
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

8-2003

Approaches for MATLAB Applications
Acceleration Using High Performance
Reconfigurable Computers
Saumil Girish Merchant
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Merchant, Saumil Girish, "Approaches for MATLAB Applications Acceleration Using High Performance Reconfigurable Computers. "
Master's Thesis, University of Tennessee, 2003.
https://trace.tennessee.edu/utk_gradthes/2127

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Saumil Girish Merchant entitled "Approaches for MATLAB
Applications Acceleration Using High Performance Reconfigurable Computers." I have examined the
final electronic copy of this thesis for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Master of Science, with a major in Electrical
Engineering.

Dr. Gregory D. Peterson, Major Professor

We have read this thesis and recommend its acceptance:

Dr. Donald W. Bouldin, Dr. Michael A. Langston, Dr. Seong G. Kong

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Saumil Girish Merchant entitled
"Approaches for MATLAB Applications Acceleration Using High Performance
Reconfigurable Computers." I have examined the final electronic copy of this
thesis for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Master of Science, with a major
in Electrical Engineering.

 Dr. Gregory D. Peterson

 Major Professor

We have read this thesis and
recommend its acceptance:

Dr. Donald W. Bouldin

Dr. Michael A. Langston

Dr. Seong G. Kong

Accepted for the Council:

Anne Mayhew

 Vice Provost and
Dean of Graduate Studies

(Original signatures are on file with official student records.)

Approaches for MATLAB Applications
Acceleration Using High

Performance Reconfigurable Computers

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

Saumil Girish Merchant

August, 2003

 ii

Dedicated to my parents Girish Merchant and Kokila Merchant,

my uncle and aunt Sanjay Merchant and Jayshree Merchant and

my sister Snehal Merchant

 iii

Acknowledgements

First and foremost, I extend sincere thanks to my advisor Dr. Gregory D.

Peterson for his continued guidance and support, constant encouragement with

ideas and criticisms that has made this thesis possible. He showed faith in my

work and it has been a great pleasure to have him as my thesis mentor. I would

also like to express my gratitude to Dr. Donald W. Bouldin for all the teachings

and guidance. I would like to acknowledge with appreciation participation of Dr.

Michael Langston and Dr Seong Kong in my thesis defense.

Special thanks to Dr. Chandra Tan for the help extended to me whenever I

approached him and the valuable discussions that I had with him during the

course of my research. He made things look possible when I had almost lost hope

of getting around them.

I am especially grateful to the team at OIT and my supervisor, Robin

McNeil, with whom I have worked throughout my stay at Knoxville. They have

been very understanding and cooperative all the time and a finest team.

Many thanks are due to my friends and colleagues – Mahesh Dorai,

Ashwin Balakrishnan, Melissa Smith and others for their helpful suggestions.

I thank my best friend and fiancée Jaya, who has shown untiring patience

and support, reminding me of my priorities and keeping things in perspective.

Last but not the least, I would like to thank my parents and family who always

kept faith in me and offered unconditional support and encouragement. I am

forever indebted to the love and caring of my family.

 iv

Abstract

A lot of raw computing power is needed in many scientific computing

applications and simulations. MATLAB®† is one of the popular choices as a

language for technical computing. Presented here are approaches for MATLAB

based applications acceleration using High Performance Reconfigurable

Computing (HPRC) machines. Typically, these are a cluster of Von Neumann

architecture based systems with none or more FPGA reconfigurable boards. As a

case study, an Image Correlation Algorithm has been ported on this architecture

platform. As a second case study, the recursive training process in an Artificial

Neural Network (ANN) to realize an optimum network has been accelerated, by

porting it to HPC Systems. The approaches taken are analyzed with respect to

target scenarios, end users perspective, programming efficiency and performance.

Disclaimer: Some material in this text has been used and reproduced with

appropriate references and permissions where required.

† MATLAB® is a registered trademark of The Mathworks, Inc. ©1994-2003.

 v

Table of Contents

1 Introduction... 1

1.1 High Performance Computing (HPC)... 1

1.2 Reconfigurable Computing (RC).. 3

1.3 High Performance Reconfigurable Computing (HPRC) 4

1.4 Problem Addressed ... 8

1.5 Related Work .. 9

1.6 Outline Of Thesis.. 14

2 Approaches For Porting Matlab Applications To HPRC 16

2.1 MATLAB® - External Interface † .. 18

2.1.1 Introduction to MATLAB® MEX-Files.. 19

2.1.2 C MEX-Files... 20

2.1.3 Calling MATLAB® from C Programs - MATLAB® Engine 23

2.2 Parallel Virtual Machine (PVM)... 27

2.2.1 Parallel Programming Paradigms ... 28

2.2.1.1 Crowd Computation Paradigm ... 28

2.2.1.2 Tree Computation Paradigm... 30

2.2.1.3 Hybrid Computation Paradigm... 31

2.3 Pilchard – A Reconfigurable Computing Platform............................... 34

2.4 Approaches to Port MATLAB® Applications to HPRC....................... 39

2.4.1 Approach I – Library Based Approach... 39

2.4.2 Approach II – C as a Master Program .. 40

 vi

3 Case Study I – Implementing Image Correlation On HPRC 50

3.1 Convolution Operation.. 50

3.1.1 FFT Convolution... 53

3.2 Correlation Function ... 59

3.3 Implementation on HPRC... 61

3.3.1 Library Based Approach ... 61

3.3.2 C as a Master... 66

3.3.3 Hardware Implementation .. 67

3.3.4 Results... 74

3.3.5 Limitations .. 75

4 Case Study II – Artificial Neural Network Training Speedups 76

4.1 Introduction to Artificial Neural Networks (ANN) 76

4.2 Estimation of Solar Particle Event Doses: A Case Study 81

4.3 Results and Discussion ... 89

5 Discussion And Conclusions .. 98

5.1 Feasibility and Target Scenarios for both Approaches 100

5.2 Performance Advantage and Run Time Efficiency 103

5.3 End User Friendliness ... 104

5.4 Ease of Programming.. 104

6 Future Work .. 105

References... 107

Appendices.. 112

Appendix A – Some figures of Chapter 3... 113

 vii

Appendix B – Steps to port MATLAB functions to HPRC............................ 119

Appendix C – Program Codes .. 122

Vita.. 163

 viii

List Of Tables

Table 2.1 C Engine Routines .. 25

Table 2.2 List of some PVM Routines.. 29

Table 2.3 Xilinx Virtex FPGA Device XCV1000E Product Features.............. 35

Table 2.4 Features of Pilchard Platform [38].. 38

Table 3.1 Execution times for serial and parallel executions 74

Table 4.1 Serial and Parallel Execution Times... 90

Table 4.2 Parallel Training Result. X- Unsuccessful Training; √ - Successful

Training... 90

Table 5.1 Execution times of various approaches .. 99

 ix

List Of Figures

Figure 1.1 Fixed-Sized Model for Speedup = 1/(s+p/N) [1] 2

Figure 1.2 Scaled-Sized Model for Speedup = s+Np [1].................................... 2

Figure 1.3 Typical HPRC System Architecture [14] .. 5

Figure 1.4 Hierarchy of parallelism exploited by HPRC[16] 7

Figure 2.1 Screen shot of MEX -setup command on MATLAB prompt 20

Figure 2.2 Flowchart of C MEX cycle [36]... 22

Figure 2.3 Parallel Programming Paradigms .. 32

Figure 2.4 Block Diagram of Pilchard Board [13] .. 37

Figure 2.5 Dividing MATLAB applications into various tasks........................ 41

Figure 2.6 Scenario I - MATLAB as a master program (Library based

approach)... 41

Figure 2.7 Scenario II - C as a master Program.. 42

Figure 3.1 Single dimensional convolution in Time domain............................ 52

Figure 3.2 Two-dimensional convolution in Time domain 52

Figure 3.3 FFT Convolution of two signals.. 54

Figure 3.4 Convolution outputs using direct calculation and FFT convolution

method... 55

Figure 3.5 Two-dimensional FFT convolution... 57

Figure 3.6 Execution Times for FFT and Standard Signal Convolutions [39]. 57

Figure 3.7 Execution times for Image Convolution [39].................................. 58

 x

Figure 3.8 Image Correlation Example... 60

Figure 3.9 Character recognition technique example 63

Figure 3.10 Position of the target in source image as indicated by the white dots

... 63

Figure 3.11 Flowchart explaining the library based approach applied to image

correlation ... 65

Figure 3.12 Source Text Image.. 66

Figure 3.13 Using approach II - C as a master process 68

Figure 3.14 Details of the MATLAB® sessions invoked by slave process 69

Figure 3.15 Communication between Slave process and the FPGA 70

Figure 3.16 Input Square Wave ... 72

Figure 3.17 FFT calculated using hardware implmentation 72

Figure 3.18 FFT calculated using MATLAB toolbox function......................... 73

Figure 3.19 Graph of Execution times... 75

Figure 4.1 A Basic Neuron ... 77

Figure 4.2 Example of a Neural Network... 77

Figure 4.3 Flowchart of Neural Network Training Procedure.......................... 80

Figure 4.4 Sliding Time Delayed Neural Network[43] 82

Figure 4.5 Flowchart of Training process using approach I 85

Figure 4.6 Flowchart of Parallel Training Process using approach II 86

Figure 4.7 Illustration of Input Dataset Selection [43] 87

Figure 4.8 Input Data Set along with the zoomed in version on the................. 87

right showing 2 particular events.. 87

 xi

Figure 4.9 Target Output (Dose Infinity) (left) Log Scaled (right) 88

Figure 4.10 Testing Results of the selected optimal network highlighted......... 91

in Table 4.1 ... 91

Figure 4.11 Snap Shot of the Output Screen.. 92

Figure 4.12 Individual Execution times with single hidden layer 95

Figure 4.13 Individual Execution times with two hidden layers 95

Figure 4.14 Serial and Parallel Execution times.. 96

Figure 5.1 Graph showing the code profile for case study I 99

Figure 5.2 MATLAB interfacing with a library of optimized routines build with

'Mex Files' ... 102

Figure 5.3 MATLAB interfacing with pre-existing libraries in C or Fortran

using 'Mex Files' ... 102

Figure 5.4 Client-Server topology with computations being performed in

MATLAB®.. 102

Figure 5.5 Multi - tier architecture with computations being performed in

MATLAB®.. 103

Figure A.1 Source Image .. 113

Figure A.2 Locations of character 'a' .. 114

Figure A.3 Locations of character 'e' .. 114

Figure A.4 Locations of character 'i' ... 115

Figure A.5 Locations of character 'o' .. 115

Figure A.6 Locations of character 'u' .. 116

Figure A.7 Block diagram for pcore.vhd .. 116

 xii

Figure A.8 Block diagram for s_interface.vhd ... 117

Figure A.9 Block diagram for sms.vhd... 117

Figure A.10 Layout on Virtex 1000e part.. 118

Figure A 11 Flowchart indicating the steps to port MATLAB to HPRC 121

 1

1 Introduction

1.1 High Performance Computing (HPC)

Growing need for higher computational power and tighter budgets has

triggered a lot of research in the field of High Performance Computing (HPC) and

Cluster computing. Significant has gone into devising programming methods and

tools for efficient use of high performance parallel computers. But parallel

programming still remains a challenging task due to many reasons like

architectural complexity, higher costs, availability of several custom hardware /

software commodities and lack of expertise. All these and many other reasons

have led to lesser commercial success and sustainability for HPC platforms.

Cheaper alternatives like “Beowolf” clusters of various custom hardware

commodities can be implemented but programming and optimal use of the

potential of these platforms still is a considerable obstacle and a time consuming

practice.

John L. Gustafson of Sandia National Laboratories has shown the

performance advantage of parallel processing in his paper “Reevaluating

 2

Figure 1.1 Fixed-Sized Model for Speedup = 1/(s+p/N) [1]

Figure 1.2 Scaled-Sized Model for Speedup = s+Np [1]

Amdahl’s Law” [1]. According to him, speedup in an application should be

measured by scaling the problem to the number of processors, and not by fixing

the problem size. He quotes, “The computing research community needs to

overcome the ‘mental block’ against massive parallelism imposed by misuse of

Amdahl’s speedup formula [2]”. Figures 1.1 and 1.2 [1] show the speedup

obtained by the scaled problem size over the fixed problem size.

The efforts of researchers have been directed towards development of

parallel libraries and APIs to facilitate distributed computing applications. APIs

like PVM [3] and MPI [4] and their various flavors have been extensively used in

 3

development of distributed computing applications and libraries. Libraries of

functions such as ScaLAPACK [5] and PLAPACK [6] provide implementations

of various functions on parallel hardware using MPI/PVM calls.

1.2 Reconfigurable Computing (RC)

A lot of research effort has also been expended in the field of

Reconfigurable Computing (RC) with quite some commercial acceptance. Use of

dedicated, reconfigurable hardware for application acceleration has been widely

proven to be successful [7-10]. With the capacities in millions of gates of present

day FPGA devices, shorter reconfiguration times and availability of ASIC cores

on the same die as the configurable logic blocks, gives significantly enhanced

performance benefits and flexibility of run time reconfiguration at a very modest

cost. A lot of CAD tools are available with support of many Intellectual Property

cores to facilitate and reduce the time to market of various applications. But,

efficient programming of these reconfigurable elements is still a challenging task.

Various reconfigurable FPGA based boards are available commercially that

interface with different bus architectures like VME and PCI. The Wildstar™

boards from Annapolis Microsystems come with interfaces for both PCI and

VME buses with capacity of up to 6 million gates. Firebird™ boards also from

Annapolis Microsystems come with gate capacities of up to 2 million and with

interface to PCI bus. The Ballynuey™ boards from Nallatech are also PCI based

boards. The SLAAC™ boards at Information Science Institute at University of

 4

Southern California have interfaces to both PCI and VME busses. The PipeRench

reconfigurable chips from Carnegie Mellon is an interconnected network of

configurable logic and storage elements, which uses pipeline reconfiguration to

reduce overhead which is one of the primary sources of inefficiency in other RC

systems [10-12]. The Pilchard [13] FPGA boards developed by The Chinese

University of Hong Kong interfaces with the processor through the DIMM slot for

closer coupling reducing the I/O time. Even though FPGA market still is a

relatively smaller one to that of ASICs, there has been a lot of commercial

acceptance and EDA giants like Synopsys, Mentor Graphics etc. have developed

EDA tools targeting FPGAs.

1.3 High Performance Reconfigurable Computing (HPRC)

Amalgamation of HPC and RC systems together forms a High Performance

Reconfigurable Computing (HPRC) platform. Figure 1.3 shows a block diagram of

a typical HPRC system [14, 15]. The goal of HPRC systems is to use the

individual performance benefits of HPC and RC systems together to achieve a still

higher performance advantages and to provide a computationally intensive

hardware platform for many demanding scientific computing applications. As

shown in figure 1.3 [14] HPRC platform consists of many computing nodes

connected by an interconnection network (the architecture can be a switch,

hypercube etc.), with some or all of the computing nodes having one or more

reconfigurable processing element(s) associated with them. Additionally, an

 5

Figure 1.3 Typical HPRC System Architecture [14]

optional configurable network can be constructed to connect the RC elements for

synchronization, data exchange etc.

To date, research has been ongoing primarily with focus on a single

computing node with one or more reconfigurable processing elements It is a

challenging task to efficiently configure and use even these basic building blocks

of the HPRC platform. The FPGA reconfiguration latency, hardware/software co-

design issues and sub-optimal design tools make the efficient programming of

these systems a formidable task. A layer of abstraction for programmers that can

hide the architectural complexities of these complex platforms is critically

important so that a programmer can concentrate on the problem domain rather

than get overwhelmed with the implementation details. The partitioning of an

application into hardware / software chunks and their scheduling plays an

 6

important role in achieving significant performance gain. It is important to

efficiently exploit the potential parallelism in the target application at various

levels of abstraction. The target applications for such a platform includes but are

not limited to signal processing, image processing, simulation, numeric

algorithms and other computing intensive applications.

Figure 1.4 [16] shows the hierarchy of parallelism that can be exploited by

the HPRC system. A high level software task can be divided into a number of

parallel tasks that can execute on multiple shared memory processors on a single

computing node or use distributed memory parallel processing by executing on

different computing nodes via message passing or distributed shared memory.

Further each high-level software task can be divided in to multiple concurrent

software and hardware tasks. The hardware tasks can be run on multiple

reconfigurable processing elements that could be associated with a computing

node or else run as multiple bit wise concurrent tasks on a single FPGA fabric.

Thus, multiple levels of parallelism at different levels of granularity can be

exploited with the HPRC architecture to achieve significant performance gains.

High Performance Reconfigurable Computing promises a cost effective solution

for demanding scientific computing applications, with benefits of both HPC and

RC systems.

 7

Figure 1.4 Hierarchy of parallelism exploited by HPRC[16]

 8

1.4 Problem Addressed

MATLAB®† [17] over the years has evolved and has been widely

accepted as a language of technical and scientific computing. With the support of

a wide variety of APIs and toolboxes from The Mathworks Inc. and third party

vendors, scientific computing using MATLAB® has had an advantage. But

MATLAB® is not a compiler-based language like C, C++, rather, is an interpreted

language like Java. Also, MATLAB® is not a strongly typed language and all

types are represented as an array. This has some very good advantages as far as

math and matrix calculations go but affect performance in loops and conditional

statements. There is a lot of interest in speeding up execution of MATLAB®

scripts, which can be very well achieved using platforms like HPRC. One of the

most attractive features of MATLAB® is its memory model. There are no

declarations or allocations – they are handled automatically. This is in contrast to

the memory models used in parallel and distributed computers. This poses as one

of the hurdles in actually parallelizing MATLAB®. According to an article by

Cleve Moler, co-founder, The Mathworks Inc. [18], there had been attempts made

to actually make a parallel versions of MATLAB®. But data distribution between

the local memories of processors was an overhead far outweighing performance

advantages. Besides, MATLAB® spends only a portion of its time in routines that

† MATLAB® is a registered trademark of The Mathworks, Inc. ©1994-2003.

 9

can be potentially parallelized and rather spends much more time in places like

the parser, the interpreter and the graphic routines where parallelism is difficult to

find. There are applications that can exploit parallelism, but to do so requires

fundamental changes to MATLAB® architecture, which doesn’t make a good

business sense for The Mathworks Inc. Hence, The Mathworks Inc. doesn’t

support any parallel MATLAB® version.

But applications very much exist which need higher computational speeds

and higher speedups in processing. Parallelism can be exploited at an applications

level of abstraction if not at a compiler level. The HPRC architecture platform can

provide the required higher computational speeds at moderate costs. The aim of

this research work is to investigate feasible approaches to accelerate MATLAB®

based applications using HPRC.

1.5 Related Work

 Various research groups and companies have expended a lot of research

effort to provide parallel functionality to MATLAB®. In general, there are three

approaches [19].

� Provide communication routines (MPI/PVM) in MATLAB®.

� Provide parallel backend to MATLAB®.

� Compile MATLAB® scripts into native parallel code.

 10

 MultiMATLAB (MATLAB® on multiple processors) from Computer

Science Department at Cornell University [20] uses MPICH to run MATLAB® on

multiple processors. It uses MATLAB® style commands like Eval, bcast, Send,

Recv etc. to start MATLAB® processes on different processors. Currently, the

system runs on IBM SP2 and on a network of Unix workstations. MPITB (MPI

Toolbox for MATLAB®) / PVMTB (PVM Toolbox MATLAB®) from University

of Granada in Spain [21, 22] are toolboxes written for MATLAB® using

LAM/MPI and PVM 3.4.2 as backend support to run MATLAB® processes on

multiple processors. They have successfully tested precompiled versions for

RedHat 6.1 and MATLAB® 5.3. They provide calls like send, recv etc. in

MATLAB® for message passing. Distributed and Parallel Application Toolbox

for MATLAB® from Department of Electrical Engineering at University of

Rostock, Germany [23] uses PVM to run MATLAB® processes on multiple

processors. MatlabMPI from Lincoln Laboratory, MIT [24] uses MPI. It currently

implements the basic functions of MPI for point-to-point communication. All of

the above fit in the first category of providing communication routines in

MATLAB® by using message passing environments like MPI and PVM. They all

require multiple MATLAB® sessions.

