combining government, industry, and academia, the Hy-V program focuses on

the development of a hypersonic database in order to compare ground and flight

experiments and thereby improve prediction tools (Craig 2007). Both undergraduate

and graduate students are able to participate through faculty groups located at the

five Virginia Space Grant Consortium universities, and these include the University of

Virginia, Virginia Tech, Old Dominion University, Hampton University, and College

of William and Mary (Goyne et al. 2006). NASA Wallops is supporting the project by

providing the launch logistics and a Terrier-Improved Orion sounding rocket. Other

entities involved with the Hy-V program include Alliant Techsystems, Inc.’s General

Applied Science Laboratory (ATK-GASL), Arnold Engineering Development Center

(AEDC), and Aerojet (Goyne and Cresci 2008).
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Other educational efforts encompass the NASA sponsored University Centers for

Hypersonic Research (Lewis and Gupta 1995). Three universities were rewarded the

support from proposals, the University of Maryland, Syracuse University, and the

University of Texas at Arlington. The research centers focus efforts on a balance

between research and teaching activities with insight from industrial partners. A

even and wide distribution of research topics are to be developed for the hypersonic

the program. Additionally, the development of cruisers and accelerators continue to

be pursued from the university side.

Therefore, not all is doom and gloom. Efforts are being made such as the

previously mentioned initiatives, and these and other analogous programs provide

key opportunities for promoting aerospace and hypersonic education. In fact, the

material useful to educators, students, design engineers, and researchers appears to

be quite extensive and quite certainly overwhelming to review in its entirety. In

academia, much progress has been made in the form of quality textbooks that have

been published in the past 10-20 years. Even though large advances have been made

in the fifties and sixties, not many books could be found on the subject of hypersonics.

Anderson (1984a) notes that only about five major textbooks (Hayes and Probstein

1959; Truitt 1959; Cherny̌i 1961; Dorrance 1962; Cox and Crabtree 1965; Hayes

and Probstein 1966) on hypersonic flows existed in the fifties and sixties and this

status quo remained the case up until the eighties. Presently, a substaintially larger

collection of textbooks and monographs are available for the treatment of hypersonic

flows by authors and editors such as Anderson, Bertin, Curran, Murthy, Heiser, Pratt,

and others (Bertin et al. 1989; Murthy and Curran 1991; Bertin et al. 1992; Heiser

and Pratt 1994; Rasmussen 1994; Murthy and Curran 1996; Curran and Murthy 2000;

Hirschel 2005; Hirschel and Weiland 2009; Segal 2009).

Both Dr. John D. Anderson Jr. and AIAA have spearheaded an effort to

increase hypersonic educational resources. Anderson, a professor at the University

of Maryland, has produced several excellent textbooks on the subject of aeronautics,

aerodynamics, and aerospace engineering. His books always include a human and
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historical perspective which makes his books stand out from the rest. Specifically,

his books on compressible flow (Anderson 1990, 2003) and hypersonic gas dynamics

(Anderson 1989, 2000, 2006) constitute invaluable resources for the aerospace and

hypersonic communities. It should be mentioned that Anderson has published several

additional books that provide essential background information and pedagogical tools

for studying the subject of aerodynamics (Anderson 1984b, 1997, 1999, 2001, 2007).

Another player, American Institute of Aeronautics and Astronautics (AIAA),

works to increase the promotion of hypersonic education for the aerospace community.

For one, the AIAA book series on Education and series on Progress in Astronautics

and Aeronautics continue to offer each new generation fundamental reviews of

contemporary development in the aerospace field. Two, the AIAA regularly host

exceptionally annual conferences that are devoted to aerospace and hypersonics,

such as the Joint Propulsion Conference (JPC), the International Space Planes

and Hypersonic Systems and Technologies, the Aerospace Sciences Meeting, and

many more. These technical meetings bring together professionals and enables them

collaborate and share research and development ideas. Such gatherings allow for social

and work related networking, dissemination, job recruitment, valuable experience for

students and workers alike, and a minor boost to the local economy of the hosting

city. The AIAA student conferences have been equally instrumental in fostering

interest among upcoming generations of engineers. Lastly, AIAA provides a venue

through which researchers are able to publish their findings in the form of conference

papers and quality journals such as the AIAA Journal, the Journal of Propulsion and

Power, the Journal of Thermophysics and Heat Transfer, the Journal of Rockets and

Spacecraft, and the Journal of Aircraft.

It is clear that academia, private industry, and government agencies will have to

team up in order to efficiently and successfully advance hypersonic vehicle technology.

Using all three venues of research cooperatively allows the pros from party to

overcome the cons associated with the group as a whole. For example, in the

HyCAUSE program academic researchers can use low cost university resources such
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as established CFD and ground testing facilities to effectively promote hypersonic

research. Meanwhile, government agencies such as DARPA, DOD, etc. can invest

their resources such as B-52 planes and naval ships to support the proposed flight

test. Moreover, utilizing academic resources can be of benefit to both academia

and industry by better preparing and equipping graduate students with the latest

technological tools of research. In this manner, graduates become more qualified and

confident to enter the workforce whether they choose academia or industry. Given

the present relationship between funding prospects and public perceptions, some of

the solutions that may be offered include:

• Increase awareness of aerospace activities at K-12 schools and colleges nation-

wide. Replicate K-12 science programs that promote interest in STEM and

aerospace activities.

• Replicate successful programs such as the SystemsGo High School Rocketry

Initiative, NASA’s (University).

• Expand the impressive activities of the Student Launch Initiatives, the Fisk

Altitude Achievement Missile Team (FAAMT), HUNCH (High Schools United

with NASA to Create Hardware), etc.

• Create and mature university-based programs such as Hy-V and the NASA

sponsored University Centers for Hypersonic Research.

• Develop more programs such as HyCAUSE and HIFiRE, perhaps through

alliances with other nations that are invested in this research.

• Allocate more resources to universities that grant aerospace degrees.

• Get involved!

