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Abstract

This work introduces visualization tools for Neuroscience-Inspired Dynamic Archi-

tecture (NIDA) networks and for the Dynamic Adaptive Neural Network Array

(DANNA) hardware implementation of NIDA. A NIDA network is a novel type

of artificial neural network that has performed well on control, anomaly detection,

and classification tasks. We introduce a three dimensional visualization of software

NIDA networks that represents network structure and simulates activity on networks.

We present some of the analysis tasks for which the tool has been used, including

the identification of useful substructures within NIDA networks through activity

analysis and through the tracing of causality paths from events to their respective

sources. We discuss features of the visualization that allow for the exploration of dense

networks and subnetworks. We define analysis goals for the tools, in particular the

definition of “similarity” between networks and substructures and the objectives for

the recognition of similar substructures. We also introduce a two dimensional visual

interface for DANNAs, which includes representation of the physical arrangement of

elements on DANNAs, as well as interactions to configure and save the networks. We

explore various representations of elements and connections within DANNAs, and

we demonstrate the interactions that assist users in evaluating and modifying the

networks. Finally, we propose extensions to the tools that will further aid in the

exploration and understanding of NIDA and DANNA structure and behavior.
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Chapter 1

Introduction

In this work, we introduce visualization tools for neuroscience-inspired dynamic

architectures (NIDAs) and for Dynamic Adaptive Neural Network Arrays (DANNAs),

the hardware implementation of NIDAs. We demonstrate the utility of the

visualization tools in exploring and understanding the structure and activity of NIDA

networks, as well as in the structure and configuration of DANNA networks. Finally,

we describe several extensions to the tools that we believe will further aid in the

development and improvement of NIDA and DANNA networks and their associated

design methods.

1.1 Neuroscience-Inspired Dynamic Architectures

NIDA networks, representatives of a novel type of artificial neural network introduced

by Schuman and Birdwell [26]; Schuman and Birdwell [27]; Schuman et al. [28];

Schuman et al. [29]; and Schuman [30], have been shown to perform well on control,

anomaly detection, and classification tasks. Neuroscience-inspired dynamic archi-

tecture (NIDA) networks can be viewed as graphs representing the interconnections

among two types of components: neurons (nodes) and synapses (edges). Neurons in

these networks have two parameters (threshold and refractory period) and exist in

a bounded three-dimensional space. They accumulate charge or lose charge from a

1



neutral state and fire when the charge exceeds the threshold; upon firing, neurons

enter a refractory period, during which they may still accumulate charge but may

not fire, even if the charge exceeds the threshold. Input neurons receive information

from the environment, output neurons send information to the environment, and

hidden neurons do not interact with the environment. NIDA synapses are directed

connections between two neurons and carry charge from one neuron to another. In this

sense, the synapses of a NIDA correspond to the axons and synapses in a biological

network. Synapses are defined by two parameters: delay and weight. Delay is

governed by the length of the synapse (distance between the two neurons the synapse

connects) and determines how long it takes for a fire event at the sending neuron of the

synapse to affect the charge of the neuron at the receiving end of the synapse. In the

current software implementation of NIDA networks, a propagation velocity parameter

enforces delay based on synapse length, but other implementations, including the

current hardware implementation, could handle delay differently. The weight of

the synapse determines how much the synapse charge increases or decreases at the

destination neuron.

Unlike many traditional artificial neural networks, the operation of the network

is governed by a discrete-event simulation, where event types include fire events in

neurons and change in charge events in synapses. One simulated time unit in the

discrete-event simulation corresponds to the time it takes for charge to travel one

distance unit in the network.

NIDA networks are designed for a particular task using evolutionary optimization.

The design process determines the structure of the network (the number and

placement of the neurons and synapses), the parameters of the network (such as

the thresholds of the neurons and the weights of the synapses), and the dynamics of

the network (the delays of the synapses). Advantages and disadvantages of the use

of evolutionary optimization to design NIDA networks (and networks in general) are

described by Schuman et al. [28]. It is important to note that many of the network

structures produced by evolutionary optimization may have equivalent behavior. As a

2



superficial example, the same network rotated or translated in the three-dimensional

space will behave exactly the same way as the original network. However, because

of the varying parameter values, there are many other structures that are not as

easily recognizable as equivalent that may still behave very similarly. The challenge

presented by identifying analogous behavior among NIDA network structures is one

of the most crucial motivations for designing a tool to explore the networks’ behavior.

1.2 Dynamic Adaptive Neural Network Arrays

Dynamic adaptive neural network arrays (DANNAs), introduced by Dean et al. [6],

implement the NIDA architecture in hardware. The array uses elements that can

be programmed to represent neurons, synapses, or other required elements, and

the elements can be rapidly reprogrammed to change the structure of the network.

Arrays of up to 85 x 85 elements have been successfully implemented using Field

Programmable Gate Arrays (FPGAs). Unlike NIDAs, DANNAs implement delay as

a parameter of each element, and the connections between elements are constrained

by available ports. Current DANNAs support elements having 8 or 16 ports that can

be used for both input and output, and the arrays are scalable to larger quantities of

ports in multiples of eight.

DANNA design is based upon and is as intricate as NIDA design, but is further

complicated by the constraints of physical element arrays. Visualization tools for

DANNA can assist designers in understanding the requirements of both the network

and physical array composition. The visualization tools may also interact with

the software abstraction layer of DANNA design, allowing users to configure, run,

and analyze networks through a graphical user interface. The combination of this

interface with visualizations of DANNA networks can provide improved insight into

the structure and behavior of the DANNA networks.

3



1.3 Summary

Some of this work is drawn from the work of Drouhard et al. [7] and Daffron et

al. [4]. We will introduce visualization and visual analytics tools to explore the

structure and behavior of NIDA and DANNA networks. We present results of utilizing

these tools for NIDA networks trained for the task of classification of handwritten

digits [18], hand-tooled NIDA networks and substructures, and randomly created

DANNA networks. Finally, we discuss future additions to the tool to aid the

development of this architecture and design method.

4



Chapter 2

Background

Data visualization exploits vision and visual working memory to amplify cognition.

Since the design of early data plots by William Playfair [32, p. 32], principles of

visualization have been developed and refined with the goal of providing maximal

insight with minimal graphical complexity. Researchers have studied numerous

aspects of vision and perception that have implications for data visualization. In this

chapter, we will present findings related to visual thinking, perception and attention,

graphical excellence, context and detail, color, quantitative data, pattern recognition,

three-dimensional visualization, consistent visual frameworks, and the perception of

change. We will also explain the significance of each of these for the visualization

of neuroscience-inspired dynamic architecture (NIDA) and dynamic adaptive neural

network array (DANNA) networks.

2.1 Visual Thinking

The primary value of data graphics lies not in their aesthetic impact, but in

their facilitation of deeper of understanding. To translate observed objects into

understanding, graphics can capitalize on one of the most powerful tools for

comprehension that humans possess. As Stephen Few explains, “Vision is not only

the fastest and most nuanced sensory portal to the world, it is also the one most

5



intimately connected with cognition” [10, p. 29]. The visual cognitive system is

complex, but components of it and processes for visual thinking are reasonably well

understood.

Components of the visual cognitive system fulfill different roles to assist visual

thinking processes. Colin Ware summarizes the units as follows:

• Early Visual Processing: This stage captures low-level features of images and

occurs rapidly without need of conscious attention. Early visual processing will

be described in greater detail in Section 2.2.

• Pattern Perception: Perceived patterns depend upon the analytical task at

hand, but only a small number may be retained in working memory.

• Eye Movements: Eye movements are “scheduled” to explore patterns in order

from greatest to least significance. Eye movements between gazes are known as

“saccades.”

• Intrasaccadic Scanning Loop: During a fixed gaze, information is processed

serially at around 40 milliseconds (ms) per item (visually distinguishable shape

or region).

• Working Memory: Visual working memory is separate from other forms of

working memory, but like other working memory, it can hold only a small

number of items at a time. Focused attention controls what is retained in

visual working memory and will be described in greater detail in Section 2.2.

• Mental Imagery: Mental imagery is the construction of simple images in the

mind. It can be used in conjunction with external imagery for various visual

cognitive tasks.

• Epistemic Actions: Epistemic actions are search actions utilized in the

exploration of information. For visualization, these actions encompass eye and
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head movements as well as navigation interactions with media (zoom, pan, etc.)

and other interactions with digital graphics.

• Visual Queries: Visual queries seek to validate hypotheses about the data

through exploration of visual patterns [36, p. 393].

Each of these components assists in visual thinking algorithms with visual queries

forming the “subroutines” of the more complex algorithms. Any of these algorithms

may be carried out by computers, but are currently primarily employed by humans.

More complex algorithms include: pathfinding on a map or diagram, reasoning with

a hybrid of a visual display and mental imagery, design sketching, brushing, small

pattern comparisons in a large information space, degree-of-relevance highlighting,

generalized fisheye views, multidimensional dynamic queries with scatter plot, and

visual monitoring strategies [36, p. 398]. Interactive computer graphics can assist

with many of these visual cognitive processes, but any visualization must be well

designed to facilitate visual thinking.

Unfortunately, poorly designed data graphics can limit or even impede visual

thinking. Edward Tufte laments,

Much of twentieth-century thinking about statistical graphs has been

preoccupied with the question of how some amateurish chart might fool

a naive viewer. Other important issues, such as the use of graphics

for serious data analysis, were largely ignored. At the core of the

preoccupation with deceptive graphics was the assumption that data

graphics were mainly devices for showing the obvious to the ignorant [32,

p. 53].

When data graphics are not consciously designed to assist visual thinking, they

frequently hamper it. According to Few, “Traditional data analysis tools make it

unnecessarily difficult to explore data from multiple perspectives, so analysts tend to

pursue only a limited set of predetermined questions” [10, p. 104]. Instead of the wide
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range of visual thinking algorithms described above, poorly designed visualizations

restrict thinking.

NIDA and DANNA visualizations have been designed to facilitate exploration

and complex visual queries. In particular, they should aid in pathfinding through

networks, pattern finding in network structure, identification of key components

of networks, and visual monitoring. Several principles described in the following

sections contribute to effective facilitation of visual cognition in NIDA and DANNA

visualization.

2.2 Perception and Attention

The best data visualizations encourage viewers to study and explore the data. As

Christopher Healey describes it, the goal of visualization should be to “build an

effective mapping between data values and visual features, so that differences in the

features draw the eyes, and more importantly the mind, on their own” [15]. In order to

best guide viewers’ minds, effective visualization designs must incorporate established

principles of perception and attention.

Modern data visualization should take advantage of the knowledge gained from

psychological and physiological studies on perceptual capabilities. The human

visual system has the capability to process substantially more information from

the environment than we can consciously understand. Around 70% of human sense

receptors are devoted to vision [10, p. 29]. Data visualization should aim to utilize as

much of that sensory data as possible by incorporating known “laws” of perception

and attention orientation. Some of the most thoroughly studied of these laws are

the gestalt principles originally proposed by 19th century Germany psychologists and

philosophers. The primary gestalt laws of perception, as explained by Colin Ware,

are:

• Proximity: Objects located or grouped close to each other are perceived as

related.

8



• Similarity: Objects that appear similar are perceived as related.

• Connectedness: Objects linked by lines or other symbols are perceived as

related.

• Symmetry: Symmetry between objects or groups of objects can help viewers

perceive patterns or make comparisons.

• Closure and common region: Objects enclosed or defined in specific sections are

perceived as related.

• Figure and ground: Viewers usually perceive smaller symbols as objects and

larger components as landscape or ground behind the objects [36, p. 181].

In order for a visualization to utilize these perceptual principles, it must first

capture and hold the viewer’s attention. Capturing attention is controlled by older,

subcortical visual pathways and is known as “orienting,” while holding a viewer’s

attention over time is called “engaging” and is accomplished by cortical areas linked

to the frontal lobe. These two processes can be used to direct attention to interesting

components and motivate deeper analysis respectively [15]. When seeking to guide the

viewer’s attention to key elements of a visualization, it is important to realize that the

visual system operates very differently from photography or computer vision. Healey

clarifies:

The goal of human vision is not to create a replica or image of the seen

world in our heads. A much better metaphor for vision is that of a

dynamic and ongoing construction project, where the products being built

are short-lived models of the external world that are specifically designed

for the current visually guided tasks of the viewer [15].

Healey’s description aligns with Ronald Rensink’s coherence theory of visual atten-

tion. According to the coherence theory, visual attention is composed of three stages:

“early processing” prior to focused attention, focused attention holding objects in a
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“coherence field” that allows them to maintain continuity through brief interruptions,

and releasing attention and the coherence field [24]. Rensink proposes the concept

of a triadic architecture for vision composed of systems that are for the most part

independent:

1. Early processing: The early processing system is “nonattentional,” so without

focused attention it allows for the rapid but unstable conceptualization of

“proto-objects.”

2. Object system: The object system requires focused attention and transforms

the conception of proto-objects into meaningful objects.

3. Setting system: A nonattentional system that guides attention based on

attributes perceived in early vision [24].

The setting system and early processing are primarily involved with orienting, while

the object system is used for engaging. In order to effectively orient and engage

viewers, these systems, along with the visual features perceived by each of them,

should be considered separately.

The low-level vision system generally processes features that affect the orienting

system. According to Healey, orienting to a particular location usually requires a

sharp change in luminance, a flicker, or a motion discontinuity [15]. Ware and

Few expand on the features related to orienting in their respective descriptions of

preattentive processing, which is the perception of data that occurs subconsciously.

Features that may be processed preattentively include line orientation, line length,

line width, size, curvature, spatial grouping, blur, added marks, numerosity, hue,

motion, two-dimensional (2D) spatial position, stereoscopic depth, and convex or

concave shape from shading [36, p. 155] [10, p. 39]. Careful encoding of these features

will ensure that data visualizations guide viewer’s attention to the most important

components of information.