 There have been numerous compiler-based approaches as well. FALCON

(Fast Array Language COmputatioN) [25] from Center for Supercomputing

Research and Development at the University of Illinois is a programming

environment that facilitates the translation of MATLAB® code into Fortran 90.

 11

Although FALCON does not directly generate parallel code, the future aim of this

project is to annotate the generated Fortran 90 code with directives for

parallelization and data distribution. A parallelizing Fortran compiler such as

Polaris [26] may then use these directives to generate parallel code. CONLAB

(CONcurrent LABoratory) [27] from Department of Computer Science at

University of Umey, Sweden is a fully independent system with MATLAB-like

notation that extends the MATLAB® language with control structures and

functions for explicit parallelism. CONLAB programs are compiled into C code

with a message passing library, PICL, and the node computations are done using

LAPACK [28]. Otter [29] developed by Department of Computer Science at

Oregon State University is a compiler that translates ordinary MATLAB® scripts

into C Programs targeting parallel computers supporting ScaLAPACK [5] and

several other supporting numerical libraries. RTExpress™ from Integrated

Sensors Inc., [30] is again a compiler that generates parallel C code directly from

MATLAB® scripts. It supports many platforms like Linux Clusters, Sun

Enterprise Servers, Network of Workstations and Mercury RACE++. They have

shown some impressive 16x performance speedup for parallel processing of

Hyper Spectral Sensor Data with Adaptive Filtering. ParAL (A Parallel Array

Language) from the School of Electrical and Information Engineering, University

of Sydney is again a project similar to Otter. It is a system for high-level machine-

independent parallel programming for array applications with MATLAB® syntax

support. All of the above are compiler based approaches to port MATLAB® on to

parallel processors. Though we can expect better performance as shown by folks

 12

at Integrated Sensors Inc., there is one issue with this approach. Most of these

have MATLAB® like implementations and not the MATLAB® system in itself.

MATLAB® being a proprietary language of The Mathworks Inc., it is difficult to

include and keep up with all its functionality, especially with the rate at which

MATLAB® is expanding its horizons. Also, MATLAB® being so widely accepted

and used it would be beneficial to actually go with a more general approach of

message passing which has been employed here.

Researchers at Electrical and Computer Engineering Department of

Northwestern University with funding from DARPA developed MATCH (A

MATLAB Compilation Environment for Adaptive Computing) Compiler [31]

that generates RTL code directly from MATLAB® code, facilitating running of

MATLAB® code on hardware. They formed AccelChip, which now holds legal

license to this software and markets it. They have a library of optimized DSP IP

cores that the compiler can use for better performance. This is one of the projects

that targets the MATLAB® code on the hardware.

A project again sponsored by DARPA had also been undertaken at

University of Tennessee, Knoxville under the name “Champion” [7, 32]. This is a

library based approach and is a software environment that addressed the issue of

porting the high-level design entry, using Cantata Graphical programming

environment from KRI to the RC systems.

 13

Other approach is to provide a parallel backend support to MATLAB®.

NetSolve [33] developed by Innovative Computing Laboratories at Computer

Science Department at University of Tennessee, is a client-server system that

enables users to solve complex scientific problems remotely. The system allows

users to access both hardware and software computational resources distributed

across a network. Thus MATLAB® functions can be executed on a remote server

assigned by scheduling agents. Netsolve has an interface to MATLAB® along

with other interfaces like Fortran, C or Mathematica®†. The Matlab*P project at

MIT [34] is a similar project to NetSolve, providing a parallel backend support

with interfaces to Maple®††, Mathematica®, and MATLAB®. PLAPACK:

Parallel Linear Algebra Package in development at University of Texas, Austin

[6] is mainly a parallel numerical package with an experimental interface to

MATLAB®.

Summarizing, there have been different approaches adopted by different

research groups in accordance to their needs and resources. There are pros and

cons of all the approaches. A Compiler based approach may prove to be better

than libraries using message passing or parallel backend support approach in

terms of speedups obtained, but has its own problem with MATLAB® being a

proprietary software.

† Mathematica® is a registered trademark of Wolfram Research, Inc. © 2003
†† Maple® is a registered trademark of Waterloo Maple Inc. © 2003

 14

Also, the target architectures that have been concentrated on are parallel and

distributed processors or reconfigurable FPGA hardware, but not both at the same

time. There are proven performance speedups in using either of the architectures

mentioned above. Using both distributed parallel processors and reconfigurable

hardware in conjunction should prove to be even more advantageous. HPRC

architecture platform provides such a bed for high end processing. This work

adopts a message passing approach to run MATLAB® on parallel machines. Also

looked at are ways to run MATLAB® scripts on reconfigurable FPGA boards

along with parallel processors. As of now, a library-based approach is used for

MATLAB® functions to be run on hardware.

The Air Force Research Laboratories in Rome, NY have an HPRC cluster

that they call ‘Heterogeneous HPC (HPTi)’ with 48 dual 2.2 GHz Intel Xeon

processor nodes capable of delivering 422.4 GFLOPS, with each node having an

FPGA board delivering 34 FIR Tera OPS[35].

1.6 Outline Of Thesis

 The next chapter discusses the approaches adopted to run MATLAB®

scripts on HPRC platform. As a case study, an Image Correlation Algorithm is

ported on HPRC platform. As a second case study, the recursive training process

in an Artificial Neural Network (ANN), to realize an optimum network, has been

accelerated, by porting it to HPC platform. The reconfigurable card has not been

used in the second case study due to dynamic nature of training process requiring

 15

multiple reconfigurations of FPGAs in real time. Both of the above are then

analyzed with respect to end users perspective, programming efficiency and

performance benefits. This is followed by, some concluding remarks and a look at

the future work to be addressed. Also, provided in appendix is a short introduction

to MATLAB® External API Interface.

 16

2 Approaches For Porting Matlab Applications To HPRC

For various reasons like the structure of the memory model, loosely typed

language and business interests, a parallel version of MATLAB® is not supported

by The Mathworks Inc.[18] But many scientific computing applications need

higher computational speeds and more processing power. A lot of research efforts

have been concentrated towards developing feasible approaches for exploiting

functional parallelism and software concurrency in many scientific computing

applications. Many researchers have shown significant performance gains using

either HPC or RC systems. An HPRC platform as introduced in the earlier chapter

would serve as a cheaper alternative with much higher processing power. A

customized ‘Beowolf’ cluster can be set up with one or more reconfigurable

hardware units attached to some or all of the computing nodes and can be

effectively used for obtaining higher processing speeds. Though this is easier said

than done, ‘it is not an insurmountable task to extract very high efficiency from a

massively parallel ensemble’ as quoted by researcher John L. Gustafson of Sandia

National Laboratories [1]. Many obstacles like the issue of efficiently exploiting a

lot of diverse custom hardware(s) / software(s), less optimal design tools,

hardware/software co-design issues, higher FPGA reconfiguration times need to

be dealt with in order to achieve significant performance gains from the HPRC

 17

platform. Here, an effort is made to research the feasible approaches to speedup

the MATLAB® applications using the HPRC platform.

Various research groups have chosen different approaches in accordance

to their needs and resources, to accelerate MATLAB® based applications, as

summarized in the earlier chapter. There are pros and cons of all the approaches.

A Compiler based approach may prove to be better than message passing or

parallel backend support approach in terms of speedups obtained, but has its own

problem with MATLAB® being proprietary software. Also, the target

architectures have either been HPC or RC systems but not both at the same time

as in HPRC architecture. The approach chosen here is of message passing over

compiler based or backend support approaches adopted by some other research

groups. Specific reasons for the choice being –

� Disadvantage of compiler based approach: MATLAB® is proprietary

software.

� MATLAB® version independence.

� May or may not need multiple MATLAB® licenses, depending on the

choice of the developer which again will be evident in the discussions to

follow.

� The approach could be adopted with other languages such as SCILAB,

Octave, Khoros etc.

� In fact, multiple languages and resources may be used to address a

particular problem.

 18

� Easy interface with reconfigurable hardware resources.

Message passing environment used to exploit the parallelism is ‘Parallel

Virtual Machine (PVM)’ [3]. Any other environment like the ‘Message Passing

Interface (MPI)’ [4] could also be used with hardly any change in the approach.

The reasons for choosing PVM were more of available resources over any

technical advantage. MATLAB® was interfaced with PVM using C as the middle

ground with the help of MATLAB® External Interface.

2.1 MATLAB® - External Interface †

This section serves as a short introduction to MATLAB® External

Interface [36]. More details are available on MATLAB® website. The External

Interface of MATLAB® is its window to the outside world. It provides MATLAB®

an interface capability with other leading languages like the C, Fortran, Java and

also integration with technologies like the ActiveX and DDE (Dynamic Data

Exchange). Of interest for this work and also discussed here, is mainly the

interface to C language.

† MATLAB® External Interfaces is owned and maintained by The Mathworks Inc. © Copyright

1984-2001. Some of the figures and text here, as indicated, are reproduced from MATLAB®

Documentation with appropriate permissions.

 19

2.1.1 Introduction to MATLAB® MEX-Files

MEX-files are MATLAB® callable C and FORTRAN programs. They are

dynamically linked subroutines that the MATLAB® interpreter can automatically

load and execute. Advantages of MEX-files as listed by Mathworks Inc. are –

� Large pre-existing C and FORTRAN programs can be called from

MATLAB without having to be rewritten as M-files.

� Bottleneck computations (usually for-loops) that do not run fast enough in

MATLAB can be recoded in C or FORTRAN for efficiency.

These behave just like M-files and other built in functions and have an

extension which is platform specific, ‘.mexsol’ for Solaris, as in our case. These

can be called by MATLAB® programs just like other functions and in case when

MATLAB® finds both, a MEX-file and a M-file, MEX-file takes precedence over

the M-file for execution. To compile a C or FORTRAN program and save it as a

MEX-file MATLAB® provides a script called ‘MEX’. MATLAB® supports many

compilers and provides preconfigured files, called options files, designed

specifically for a particular compiler. The default compiler that the MATLAB®

uses can be changed by running MEX script with –setup option, as shown in the

figure 2.1.

 20

Figure 2.1 Screen shot of MEX -setup command on MATLAB prompt

2.1.2 C MEX-Files

The source code for a C MEX-file consists of two distinct routines

� A computational routine that contains the code for performing the

computations that you want implemented in the MEX-file.

Computations can be numerical computations as well as inputting

and outputting data.

� A gateway routine that interfaces the computational routine with

MATLAB by the entry point mexFunction and its parameters prhs,

nrhs, plhs, nlhs, where prhs is an array of right-hand input

arguments, nrhs is the number of right-hand input arguments, plhs

is an array of left-hand output arguments, and nlhs is the number of

 21

left-hand output arguments. The gateway calls the computational

routine as a subroutine.

A flow diagram explaining the C MEX cycle is shown in figure 2.2.[36].

The following pseudo code shows a typical C program used as a MEX-file.

/***
Pseudo C Code ‘yourprogram.c’illustrates a typical C
program used as a MEX-file
***/

#include "mex.h"
/* Other includes that your code in the computational
routine may require */

static void yourfunc(your input arguments)
{

/* Computational routine containing your C code
and routines */

 return;
}
void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray*prhs[])
{
 /* gateway routine */

/* Uses functions like ‘mxGetM', 'mxGetN',
'mxGetPr', 'mxCreateDoubleMatrix' etc. */

/* For further details on these functions please
refer to MATLAB help files. */

 /* Call to the computational routine */

yourfunc(Input and Output Data pointers as
Function parameters);

 return;
}

 22

Figure 2.2 Flowchart of C MEX cycle [36]

 23

To generate a MEX-file, at the MATLAB® prompt type

>> mex yourprogram.c

MATLAB® generates a MEX-file with the name ‘yourprogram’ with

appropriate extension for your system, in our case ‘yourprogram.mexsol’.

 The above demonstrates how to call a C program from MATLAB®. The

next section discusses the ways to call MATLAB® from C programs.

2.1.3 Calling MATLAB® from C Programs - MATLAB® Engine

MATLAB® commands can be called from C programs using a

MATLAB® Engine library. These are a set of routines that allow you to call

MATLAB® from your own program, thereby employing MATLAB® as the

computation engine. These MATLAB® engine programs are C or FORTRAN

programs that communicate with MATLAB® processes via pipes (in UNIX) or

through ActiveX (in Windows). The functions in the library allow you to start or

end processes in MATLAB®, send and receive data from MATLAB® and send

commands in MATLAB® to execute. This is a very useful feature and can be

employed to call a specific math routine, for example to invert an array or to

compute an FFT from your own program written in C. Or one can build an entire

system for a specific task, for example target recognition, radar signature analysis

 24

etc., where the front end GUI can be written in C and all the computations and

analysis be done in MATLAB®, thereby, shortening the development time. The

MATLAB® engine operated by running as a background process separate from

your own program. On UNIX, the MATLAB® engine can run on your machine, or

any other UNIX machine on your network, including machines of a different

architecture. Thus a 2-tier approach of client-server topology can be very well be

employed with GUI on the workstation and the computations begin performed on

some other much faster machine or may be a cluster of machines. Table 2.1 shows

all the available C Engine functions.

The following pseudo code illustrates the sequence of steps to invoke

MATLAB® engine and run MATLAB® functions.

/***
C pseudo code to illustrate the use of MATLAB®
engine functions
**/

#include <stdio.h>
#include "engine.h"

/* Other Inlucdes your C code may need */

#define BUFSIZE 25000

main()
{

Engine *ep;
char buffer[BUFSIZE];
int d;

 25

Table 2.1 C Engine Routines

Function Purpose

engOpen Start up MATLAB® engine

engClose Shutdown MATLAB® engine

engGetArray Get a MATLAB® array from MATLAB® engine

engPutArray Send a MATLAB® array to the MATLAB® engine

engEvalString Execute a MATLAB® command

engOutputBuffer Create a buffer to store MATLAB® text output

engOpenSingleUse Start a MATLAB® engine session for a single non-shared

use.

engGetVisible Determine visibility of MATLAB® engine session

engSetVisible Show or hide MATLAB® engine session

 26

/****** Your other C declarations and code ********/

 - - - - - - - -
 - - - - - - - -
 - - - - - - - -
 - - - - - - - -
 - - - - - - - -

/************ starting matlab engine **********/

 ep=engOpen("\0");

 if (!(ep)) {

fprintf(stderr, "\nCan't start MATLAB
engine\n");

 return EXIT_FAILURE;
} /* end if */

/****** Initialize MATLAB output buffer ******/

engOutputBuffer(ep,buffer,25000);

/******* calling your Matlab function ********/

 d=engEvalString(ep,"yourfunction");

/****** Your other C code ********/

 - - - - - - - -
 - - - - - - - -

/******* closing Matlab engine ********/

 engClose(ep);

}

To compile and link these programs proper paths should be specified.

These can also be compiled and linked using the MATLAB® mex script as –

>> mex –f <matlab>/bin/engopts.sh <pathname>/program.c

 27

2.2 Parallel Virtual Machine (PVM)

Parallel processing has emerged as a key technology in modern computing.

A large problem can be broken down into many parallel processes and executed

concurrently on multiple processing units to achieve speed up in execution times.

This has been facilitated by two major developments: massively parallel

processors (MPPs) and the widespread use of distributed computing. MPPs are

the fastest computers in the world today and probably the most expensive ones

too. They have enormous processing power in the range of a few teraflops. These

are used to solve computationally most intensive problems like the global climate

modeling, drug design etc. The second major development in the parallel

processing world is distributed computing. In this a set of computers connected

via a network are used to solve a single large problem. With the high-speed

networks of today, interconnecting many general purpose workstations, the

combined processing power may exceed that of a high performance computer.

The advantage of distributed computing is the cost. MPPs typically cost in tens of

million dollars, which is extravagantly higher than that of a network of

workstations. It is uncommon to achieve the processing power of a MPP using

distributed computing, but large problems can be solved with much higher

execution rates with the help of distributed computing.

In parallel processing data must be exchanged between cooperating tasks.

Several paradigms exist, including shared memory, parallelzing compilers and

message passing. Parallel Virtual Machine (PVM) [3] system used here is a

 28

message passing model to allow programmers to exploit distributed computing

across a wide variety of computer types, including MPPs. A key concept in PVM

is that it makes a collection of computers appear as one large virtual machine.

PVM is a collaborative effort of Oak Ridge National Laboratories, University of

Tennessee, Emory University and Carnegie Mellon University. This is a freeware

with the source code available on the PVM homepage [37]. It is very portable and

has been compiled on everything, from laptops to CRAYs. It has a set of routines

callable from C/C++ and FORTRAN programs, facilitating in sending and

receiving data between multiple processes, spawning new tasks, process control,

dynamic configuration etc. Table 2.2 lists some of the routines and their

functions, for more details and a complete list of routines refer to PVM Users

Guide [3].

2.2.1 Parallel Programming Paradigms

There are three common parallel programming paradigms: Crowd

computation, Tree computation and hybrid, based on the organization of the

computing tasks. The choice of a paradigm is application specific and should be

determined with the application in mind.

2.2.1.1 Crowd Computation Paradigm

In this paradigm a set of closely related processes perform computations

on different portion of the workload, usually involving periodic exchange of

 29

Table 2.2 List of some PVM Routines

Function Purpose

pvm_spawn Spawns off a new task

pvm_addhosts / pvm_delhosts Adds / deletes hosts to / from the virtual

machine

pvm_mytid Gives the task ID of the current process

pvm_kill Kills some other PVM task identified by task ID

pvm_exit Leave the PVM

pvm_initsend Initialize send buffer

pvm_pk* / pvm_unpk* These are data packinbg/unpacking routines e.g.

pvm_pkint, pvm_pkstr etc.

pvm_send Send data to another PVM process

pvm_mcast Send data to a set of processes as specified by

the task IDs

pvm_recv Blocking data receive routine

pvm_nrecv Nonblocking data receive routine

pvm_joingroup / pvm_lvgroup Join a dynamic process group

pvm_bcast Broadcast a message to all processes in a group.

pvm_gettid Get task ID of of a process with the given group

name and instance number

pvm_gsize Get number of members in a group

 30

intermediate results. This has two scenarios, a master-slave scenario and a node-

only scenario as detailed below.

� Master-Slave Scenario

In this scenario a master program controls the behavior of a slave task. The master

is responsible for process spawning, initialization, collection and display of

results, and also timing functions. The slave program does the actual

computational work. The child processes can be allocated their workloads by the

master program, statically or dynamically, or they may perform allocations

themselves. This paradigm is also called a host-node model

� Node-only Scenario

In node-only scenario multiple instances of the same program are spawned

and executed. Each spawned task performs computation on its allocated data. The

manually initiated process takes up the non-computational responsibility as well

as computational work.

2.2.1.2 Tree Computation Paradigm

In this model the processes are spawned off (usually dynamically) during

runtime in a tree like manner. A very good example would be of a split-sort-

merge algorithm. Here the manually initiated process reads in the data to be

sorted. It spawns of a child task and gives it half the amount of workload. Now

there are two processes with half of the workload with each. Each one, splits up

its own workload in two halves and spawns off a child task, giving it the half of

 31

their share of the workload. This goes on in a tree like fashion until a manageable

workload size is reached and each process sorts the data. After this the merge

operation begins wherein we climb up the tree merging the data from various

child processes.

2.2.1.3 Hybrid Computation Paradigm

This can be thought of as a combination of the above two paradigms, the

crowd computation model and the tree computation model.

Figures 2.3 shows the various computation paradigms. The following

pseudo code illustrates how a typical PVM code looks like.

