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ABSTRACT 
 
 

Compared to rodents, broiler chickens, those reared for meat, are an attractive 

model for studies of adipose biology, and obesity development in children. The broiler 

chicken lacks the gene for uncoupling protein 1, the hallmark for brown adipose tissue 

making them a useful model to study lipid metabolism in white adipocytes. Two studies 

were performed to investigate if white adipose tissue had the metabolic ability for fatty 

acid oxidation (FAO), and to investigate the effects of dietary fatty acids on abdominal fat 

development of young broiler chickens as a model for childhood obesity. In study one, 

chickens were fasted for three, five, and seven hours. Afterwards, the oxidative flux from 

the citric acid cycle, and the citrate synthase enzyme activity were measured in white 

adipose tissue. In study two, young Cobb500 broilers, from age seven to 21 days, were 

fed isocaloric diets prepared using lard (primarily saturated), corn oil (primarily 

monounsaturated), flaxseed oil (enriched in alpha linolenic acid (ALA, 18:3, n-3)), or fish 

oil (enriched in eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 

22:6, n-3)), at 8% fat by weight. Physical characteristics, abdominal adipocyte histology, 

and abdominal adipose tissue gene expression profiles were altered due to dietary fatty 

acids. Collectively our studies confirm that white adipose tissue has the capacity to 

increase local FAO by increasing expression of key regulatory enzymes and proteins. 

Further, by altering the type of fatty acids consumed during childhood, adipose deposition 
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and adipocyte size can be attenuated. These data confirm that FAO can be induced locally 

in white adipose tissue, dietary long chain n-3 polyunsaturated fatty acids promote 

reduced adipocyte size, and finally that these data could offer new therapeutic targets to 

reduce fatness in chickens and children.  
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CHAPTER I 
LITERATURE REVIEW 

1.1 Obesity  

Adipose tissue is specialized tissue designed to store excess energy in the body. 

When energy intake and expenditure are in balance, adipose tissue mass is maintained at 

a steady level. Once energy is in excess, due to either increased intake or reduced 

expenditure, it is stored in adipose tissue in the form of triacylglycerol (TG) molecules. 

These molecules are made of three fatty acids esterified to a glycerol backbone. Adipose 

mass expands as TG storage increases, once energy intake consistently exceeds 

expenditure. However, when demand for energy increases or energy intake is low, fatty 

acids are hydrolyzed from the glycerol backbone and released into circulation for use by 

other tissues.  

Obesity is a condition of excess adipose tissue. Clinically, obesity is diagnosed by 

defining body mass index (BMI) (kilogram body weight/squared height in meters), and 

individuals having a BMI > 30 kg/m2 are considered to be obese. Obesity is considered to 

be an epidemic, and is prevalent in the United States and abroad. Presently, the United 

States Centers for Disease Control and Prevention (CDC) reports that 34.9% of the adult 

population and 16.9% of children and adolescence in the United States are obese (Ogden 

et al., 2014). Obesity manifests as excessive weight gain and contributes to a number of 
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serious medical conditions such as sleep apnea, asthma, cancer, cardiovascular disease, 

type 2 diabetes, nonalcoholic fatty liver disease, infertility, hypertension, and orthopedic 

complications (Daniels et al., 2005). 

Excess lipids in circulation, also known as hyperlipidemia, changes the blood pH, 

impairs cardiac efficiency, promotes inflammation, and reduces insulin sensitivity. All of 

which contribute, at varying levels, to obesity associated comorbidities because an 

overabundance of fat, as is present in obese individuals, renders adipose tissue 

dysfunctional by weakening its ability to properly control the balance of fats in circulation 

and storage. The incidence of obesity is predicted to continue a rising trend, making 

health costs associated with its treatment an economic burden (Nielsen et al., 2014). 

Factors that contribute to obesity are genetics, diet, and lifestyle. To assess the 

genetic influence on increased adipose mass in developing children, one study identified 

influential single nucleotide polymorphisms (SNPs) among twins (Llewellyn et al., 

2013;2014). Of mothers who were obese pre-pregnancy, Rooney et al. (2011) found that 

more than half of their offspring developed obesity in childhood, adolescence, and 44% 

in early adulthood when comparing gestational weight gain, maternal obesity, weight 

gain in infancy, and weight gain in early adulthood. Investigating the influence of lifestyle, 

another study reported 64.6% of the subjects who were obese or overweight in childhood 

became obese adults; surmising that obesity in adulthood is frequently preceded by 

obesity during childhood (Juonala et al., 2011). 
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1.2 Adipose tissue biology 

Adipose tissue is comprised of adipocytes and vascular stroma cells. Adipocytes 

are specialized energy storage cells that help maintain whole body energy homeostasis 

through the storing and release of lipids from lipid droplets. Vascular stroma cells in 

adipose tissue are pre-adipocytes, fibroblasts, and varying immune cells. Adipocytes can 

be found throughout the body, including in muscle and breast tissue, but most readily 

found in adipose tissue depots: subcutaneous depot, and visceral depot. Histologically, 

adipocytes occupy virtually all of adipose tissue, however Tchoukalova et al. (2004) 

reported the proportion of adipocytes versus vascular stroma cells in adipose tissue of 

obese patients to be approximately 20% to 40% depending on the depot, and 35% to 45% 

of the vascular stroma cells were pre-adipocytes. 

The capacity of adipocytes to oxidize fat is associated with the amount of 

mitochondria within adipocytes, and serves to distinguish name: white, beige, and brown. 

White and beige adipocytes store lipids in one large lipid droplet, however beige 

adipocytes contain more mitochondria than white adipocytes. Contrasting characteristics 

of brown adipocytes versus white and beige are: many smaller lipid droplets, an 

abundance of mitochondria, require more oxygen, and have the highest capacity for fatty 

acid oxidation (Harms et al., 2013; Rosen et al., 2014).  