Finally, it may be useful to remark that the society-aerospace coalitions can

significantly affect the aerospace industry. If the public sees hypersonics positively,
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then funding aerospace projects and programs with taxpayer money may not be

viewed as a concern. In addition, encouraging interest in younger and older

generations alike can be helpful in planting the necessary seeds to keep dreams

alive. If aerospace engineering involvement is reinforced or perceived as a positive

experience, then younger people may be encouraged to pursue aerospace careers that,

in turn, will help to bolster the dwindling workforce and sagging economy. In work

by, Hallion (2005) hypersonics and space vehicles are viewed as being influencial on

the current culture and vice versa. In this vein, Hallion depicts the team of Wernher

von Braun, Willey Ley, and Chesley Bonestell as holding substantial influence on

engineers, younger generations, and the public in general. Walt Disney and von

Braun also teamed up to create films illustrating space travel thus increasing public

interest in aerospace technology. Along similar lines, Launius (2003a) also believes

that public curiosity will most likely fund the first few hypersonic space access vehicle

ventures. Accordingly, such motivation may be generated from the desire to acquire

the title of having flown at hypersonic speeds, experiencing space and weightlessness,

and gaining the ability of traveling halfway around Earth in a few hours.

Launius (2003b) also suggests that the public perception of aerospace is no longer

what it seemed to be. Specifically, he debunks the myth that NASA enjoyed much

more public support during the Apollo program than any other time. In fact after

studying poll data from the 60’s through the 90’s, Launius concludes that the

public has been extremely pleased with NASA and space exploration throughout

the years, despite the unfamiliarity of the public in with what exactly NASA does.

Polls demonstrate that the public was not as enthused about lunar exploration as

stereotypically thought. The only high points came in 1969 and quickly dissipated

with time. Launius compares the end of the program to a marathon runner gasping

for air and limping over the finish line. However, the public continues to perceive the

Apollo program along with the Saturn V rocket system and Space Shuttle program

and vehicle among the greatest American icons. The success of these machines

and human efforts allowed the nation to gain immense pride and international
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recognition. Evidence of cultures influencing aerospace and vice versa transpires

through a poll that asked whether NASA should conduct more robotic missions or

more manned missions. Surprisingly, the poll logged people in favor of more robotic

missions from 1989 up until the summer of 1995, when a blockbuster movie, Apollo

13, hit the theaters. Other influential movies Launius mentions are Armageddon,

Deep Impact, Contact, and Space Cowboys. Undoubtly, the public opinion and the

aerospace community are more intertwined than it seems, and the aerospace and

cultural/entertainment industries benefit from one another by generating interest

and excitement in science and technology.
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Chapter 6

Hypersonic Testing & Modeling

In order to confirm engineering theories and concepts, the ability to test labscale

models remains a high priority for HVT, especially hypersonic air-breathing or HAB

vehicles (HABV). Flight testing, ground testing, and numerical/CFD ‘experiments’

comprise the three widely accepted areas of testing. Many difficulties linger today

despite the visible progress that has been made in this area. Actual flight tests

continue to require the most effort due to complexity and expense but prove to

be the most rewarding and validating. Ground facilities bear limitations in flow

conditions, scaling, and test durations but allow verifications in the absence of full

scale vehicles. CFD experiments produce quicker results, but the simulation time can

rapidly increase with the complexity at hand. Some CFD programs allow users to

run problems using a desktop computer, but users need to be aware of the attendant

limitations. These codes may be used synchronously and, preferably, in conjunction

with analytical modeling.

The extreme and wide-ranging conditions that hypersonic transatmospheric flight

experiences cause difficulty in testing and thus proof of concept. A three-pronged

process exists for validating HT concepts that consists of three testing platforms that

can be used in concert: Flight testing, ground testing, and CFD (see Figure 6.1). Note
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Figure 6.1: The testing prong with three testing forks.

that other computer aided design tools such as mechanical system and optimization

techniques are lumped herein with CFD.

Several leaders in hypersonic testing state the importance of testing. When

referring to the success of the complex engineering programs of Apollo and the X-15,

Leslie and Marren (2009) emphasize that,

"One common principle underscoring each of these successful eras

is that system development was preceded by rigorous testing and careful

evaluation of results. In a synergistic way, tests improved the development

of the system, and the system itself required a higher level of test and

evaluation. This pushed engineers to develop ever improved test methods

and capabilities."

An additional quotation supporting and stating the obvious importance and necessary

triune of numerical, ground, and flight tests from Lu and Marren reads,

"A successful research and development program in hypersonic flight

technologies requires wind tunnel testing, numerical simulation and,

ultimately, prototype flight testing, resulting in a validated integrated test

and evaluation methodology."
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However, even with numerous research efforts, Weihs et al (Weihs et al. 2008) point

out some general lingering issues within the aerodynamic research area which involves

all three testing HypTAs. These are:

• Limited ground testing capabilities simulating hypersonic flow

• Hypersonic aerothermodynamic flight tests database is limited and restricted

access

• CFD aerothermodynamic codes are inadequately verified with ground test

While testing comprises a three-pronged process, testing and modeling emerges

as a cycle or circle of methods as was before mentioned. CFD uses data gathered

from ground and flight testing to modify CFD models, and CFD can be used to

verify or disprove an incremental change in the attendant theoretical model, this can

then be implemented in the wind tunnel model without having to change and use the

physical model multiple times, a process that cam become both expensive and time

consuming. Also, flight data can be used to find trends in parameters, characteristics,

and/or data to assist future ground tests and vice-versa. Applying the three test forms

in the proper way and using them as a tightly correlated process along with numerical

and analytical modeling will produce a very effective result in advancing hypersonic

technology.

A great example of utilizing the triad of testing and modeling (see Figure 6.2)

stems from the HyCAUSE program (Walker et al. 2005, 2008a). According to Walker,

Rodgers, and Esposita in 2005,

"The program takes advantage of low-cost, university-based test facil-

ities in both the U.S. and Australia to characterize flow and aggressively

pursue development of novel scramjet technologies. This effort is guided

by and augmented with computational fluid dynamic (CFD) analytical

modeling."
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Figure 6.2: The testing and modeling triad.