/***
C pseudo code to illustrate the use of PVM functions
**/

/* Master.c */

#include "pvm3.h"

main(){

 int cc, tid, msgtag;
 char buf[100];

 printf("i'm t%x\n", pvm_mytid());

 32

Figure 2.3 Parallel Programming Paradigms

 33

cc = pvm_spawn("Slave", (char**)0, 0, "", 1,
&tid);

 if (cc == 1) {
 msgtag = 1;
 pvm_recv(tid, msgtag);
 pvm_upkstr(buf);
 printf("from t%x: %s\n", tid, buf);
 } else
 printf("can't start Slave Program\n");

/* other code and send and receive statements*/

 pvm_exit();
}

/* Slave.c */

#include "pvm3.h"

main(){

 int ptid, msgtag;
 char buf[100];

 ptid = pvm_parent();
 strcpy(buf, "This is Slave Reporting from ");
 gethostname(buf + strlen(buf), 64);

 msgtag = 1;
 pvm_initsend(PvmDataDefault);
 pvm_pkstr(buf);
 pvm_send(ptid, msgtag);

/* other code and send and receive statements*/

 pvm_exit();
}

 34

2.3 Pilchard – A Reconfigurable Computing Platform

One of the important features of HPRC platform is the simultaneous use of

both distributed as well as reconfigurable computing to achieve much higher

speedups in execution times. The reconfigurable boards used for this research are

‘Pilchard’ boards [13, 38]. These were developed at ‘Computer Science and

Engineering department, The Chinese University of Hong Kong’. The ones

worked with for this research had Xilinx Virtex FPGA device XCV1000E as the

reconfigurable element. Table 2.3 details some of the features of the XCV1000E

FPGA part, used in the pilchards, as obtained from Xilinx website.

Pilchard boards have a memory slot interface i.e. the DIMM slot with the

microprocessor unlike other boards like Firebird or Wildforce from Annapolis

Microsystems, which have a PCI bus interface. The advantage of this feature is

the higher I/O speed. Although FPGA systems can operate at clock frequencies

over 100 MHz and microprocessors above 1 GHz, the bottleneck to higher

speedups is I/O. Most personal computers still use the original 32 bit PCI bus,

PC132, which has a speed of 33 MHz with maximum transfer rate of 132 MB/s.

This limits the I/O speeds and is a bottleneck in achieving higher speedups. The

memory bus in a PC or workstation has higher bandwidth and lower latency than

the peripheral bus. The standard Dual Inline Memory Modules (DIMMs) have

bandwidth of 100-133 MHz with 64 bit data, providing a maximum bandwidth of

1064 MB/s. Pilchard uses this DIMM slot to interface with the microprocessor to

 35

Table 2.3 Xilinx Virtex FPGA Device XCV1000E Product Features

Feature Specification

Package Used in Pilchard HQ240 (32mm x 32mm)

CLB Array (Row x Col.) 64x96

Logic Cells 27,648

System Gates 1,569,178

Max. Block RAM Bits 393,216

Max. Distributed RAM Bits 393,216

Delay Locked Loops (DLLs) 8

I/O Standards Supported 20

Speed Grades 6,7,8

Available User I/O 158 pins (for package PQ240) max. 660 (for

Device family)

 36

over come the bottleneck. Figure 2.4 shows the block diagram of pilchard board

[13]. Table 2.4 shows the features of pilchard platform. [38]

The software source files are –

iflib.h – The header file, provides API function prototypes

iflib.c – The implementation of the API functions

pilchard.c – The device driver for LINUX

The software interface available has four API functions as below –

• void read64(int64, char *) - To read 64 bits from pilchard

• void write64(int64, char *) - To write 64 bits to pilchard

• void read32(int, char *) - To read 32 bits from pilchard

• void write32(int, char *) - To write 32 bits from pilchard

int64 is a special data type that is defined in the header file iflib.h as a 2-

element integer array. ‘download.c’ a configuration utility, can be used to

configure the FPGA with the bit file generated from synthesis.

 37

Figure 2.4 Block Diagram of Pilchard Board [13]

 38

Table 2.4 Features of Pilchard Platform [38]

Feature Specification

Host Interface • DIMM Interface
• 64-bit Data I/O
• 12-bit Address Bus

External (Debug) Interface 27-Bits I/O

Configuration Interface X-Checker, MultiLink and JTAG

Maximum System Clock Rate 133 MHz

Maximum External Clock Rate 240 MHz

FPGA Device XCVE1000E-HQ240-6

Dimension 133mm x 65mm x 1mm

OS Supported GNU/LINUX

Configuration Time 16s Using Linux download program

 39

2.4 Approaches to Port MATLAB® Applications to HPRC

A high level MATLAB® application can be divided into various

concurrent software and hardware tasks which can execute on various different

nodes of an HPRC platform. MATLAB® External Interface can be used to

interface MATLAB® programs to C code which in turn can be used in

conjunction with PVM and pilchard’s C interface to port the MATLAB®

programs to HPRC platform. Two approaches are envisioned here.

2.4.1 Approach I – Library Based Approach

In this approach a MATLAB® program makes function calls to optimized,

parallel and/or hardware routines, which execute on a remote nodes (either a

computing node or a reconfigurable element or both) and return the results of

computation back to the calling MATLAB® program. Thus a library of optimized

routines (e.g. FFT, DES function) can be pre-built and used at will in MATLAB®

programs. The MATLAB® program may also actually choose the number of tasks

to be spawned and the nodes to be used, whether only the computing nodes or just

the reconfigurable elements or both. Hence in this scenario MATLAB® program

acts as a master program invoking tasks on various different nodes of the HPRC.

A user not interested in the mechanics of the underlying architecture can directly

use pre-optimized functions that would execute at various different nodes of an

HPRC platform and return the result to the calling program, and thus give higher

speedups. An advanced user can have more flexibility. A library of PVM

functions and functions to execute code on the reconfigurable elements can be

 40

built as a toolbox in MATLAB® that can be used, to directly spawn off multiple

processes on different nodes and manage them directly from MATLAB®. This

scenario is useful when developing the entire system in MATLAB®.

2.4.2 Approach II – C as a Master Program

In this approach the non-computational task of multiple process

management is handled by a master C program that spawns off various tasks that

may invoke MATLAB® engine routines and/or execute code on hardware and

return the results of computations to the master C program. This approach is

feasible in systems not completely built on MATLAB® and using MATLAB® just

as the computational engine. Thus a multi tier architecture may be supported with

say GUI developed in C interfaced with OpenGL and actual computations being

performed as call backs to MATLAB® functions. This approach is also feasible

when using other native codes.

Figures 2.5, 2.6 and 2.7 detail these approaches. The pseudo code for the

approaches is given next.

Scenario I

Master.c

/***
Pseudo C Code ‘master.c’illustrates a typical C
program used in scenario I
***/

 41

Figure 2.5 Dividing MATLAB applications into various tasks

Figure 2.6 Scenario I - MATLAB as a master program (Library based
approach)

 42

Figure 2.7 Scenario II - C as a master Program

 43

#include "mex.h"
#include "pvm3.h"

/* Other includes that your code in the computational
routine may require */

static void yourfunc(your input arguments)
{

/* Computational routine containing your C code
and routines */

/*** Spawning NTASK number of slave processes ***/

cc = pvm_spawn("slave", (char**)0, 0, "",
NTASK-1, tid);

/***** Doing other computations ****/

/** Receiving computed data from Slave processes **/

return;
}

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray*prhs[])
{
 /* gateway routine */

/* Uses functions like ‘mxGetM', 'mxGetN',
'mxGetPr', 'mxCreateDoubleMatrix' etc. */

/* For a further details on these functions
please refer to MATLAB help files. */

 /* Call to the computational routine */

yourfunc(Input and Output Data pointers as
Function parameters);

 return;
}

 44

Slave.c

/***
Pseudo C Code ‘slave.c’illustrates a typical C slave
program used in scenario I
***/

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include "iflib.h"

int main (void)
{

 /*** declarations ***/

 ptid = pvm_parent();

 /*** mapping pilchard a to a memory space ***/
 fd = open(DEVICE, O_RDWR);

memp = (char *)mmap(NULL, MTRRZ, PROT_READ,
MAP_PRIVATE, fd, 0);

 if (memp == MAP_FAILED) {
 perror(DEVICE);
 exit(1);
 }

 /*** writing data to pilchard ***/

 data.w[1] = 0xfefe00aa;
 data.w[0] = 0xffff0000;
 write64(data, memp+(0<<3));

 for(i=0;i<10;i++) {}

 /*** reading back from pilchard ***/
 read64(&data, memp+(0<<3)); /* get d0 */
 printf("d0 :%08x, %08x\n", data.w[1], data.w[0]);

 /******* Doing other computations ************/

 45

 /*****sending the output to the parent ****/

 pvm_send(ptid,2);

 /**** exit****/

 pvm_exit();
 munmap(memp, MTRRZ);
 close(fd);
 return 0;
}

Scenario II

Master.c

/***
pseudo code to illustrate the implementation of
Scenario II
***/

#include <stdio.h>
#include "/sw/matlab6.1/extern/include/engine.h"
#include "/usr/local/pvm3/include/pvm3.h"
#include "/sw/matlab6.1/extern/include/matrix.h"

/***** other includes that may be needed ****/

int main(){

/**** declarations ****/

/********* Spawning NTASK number of slave processes
using

 46

pvm_spawn routine *******/

cc = pvm_spawn("slave1", (char**)0, 0, "", NTASK-1,
tid);
cc = pvm_spawn("slave2", (char**)0, 0, "", NTASK-1,
tid);

/************ invoking MATLAB engine and doing
computations

in MATLAB **********/

ep=engOpen("\0");
 if (!(ep)) {
 fprintf(stderr, "\nCan't start MATLAB
engine\n");
 return EXIT_FAILURE;
 } /* end if */

d=engEvalString(ep,"yourmatlabfunction.m");

 /***** receiving the computated data from clave
process *****/

 pvm_recv(-1,-1);

 /** exit **/

 engClose(ep);
 pvm_exit();

}/*** main end ***/

 47

Slave1.c

/***
pseudo code to illustrate the implementation of
Scenario II
***/

#include <stdio.h>
#include "/sw/matlab6.1/extern/include/engine.h"
#include "/usr/local/pvm3/include/pvm3.h"
#include "/sw/matlab6.1/extern/include/matrix.h"

/*** other includes as may be needed ***/

int main(){

/*** declarations ***/

 ptid = pvm_parent();

/***** starting matlab engine and doing computations
*****/

 ep=engOpen("\0");
 if (!(ep)) {
 fprintf(stderr, "\nCan't start MATLAB
engine\n");
 }

 d=engEvalString(ep,"yourMATLABfuction.m");

/**** sending the output to the parent ****/

 pvm_send(ptid,2);

/**** end the matlab session and exit****/

 engClose(ep);
 pvm_exit();

}

 48

Slave2.c

/***
pseudo code to illustrate the implementation of
Scenario II
***/

include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include "iflib.h"

int main (void)
{
 /*** declarations ***/

 ptid = pvm_parent();

 /*** mapping pilchard a to a memory space ***/
 fd = open(DEVICE, O_RDWR);
 memp = (char *)mmap(NULL, MTRRZ, PROT_READ,
MAP_PRIVATE, fd, 0);
 if (memp == MAP_FAILED) {
 perror(DEVICE);
 exit(1);
 }
 /*** writing data to pilchard ***/

 data.w[1] = 0xfefe00aa;
 data.w[0] = 0xffff0000;
 write64(data, memp+(0<<3));

 for(i=0;i<10;i++) {}

 /*** reading back from pilchard ***/
 read64(&data, memp+(0<<3)); /* get d0 */
 printf("d0 :%08x, %08x\n", data.w[1],
data.w[0]);

 /***** sending the output to the parent ******/

 pvm_send(ptid,2);

 49

 /**** exit****/

 pvm_exit();
 munmap(memp, MTRRZ);
 close(fd);
 return 0;
}

 50

3 Case Study I – Implementing Image Correlation On HPRC

3.1 Convolution Operation

Convolution is a formal mathematical operation on two signals producing a

third signal. This is a very fundamental operation in subjects like Signals and

Systems theory, Image processing and Digital Signal Processing. In system

analysis, response of a Linear Time Invariant system to an input signal can be

calculated by convolving the input signal with the impulse response of the system.

In Image processing, convolution can be used for many operations on images like

edge detection, smoothing, linear filtering etc. Mathematically convolution

operation can be expressed as, as in the case of an LTI system –

∑
−

=

−=∗=
1

0
][][][][][

M

j
jnxjhnhnxny

system LTI theof response case in this Signal,Output point, 1-MN y[n]
operatorn Convolutio

 system LTIan of response impulse case, in this kerneln Convolutio point, M h[n]
 signal timediscrete point, N x[n]

+=>
=>∗

=>
=>

The operation can be thought of physically as sliding one signal over the

time flipped version of the other in discrete time intervals and calculating the sum

 51

of individual responses by adding each of the corresponding impulses. The total

sum of all such overlaps gives the final convolved signal output. Figure 3.1 shows

an example of convolution of two signals calculated and plotted in MATLAB®

using the above formula. The convolution kernel, also called the filter kernel acts

as a low pass filter smoothing out the output signal, as can be seen in the figure.

The above equation is for a single dimension convolution, to be more

precise, for signals. To convolve images, which have two dimensions in spatial

domain, we can use an extension of the above equation as given below –

∑ ∑
∞

−∞=

∞

−∞=

−−=⊗=
j k

knjmxkjhnmhnmxnmy],[],[],[],[],[

ImageOutput n]y[m,
operatorn Convolutio

 kerneln Convolutio h[n]
imager Rectangula n]x[m,

=>
=>⊗
=>

=>

Just as in case of signals, image convolution can be physically thought of

as sliding the convolution kernel over the flipped version of the rectangular image

in discrete time steps, calculating the sum of the individual images in each step.

The final convolved output image is the sum of all the images obtained in each

time step. Figure 3.2 shows an image convolved with two different convolution

 52

Figure 3.1 Single dimensional convolution in Time domain

Figure 3.2 Two-dimensional convolution in Time domain

 53

kernels. The convolution kernels are for edge detection and edge enhancement

respectively.

3.1.1 FFT Convolution

There are many methods to calculate convolution. Calculating using the

above formula directly is time consuming for larger datasets of signals/images.

FFT convolution uses the principle that multiplication in the frequency domain

corresponds to convolution in the time domain. The input signal is transformed

into the frequency domain using the DFT, multiplied by the frequency response of

the filter, and then transformed back into the time domain using the Inverse DFT.

By using the FFT algorithm to calculate the DFT, convolution via the frequency

domain can be faster than directly convolving the time domain signals. For this

reason, FFT convolution is also called high-speed convolution.

The following equation is a mathematical formula for FFT convolution

[]])[(])[(][][][1 nhFFTnxFFTFFTnhnxny ×=∗= −

 Figure 3.3 shows the FFT convolution steps. First we take FFTs of

Signals (a) and (b) to be convolved using FFT convolution technique. (c) and (d)

show the magnitude and phase of the FFTs of the signals (a) and (b). These are

multiplied together (e) and an inverse FFT operation is performed to get the

convolved output. (f) shows the magnitude and phase of the convolved output.

 54

Figure 3.3 FFT Convolution of two signals

 55

Figure 3.4 Convolution outputs using direct calculation and FFT convolution
method

Note that the convolved signals are same as the ones convolved using the

formula for convolution as was shown in figure 3.1. Figure 3.4 shows the absolute

value of the outputs calculated using both methods to be equal.

The DFTs used must be long enough that circular convolution does not

take place. This means that the DFT should be the same length as the output

signal. So, if input signals are N and M points in length than the output signal

will be N+M-1 points long. Hence DFTs used should at least be N+M-1 points

long. For instance, in the example of figure 3.3, the filter kernel and the signal

contains 64 points each. Hence the DFT used should be 127 points in length at

least. Since we are using FFT algorithm for DFT calculations we use a 128-point

FFT. This means that the input signals need to be padded with zeros to bring it to

a total length of 128 points.

 56

For two-dimensional convolution using FFT we need to use two-

dimensional FFT algorithm to obtain the frequency domain representation of the

images. Figure 3.5 shows the results obtained using two-dimensional FFT

convolution.

From the data provided in ‘The Scientist and Engineer's Guide to Digital

Signal Processing’ by Steven W. Smith [39], in one-dimensional convolution, the

time taken by the standard convolution is directly proportional to the number of

points in the filter kernel. In comparison, the time required for FFT convolution

increases very slowly, only as the logarithm of the number of points in the filter

kernel. This is shown in Figure 3.6 [39]. In case of image convolution the

execution time required for FFT convolution does not depend on the size of the

kernel, resulting in flat lines in the graph of figure 3.7 [39]. A 128×128 image can

be convolved in about 15 seconds using FFT convolution, while a 512×512 image

requires more than 4 minutes on a 100 MHz Pentium personal computer. The

execution time for FFT convolution is proportional to, N2Log2(N), for an NxN

image. That is, a 512×512 image requires about 20 times as long as a 128×128

image. Conventional convolution has an execution time proportional to N2M2 for

a N×N image convolved with a M×M kernel. In other words, the execution time

for conventional convolution depends very strongly on the size of the kernel used.

As shown in the graph, FFT convolution is faster than conventional convolution

 57

Figure 3.5 Two-dimensional FFT convolution

Figure 3.6 Execution Times for FFT and Standard Signal Convolutions [39]

 58

Figure 3.7 Execution times for Image Convolution [39]

 59

using floating point if the kernel is larger than about 10×10 pixels. The concept to

remember is that FFT convolution is only useful for large filter kernels.

3.2 Correlation Function

Correlation between two signals gives the extent by which the two signals

are correlated or are similar to each other in any aspect. Correlation function is a

mathematical expression of how correlated two signals are as a function of how

much one of them is shifted. The correlation function between two signals can be

mathematically stated as –

∑
−

=

−=
1

0
][][][

M

j
xy jymjxmR

kerneln correlatiopoint M y[m]
 signalpoint N x[m]

Functionn Correlatiopoint 1MN[m]R xy

=>
=>

−+=>

A very close similarity exists between the convolution and correlation

equations. Only difference between the two is that, in convolution one of the

signals is flipped in time (i.e. time inverted). Hence the same algorithms can be

used to calculate correlation function as were used to calculate convolution, with

only difference being in omitting the flipping step in correlation calculations.

Both convolution and correlation may be mathematically very similar, but they

shouldn’t be confused to be similar in physical significance. They both have very

different significances and uses.

 60

As in the case of convolution, we can correlate images. ‘Image

Correlation’ is a machine vision technique that compares a template of the desired

image (the correlation kernel) with the actual camera image of an object and

generates a new image (the correlation image) that indicates where the template

matches the camera image. This has many applications and can be used for part

location and gauging, feature or flaw detection, character recognition and

rectification, target recognition, terrain recognition etc. Figure 3.8 illustrates one

example of image correlation.

More information on correlation and convolution can be found in ‘The

Scientist and Engineer's Guide to Digital Signal Processing’ by Steven W. Smith

[39].

Figure 3.8 Image Correlation Example

 61

3.3 Implementation on HPRC

The convolution and correlation algorithms discussed in the earlier

sections have a wide area of application in image processing and signal

processing fields. Applications like target recognition, face recognition, character

recognition, unknown terrain explorations, medical imaging etc. extensively use

these techniques. For example in target recognition the target image obtained by

the camera eye needs to be correlated with every single image in a huge database

of images and analyzed for amount of correlation. Hyper spectral images of target

can be correlated with a database of different hyper spectral images to identify

different objects. A lot of computational power is needed to execute these

applications in real time. Thus correlation of images forms a good case study for

implementation on HPRC using the approaches discussed the earlier chapter.

3.3.1 Library Based Approach

In the library based approach a MATLAB® program acts as a master

process calling functions that dynamically link with computational C routines.

The C routines then may spawn of multiple processes to execute various pieces of

the application. These processes can also invoke MATLAB® engine on one or

more other computing nodes to perform computations. The computational C

routine can also directly interface with pilchard boards to perform computations

on hardware.