The lipid droplet is a specialized organelle with a phospholipid membrane 

encasing the stored sterol esters and TG within adipocytes. Adipocyte size is determined 
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by the lipid droplet size, which effects adipocyte expandability and functionality. Through 

signaling cascades that support energy demand, lipid droplets release TG molecules, 

which causes an associated reduction in adipocyte size. In response to excess energy, lipid 

droplets accommodate TG storage, increasing lipid droplet and adipocyte sizes (Fruhbeck 

et al., 2014). Obesity causes lipid droplets to over expand to accommodate the excess TG 

that require storage, however large adipocytes are more resistant to cellular signaling 

which negatively impacts the balance energy (Lofgren et al., 2005).  

Adipocytes are derived from mesenchymal stem cells (MSCs) that can develop into 

chondrocytes, osteoblasts, myocytes, or adipocytes. To become mature adipocytes, MSCs 

must first commit into pre-adipocytes. Pre-adipocytes cannot be reverted, and regulation 

of adipocyte differentiation is through insulin, glucocorticoids, cyclic AMPs (cAMP) 

stimulations, and peroxisome proliferator activated receptor gamma (PPARγ) (Henry et 

al., 2012). Pre-adipocyte maturation cascades through the transcription factor signaling 

of members of the AP-1, Kruppel-like factors (KLF), CCAAT-enhancer-binding proteins 

(C/EBPs), zinc finger protein (ZFP), and sterol regulatory element-binding proteins 

(SREBP), and then by activating PPARγ (Rosen et al., 2006; Stephens, 2012). The most 

important regulator of adipogenesis is PPARG, as it is essential for promoting and 

maintaining the differentiated state, and can drive non-adipogenic cells, such as 

fibroblasts and myoblasts, into becoming adipocytes (Rosen et al., 2014).  
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Adipocyte TG level is regulated by the balance between anabolic hormones that 

promote energy storage, and catabolic hormones that promote energy utilization. Insulin 

is the primary anabolic hormone, and glucagon is the primary catabolic hormone. Insulin 

promotes lipid storage by stimulating adipocytes to uptake glucose for lipogenesis, de 

novo fatty acid and TG synthesis, which can also take place in the liver. Insulin inhibits 

lipolysis, the mobilization and release of fatty acids into circulation. Glucagon is catabolic 

because it stimulates lipolysis (Nuttall et al., 2015; Olefsky, 1976; Randle et al., 1963).  

In times of energy surplus insulin stimulates properly functioning adipocytes to 

store lipids as tri-, di-, and mono- glyceride molecules, which are fatty acids esterified to 

glycerol, which are products of adipocyte glucose metabolism. In times of energy 

demand, e.g. during fasting, glucagon and other catecholamine molecules stimulate 

adipocytes to free fatty acids into circulation. The lipolysis cascades with lipase enzymes 

that hydrolyze tri-, di-, and mono- glyceride molecules into non-esterified fatty acids 

(NEFA) and a glycerol backbone. Lipid storage, lipogenesis, and lipolysis are stimulated in 

adipose tissue to maintain the balance between lipids and carbohydrates. This important 

and highly regulated homeostasis functions to combat against high blood glucose and 

hyperlipidemia (Lass et al., 2011). 

In addition to its role in energy storage, adipose tissue also acts as an endocrine 

tissue by synthesizing and releasing proteins and peptides, referred to as “adipokines.” 

The term adipokines is derived from “adipose cytokine” because many adipokines are 
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classical pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα). 

Adipokines are essential in the regulation of metabolism. Adiponectin, an adipokine with 

endocrine function, improves energy metabolism in tissues by increasing insulin 

sensitivity, which additionally inhibits lipolysis and lipogenesis. Both, insulin and 

adiponectin work in tandem to help adipose tissue regulate energy homeostasis (Henry 

et al., 2012). Obesity negatively impacts adipose tissue adipokine production and 

function, because lipid droplet size is inversely correlated with proper adipocyte function. 

A superfluity of TG impedes the production of adiponectin, leading to insulin insensitivity 

and homeostatic imbalance between lipolysis and lipid storage (Henry et al., 2012; Qiao 

et al., 2011).   

Further, adipose tissue helps regulate energy intake by secreting leptin, a signaling 

molecule produced by adipocytes that suppresses appetite (Harris, 2014). A study 

investigating if leptin production became normal post obesity reported a relative 

deficiency of leptin in the adipose tissue of post obese women. The low basal leptin 

production was attributed to the positive relationship between adipocyte volumes and 

leptin secretions (Lofgren et al., 2005). This is consistent with an in vitro study using mice 

that showed mRNA levels of leptin were positively correlated with both leptin secretion 

and adipocyte volumes in inguinal, epididymal, and retroperitoneal adipose depots 

(Zhang et al., 2002). Although there was no change reported in the mass of adipose tissue 
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of post obese women, hypercellularity was reported (Lofgren et al., 2005), which suggests 

that the observed weight loss may have affected fat cell size rather than fat cell number. 

The number of adipocytes is also intimately linked with energy balance. A recent 

investigation reported that obese adults had a greater number of new cells and a greater 

number of adipocytes than lean adults, although both had an approximate 10% adipocyte 

turnover every year. The weight loss in obese adults was reflected in the fat cell volume 

while the fat cell number remained invariable in post obese adults. Overall, this study 

confirmed that energy balance is also associated with the number of adipocytes. Further, 

they determined that adipocyte number is strictly regulated and static in adulthood, and 

this number is potentially fixed during childhood and adolescence (Spalding et al., 2008).  