Another recent program seeking to utilize the three testing aspects is the Hy-V

program based in Virginia. The Hy-V team seeks to provide a database of both ground

and flight testing of a DMSJ in order to improve CFD analysis and identify database

gaps (Goyne et al. 2006). Goyne et al point out that ground testing introduces

unnatural effects such as vitiation, flow quality, and inadequate boundary conditions

while flight test can only provided a limited database due to the complexity and

resource intensiveness. In order to reduce database limitations, Goyne et al offer the

following solution,

"Therefore, ground and flight databases must both be used in the

development of predictive tools, and combined, the inadequacies of each

can be identified such that their contribution to predictive tool uncertainties

is limited. Further, the cost effectiveness of this approach can be preserved

by targeting investment at comprehensive ground based experiments and

at a limited number of complementary flight experiments."
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6.1 Flight Testing

Flight testing is probably the best way to verify models but remains the most costly

and complex. According to Walberg (1991),

"The ultimate validation of hypersonic design techniques, be they

theoretical or based on wind tunnel tests, must come from hypersonic

flight data [emphasis added]."

Flight testing represents the ideal mechanism for verifying models under real life

conditions. Setting up the experimental plan alone can be quite time consuming

and laborious, especially when it involves coordination among several agencies and

specialists. For example, in the X-51 flight testing program, additional complexities

had to be overcome. A flight path had to be cleared with flight agencies, and

instrumentation had to be configured to communicate flight data back to naval ships,

chase planes, and the support crew (Hank et al. 2008). Nonetheless, it is through

such tests that important strides have been made. The X-15 experimental plane

which played a key role in validating fundamental hypersonic theories (Launius 2003a;

Watillon et al. 2003; Hallion 2005). Over 700 technical reports resulted from this

program and these provided valuable data as shown in the following list.
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HypTAs helped and investigated by the X-15 program.

Hypersonic/high altitude controls and stability
Hypersonic aircraft performance
High temperature effects
Thermal protection
Shock interactions
Turbulent boundary layer effects
Skin friction
Aerodynamic heating
Heat transfer
Reaction control jets
High temperature and ablative materials
Combined heat and structural loads
Propulsion
Avionics
Biomedical effects of pilots at high altitudes and speeds
Designing and constructing high speed craft
Verified and confirmed wind tunnel data
Energy management
Unpowered glide descent and landing
Throttling and reigniting rocket engines

The lessons learned from the X-15 have undoubtedly helped to design the X-20, the

Apollo, the Space Shuttle, and many other vehicles. The X-15 also served as a test-bed

for carrying science experiments at hypersonic speeds. Other hypersonic flight test

programs further contributed or are in the process of contributing to the hypersonic

database and understanding (Cain and Walton 2003; Launius 2003a; Watillon et al.

2003; Hallion 2005; Goyne et al. 2006; Goyne and Cresci 2008; Hank et al. 2008;

Walker et al. 2008a). Some of these programs are listed next.
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Hypersonic flight programs and tests benefiting HypTAs.

A-4
Alpha Draco
X-1
X-2
Douglas Skyrocket
Lockheed X-7
Lockheed X-17
Flight Investigation of Reentry (FIRE)
Sandia Winged Energized Reentry Vehicle Experiment (SWERVE)
Bumper-WAC
Boost-Glide Reentry Vehicle (BGRV)
Reentry-F
Aerothermodynamic Elastic Structural Systems Environment Tests (ASSET)
Precision Recovery Including Maneuvering Entry (PRIME, X-23)
HyShot
FASTT
Hypersonic Flight Demonstrator (HyFly)
CIAM
HyCAUSE
X-51
SHEFEX
SHyFE
Hy-V

Clearly, flight testing has demonstrated its absolute necessity over the course of

history. In fact, the method of flight testing emerged naturally and appeared in the

earliest days of the V-2 evolution in Germany where, in the absence of computational

platforms, wind tunnels and flight testing were the only available alternatives (Hallion

1998). Hallion (2005) expresses the significance of the X-15 in that,

"It demonstrated as well the value, indeed critical importance, of having

a research system available for multiple, indeed dozens, of flight test expe-

riences, as opposed to merely one or two ’technology demonstrations.’"

Along similar lines, Watillon et al (2003) confirmed that the first Columbia orbiter

flight in 1981 would not have been possible without the previous twenty years of
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knowledge gained from programs such as the X-15, ASSET, PRIME, and others. As

for the actual cost benefit of such programs, it may be best described by historian J.

D. Hunley (Launius 2003a),

"A final lesson from the X-15 program is that success comes at a cost.

Moreover, this may be a cost that researchers cannot usually predict in

exploring the unknown regions of aeronautics and space. The original

cost estimate for the X-15 program was $10.7 million. Actual costs were

still a bargain in comparison to those for Apollo, the space shuttles and the

International Space Station, but at $300 million, they were almost 30 times

the original estimate. (Admittedly, this compares apples and oranges in

some sense, because the actual program lasted longer and included features

not originally foreseen.) Because the X-15’s costs were not subjected

to the same scrutiny from the administration and Congress that today’s

aerospace projects undergo, the program could continue and yield its many

fruits. Perhaps politicians and administrators should learn this particular

lesson from an early and highly successful program and be less restrictive

in funding new research."

Even though the X-15 (see Figure 6.3) is regarded as one of the most successful

programs in view of its service life, the program still experienced unforeseen setbacks.

For example, in 1967, the X-15 suffered the tremendous loss of life and vehicle when

USAF Maj. Michael J. Adams lost control of the aircraft during a high-risk mission

(Launius 2003a; Hallion 2005).

It should be noted that hypersonic flight test experiments are either launched from

the ground (X-17) or dropped from an aircraft in flight prior to ignition (X-15). The

overwhelming majority of flight tests use rocket propulsion to either boost the test

article into altitude or to serve as the main propulsion system for the test article. In

contrast, only a few flight tests have been successful using air-breathing propulsion

for such a purpose. The Advanced Strategic Air Launched Missile (ASALM) and the
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Figure 6.3: The X-15 (Jenkins 2000).

X-43A both flew experimentally at hypersonic speeds (although it is debated whether

the ASALM achieved true hypersonic speeds) (Fry 2004; Tang and Chase 2008). The

ASALM program unfolded in the mid-to-late seventies and early eighties with several

successful missions, although it did not lead to a fully operational missile (Webster

1982; Fry 2004). The Hypersonic Research Engine/Hypersonic Ramjet Experiment

(HRE) also flew as an experimental ramjet/scramjet on the modified X-15, the X-

15A-2, but only as a dummy pod that inadvertently damaged the vehicle in flight

(Heiser and Pratt 1994; Launius 2003a; Hallion 2005; Tang and Chase 2008). Both

Figures 6.4 and 6.5 display the various air-breathing programs according to Tang and

Chase (2005; 2008). Note in Figure 6.5 the scarcity of experimental programs that

have reached the flight testing stage.