 62

As an example, character recognition has been implemented here [40]. In

character recognition technique a source image containing the text is convolved

with a target image (correlation kernel). Target image is the sequence of

characters to search, in our case, ‘MATLAB®’. Figure 3.9 shows the source, target

and the resultant correlated image. The following are the sequence of steps

involved. The ‘showimage()’ function shown is just a dummy function to display

image.

{ }

)Imshowimage(

)Imshowimage(
)Imshowimage(

)(Im2)(Im22Im i.e.

ImImIm

Corr

target

Source

arg
1

arg

ettSourceCorr

CorrettSource

fftfftfft ×=

=⊗
−

As can be seen the output image doesn’t identify the exact positions of the

target and is blurred wherever the characters are present. To find the exact

position of the target image we normalize the correlated output to set the pixel

values between 0.0 and 1.0, and isolate the points of maximum correlation. We

find a maximum value in the normalized correlated output and set a ‘threshold’

value about 5% lesser than the maximum value. We display the all the points of

the output correlated image that are greater than the threshold value to see the

exact positions of the target image in the source. This is indicated by the white

dots in the final image. This can be seen in figure 3.10. The steps to show the final

output image are –

 63

Figure 3.9 Character recognition technique example

Figure 3.10 Position of the target in source image as indicated by the white dots

 64

threshold)_Imshowimage(
)Im_max(05.0

1.0Im_1
Im

Im_

Im_Im_Im_1

))(Im(Im_
)(ImIm_

Corr

arg

argarg

2

>
×=

+
=

⊗=

=
=

norm
normthreshold

norm
norm

Flatsqnorm

sizeonesFlat
sq

Corr

corr

corr
corr

ettsourcecorr

ettett

sourcesource

A C Mex file, ‘corr.mexsol’, is used to compute the correlated image of

two input images, source and target. Function ‘corr’ integrates PVM and

MATLAB®, takes as inputs the two images, an output data file name, and the

name of the remote computing node on which to perform the correlation

computation. It spawns off a slave process that computes correlation on a remote

node. Control is returned to MATLAB® program, making a function call to ’corr’,

immediately after the slave process is spawned. The slave process invokes

MATLAB® engine and computes correlation. It saves the resultant image in an

output data file specified in the function call to ’corr’, in .mat format. Flowchart

in figure 3.11 details this process. Function ‘corr’ can also interface with FPGA

hardware on pilchard for computations.

The above method was applied to search for vowels ‘a’, ’e’, ’i’, ’o’ and ‘u’

in the text of image in figure 3.12. The figures for the resultant final output

locations are kept in appendix to maintain the flow of the text. Function ‘corr’

was called multiple times in a loop supplying it with different sets of input images

 65

Figure 3.11 Flowchart explaining the library based approach applied to image

correlation

 66

Figure 3.12 Source Text Image

and different processing nodes. As in the above case, function ‘corr’ spawns off a

slave process on a specified node and returns the control to MATLAB® calling

program which loops and again makes a call to function ‘corr’, with new sets of

parameters. The spawned slave processes compute the correlation, save the data

in an output data file and exit.

3.3.2 C as a Master

The above approach is very suitable for an end user who is not interested

in details of underlying cluster architecture. Just a function call from MATLAB®

would spawn a process on some remote machine and compute correlation. Thus,

MATLAB® acts as a master process responsible for spawning various tasks on

remote machines. The second approach is that of keeping the management task

with a master C process. In this approach a master C program spawns of various

 67

slave tasks at different nodes in a cluster of machines and manages the processes.

Each slave task computes the correlation between a set of two images and sends

back the result to the master process. The slave process invokes MATLAB®

engine on a remote computing node and executes MATLAB® functions to

compute correlation. The slave can also interface with pilchard boards connected

to the computing nodes and perform computations on the reconfigurable FPGA

hardware. For this application one-dimensional 1024 point FFT was implemented

in hardware, which is required for computation of correlation. Figures 3.13 and

3.14 illustrate the process.

The same application of recognition of vowels ‘a’, ‘e’, ‘i’, ‘o’ and ‘u’ in

the text of figure 3.12 was repeated here and the results obtained are exactly same

as in the earlier case, the difference being in the speedup.

3.3.3 Hardware Implementation

For this application one-dimensional 1024 point FFT was implemented on

FPGA hardware on pilchard boards. For the actual FFT computations inside

hardware Xilinx Intellectual Property (IP) core was used along with Virtex Block

RAMs. The block diagram of the architecture is attached in the appendix. Figure

3.15 shows the communication process between the slave process and the FPGA

to calculate two-dimensional FFT from one-dimensional implementation on

hardware. The image to be correlated is read by MATLAB® and the data is passed

on to the pilchard board using the pilchard API function write64(). Due to

 68

Figure 3.13 Using approach II - C as a master process

 69

Figure 3.14 Details of the MATLAB® sessions invoked by slave process

 70

Figure 3.15 Communication between Slave process and the FPGA

 71

limitations of the number of locations that can be addressed using the address bus

provided on pilchard boards, a work around solution has been implemented. The

data passed in is 16-bits each, i.e. the real part and imaginary part (which is

actually set to zero initially). The address is passed on the data bus itself along

with the data instead of using the address bus due to the addressing limitations.

Since the data bus is 64 bits in length it can accommodate both the 16-bit data

and the 10-bit address in a single write operation. A row of image is passed on to

the hardware for each computation of FFT. It is padded with zeros in case if

needed to make the length to 1024 points. Thus, 1024 write operations are

performed after which the computation is started on the hardware. The

computation takes 6200 clock cycles to complete and is run at 25 MHz clock.

The results stored in the Block RAMs on Virtex FPGA are read back using

read64() API function and are over written on the input row that had been

supplied for FFT computation. FFT for every row is computed and overwritten

by the results. Once all the rows are over the columns of data are send in

similarly to compute the two-dimensional FFT.

The FFT on the hardware can also be directly run from MATLAB® as a

function call using the approach discussed in the earlier section. Thus, a call to

function ‘myfft’ from a MATLAB® program would compute the FFT on the

hardware and return the results back to the calling MATLAB® program. Figures

3.17 and 3.18 show the result of FFT computed for a square wave of figure 3.16

by both FFT on the hardware, and using MATLAB® toolbox function ‘fft’. The

 72

Figure 3.16 Input Square Wave

Figure 3.17 FFT calculated using hardware implmentation

 73

Figure 3.18 FFT calculated using MATLAB toolbox function

 74

results are identical within round off errors. The layout diagram on Virtex1000e

part is attached in the appendix.

3.3.4 Results

The execution times recorded with both the approaches are shown in table

3.1. Graph in figure 3.19 shows the execution times of serial as well as both of

the parallel approaches. The speedups with both the approaches are as below –

0673.2
41.7133

2319.86

2714.2
37.9642
86.2319

==

==

approachII

approachI

speedup

speedup

Table 3.1 Execution times for serial and parallel executions

Mode Execution Time in secs

Serial 86.2319

Parallel - Approach I 37.9642
Parallel – Approach II 41.7133

 75

Figure 3.19 Graph of Execution times

Hardware Specifications:

Machine hardware - sun4u

OS version - 5.8

Processor type – Sparcv9 @ 450 MHz, Dual processors

Hardware - SUNW, Ultra-60

Memory – 2048 Mbytes

3.3.5 Limitations

There is an issue yet unresolved with the hardware implementation of

FFT. It gives erroneous results sometimes on multiple iterations. Hence the results

with reconfigurable card employed for computations are not available as of now.

 76

4 Case Study II – Artificial Neural Network Training Speedups

4.1 Introduction to Artificial Neural Networks (ANN)

An Artificial Neural Network (ANN) is a massively parallel, distributed

processor that has a natural propensity for storing exponential knowledge and

making it available for later use. The network consists of many interconnected

‘Neurons’- the basic processing unit of a neural network. A basic diagram of a

neuron is shown in figure 4.1. It has signal inputs that are modified by

weights and fed to the processing unit, which gives the output

. The processing unit consists of two blocks as shown. The first

one sums up the weighted inputs and feeds it to a monotonically increasing

activation function . Also fed in to the activation function is a bias b . These

neurons are grouped in layers and the layers are grouped into a network (figure

4.2). A neural network acquires knowledge through a process called ‘Learning’,

also called as ‘Training’. This is a process by which a neural network’s free

parameters are changed through a continuous process of stimulation by the

environment. A neural network simply maps the inputs to the outputs. The

neurons in a network can be trained to perform a desired mapping (‘Supervised

Learning’) or they can create their own mappings (‘Unsupervised Learning’).

)(np

)(nw

bp +×)(wfa =

()f

 77

Figure 4.1 A Basic Neuron

Figure 4.2 Example of a Neural Network

 78

Depending on the activation function , some neurons are nonlinear. A

network of such neurons can be highly nonlinear and can be beneficial in

applications requiring nonlinearity. Neural networks have a potential to be fault

tolerant since its performance only partially degrades from failure of a single

neuron. Also, these can be implemented in hardware and the processing units be

implemented in a parallel configuration[41]. Information on ANNs can be found

in a book by Simon S. Haykin, “Neural Networks: A Comprehensive

Foundation”[42] and may other technical literatures on the subject.

()f

Artificial Neural Networks (ANNs) over the years have gained popularity

in many application domains. Pattern classification, financial analysis,

electrocardiogram analysis, speech or handwriting identification, credit card

application reviews, insurance fraud, functional approximation, control systems,

noise cancellation etc. are few of the examples of the vast variety of applications

that artificial neural networks can address. Parallelism is one of the underlying

principles of ANNs. Also, ANNs are time consuming, especially in the learning

phase. A lot of research effort has gone into exploiting the inherent parallelism in

ANNs and to speedup the learning phase by using reconfigurable or parallel

computing techniques for a variety of architectures. Depending on the

nonlinearity in the error surface, the size of the neural network being trained and

the size of the data set, the training process can sometimes be very time

consuming and often recursive, in order to realize an optimal network; usually the

smallest and the most compact. Standard ANN training algorithms like the Back

 79

Propagation, Levenberg-Marquardt algorithms are sequential in nature[42]. But to

realize an optimal network design various different architectures of an ANN are

trained and the smallest most efficient network is chosen. This is a recursive

process and can be done in parallel simultaneously on various different nodes in a

cluster of machines. Figure 4.3 shows a flowchart detailing the steps in a Neural

Network training procedure.

 A dataset that covers the operating region well should be chosen and split

into a training and testing dataset. Care should be taken while splitting, such that

both the training and the testing datasets cover the entire operating region of the

network. Many times an odd-even split procedure is used. Depending on the

application, neural network architecture is chosen. Statistically, most of the

problems can be solved using a ‘Multi Layer Perceptron’ (MLP)[42] unless the

application demands otherwise, like in our case study discussed below. Number

of layers and hidden nodes (neurons) per layer are selected judiciously and the

weights and biases initialized. The network is than trained to meet a specified

error goal using a training algorithm. If the error goal is met than the training is

successful; weights and biases are saved. Next a network smaller than the one

trained is chosen and the training procedure is repeated until an optimized

compact network is realized. In case if the training is not successful, the weights

and biases are reinitialized and the training is repeated. There are various factors

for which a network may not train successfully.

 80

Figure 4.3 Flowchart of Neural Network Training Procedure

 81

� The training gets stuck in the local minima. The best solution to this is

to try to train the network again with a larger step size.

� The network does not have enough degrees of freedom to fit the

desired input/output model. Hence more neurons need to be added.

� There is not enough information in the training data to perform the

desired mapping. More training data may be needed.

As can be seen the training procedure is recursive and multiple network

architectures need to be trained in order to realize the smallest network. The

HPRC architecture platform can aptly be used to speedup the training process, by

training multiple architectures simultaneously at different nodes.

4.2 Estimation of Solar Particle Event Doses: A Case Study

As a case study a data set on Solar Particle Event doses has been

selected[43-46]. A Weibull model has been used to fit SPE dose and dose rate-

time profiles. The Weibull equation is as follows.

Parameters Fittingγ&α
 tat time valueDoseD(t)

Value Dose MaximumD

))(1()(

>−
>−

>−

−−∞=

∞

γαteDtD

The objective is to estimate the maximum radiation dose that an

astronaut is likely to be exposed to in space during a particular Solar Particle

∞D

 82

Event. Standard Multi Layer Perceptrons (MLP) can process only static

mappings. Since the data has a temporal nature a Sliding Time Delayed Neural

Network (STDNN) is used to estimate the maximum dose values. STDNN is a

variant of Time Delayed Neural Network (TDNN) using a variable size of time

delay τ . Figure 4.4 shows the STDNN[43].

The training procedures are written using functions in MATLAB® Neural

Network Toolbox, Version 3.0[47]. This case study has only been ported to the

computing nodes of the HPRC architecture. Reconfigurable hardware units have

not been used in the implementation, as dynamic changes in the size of the

network being trained would increase the over all execution cost due to multiple

FPGA reconfiguration times. Different architectures of the ANN are

simultaneously trained on various different computing nodes of the HPRC

architecture using the approaches discussed in the chapter 2.

Figure 4.4 Sliding Time Delayed Neural Network[43]

 83

In approach I a C – Mex file spawns of a child task which invokes a

MATLAB® engine on a remote node that performs the training operation on a

specific neural network architecture and returns the result to the calling

MATLAB® session. Thus multiple calls are made to the C – Mex file to train

different network architectures.

In approach II, a C parent program spawns of child tasks on various

different nodes in a cluster of machines that in turn invoke MATLAB engine

routines to run the ANN training functions written in MATLAB. Each child task

trains a different architecture of ANN as specified in the archspec.m MATLAB

file. In case of successful training the resulting weights and biases are saved in an

output .mat file. The child program notifies the results of training to the parent

program, which in case of successful training kills all other child tasks that are

currently training a larger network than the one successfully trained. The child

tasks training a smaller more compact network than the one successfully trained

continue training in an effort to realize a more compact network. If the training

goal is not met the child program reinitializes the weights and biases and runs

through the training again. This way, multiple different ANN architectures are

trained simultaneously at various different nodes in a cluster of machines and the

result of the training is made available to the parent program. Thus an optimal

network is realized in less time and the training phase is shortened considerably.

 84

Figure 4.5 shows the training process invoked on a remote node using

approach I. Figure 4.6 shows the parallel training process using approach II.

The original dataset used is available from the National Oceanic and

Atmospheric Administration. The time delayed input data for the STDNN was

created by G. Forde et al [43]. The original data set was sampled at time τnT =

where n is the number of data points chosen along a particular Weibull Curve,

which is actually the number of input neurons in the STDNN. Thus, in our case

the number of input neurons is 5. τ is the sliding time delay of the interval. Thus

dose values are obtained at arbitrary time intervals ττ)1(........, −−− nttt . Figure

4.7[43] shows the sample selection. The input data is as shown in figure 4.8. It

shows 106 events with 50 samples per event.

Since STDNN has no feedback paths standard feed forward training

algorithms can be used to train the network. In our case Levenberg-Marquardt

(LM) training algorithm is used for its faster and reliable convergence

properties[42]. Since we are trying to predict the maximum dose value in an

event, we only need to look at the portions of each event where the dose is still

rising or has just peaked. Hence to decrease the training time we reduce our data

set to remove the unwanted data discarding all the data beyond the 99% of the

maximum dose value in the fourth time stamp. We thus reduce our dataset by

86.24% leaving in total 729 samples. Also, since are cost function is Sum of

Squared Error (SSE) then some of the smaller events will be allowed to have large

 85

Figure 4.5 Flowchart of Training process using approach I

 86

Figure 4.6 Flowchart of Parallel Training Process using approach II

 87

Figure 4.7 Illustration of Input Dataset Selection [43]

Figure 4.8 Input Data Set along with the zoomed in version on the

right showing 2 particular events

 88

percentage errors while the larger events will have small percentage errors even

though the magnitudes will be similar. Hence we log scale the output data so that

percentage errors are about the same. Figure 4.9 shows the target output and the

log scaled target output. The data set obtained is divided into training set and

testing set by putting a breakpoint at 620. So the first 620 samples will be used for

training the ANN and the remaining for testing purposes. The training and testing

dataset is saved in a .mat file. The hidden layer activation function used is

Hyperbolic Tangent function. Since we are using ‘tansig’ hidden layer activation

function we use z-score scaling (mean center, unit variance) on our input data so

that the data is centered around zero. The network is trained for an error goal of

100, with maximum training epochs set at 2000. An error goal of 100 is

reasonable as the need is to predict the approximate maximum dose that an

astronaut will be exposed to in a particular solar particle event. So on an average

about 5-10% difference in the predicted maximum dose is an acceptable

Figure 4.9 Target Output (Dose Infinity) (left) Log Scaled (right)

 89

difference. All the network architectural specifications are saved in spec.mat file

created using archspec.m script in MATLAB. The parent program is invoked and

the data and spec file names specified. The parent program spawns multiple child

tasks, which in turn invoke MATLAB engine routines and run through the

training procedure.

4.3 Results and Discussion

Multiple network architectures were trained in parallel at various different

nodes of a cluster of Sun Sparc machines. The hardware specifications are given

below. The results obtained were similar using both the approaches and are

tabulated in Table 4.1 and 4.2. For a single hidden layer network the smallest

network that trained successfully was with 9 hidden neurons. Whereas for a 2

hidden layer network the smallest network trained successfully was with 5 hidden

neurons. Thus the optimal network realized is single hidden layer with 9 hidden

neurons, highlighted in Table 4.2. This network was tested with the test data

saved in the .mat file. The resultant plots are as shown in the figure 4.10. A snap

shot of the output screen for approach II is as shown in figure 4.11.

Hardware Specifications:

Machine hardware - sun4u

OS version - 5.8

Processor type – Sparcv9 @ 450 MHz, Dual processors

 90

Table 4.1 Serial and Parallel Execution Times

Mode Execution Time in secs

Serial 2245.6458

Parallel-Approach I 438.359
Parallel-Approach II 443.636

Table 4.2 Parallel Training Result. X- Unsuccessful Training; √ - Successful
Training

Number of

Hidden Layers
No. of Hidden

 Neurons per layer
Training Result

1

5
6
7
8
9
10
11
12

X
X
X
X
√
X
√
√

2

2
3
4
5
6

X
X
X
√
√

 91

Figure 4.10 Testing Results of the selected optimal network highlighted

in Table 4.1

 92

Figure 4.11 Snap Shot of the Output Screen

 93

Hardware - SUNW, Ultra-60

Memory – 2048 Mbytes

A cluster of nine such machines.

From figure 4.10 we can observe that we have obtained quite good

estimates of maximum dose except for the 9th event, which is outside are training

space. The initial performance is poorer for most events but further in time the

performance is quite good. This indicates that more training data is required for

still better performance. It can be seen in figure 4.11 that in some cases the results

of the larger network have been outputted even after the smaller networks have

been already successfully trained and the child tasks with larger networks killed.

This happens due to the following reasons:

• The computing speed of different nodes varies according the load on the

particular node from other processes running simultaneously at the time of

training. Thus a larger network being trained on a computing node, which

can offer faster computing speed will train faster than a smaller network

that is being trained on a node that can offer lesser computing time.

• The results are printed as soon as the parent process receives the

notification from the child process. But there is no guarantee of receipt in

order due to possible network delays between nodes. A child process

could be running on a node, which is in a different subnet than the one on

which the parent process is running.

 94

The execution time shown in the results section is obtained using

‘gettimeofday’ Unix function, which doesn’t represent the exact CPU time taken

by the training process due to process swapping and may vary with time. The

performance of parallel training may vary according to the load on the network

and computing nodes at the particular time of training. It is difficult to actually

estimate the speedup of parallel training process over the conventional sequential

training, as the latter needs a lot of user intervention in the recursive training

process to achieve an optimal network design. The user would train one network

and analyze the result and accordingly choose a network architecture for the next

training process and may not necessarily train the network architecture in

sequence followed by the automated process here

Figures 4.12, 4.13 and 4.14 show the serial and parallel execution times.