Previous studies have reported that obese children are much more likely to 

become obese adults, adipose tissue hypercellularity impedes appetite suppression, and 

adipocyte number is static in adulthood, and potentially predetermined during childhood 

and adolescence. Together these studies reveal the need for childhood obesity research 

to provide interventions for adult obesity preventions, and bares factors that contribute 

to the difficulties obese adults face in maintaining weight loss (Juonala et al., 2011; 

Lofgren et al., 2005; Spalding et al., 2008). Overall, understanding the underlying 

mechanisms with which adipose tissue functions to regulate energy metabolism will 

provide valuable insight to lighten the associated health and economic burdens caused 

by obesity. 
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1.3 Fatty acid metabolism 

Fatty acids are composed of an aliphatic acyl chain tail and a carboxylic acid head. 

They are classified by length of the fatty acyl tail, presence or absence of double bonds, 

and the location of the first double bond. The length of fatty acids are termed short, 

medium, long, and very long, having ≤ 6, 8 to 14, 16 to 22, or ≥ 22 carbons respectively. 

The levels of unsaturation for fatty acids are saturated (SFA) and possess no double bonds, 

mono-unsaturated (MUFA) and hold only one double bond, or poly-unsaturated (PUFA) 

and possess multiple double bonds. The occurrence of the first double bond from the 

methyl end of the aliphatic tail establishes the omega number as omega 3 (n-3), omega 6 

(n-6), omega 9 (n-9), etc. which occur on the third, sixth, or ninth carbons respectively.  

In some organisms, the levels of essential fatty acids, which are n-6 and n-3 long 

chain poly-unsaturated fatty acids, are controlled by the diet due to impaired synthesis of 

the production of fatty acids longer than 16 carbons. Notable long chain n-3 poly-

unsaturated fatty acids (n-3 PUFA) are: alpha-linolenic acid (ALA) (18:3 n-3), 

eicosapentaenoic acid (EPA) (20:5 n-3), docosahexaenoic (DHA) (22:6 n-3), having 18, 20, 

and 22 carbons respectively with 3, 5, and 6 double bonds respectively. Long chain n-6 

poly-unsaturated fatty acids (n-6 PUFA) that are noteworthy are: linoleic acid (LA) (18:2 

n-6), gamma linoleic acid (GLA) (18:3 n-6), and arachidonic acid (AA) (20:4 n-6), having 18, 

18, and 20 carbons respectively with 2, 3, and 4 double bonds respectively.  
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Fatty acids are the most energy dense substrates by providing nine calories per 

gram, which is more than any other energy molecule, i.e. proteins, carbohydrates, and 

alcohols. Fatty acids are required by nearly all tissues and cell types to use as metabolic 

fuels, signaling molecules, and cellular membrane components, and long chain PUFAs 

function in a number of mechanisms including adipose tissue metabolism. Both n-3 PUFA 

and n-6 PUFA are precursors for eicosanoid molecules, which are the primary drivers of 

the body’s inflammatory responses, but n-6 PUFA have contrasting physiological 

functions to n-3 PUFA. Anti-inflammatory eicosanoids are derivatives of the n-3 PUFA 

EPA, while pro-inflammatory eicosanoids are derivatives of the n-6 PUFA AA. These fatty 

acids are found abundantly among phospholipids of cell membranes, and compete for 

positions on phospholipids. When cleaved from phospholipids, EPA or AA are released. 

Notably, AA is a precursor of pro-inflammatory prostaglandins, and EPA is a precursor for 

anti-inflammatory prostaglandins (Ferrero-Miliani et al., 2007).  

Saturated and n-6 PUFA are commonly found in animal fats and vegetable oils, 

and n-3 PUFA are prevalent in flaxseeds, walnuts, or fresh water fishes (Ailhaud, 2005; 

Sears et al., 2011). Lard and cheap vegetable oils are often used in the production of the 

most prevalent and readily available processed foods. This helps to clarify the prevalence 

of SFA and n-6 PUFA rather than n-3 PUFA in the average US consumer diet (Sears et al., 

2011). Therefore, it is no wonder that overweight, obesity, and comorbid conditions are 

popular in the United States (Kopecky et al., 2009).  
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Dietary PUFAs may play a role in metabolism by stimulating lipid consumption. 

Despite double bonds being stronger than single bonds, double bonds are less stable and 

more reactive, rendering unsaturated fatty acids more vulnerable to oxidation compared 

to saturated fatty acids. For example, a reduction in fatness and improved glucose 

metabolism was observed in humans and other mammals fed diets enriched with n-3 

PUFA versus n-6 PUFA as dietary supplements. This gives rise to a potential nutritional 

application that could reduce the incidence of obesity (Kopecky et al., 2009). 

Fatty acid oxidation occurs in mitochondria and peroxisomes to supply cells with 

energy in the absence of glucose. Furthermore, fatty acid oxidation is regulated by 

glucagon and insulin, which are controlled by nutritional intake, in properly functioning 

organisms. Mitochondria can oxidize short, medium, and long chain fatty acids, and 

peroxisomes can oxidize very long chain fatty acids that are then supplied to 

mitochondria. Carnitine-palmitoyl transferase 1a (CPT-1a), the rate limiting enzyme in 

mitochondrial fatty acid oxidation, transports fatty acids that have been attached to 

coenzyme A (CoA), into the mitochondria. Once inside the mitochondrial matrix, the fatty 

acyl-carnitine (such as palmitoylcarnitine) reacts with coenzyme A to release the fatty acid 

for breakdown into acetyl-CoA. The rate limiting enzyme in peroxisomal fatty acid 

oxidation is acyl-CoA oxidase 1 (ACOX1), which is the first enzyme of the fatty acid 

oxidation pathway in peroxisomes. In peroxisomes, very long chain fatty acids are broken 

down into shorter chained fatty acids, which can be oxidized by the mitochondria.  
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Having a capacity for fatty acid oxidation is not a characteristic commonly 

attributed to white adipocytes. However, recent studies have verified otherwise, 

highlighting a potential pathway in white adipocytes to oxidize fatty acids locally (Ji et al., 