Recently, the HyCAUSE program executed a hypersonic flight test (see Figure

6.7) on the research group’s INTINSE scramjet flowpath depicted in Figure 6.6

(Walker et al. 2008a). Although the test was terminated prematurely due to a sensor

mishap that botched the orientation of the vehicle at reentry, it still demonstrated the

substantial merit of flight testing at Mach readings that exceeded ground capabilities

in both speed and duration. Based on the data collected, the HyCAUSE team

identified the need to thoroughly investigate the conditions leading to inlet start

and unstart, a condition that affected their vehicle. In addition to these categories

of tests, flight experiments need to be gradually initiated at larger scales so that

62



Figure 6.4: A timeline of two hypersonic mission areas, hypersonic flight and space
access for ramjet and scramjet programs (Tang and Chase 2005).

Figure 6.5: Ground and flight test studies (Tang and Chase 2008).
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Figure 6.6: A preliminary schematic of the HyCAUSE flight test article (Walker
et al. 2008a).

hypersonic technology can continue to move forward in its evolution toward full scale

systems.

Similarly, the X-51A program is built around a flight test to demonstrate

advancing scramjet technologies (Hank et al. 2008). Hank et al (2008) simply state

that ground test are problematic to test for in-flight simulations for either wind

tunnels or CFD. Even with the high power of current computer systems and world

class facilities, ground testing runs into issues such as model sizes, length of test times,

proper inlet air properties and fixed parameters such as Mach number and dynamic

pressure which can lead to data difficult to extrapolate to engine performance. Hank

et al (2008) summarize by frankly stating that

"Ultimately, the only way to practically and cost effectively validate the

rules and tools which will be needed for development of larger hypersonic

air breathing vehicles and space access is by flying smaller scaled scramjets,

such as the X-51A."

6.2 Ground Testing

To most users, ground testing is a surer and more dependable method than CFD

due to the realism attached to wind tunnel experiments. As usual, challenges
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Figure 6.7: The firing of the HyCAUSE test article (Walker et al. 2008a).

arise in setting up similarity conditions that require proper scaling/sizing and

limitations on flow conditions, model construction, instrumentation, and data

gathering. Fortunately, most wind tunnel facilities have been extensively used to the

extent of streamlining the process that leads to data gathering and interpretation.

Heppenheimer (2006) notes that great strides have been made in hypersonic flight due

to the success of experiments, specifically wind tunnels and other ground facilities.

However, at the same time hypersonic programs suffered due to inadequate ground

based facilities. Laster and Bushnell in 1994 identify ground testing problems not only

with the NASP but also with the X-15, Gemini, Apollo, Shuttle, and ballistic reentry

systems. Problems surfaced especially with aerothermodynamic heating. Laster and

Bushnell note that problems become apparent during or after the flight tests due to the

poor capability of ground testing systems. In addition, ground experiments remain

at least one order of magnitude more expensive than CFD. Yet experiments remain

indispensable, as a wealth of information can be obtained from lab-scale models that
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can then be extrapolated to either confirm or repudiate theoretical predictions that

apply to larger scales.

The HyCAUSE initiative has been proved effective at leveraging ground test

measurements (Walker et al. 2005, 2008a). Hy-V utilizes a myriad of ground test

facilities including AEDC APTU, NASA 8’ HTT, ATK GASL Leg IV, NASA Langley

DCSTF and Aerojet Orange facilities (Goyne and Cresci 2008). It is therefore hoped

for the continuation of current programs, and it is desired for future programs to soon

follow suit where others have ended.

In Chapter 2 "Principles of Hypersonic Test Facility Development" of the

Advanced Hypersonic Test Facilities by Lu and Marren (2002a; 2002b), the authors

mention that the chance of a ground test capable of meeting all hypersonic

requirements is very low. However, in the ground test community/facilities a partial

simulation of hypersonic conditions is frequently a goal met. These partial simulations

can be separated into three categories: (i) the low hypersonic regime (Mach 5-

12), (ii) higher speeds, and (iii) very high altitudes. For the low hypersonic flow

regime a perfect gas can be simulated for Mach and Reynolds numbers only. In

the hypervelocity range additional simulated components of real gas flow are needed

to compensate for chemical reactions, thermal effects, radiation, and ablation. The

high altitude range must take into consideration rarefied flow effects. Also, flow

characteristics such as laminar-turbulent transition and turbulence must be accounted

for in hypersonic flow regimes. These (turbulence and transitions) are still highly not

understood and pose a problem that can be a major area of advancement for ground

testing. Obviously, many facilities are needed to represent various flows and their

features because one facility cannot simply recreate the vast range of gas dynamics.

An example of using many resourceful ground tests is the Apollo program which took

advantage of at least 25 facilities that tested over the Mach number range of 0-20.

Solutions to problems associated with the hypersonic flight of an air-breathing wing-

type vehicle require the use of several different experimental facilities since no one

facility can handle all of the problems.
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An example of the difficulty of the hypersonic realm encases two examples of

testing two different areas and their specific, dissimilar needs:

• an air-breathing engine test requiring duplication of the atmospheric conditions

for proper test results

• (on the other hand) an aerodynamic body could potentially not require the

presence of oxygen in order to record relevant data

An example of flight data and computer capabilities that bolsters ground testing

efforts to build suitable facilities is described by Lu and Marren in an attempt

demonstrate the importance of coherent experimentation:

"The infrastructure, capabilities, and techniques used to obtain knowl-

edge and information to design hypersonic vehicles demand duplication of

certain flow physics that have challenged facility designers for years and

will continue to do so during the next few decades. Facility designers have

relied increasingly on sophisticated tools to aid this process, made possible

by more capable computers and data obtained in flight experiments."