Graphs in figures 4.12 and 4.13 show the individual execution times for training

of each of the network topology serially. Graph in figure 4.14 shows the total

serial execution time and the parallel execution times recorded using both the

approaches. The times recorded may very with different iterations and depend on

the dataset trained.

 95

Figure 4.12 Individual Execution times with single hidden layer

Figure 4.13 Individual Execution times with two hidden layers

 96

Figure 4.14 Serial and Parallel Execution times

The speedup obtained can be calculated as

062.5
636.443
6458.2245

123.5
359.438
6458.2245

==

==

approachII

approachI

speedup

speedup

The parallel training process as shown here is very convenient for a

researcher who is training a network that takes a long time to train. The process is

fully automated once the user specifies the range of network architectures he/she

would like to train. This methodology is quite portable and can be adapted to

 97

other neural network applications with little or no modifications on the C

programming side at least. The user might need to edit the MATLAB training

files to suit his/her particular application and be sure to adhere to the interface

expected by the C code.

A lot of work can still be done further by completely automating the

training process such that all the user needs to do is supply the training and testing

data sets. The program automatically would analyze the data, select the

appropriate training procedures and give the results or better, the program could

give results with multiple training procedures for the user to compare and analyze.

 98

5 Discussion And Conclusions

Various approaches to port MATLAB® applications to HPRC have been

discussed in the earlier chapters. We do not have concrete data as yet for

performance with the reconfigurable card also employed for computation. But the

approach to directly execute MATLAB® functions on a remote reconfigurable

hardware resource and receive the results back in MATLAB® has been clearly

established and outputs shown in chapter 3 (Figures 3.617- 3.18). The results with

parallel only computations are tabulated in the table 5.1. Using both the

approaches discussed in the earlier section we have obtained speedups of about 2

in the first case study and about 5 times the serial execution time in the second

case study. We would expect to obtain still higher speedups by increasing the

problem size. Graph in figure 5.1 shows the execution times required by various

pieces of the program in case study I. The pvm_spawn time and the MATLAB®

invocation time should be about the same in both the case studies. The graph

clearly shows the expense of invoking the MATLAB computational engine. We

have about linear speedup in second case study. If one takes MATLAB startup

times out then we would have about linear speedup even in the first case study.

The two approaches that have been discussed to port MATLAB® applications to

HPRC are, the library based approach, where the MATLAB® program is

 99

Table 5.1 Execution times of various approaches

Case Study Mode Execution Time in secs

 Serial 86.2319
I Parallel – Approach I 37.9642
 Parallel – Approach II 41.7133

II Serial 2245.6458
 Parallel-Approach I 438.359
 Parallel-Approach II 443.636

Figure 5.1 Graph showing the code profile for case study I

 100

responsible for process spawning and management and the other being the

approach where a C process is responsible for task spawning and management.

The questions that arise now are of feasibility of each approach and the scenario

in which each is best suited. These need to compared and contrasted on the basis

of metrics like end user friendliness, performance advantage, run time efficiency

and ease of programming. This chapter delves into the vast problem space on

hand and tries to address the various permutations and combinations possible with

these approaches.

5.1 Feasibility and Target Scenarios for both Approaches

Each of the approaches fit in a set of applications and scenarios. Approach

(i) of MATLAB® program being a master process is very suitable for an end user

who is not interested in the details of the underlying hardware architecture and is

just interested in higher computational speed. He /she would need to just make a

function call just as the other functions in MATLAB®, and not be worried about

the optimized implementation. The function call would dynamically link with the

respective function in a library of optimized ‘Mex files’ and execute on some

remote node or FPGA hardware unknown to the end user and return the results to

the calling program. In fact, routines can built using this approach that would take

a user defined MATLAB® function and execute it on a remote node returning the

result back to the user. Also, this approach can be used to dynamically link

existing libraries in C/C++ or Fortran with MATLAB® and the functions be called

directly from MATLAB® as if they were MATLAB® functions. Thus, a layer of

 101

abstraction has been built for a user not interested in the ‘black box’ below.

Figures 5.2 and 5.3 illustrate this idea. For advanced users a library of message

passing functions like PVM or MPI can be dynamically linked with MATLAB®

using ‘Mex files’ and the power of distributed and reconfigurable computing can

be made available directly to end users who would just require to make simple

function calls in MATLAB®.

The second approach is more suitable for an advanced user. It fits well in

scenario of multi-tier architecture. An application, being developed in some other

language like C/C++ or Java can invoke MATLAB® engine to perform

computations and return the results back to the original application. Figure 5.4

shows a two tier, client server architecture with GUI on the client developed in

C/C++ interfaced with OpenGL or some other graphics library and computations

being performed as call backs to MATLAB® routines on a remote server. In a

multi-tier approach MATLAB® can be used in the middle layer as a

computational engine for the logic, with the outer GUI layer on the client, and

database on the remote server. This is illustrated in figure 5.5

Both the approaches suit different target scenarios, but still can be

combined with various combinations. The MATLAB® computation, being

performed as a call back in the second approach, can use functions from the

optimized library as in the first approach for computations.

 102

 Figure 5.2 MATLAB interfacing with a library of optimized routines build
with 'Mex Files'

 Figure 5.3 MATLAB interfacing with pre-existing libraries in C or Fortran
using 'Mex Files'

Figure 5.4 Client-Server topology with computations being performed in
MATLAB®

 103

Figure 5.5 Multi - tier architecture with computations being performed in
MATLAB®

5.2 Performance Advantage and Run Time Efficiency

The speedups obtained by using approach I are slightly higher than that

with approach II as evident from table 5.1. But these are not considerably higher

the reason being that even while using approach I the child tasks spawned by the

Mex files invoke MATLAB® engines for computations. If the computations were

performed on hardware or in an optimized parallel C routine we would expect

much higher speedups. The optimized ‘Mex Files’ have a faster execution time

and hence higher run time efficiency. In MATLAB®, by design itself, if a function

exists both as a ‘*.m’ file and a ‘*.mexsol’ (or any other extension depending on

the platform) file, the ‘*.mexsol’ file is given preference for execution

automatically over the ‘*.m’ file.

 104

5.3 End User Friendliness

As discussed in the earlier section for a user not interested in underlying

hardware details, first approach of library-based computations is more suitable.

The second approach with C as a master process is more suitable for larger

designs and an advanced user.

5.4 Ease of Programming

There is no particular ease in programming of one approach over the other.

This would be actually application complexity and scenario dependent. Both the

approaches follow some simple steps that need to be followed for successful

implementations and the approach chosen is very much application dependent and

the choice of the programmer. Many times the chosen approach is a hybrid of

both of these approaches. The first approach sets a level of abstraction higher

hiding the details of the underlying architectures, thus can be said to be end user

friendly. But, then that assumes a library of optimized routines already

implemented and ready to use.

 105

6 Future Work

The first and foremost here is to verify results with the RC component

employed in execution. This would validate the entire effort. We have analyzed

approaches for programming MATLAB® on High Performance Reconfigurable

Computers. We have opened the Pandora’s box. This opens up a huge problem

space and there are a host of other problems and issues to deal with. An obvious

next step would be building optimized libraries of functions that would

dynamically link with ‘Mex files’ that would perform computations on remote

nodes or reconfigurable FPGAs. Toolboxes of message passing libraries like

PVM and MPI can be built using the approaches discussed. Functions to spawn

and manage processes on remote machines can be built which would enable

MATLAB® to be easily ported on distributed machines. Many preexisting

libraries in C and Fortran can be coupled with ‘Mex files’ and be made available

as direct function calls from MATLAB®.

MATLAB® is growing at a very fast pace. Along with the computer

science world, MATLAB® also has realized and adopted the advantages of Object

Oriented programming. MATLAB® introduced objects from version 5.0 onwards.

MATLAB® also has opened its doors to component object technologies.

 106

MATLAB® COM builder can compile MATLAB® algorithms into COM objects

that are accessible from any COM based application. This opens up a whole new

problem space where approaches to use objects in distributed computing need to

be researched.

There are many other issues that need to be dealt with, like scheduling, load

balancing, optimum resource utilization, and modeling and performance analysis

of High Performance Reconfigurable systems. Eventually, moving towards

building a development system to efficiently utilize the processing power of such

systems is the goal.

 107

References

 108

[1] J. L. Gustafson, "Reevaluating Amdahl's Law," Communications of ACM,
pp. 532-533, 1988.

[2] G. M. Amdahl, "Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities," presented at AFIPS conference
proceedings, Atlantic City, N.J, 1967.

[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.
Sunderam, PVM: Parallel Virtual Machine, A Users' Guide and Tutorial
for Networked Parallel Computing: MIT Press, 1994.

[4] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI:
The Complete Reference, 2nd ed: MIT Press, 1998.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and W. R. C., ScaLAPACK Users' Guide: SIAM, Philadelphia, PA, 1997.

[6] R. A. van de Geijn, Using PLAPACK: MIT Press, 1997.
[7] S. Natarajan, B. Levine, C. Tan, D. Newport, and D. Bouldin, "Automatic

Mapping of Khoros-based Applications to Adaptive Computing Systems,"
Proceedings of 1999 Military and Aerospace Applications of
Programmable Devices and Technologies International Conference
(MAPLD), pp. 101-107, 1999.

[8] Z. Ye, P. Banerjee, S. Hauck, and A. Moshovos, "CHIMAERA: A High-
Performance Architecture with a Tightly-Coupled Reconfigurable Unit,"
presented at International Symposium on Computer Architecture, Toronto,
CANADA, 2000.

[9] J. R. Hauser and J. Wawrzynek, "Garp: A MIPS Processor with a
Reconfigurable Coprocessor," presented at IEEE Symposium on FPGAs
for Custom Computing Machines, 1997.

[10] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor,
and R. Laufer, "PipeRench: a Coprocessor for Streaming Multimedia
Acceleration," presented at ISCA, 1999.

[11] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and T. R.R.,
"PipeRench: A Reconfigurable Architecture and Compiler," IEEE
Computer, vol. 33 No. 4, 2000.

[12] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor,
"PipeRench: A Virtualized Programmable Datapath in 0.18 Micron
Technology," presented at IEEE Custom Integrated Circuits Conference
(CICC), 2002.

[13] P. H. W. Leong, M. P. Leong, O. Y. H. Cheung, T. Tung, C. M. Kwok, M.
Y. Wong, and K. H. Lee, "Pilchard - A Recongurable Computing Platform
with Memory Slot Interface," Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines, 2001.

[14] G. D. Peterson and M. C. Smith, "Programming High Performance
Reconfigurable Computers," SSGRR 2001, 2001.

[15] M. C. Smith and G. D. Peterson, "Programming High Performance
Reconfigurable Computers (HPRC)," SPIE International Symposium
ITCom, 2001.

 109

[16] M. C. Smith and G. D. Peterson, "Analytical Modeling for High
Performance Reconfigurable Computers," Proceedings of the SCS
International Symposium on Performance Evaluation of Computer and
Telecommunications Systems,, 2002.

[17] Matlab.Documentation, "MATLAB-The Language of Technical
Computing, Using Matlab version 6.0," August 2002 ed: COPYRIGHT
1984 - 2002 by The MathWorks, Inc., 2002.

[18] C. Moler, "Why there isn't a parallel MATLAB," Matlab News and Notes,
1995.

[19] R. Choy, "Parallel Matlab Survey
(http://supertech.lcs.mit.edu/~cly/survey.html)," 2003.

[20] C. C. Chang, G. Czajkowski, X. Liu, V. Menon, C. Myers, A. Trefethen,
and L. N. Trefethen, "The Cornell MultiMATLAB Project," presented at
Parallel Object-Oriented Methods and Applications Conference, Santa Fe,
New Mexico, 1996.

[21] B. Javier, "MPI ToolBox for MATLAB (MPITB) http://atc.ugr.es/javier-
bin/mpitb_eng," vol. 2003, June, 2003.

[22] B. Javier, "PVM ToolBox for MATLAB http://atc.ugr.es/javier-
bin/pvmtb_eng," vol. 2003, June, 2003.

[23] S. Pawletta, "The DP-Toolbox Home Page => http://www-at.e-
technik.uni-rostock.de/rg_ac/dp/," 2001.

[24] J. Kepner, "Parallel Programming with MatlabMPI," presented at High
Performance Embedded Computing Workshop, 2001.

[25] L. DeRose, K. Gallivan, E. Gallopoulos, B. Marsolf, and D. Padua,
"FALCON: A MATLAB Interactive Restructuring Compiler," presented
at Languages and Compilers for Parallel Computing, Springer-Verlag,
1995.

[26] D. Padua, R. Eigenmann, J. Hoeflinger, P. Petersen, P. Tu, S.
Weatherford, and K. Faigin, "Polaris: A New-Generation Parallelizing
Compiler for MPP's," Univ. of Illinois at Urbana-Champaign, Center for
Supercomputing Res. & Dev, Technical Report 1306, June 1993.

[27] J. Eriksson, P. Jacobson, and E. Lindström, "The CONLAB Environment:
A Tool for Developing and Testing of Parallel Algorithms in NUmerical
Linear Algebra," Institute of Information Processing, University of Umeå,
S-901 87 Umeå,, Technical Report UMNAD-47.88, 1988.

[28] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J.
Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and S. D.,
LAPACK Users' Guide, 3rd ed: SIAM, Philadelphia, PA, 1999.

[29] M. Quinn, A. Malishevsky, and N. Seelam, "Otter: Bridging the gap
between MATLAB and ScaLAPACK," presented at 7th IEEE
International Symposture on High Performance Distributed Computing,
1998.

[30] "RTExpress: Integrated Sensors Inc. http://www.rtexpress.com/isi/."
[31] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M.

Haldar, P. Joisha, A. Kanhare, A. Nayak, S. Periyacheri, M. Walkden, and

http://supertech.lcs.mit.edu/~cly/survey.html),
http://atc.ugr.es/javier-bin/mpitb_eng,
http://atc.ugr.es/javier-bin/mpitb_eng,
http://atc.ugr.es/javier-bin/pvmtb_eng,
http://atc.ugr.es/javier-bin/pvmtb_eng,
http://www-at.e-technik.uni-rostock.de/rg_ac/dp/,
http://www-at.e-technik.uni-rostock.de/rg_ac/dp/,
http://www.rtexpress.com/isi/

 110

D. Zaretsky, "A MATLAB Compiler For Distributed, Heterogeneous,
Reconfigurable Computing Systems," IEEE Symposium on FPGAs for
Custom Computing Machines, pp. pp. 39-48, 2000.

[32] S.-W. Ong, N. Kerkiz, B. Srijanto, C. Tan, M. A. Langston, D. Newport,
and D. Bouldin, "Automatic Mapping of Multiple Applications to Multiple
Adaptive Computing Systems," presented at Proceedings of 2001 IEEE
Symposium on Field-programmable Custom Computing Machines
(FCCM), Rohnert, CA, 2001.

[33] H. Casanova and J. Dongarra, "NetSolve: A Network Server for Solving
Computational Science Problems," The International Journal of
Supercomputer Applications and High Performance Computing, vol. 11,
pp. 212-223, 1997.

[34] R. Choy and A. Edelman, "MATLAB*P 2.0: Interactive Supercomputing
Made Practical," in EECS: MIT, 2002.

[35] "URL for AFRL/IF Distributed Center -
http://www.if.afrl.af.mil/tech/facilities/HPC/hpcf.html."

[36] Matlab.Documentation, "MATLAB-The Language of Technical
Computing, External Interfaces. ver. 6.0," July 2002 ed: The Mathworks,
Inc. COPYRIGHT 1984 - 2002 by The MathWorks, Inc., 2002.

[37] "PVM Home Page http://www.csm.ornl.gov/pvm/pvm_home.html."
[38] K. H. Tsoi, "Pilchard User Reference (v0.1)," Department of Computer

Science and Engineering, The Chinese University of Hong Kong, Shatin,
NT Hong Kong January 22 2002.

[39] S. W. Smith, The Scientist and Engineer's Guide to Digital Signal
Processing: California Technical Publishing, 1997.

[40] I. Chakrabarti, T. Corde, B. Flatt, A. Gill, and C. Pepys, "Pattern Matching
(link -
http://www.owlnet.rice.edu/~elec431/projects96/pictomaniacs/DSP.html),
" Electrical Engineering Department, Rice University 1996.

[41] M. Misra, "Parallel Environments for implementing Neural Networks,"
Neural Computing Surveys, vol. 1, pp. 48-60, 1997.

[42] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed:
Prentice Hall, 1998.

[43] G. Forde, L. Townsend, and J. W. Hines, "Application of Artificial Neural
Networks in Predicting Astronaut Doses From Large Solar Particle Events
in Space," Proceedings of the 1998 ANS Radiation Protection and
Shielding Division Topical Conference, 1998.

[44] J. Hoff, L. Townsend, and J. W. Hines, "Prediction of Energetic Solar
Particle Event Dose-time Profiles Using Artificial Neural Networks,"
presented at 4th Nuclear and Space Radiation and Effects Conference
NSFEC, Monterey, California, 2003.

[45] L. W. Townsend, J. S. Neal, and J. W. Hines, "Solar Particle Event Doses
and Dose Rates for Interplanetary Crews: Predictions Using Artificial
Intelligence and Bayesian Inference," presented at COSPAR, Warsaw,
Poland, 2000.

http://www.if.afrl.af.mil/tech/facilities/HPC/hpcf.html.
http://www.csm.ornl.gov/pvm/pvm_home.html.
http://www.owlnet.rice.edu/~elec431/projects96/pictomaniacs/DSP.html),

 111

[46] N. H. Tehrani, L. W. Townsend, J. W. Hines, and G. M. Forde,
"Predicting Astronaut Radiation Doses from Large Solar Particle Events
Using Artificial Intelligence," presented at International Conference on
Environmental Systems, Denver, Colorado, 1999.

[47] H. Demuth and M. Beale, "Neural Network Toolbox, User's Guide
(MATLAB Documentation)," July 2002 ed: COPYRIGHT 1984 - 2002 by
The MathWorks, Inc., 2002.

 112

Appendices

 113

Appendix A – Some figures of Chapter 3

Figures A.2 to A.6 show the outputs for character recognition application

of chapter 3. Figure A.1 shows the source image.

Figures A.7 to A.9 show the block diagram for the FPGA implementation.

Figure A.10 shows the layout on Virtex 1000e part

Figure A.1 Source Image

 114

Figure A.2 Locations of character 'a'

Figure A.3 Locations of character 'e'

 115

Figure A.4 Locations of character 'i'

Figure A.5 Locations of character 'o'

 116

Figure A.6 Locations of character 'u'

Figure A.7 Block diagram for pcore.vhd

 117

Figure A.8 Block diagram for s_interface.vhd

Figure A.9 Block diagram for sms.vhd

 118

Figure A.10 Layout on Virtex 1000e part

 119

Appendix B – Steps to port MATLAB functions to HPRC

1. First select the approach depending on the application. Reasons to

consider –

a. The application being coded in MATLAB® or C. In case of

MATLAB® approach I could be more suitable. In case of coding in

C, approach II might be more suitable

b. What are you coding? In case of a parallel library for use in

MATLAB® applications, approach I is suitable.

In case of Approach II jump to step 6. In case of approach I jump to the

step 2.

2. Select the target for execution. Targets can be FPGA(s), or just a remote

node or a cluster of nodes or may be all of the above depending on the

complexity the user wishes to address. In case of remote nodes the function

can be executed by invoking MATLAB® computational engine or in C or

invoking functions in other libraries.

3. Implement the function in the target language e.g. C, VHDL, MATLAB®.

4. Link it as a Mex – file. Refer to chapter 2 and also if needed, MATLAB®

External Interfaces documentation for the details on Mex files.

 120

5. Compile the Mex file and it is ready for execution by directly calling it as

a MATLAB® function

6. In case of approach II, the target language is obviously MATLAB®. Write

C code to invoke MATLAB® computational engine. Refer to chapter 2 and

also if needed, MATLAB® External Interfaces documentation for more

details.