Focused attention, required for the engaging system, relies on short-term memory

and depends upon cognitive as well as visual factors. Rensink cites evidence of the
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relationship between visual short-term memory (vSTM) and focused attention [24].

Healey elaborates on the memory requirements between glances, “At most, the details

from only three or four objects can be monitored between glances; perception is often

limited to only one object at a time. What we see therefore depends critically on

which objects in a scene we are looking for and attending to” [15]. In other words,

unlike information gleaned through preattentive processing, observations from focused

attention are largely dependent upon the viewer’s biases and objectives [15]. These

findings reinforce the importance of effective encodings for orienting viewers, but they

also underscore the need for visualizations designed to facilitate specific analytical

tasks.

The primary analytical tasks for which NIDA and DANNA visualizations have

been designed are the understanding of structure and behavior of the networks. For

both of these tasks, consideration of gestalt principles and preattentive processing

have guided the design of the visualization. Feature encodings have been selected

with the goal of drawing attention to key relationships between network elements,

and feature transitions are used to highlight activity in the networks.

2.3 “Graphical Excellence”

Principles of “graphical excellence” comprise rules of thumb for compelling and

effective graphical representations of data. Tufte defines graphical excellence as,

“that which gives to the viewer the greatest number of ideas in the shortest time

with the least ink in the smallest space and graphical excellence requires telling the

truth about the data” [32, p. 51]. He enumerates the following principles for graphical

displays:

• Represent the data.

• Cause viewer to think about the substance rather than the methodology.

• Avoid distortions.
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• Condense quantitative information.

• Make large data sets coherent.

• Encourage the eye to make comparisons between data.

• Reveal several levels of detail.

• Serve a reasonably clear purpose.

• Integrate closely with statistical and verbal descriptions of a data set [32, p. 13].

The primary aim of graphical excellence, supported by each of these principles, is to

showcase the data with as few distractions as possible.

Clear visualizations must also distinguish appropriately between data features and

avoid distorting the data. Tufte proposes that the number of visual feature dimensions

should not exceed data dimensions [32, p. 71]. Ware advises, “Use different visual

channels to display aspects of data so that they are visually distinct” [36, p. 145].

Appropriate encodings of visual features for data features are critical to understanding

of data graphics.

Visualization researchers agree that another key component to high quality data

visualization is conciseness. Ware emphasizes that visual queries are most efficient

for compact visual displays that maximize the amount of information that can be

perceived in a single glance [36, p. 141]. Tufte describes graphical succinctness in

terms of “data density” and “data ink ratio.” He argues that effective displays

maximize both data density, which is the number of entries in a data matrix divided by

area of data display [32, p. 161] and data ink ratio, the ratio of ink that communicates

essential information to ink that does not communicate valuable information [32,

p. 93]. Tufte’s principles extend Ware’s by requiring the removal of unnecessary

decoration, which he calls “chartjunk,” in addition to the compact representation of

the data itself. He even advocates the removal of some traditional graphic elements,

stating, “One of the more sedate graphical elements, the grid, should usually be
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muted or completely suppressed so that its presence is only implicit lest it compete

with the data” [32, p. 112]. Essentially, the ideal data visualization shows a compact

representation of the data and not much else. In fact, Tufte’s principles of graphical

revision and editing enforce this concept explicitly:

1. “Above all else show the data.

2. Maximize the data-ink ratio.

3. Erase non-data ink.

4. Erase redundant data-ink.

5. Revise and edit” [32, p. 105].

The principles for graphical excellence are not universally applicable, but they

should certainly be taken into consideration in the creation of data visualizations.

In our design of NIDA and DANNA visualizations, we have sought to adhere to

these principles in most cases. We have attempted to eliminate distracting elements

such as grids and maximize the data ink ratio, and we have used different visual

channels to encode distinct data features. In some cases, we have used combinations

of visual features, such as color and shape, to encode data features. We have also

used conjunctions of features including size and hue variation to highlight activity.

Although these design decisions may violate the principle of limiting visual feature

dimensionality, we believe that in this context they clarify rather than distort the

data.

2.4 Context and Details

Beyond the foundational principles of graphical excellence, combinations of context

and detail views in visualizations enhance users’ understanding and ability to explore

data. Tufte asserts that there are a minimum of three depths to visualizations,

13



which he describes as, “1) what is seen from a distance, an overall structure usually

aggregated from an underlying microstructure; 2) what is seen up close and in detail,

the fine structure of the data; and 3) what is seen implicitly, underlying the graphic

that which is behind the graphic” [32, p. 155]. Ben Schneiderman encapsulates users’

needs for different depths in a pithy mantra, “Overview first, zoom and filter, then

details-on-demand” [10, p. 84]. Rensink argues that it is impossible for a visualization

to simultaneously display context and detail [24], but he likely means only that a single

view is not capable of representing every layer of detail about the data. Instead, it

will be necessary for visualizations to support interactions that users can apply to see

more or less detail on demand.

Filtering, aggregation, zoom/pan/rotate, and highlighting are among the most

important interactions that can help users navigate different levels of detail. Few

explains that filtering helps remove distractions to streamline visual queries, while

aggregation can provide context at multiple levels [10, p. 64, 69]. Other interactions

allow for focus on key pieces of data within a single level of detail. Zoom and pan—

or rotate for three-dimensional (3D) environments—should be supported as mouse

interactions, according to Few [10, p. 76]. Highlighting is another key technique

for drawing attention to some components within a larger context. To highlight

important components of data graphics, Ware suggests either reducing contrast for

less important regions or “haloing,” or increasing the local background luminance

contrast for highlighted regions [36, p. 78]. These techniques allows users to assimilate

different levels of detail about the data and isolate focus on regions of interest.

The visualizations for NIDA and DANNA incorporate several of these techniques

to provide users both context and details-on-demand. In the current implementation,

aggregation of network data is not supported, but some filtering is supported to

isolate sub-structures of interest. Highlighting is used to draw attention to active

areas of NIDA networks and user-selected elements in DANNAs. Zoom is supported

for both tools, and rotate or pan interactions are implemented for NIDA and DANNA
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visualizations respectively. Additional interactions that would be useful to provide

context and/or detail are described in Chapter 7.

2.5 Color

Color is an ideal visual feature for distinguishing between categorical values. Hue is

preattentively processed by the low-level vision system, so it does not require focused

attention to discriminate between different categories designated by hue. Moreover,

families of categories may be identified using different levels of saturation and lightness

for the same hue, though only around two per family are perceptibly distinct [36,

p. 128]. Dual encodings using color and shape are another useful technique for

differentiating types of symbols [36, p. 151]. However, only a modest number of colors

should be used for effective encodings. As Post and Greene demonstrated in 1986,

no more than around nine colors including white are consistently distinguished [36,

p. 110]. Based on these and other similar findings, color has been identified as an

ideal visual marker for category provided that only a small quantity of types need be

identified.

NIDA and DANNA visualizations make use of the known perceptual principles

related to color. Hue and shape redundantly encode type of element, and hue

differentiates category within element type (e.g., input, hidden, or output neurons).

A small number of colors is used in each color scheme so that differentiating between

colors requires minimal cognitive effort. Adjusted saturation and lightness for color

families are proposed in Chapter 7 to encode neuron charge level, but no more than

three levels of charge would be tracked using this scheme.
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2.6 Visualization of Quantitative Data

Understanding quantitative values is often key to comprehending data visualizations,

so quantitative encodings should be chosen with care. Few underlines the value of

quantitative representations, saying,

When we represent quantitative information in visual form, our ability

to think about it is dramatically enhanced. Visual representations not

only make the patterns, trends, and exceptions in numbers visible and

understandable, they also extend the capacity of our memory, making

available in front of our eyes what we couldn’t otherwise hold all at once

in our minds [10, p. 6].

To allow for this amplification of visual thinking, quantitative values must be encoded

using visual features that can be processed quickly and interpreted accurately.

Several preattentively processed features lend themselves naturally to quantitative

comparisons. Among these are size, lightness/darkness (on contrasting backgrounds),

vividness, 2D position on display, length/width, intensity, and blur [36, p. 168] [10,

p. 41]. Of these, width, size, intensity, and blur may be less precisely interpreted.

Viewers perceive these features as inherently quantitative in data visualizations.

Other encodings may be used, but they will likely be perceived as arbitrary, and

may require focused attention and more time to process.

In addition to careful selection of visual features, proportional representation

and some specialized techniques improve the comprehension of quantitative data

visualizations. Tufte asserts that the representation of numbers should be directly

proportional to data values in quantitative graphics [32, p. 56]. Adhering to this

rule helps avoid distortion of the data, which is required for graphical excellence. To

encode multiple quantitative values for each data point, Few suggests heat maps

and a special derivation thereof, tree maps [10, p. 45]. These maps utilize two

preattentively processed features, 2D location and intensity (or vividness), allowing

for rapid processing of two quantitative values for each data item. Proportional
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representation and tree map techniques should be used to improve comprehension of

quantitative visualizations.

Several components of the NIDA and DANNA visualizations are quantitative

in nature, and we have incorporated these principles into their design. Synapse

length represents delay in the networks, and synapse and neuron locations are

depicted to scale. Stroke weight encodes the magnitude of synapse weight with direct

proportionality in the NIDA visualization. We do not expect that viewers will be able

to distinguish between small differences in stroke weight, since width is generally not

perceived precisely. However, the use of proportional representation allows viewers

to compare significant differences between synapse weights. In maps of causality

subnetworks presented in Chapter 5, size is used to encode frequency of occurrence. As

with synapse stroke weights, we have used this feature to facilitate visual comparisons,

but we do not expect viewers to distinguish precise frequencies using this encoding.

We have also used numerosity and 2D location of glyphs to represent the port level and

number in the DANNA grid view presented in Chapter 6. Other proposed quantitative

visualizations for NIDA and DANNA networks are described in Chapter 7.

2.7 Pattern Recognition

The choice of encoding and visual grammar has a significant impact on pattern

finding capabilities of the viewer of a data visualization. If a visualization needs

to represent multiple data dimensions, Ware advises selecting encodings that rely

on separate visual channels for separate attributes. For example, motion or spatial

grouping might represent one feature, while color or shape encodes another [36,

p. 161]. Relying on separate visual channels ensures that these features can still

be processed preattentively. To avoid visual interference, Healey advises, “The most

important attributes (as defined by the viewer) should be displayed using the most

salient features. Secondary data should never be visualized in a way that masks the
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information a viewer wants to see” [15]. These guidelines help promote visual pattern

recognition in data visualizations, and they contribute to overall graphical excellence.

Pattern finding is also facilitated through coordinated views and recognizable

visual grammars. Coordinated views are different visual representations of the same

data that may highlight different attributes of the same data. If coordinated views

are linked and use brushing, then the selection or highlighting of certain data points

in one view highlights the same data points in the linked views. Few outlines the

benefits of brushing and coordinate views, stating,

The ability to see data from multiple perspectives simultaneously brings

a great deal of information together, reducing our need to rely on limited

working memory. When these different views of the data are tightly

coupled, the potential of faceted analytical displays can be expanded

dramatically, especially through filtering and brushing [10, p. 112].

As he indicates, not only do these coordinated views bring together context and

details, they also mitigate the limits of visual working memory. The conjunction of

these factors expands the pattern-finding capabilities of the visual thinking system.

Pattern-finding capabilities may also be enhanced by the use of known “visual

grammars,” or abstractions for particular types of data that are so commonly used

they are instantly recognizable. For graphs (node-link diagrams), the visual grammar

is composed of small symbols or enclosed shapes for entities and lines to represent

relationships or paths between them [36, p. 222]. Use of a visual grammar such as this

reduces the cognitive load required to understand a data visualization. When data

visualizations use visual grammars in conjunction with coordinated views, pattern

recognition is a much simpler task.

NIDA and DANNA visualizations are designed to help users understand the

structure of the networks and recognize patterns within them. In order to assist users

in these tasks, the visualizations use color and shape to differentiate entity types,

spatial grouping and the grammar of node-link diagrams to encode structure and
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relationships, and motion and highlighting to represent activity and user interactions.

We have designed the visualizations to encode key data attributes using different

visual channels and features that can be preattentively processed so that patterns are

more easily recognizable. In Chapter 7, we propose coordinating views and brushing

to further boost pattern finding capabilities.

2.8 Three-dimensional Visualization

Three-dimensional (3D) data visualization should be used only when it best supports

necessary analytical tasks for a specific data set. 3D visualization involves complicated

implementation details, but more importantly, it is not the best means to assist

in pattern finding for many tasks. According to Ware, the brain is generally best

suited to identify patterns in 2D [36, p. 239]. Nevertheless, 3D visualizations are

appropriate for some tasks and may be the primary means of data visualization in

the future. Ware affirms, “The strongest argument for the ultimate ascendancy of 3D

visualization systems, and 3D user interfaces in general, must be that we live in a 3D

world and our brains have evolved to recognize and interact within 3D” [36, p. 290].

In a 3D world with high dimensional data, 3D visualization systems can allow for

efficient data exploration when implemented carefully.

Experiments have demonstrated that complex 3D graphs are best understood

through 3D visualizations as long as depth cues and viewport control are implemented

appropriately. Depth cues can be achieved through linear perspective, texture

gradient, size gradient, occlusion, depth of focus, shape-from-shading, vertical

position, relative size to familiar objects, and cast shadows [36, p. 240]. However,

motion parallax is more powerful than any of these cues in enabling perception of

more information [36, p. 290]. Ware and Franck showed in a 1996 experiment that

superior path tracing ability for large 3D graphs was achieved with 3D visualizations

using stereoscopic and motion depth cues [36, p. 275]. In order to effectively interact

with 3D visualizations, one of the following metaphors should be used:
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1. World-in-hand: The user metaphorically rotates or moves the entire world

closer.