2012), which may suggest that accumulating fat excessively is impeded in the presence of 

PUFA because dietary PUFAs may reduce fatness by stimulating lipid clearance and fatty 

acid oxidation. Mechanistically, dietary n-3 PUFAs may enter cells of the liver and skeletal 

muscle, and act as ligands for nuclear receptors that go on to increase transcription for 

fatty acid oxidation, and glycogenesis. This increase in lipid oxidation potentially leads to 

a reduced amount of fatty acids in circulation destined for storage in adipose tissue, which 

then reduces adipocyte volume. By identifying and characterizing the regulatory 

pathways for lipid metabolism in visceral white adipose tissue, and determining the 

effects of nutritional approaches through diet supplementation with n-3 PUFAs, the 

present study will be useful in making an impact in obesity research.  

Peroxisome proliferator–activated receptors (PPARs) are nuclear receptors that 

regulate the expression of respective genes, which control lipid and glucose homeostasis. 

Three distinct PPARs have been discovered: PPARα, PPARβ/δ, and PPARγ. The alpha type, 

β/δ, γ2, and γ3 are expressed in adipose tissue where their primary functions have been 

characterized as regulators of both glucose and lipid homeostasis (Xu et al., 1999). 

Peroxisome proliferator–activated receptors gamma is pivotal in adipogenesis, as it is 

required for the transcriptional events through which pre-adipocytes (a fibroblast-like 
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cell) differentiate into mature adipocytes. The gamma receptor is also responsible for 

keeping adipocytes in the differentiated state (Rosen et al., 2006). In times of low energy, 

PPARα, predominantly found in the liver, helps to regulate lipid homeostasis by 

stimulating fatty acid uptake (Forman et al., 1997; Lee et al., 2003). The activation of 

PPARβ/δ, found ubiquitously, may function to regulate circulating cholesterol levels and 

insulin sensitivity (Lee et al., 2006; Mottillo et al., 2012) 

Research has suggested that sensing and regulating lipid levels is a major function 

of PPAR family nuclear receptors (Royan et al., 2011). Lipid metabolism in adipose tissue 

is effected by long chain polyunsaturated fatty acids. Xu et al. (1999) reported that EPA, 

a long chain n-3 PUFA, acted as the primary ligand to activate PPARβ/δ. Then, using 

labelled ligands in competitive binding assays, Wahle et al. (2003) confirmed that PUFA 

can function as activating ligands for PPARs. Overall, n-3 PUFA can act as ligands for 

nuclear receptors, promote anti-inflammatory cytokines, and, due to the reactive double 

bonds, encourage lipid oxidation, all of which discourages fat deposition.  

1.4 Broiler Chickens 

The National Chicken Council (2014) reports that poultry is the number one 

protein source consumed in the United States. The commercial poultry industry raises 

chickens for two major purposes, which are layers or broilers. Layers are reared to reach 
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sexual maturation to produce eggs, and broilers are raised for their body meat. In 2014, 

84.7 pounds per capita of chicken was consumed in the US alone, which is more 

consumed chicken than any other country in the world, and according to the National 

Chicken Council (2014), the increasing consumer demand for chicken is present in both 

the US and internationally. This is perhaps due, in great part, to increasing population, 

cost comparison between chicken and other meats, life expectancy, as well as the 

increasingly health conscious consumers choosing leaner white meat, over red meats.  

Through phenotypic selection for rapid growth, due to rising consumer demand, 

broiler chickens have become fatty (Collins et al., 2014). As with many species, humans 

included, excessive fat can cause a great deal of complications in organisms. This fatness 

effects the poultry industry by rendering fatty broilers less marketable as consumers view 

fatness as unattractive, and by negatively effecting fertility in layers. Fatness can manifest 

in layers by causing decreased egg production with two or more ova on the same day. 

This then leads to a high proportion of unmarketable eggs with defective shells (Griffin et 

al., 1994).  

Feeding chickens accounts for 60 to 75% of the total cost of poultry production 

(Chiba, 2014). A common approach to the issue of fatness in chickens has been to reduce 

the caloric intake, which is similar to the obesity approach in humans. However, reducing 

caloric intake to decrease fatness in chickens has undesirable effects on the energy and 

nutrient requirements necessary for sustaining growth. For example, a study using older 
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broiler chickens aged 18 to 53 days reported the greatest difference in abdominal fat pad 

weights with  an associated decreased body weight gain and decreased feed conversion 

ratio when the  daily metabolizable energy was reduced by 310 kilocalories/kilogram 

(kcal/kg), while supplementing L-carnitine in the diets (Rabie et al., 1998). A reduced 

caloric intake decreases meat yield, which has a negative impact on the poultry industry 

(Chiba, 2014). Therefore, producing applicable approaches to reduce fatness, and siphon 

fat deposition in broilers has economic value for the poultry industry. 

Nutritional factors, such as dietary PUFA, have been shown to reduce fatness in 

adult humans (Harden et al., 2014; Munro et al., 2013). Due to its importance for 

maintaining growth, some studies have emphasized diet formulation as the prime 

alternative to combat fatness in chickens. There have been few studies examining the 

effects of dietary n-3 PUFAs on broiler chickens. One study reported lowered total body 

fat and a higher rate of fat oxidation in broiler chickens consuming dietary fat as sunflower 

oil versus those supplemented with saturated animal fats (Sanz et al., 2000). In a study 

where chicken diets were supplemented with fish oil, sunflower oil, or tallow, there was 

a reported significant reduction in abdominal fat percentage in those that consumed 

PUFAs vs. saturated fats (Newman et al., 2002). All in all suggesting that PUFAs may act 

to induce lipid metabolism in white adipose tissue of both humans and broilers.  