7. Set up the variables in MATLAB® workspace.

8. Execute the MATLAB® function and read back the results in C.

Flowchart in Figure A 11 shows the various steps involved.

 121

Figure A 11 Flowchart indicating the steps to port MATLAB to HPRC

 122

Appendix C – Program Codes

Character Recognition

Approach I

mycorr.c

/***/
/** Mex file for performing Character Recognition using Approach
I **/
/** --- **/
/** Program spawns the NTASK-1 child processes child.c **/
/** Each child process calculates the image correlation of 2
images /** and returns the output to master who displays it
**/
/** --- **/
/** Author : Saumil Merchant **/
/** University of Tennessee **/
/** Electrical & Computer Engineering Department **/
/***/

#include <stdio.h>
#include "/sw/matlab6.1/extern/include/mex.h"
#include "/sw/matlab6.1/extern/include/matrix.h"
#include "/usr/local/pvm3/include/pvm3.h"
#include <sys/time.h>
#include <sys/resource.h>

/*#define test*/

void mycorr(double *x,int cx, int rx, double *y,int cy,int
ry,char *name,char *node);

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[]){

 int cx,rx,cy,ry,op_len,info,nd_len;
 double *x,*y,t;
 char *op_name,*node;
 struct timeval tmout;

 123
 info = gettimeofday(&tmout,NULL);
 t=tmout.tv_sec + (tmout.tv_usec)/1000000.0;
 mexPrintf("Time: %lf\n",t);
 if(nrhs != 4)
 mexErrMsgTxt("please give two real matrices and
output datafilename as inputs");

 if(nlhs > 0)
 mexErrMsgTxt("output saved in .mat file, not
returned");

 if (mxIsComplex(prhs[0]) || mxIsComplex(prhs[1]))
 mexErrMsgTxt("Input cannot be complex");

 if (!mxIsChar(prhs[2]) || !mxIsChar(prhs[3]))
 mexErrMsgTxt("3rd and 4th input arguments should be
strings");

 if (mxGetM(prhs[2]) != 1 || mxGetM(prhs[3]) != 1)
 mexErrMsgTxt("3rd and 4th input arguments should be a
row vectors");

 /* get the length of the input vector */

 cx = mxGetN(prhs[0]);
 rx = mxGetM(prhs[0]);
 cy = mxGetN(prhs[1]);
 ry = mxGetM(prhs[1]);
 op_len = (mxGetN(prhs[2]) * mxGetM(prhs[2])) + 1;
 nd_len = (mxGetN(prhs[3]) * mxGetM(prhs[3])) + 1;

 /* pointer to real data */
 x = mxGetPr(prhs[0]);
 y = mxGetPr(prhs[1]);

 /* Allocate memory for string name */
 op_name = mxCalloc(op_len, sizeof(char));
 node = mxCalloc(nd_len, sizeof(char));

 /* pointer to op_name string*/

 info = mxGetString(prhs[2],op_name,op_len);
 if (info != 0)
 mexErrMsgTxt("output data filename not read");

 info = mxGetString(prhs[3],node,nd_len);
 if (info != 0)
 mexErrMsgTxt("node name not read");

 /* Call your C subroutine */
 mycorr(x,cx,rx,y,cy,ry,op_name,node);

 124
 return;
}

void mycorr(double *x,int cx, int rx, double *y,int cy,int
ry,char *name,char *node) {

 int nrows,ncols;
 char teststr[100];
 int info,cc,tid;

 /*********** Spawning the child processes ***********/

 cc =
pvm_spawn("/home/smerchan/thesis/application_1/mtoc/slave",
(char**)0, 0, node, 1, &tid);
 if (cc == 0) { pvm_exit(); mexErrMsgTxt("Tasks cannot be
spawned"); }

 #ifdef test
 puts("Test Mode");

 /*************** ping ponging test messages
***************/

 /******* sending test messages ************/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("Hello from ");
 info = pvm_send(tid,10);

 /************* receiving and printing test
mssages ************/

 info = pvm_recv(tid,11);
 if (info>0){
 pvm_upkstr(teststr);
 mexPrintf("%s\n",teststr);
 }
 #endif

 #ifdef test
 mexPrintf("\ncheck 1\n");
 #endif

 /************** sending data to the slave ***************/

 pvm_initsend(PvmDataDefault);
 pvm_pkint(&rx,1,1);
 pvm_pkint(&cx,1,1);
 pvm_pkdouble(x,rx*cx,1);
 pvm_pkint(&ry,1,1);
 pvm_pkint(&cy,1,1);

 125
 pvm_pkdouble(y,ry*cy,1);
 pvm_pkstr(name);

 pvm_send(tid,1);

 #ifdef test
 mexPrintf("\ncheck 2\n");
 #endif

 #ifdef test

 /********* data received echo ***********/

 pvm_recv(tid,12);
 pvm_upkstr(teststr);
 mexPrintf("%s\n",teststr);

 /********** Receiving echo confirmation for Matlab
status*********/

 pvm_recv(tid,13);
 pvm_upkstr(teststr);
 mexPrintf("%s\n",teststr);

 /********** Receiving echo confirmation of done*********/

 pvm_recv(tid,14);
 pvm_upkstr(teststr);
 mexPrintf("%s\n",teststr);

 #endif

 pvm_exit();

}

Child.c

/***/
/** Child program invoked by Mex file mycorr.c for performing
/** Character Recognition
/** --- **/
/** Each child process calculates the image correlation of 2
images /** and returns the output to master who displays it
**/
/** --- **/
/** Author : Saumil Merchant **/
/** University of Tennessee **/
/** Electrical & Computer Engineering Department **/

 126
/***/

#include <stdio.h>
#include "/sw/matlab6.1/extern/include/engine.h"
#include "/usr/local/pvm3/include/pvm3.h"
#include "/sw/matlab6.1/extern/include/matrix.h"
#include <sys/time.h>
#include <sys/resource.h>

#define BUFSIZE 25000
/*#define test*/

double cpusecs() {
 struct rusage ru;
 getrusage(RUSAGE_SELF,&ru);
 return(ru.ru_utime.tv_sec +
((double)ru.ru_utime.tv_usec)/1000000.0);
}/* cpusecs end*/

int main(){

 int ptid, r1, c1, d,test1;
 int *r, *c;
 char filename[25], buffer[BUFSIZE], testbuf[100],
err[]="ERROR:";
 mxArray *datafile =NULL, *cor2=NULL;
 Engine *ep;
 double *cor2data,t1,t2,dt;

 /******* start the timer ************/
 t1 = (double)cpusecs();

 ptid = pvm_parent();

 #ifdef test

 /********** receiving test message **********/

 pvm_recv(ptid,10);
 pvm_upkstr(testbuf);

 /********** sending test message *********/

 pvm_initsend(PvmDataDefault);
 gethostname(testbuf+ strlen(testbuf),64);
 pvm_pkstr(testbuf);
 pvm_send(ptid,11);
 #endif

 /************** receiving the datafilename ***************/

 pvm_recv(ptid,1);
 pvm_upkstr(filename);

 127

 #ifdef test

 /********** echoing back *********/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr(filename);
 pvm_send(ptid,12);
 #endif

 /************ starting matlab engine **********/

 ep=engOpen("\0");
 if (!(ep)) {
 fprintf(stderr, "\nCan't start MATLAB engine\n");
 #ifdef test
 /****** echoing the error ********/
 pvm_initsend(PvmDataDefault);
 pvm_pkstr("Matlab not started");
 pvm_send(ptid,13);
 #endif
 pvm_exit();
 return EXIT_FAILURE;
 } /* end if */

 #ifdef test
 /********** echoing back *********/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("Matlab started");
 pvm_send(ptid,13);
 #endif

 d=engEvalString(ep,"addpath('/home/smerchan/thesis/applicat
ion_1');");

 datafile=mxCreateString(filename);
 mxSetName(datafile,"datafile");
 engPutArray(ep,datafile); /*** putting it
in Matlab workspace ***/
 engOutputBuffer(ep,buffer,BUFSIZE);
 d=engEvalString(ep,"eval(['load ' datafile]);");
 d=engEvalString(ep,"x=imacor(x1,x2);");
 cor2=engGetArray(ep,"x");
 cor2data = mxGetPr(cor2);
 r1 = mxGetM(cor2);
 c1 = mxGetN(cor2);

 #ifdef test
 /********** echoing back *********/
 pvm_initsend(PvmDataDefault);
 pvm_pkstr(buffer);
 pvm_send(ptid,14);

 128
 #endif

 /************** sending the output to the parent
***************/

 pvm_initsend(PvmDataDefault);
 pvm_pkint(&r1,1,1);
 pvm_pkint(&c1,1,1);
 pvm_pkdouble(cor2data,r1*c1,1);
 pvm_send(ptid,2);

 /**** freeing the allocated memory and ending the matlab
session ****/

 mxDestroyArray(datafile);
 mxDestroyArray(cor2);
 engClose(ep);

 /********* stop the timer **********/
 t2 = (double)cpusecs();
 dt=t2-t1;
 pvm_initsend(PvmDataDefault);
 pvm_pkdouble(&dt,1,1);
 pvm_send(ptid,3);

 pvm_exit();

} /*********** main end *************/

Approach II

Parent.c

/***/
/** Parallel Character Recognition Approach II **/
/** --- **/
/** Program for character recognition using Image Correlation**/
/** Uses custom Matlab functions written by the author **/
/** The following functions are used **/
/** imacor.m --> to do correlation **/
/** Program spawns the NTASK-1 child processes child.c **/
/** Each child process calculates the image correlation of 2
images **/
/** and returns the output to master who displays it **/
/** --- **/
/** Author : Saumil Merchant **/
/** University of Tennessee **/
/** Electrical & Computer Engineering Department **/
/***/

#include <stdio.h>

 129
#include "/sw/matlab6.1/extern/include/engine.h"
#include "/usr/local/pvm3/include/pvm3.h"
#include "/sw/matlab6.1/extern/include/matrix.h"
#include <sys/time.h>
#include <sys/resource.h>

#define BUFSIZE 25000
/*#define test*/

#define NTASK 6 /** starts NTASK-1 child processes **/

/******* to calculate the execution time ********/
double cpusecs() {
 struct rusage ru;
 getrusage(RUSAGE_SELF,&ru);
 return(ru.ru_utime.tv_sec +
((double)ru.ru_utime.tv_usec)/1000000.0);
}/* cpusecs end*/

int main(){

 Engine *ep;
 char buffer[BUFSIZE];
 int d, info, cc, i, tid[NTASK-1];
 char filename[100],teststr[100];
 mxArray *datafile =NULL,*cor2=NULL;
 int bufid,r1,c1;
 double *pcor2,t1,t2,ct;
 struct timeval tmout;

 /********** Start the CPU timer **********/

 info = gettimeofday(&tmout,NULL);
 t1=tmout.tv_sec + (tmout.tv_usec)/1000000.0;

 /*********** Spawning the child processes ***********/

 cc =
pvm_spawn("/home/smerchan/thesis/application_1/child", (char**)0,
0, "", NTASK-1, tid);

 #ifdef test
 puts("Test Mode");

 /*************** ping ponging test messages
***************/

 /******* sending test messages ************/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("Hello from ");
 info = pvm_mcast(&tid[0],NTASK-1,10);

 130

 /************* receiving and printing test
mssages ************/

 for (i=0; i<NTASK-1; i++){
 info = pvm_recv(-1,11);
 if (info>0){
 pvm_upkstr(teststr);
 puts(teststr);
 }/* if end */
 } /* for end */
 #endif

 /****************** sending the imagefilename to the child
**********************/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("im_a");
 pvm_send(tid[0],1);

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("im_e");
 pvm_send(tid[1],1);

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("im_i");
 pvm_send(tid[2],1);

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("im_o");
 pvm_send(tid[3],1);

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("im_u");
 pvm_send(tid[4],1);

 #ifdef test

 /********** Receiving echo confirmation for image
filename*********/
 for (i=0; i<NTASK-1; i++){
 pvm_recv(-1,12);
 pvm_upkstr(teststr);
 puts(teststr);
 } /* for end */
 #endif

 #ifdef test

 /********** Receiving echo confirmation for
Matlab status*********/

 for (i=0; i<NTASK-1; i++) {

 131
 pvm_recv(-1,13);
 pvm_upkstr(teststr);
 puts(teststr);
 } /* for end */
 #endif

 /************ starting matlab engine and computing image
correlation **********/

 ep=engOpen("\0");
 if (!(ep)) {
 fprintf(stderr, "\nCan't start MATLAB engine\n");
 return EXIT_FAILURE;
 } /* end if */

 #ifdef test

 /********** Receiving echo confirmation
*********/

 for (i=0; i<NTASK-1; i++){
 pvm_recv(-1,14);
 pvm_upkstr(teststr);
 puts(teststr);
 } /* for end */
 #endif

 /************** receiving the data from child and
displaying it ***********/

 for (i=0; i<NTASK-1; i++){
 pvm_recv(-1,2);
 pvm_upkint(&r1,1,1);
 pvm_upkint(&c1,1,1);
 pcor2=(double*)malloc(r1*c1*8); /**** allocating
memory for data ******/
 pvm_upkdouble(pcor2,r1*c1,1);
 cor2 = mxCreateDoubleMatrix(r1,c1,mxREAL);
 mxSetName(cor2,"cor2");
 memcpy((void *)mxGetPr(cor2), (void *)pcor2,
r1*c1*8);
 d=engPutArray(ep,cor2);
 d=engEvalString(ep,"imaprint(cor2);");
 } /* for end */

 info = gettimeofday(&tmout,NULL);
 t2=tmout.tv_sec + (tmout.tv_usec)/1000000.0;
 printf("\nExecution Time of master process = %lf\n",t2-t1);

 printf("type OK to continue\n\n");
 scanf("%s",&teststr);
 puts("Done");

 132

 /** free up memory and exit **/

 mxDestroyArray(datafile);
 engClose(ep);
 pvm_exit();

}/*** main end ***/

Child.c

/***/
/** Parallel Character Recognition Approach II **/
/** --- **/
/** Program for character recognition using Image Correlation**/
/** Uses custom Matlab functions written by the author **/
/** The following functions are used **/
/** imacor.m --> to do correlation **/
/** Program spawns the NTASK-1 child processes child.c **/
/** Each child process calculates the image correlation of 2
images **/
/** and returns the output to master who displays it **/
/** --- **/
/** Author : Saumil Merchant **/
/** University of Tennessee **/
/** Electrical & Computer Engineering Department **/
/***/

#include <stdio.h>
#include "/sw/matlab6.1/extern/include/engine.h"
#include "/usr/local/pvm3/include/pvm3.h"
#include "/sw/matlab6.1/extern/include/matrix.h"
#include <sys/time.h>
#include <sys/resource.h>

#define BUFSIZE 25000
/*#define test*/

double cpusecs() {
 struct rusage ru;
 getrusage(RUSAGE_SELF,&ru);
 return(ru.ru_utime.tv_sec +
((double)ru.ru_utime.tv_usec)/1000000.0);
}/* cpusecs end*/

int main(){

 int ptid, r1, c1, d,test1;
 int *r, *c;

 133
 char filename[25], buffer[BUFSIZE], testbuf[100],
err[]="ERROR:";
 mxArray *datafile =NULL, *cor2=NULL;
 Engine *ep;
 double *cor2data,t1,t2,dt;

 ptid = pvm_parent();

 #ifdef test

 /********** receiving test message **********/

 pvm_recv(ptid,10);
 pvm_upkstr(testbuf);

 /********** sending test message *********/

 pvm_initsend(PvmDataDefault);
 gethostname(testbuf+ strlen(testbuf),64);
 pvm_pkstr(testbuf);
 pvm_send(ptid,11);
 #endif

 /************** receiving the iamgefilename
***************/

 pvm_recv(ptid,1);
 pvm_upkstr(filename);

 #ifdef test

 /********** echoing back *********/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr(filename);
 pvm_send(ptid,12);
 #endif

 /************ starting matlab engine **********/

 ep=engOpen("\0");
 if (!(ep)) {
 fprintf(stderr, "\nCan't start MATLAB engine\n");
 #ifdef test
 /****** echoing the error ********/
 pvm_initsend(PvmDataDefault);
 pvm_pkstr("Matlab not started");
 pvm_send(ptid,13);
 #endif
 pvm_exit();
 return EXIT_FAILURE;
 } /* end if */

 134

 #ifdef test
 /********** echoing back *********/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("Matlab started");
 pvm_send(ptid,13);
 #endif

 engOutputBuffer(ep,buffer,BUFSIZE);
 d=engEvalString(ep,"addpath('/home/smerchan/thesis/applicat
ion_1');");

 datafile=mxCreateString(filename);
 mxSetName(datafile,"datafile");
 engPutArray(ep,datafile); /*** putting it
in Matlab workspace ***/
 d=engEvalString(ep,"x1=double(imread('text','tif'));");
 d=engEvalString(ep,"x2=double(imread(datafile,'tif'));");
 d=engEvalString(ep,"x=imacor(x1,x2);");
 cor2=engGetArray(ep,"x");
 cor2data = mxGetPr(cor2);
 r1 = mxGetM(cor2);
 c1 = mxGetN(cor2);

 #ifdef test
 /********** echoing back *********/
 pvm_initsend(PvmDataDefault);
 pvm_pkstr(buffer);
 pvm_send(ptid,14);
 #endif

 /************** sending the output to the parent
***************/

 pvm_initsend(PvmDataDefault);
 pvm_pkint(&r1,1,1);
 pvm_pkint(&c1,1,1);
 pvm_pkdouble(cor2data,r1*c1,1);
 pvm_send(ptid,2);

 /**** freeing the allocated memory and ending the matlab
session ****/

 mxDestroyArray(datafile);
 mxDestroyArray(cor2);
 engClose(ep);

 pvm_exit();

} /*********** main end *************/

 135

MATLAB Function imacor.m

function x=imacor(x1,x2)

%%%
%
% Saumil Merchant
% ECE Department
% University Of Tennessee
%
% Function to perform character recognition using correlation
% operation on 2 data sets x1 and x2. The function uses fft
% algorithm to implement correlation.
%
% x=ifft(fft(x1).*fft(x2))
%
%%%

if nargin < 2
 error('Too few arguments in the function call');
end

x2 = flipud(fliplr(x2));

sze1=size(x1);
sze2=size(x2);

r= sze1(1)+sze2(1)-1;
c= sze1(2)+sze2(2)-1;

x1f=fft2(x1,r,c);
x2f=fft2(x2,r,c);

x_raw=ifft2(x1f.*x2f);

x1_sq=x1.^2;
flat_x2=ones(size(x2));
x1f_sq=fft2(x1_sq,r,c);
flat_x2f=fft2(flat_x2,r,c);

x_sqnorm=ifft2(x1f_sq.*flat_x2f);
x_norm1=x_sqnorm.^0.5;

x_norm1=x_norm1+0.1;

x_norm = real(x_raw./x_norm1);

x=x_norm;

 136
VHDL Design files

pcore.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

LIBRARY DWARE;
use DWARE.DWpackages.all;

entity pcore is
generic (width : Natural := 16;
 depth : Natural := 1024);

port (
 clk: in std_logic;
 clkdiv: in std_logic;
 rst: in std_logic;
 read: in std_logic;
 write: in std_logic;
 addr: in std_logic_vector(13 downto 0);
 din: in std_logic_vector(63 downto 0);
 dout: out std_logic_vector(63 downto 0);
 dmask: in std_logic_vector(63 downto 0);
 extin: in std_logic_vector(25 downto 0);
 extout: out std_logic_vector(25 downto 0);
 extctrl: out std_logic_vector(25 downto 0));
end pcore;

architecture syn of pcore is

component s_interface
generic (width : Natural := 16;
 depth : Natural := 1024);
port(
 din_r : in std_logic_vector(width-1 downto 0);
 din_i : in std_logic_vector(width-1 downto 0);
 wrd : in std_logic;
 ena : in std_logic;
 addr : in std_logic_vector(bit_width(depth)-1 downto 0);
 clk : in std_logic;
 clkdiv: in std_logic;
 start_fft : in std_logic;
 fwd_inv : in std_logic;
 scale_mode : in std_logic;
 rst : in std_logic;

 dout_r : out std_logic_vector(width-1 downto 0);
 dout_i : out std_logic_vector(width-1 downto 0);
 done_fft : out std_logic;
 success : out std_logic;
 state_out : out std_logic_vector(3 downto 0));