2. Eyeball-in-hand: The user metaphorically manipulates a camera’s direction and

location in the 3D space.

3. Walking: The user navigates the environment by “walking” through it.

4. Flying: Smoother than walking, the user controls velocity and up, down,

backward, and forward movement with hand motions [36, p. 356].

With these interactions and strong depth cues, 3D environments can enhance users’

pattern finding abilities.

The NIDA visualization utilizes a 3D environment to help users understand

structure and activity within NIDA networks. Linear perspective, relative size,

occlusion, and motion parallax are utilized as depth cues. The user may zoom

and rotate the viewport according to the eyeball-in-hand metaphor described above.

Although the complexity of the 3D environment has limited the interactions available

to users, we believe that the benefits of 3D space for understanding these complex

networks outweigh the limitations. We have outline interactions that may be

implemented in the future in Chapter 7.

2.9 Consistent Visual Framework

The maintenance of a consistent visual framework in data visualizations prevents data

distortion and helps provide users with the combination of context and details. Ware

recommends the preservation of visual mappings of data be across various views and

the use of devices such as frames and landmarks to maintain visual continuity [36,

p. 341]. He also asserts that a consistent visual framework in a 3D environment

requires persistence of a sufficient number of objects from frame to frame to judge
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position [36, p. 355]. Use of these techniques helps viewers maintain a sense of the

full context of data space when zooming and filtering data for details.

Both NIDA and DANNA visualizations are designed to maintain a consistent

visual framework. The same visual mappings are used for most views (with the

notable exception of causality subnetworks described in Chapter 5), zooming and

filtering are limited to ensure persistence of some objects across frames. We made

these design decisions for visual continuity with the aim of supporting visual queries

and pattern recognition.

2.10 Perception of Change

Change blindness is the phenomenon of an observer’s failure to notice changes in

visual stimuli even when they are large and not at the periphery of the field of view.

To mitigate the risk of change blindness, the factors that influence it should be taken

into account in the design of data visualizations. As Healey describes it, “Change

blindness is not a failure to see because of limited visual acuity; rather, it is a failure

based on inappropriate attentional guidance” [15]. Rensink’s experiments have shown

that focused attention is needed to perceive change, and objects considered interesting

are less likely to be affected by change blindness. Rensink also reports the findings

of memory studies indicating that only around four items can be monitored in visual

short-term memory, so layout changes that affect more than a few objects are most

susceptible to change blindness [24]. Given these findings, we can best prevent change

blindness by guiding viewers’ attention to a small number of “interesting” objects in

a visualization.

The manner in which changes affect the ground (not the objects) of a visualization

also impacts the degree of change blindness that occurs. Experiments performed by

Wang and Simons, as well as later experiments by Rensink, have shown that change

detection depends upon spatiotemporal continuity in the representation of data. Some

experiments showed that observers can better detect changes in a rotated layout if the
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observers, rather than the layout are rotated [24]. For saccade-contingent changes,

Rensink observes, “In all cases, observers are generally poor at predicting change.

Indeed, this is true for position change if even only one item is present, provided it has

no global frame of reference” [24]. In other words, a consistent visual framework and

specific types of layout interactions can improve observers’ ability to detect change.

In designing NIDA and DANNA visualizations, we have attempted to mitigate

the effects of change blindness to the extent possible. As explained in Section 2.2,

the designs seek to guide users’ attention to key components of the visualization

and enhance their perception of change using highlighting techniques described in

Section 2.4. We have also tried to maintain visual continuity through a consistent

visual framework, as detailed in Section 2.9, to avoid confounding the detection of

change. With these design features, we anticipate that viewers will maintain sufficient

context in the representation of data to observe significant changes—primarily activity

in the networks.

2.11 Summary

This chapter provided a brief introduction to key components of the visual and visual

thinking systems, including: visual thinking, perception and attention, graphical

excellence, context and detail, color, quantitative data, pattern recognition, three-

dimensional visualization, consistent visual frameworks, and the perception of change.

The applicability of each of these topics to NIDA and DANNA visualizations has also

been addressed. The findings that we consider most relevant to our visualization work

on NIDA and DANNA networks are the following:

1. Vision and cognition are profoundly related (Section 2.1).

2. Visual thinking algorithms that should be supported for NIDA and DANNA

networks include: pathfinding, pattern recognition in network structure, iden-

tification of key components of networks, and visual monitoring (Section 2.1).
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3. The gestalt principles of closure and common region, proximity, similarity,

connectedness, and symmetry are particularly relevant for NIDA and DANNA

visualizations (Section 2.2).

4. The following features can be processed preattentively (without focused atten-

tion): line orientation, line length, line width, size, curvature, spatial grouping,

blur, added marks, numerosity, hue, motion, 2D spatial position, stereoscopic

depth, and convex or concave shape from shading (Section 2.2).

5. Since visual short term memory only allows for the monitoring of around four

objects between glances, it is important to engage a viewer’s focused attention

on items of interest and ensure that they can be effectively observed in a single

glance. (Section 2.2).

6. Graphical excellence requires an accurate representation of the data and the

avoidance of distractions and distortions (Section 2.3).

7. Data visualizations should allow viewers to explore various levels of detail, or

as Ben Schneiderman puts it, “Overview first, zoom and filter, then details-on-

demand” (Section 2.4).

8. Only around nine color hues can be reliably distinguished (Section 2.5).

9. Families of colors can be identified by varying saturation and lightness for

the same hue, but only around two colors per family are distinguishable

(Section 2.5).

10. The best graphical features for quantitative comparisons are lightness/darkness,

vividness, 2D position, size, length/width, intensity, and blur, but the last four

may be perceived less precisely (Section 2.6).

11. To facilitate comprehension of the data, the graphical representation of

quantitative values should be proportional to the data values (Section 2.6).
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12. Patterns are more reliably recognized when the perception of features used

to represent different data dimensions relies on different visual channels

(Section 2.7).

13. Recognizable visual grammars also improve pattern finding abilities (Sec-

tion 2.7).

14. 3D visualizations improve understanding of complex 3D graphs when depth

cues and viewport controls are appropriate (Section 2.8).

15. Motion parallax is the most powerful depth cue (Section 2.8).

16. Visualizations should maintain a consistent visual framework to provide visual

continuity and prevent distortions of the data (Section 2.9).

17. Change blindness—the failure to notice even large changes—can be mitigated

with appropriate guidance of viewers’ attention (Section 2.10).

The next chapter provides background on NIDA and DANNA networks, as well as

on visualization techniques that have been applied to neural networks.
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Chapter 3

Related Work

3.1 NIDAs and DANNAs

Fields related to neuroscience-inspired architecture are rapidly growing in computer

science and engineering. Previous works have introduced a neuroscience-inspired

dynamic architecture (NIDA) and associated design method and have demonstrated

the utility of NIDA networks on several problems, including anomaly detection [27],

control [26], and classification [29]. This new architecture makes use of dynamic

properties and distributed memory to address these varying problem types. However,

understanding the behavior of this new network type can be a daunting task,

especially without prior knowledge as to what to expect. Developing an intuition

about how a network behaves is an important factor in determining the utility of

that network for tasks, as well as how to exploit features of the network in the

learning/design process. With this in mind, we believe a visual analytics tool tailored

specifically for NIDA networks can be an extremely useful aid to better understand

the types of structures and behaviors that are produced by the design process.

Several efforts are documented in the literature that explore novel computational

approaches motivated by neuroscience. We restrict our attention here to those

that implement spiking, or event-driven, behaviors. The Blue Brain project [20],
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the Human Brain Project [21] and IBM’s cognitive computing project [22] attempt

to model what occurs in biological brains with high fidelity, whereas hierarchical

temporal memory (HTM) [14] takes inspiration from biology, but does not restrict

the operation and training of HTM networks to what occurs in biological brains.

Other machine learning techniques, such as deep learning [1] also take some of

their inspiration from neuroscience and theories of learning in the brain. While

NIDA methods take inspiration from biological systems, they do not attempt to

accurately model or represent biological processes. Rather, we are motivated by

neuroscience but focused upon development of effective computational architectures.

Dynamic Adaptive Neural Network Array (DANNA) hardware implementations of

the NIDA approach have also been explored by Dean et al. [6]. DANNA represents

a class of neuromorphic computing architectures. NIDA network design is based on

evolutionary optimization, a method which has been used in the literature to design

traditional artificial neural networks [38, 12].

3.2 Visualization Methods for Neural Networks

Numerous visualization methods have been developed to help better understand the

learning processes and behaviors of artificial neural networks. Darrah [5] presents a

survey of techniques intended to help users make sense of the interactions between

elements in neural networks and the ways that those interactions evolve over time.

Among other techniques for verification and validation, Darrah introduces Hinton

diagrams, Bond diagrams, hyperplane diagrams and animators, Self-organizing Maps

(SOMs), and Voronoi diagrams.

Hinton diagrams [16] were among the first means of visualizing structural

relationships within neural network elements. Compact graphs for each neuron in

a network N are arranged in the same order as the nodes that they represent. The

graph for a given node n contains small squares for each of n’s edges in N , also in

an arrangement that is spatially representative of the network. Black-colored squares
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can be used to indicate negative weight edges, while white squares stand for positive

weight edges. The size of each square represents the magnitude of the edge weight,

enabling the user to quickly evaluate which nodes in N are likely to have the most

influence on n’s behavior.

Several other ANN visualization techniques are related to or based in part on

Hinton Diagram concepts. Weight Visualization diagrams and curves (WV-diagrams

and WV-curves), described by Bischof et al. [2] and Bischoff et al. [3], respectively,

show the same spatial information that Hinton diagrams show in different ways.

WV-diagrams were designed to show the same values as Hinton diagrams using less

space, so they use a grayscale value instead of size to encode weight and require a

single pixel for each weight value represented. Color values may be used instead

of grayscale to allow for better perception of weight distinctions. When numerical

values are represented in a distributed manner, WV-curves can show weights more

intuitively. WV-curves encode weight using distance in a coordinate plane. This

method facilitates the perception of patterns across multiple input channels.

A more recent visualization mechanism derived from Hinton diagrams is known

as a connection map. Connection maps are similar to WV-diagrams in that they

use pixel values to encode the strength of relationship between elements, but they

have been used by Thiessen to visualize more general graph problems using Pearson’s

bivariate correlation as a measure of similarity [31]. Connection maps are generated

by first assigning each node of a k node graph to a position within a grid containing

k locations. Then the similarities of a node n to all other nodes are calculated and

represented as grayscale or color values within pixels assigned to those respective

nodes in n’s grid. Connection maps have been shown in a user study to have intuitive

meaning and to facilitate understanding significantly better than visualizations of the

graphs themselves [31].

An alternative and more scalable tool for pattern recognition weights is the

Quadrant-Distance (QD) graph introduced by Linnell [19]. QD graphs can show

the weight vectors of the network at any point during training and are capable of
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revealing patterns in networks of various architectures and sizes. QD graphs map

a set of network weights to vectors in N -dimensional space where the number of

dimensions are defined in Equation 3.1.

N = (number of input nodes + 1) ∗ (number of hidden nodes)

(number of hidden nodes + 1) ∗ (number of output nodes)
(3.1)

QD graphs then use simple metrics, such as Euclidean distance from the origin or

the number of the quadrant in which the weight vector lies, in order to visualize the

weight space using simple line graphs [19]. The significance of the patterns exposed

by QD graphs is not always intuitive, but in conjunction with other knowledge of the

networks, the graphs have demonstrated utility for the analysis of neural networks.

QD graphs are particularly useful in comparisons between networks with different

initial weights and in the tracing of network learning during training.

Other researchers have developed alternative methods for further exploration

of the input space, structure, learning, and accuracy of neural networks. Graph

visualizations [37], scatterograms [8], dual-space interactive weight visualizations [33],

and three dimensional simulations [40] are some of the techniques that have been

proposed.

3.3 Self-Organizing Maps (Kohonen Maps)

Self-Organizing Maps (SOMs), introduced by Kohonen et al. [17], are among the most

widely used visualization techniques for neural networks. They have frequently been

used to reduce dimensionality of the input space and cluster input data so that tasks

required of the networks can be more easily understood [25, 35, 39, 11].

SOMs have also been used by Uzak et al. [34] to simplify the visualization of

network behavior in clustered response-funtion plots. Response-function plots show

the response of individual neurons to various inputs. Since visualization of very
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large networks can be limited by human abilities to follow changes in large numbers

of pictures, these authors propose visualizing only the representatives of clusters

of neurons with “similar responses.” Clustered response-function plots thus reduce

visualization requirements and visual clutter by a factor of the cluster size.

3.4 Neuroscience Simulation Visualizations

Although not directly applicable to NIDA visualization, neuroscience simulations

include useful concepts for the analysis of neural network topology and behavior.

Two neuroscience simulations with powerful three dimensional visualizations are

NeuGen [9] and neuroConstruct [13]. NeuGen was designed for the realistic simulation

of biological neural networks, and it provides interactive visualizations of complex

networks that allow highlighting of specified network regions [9]. neuroConstruct,

also designed for more anatomically realistic network visualizations, boasts additional

features. It has settings for adjustable transparency to assist users in exploring

different layers of the network, as well as adjustable levels of detail for viewing

simulated network activity. neuroConstruct users may also interactively highlight

connections of specified cells [13]. Both tools are freely available to the public.

3.5 Summary

This chapter introduced Neuroscience-Inspired Dynamic Architecture (NIDA) and

Dynamic Adaptive Neural Network Array (DANNA) networks, including their

structure and behavior, as well as some of the problems on which these networks

have shown a strong performance. Also presented in this chapter were several of the

visualization tools and techniques that have been used to explore and analyze neural

network behavior, such as Hinton diagrams, Self-Organizing Maps, and neuroscience

simulations. The next chapter provides a brief overview of the research contributions

of the NIDA and DANNA visualization tools produced for this work.