The chicken is an underutilized model for human obesity research. In chickens, 

lipogenesis primarily occurs in their liver, they are naturally hyperglycemic, insulin 
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resistant, and fat deposition is comparable to that in humans. Avian genomes lack the 

hallmark gene for brown adipocytes, and this trait makes them an ideal animal model to 

study white adipose tissue in the absence of brown adipocytes (Abe et al., 2006). Further, 

studies have shown traits linked to fatness in chickens are similar to those linked to 

predisposition for obesity and diabetes in humans (Ji et al., 2012; Ji et al., 2014). Including 

the limited number of studies that use chickens as a model, most studies that have 

investigated fattiness in humans have primarily focused on adult models and applications 

(Gonzalez-Ortiz et al., 2013; Hood, 1982; Newman et al., 2002). This thesis will be using 

young broiler chickens as a model for childhood obesity, because obesity and overweight 

during childhood and adolescence frequently precedes obesity during adulthood. 
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CHAPTER II 
FASTING RAPIDLY INCREASES FATTY ACID OXIDATION IN WHITE ADIPOSE 

TISSUE OF YOUNG BROILER CHICKENS 
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A version of this chapter will be submitted for publication by Emmanuelle Torchon and 

Brynn Voy to Poultry Science. 

The article will be revised by Dr. Brynn Voy and Dr. Matthew Hulver of Virginia 

Tech, and the final draft will be submitted for publication. The primary authors will be 

Emmanuelle Torchon and Dr. Brynn Voy. The secondary authors will be Dr. Matthew 

Hulver of Virginia Tech, who provided the chickens and the fatty acid oxidation assay, and 

Rodney Barnett Ray, who assisted in sample collection and assays. 

2.1 Abstract  

Up regulating the fatty acid oxidation capacity of white adipose tissue in mice 

protects against diet-induced obesity and excess plasma NEFA levels. At least part of this 

capacity results from the induction of brown-like adipocytes within classical white depots, 

rendering it difficult to determine if white adipocytes contribute to the adaptation. Avian 

genomes lack a gene for uncoupling protein 1 and are devoid of brown adipocytes, 

making them a useful model in which to study lipid metabolism in white adipocytes. We 

recently reported that a brief (5 hr) fasting period significantly upregulated expression of 

genes involved in mitochondrial and peroxisomal fatty acid oxidation in white adipose 

tissue of young broiler chickens.  The objective of this study was to determine if the effects 

on gene expression manifested in increased rates of fatty acid oxidation.  Abdominal 
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adipose tissue was collected from 21 day-old broiler chicks that were fasted for 3.5, 5 or 

7 hrs, or fed ad libitum (controls). Fatty acid oxidation was determined by measuring and 

summing 14CO2 production and 14C-labeled acid-soluble metabolites from the oxidation 

of [1-14C] palmitic acid.  Citrate synthase activity was measured spectrophotometrically. 

Fasting induced a progressive increase in complete oxidation which was significantly 

different from controls in the 5.5 hr (p=0.0037) and 7 hr (p=0.0021) groups (1.14, 1.2, 1.49 

and 1.95 nmol/mg protein/hr; control, 3.5, 5 and 7 hrs, respectively). Citrate synthase 

activity increased significantly but only after 7 hrs of fasting. Fasting did not significantly 

alter the production of acid soluble metabolites, an index of incomplete fatty acid 

oxidation. These results confirm that fasting rapidly increases fatty acid oxidation in white 

adipose tissue by upregulating the transcription of key regulatory enzymes and proteins. 

Identifying the underlying mechanism may provide new therapeutic targets to increase 

fatty acid oxidation in situ and interventions that protect against obesity and the 

detrimental effects of excess NEFA on adipocyte insulin sensitivity. 
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2.2 Introduction 

Fatness is considered a waste of energy and an economic burden for the poultry 

industry. Over the past 70 years, broiler chickens have been genetically selected for rapid 

body weight gain, increased feed efficiency, and increased breast weight. Around the time 

of World War II, to raise a chicken to three pounds, poultry producers required more than 

85 days. However, modern broiler strains selected for rapid growth (42 days for 5 pounds) 

carry desirable traits such as decreased rearing time and increased meat yield, compared 

to ancestry meat-type strains (Havenstein et al., 2003). Modern commercial broilers have 

also increased in fatness with this shortened growth period, which is a major concern to 

producers and consumers as excess body fat negatively impacts productivity and fertility 

(Collins et al., 2014). As such, various approaches have been used to address the fatness 

problem that intensive selection has caused.  

Earlier studies in poultry have focused on the liver to combat fatness, as it has 

been confirmed that fat deposition in poultry is dependent on the diet and hepatic de 

novo lipogenesis (Hermier, 1997; Hermier et al., 1989). Beta oxidation of fatty acids is 

carried out primarily in mitochondria, and in the avian and humans fatty acid synthesis 

predominantly occurs in the cytoplasm of hepatocytes and is limited in adipose tissue. 

Using feed restriction, Richards et al. (2003) reported an effective reduction in the 

abdominal fat and a decrease in hepatic expression of lipogenic genes in broiler breeders 

during pre-light. An earlier study by Zhong et al. (1995) showed feed restriction, from 
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seven to 12 days of age, inhibited hepatic lipogenesis and increased the number of 

abdominal fat cells per gram fat tissue compared to birds fed ad lib.  

Others have considered a reduction in daily caloric intake, and altering the dietary 

protein and protein intake to decrease fat deposition in poultry (Fouad et al., 2014). Fan 

et al. (2008), using ducks from 14 to 42 days of age, reported that the relative breast and 

leg muscles were unchanged while adiposity decreased when the dietary energy level was 

reduced from 2,900 to 2,700 kcal/kg. Rabie et al. (1998) focused on altering the dietary 

energy levels of commercial broiler chickens during the growing phase, from 18 to 53 

days, and reported that dietary supplementation of L-carnitine in tandem with reduced 

caloric intake decreased the absolute weight of the abdominal fat pad without negatively 

impacting growth traits.  