Generally ground tests are used to assist numerical and flight tests by using sub-

scale modeling as a stepping stone to reach an ultimate goal (full operational flight

vehicle); this is known as partial simulation. The definition “duplication” is used to

describe a test that fully mimics all aspects of actual flight conditions; this is the

best test situation often pursued but rarely achieved. A “replication” recreates the

temperature, pressure, velocity, and chemical composition experimentally of the flight

environment. Note that replication is less complex than duplication but still poses

challenges with the increase of velocities. Simply, a simulation only recreates a few

important physical phenomena to obtain data for boosting other experiments and

giving confidence to move forward or concern to reconsider the design process. Even

though simulation can easily be achieved in ground test, this detracts from other
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important physical processes that cannot be reached for ground tests. This puts

more demand and pressure for numerical and flight simulations to be accurate and

able to produce data reasonably, reliably, and timely. Lu and Marren list downfalls

of ground testing that tend to deteriorate above Mach 8:

• Test flow uniformity over a wide range of conditions

• Lack of equilibrium because of rapid nozzle expansion of test gas

• Flow containment from facility surfaces because of erosion

• Acoustic and enthalpy fluctuations affecting boundary layer transitioning

• Incorrect surface roughness and catalyticity

• Insufficient test time in impulse facilities

• Motion of the model, especially in impulse facilities

• Interference from model mounts or tunnel walls

6.3 CFD

CFD is advantageous in its ability to permit quick parametric permutations in vehicle

dimensions and/or flow conditions. However, this technique requires a well-versed

operator who can aptly display proficiency in software use as well as a fundamental

understanding of the models that are applied. CFD sometimes misleads users with

its colorful plots and elegant pictures. On the other hand, many prefer to build

their own code and numerical models from scratch. Unfortunately, with so many

codes and variations, the community has a hard time keeping up with what has

been done, what is new, and what is even out there. Expertise and talent, hence,

constitute a requirement for the effective interpretation and communication of CFD

findings. Naturally, computers continue to rapidly evolve to the extent of mitigating
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long simulation run times and both geometric and physical flow complications. When

compared to other testing techniques, CFD analysis can be faster depending on the

model complexity employed in the simulation. Another element that computers can

alleviate is the cost of testing, unless massively large clusters are required. Due to

the learning curve that is needed to develop talent in this field, the main challenge

remains embodied, perhaps, in the initial effort that is required to train and promote

user expertise. Only then will coordination with ground and flight testing be possible.

The modeling of turbulence emerges as one such area requiring dire improvements.

Turbulence eludes scientist trying to model its behavior. Large changes of the

characteristics of fluid flow especially from laminar or inviscid flow models occur when

turbulence exist. Turbulence appears in the majority of real world physical flows, a

fact that demonstrates its importance to fluid dynamicists. Important parameters

in aerodynamics such as lift, drag, heat transfer, and control systems change due to

turbulence which influences design choices. Thus, understanding turbulence remains

essential to aerodynamic designers.

Roy and Blottner (2006) confide that key experimental data needed for confirming

turbulence models prevails to be difficult to obtain. Roy and Blottner also disclose

that very few flight test data exist and the ones that do usually contain large

experimental uncertainties. On the other hand many wind tunnel test do exist

with a bountiful amount of data and include much smaller uncertainties. However,

high velocities required for hypersonic flows limit ground testing setups because of

disagreements in freestream enthalpy levels from actual flight. As a result, verifying

turbulence models necessitates extrapolation to in-flight enthalpies. Consequently,

the aerospace community depends mainly on present and accessible CFD and included

models for turbulence, chemistry, etc.

The review of turbulence models for hypersonic flows by Roy and Blottner

(2006) builds off of an earlier paper by Settles and Dodson as an update and

extension. However, Roy and Blottner’s study limits flows to hypersonic only or

for experiments where the freestream flow Mach number is around 5+. Also, Roy
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and Blottner only consider wall-bounded flows eliminating such flows as mixing

layers and jets. Additionally, Roy and Blottner narrow their scope to one- and two

equation turbulence models which they state are the most complex even though other,

more advanced models, such as Reynolds stress and Large Eddy Simulations (LES)

are being developed. Another category of limitations relies on the study of model

integration of the governing equations to the wall existence which ceases wall function

usefulness. Justification of the non-utilization of wall functions lies in the fact that

many hypersonic flows result in shock wave-boundary layer interactions (SWBLIs)

that nullify the capability of the wall function. Again, the delimiter of natural

transition flows from laminar to turbulent appears as a focus for Roy and Blottner.

Roy and Blottner also include the studying of the location of the transition behavior

itself, but do not consider the much more difficult task of predicting transition. Lastly,

the study by Roy and Blottner neglects the effects of surface roughness, ablation,

chemical reactions, real gases, and body rotation as point out that not much exist in

the experimental database for the listed type of flows.

In the end of the introductory section, Roy and Blottner (2006) discuss another

important detail when referring to turbulence models. Generally, developers envisage

that the turbulence models the designers built predict correctly a large range of flow

types, and not just tailored to a restricted range of only a few flow types. This

approach fits more of a model calibration or parameter fitting method and is not a

true prediction. Thus, in their study Roy and Blottner want to include the testing of

turbulence models for high speed flows which undergo a range of speeds and geometric

configurations in order to unearth the turbulent model under scrutiny’s weaknesses

and strengths. Thus, with that said, Roy and Blottner exclude models which do

not have an excellent base of validation history for a vast spectrum of flow types

and conditions, especially low-speed flows. Such studies where models have been

improved but lack discussion on the effect of the improvements and they relate to the

historical development of the original model also do not make the cut for Roy and

Blottner’s review. Finally, Roy and Blottner give the advice that researchers should
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test their compressible flow models for incompressible flow standard sets or state why

their compressible corrections do not affect the low speed fluid motion regime.

6.4 Modeling

Modeling is closely coupled with testing. Interpreting data from experiments or

numerical solutions is difficult without an analytical framework. An understanding

of the fundamental physics of a process is vital in the design of experiments for

ground and flight tests. By analytical or theoretical modeling the author means

using the mathematical governing equations of a physical system, the methods to

solve the mathematical equations, and the capability to produce an answer that

satisfies certain constraints imposed upon the system. A favorite quote of the author

by Albert Einstein can be used to explain a portion of the analytical process. He

quotes,

“Make everything as simple as possible, but not simpler.”