29



Chapter 4

Overview of Results

This chapter outlines the primary research contributions of this work. We will

present the basic features available in the NIDA visualization tool and DANNA visual

interface, and we will discuss the analysis tasks for which these tools have proven

useful. Links to relevant sections in other chapters are provided for additional details

about results.

4.1 Three Dimensional NIDA Visualization Tool

The three dimensional NIDA visualization tool allows users to explore the com-

plexities of NIDA network structure and observe patterns in activity. Users may

interactively explore networks in the environment or define preset interactions to be

rendered in high frame-rate videos. Analytics features, such as causality path tracing,

assist users in identifying useful substructures that may help improve the NIDA design

method. An example image from the NIDA visualization tool is shown in Figure 4.1.
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Figure 4.1: An example image created by the three dimensional NIDA visualization
tool showing a network trained to recognize the handwritten digit 7 during the
processing of an input image of the digit 1. Multiple visibility modes are shown,
as well as highlighting of active elements.
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4.1.1 Exploration

The NIDA visualization tool has helped us explore the learning process of NIDA

networks. We have used it to analyze whether propagation of events through the

network occurs as expected. We can use the tool to examine the various components

of the network, to determine their activity levels, and to identify the time periods

within the simulation time frame for which neurons, synapses, and substructures

are most active. Interactive mode may be used to explore networks and generate

hypotheses, and video mode with predefined interactions is particularly useful for

comparing networks or the behavior of a single network on different inputs. (See

Section 5.2.1.)

4.1.2 Highlighting and Filtering

We recognize the value of identifying events that will or should affect the firing of

neurons. Longer synapses (synapses with greater delay) sometimes prevent expected

firings or facilitate unexpected firings. We also stipulate that analysis of inhibitory

synapses and their effect on the firings of neurons will be useful for the understanding

of NIDA networks. The highlighting of active elements through increasing size

and contrasting colors effectively draws attention to events and locations of interest

within the network. In order to allow exploration of subnetworks of elements that

are active over multiple inputs to the same network, filtering features are provided.

Currently, filtering is implemented through the identification of useful substructures

and rendering only elements contained within those substructures. (See Section 5.2.2.)

4.1.3 Scaling

Given the varying densities and granularities of NIDA networks, we have implemented

adjustable scaling to facilitate exploration of the networks at different levels of detail.

As an example, affective systems, described in detail by Schuman and Birdwell [26],

are sometimes implemented as smaller networks within networks of larger scale. In
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one approach, the granularity (minimum distance between neurons) of an affective

system is an order of magnitude smaller than the granularity of the network within

which it exists. Scaling features within the visual analytics tool allow users to explore

both the larger network and its affective system(s). (See Section 5.2.4.)

4.1.4 Similarity between Networks

We define different types of similarity based on the behavior of one or more networks

over multiple input data. “Similar behavior” must be defined by NIDA developers,

but we hypothesize that similar networks will have analogous output patterns given

the same inputs, and we also expect that similar substructures may exist in different

networks that behave similarly. One of our objectives is to facilitate the identification

of substructures that exist in distinct networks, particularly networks trained for

the same task. As a precursor to this task, we have used the visualization tool to

identify some useful substructures within individual networks whose behavior we may

wish to emulate in networks trained for the same task. We have examined how the

substructures interact with input and output neurons. (See Section 5.4.2.)

4.1.5 Identification of Useful Networks/Substructures

We have established two techniques to assist NIDA developers and designers in

identifying useful substructures: activity-based identification and causality paths.

The activity-based method requires only an analysis of the most active neurons

and synapses within the networks. However, the results of extending the NIDA

evolutionary optimization method to incorporate this technique have not been

promising, so we believe the strategy may be too simplistic to identify useful

substructures. We anticipate that our causality-based method will target more

substructures of interest. Causality paths can trace an arbitrary event e in a

simulation back through all precipitating events to the initiating input event(s)

causing e to occur. They may also trace e forward through the simulation to show
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all events triggered by e. We provide static views of these causality paths as well as

animated traces forward through time, restricting the view of the network to only

the elements along the causality path. We also provide functionality for “causality

subnetworks,” which allow the selection of multiple events whose causality can be

traced. (See Sections 5.4.4 and 5.5.)

4.2 Two Dimensional DANNA Visual Interface

In addition to the three dimensional NIDA visualization developed for this work,

we have produced a two dimensional interactive visual interface for DANNA. This

tool has been designed for DANNA developers, but it is also intended to have

sufficiently intuitive interactions such that researchers first beginning their exploration

of DANNA networks can gain insight into the features of the networks and efficiently

explore their behavior. The default view of the DANNA visual interface is shown in

Figure 4.2.

34



Figure 4.2: The default view of the DANNA visual interface showing a network
loaded onto a 16 x 16 DANNA.
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4.2.1 8-connection Visual Interface

In the initial implementation of DANNA, each element could connect to its 8

immediate neighbors within the DANNA grid. We implemented a grid view for

this connection scheme that represents neurons as ellipses and synapses as arrows

from the pre-synaptic neurons to the post-synaptic neurons. The interface features

interactions that allow users to hover over and highlight elements to view additional

information, modify elements using a configuration menu, and save resulting images

or network files. (See Section 6.2.)

4.2.2 16-connection Elements

The updated DANNA implementation allows each element to connect with its

8 neighbors from two hops away, as well as its 8 immediate neighbors. This

implementation also includes “passthru” elements that may connect neurons and

synapses or multiple synapses in order to facilitate greater fan-out of elements

within the array. Since other elements may be included in the future, we have

updated the grid view to encode elements with different shapes and to distinguish

node type (input/hidden/output) using color. The same interactions with elements

are available as in the 8-connection visual interface. Additionally, we have added

zoom and pan features to offer users greater freedom in exploring DANNAs. (See

Sections 6.3.1 and 6.3.2.)

4.2.3 16-connection Connections

Larger DANNAs may require more than 16 connections per elements, so we have

modified the visual interface to represent connections at multiple levels and to

be automatically extensible to greater numbers of connections. Connections are

represented in rings around the element shapes within the DANNA grid, mirroring the

physical arrangement of connections in the DANNA hardware. Arrow-like symbols

indicate the direction and type (input/output) of a connection, and the number of
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marks per symbol encodes the level of the connection. These encodings utilize space

efficiently within the grid view, so relationships between elements are visible even

within large networks. (See Section 6.3.3.)

4.3 Summary

In this chapter, we have enumerated the fundamental contributions of this work. In

the following two chapters, we will describe the visualizations for NIDA and DANNA

networks in detail.
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Chapter 5

Three Dimensional NIDA

Visualization

5.1 Background on NIDA Networks Visualized

Most of the NIDA networks appearing in this chapter were designed by Catherine

Schuman as part of an ensemble method used in the classification of handwritten

digits from the MNIST data set [18]. Each network is designed (using evolutionary

optimization) to identify a particular digit d by firing its output neuron in a pre-

defined time window (the last 50 time steps of a 500 time step simulation; other

timings can be used) if the image is of the digit d. The network should not fire in

the final time window if the image is of a digit other than d. The fitness function is

described in more detail by Schuman et al. [29]. In one implementation, each network

has 28 input neurons and one output neuron, and each network in the ensemble

receives each image as input. Each image of a handwritten digit is 28 by 28 pixels.

The networks “scan” the image, receiving one row or one column at a time. If the

output neuron of a network associated with digit d fires during the last 50 times

steps of simulation, that network “casts a vote” for digit d for that image. The digit

receiving the most votes is the decision of the ensemble (Figure 5.1). The evolutionary
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optimization produces a single network trained to recognize a particular digit on a

set of training images. Based on the performance of all resulting networks on the

training images, the top ranking networks for each digit are assembled to produce the

ensemble. An ensemble of 2600 networks produced a classification accuracy of 90.6

percent on the testing set of images (images that were not used during training) [29,

30].
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10	  votes	  for	  0	  

3	  votes	  for	  2	  

5	  votes	  for	  3	  

3	  votes	  for	  5	  

1	  vote	  for	  6	  

4	  votes	  for	  8	  

1	  vote	  for	  9	  

0	  wins!	  	  
Ensemble	  method	  thinks	  this	  

digit	  is	  a	  0.	  

Networks	  
Input	  

Output	  

Figure 5.1: A voting scheme amongst networks of an ensemble is used to determine
the digit for a particular image. Each network in the ensemble (represented by a
square on the grid) receives an image on input and simulates activity within the
network. Based on that activity, the network may or may not cast a vote (casting
a vote is represented by shading in the grid). The digit with the most votes is the
guessed digit for the ensemble. [29, 7]. (Figure created in part by Catherine Schuman
and used with her permission.)
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5.2 Primary Features

5.2.1 Modes of Operation and Feature Encoding

In order to examine the behavior of the NIDA networks, we created a three

dimensional (3D) network model using Processing [23] to represent the structure of a

given network to scale. Visualization of spatial information is particularly important

for NIDA networks, since their structures are not pre-defined, but rather evolve over

generations to better suit the given task. Our 3D model supports zoom and rotate so

that the user can efficiently observe and explore the entire network or substructures

within it. Two modes of operation, interactive and image rendering for video, allow

the user to either interactively examine the network throughout the simulation or

define preset interactions to be rendered for high frame rate videos. A clock displays

runtime (in network time units) throughout the simulation, and the user may interact

with the simulation using the play, pause, and clock reset buttons. Time unit duration

is adjustable so that the user can shift from an overview of network activity to a fine-

grained examination. It is possible to provide user interface elements to allow the user

to adjust visualization parameters such as opacity, color scheme, and visual simulation

rate, and the addition of these interactions will be addressed in Chapter 7.

Neurons are represented as spheres all of the same size, with color used to

differentiate between input, hidden, and output neurons. Alternatively, size, shape,

or other distinguishing features of the visual representation of the neuron can be

used. Synapses are depicted as lines between neurons with cones at the output end

to indicate direction of the synapse. Shading or variation in visual line thickness

could also be used to indicate direction. Synapse color encodes positive (excitatory)

versus negative (inhibitory) weight, and stroke weight represents the magnitude of

synapse weight. Multiple color schemes are available to suit various media.

It is important to note that much of the network’s behavior is governed by

inhibition of activity (that is, keeping neurons from firing rather than causing neurons
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to fire). This is true in many different task types, but it is especially true in

this task example, in which the network must not fire in approximately 90 percent

of the input cases (because the network should identify one digit type out of 10

possible digit types). This type of activity is much harder to track using conventional

analysis methods, but it is vital to understanding how each network operates. A

major advantage of our existing visualization tool is that it allows us to observe

the propagation of charge along the synapses, which are clearly either excitatory or

inhibitory, and to see precisely how different input events affect the behavior of the

rest of the network.

5.2.2 Highlighting and Filtering

Animated highlighting of activity and modifiable visibility modes leverage pre-

attentive processing to facilitate the rapid identification of patterns in network

behavior (see Chapter 2 for more on pre-attentive processing and pattern recognition).

The tool represents the activity of a network on a specified input by highlighting

elements in a contrasting color as events occur on them. Events of interest include

neuron fire events and add-charge events on synapses. During the event time window,

the size of an element (neuron radius or synapse stroke weight) is increased for further

emphasis. Detail views within the visualization also depict charge propagation along

each unit of the synapse using highlighted spheres that are smaller than neurons.

When visualization of charge propagation is enabled, a longer time unit duration (at

least 100ms per time unit) is enforced so that the visualization is comprehensible.

Adjustable visibility modes may also be utilized to filter out details of the

simulation that are not relevant to particular tasks. Three visibility modes—invisible,

“ghost”, and full visibility—allow the user to eliminate visual clutter and draw

attention to elements of interest. Invisible elements are not rendered at all, ghost

elements are rendered at an opacity of 20%, and fully visible elements are rendered

with 100% opacity. Other opacities can be used. In the current version of the tool,
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the user may set the default visibility of elements (visibility at the beginning of a

simulation) to any of the three modes. The simulation may be adjusted to retain

the default visualization mode for all elements throughout the simulation, to set

elements to be invisible if they are not active within the simulation timeframe, or to

transition the elements from default to full visibility as they become active (“visibility

upon activity”). Future iterations of the tool will allow users to toggle visibility of

any element at any point during the simulation. Chapter 7 discusses the proposed

additions to the tool in detail.

5.2.3 Example Network Visualizations

The basic features available at this time in the visualization tool are depicted in

Figure 5.2. The runtime (in simulation time units) and buttons for interactivity are

at the top left-hand corner of the image in this view, and the view of the network

absorbs the center of the screen. Other locations for user controls may be utilized.

The column of green spheres at the left side of the network are the input neurons,

and the single orange sphere at the far right of the network is the output neuron.

The hidden neurons are the the teal spheres between the input and output neurons.

Positive weighted synapses are lines colored blue, while negative weighted synapses

are in red-orange.
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Figure 5.2: An example NIDA network shown using the visual analytics tool. This
network is trained to recognize handwritten digits of the number 7, shown at time
unit 237 in a simulation processing an image that shows the digit 7.
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Other visibility settings are shown in Figure 5.3. The simulation shown in this

image had a default visibility of ghost for hidden neurons and synapses, so the full

opacity lines and teal spheres represent network elements that have already been

active during the simulation—synapses that have transferred charge to neurons and

neurons that have fired. The lines and spheres with 20% opacity depict elements

that have not yet been active during the simulation. Elements highlighted in bright

yellow are those that are active at the current time step—synapses at the point when

the charge they have transferred reaches the receiving neuron and neurons currently

firing. The smaller yellow highlighted spheres along various synapses stand for the

points of charge propagation along the given synapses. Each charge propagation

point results from a distinct event, the firing of the neuron from which the synapse

originates. Should the charge propagate to the receiving neuron within the timeframe

of the simulation, it will effect a unique event of addition or reduction of charge in

the receiving neuron. Unless otherwise noted, all printed network figures in this work

use the same color scheme.
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Figure 5.3: Example network set to use visibility upon activity with a default
visibility of ghost for all elements.
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5.2.4 Scaling and Visualization of Subnetworks

As an enhancement to other interactive features, we have implemented adjustable

scaling within the network so that the relationships in more compact networks and

substructures can be examined. The exploration of dense networks requires scaling

in addition to zooming because some networks allow for neurons to overlap within

a single unit of space. In order to view relationships between neurons so closely

situated, the space that each neuron occupies must be reduced in proportion to the

space of the network overall.