Insulin cascades to induce glucose entry into cells and inhibit lipolysis in times of 

energy surplus. Lipolysis is activated in times of a low energy, such as during fasting, to 

provide fatty acids for energy. In broilers, the study of fatness has been focused on the 

liver, as it is the primary organ of lipogenesis and adipose tissue has been delegated as a 

dormant storage tissue (Ji et al., 2012). However, using microarray and QPCR, we have 

discovered that a short term five hour fast increases gene expression for protein and lipid 

catabolism, and signaling through lipid mediators in visceral white adipose tissue of 

broiler chickens. Furthermore, the gene expression profiles for glucose metabolism, lipid 

synthesis, and adipogenesis were reduced in the white adipose tissue of fasted broilers 
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compared to those that were fed. The five hour feed restriction also significantly 

increased the expression of genes for fatty acid oxidation such as CPT-1a, and ACOX1 (Ji 

et al., 2012). Together, our previous reports elucidated that there are pathways in white 

adipose tissue to locally oxidize lipids and fasting consequently revealed that the pathway 

can be manipulated to potentially reduce fat accumulation in commercial broiler 

chickens. In this study, we investigate if these gene expression profiles previously 

stimulated by fasting manifest as increased fatty acid oxidation and the time course in 

white adipose tissue.  

2.3 Materials and Methods 

2.3.1 Animals 

Twenty-eight Cobb 500 broiler chicks were used for this study and fed standard 

commercial diets. The animal care protocol included humane euthanasia and was 

approved by the Institutional Animal Care and Use Committee (IACUC) of The University 

of Tennessee and Virginia Polytechnic Institute and State University. Birds were grown 

under standard management conditions, having free access to water and feed until 21 

days of age. On day 21, a set of eight birds were fed ad-lib while the remaining were 

restricted from feed for three hours (n=4), five hours (n=8), and seven hours (n=8) by 

removing feed and water from bird cages. The birds were then euthanized by cervical 
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dislocation and samples of adipose tissue and liver were collected and utilized or 

immediately snap-frozen in liquid nitrogen and then stored at −80°C until analysis.  

2.3.2 Blood serum parameters 

Blood was collected from birds and transferred into 10 ml SST tubes (Fisher 

Scientific, Pittsburgh, PA) that were centrifuged at 2000 x g for 10 minutes then the serum 

was decanted from the top layer. Samples were analyzed for glucose and non-esterified 

free fatty acids (NEFA). Glucose levels were measured using a glucose oxidase method via 

a colorimetric kit (Cayman Chemical, Ann Arbor, MI). Non-esterified fatty acid levels in 

the serum were measured using a commercially available colorimetric assay kit (Wako 

Chemicals, Neuss, Germany). 

2.3.3 Fatty acid oxidation assay 

Four birds were randomly selected from each treatment and fatty acid oxidation 

was measured from freshly harvested chicken adipose tissue homogenates. Fatty acid 

oxidation was assessed by measuring the oxidation of 1-14C palmitate (Perkin-Elmer, 

Waltham, MA, USA) as previously described in (Zhang et al., 2014). 

Approximately 200 mg of tissue sample was added into buffer (0.25 M sucrose, 1 

mM EDTA, 0.01 M Tris-Cl, and 2 mM ATP, at pH 7.4) at a 1:20 (weight : volume), minced 

with surgical scissors, then homogenized on ice in a 2 ml glass tube at 300 RPM in 30 
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second pulses for 5-6 minutes. A 48-well cell culture plate (Costar, Cambridge, MA) was 

modified with small grooves between adjacent wells for CO2 to diffuse freely. Aliquots 

were made at 40-μL volumes and were plated in quadruplets into the modified cell culture 

plate. One hundred sixty μl of reaction mixture (pH 7.4) started the reactions at final 

concentrations (in mM) of 0.2 palmitate ([1-14C]palmitate at 0.5 μCi/mL), 100 sucrose, 10 

Tris-HCl, 5 potassium phosphate, 80 potassium chloride, 1 magnesium chloride, 0.1 

malate, 2 ATP, 1 dithiothreitol, 0.2 EDTA, 1 l-carnitine, 0.05 coenzyme A, and 0.5% fatty 

acid free bovine serum albumin. Plates were sealed with parafilm and a siliconized rubber 

gasket, incubated in a shaking 37⁰C water bath for 1 hour, and 100 μL 70 % perchloric acid 

was added to the incubation wells. Following the plate transfer to an orbital 

shaker, 14CO2 was trapped in the adjoining well in 200 μL of 1 M NaOH for 1 hour. 

Radioactivity of was assessed with 4 mL Uniscint BD (National Diagnostics, Atlanta, 

GA)using liquid scintillation counting (Cortright, Sandhoff et. Al, 2006).  

2.3.4 Citrate synthase activity assay 

The activity of citrate synthase (CS) was measured by the reduction of 5,5′-

dithiobis-2-nitrobenzoic acid (DTNB) over time from adipose tissue of 4 birds from each 

treatment group. CS is an enzyme of the citric acid cycle which is rate limiting as the 

enzyme catalyzes the reaction between acetyl coenzyme A (acetyl CoA) and oxaloacetic 

acid (OAA) to form citric acid in the presence of water. When the thioester of acetyl CoA 
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is hydrolyzed a thiol group (CoA-SH) is formed. Available DTNB is reduced by CoA-SH and 

produces TNB which turns yellow.  