In what concerns analytical modeling, the process can be very difficult due to the

complexity of the governing equations and the rules of mathematics. Thus, it is

sometimes necessary to delegate restrictions in order to reduce the complexity. In

most cases the reduced equations do a fair job for engineering calculations. However,

other times require more details concerning the actual physics of the system so one

may come along and build upon the simple base in order to step up to more defining

solutions. For example, the theory of inviscid flow in fluid dynamics assumes that the

liquid or gas is frictionless, which considerably decreases the difficulty of the governing

equations of motion to be solved. However, inviscid flows never exist except in rare

physical systems, such as super cooled helium physics, and the inviscid equations work

very well to describe physical motion in a fluid system except near boundaries where

viscous effects become important. It can be seen that the more simple inviscid solution

provides a stepping stone to the more difficult viscous answer. Adding additional
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complexity such as compressibility and chemical reactions can then be considered

afterwards. The importance of inviscid models is echoed by Louie and Ockedon

(1991) namely,

“Although inviscid models have limited practical value, it is important

to understand them as well as possible if theoretical progress is to be made

with more complicated models for real gases.”

Finally, revisiting Einstein’s quote and its connection to analytical modeling,

engineers may need a “good enough” approximation while scientists strive for more

exact answers.

Anderson (1997; 1999) notes that hypersonic research remained purely two-

dimensional, experimental and theoretical, until the advent of computers capability

to handle more complex theories. Anderson explains that the numerical methods

compliment the others to work in concert as hypersonic research pillars, similar to

the hypersonic testing prong in Figure 6.1. Thus, theoretical HypTAs became well

used and developed which undertook approximations to simplify the analysis. The

theoretical analyses remain valid through modern times and generally illustrate the

effects of a myriad of parameters much better than numerical solutions. A quote from

Anderson (Anderson 1997, 1999) reiterates the importance of theoretical modeling.

“we engineers of know that machine building, through widely extended

practical experimenting, has solved problems, with the utmost ease, which

baffled scientific investigation for years. But this ’cut and dry method,’ as

engineers ironically term it, is often extremely costly; and one of the most

important questions of all technical activity, that of efficiency, should lead

us not to underestimate the results of scientific technical work.”

In other words, theoretical modeling can guide experimentation without having

to blindly test everything, thus reducing cost and time. One example comes to mind

from Anderson’s quote. The Apollo F-1 underwent extensive test until the problem
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of stability (the engine exploded) was fixed. Imagine if theoretical models could have

supported the test effort and the time and money saved.

Merlen and Andriamanalina (1992) describe the era from 1955 to 1965 as a

productive and successful time for analytical theories in hypersonic aerodynamics.

However, Merlen and Andriamanalina go on to state that with the computer age

analytical methods have fallen by the wayside even though analytical modeling assists

with physical understanding and preliminary analysis. The authors then ask some

questions regarding the then future of modeling in aerodynamics.

• Do the “classical” methods of theoretical aerodynamics survive in front of the

success of computational fluid dynamics?

• Do we definitely have to give up obtaining analytical relations and use the

“numerical wind tunnel” without questions?

• What will the cultural background of aerodynamics be made of in the future?

One strong point of Dr. Jospeh Majdalani’s Advanced Theoretical Research Team

(ADTHEORET) at the University of Tennessee Space Institute (UTSI) pertains

to analytical solutions and perturbation theory. Since the author partakes in

the team, discussions follow about ADTHEORET’s methods and how they could

be implemented for hypersonic cases. The first problem involves a study by

Maicke and Majdalani (Majdalani 2005, 2007; Maicke and Majdalani 2008) for

steady, compressible flow through a rectangular channel with sidewall injection.

The dimensions of the channel consist of the height, h, and the length, L0, in a

Cartesian coordinate system, (x̄, ȳ), where x̄ runs along the axis of the channel and

ȳ runs perpendicular to the axis. The overbar represents dimensional quantities.

Axisymmetric conditions allow the chamber to vary from 0 ≤ ȳ ≤ h and 0 ≤ x̄ ≤ L0.

Finally, an injection gas pierces the chamber’s sidewall with a uniform velocity of Uw.

Boundary conditions come about from physical assumptions of the flow. First, no

gas emanates from the headwall. At the sidewall an injection velocity, Uw, projects
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perpendicularly into the chamber while an axial velocity does not exist. Finally,

no crossflow exists due to the symmetry of the chamber. The Rayleigh-Janzen

perturbation technique follows. Perturbations expand the variables into

u (x, y) = u0 +M2
wu1 +O (M4

w), ρ (x, y) = 1 +M2
wρ1 +M4

wρ2 +O (M6
w),

v (x, y) = v0 +M2
wv1 +O (M4

w), p (x, y) = 1 +M2
wp1 +M4

wp2 +O (M6
w),

ψ (x, y) = ψ0 +M2
wψ1 +O (M4

w), T (x, y) = 1 +M2
wT1 +M4

wT2 +O (M6
w),

Ω (x, y) = Ω0 +M2
wΩ1 +O (M4

w)


(6.1)

Thus, for hypersonic test cases a small parameter turns out to be ε = 1/M2
∞

and needs to be investigated fully. According to the authors, the closed form

analytical solutions agrees with computational and experimental data. Similar

papers by the ADTHEORET find similar results for various geometries in various

coordinate systems for various types of flows such as inviscid, viscous, incompressible,

compressible, swirling, and non-swirling types of motion (Majdalani 2005; Maicke and

Majdalani 2006; Saad et al. 2006; Batterson et al. 2007; Batterson and Majdalani

2007; Maicke and Majdalani 2007; Majdalani 2007; Majdalani and Rienstra 2007;

Majdalani and Saad 2007a,b; Akiki and Majdalani 2009; Barber and Majdalani 2009;

Maicke and Majdalani 2009; Saad and Majdalani 2009a,b; Akiki and Majdalani 2010;

Batterson and Majdalani 2010; Majdalani and Akiki 2010; Akiki and Majdalani 2011;

Saad and Majdalani 2011; Akiki and Majdalani 2012a,b; Maicke and Majdalani

2012a,b). The present author presses for a review to be done for the various

ADTHEORET papers and others like it to continue beneficial analytical work in

the scientific community which has a high potential to advance HypTAs and solve

GOTCHAs. In addition, the Rayleigh-Janzen technique can be chronicled for easy

access and through a consolidated source.