 137
end component;

signal din_r,din_i : std_logic_vector(width-1 downto 0);
signal dout_r,dout_i : std_logic_vector(width-1 downto 0);
signal addra : std_logic_vector(bit_width(depth)-1 downto 0);
signal add_buf : std_logic_vector(bit_width(depth)-1 downto 0);
signal wea,ena,clkd : std_logic;
signal start_fft,fwd_inv,scale_mode : std_logic;
signal done_fft,success: std_logic;
signal state : std_logic_vector(3 downto 0);
signal succ_buf : std_logic;
signal start_compute : std_logic;
signal start : std_logic;
signal start_debug : std_logic;
signal start_cntl : std_logic;
signal state_s_int : std_logic_vector(3 downto 0);
signal count : std_logic_vector(4 downto 0);

begin

map_s_interface : s_interface
port map (din_r => din_r,
 din_i => din_i,
 wrd => wea,
 ena => ena,
 addr => addra,
 clk => clk,
 clkdiv => clkd,
 start_fft => start_fft,
 fwd_inv => fwd_inv,
 scale_mode => scale_mode,
 rst => rst,
 dout_r => dout_r,
 dout_i => dout_i,
 done_fft => done_fft,
 success => success,
 state_out => state_s_int);

clkd <= clkdiv;
fwd_inv<='1';
scale_mode<='1';

din_r <= din(15 downto 0); -- real part
din_i <= din(47 downto 32); -- imag part

--dout(15 downto 0) <= dout_r; -- real part
--dout(47 downto 32) <= dout_i; -- imag part
--dout(31 downto 16) <= (others=>'0'); --when dout_r(15)='0' else
(others=>'1');
--dout(63 downto 48) <= (others=>'0'); --when dout_i(15)='0' else
(others=>'1');

dout(15 downto 0) <= dout_r; -- real part
dout(31 downto 16) <= dout_i; -- imag part

 138
dout(47 downto 32) <= (others =>'1') when succ_buf='1' else
(others =>'0');
dout(51 downto 48) <= (others =>'1') when start_fft='1' else
(others=>'0');
dout(55 downto 52) <= (others =>'1') when start_compute='1' else
(others=>'0');
dout(59 downto 56) <= state;
dout(63 downto 60) <= state_s_int;

succ_buf <= '0' when rst='1' or start_compute='1' else success or
succ_buf;

--dout(31 downto 0) <= "11000100110100000001101011100000" when
success='1' else (others=>'1');
--dout(63 downto 32) <= (others=>'1') when start_compute='1' else
(others=>'0');

addra <= add_buf;

add_buf <= din(25 downto 16) when write='1' else
 "0000000000" when rst='1' else add_buf; -- address bus

ena<='0' when addr(7 downto 0)="11111111" else '1';

wea <= write;

start <= '1' when addr(7 downto 0)="11111111" and read='1' else
'0';
start_debug <= '0' when rst='1' or state="0000" else start or
start_debug;
start_compute <= start_debug and start_cntl;

process(clk,rst)

--variable count: Integer;

begin
if rst='1' then
 start_fft<='0';
 count<=(others=>'0');
 start_cntl<='1';
 state<="0001";

elsif clk'event and clk='1' then

 case state is

 when "0000" => start_fft<='0';
 count<=(others=>'0');
 start_cntl<='1';
 state<="0001";

 when "0001" => if start_compute = '1' then

 139
 start_fft<='1';
 state<="0010";
 end if;

 when "0010" => count<=count+'1';
 start_cntl<='0';
 if count="11111" then
 count<=(others=>'0');
 start_fft<='0';
 state<="0011";
 end if;

 when "0011" => start_fft<='0';
 if done_fft='1' then
 state<="0100";
 end if;

 when "0100" => if start_compute = '0' then
 state<="0000";
 end if;

 when others => state<="0000";

 end case;
end if;

end process;

end syn;

s_interface.vhd

LIBRARY ieee,dware,dw03;
USE ieee.std_logic_1164.ALL;
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.std_logic_unsigned.all;
use DWARE.DWpackages.all;
use DW03.DW03_components.all;

LIBRARY DWARE;
use DWARE.DWpackages.all;

entity s_interface is
generic (width : Natural := 16;
 depth : Natural := 1024);
port(
 din_r : in std_logic_vector(width-1 downto 0);
 din_i : in std_logic_vector(width-1 downto 0);
 wrd : in std_logic;
 ena : in std_logic;
 addr : in std_logic_vector(bit_width(depth)-1 downto 0);

 140
 clk : in std_logic;
 clkdiv: in std_logic;
 start_fft : in std_logic;
 fwd_inv : in std_logic;
 scale_mode : in std_logic;
 rst : in std_logic;

 dout_r : out std_logic_vector(width-1 downto 0);
 dout_i : out std_logic_vector(width-1 downto 0);
 done_fft : out std_logic;
 success : out std_logic;
 state_out : out std_logic_vector(3 downto 0)); --state_out
added for debugging purposes

end s_interface;

architecture s_arch of s_interface is

component sms
port(clk : in std_logic;
 xn_r : in std_logic_vector(width-1 downto 0);
 xn_i : in std_logic_vector(width-1 downto 0);
 start : in std_logic;
 fwd_inv : in std_logic;
 ce : in std_logic;
 rs : in std_logic;
 mrd : in std_logic;
 mwr : in std_logic;
 scale_mode : in std_logic;

 dob_i,dob_r : out std_logic_vector(width-1 downto 0);
 edone : out std_logic;
 done : out std_logic;
 result : out std_logic;
 ovflo : out std_logic;
 busy : out std_logic;
 ext_addrr : out std_logic_vector(bit_width(depth)-1 downto
0);
 ext_addrw : out std_logic_vector(bit_width(depth)-1 downto
0);
 io_n : out std_logic);

end component;

component blockram_1024x16
port (
 addra: IN std_logic_VECTOR(bit_width(depth)-1 downto 0);
 addrb: IN std_logic_VECTOR(bit_width(depth)-1 downto 0);
 clka: IN std_logic;
 clkb: IN std_logic;
 dina: IN std_logic_VECTOR(width-1 downto 0);
 dinb: IN std_logic_VECTOR(width-1 downto 0);
 douta: OUT std_logic_VECTOR(width-1 downto 0);
 doutb: OUT std_logic_VECTOR(width-1 downto 0);
 ena: IN std_logic;

 141
 enb: IN std_logic;
 wea: IN std_logic;
 web: IN std_logic);
END component;

signal pull_up : std_logic;
signal pull_down : std_logic;
signal state : std_logic_vector(3 downto 0);

signal ext_addrw,ext_addrr : std_logic_vector(bit_width(depth)-1
downto 0);
signal dob_r, dob_i : std_logic_vector(width-1 downto 0);
signal data_r,data_i : std_logic_vector(width-1 downto 0);
signal io_n,wrb : std_logic;
signal start, mrd, mwr : std_logic;
signal ce,rs,edone,done : std_logic;
signal result,ovflo,busy : std_logic;

signal self_addr : std_logic_vector(bit_width(depth)-1 downto 0);
--signal cntl_addr: std_logic;
--signal addr_flag: std_logic;
signal clkd : std_logic;

-- lfsr signals
signal data : std_logic_vector(31 downto 0);
signal lfsr_en : std_logic;
signal lfsr_rsn : std_logic;
signal lfsr_sign : std_logic_vector(31 downto 0);
--signal success : std_logic;
signal ref_signature : std_logic_vector(31 downto 0);

begin

dataram_real: blockram_1024x16
port map (addra => addr,
 addrb => self_addr,
 clka => clk,
 clkb => clkd,
 dina => din_r,
 dinb => dob_r,
 douta => dout_r,
 doutb => data_r,
 ena => ena,
 enb => pull_up,
 wea => wrd,
 web => wrb);

dataram_imag: blockram_1024x16
port map (addra => addr,
 addrb => self_addr,
 clka => clk,
 clkb => clkd,
 dina => din_i,

 142
 dinb => dob_i,
 douta => dout_i,
 doutb => data_i,
 ena => ena,
 enb => pull_up,
 wea => wrd,
 web => wrb);

sms_fft : sms
port map (clk => clkd,
 xn_r => data_r,
 xn_i => data_i,
 start => start,
 fwd_inv => fwd_inv,
 ce => ce,
 rs => rs,
 mrd => mrd,
 mwr => mwr,
 scale_mode => scale_mode,
 dob_i => dob_i,
 dob_r => dob_r,
 edone => edone,
 done => done,
 result => result,
 ovflo => ovflo,
 busy => busy,
 ext_addrr => ext_addrr,
 ext_addrw => ext_addrw,
 io_n => io_n);

-- Instance of DW03_lfsr_load
 misr1 : DW03_lfsr_load
 generic map (width => 32)

 port map (data => data,
 load => pull_down,
 cen => lfsr_en,
 clk => clkd,
 reset => lfsr_rsn,
 count => lfsr_sign);

lfsr_rsn<= not rs;
ref_signature <= "11000100110100000001101011100000";
data(15 downto 0)<= dob_r;
data(31 downto 16)<= dob_i;

success<='1' when lfsr_sign=ref_signature else '0';

state_out <= state; -- for debugging purposes

pull_down <='0';
pull_up <= '1';

 143

clkd<=clkdiv;

--add_gen: process (clkd,rst)
--
--begin
-- if rst='1' then
-- addr_flag<='0';
-- self_addr<=(others=>'0');
-- elsif clkd'EVENT and clkd='1' then
-- if cntl_addr='1' then
-- if addr_flag='0' then
-- self_addr<=(others=>'0');
-- addr_flag<='1';
-- else
-- self_addr<=self_addr+'1';
-- if self_addr="1111111111" then
-- addr_flag<='0';
-- end if;
-- end if;
-- else
-- addr_flag<='0';
-- self_addr <= (others=>'0');
-- end if;
-- end if;
--end process;

fst: process(clkd,rst)

--variable count: Integer;
begin

if rst='1' then
 state<="0001";
 self_addr <= (others=>'0');
 mrd <= '0';
 mwr <= '0';
 start<='0';
 ce <= '1';
 rs <= '0';
 wrb <= '0';
 done_fft<='0';
 lfsr_en<='0';
 --count:=0;

elsif clkd'event and clkd='1' then

 case state is

 when "0000" => mrd <= '0';
 mwr <= '0';
 self_addr <= (others=>'0');
 start<='0';
 ce <= '1';

 144
 rs <= '0';
 wrb <= '0';
 done_fft<='0';
 lfsr_en<='0';
 state<= "0001";
 --count:=0;

 when "0001" => rs <= '1';
 state <= "0010";

 when "0010" => rs <= '0';
 if start_fft='1' then
 state <= "0011";
 end if;

 when "0011" => mwr <= '1';
 wrb<='0';
 self_addr <= (others=>'0');
 state <= "0100";

 when "0100" => mwr <= '0';
 self_addr<=self_addr+'1';
 if self_addr="1111111111" then
 state<="0101";
 end if;

 when "0101" => self_addr <= (others=>'0');

 state <= "0110";

 when "0110" => start <= '1';
 state<= "0111";

 when "0111" => start<='0';
 state<= "1000";

 when "1000" => if busy='0' then
 state <= "1001";
 end if;

 when "1001" => mrd <='1';
 state <= "1010";

 when "1010" => mrd <= '0';
 state<= "1011";

 when "1011" => wrb <= '1';
 lfsr_en<= '1';
 self_addr<=(others=>'0');
 state<="1100";

 when "1100" => self_addr<=self_addr+'1';
 if self_addr="1111111111" then
 state<="1101";
 lfsr_en<='0';

 145
 wrb<='0';
 end if;

 when "1101" => self_addr<=(others=>'0');
 wrb<='0';
 lfsr_en<='0';
 done_fft<='1';
 state <= "1110";

 when "1110" => done_fft<='0';
 state <= "0000";

 when others => state <= "0000";

 end case;
end if;
end process;

end s_arch;

sms.vhd

-- Single Memory Space Configuration for fft.
-- uses Virtex Blockrams and 1024-point complex fft core.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
use IEEE.STD_LOGIC_ARITH.all;

LIBRARY DWARE;
use DWARE.DWpackages.all;

ENTITY sms is
generic (width : Natural := 16;
 depth : Natural := 1024);
port(clk : in std_logic;
 xn_r,xn_i : in std_logic_vector(width-1 downto 0);
 start : in std_logic;
 fwd_inv : in std_logic;
 ce : in std_logic;
 rs : in std_logic;
 mrd : in std_logic;
 mwr : in std_logic;
 scale_mode : in std_logic;

 dob_i,dob_r : out std_logic_vector(width-1 downto 0);
 edone : out std_logic;
 done : out std_logic;
 result : out std_logic;
 ovflo : out std_logic;
 busy : out std_logic;

 146
 -- added for using the buffer rams for pilchard
functionality
 ext_addrr : out std_logic_vector(bit_width(depth)-1 downto
0);
 ext_addrw : out std_logic_vector(bit_width(depth)-1 downto
0);
 io_n : out std_logic);

end sms;

architecture conf of sms is

------------- Begin Cut here for COMPONENT Declaration ------
COMP_TAG
component blockram_1024x16
 port (
 addra: IN std_logic_VECTOR(9 downto 0);
 addrb: IN std_logic_VECTOR(9 downto 0);
 clka: IN std_logic;
 clkb: IN std_logic;
 dina: IN std_logic_VECTOR(15 downto 0);
 dinb: IN std_logic_VECTOR(15 downto 0);
 douta: OUT std_logic_VECTOR(15 downto 0);
 doutb: OUT std_logic_VECTOR(15 downto 0);
 ena: IN std_logic;
 enb: IN std_logic;
 wea: IN std_logic;
 web: IN std_logic);
end component;

-- FPGA Express Black Box declaration
--attribute fpga_dont_touch: string;
--attribute fpga_dont_touch of blockram_1024x16: component is
"true";

-- COMP_TAG_END ------ End COMPONENT Declaration ------------

------------- Begin Cut here for COMPONENT Declaration ------
COMP_TAG
component vfft1024
 port(
 clk : in std_logic;
 rs : in std_logic;
 start : in std_logic;
 ce : in std_logic;
 scale_mode : in std_logic;
 di_r : in std_logic_vector(15 downto 0);
 di_i : in std_logic_vector(15 downto 0);
 fwd_inv : in std_logic;
 io_mode0 : in std_logic;
 io_mode1 : in std_logic;
 mwr : in std_logic;
 mrd : in std_logic;
 ovflo : out std_logic;

 147
 result : out std_logic;
 mode_ce : out std_logic;
 done : out std_logic;
 edone : out std_logic;
 io : out std_logic;
 eio : out std_logic;
 bank : out std_logic;
 busy : out std_logic;
 wea : out std_logic;
 wea_x : out std_logic;
 wea_y : out std_logic;
 web_x : out std_logic;
 web_y : out std_logic;
 ena_x : out std_logic;
 ena_y : out std_logic;
 index : out std_logic_vector(9 downto 0);
 addrr_x : out std_logic_vector(9 downto 0);
 addrr_y : out std_logic_vector(9 downto 0);

 addrw_x : out std_logic_vector(9 downto 0);

 addrw_y : out std_logic_vector(9 downto 0);

 xk_r : out std_logic_vector(15 downto 0);
 xk_i : out std_logic_vector(15 downto 0);
 yk_r : out std_logic_vector(15 downto 0);
 yk_i : out std_logic_vector(15 downto 0));
end component;

-- XST black box declaration
attribute box_type : string;
attribute box_type of vfft1024: component is "black_box";

-- FPGA Express Black Box declaration
attribute fpga_dont_touch: string;
attribute fpga_dont_touch of blockram_1024x16: component is
"true";
attribute fpga_dont_touch of vfft1024: component is "true";

-- Synplicity black box declaration
attribute syn_black_box : boolean;
attribute syn_black_box of vfft1024: component is true;

-- COMP_TAG_END ------ End COMPONENT Declaration ------------

signal di,dr : std_logic_vector(width-1 downto 0);
signal xk_r,xk_i : std_logic_vector(width-1 downto 0);
--signal yk_r,yk_i : std_logic_vector(width-1 downto 0);
--signal xn_r,xn_i : std_logic_vector(width-1 downto 0);
signal addrr,addrw : std_logic_vector(bit_width(depth)-1 downto
0);
--signal ce : std_logic;
--signal clk : std_logic;
signal wea,io : std_logic;
--signal mrd,mwr,fwd_inv,start,rs : std_logic;

 148
--signal scale_mode,ovflo,result : std_logic;
--signal done,edone,bank,busy : std_logic;
signal mode_ce,eio : std_logic;
--signal wea_x,wea_y,web_x,web_y,ena_x,ena_y : std_logic;
--signal index : std_logic_vector(bit_width(depth)-1 downto 0);
signal pull_up : std_logic;
signal pull_down : std_logic;

begin

real: blockram_1024x16
port map(addra => addrw,
 addrb => addrr,
 clka => clk,
 clkb => clk,
 dina => xk_r,
 dinb => xn_r,
-- douta =>
 doutb => dr,
 ena => ce,
 enb => pull_up,
 wea => wea,
 web => io);

imag: blockram_1024x16
port map(addra => addrw,
 addrb => addrr,
 clka => clk,
 clkb => clk,
 dina => xk_i,
 dinb => xn_i,
-- douta =>
 doutb => di,
 ena => ce,
 enb => pull_up,
 wea => wea,
 web => io);

fft: vfft1024
port map (clk => clk,
 rs => rs,
 start => start,
 ce => ce,
 scale_mode => scale_mode,
 di_r => dr,
 di_i => di,
 fwd_inv => fwd_inv,
 io_mode0 => pull_down,
 io_mode1 => pull_up,
 mwr => mwr,
 mrd => mrd,
 ovflo => ovflo,
 result => result,
 mode_ce => mode_ce,
 done => done,

 149
 edone => edone,
 io => io,
 eio => eio,
-- bank => bank,
 busy => busy,
 wea => wea,
-- wea_x => wea_x,
-- wea_y => wea_y,
-- web_x => web_x,
-- web_y => web_y,
-- ena_x => ena_x,
-- ena_y => ena_y,
-- index => index,
 addrr_x => addrr,
 --addrr_y =>
 addrw_x => addrw,
-- addrw_y =>
 xk_r => xk_r,
 xk_i => xk_i);
-- yk_r => yk_r,
-- yk_i => yk_i);

dob_r <= dr;
dob_i <= di;
ext_addrr <= addrr;
ext_addrw <= addrw;
io_n <= not io;
pull_down <='0';
pull_up<='1';

end conf;

 150

Distributed ANN Training programs

parent.c

#include <stdio.h>
#include "/sw/matlab6.1/extern/include/engine.h"
#include "/usr/local/pvm3/include/pvm3.h"
#include "/sw/matlab6.1/extern/include/matrix.h"
#include <sys/time.h>
#include <sys/resource.h>

#define BUFSIZE 25000
/*#define test*/

#define NTASK 5 /** starts NTASK child processes **/

/******* to calculate the execution time ********/
double cpusecs() {
 struct rusage ru;
 getrusage(RUSAGE_SELF,&ru);
 return(ru.ru_utime.tv_sec +
((double)ru.ru_utime.tv_usec)/1000000.0);
}/* cpusecs end*/

int main(){
 Engine *ep;
 double t,t1,t2,numhid,testdouble,goal;
 char
filename1[25],filename2[25],teststr[100],teststr1[25000];
 int
tid[NTASK],testids[NTASK],i,j,instnum,info,size,stop=0,cc,child_i
nst,child_tid=1;
 struct timeval tmout1,tmout2;