Tissues were homogenized and diluted 1:5 in duplicates by 170 μl reaction 

solution (0.1 M Tris buffer at pH 8.3, 1 mM DTNB in 0.1 M Tris buffer, and 0.01 M 

oxaloacetate in 0.1 M Tris buffer). Thirty μl of three mM acetyl-CoA was added to initiate 

the reaction while absorbance was read over two minutes, then measured at 405 nm at 

37 °C every 12 seconds for seven minutes using the spectrophotometer (SPECTRAmax 

ME, Molecular Devices Corporation, Sunnyvale, CA, USA). The maximum CS activity was 

calculated and reported as nmol mg − 1 min – 1 as previously described by Zhang et al. 

(2014). 

2.3.5 Adipose tissue metabolite extraction for liquid chromatography with tandem mass 
spectrometry  

Metabolites were extracted from 21 day old abdominal adipose tissue of 18 

chickens using the solvent combination of methanol and chloroform at −20 °C. 

Approximately 30 to 50 mg of frozen fat was pulverized in liquid nitrogen and the 

pulverized tissue was collected into 1.3 ml of 100% methanol. Samples were 

homogenized and metabolites were extracted using chilled solvents (at −20⁰C) and 4⁰C 

centrifuge. A -80⁰C cold box was used to hold samples to avoid overheating in-between 

steps. Then samples were incubated for 15 minutes at −80 °C and centrifuged for 5 

minutes at 4 °C at a speed of (13,200 rpm). Then supernatant was transferred to a 
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separate vial, and the precipitate was extracted once more following the aforementioned 

procedure. Then the complete samples were pooled together and 600 μl of supernatant 

was extracted and transferred to a 1 ml dram vial. The supernatant was dried under a 

stream nitrogen for approximately 30 minutes, and re-suspended in 150 μl of deuterated 

water. Re-dissolved samples were placed into HPLC vials then LC/MS analyses were 

performed using Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (Thermo 

Scientific, USA). Each sample was run in triplicates, metabolites were separated by mass, 

peaks were chosen manually using Xcalibur (Thermo Fisher Scientific Inc., Waltham, MA), 

and data were exported into Microsoft Excel. 

2.3.6 Statistical analysis 

All data were analyzed for normality, homogeneity of variance using SAS (version 

9.4, SAS Institute Inc., Cary, NC). Statistical significance was set to P < 0.05. Using a mixed-

design analysis of variance (MMANOVA) for a completely random design, Tukey’s 

Honestly Significant Difference (HSD) post hoc comparisons were determined for each 

data set. Significance levels are noted in figure legends and data are presented as means 

± standard error. All figures and tables for this section are in the appendix at the end of 

this chapter. 
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2.4 Results 

2.4.1 Serum glucose and NEFA 

In the fed state, serum glucose concentrations for broiler chickens have been 

reported to range from 156 to 330 mg/dL (Scanes, 2008). Fasting significantly decreased 

serum glucose (mg/dL). As shown in panel A of Figure 2.1, five and seven hours of fasting 

significantly (p=0.0269) decreased glucose concentration in serum by 12.4% and 11.1%, 

respectively, as compared to ad lib feeding control. Three hours of fasting did not differ 

from the control.  

Pro-longed fasting significantly increased the average NEFA levels in serum 

(mg/dL), as shown in panel B of Figure 2.1.  Seven hours of fasting significantly (p=0.0024) 

increased serum NEFA levels by 123.1% relative to control. NEFA levels in serum were not 

significantly affected by three or five hours of fasting, but increased by 30.2% and 21.1% 

respectively. 

2.4.2 Fatty acid oxidation and citrate synthase enzyme activity 

Measuring the activity of palmitate breakdown is expressed as the rate of radio 

labelled carbon dioxide [14CO2] and acid soluble metabolites (ASM) production. ASM 

production represents rate of incomplete palmitate breakdown into acyl-CoA molecules 

of no more than 4 carbons that are acid soluble but have not entered the TCA cycle. Figure 
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2.2 Panel A reports the average complete oxidation of palmitate was measured using the 

flux of 14CO2 (CO2 nmol/mg of protein/hr) through the TCA cycle for ad lib feeding and 

three, five, and seven hours fasting respectively. Five and seven hours of fasting 

significantly (p=0.025) increased the rate of complete fatty acid oxidation by 55.4% and 

52.5% relative to the fed control. Three hours of fasting increased fatty acid oxidation by 

18.8% but was not significantly changed relative to the fed birds.  

Panel B of Figure 2.2 reports the average rate of radio labelled palmitate 

catabolism into ASM (nmol/mg of protein/hr) for ad lib feeding and three, five, and seven 

hours of fasting (p=0.544). Fasting did not change the rate of incomplete palmitate 

breakdown. 

The ratio of 14CO2 production and ASM production represent beta oxidative 

efficiency due to an increase of ASM without citric acid cycle accompaniment to clear the 

ASM represents mitochondrial overload (Zhang et al., 2014). As shown in Figure 2.2 panel 

C, fasting significantly (p=0.0044) increased beta oxidative efficiency after five and seven 

hours by 55.0% and 59.2% respectively, relative to the control. Fasting for three hours 

increased the ratio by 1.2%, which was not significant. Restricting chickens from feeding 

for seven hours significantly (p=0.0118) increased the activity of the first enzyme of the 

citric acid cycle, citrate synthase, by 23.1% relative to the control, as shown in panel D of 

Figure 2.2.   
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Figure 2.3 shows 14CO2 production on the X-axis and citrate synthase enzyme 

activity on Y-axis. As represented by the Pearson correlation coefficient of 0.619 

(p=0.0004), the graph indicates that increasing the duration of fasting significantly 

increased the  oxidative output of the citric acid cycle in parallel to citrate synthase 

enzyme activity indicating a positive correlation. 