According to Ben-Arosh et al (1999), one of the biggest driving points to mature

HABP systems for HV is to reduce cost and increase reliability and efficiency
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of space access. A good example is the recent attention focused on development of

the scramjet engine. Here a solid fuel scramjet (SFS) instead of liquid fuel injection

provides benefits in certain HV configurations and mission goals. Similar to rocket

systems using solid fuels, the SFS propulsion system becomes simplified due to

compact fuel storage and the requirement of no injection configuration. However,

setbacks of solid fuel result in no control of burning or injection. After lighting the

solid fuel, little to no manipulation exists. In rocket systems solid fuels are used in

hybrid rocket configurations where a supply of oxidizer carried on board provides the

air flow in the combustion chamber. Instead, the SFS combustion process degrades

and gasifies the solid fuel due to a heat feedback mechanism from the injected hot air

flow. The solid fuel then retreats due to the consumption of fuel where a diffusion

flame forms within the BL of the solid fuel edge. An SFS combustor consists of a

channel-type or cylindrical chamber with a portion or all of the sidewall consisting

of solid fuel injection as in a solid rocket or hybrid rocket motor. The hybrid engine

injects an oxidizer and liquid fuel along part or all of the headwall. However, the

combustion chamber resembles a backwards facing step geometry where a central

core of injection penetrates into the chamber as seen in Figure 6.8. Another major

difference between a solid fueled rocket (SFR) and scramjet combustor is that the

injection speed at the headwall is of a Mach number greater than one, Minlet > 1, due

to the supersonic combustion requirement, while the SFR usually injects at speeds

much lower than the sonic threshold. Ben-Arosh et al note that the exact differences

between the SFR and solid fueled scramjet exist between the ramjet and the scramjet.

That is, the ramjet featured in chapter 3, operates at supersonic flight speeds but

subsonic combustion speeds while the scramjet operates at Mach 5 or above and at

a combustion flow above the sonic limit.

In 1999 Ben-Arosh et al undertook a study of modeling the flowfield of a scramjet

solid fuel combustor. Computational fluid dynamics was used to solve for the flowfield.

The model presented by Ben-Arosh et al is similar in geometry to the ADTHEORET

models for rocket chambers. An investigation of high speed flows through scramjet
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Figure 6.8: A theoretical solid fuel scramjet combustor configuration (Ben-Arosh
et al. 1999).

combustors is therefore suggested in order to explore the possibility for new analytical

models.

In 1991 Louie and Ockedon undertook a survey of the mathematical aspects

of inviscid theory in hypersonic flows. Interestingly, they cited two books from

the 1960’s, Chernyi’s book (1961) translated by Probstein and another written by

Hayes and Probstein (1966). They also observed the sparseness of analytical models

since the fifties and sixties and the popularity of numerical and computation models.

Currently, computational methods are still favored over analytical models due to the

ever increasing power of the microchip. However, as stated before, analytical models,

once developed, can be much easier to implement for quick calculations. Analytical

models also allow researchers to capture certain important parameters. Finally, even

though numerical models are treated separate from analytical models, they are, at the

same time, one and the same. That is, computationalists and numericalists develop

equations analytically, and then use the ability of the computer to calculate quickly

and efficiently. Louie and Ockedon review hypersonic inviscid flow theory for several

HypTAs.
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One area to possibly explore emerges as variational methods. These methods

appear in the literature as commonly utilized by Russian researchers. A few papers

relate aerodynamic bodies to minimize wave drag in supersonic flows. It may be

possible for variational methods to be useful for hypersonic flows, warranting further

investigations.

Additional methods to review and methods to further expand include homotopy

analysis method (HAM), the modified variational iteration method (MVIM), the ar-

tificial small parameter method, the δ-expansion method, the homotopy perturbation

method (HPM), Adomian decomposition, matched asymptotic expansion (MAE),

Newtonian theory (NT), hypersonic small disturbance theory (HSDT), the blast

wave theory (BWT), and the triple deck boundary layer theory to name a few

(van Dyke 1953, 1954; Swigart 1960; van Dyke 1963; Mikhailov et al. 1971; Brown

et al. 1975; van Dyke 1975; Rizzetta et al. 1978; Brown et al. 1990, 1991; Liao 1995,

1997; He 1999; Liao 1999; Liao and Campo 2002; Liao 2003; He 2007). Important

areas of analytical modeling to survey consist of perturbation/analytical methods

in all flow regimes and phenomena incorporating hyposonic, subsonic, transonic,

supersonic, hypersonic, Stokes or creeping, inviscid, viscous flows, heat transfer, equi-

librium, incompressible/compressible, combustion/chemically reactive, laminar/L-T

transition/turbulent, swirling/non-swirling, MHD, EM, PD, and continuum/non-

continuum flows. In the same vein, perturbation parameters to examine comprise

of small or large flow parameters such as the Froude, Strouhal, Lewis, Boussinesq,

Dalhmakolar, Prandtl, Nusselt, Knudsen numbers, and many others.
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Chapter 7

Final Remarks & Future

Recommendations and Work

While there are still significant challenges ahead, notably in HAP programs, it is

important not to lose sight of progress made so far. Many aerodynamic and control

issues have been studied and resolved via past programs. It is vital to capitalize on

those achievements with sustained research efforts in advanced hypersonic propulsion

systems. The GOTCHA lists provide an effective roadmap for existing hypersonic

research programs as well as providing fledgling research groups with an introduction

to the hypersonic literature. Even programs that do not culminate in full scale flight

testing can provide valuable insight and experience to the hypersonic community. To

ensure that these future technical challenges are met, it is essential to increase the

profile of hypersonic research at the secondary school and college level through STEM

outreach and graduate research programs in aerospace and high speed propulsion. It

is through the systematic integration and investigation of these GOTCHA topics

that the objective of large scale air-breathing hypersonic propulsion systems can be

realized.