 /***** Enter the Data filename *****/

 puts("Enter the datafile name:");
 scanf("%s",&filename1); /*** reading the
datafile name ***/
 puts("Enter the Architecture Specifications Filename:");
 scanf("%s",&filename2); /*** reading the
archspec filename ***/

 /********** Start the CPU timer **********/
/* t1=(double)cpusecs();*/
 info=gettimeofday(&tmout1,NULL);
/* printf("tmout1 = %d\n", info);*/

 /*********** Spawning the child processes ***********/

 instnum = pvm_joingroup("nnet");
 cc = pvm_spawn("/home/smerchan/577/project/child",
(char**)0, 1, "vlsi1", 1, tid);

 151
 if (cc == 0) { pvm_exit(); return -1; }
 cc = pvm_spawn("/home/smerchan/577/project/child",
(char**)0, 1, "vlsi2", 1, tid);
 if (cc == 0) { pvm_exit(); return -1; }
 cc = pvm_spawn("/home/smerchan/577/project/child",
(char**)0, 1, "vlsi3", 1, tid);
 if (cc == 0) { pvm_exit(); return -1; }
 cc = pvm_spawn("/home/smerchan/577/project/child",
(char**)0, 1, "vlsi4", 1, tid);
 if (cc == 0) { pvm_exit(); return -1; }
 cc = pvm_spawn("/home/smerchan/577/project/child",
(char**)0, 1, "vlsi5", 1, tid);
 if (cc == 0) { pvm_exit(); return -1; }
 /*cc = pvm_spawn("/home/smerchan/577/project/child",
(char**)0, 1, "vlsi6", 1, tid);
 if (cc == 0) { pvm_exit(); return -1; }
 cc = pvm_spawn("/home/smerchan/577/project/child",
(char**)0, 1, "vlsi7", 1, tid);
 if (cc == 0) { pvm_exit(); return -1; }
 cc = pvm_spawn("/home/smerchan/577/project/child",
(char**)0, 1, "vlsi8", 1, tid);
 if (cc == 0) { pvm_exit(); return -1; }*/

 /************* checking for group membership ************/

 for (i=0; i<NTASK; i++){

 info = pvm_recv(-1,1);
 if (info>0){
 pvm_upkstr(teststr);
 puts(teststr);
 }/* if end */
 } /* for end */

 /****************** sending the data file name,
architecture spec file name and the TASK IDs to the child
processes **********************/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr(filename1);
 pvm_pkstr(filename2);
/* pvm_pkint(&tid[0],NTASK,1);
 pvm_mcast(&tid[0],NTASK,1);*/
 pvm_bcast("nnet",2);

 #ifdef test
 puts("Test Mode");

 /********** Receiving echo confirmation for
datafile and spec file names *********/
 for (i=0; i<NTASK; i++){
 pvm_recv(-1,12);
 pvm_upkstr(teststr);

 152
 puts(teststr);
 pvm_upkstr(teststr);
 puts(teststr);
 /*pvm_upkint(&testids[0],NTASK,1);
 for (j=0; j<NTASK; j++){
 printf("%d\t",testids[j]);
 }*/
 puts("\n");
 } /* for end */
 #endif
 #ifdef test

 /********** Receiving "Matlab Started"
Confirmation *********/

 for (i=0; i<NTASK; i++) {
 pvm_recv(-1,13);
 pvm_upkstr(teststr);
 puts(teststr);
 } /* for end */
 #endif

 #ifdef test

 /********** Receiving "addpath" confirmation
*********/

 for (i=0; i<NTASK; i++) {
 pvm_recv(-1,14);
 pvm_upkstr(teststr);
 pvm_upkint(&cc,1,1);
 puts(teststr);
 printf("value: %d\n",cc);
 } /* for end */
 #endif

 #ifdef test

 /********** Receiving "datafile loading"
confirmation *********/

 for (i=0; i<NTASK; i++) {
 pvm_recv(-1,15);
 pvm_upkstr(teststr);
 puts(teststr);
 pvm_upkstr(teststr);
 puts(teststr);
 } /* for end */
 #endif

 #ifdef test

 /********** Receiving "specfile loading"
confirmation *********/

 153
 for (i=0; i<NTASK; i++) {
 pvm_recv(-1,16);
 pvm_upkstr(teststr);
 puts(teststr);
 pvm_upkstr(teststr);
 puts(teststr);
 } /* for end */
 #endif

 #ifdef test

 /********** Receiving "Number of Hidden Nodes"
confirmation *********/

 for (i=0; i<NTASK; i++) {
 pvm_recv(-1,17);
 pvm_upkstr(teststr);
 puts(teststr);
 pvm_upkstr(teststr);
 puts(teststr);
 pvm_upkdouble(&testdouble,1,1);
 printf("ptrindex = %lf\n",testdouble);
 } /* for end */
 #endif

 #ifdef test

 /********** Receiving " Training Start"
confirmation *********/

 /* for (i=0; i<NTASK; i++) {
 pvm_recv(-1,18);
 pvm_upkstr(teststr);
 puts(teststr);
 pvm_upkstr(teststr);
 puts(teststr);*/
/* }*/ /* for end */
 #endif

 #ifdef test

 /********** Receiving " Training Start"
confirmation *********/

/* for (i=0; i<NTASK; i++) {
 pvm_recv(-1,19);
 pvm_upkstr(teststr);
 puts(teststr);
 pvm_upkstr(teststr);
 puts(teststr);*/
/* }*/ /* for end */
 #endif
 puts("Training the network. Pls wait ");

 do {

 154
 pvm_recv(-1,-1);
 pvm_upkdouble(&goal,1,1);
 pvm_upkdouble(&numhid,1,1);
 pvm_upkint(&child_inst,1,1);
 if (goal==1) {
 printf("Training Successful for %d Hidden
Nodes\n",(int)numhid);
 puts("killing all other tasks with larger
networks ...");
 /* info=gettimeofday(&tmout2,NULL);
 t1=tmout1.tv_sec + (tmout1.tv_usec)/1000000.0;
 t2=tmout2.tv_sec + (tmout2.tv_usec)/1000000.0;
 t=t2-t1;
 printf("Execution Time: %lf secs\n",t);*/

 while (child_tid > 0){
 child_tid =
pvm_gettid("nnet",child_inst+1);
 if (child_tid > 0)
{pvm_kill(child_tid);};
 }
 } else {
 printf("Training goal couldn't be met with %d
Hidden Nodes\n",(int)numhid);
/* info=gettimeofday(&tmout2,NULL);
 t1=tmout1.tv_sec + (tmout1.tv_usec)/1000000.0;
 t2=tmout2.tv_sec + (tmout2.tv_usec)/1000000.0;
 t=t2-t1;
 printf("Execution Time: %lf secs\n",t);*/

 }
 size=pvm_gsize("nnet");
 size=pvm_gsize("nnet");
 size=pvm_gsize("nnet");
 size=pvm_gsize("nnet");
 } while (size > 1);

 pvm_exit();

 /******* stop the timer ************/
 /*t2 = (double)cpusecs();
 t=t1-t2;*/
 info=gettimeofday(&tmout2,NULL);
/* printf("tmout2 = %d\n", info);*/
 t1=tmout1.tv_sec + (tmout1.tv_usec)/1000000.0;
 t2=tmout2.tv_sec + (tmout2.tv_usec)/1000000.0;
 t=t2-t1;
 printf("Execution Time: %lf secs\n",t);
 return 1;
}

child.c

#include <stdio.h>

 155
#include "/sw/matlab6.1/extern/include/engine.h"
#include "/usr/local/pvm3/include/pvm3.h"
#include "/sw/matlab6.1/extern/include/matrix.h"
#include <sys/time.h>
#include <sys/resource.h>

#define BUFSIZE 25000
/*#define test*/

double cpusecs() {
 struct rusage ru;
 getrusage(RUSAGE_SELF,&ru);
 return(ru.ru_utime.tv_sec +
((double)ru.ru_utime.tv_usec)/1000000.0);
}/* cpusecs end*/

int main(){

 Engine *ep;
 double t1, t2, *res,*numnod, *ptrindex;
 int ptid, mytid,*tid,instnum,count=0,d;
 char
testbuf[100],filename1[25],filename2[25],buffer[BUFSIZE];
 mxArray *datafile=NULL,
*specfile=NULL,*ptrhid=NULL,*goal=NULL,*numhid=NULL;

 /******* start the timer ************/
 t1 = (double)cpusecs();

 /****** getting the task IDs ********/
 instnum = pvm_joingroup("nnet");
 ptid = pvm_parent();
 mytid= pvm_mytid();

 /********** sending group joined confirmation
************/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("joined group nnet");
 pvm_send(ptid,1);

 /************** receiving the tids, datafilename and the
spec filename ***************/

 pvm_recv(ptid,2);
 pvm_upkstr(filename1);
 pvm_upkstr(filename2);
/* pvm_upkint(tid,1,1);*/

 #ifdef test

 /********** echoing back *********/

 pvm_initsend(PvmDataDefault);

 156
 pvm_pkstr(filename1);
 pvm_pkstr(filename2);
 pvm_send(ptid,12);
 #endif

 /************ starting matlab engine **********/

 ep=engOpen("\0");
 if (!(ep)) {
 fprintf(stderr, "\nCan't start MATLAB engine\n");
 #ifdef test
 /****** echoing the error ********/
 pvm_initsend(PvmDataDefault);
 pvm_pkstr("Matlab not started");
 pvm_send(ptid,13);
 #endif
 pvm_exit();
 return EXIT_FAILURE;
 } /* end if */

 #ifdef test
 /********** echoing back *********/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("Matlab started");
 pvm_send(ptid,13);
 #endif
 engOutputBuffer(ep,buffer,BUFSIZE);

d=engEvalString(ep,"addpath('/home/smerchan/577/project');");

 #ifdef test
 /********** echoing back *********/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("addpath done");
 pvm_pkint(&d,1,1);
 pvm_send(ptid,14);
 #endif

 /*********** loading the datafile ****************/
 datafile=mxCreateString(filename1);
 mxSetName(datafile,"datafile");
 engPutArray(ep,datafile); /*** putting it
in Matlab workspace ***/

 #ifdef test
 /********** echoing back *********/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("datafile loaded");
 pvm_pkstr(buffer);
 pvm_send(ptid,15);

 157
 #endif

 /*********** loading the spec file ****************/
 specfile=mxCreateString(filename2);
 mxSetName(specfile,"specfile");
 engPutArray(ep,specfile); /*** putting it
in Matlab workspace ***/

 #ifdef test
 /********** echoing back *********/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("specfile loaded");
 pvm_pkstr(buffer);
 pvm_send(ptid,16);
 #endif

 /**** Choosing the Number of Hidden Neurons ******/

 ptrhid = mxCreateDoubleMatrix(1, 1, mxREAL);
 mxSetName(ptrhid,"ptrhid");
 ptrindex=(double *)malloc(1*sizeof(double));
 *ptrindex= (double)instnum;
 mxSetPr(ptrhid,ptrindex);
 d=engPutArray(ep,ptrhid);
 d=engEvalString(ep,"ptrhid");

 #ifdef test
 /********** echoing back *********/

 pvm_initsend(PvmDataDefault);
 pvm_pkstr("Number of Hidden Nodes: ");
 pvm_pkstr(buffer);
 pvm_pkdouble(ptrindex,1,1);
 pvm_send(ptid,17);
 #endif

 /****** Start the training *********/

 while (count < 2){

 d=engEvalString(ep,"nntwarn off;");
 d=engEvalString(ep,"close all;");
 d=engEvalString(ep,"[goal SSE
numhid]=newtrain(datafile,specfile,ptrhid);");
 #ifdef test
 /********** echoing back *********/

 /* pvm_initsend(PvmDataDefault);
 pvm_pkstr("Starting Training");
 pvm_pkstr(buffer);
 pvm_send(ptid,18+count);*/
 #endif

 158
 d=engEvalString(ep,"goal");

 goal=engGetArray(ep,"goal");
 res = mxGetPr(goal);
 numhid=engGetArray(ep,"numhid");
 numnod = mxGetPr(numhid);

 pvm_initsend(PvmDataDefault);
 pvm_pkdouble(res,1,1);
 pvm_pkdouble(numnod,1,1);
 pvm_pkint(&instnum,1,1);
 pvm_send(ptid,3);
 if (*res==1) break;

 count=count+1;
 }
 pvm_lvgroup("nnet");
 mxDestroyArray(datafile);
 mxDestroyArray(specfile);
 mxDestroyArray(ptrhid);
 mxDestroyArray(numhid);
 mxDestroyArray(goal);
 engClose(ep);
 pvm_exit();
}

MATLAB files

archspec.m

%%
% Script for defining the Architecutral Specifications %
%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for Activation Functions %
% t => tansig %
% l => logsig %
% p => purelin %
% for Input Scaling %
% m => MCUV %
% l => Linear %
% n => None %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%
% Defining Network Architecture Specification Matrix %
%%%

numlay = 1; % number of hidden layers
numnod = [5:1:16]; % number of hidden neurons/hidden layer
vector

 159
Fh='tansig'; % Hidden Layer Activation Function
Fo='purelin'; % o/p Layer Activation Function
sc='m'; % Input Scaling
sc_out='m'; % output scaling

%%%
% Specifying the Training Parameters %
%%%

tolerance = 100; % error goal
epoch_disp = 1000;plotflag = 1; % Display rate
maxepochs = 2000; % max epochs to train until

TP=[epoch_disp maxepochs tolerance .001 .01 10 .1 1e10]; %
Training parameter vector

save spec numlay numnod Fh Fo sc sc_out TP tolerance maxepochs;
saving specification%

datasetup.m

clear all;

load data; % loading the data set

% data set reduction
ind=find(x(:,4)<(.99*y)&y>1);
xt=x(ind,:);
yt=y(ind);
s=size(xt,1)
reduction=100*(length(x)-s)/length(x)

% output scaling
ytl=log(yt);

% training and testing data sets
breakpoint=620;
xtrn=xt(1:breakpoint,:);
xtest=xt(breakpoint+1:s,:);
ytrn=ytl(1:breakpoint);
ytest=ytl(breakpoint+1:s);

% saving the training and testing data
sa

ve trdata xtrn ytrn ytest xtest;

 160
newtrain.m

function [goal, SSE, numhid] = newtrain(datafile,specfile,ptrhid)
%%%
%%%%%%%%%%%%%%%%%%
% This function trains the network architcture specified in the
specfile using %
% Levenberg-Marquardt Training algorithm. 'ptrhid' selects the
number of hidden %
% neurons/hidden layer to be used, from vector numnod. Datafile
contains the %
% training datasets and specfile contains the architectural
specifications and %
% Training parameters.
%
%%%
%%%%%%%%%%%%%%%%%%

%%%
% Load Training and architectural specification datafiles %
 %
%%%

eval(['load ' datafile]); % training datafile loaded
eval(['load ' specfile]); % Specifications datafile loaded
nntwarn off;
numhid=numnod(ptrhid) % number of hidden neurons/layer to use

x=xtrn;
y=ytrn;

[nov1, numin] = size(x); % x are input vectors
[nov2,numout] = size(y); % y are target vectors

if nov1 ~= nov2

 error('The number of input vectors and target vectors has to
be the same.')
end

%%%
% resultfile to store the final weights and biases in %
% case of successful training. %
%%%

resultfile = ['/tnfs/home/smerchan/577/project/files/output_'
int2str(numlay) '_' int2str(numhid)];

%%
% Log Scaling the o/p if needed %
%%

if sc_out == 'l'

 161
 y=log(y);
end

%%%
%%%
% Mean center and unit variance scale input.
 %
% Transpose input/output vectors to conform to MATLAB standard.
%
%%%
%%%

if sc == 'm'
 [xn, xm, xs] = zscore1(x);
elseif sc == 'l'
 [xn, xm, xs] = scale1(x);
else
 xn=x; % Input vector
end
 xn=xn'; % Target vector
 yn=y'; % Target vector

%%
% Initializing the weights and biases and training the network %
% using levenberg-Marquardt Algorithm %
%%

if numlay==1
 F1=Fh;
 F2=Fo;
 [W1,B1,W2,B2]=initff(xn,numhid,F1,numout,F2); %Initializing
weights and biases
 figure;
 [W1,B1,W2,B2,epochs,TR]=trainlm(W1,B1,F1,W2,B2,F2,xn,yn,TP);
%Training the network
elseif numlay==2
 F1=Fh;
 F2=Fh;
 F3=Fo;
 [W1,B1,W2,B2,W3,B3]=initff(xn,numhid,F1,numhid,F2,numout,F3);
%Initializing weights and biases
 figure;

[W1,B1,W2,B2,W3,B3,epochs,TR]=trainlm(W1,B1,F1,W2,B2,F2,W3,B3,F3,
xn,yn,TP); %Training the network
end

%%%
% Tolerance criteria not met by LM. %
%%%

SSE=min(TR);
if SSE>tolerance
 goal=0;

 162
else
%%%
% Tolerance criteria met by LM.
 %
%%%
 goal=1;
 % Saving the resultant weights and vectors
 if numlay==1
 eval(['save ',resultfile,' W1 B1 W2 B2 xm xs SSE']);
 elseif numlay==2
 eval(['save ',resultfile,' W1 B1 W2 B2 W3 B3 xm xs
SSE']);
 end
end

%%%
% The end
 %
%%

%%%

 163

Vita

Mr. Saumil Merchant was born (1976) and brought up in Mumbai, India.

He did his schooling from New Era High School, Mumbai and joined Jai Hind

College of Science, Mumbai in 1992. From there he went on to pursue a

professional career in engineering at University of Mumbai and graduated with a

Bachelors in Electronics Engineering in 1999. He joined University of Tennessee,

Knoxville in January 2001 to pursue Masters of Science in Electrical Engineering.

He has worked as a Windows Systems Administrator at Office of Research and

Information Technology, Client and Network Services at University of Tennessee

since February 2001 till present. He is a student member of IEEE. He plans to

graduate with a Masters degree in Electrical Engineering in August 2003 and

wishes to pursue a doctorate in Electrical Engineering at University of Tennessee.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2003

	Approaches for MATLAB Applications Acceleration Using High Performance Reconfigurable Computers
	Saumil Girish Merchant
	Recommended Citation

	Introduction
	High Performance Computing (HPC)
	Reconfigurable Computing (RC)
	High Performance Reconfigurable Computing (HPRC)
	Problem Addressed
	Related Work
	Outline Of Thesis

	Approaches For Porting Matlab Applications To HPRC
	MATLAB® - External Interface †
	Introduction to MATLAB® MEX-Files
	C MEX-Files
	Calling MATLAB® from C Programs - MATLAB® Engine

	Parallel Virtual Machine (PVM)
	Parallel Programming Paradigms
	Crowd Computation Paradigm
	Tree Computation Paradigm
	Hybrid Computation Paradigm

	Pilchard – A Reconfigurable Computing Platform
	Approaches to Port MATLAB® Applications to HPRC
	Approach I – Library Based Approach
	Approach II – C as a Master Program

	Case Study I – Implementing Image Correlation On
	Convolution Operation
	FFT Convolution

	Correlation Function
	Implementation on HPRC
	Library Based Approach
	C as a Master
	Hardware Implementation
	Results
	Limitations

	Case Study II – Artificial Neural Network Trainin
	Introduction to Artificial Neural Networks (ANN)
	Estimation of Solar Particle Event Doses: A Case Study
	Results and Discussion

	Discussion And Conclusions
	Feasibility and Target Scenarios for both Approaches
	Performance Advantage and Run Time Efficiency
	End User Friendliness
	Ease of Programming

	Future Work
	References
	Appendices
	Appendix A – Some figures of Chapter 3
	Appendix B – Steps to port MATLAB functions to HP
	Appendix C – Program Codes

	Vita