In some networks, substructures are actually complete networks embedded within

larger networks. An affective system is an example of such a subnetwork. Affective

systems have their own fitness functions distinct from those of the networks in which

they are embedded, yet they are designed to cooperated with the larger network.

For example, the larger network could represent an agent whose goal is to survive as

long as possible in the environment. Affective systems can be embedded within the

network to symbolize fear—to help it avoid predators—and for curiosity—to more

effectively explore the environment in search of food. Embedded subnetworks may

have different granularities than their larger networks. In one realization, the larger

network (the agent) has a granularity of 1.0, meaning that neurons can exist no closer

than 1.0 unit of space from each other. The agent network exists in a 100 x 100 x

100 grid. In this realization, examples of which are shown in Figures 5.4 and 5.5, the

affective system subnetwork has a granularity of 0.1 and exists in a 1 x 1 x 1 grid.
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(a) View of full network. (b) Zoomed view of embedded subnet-
works.

Figure 5.4: Example network with embedded affective systems as subnetworks.

Figure 5.5: Large network with granularity of 1.0 with embedded subnetwork of
granularity 0.1.
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There are multiple ways to visualize these networks and subnetworks of dra-

matically different scale. Figure 5.4a shows the example agent network with two

embedded affective systems for fear and two for curiosity. A zoomed-in view of the

curiosity subsystems is shown in Figure 5.4b. Figure 5.4 demonstrates the capability

of the visualization tool to scale networks to the smallest level of granularity, allowing

users to view the entire embedded networks within the context of the larger network.

Another example of this embedded view for subnetworks is shown in Figure 5.5.

An alternative technique for visualizing embedded networks is the use of place-

holders. Figure 5.6 illustrates this method, depicting the same agent network from

Figure 5.4 with placeholders instead of embedded subnetworks. Placeholders are

depicted as cubes to differentiate them from neurons, and color is used to distinguish

between types of embedded network. This technique still allows for the combination

of details and context in the visualization, since the affective system networks may be

shown in additional views. Determining the more appropriate of these two methods

may depend on the user’s task or visual query. Both features are available.
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Figure 5.6: Agent network from Figure 5.4 with placeholders representing each
affective system.
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The placeholder method may also be used to visualize collaborative tasks among

teams of networks. As presented in Figure 5.7, this technique also uses color to

distinguish between types of networks. As with embedded networks, the networks

represented by placeholders may be shown fully in additional views.

Figure 5.7: A team of networks shown using placeholders for each network.

Scaling has enabled the visualization of compact hand-tooled networks in addition

to helping facilitate exploration of embedded networks. Although NIDAs are

primarily developed using evolutionary optimization, they can be manually created.

NIDA developers are producing a library of hand-tooled networks and substructures

with known functionality that can be inserted into larger networks. Hand-tooled

networks tend to be more compact than their evolved counterparts, even given the

same granularity. Figure 5.8a shows one such hand-tooled network, which is capable

of recognizing vertical lines. A larger network, shown in Figure 5.8b combines multiple

vertical line recognizers in order to identify vertical lines in a larger field. The

adjustable scaling features in the visualization tool allow users to explore networks of

various granularities and various neuron placement densities.
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(a) Hand-tooled vertical line recognizer
network.

(b) Network composed of arrays of
vertical line recognizers.

Figure 5.8: Hand-tooled networks shown using scaling features of the visualization
tool.
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5.3 Simulation Videos

In order to better represent the functionality of the visualization tool, videos of

example NIDA network simulations are linked to this work and can be found in

the University of Tennessee’s online catalog. Attachment 1 shows the processing

of three input images of the digits 0, 5, and 2 by a network trained to recognize

the digit 0. This video was produced using the video rendering operating mode to

allow comparisons of the network’s behavior on different input images. Attachment 2

shows a different handwritten digit classifier network using the interactive exploration

operating mode.

The color scheme used for videos is distinct from the one used for print images,

since a darker background allows for better perception of events during the simulation.

In the videos, input neurons are colored yellow, hidden neurons are teal, and the

output neuron is red. Positive weighted synapses are blue and negative weighted

synapses are orange. The highlight color for active elements and charge points is

white. The default visibility mode for the videos is ghost, and visibility upon activity

is used, showing the elements as fully visible after they have been active during the

simulation time frame.

5.4 “Similarity” and Useful Substructures

5.4.1 Background: Evolutionary Optimization Method

One of the most pressing challenges facing the developers of NIDA networks is the

design of the evolutionary optimization process so that it is highly efficient. The

evolutionary optimization, described in detail by Schuman et al. [28] is robust and

produces high-performing networks, but it is the bottleneck in the creation and

training of networks due to the many generations required for successful evolution.

In a current realization of the method, the evolutionary process is initialized

randomly. Two operations, crossover and mutation, are used to create child networks
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from parent networks. High-performing networks, as determined by a fitness function

for a particular task, go on to form the next generation of parent networks. Mutation

operations occur at randomly determined points, and they include the removal

or addition of neurons or synapses to a network or changes to parameter values.

The crossover operation splits two randomly chosen parent networks and exchanges

parents’ subnetworks to create two new networks. Figure 5.9 shows the evolutionary

optimization process.

54



Figure 5.9: A summary of the evolutionary optimization method, showing the two
operations used to create child networks from a parent population and the fitness
function as the means by which a network’s performance is evaluated. (Figure created
by Catherine Schuman and used with her permission.)
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5.4.2 Similarity

We hypothesize that the evolutionary optimization method could be improved and

accelerated by leveraging knowledge gained from networks that behave “similarly.”

Similarity may be defined in different ways. For a given network type with specified

input and output connections, we define three different types of similarity:

1. Input/output (behavioral) similarity: Given similar input event sequences, the

two networks produce similar output event sequences. Input/output similarity

does not measure the similarities in the graph structures or parameter values

of the two networks.

2. Structural similarity: The two networks have similar graph structure. Option-

ally, similarities in the parameter values may be measured. Structural similarity

does not measure the similarities in the input/output behaviors of the two

networks.

3. Information flow similarity: Information flow similarity assumes substantial

structural similarity so that paths in the two networks can be associated and

compared. Given two networks N1 and N2 defined by their graphs, identified

inputs and outputs, and parameters, and given a set P of pairs of associated

paths (p1, p2), where p1 and p2 are paths in the graphs of networks N1 and N2,

respectively, information flow similarity is a function of the time sequences of

events occurring on the synapses and neurons of the identified associated paths.

While these three definitions of similarity are related, they are not nested. Information

flow similarity assumes some structural similarity, but a degree of input/output

similarity is assumed only if the set of associated paths includes paths that contain

the inputs and outputs of the networks or the inputs and outputs of specified

substructures. Input/output similarity and structural similarity are different. The

networks can be viewed as directed graphs with information associated with the

neurons and synapses (parameters and events that occur as a function of time
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in response to inputs). Structural similarity ignores the event sequences, and

input/output similarity ignores the structure of the graphs (other than its inputs

and outputs). Information flow similarity presumes prior computation to determine

associated paths in the networks’ graphs and uses that information to analyze the

similarities of event sequences associated with these path pairs.

A user may choose how similarity is defined and computed. The functions

that quantify similar input/output behaviors, similar graph structures, and similar

information flows may also be determined by the user. In addition, information flow

similarity may not quantify similarity on all paths of two networks; the reader is left to

decide which pairs of associated paths are to be analyzed. In addition, all three types

of similarity may be applied to a subnetwork; it is not essential that entire networks be

analyzed. This is desirable because we may wish to identify substructures of networks

that have particular utility for a given application.

Behavioral similarities that depend upon events as a function of time also depend

upon the inputs used to excite each network’s behavior. Input event streams may

be grouped in classes, and it is desirable to determine a network’s response to

multiple event streams of a class in order to statistically characterize its behavior

when presented inputs from that class. While a network’s response to a specific input

event stream may be interesting, it is more important to characterize the network’s

response to all inputs of a class, and to do this over all classes of interest. We note also

that a lack of response is often equally important. Behaviors internal to a network in

response to input event streams may suppress outputs—for example, when a network

is designed to recognize only inputs of a specific class by generating outputs within a

specified time interval.

We believe that one approach to improve the performance of the evolutionary

optimization method is to identify and exploit behavioral similarities across sets of

networks. Ideally, we wish to identify networks or subnetworks that respond in a

desired way to stimuli and can be reused in the design of new networks. We believe it

may be possible to adapt an evolutionary optimization process to improve the rate at
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which it produces satisfactory networks by incorporating randomly selected network

change operators that utilize such substructures.

Information flow similarity is a more complex attribute of networks than

input/output similarity and structural similarity. Similarity of information flow

assumes at least substantial structural similarity, but it also requires behavioral

similarity at a finer grain. One way to define information flow similarity is

recursive behavioral similarity. That is, two networks that demonstrate similarity of

information flow are behaviorally similar at the highest level in that they produce

similar outputs for similar inputs. Additionally, they may exhibit behavioral

similarity for certain substructures within each network. In order to exhibit

information flow similarity, these networks need not have behavioral similarity at

every level, but they should have behavioral similarity at multiple levels, including in

one or more substructures. The degree of information flow similarity may be defined

by the number of levels of behavioral similarity that exist between networks.

Similarities may also be defined for the same network in response to different input

event streams, either within a single input class or multiple classes. Similarities may

be identified in various sub-problems:

1. Similarities that appear in a single network over many inputs of the same class,

2. Similarities that appear in a single network over many inputs of different classes,

and

3. Similarities that appear in multiple networks in response to:

(a) a single input,

(b) many inputs of the same class, and

(c) many inputs of different classes. (This type of similarity may be used to

infer classes of networks that have similar behaviors.)

It is expected that similar behavior will correlate with a similar flow of information

internally for some, but not all, networks. Stated differently, networks may

58



successfully employ multiple approaches to the solution of the same problem. We

also recognize that similar behavior and information flows should be observable not

only between complete networks, but also for substructures within networks. In order

to take advantage of these “useful” substructures, we propose the addition of another

operation to create child networks from parents. We call this operation “surgery,”

since it can be used to remove or implant specific useful substructures from parent

networks in a future generation of child networks. The problem that the remainder

of this chapter seeks to explore is the identification of such substructures.

5.4.3 Useful Substructures

We hypothesize that useful substructures are substructures that exhibit behavioral

similarity over multiple inputs in at least one network. For example, on a handwritten

digit classification problem, a substructure could be useful in recognizing a particular

attribute of the digit that a network has been trained to recognize, such as the

continuous curves of a zero. Substructures for both successful and unsuccessful

networks should be explored. It is anticipated that the identification of structural

and information flow similarities will facilitate and/or complement the discovery of

behavioral similarities between useful substructures.

For the surgery operation to be useful in the long-term, it must be automated

within the evolutionary optimization method. We anticipate that visualization tools

will help drive the development of automated methods by revealing patterns that may

otherwise have been difficult to observe. The NIDA visualization tool has already

facilitated the identification of potentially useful substructures in networks trained

for handwritten digit classification. The current methods for substructure discovery

are activity-based and event-based, and are described in more detail by Drouhard et

al. [7] and in the remainder of this chapter. In one instance, the tool facilitated the

discovery of a highly active substructure, which further analysis showed to be active

over all zero-digit inputs in a network trained to recognize the digit zero. It also
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allows for the tracing of “causality paths,” or paths of neurons and synapses whose

activity contribute to specific events within the behavior of a network over a single

or multiple inputs, as described in Section 5.5. An example showing the procedure

for the surgery operation on a causality path is shown in Figure 5.10. We discuss the

anticipated improvement and expansion of these capabilities in Chapter 7.

Figure 5.10: Example of the surgery operation, showing the implantation of a useful
substructure into a network trained for the same task as the network from which the
substructure was drawn.
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5.4.4 Activity-based Identification of Substructures

Visual simulations on a handwritten digit network trained to recognize the digit 0

yielded the discovery of one interesting substructure. For a network N , trained to

recognized the digit 0, the three-neuron substructure s shown as the three active

(yellow) neurons in the highlighted region in Figures 5.11 and 5.12 was observed to

be highly active throughout the processing of multiple input images of the digit 0. To

better understand the activity of s in relation to other neurons within the network,

we performed an analysis of the activity of all neurons in the network over all input

images of the digit 0, the results of which are shown in Figure 5.13. The three

neurons contained in s were more active than all other neurons in the network by a

wide margin. Based on this data, we speculated that s is a significant substructure

to the behavior of N during the processing of 0 input images, and therefore, that

it might be a useful substructure to implant in other networks trained to recognize

the digit 0. However, when we analyzed the activity of neurons in N during the

processing of input images of non-0 digits, the results confounded our hypothesis.

As shown in Figure 5.14, the neurons of s are highly active during the processing of

non-0 digits as well. It appears that this substructure is significant to the behavior

of N in general, not only during the recognition of 0 input images. Thus, it may not

be useful substructure to replicate in other networks.

61



Figure 5.11: A three-neuron substructure highlighted within a handwritten digit
network trained to recognize the digit 0, shown during a simulation of the network
processing an input image of a 0. The substructure contains the three active (yellow)
neurons in the highlighted region.

Figure 5.12: The same three-neuron substructure within the same network shown
in Figure 5.11. This image is drawn from a simulation of the network processing a
different input image of a 0.