Even though this thesis covers many topics and presents a body of evidence

for GOTCHAs, only the tip of the iceberg is shown. Much work is not reviewed
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because of the limited scope of the thesis. The vast material presented and the

desire for additional expansion where the material is cut short is a reflection of

the high complexity of hypersonics. A future consideration for additional work

includes an expansion of the material presented. For example, the WR aerodynamic

concept has been known since the fifties/sixties and much work has been accomplished

during the eighties and nineties. Obviously, many programs important to hypersonic

research were not covered due to time and length restrictions. However, an additional

review has the potential to uncover many more GOTCHAs for each HypTA. Much

information has been left untouched, uncollected, and undisclosed. Ideally, each

section would contain more examples, information, and evidence from related studies

that lend support to the GOTCHAs found while catering to the possibility of

disclosing new GOTCHAs.

Regardless of the depth of this thesis, a few remarks could be made regarding some

of the GOTCHAs identified throughout this survey. In what follows, these are listed

in no particular order. The first consists of the lack of data, especially flight

tests. Specifically, a strong need exists for scramjet flight testing to help AB

hypersonic systems take off. In this context, the combined cycle propulsion approach

seems to offer the highest chance of success for an eventual NASP vehicle, where AB

cycles play an essential role in thrust production. This could be temporary until the

waning industrial age is overtaken by new technological advances emerging from the

rapidly growing IT/bio/nano areas. While flight testing remains the best avenue for

acquiring hypersonic data, one must avoid the pitfalls of past programs that have

been almost invariably plagued by unforeseen cancelations. The X-20 represents

one such example where program termination occurred shortly before flight runs.

In this vein, it may be safely stated that past hypersonic flight data has proven

instrumental in advancing vehicle technology as experienced by programs such as

the X-15, PRIME (X-23), ASSET, the re-entry of space capsules, and the Space

Shuttle. Recognizing the importance of test measurements, a key characteristic

of new programs has been the building up of databases for various HypTAs. On
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this note, programs such as HyShot, Hyper-X/X-43, SHEFEX, HyCAUSE, HTV-

2, X-51, and HIFiRE must be commended for their diligent efforts and unwavering

determination. Similarly, appropriate funding agencies are encouraged to continue

supporting these programs in spite of mishaps or failures that may be inevitable in

this line of work. One example of a failure-tolerant program that is now considered

as one of the premier aerospace achievements is the Apollo program’s F-1 engine

development and its historical impact on the moon landing mission. The F-1 engine

underwent thousands of tests before arriving at a baffle configuration that was capable

of suppressing combustion instabilities to manageable levels . However, flight testing

alone is not the solution. It would be highly desirable to incorporate in concert

with flight testing other methods of data generation from ground testing, numerical

simulations, and analytical modeling.

A second major GOTCHA may be connected with the lack of consistency and,

in some instances, proper management. Although hypersonic research is decades

old, many ups and downs have been reported throughout its history. This waxing

and waning has not been particularly conducive of stability, especially for projects in

which a more even keel is necessary. The roller coaster of high excitement followed

by a period of disinterest is not only discouraging, it also leads to extended durations

of inactivity, lapses in technology, and duplication of effort. Furthermore, it widens

the gap between skill already acquired by senior researchers and that of budding

engineers who often find themselves having to “reinvent the wheel” by investing

precious resources for the purpose of re-discovering what may be perceived as “lost”

information. The propulsion community can benefit from leaders and policy makers

who can understand this dilemma and take the appropriate action to ensure the much

needed continuity in this field.

Within the major HypTAs, numerous sub-categories exist which, when advanced

individually, can lead to overall improvements of the main GOTCHAs. With the

recent progress made in electronics and miniaturization, fuel cells and regenerative

mechanisms, etc., it may be projected that more accurate measurement devices and
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compact electronic components will be produced and these can lead to substantial

savings in weight and heat production while providing higher performance in

computational capabilities to sustain the needed modeling efforts. Other examples

consist of the latest aeronautical implementations such as composite materials, TPS,

heat management, improved turbine engines, etc. Components such as MEMS

devices, liquid pump bearings and impellers, nozzle improvements, and so on, will

yield individual advancements which, when taken collectively, can have a major

impact on the system as a whole through complex integration and consumer/user

feedback. Along similar lines, technologies that allow for flawless aerodynamic

morphing or that can reduce gravitational effects through magnetohydrodynamics

can drastically alter the current state of GOTCHAs.

Examples of effective small step approaches include the HyShot-HyCAUSE-

HIFiRE endeavors, the SHEFEX program, and the X-51 project. The long-term

connection underlying the HyShot-HyCAUSE-HIFiRE illustrates the benefits of

promoting consistent and well-managed programs. By bridging the gaps that separate

academic, governmental, and industrial platforms, each of the HyShot-HyCAUSE-

HIFiRE programs leverages the strengths stemming from each sector to bolster its

overall capabilities. These efforts capitalize on the reduced overhead associated with

the use of academic facilities while at the same time exposing the next generation of

students and faculty to valuable education in hypersonics that draws from the latest

developments in industry. The current derivative, HIFiRE, continues to proceed along

this line of constructive outcomes. The SHEFEX also displays consistency with its two

launch experiments, SHEFEX I and II, while managing its resources quite effectively

by utilizing well-established sounding rocket flight technology. In addition to these

efforts, the role of commercial entities must not be under-rated, especially when

taking into account the recent shifts that have occurred in the aerospace industry.

Private companies such as SpaceX and Virgin Galactic are now able to fund in-house

projects that are comparable in size to those that NASA once used to manage. This

paradigm shift can promote substantial cost reductions, open technical exchanges, and
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friendly competition within the commercial sector. However, the recent disinterest in

hypersonic and space access programs by NASA is discouraging as their many years

of experience in all facets of aerospace research complements the latest private space

endeavors.

Finally, in the spirit of effective management of HypTAs and GOTCHAs, it would

be helpful to establish a well-organized central database on hypersonics research that

may be accessible online. Such a repertoire can be very useful in archiving technical

resources, publications, and lessons learned in the variety of subdisciplines that affect

hypersonic flight. Along similar lines, a review/progress series may prove beneficial

to pursue. Surely, the development of such resources will require maintenance and

technical supervision to sift through the wealth of information that is produced on

a continual basis. Screening, logging, indexing, and updating this database can

be crucially important in helping the world of hypersonics to overcome the various

GOTCHAs that still stand in its way.
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