62



A

B

C

(a) Labeled neurons of substructure s.

A

B

C

(b) Neuron fire event statistics for input images of digit 0.

Figure 5.13: Neurons in substructure s and firing statistics for digit 0 input images.
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(a) Five most active neurons for non-0
input images, including substructure s.

A

B

C

D

E

(b) Neuron fire event statistics for input images of non-0
digits.

Figure 5.14: Active neurons, including substructure s, and firing statistics for non-0
input images.
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Substructures such as this one can be identified easily by determining the most

active neurons in the network, but this method may be too simplistic to improve

the evolutionary optimization (EO). When the EO was extended to automatically

identify the top 5% most active neurons and implant them into child networks as

an additional operation, EO did not improve overall. In some cases, the addition

of this operation significantly improved EO, in other cases it significantly harmed

performance, and in some cases it had little or no effect.

5.5 Causality Paths

5.5.1 Event Summaries and Path Tracing

In an effort to identify substructures that will be useful in other networks, we extended

the visualization tool to target substructures whose behavior we may wish to replicate.

Besides animating all of the activity of the network on a given input, the visualization

tool has an alternate mode that allows for the isolated viewing of specific events and

the activity that leads to them. This mode requires the compilation of detailed event

summaries for each element (neuron and synapse) on the network. An event summary

consists of every event e that occurs on a given element, along with other events

throughout the simulation that contribute to the occurrence of e and those events

triggered in part by e. For example, a neuron fire event f is defined as being affected

(and eventually triggered) by every synapse charge event that reaches it after the

previous firing and before the occurrence of f . A synapse charge event is defined as a

single event that incorporates delay by virtue of the synapse’s length. Synapse charge

events are caused by the firing of the neuron from which the synapse emanates and

affect the subsequent firing (or absence of firing) of the neuron to which the synapse

connects. Using the event summaries created, we are able to create timelines of causes

and effects for each event e. We can also visually trace from e back to the initial input

neuron pulse(s) that trigger(s) them or forward through all of the events to which e
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contributes during the simulation timeframe. This functionality enables the user to

identify portions of the network’s structure that participate in computations leading

to a particular outcome, as well as portions of the network’s structure that are affected

by a particular event.

Using this mode of the visualization tool, we have traced important events in

the network back to the initiating events on input neurons. We refer to these paths

as “causality paths.” The activity along the path can be animated in the same way

as standard network activity in order to trace the precipitating actions from input

neuron pulse(s) to the occurrence of the event itself. One experiment with these

paths explores the differences in the output neuron activity between input images of

the digit d that a network has been trained to recognize and input images of digits

other than d. Of particular interest are images of non-d digits that share certain

characteristics with d.

Figure 5.15 is a path extracted from the activity of network S, a handwritten

digit recognizer trained to recognize the digit 7, shown during the processing of two

different input images of 7’s. The figure shows the first firing of the output neuron

during the final time window, signaling recognition of the digit 7. Though these

fire events on the output neuron occur at different times for the different inputs,

the path is the same. In contrast, Figure 5.16 shows a path drawn from the same

network during the processing of an input image of the digit 2, which has some similar

features to images of sevens. The path in Figure 5.16 traces the final firing of the

output neuron in network S, which occurs prior to the final time window, indicating

correct recognition of a non-7 digit.
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(a) Path extracted from the activity of a network trained to recognize the
handwritten digit 7. The path has been traced back to the input pulses from
the firing of the output neuron during the final time window in the processing
of an input image of the digit 7.

(b) Same path through the same network shown in Figure 5.15a, processing a
different input image of a 7. The event traced by the path is the first firing of
the output neuron within the final time window, which signals that the network
correctly identifies the image as a 7.

Figure 5.15: Causality paths through a network trained to recognize the digit 7,
tracing back from fire events on the output neuron.
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Figure 5.16: Causality path from a network S (discussed in Section 5.5) trained to
recognize the digit 7 processing an input image of the digit 2. The event traced by
the path is the last output neuron fire. The fire occurs prior to the final time window,
indicating that the network recognizes that the image does not show the digit 7.
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The network behavior was similar for multiple input images of the digit 2, as

well as for other non-7 digits. For several input images of 2’s, the final firing of the

output neuron could be traced back to the input pulse along the same relatively short

two-segment path. The final firing event primarily propagated charge along inhibitory

synapses. Other input images, such as those of the digit 1, triggered different activity,

but the paths to the final firing tended to be short and to trigger more inhibitory

behavior. An example causality path for the digit 1 is shown in Figure 5.17. This

figure traces the path of the output neuron back along a single segment path to its

initiating input pulse. It also traces forward the activity triggered by the fire event

on the output neuron. This activity is primarily inhibitory. Causality paths for many

other input images of the digit 1 were similar. The paths for correct recognition of

the digit 7 tended to vary more, but were longer overall, as could be expected since

the fire to indicate recognition of d must occur within the final 50 time units. The

variation in paths for images of 7 may be attributable to the variations in ways 7’s

can be written, as shown in Figure 5.18.
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Figure 5.17: Causality path from network S trained to recognize the digit 7
processing an input image of the digit 1. The event traced is the final firing event
of the output neuron, which indicates the correct recognition of a non-7 digit, since
it occurs prior to the final time window. The fire event is traced backward to the
initiating input pulse, as well as forward to the triggering of primarily inhibitory
activity.

Figure 5.18: Example images of written 7’s. The variations in the way 7’s are drawn
may contribute to the variation in causality paths that occur.
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The causality paths for network S provide further intuition about how networks

of this type operate. Based on these results, we can speculate that shorter paths

to the final firing of the output neuron for 1’s and 2’s, as compared to the paths

traced when identifying an image as a 7, indicate the relative ease of identifying an

image as a non-d digit, rather than a d digit. That is, it is easier (and requires less

complicated structure) for the network to determine that an image is not of a digit d

than it is for the network to definitively say that the image is of a d. Table 5.1 gives

the classification results of one of these networks in isolation (a network trained to

recognize images of 7’s). In particular, this table shows that for images of non-7 digits,

excluding 9’s, the network achieves higher than 90 percent accuracy (that is, does not

fire in the last time window for these images), whereas it only achieves around 80

percent for images of sevens. The low accuracy rate for 9’s may be attributed to the

similarities in the ways 7’s and 9’s are written.

Table 5.1: Accuracy Breakdown for a Network Trained to Recognize Images of the
Digit 7

Digit Accuracy
0 99.4898
1 99.9119
2 97.6744
3 90.8911
4 97.4542
5 92.9372
6 99.791
7 79.3574
8 94.5585
9 77.106

It is worth noting that each of the causality paths presented for network S traced

back to a single event on a single input neuron. Since this network scans an input

image column-by-column, the traces would seem to indicate that this network decides

whether or not the image is of the digit 7 based on a single pixel, yet we know that

the decision must be more complex. Rather, we hypothesize that the longer, more
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complex paths toward recognition of d digits are always initiated by one or more input

neuron. If the network determines—using the shorter, simpler paths—that the input

image being processed is of a non-d digit, inhibitory activity is triggered, preventing

the d digit recognition path(s) from completing. The extension of the visualization

tool to encompass causality “subnetworks” has so far supported this hypothesis.

5.5.2 Causality Subnetworks

Causality subnetworks represent the causality paths of multiple events of interest,

and can include paths from a network drawn from the processing of different inputs.

Since these networks represent multiple sequences of events, the visual encoding

is slightly different than the standard visualization. Neurons are still depicted as

spheres, and synapses as lines whose directionality is indicated with cones. However,

in these visualizations, neuron size and synapse stroke weight encode frequency of the

element’s appearance in a causality path. Sample causality subnetworks for networks

trained to recognize the digits 2, 4, and 6, respectively, are shown in Figures 5.19, 5.20,

and 5.21. The subnetworks trace causality paths for all output neuron firing events in

the final time window for all input images of the digits that each respective network

was trained to recognize. In other words, they trace the causality paths for all of the

network’s behavior that indicates successful recognition of the d digit. Larger size

and stroke weight indicate the that neurons and synapses appear in these paths more

frequently.
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Figure 5.19: Causality subnetwork from a network trained to recognize the digit
2, tracing all output neuron firings in the final time window for input images of the
digit 2.

Figure 5.20: Causality subnetwork from a network trained to recognize the digit
4, tracing all output neuron firings in the final time window for input images of the
digit 4.
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Figure 5.21: Causality subnetwork from a network trained to recognize the digit
6, tracing all output neuron firings in the final time window for input images of the
digit 6.
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The insight we have gained from causality subnetworks aligns with our previous

observations from causality paths. Path tracings of events that indicate recognition

of the d digit tend to be longer and have more hops, and the same paths recur

frequently for multiple input images of the same class. The difference in complexity

of the networks is also intuitive. The digits 2 and 4 may be written in a relatively wide

variety of ways (loops vs. no loops, closed vs. open tops, etc.), while the digit 6 is

generally written in the same basic form. Understandably, then, the networks trained

to recognize 2’s and 6’s would require a greater number of paths to recognize input

images of the d digit. The variation in correct forms of 2’s and 4’s likely accounts for

the greater structural complexity of the causality subnetwork for these digits.

Causality paths and subnetworks are helpful in understanding the structures in a

network that are important in producing the functionality of the network. They are

another automated way to track useful substructures that may be exploited during the

EO method, but unlike the activity-based technique for identification of substructures,

causality paths target specific behavior of interest. We plan to extend the exploration

of causality paths to allow the user greater interactivity in selecting an event or

multiple events to trace and in highlighting different aspects of the activity shown in

the trace. The proposed extensions are outlined in Chaper 7.

5.6 Summary

In this chapter, we have described the features available in the NIDA visualization

tool and some of the insights that the tool has facilitated. The tool represents

three-dimensional NIDA networks in an interactive environment that encourages

exploration. It allows user to trace activity of networks, and explore the structure

and behavior of networks at various levels of detail.

The NIDA method for evolutionary optimization performs well, but it is not as

efficient as is desired. We hypothesize that the method can be expedited through the

recognition of networks and substructures whose behavior we would like to emulate in
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or eliminate from other networks. In other words, we believe that the identification

of similar networks or substructures that are either successful or unsuccessful for

particular tasks may allow us to improve the evolutionary optimization method.

We have proposed to expand the evolutionary optimization method to allow for the

implantation or removal of such substructures through a surgery operation, and this

technique is currently being incorporated into the NIDA design method. The current

iteration of the visualization tool has facilitated some methods for exploration of

useful substructures, and we hope to expand these methods in future iterations. The

next chapter explores a related visual interface for DANNA networks.
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Chapter 6

Two Dimensional DANNA Visual

Interface

6.1 Background on DANNA Networks Visualized

Dynamic Adaptive Neural Network Arrays (DANNAs) are a hardware implemen-

tation of the NIDA architecture and design method. DANNAs are composed of

rapidly reconfigurable neuromorphic elements that may represent neurons, synapses,

or other necessary elements. The first implementation, with each element connected

to its eight immediate neighbors, is introduced by Dean et al. [6]. Extensions to the

DANNA design, including increased connectivity of elements and scalability to larger

arrays, are discussed by Daffron et al. [4]. The neuromorphic elements that compose

DANNAs presented in this chapter are similar to the neurons and synapses in NIDAs

previously described. Neurons have a threshold parameter, and synapses have weight,

refractory period, and delay parameters. In the extended design, all elements may

connect to up to 16 surrounding elements, as shown in Figure 6.1.
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Figure 6.1: Structure of an element with its hierarchical connections. The red
element connects to all of the blue elements. Every element in the array follows the
red element’s connection scheme. (Figure created by Jason Chan and included with
his permission.)
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Each of the connections shown in Figure 6.1 may be enabled as input, output, or

input and output ports. When an element e fires, each of the elements connected to e

through output ports, provided that its corresponding input port is enabled, receives

the fire event. These elements then perform the appropriate actions for their element

types.

In order to help users better understand and interact with DANNAs, we provide a

graphical user interface (GUI) that includes a visual representation of the DANNAs’

element types, arrangement, and connections. The GUI allows users to open, view,

modify, and save DANNA networks. As we will discuss in Chapter 7, we are

currently expanding the GUI to include visual analytics tools for enhanced analysis

and assistance in refining the DANNA design method.

6.2 8-connection DANNA Visual Interface

In the initial implementation of the GUI, designed for DANNAs with 8-connection

elements, the user may open a network from a network file using a file chooser in the

“File” menu. The default view after opening a network is shown in Figure 6.2. We call

the default view of the network “grid view,” since it shows the physical arrangement

of elements on the DANNA hardware. Elements configured as neurons are shown

as ellipses, while synapses are shown as arrows that originate from the corner of the

element closest to the pre-synaptic neuron and terminate in the corner of the element

closest to the post-synaptic neuron. The output synapse is shown as a solid rectangle

to differentiate it from other elements. The grid view is automatically laid out to

utilize the panel space fully, and it will automatically rearrange if the panel is resized.

Grid boundaries and labels are drawn to indicate the overall size of the array, but

elements are only drawn within the grid boxes if those elements have been configured

as DANNA neurons or synapses. In the network shown, input neurons are colored

teal and hidden neurons are colored navy. In this color scheme, red-colored synapses

are inhibitory and navy-colored synapses are excitatory.
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Figure 6.2: Grid view of a 16x16 DANNA network with the input neuron highlighted
in yellow.
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Two additional panels within the GUI assist the user in interacting with the

DANNA. The control panel, shown at the top right of Figure 6.2, allows users

to save the view of the network as a PDF image or save the configured network

itself as a network file. The details panel, shown at the bottom right of Figure 6.2,

provides a more detailed overview of highlighted elements. Elements are highlighted

via mouseover in the grid view. A highlighted element has the background of its grid

box colored yellow as a marker of interactivity. The details panel is linked to the grid

view and displays additional information about the highlighted element. When any

element is highlighted, the details panel displays the coordinates of the element as

well as its status as input, hidden, or output. If a neuron is highlighted, the threshold

of the neuron is also displayed. Figure 6.3 shows the highlighting of a hidden neuron

and the details panel display for that highlighting. When a synapse is highlighted,

the details panel displays the neurons to which the synapse connects, the synapse’s

weight, and its delay, in addition to the basic element properties. Figure 6.4 shows

the highlighting of an inhibitory hidden synapse and the linked details panel display.
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Figure 6.3: Highlighting of a hidden neuron at index [14][14] and the linked Details
Panel.
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Figure 6.4: Highlighting of a hidden synapse at index [6][7] and the linked Details
Panel.
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The user may configure elements within the DANNA using the GUI’s right-click

popup menu, shown in Figure 6.5. The user may configure the element by changing

its type (neuron/synapse), by adjusting its parameters (threshold/weight/delay), by

changing its pre- and/or post-synaptic neurons (for synapses only), or by removing the

element from the DANNA. These interactions are coordinated through an abstract

communication interface, making the GUI independent of the lower level DANNA

implementation. The abstract communication interface is described in more detail

by Daffron et al. [4]. If an activity file for the given DANNA has been set using a

file chooser from the “File” menu, the detailed activity of selected elements may also

be viewed by clicking “Display activity for selected element(s)” from the right-click

popup menu.
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Figure 6.5: Popup menu displayed upon right click of an element in the grid view.
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The simple GUI provided for DANNAs can help users better understand the

networks through the grid view’s color and shape distinctions of elements. It also

allows novice users to quickly modify and save networks without having to interact

directly with the software abstraction layer. However, some of the refinements to the

DANNA design that were incorporated into the 16-connection implementation could

not be effectively visualized using this scheme.

6.3 16-connection DANNA Visual Interface

The visual interface for the 16-connection DANNA interface is composed of the same

panels as the 8-connection interface: the grid view, control panel, and details panel.

The default view for the 16-connection visual interface is shown in Figure 6.6. The

grid view for this implementation is significantly more complex than that of the

previous iteration in order better encode the distinctions and connections between

elements for updated DANNAs. The updated DANNAs include three element

types: neurons, synapses, and “passthru” elements. The functionality of neurons

and synapses remains unchanged. Passthru elements are similar to synapses, and

like synapses, they may have only one input connection enabled. Unlike synapses,

passthru elements may have multiple output connections enabled to allow for greater

fanout and connectivity of elements. The connection scheme is also more complicated

in the updated DANNA implementation, so the visualization of connections will be

discussed in detail in Section 6.3.3. For the updated DANNA, the configuration of

the DANNA itself has been decoupled from the specific networks and elements that

may be loaded onto it, so the user must open both a configuration file and a network

file from the File menu to begin using the visual interface.
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Figure 6.6: Default view of 16-connection DANNA visual interface showing 16 x 16
DANNA.
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6.3.1 Shape and Color Encoding for Elements

Shape is used to distinguish between element types (neuron/synapse/passthru).

Figure 6.7 shows how filled ellipses represent neurons. Synapses are depicted as

filled triangles of consistent shape and direction, as shown in Figure 6.8. Passthru

elements are shown as pentagons, and in order to make them more distinguishable

from neurons when shown at a small size, they are depicted as outlines instead of

filled shapes. Passthru elements are shown in Figure 6.9.

Color is used for both elements and connections to encode node type (in-

put/output/hidden). In the current DANNA implementation, only neurons or

passthru elements may be input nodes, and only synapses may be output nodes.

However, the visual interface allows for more generality, since it does not enforce these

restrictions. Input nodes are light blue, as shown in Figures 6.7a and 6.9a. Hidden

neuron or passthru elements are shown in a darker blue (Figures 6.7b and 6.9b). Hid-

den synapses are further distinguished by weight, with negative-weighted (inhibitory)

synapses shown in orange and positive-weighted (excitatory) synapses shown in the

darker blue, as depicted in Figures 6.8a and 6.8b, respectively. Output nodes, which

are generally synapses, are colored red, as shown in Figure 6.8c. All of these colors

are dark and saturated enough to show well against the yellow background highlight

color. The color encodings also avoid differentiation of node type using either red

and green or blue and yellow, which could be confounded by common types of color

blindness.
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(a) Input neuron
colored light blue.

(b) Hidden neuron
colored darker blue.

Figure 6.7: Neurons depicted as filled ellipses with color used to differentiate node
type.

(a) Inhibitory hid-
den synapse colored
orange.

(b) Excitatory hid-
den synapse colored
darker blue.

(c) Output synapse
colored red.

Figure 6.8: Synapses depicted as filled triangles with color used to differentiate node
type and synapse weight.

(a) Input passthru
element colored
light blue.

(b) Hidden
passthru element
colored darker blue.

Figure 6.9: Passthru elements depicted as outlines of pentagons with color used to
differentiate node type.
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6.3.2 Interactions Supported

In the 16-connection visual interface, zoom, pan, and highlighting interactions are

supported, as well as the popup menu and button interactions discussed in Section 6.1.

The user may scroll with the mouse in either direction to zoom into the DANNA

further or to zoom out. Zoom level adjusts the range of rows and columns visible, so

no partial elements will be displayed upon zoom. Coordinates of elements displayed

are always visible, regardless of zoom level. The maximum zoom level displays a

single element, and the minimum zoom level, which is the default, displays the entire

DANNA. If the DANNA is configured, its full dimensions are always shown within

the details panel, so that the user can quickly see whether the entire DANNA, or only

a part of it, is displayed.

Mouse drag is used to pan left or right and up or down throughout the DANNA.

As with zoom, only full elements will be displayed upon pan, so mouse drag will

modify the minimum and maximum rows and/or columns displayed, but will not alter

the range of rows or columns visible. The mouse must be dragged approximately

the current width of an element in order to change the columns displayed and

approximately the height of an element to change the rows displayed. In other words,

pan will move the view of the DANNA by approximately the amount dragged.

As with the 8-connection interface, when the user hovers over a particular element,

highlighting will be indicated by coloring the background of the grid element yellow.

Additional details about the element will be displayed within the details panel. The

same buttons are available in the control panel to save an image of the grid view

or the network file for the DANNA network that the grid view represents. Like in

the 8-connection visual interface, a right-click popup menu allows users to configure

or view activity of elements. An example of the use of the popup menu is shown in

Figure 6.10. Each of these interactions may be viewed in Attachment 3 accompanying

this work, which can be found in the University of Tennessee’s online catalog.
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Figure 6.10: Popup menu that appears upon right-clicking an element. Menu allows
for the configuration or viewing of activity of an element.
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6.3.3 Visualizing Connections

In the updated DANNA implementation, each element e connects to its 8 immediate

neighbors, as in the initial implementation, and e also connects to 8 elements that

are two hops away, as shown in Figure 6.1. In the DANNA hardware, as well as in

the abstract software layer, these connections are implemented using a hierarchy of

ports in rings surrounding the element. In future implementations, the connections

may be extended further in multiples of eight as additional rings of ports outside the

existing rings.

The rings of connections in the 16-connection implementation are shown in

Figure 6.11. The base layer of this figure, shown in lighter gray, represents the

innermost ring of ports, which connects elements to their immediate neighbors. Port

rings are oriented such that ports identified by the same port number are adjacent

to each other (or directly diagonal to each other) on the two elements which they

connect. The numbering scheme is arbitrary; other numbers or symbols can be used.

The correspondence of ports with identical numbers or symbols is important, not

the lettering. This is one reason symbols indicating direction and distance (one or

two hops) are used in the visual interface as shown in Figure 6.10. If two elements,

e1 and e2 are connected via port 0, then port 0 is oriented on both e1 and e2 so

that a connection between port 0 on e1 and port 0 on e2 is the most direct path

between e1 and e2. This logic requires a different arrangement of port numbers for

different elements, as can be seen in Figure 6.11. The same logical arrangement of

ports is extended to the second port ring, but these ports connect elements that are

two hops away from each other in the DANNA grid. Example connections for the

second port ring are shown in black in Figure 6.11. Note that the port numbering

scheme in Figure 6.11 does not match the port numbering system in the updated

DANNA implementation, but the visual interface mirrors the physical arrangement

of connections in the current DANNA implementation.
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Figure 6.11: Hierarchical element connections in rings of ports surrounding
elements. (Figure created by J. Douglas Birdwell and included with his permission.)
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In designing the visualization scheme to represent these connections, multiple

possible user goals were considered. Figure 6.12 represents a visualization whose

encodings are tightly coupled with the software abstraction and hardware implemen-

tation of DANNA elements. The port rings are explicitly drawn to indicate connection

level, and ports in use are encoded by color to represent input or output connection.

Available ports are drawn as port numbers so that users can efficiently select desired

port connections. As described previously, this labeling system for ports is arbitrary,

so another set of labels may be used as long as the labels of corresponding ports match

each other. A slightly modified version of this visualization is shown in Figure 6.13.

The modified version adds lines of distinct stroke types to indicate direction and level

of connection. These visualizations provide potentially useful information at a glance

about the hardware-level implementation of DANNAs. However, ultimately it was

determined that the visual clutter inherent in the design distracted too much from

the information.
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Figure 6.12: Mockup of visualization including port numbers to indicate
connections.
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Figure 6.13: Mockup of visualization including port numbers and lines to indicate
connections.
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The final visualization of connections is not as explicit as the mockups shown in

Figures 6.12 and 6.13, but it is cleaner and utilizes space more efficiently. Connections

are depicted as arrow-like symbols instead of port numbers, and a dual encoding of

color and direction indicates the element to which a connection links. The connections

are still located over the appropriate ports, so 1-hop connections surround the element

within an inner ring, and 2-hop connections circle the element in an outer ring.

The number of marks in the symbol also indicates the level of connection, so 1-

hop connection symbols contain one arrow-like mark, while 2-hop connections are

composed of two nested arrow-like symbols. Similar to the lines in Figure 6.13, the

arrow direction indicates the element to which a connection links. Each connection

port is split into two halves, allowing for an arrow pointing inward and/or an arrow

pointing outward for each connection. The inward-pointing arrows, all colored light

blue, indicate that the port has been enabled as an input connection, and the outward-

pointing arrows, colored red, indicate an output connection to an enabled input. The

details panel has also been extended to list the detailed connections for a highlighted

element. This visualization scheme allows for the representation of ports as both

input and output ports, which is necessary for the updated DANNA implementation.

Figure 6.14 shows a group of connected elements. The output connection from the

highlighted neuron (5,3) to synapse (7,5) is shown as the double red arrow outward in

the bottom right port of the outermost ring. The corresponding connection in synapse

(7,5) is depicted as the double light blue arrow inward in the top left port of the

outermost ring. Note that the ring levels and number of marks for connected elements

always match. The connection symbols on the connected elements are located along

the most direct path between the elements. Each connection symbol is as close to the

element to which it indicates connection as possible within the constraints of its port

ring. Additional connections of the highlighted neuron from Figure 6.14 are shown

in greater detail in Figure 6.15.
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Figure 6.14: Zoomed-in view of a group of connected elements. Connections for
highlighted element listed in details panel.

Figure 6.15: Zoomed-in view of a highly connected neuron, with connections listed
in details panel.
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Examples of connections for synapses and passthru elements are shown in

Figures 6.16 and 6.17. Synapse (6,7), depicted in Figure 6.16, has a 2-hop input

connection from element (4,9) shown in the top right of the outermost ring, as well as

a 2-hop output connection to element (6,5) shown in the middle left of the outermost

ring. Passthru element (2,2), shown in Figure 6.17, has a 2-hop input connection

from element (0,0) and a 2-hop output connection to element (0,4), both shown as

double-mark arrows in the outermost ring. It also has a 1-hop output connection

to element (3,3), which is shown as a single-mark arrow in the bottom right of the

innermost ring.

These symbols for connections provide the same information as the mockups in

Figures 6.12 and 6.13, but the symbols and color encodings have eliminated the chart

junk that the mockups contained. This visualization is automatically extensible to

higher levels of port rings, and the port numbers need not be displayed to indicate

connectivity of elements. In future extensions to the visualization, which will be

discussed in Chapter 7, connectivity will be further indicated by highlighting of the

connection shapes on all elements connected to element e if e is highlighted. Links

between elements will also be represented in a coordinated “network view.” The

network view will show the graph structure of the DANNA, with neurons represented

as nodes and synapses and passthru elements represented as edges in the graph.
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Figure 6.16: Zoomed-in view of a connected synapse, with connections listed in
details panel.

Figure 6.17: Zoomed-in view of a connected passthru element, with connections
listed in details panel.

100



6.4 Summary

In this chapter, we have presented two iterations of the two dimensional visualization

tool for DANNAs. The current implementation supports visualization of three types

of elements (neurons, synapses, and passthru elements), three node types (input,

hidden, or output), and up to 16 connections per element arranged in two rings of

ports. The tool features capabilities for opening and configuring DANNA networks,

as well as saving images or network files from them. It also supports zoom, pan, and

highlighting interactions. In the next chapter, we will outline ongoing and future work

to extend the three dimensional NIDA visualization and two dimensional DANNA

visual interface.
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Chapter 7

Future Work

7.1 Goals of Future Work

Interactivity and flexibility are the highest priorities for the visualization tools. We

plan to update the NIDA tool to allow the user to modify all of the currently

adjustable features from within the graphical user interface at any point during the

simulation. The currently adjustable features include visibility settings as described in

previous chapters, color scheme, mode of interaction (interactive vs. image rendering

for video), and event selection for causality path trace. In the longer term, we intend

to add additional interactivity features that allow users to explore the networks more

freely. In addition to allowing visibility settings to be modified by rule (visibility

upon activity, fade after inactivity, etc.), we will allow users to toggle the visibility

of a selected neuron n or synapse s, along with the visibility of any other elements

directly connected to n or s.

The DANNA visual interface is currently under development, and will continue to

be refined in parallel with the DANNA design method and software abstraction layer.

The interface will be expanded to encompass visualization of activity in addition to

structure, and a coordinated network view will offer more information about the

graph structure of DANNAs. Brushing and additional interactions will assist users in
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navigating and making sense of large DANNAs. The interface will be linked directly

with the software abstraction layer for a Software Development Kit (SDK) to be made

available to other researchers and new neuromorphic computing developers.

7.2 Additions to 3D NIDA Visualization

In future versions of the tool, users will also have interaction controls to define

thresholds to suppress or highlight particular events. For example, the user could

visualize only neurons that fire more than N times over a specified time interval,

or that have fired within the last K time units. These features will allow users

to eliminate visual clutter and examine critical substructures of the network in

more depth. The interactivity of causality path tracing will also be extended to

accommodate reverse animation in time, facilitating the exploration of causality in

both directions. Further development of the visualization tool will incorporate these

and other features with a focus on interactivity and the greatest flexibility possible

in the exploration of networks.

Future iterations of the visualization tool will incorporate additional features for

network exploration and will offer users greater interactivity to tailor the views to

their own research tasks. In the short term, the visibility settings and color encodings

will be expanded to give a more accurate representation of the network’s current

state. Specifically, in addition to the option to make network elements become visible

(visibility upon activity), the tool will include a setting to reduce the visibility of

elements to ghost or invisibility after a period of inactivity (“fade after inactivity”).

The combination of visibility upon activity and fade after inactivity will allow users

to comprehend more efficiently the propagation of activity through the network and

will highlight the most active elements and substructures.

Color encodings will also be expanded in the short term to provide users with

an up-to-date view of neuron charge level. Neuron hues will continue to differentiate

between input, hidden, and output neurons, while saturation levels will be used to
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encode charge. Neuron charge level can be scaled within the range from -1.0 to 1.0,

but individual neurons may have different thresholds. The visualization tool will

normalize the charge level of a given neuron n with respect to the threshold of n and

discretize it within a smaller number of bins (2-3). When a neuron receives charge

(positive or negative) from a connected synapse, its saturation will be adjusted to the

discrete level that best indicates its current proximity to the firing threshold.

We are currently expanding the functionality for the tracing of causality paths.

Future versions of the tool will have the capability to trace multiple events and

are expected to enable other interactions, such as control of other features of the

visualization (e.g., toggling visibility of connected elements) using the event traces.

Specifically, we plan to enable visualization of the causality paths with forward and

backward traces through time, and we may create additional static timeline views to

provide greater context for the path traces.

Additional interactivity features will be incorporated into the visualization to

enhance usability and allow for greater knowledge gain from the tool. Timing of

network simulations will be modifiable via YouTube-like controls within a GUI.

Network direction flow will be reversible for all simulations. Highlighting of elements

via mouse hover will be enabled, possibly with popup menus to view or modify more

details of neurons or synapses. A mouseover tooltip may also be provided to allow

for labeling or annotating of neurons or synapses. All of these features will enhance

users’ abilities to interact with and better understand NIDA networks.

Coordinating views may be added for specific tasks related to understanding NIDA

behavior, and the default network view will be enhanced. As mentioned previously,

static timeline views may be created to coordinate with causality path tracing, and

they may also coordinated with a limited amount of activity in the networks in general.

Activity histograms may also be provided to give users insight into the statistics of

neuron and synapse behavior at a glance. Static graphs may also be provided to

distinguish the activity from successful behavior and unsuccessful behavior. Unlike

histograms, these graphs would retain structural information from the networks in
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addition to providing insight into information flow. Shading and simulated light

sources can be added to improve 3D perception of the default network view. These

coordinating and enhanced views will offer users greater insight into the structure

and behavior of NIDA networks.

7.3 Additions to 2D DANNA Visual Interface

In the short term, the DANNA visual interface will be enhanced with coordinated

views and brushing. Given the complexity of the 16-connection DANNA visual

interface, a legend will be provided as one small coordinating view. More significantly,

a “network view” will be added to allow for greater understanding of the graph

structure of the DANNAs. The grid view is the most critical for developers who

are designing and debugging DANNAs, but the network view may provide a more

intuitive understanding of the network behavior. A network view will also help users

better understand the NIDA architecture that DANNAs implement in hardware.

Expanded interactivity is also a priority for the DANNA visual interface. Some

implementation details may also change to improve memory usage and efficiency of

rendering. Highlighting on mouseover will be extended to highlight the connections

(ports) of elements connected to the currently highlighted element. Additional

settings may allow users to specify highlighting preferences for types of connections

or paths through the DANNA from a highlighted element. In order to render more

efficiently given the number of elements and connections that may need to be drawn,

the base DANNA may be rendered off-screen so that only layers that have been

modified will need to be re-rendered.

Since the DANNA design method, software abstraction layer, and SDK remain

under active development, we expect that the users’ needs for the visual interface may

expand rapidly. For that reason, we have provided the foundation of the interface

through the critical grid view, which is extensible to larger DANNAs with greater

numbers of connections. We have also provided menus and panels to explore DANNA
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elements more deeply and to modify them, and these interactions are extensible to

other views. In addition to incorporating visualizations of DANNA activity, we expect

that other coordinating views will be necessary. We anticipate that coordinating

views and visualizations may be linked effectively to the views provided in the current

DANNA visual interface.

7.4 Summary

In this chapter, we have outlined some of the ongoing work and future goals for the

NIDA and DANNA visualization tools. Both tools will prioritize interactivity, but

will extend static coordinating views available to provide insight for specific research

tasks. Extensions to the tools will be linked with the current features to offer greater

insight into NIDA and DANNA structure and behavior. The next chapter provides

a summary and conclusion about the contributions of this work.

106



Chapter 8

Conclusion

NIDA networks have been shown to solve tasks in a variety of domains, including

control, anomaly detection, and classification. DANNAs, which implement NIDA net-

works in hardware, have also demonstrated promise as neuromorphic computational

devices. In the development of a new architecture and associated design method, it

can be difficult to identify which characteristics of the architecture and the method

are important, as well as how to improve the overall performance of the architecture

and design method. With this in mind, we are developing visualization and visual

analytics tools that facilitate the understanding of both the structure of the NIDA

and DANNA networks produced for different tasks and the behavior of these networks

on different tasks and for different input types.

We have used the NIDA visual analytics tool presented herein to motivate

analysis that can occur in real-time during the training process of the networks.

For example, the hypothesis for the activity-based method for recognition of useful

substructures within NIDA networks arose through exploratory interactions with the

NIDA visualization and was tested as a possible extension to the NIDA evolutionary

optimization method. The current visual analytics tool also features the capability

to view causality paths to trace through the events that led to a particular fire or

change in charge event. The NIDA design method is currently being extended to
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extract causality-based substructures for re-use during evolution. These causality

paths provide a greater understanding to the user of the process through which

networks ultimately “decide” on output.

As noted in Chapter 5, in most cases, inhibition of firing in the network is essential

to the operation of the network, but it can be difficult to see the full effect of inhibition

on the network’s behavior without the aide of a visualization tool. The ability to see

the network’s full structure gives the user an intuitive feel for not only how many

inhibitory synapses there are in the network, but also how active these synapses

are (through highlighting of the synapse) and how many events are propagating

along them (through charge points along the synapse). Extensions to the NIDA

visualization tool proposed in Chapter 7 may offer further insight into the role of

inhibition in network behavior.

The DANNA hardware model is being developed in parallel with the software-only

NIDA networks. DANNA shares the basic features of the NIDA networks and may

also be trained using evolutionary optimization. NIDA networks and their associated

hardware architectures are novel, so users may not have an intuition for how the

networks will behave. Moreover, hardware level errors may occur during the operation

of the network, so even if users know what sort of behavior to expect from a network,

they will need to see a low-level representation of what is occurring to confirm that

the network is behaving as it should.

We introduced the first implementations of the DANNA visual interface in

Chapter 6. The grid view and interactions provided allow users to explore the

structure of a DANNA in depth, including element properties and connections.

Configuration and saving interactions permit users to modify DANNA network files

directly from the visual interface or use the interface to communicate with DANNAs

through a software abstraction layer. Ongoing and future extensions to the DANNA

visual interface, described in Chapter 7, will provide additional features to explore

DANNA activity and network structure.
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We are encouraged by the results that have been obtained from our NIDA and

DANNA visualization tools. The tools have already improved our understanding and

analysis of the structure and behavior of NIDAs and DANNAs, as well as provided a

direction for improvement of the evolutionary optimization design method. We believe

that further development of this tool will not only allow us to design and use NIDA

and DANNA networks more efficiently, but also facilitate collaboration by providing

other researchers with the means to better understand the NIDA architecture.

109



Bibliography

110



[1] Yoshua Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn.,

2(1):1–127, January 2009. 26

[2] H. Bischof, A. Pinz, and W.G. Kropatsch. Visualization methods for

neural networks. In Pattern Recognition, 1992. Vol.II. Conference B: Pattern

Recognition Methodology and Systems, Proceedings., 11th IAPR International

Conference on, pages 581–585, Aug 1992. 27

[3] H. Bischof, W. Schneider, and AJ. Pinz. Multispectral classification of

Landsat-images using neural networks. Geoscience and Remote Sensing, IEEE

Transactions on, 30(3):482–490, May 1992. 27

[4] Christopher Daffron, Joshua C. Willis, Jason Y. Chan, Catherine D. Schuman,

Margaret Drouhard, Luke Bechtel, Ryan D. Wagner, Mark E. Dean, and

J. Douglas Birdwell. Dynamic adaptive neural network array of elements

with hierarchical connections. Internal Report (unpublished), Department of

Electrical Engineering and Computer Science, University of Tennessee, Jan 2015.

4, 77, 84

[5] Marjorie Darrah. Neural network visualization techniques. In Methods and

Procedures for the Verification and Validation of Artificial Neural Networks,

pages 163–197. Springer US, 2006. 26

[6] Mark E. Dean, Catherine D. Schuman, and J. Douglas Birdwell. Dynamic

adaptive neural network array. In Oscar H. Ibarra, Lila Kari, and Steffen

Kopecki, editors, Unconventional Computation and Natural Computation,

Lecture Notes in Computer Science, pages 129–141. Springer International

Publishing, 2014. 3, 26, 77

[7] Margaret Drouhard, Catherine D. Schuman, J. Douglas Birdwell, and Mark E.

Dean. Visual analytics for neuroscience-inspired dynamic architectures. In

111



Foundations of Computational Intelligence (FOCI), 2014 IEEE Symposium on,

pages 106–113, Dec 2014. xi, 4, 40, 59

[8] W. Duch. Coloring black boxes: visualization of neural network decisions. In

Neural Networks, 2003. Proceedings of the International Joint Conference on,

volume 3, pages 1735–1740 vol.3, July 2003. 28

[9] J.P. Eberhard, A. Wanner, and G. Wittum. Neugen: A tool for the

generation of realistic morphology of cortical neurons and neural networks in

3D. Neurocomputing, 70(13):327 – 342, 2006. Neural Networks Selected Papers

from the 7th Brazilian Symposium on Neural Networks (SBRN ’04) 7th Brazilian

Symposium on Neural Networks. 29

[10] Stephen Few. Now You See It: Simple Visualization Techniques for Quantitative

Analysis. Analytics Press, Oakland, California, 1st edition, 2009. 6, 7, 8, 10, 14,

16, 18

[11] C.J. Figueroa and P.A Estevez. A new visualization scheme for self-

organizing neural networks. In Neural Networks, 2004. Proceedings. 2004 IEEE

International Joint Conference on, volume 1, pages –762, July 2004. 28
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Appendix A

Videos Included with this Work

A.1 NIDA Visualization Videos

Attachment 1. Non-interactive Video of NIDA Visualization: Video-

Mode-NIDAViz.mp4

Attachment 2. Interactive Video of NIDA Visualization: Interactive-

Mode-NIDAViz.mp4

Since the NIDA visualization is a three dimensional tool, the attached videos help

demonstrate its capabilities much more effectively than static images. The videos

also demonstrate the two modes: video-mode and interactive, and they exhibit the

interactions available in interactive mode. The color scheme for the videos is discussed

in Section 5.3.

Attachment 1 provides a narrated visualization of a NIDA network trained using

evolutionary optimization to recognize the digit zero in handwritten digit images

from the MNIST database. This video combines images rendered in video mode in

the NIDA visualization tool with input images from MNIST data set and a graph of

output firing events. The left panel shows the scanning of the input images (0, 5, and

2) across columns, the central panel shows the network processing the input image,

and the right panel shows the graph of output firing events.
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Attachment 2 shows the NIDA visualization tool in use on a network trained

to recognize the handwritten digit 7. The mouse is used to start the simulation of

activity via the timing buttons at the top left. Mouse drag rotates the network about

any axes, and mouse scroll is used to zoom in and out. The default visibility mode

of the network is ghost, and visibility upon activity is used to render elements fully

visible after they have been active during the simulation.

A.2 DANNA Visualization Videos

Attachment 3. Interactive Video of DANNA Visual Interface: Interactive-

DANNAViz.mp4

The attached video of the DANNA visual interface, Attachment 3, demonstrates

standard usage and interactions supported by the tool. The interactions are described

in greater detail in Section 6.3.2. In the video, the user selects a configuration file,

“config.json” via the “Open Configuration File” option in the File menu. The user

then selects a specific DANNA file, “64rand.json” to be loaded via the “Open Network

File” option in the File menu. Once the DANNA has been loaded, mouse scroll is

used to zoom in and out of the network, and mouse drag is used to pan left or right

and up or down. Details for highlighted elements are shown in the details panel at

the bottom right of the interface. Upon right-click, the configuration popup menu is

shown.
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