2.4.3 Metabolites discovered in fasted abdominal fat 

Adipose tissue metabolomics were performed to investigate the physiological 

responses of fasting and feeding to identify the composite effects of time dependent feed 

restriction on chicken adipose tissue. As seen in our previous studies, there are a number 

of other metabolites that differed between lean chickens, fasted chickens and fatty 

broilers (Ji et al., 2012; Ji et al., 2014). Table 1 reports the metabolites that significantly 

differed across treatments. 

2.5 Discussion 

In the present study, we examined the time dependent effects of short-term 

fasting on the capacity of white adipose tissue to oxidize fatty acids. The action of insulin 

is to regulate glucose concentrations throughout the body, however type 2 diabetes 

renders the regulation of glucose independent of insulin (Gannon et al., 1996). In 

mammals, energy homeostasis is regulated through both insulin and glucagon activity. 
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Fasting adjusts energy metabolism in muscles from glucose utilization to fatty acid 

utilization, to maintain metabolic homeostasis (Randle et al., 1963). However, Edwards et 

al. (1999) reported that metabolic homeostasis in chickens is predominantly regulated by 

glucagon.  

Circulating NEFA and glycerol concentrations are elevated in obese humans, 

however we have previously reported in Ji et al. (2014) that elevated serum NEFA is a 

characteristic of leanness in chickens. Mechanistically, leanness in chickens must 

stimulate increases in adipose tissue lipase activities because of increased whole body 

energy demand. These may result in greater levels of fatty acids released in circulation (Ji 

et al., 2014). Some studies in humans, chickens, and rodents report increased serum 

lipolysis as a characteristic response of whole body metabolism to fasting (Nielsen et al., 

2014; Wang et al., 2003). In the fasted state, insulin status in chickens remains unchanged 

while circulating glucagon increases after a 24 hours (Edwards et al., 1999). After 12 and 

24 hour fasts, plasma glucose levels decrease and plasma NEFA levels increase (Abe et al., 

2006).  

Our results are in agreement with previous reports that fasting causes decreased 

serum glucose and increased serum NEFA levels in chickens (Abe et al., 2006; Edwards et 

al., 1999). However, these results are not restricted to prolonged fasting, as our findings 

extend to include that fasting causes serum glucose levels in chickens to drop and serum 

NEFA levels to rise following short term five and seven hours fasts. Although insulin and 
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glucagon concentrations were not measured, our results suggest that, as represented by 

the inverse relationship between serum glucose and NEFA statuses, fasting altered energy 

homeostasis towards glucose conservation and lipid catabolism in young chickens.  

Lipolysis is the crucial catabolic response to negative energy balance that causes 

the glucose-sparing effect explained by the Randle cycle, and provides a sufficient supply 

of lipid substrates for oxidative metabolism (Hue et al., 2009; Nielsen et al., 2014). Fasting 

causes negative energy balance (Fruhbeck et al., 2014), but there were no observed 

changes in energy metabolism after a three hour fast and seven hours of fasting was 

required to observe all expected changes in metabolism. This suggests that energy 

substrates remain at an equilibrium in broiler chickens after three hours of fasting, 

because (i) the increased energy demand after a three hour fast is insufficient to influence 

serum glucose levels or lipase activities, or (ii) other regulators of energy present in broiler 

chickens compensate for the deficit in feed intact.  

We observed that five hours of fasting was sufficient to deplete serum glucose 

concentrations and stimulate adipose fatty acid oxidation but was insufficient to increase 

lipolysis. This suggests three things: (i) the conservation of glucose, (ii) for energy, tissues 

are utilizing already circulating NEFA, and (iii) lipase activities remain normal. We 

postulate serum fatty acid concentrations possibly drop below an ambiguous threshold, 

preceding the spike in serum NEFA levels following a seven hour fast. Threshold signaling 
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stimulates lipase enzymes and activities, compensating for the energy deficit by 

increasing lipolysis.  

Uncoupling protein 1 (UCP1) is the hallmark gene for brown adipocytes and having 

the capacity to oxidize fatty acids for thermogenesis is a general characteristic of brown 

adipose tissue. The avian genome lacks UCP1 (Mezentseva et al., 2008), but the 

homologues of UCP1 (i.e. UCP, UCP2, and UCP3), expressed in skeletal muscle and 

adipose (Boss, Muzzin, et al., 1998) are present. This characteristic, and their 

susceptibility toward rapid fat deposition due to rapid growth (Collins et al., 2014), makes 

the modern broiler chicken an ideal model organism to study white adipose tissue.  

In many organisms, lipid metabolism in skeletal muscle is very well characterized, 

apart from the function of the UCP1 homologues. The proposed physiological role of 

UCP1 homologues, although the mechanisms remain unclear, is the regulation of lipids 

and lipid substrates for fuel (Dulloo et al., 2004). Fasting studies have provided evidence 

supporting this hypothesis. In chicken skeletal muscle, fasting resulted in gene expression 

increases of UCP1 homologues (Abe et al., 2006). Samec et al. (1998) reported that 

fasting, in parallel with increased lipid utilization and glucose sparing, in rats increased 

UCP1 homologues gene expressions. Another study showed a positive correlation 

between serum free fatty acids and UCP3 mRNA expression in skeletal muscle of obese 

adults (Boss, Bobbioni-Harsch, et al., 1998). In addition, another study reported that 

mRNA expressions of key lipid oxidation regulators (e.g. carnitine palmitoyl transferase 
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1a (CPT-1a) and medium chain acyl-coA dehydrogenase (MCAD)) increased in skeletal 

muscle of rats in response to fasting (Samec et al., 2002).  

In skeletal muscle of chickens, prolonged fasting caused up-regulated gene 

expression patterns of CPT-1a, the rate-limiting enzyme for mitochondrial fatty acid 

oxidation that transports fatty acids into the mitochondria to undergo β-oxidation (Serra 

et al., 2013), and long-chain acyl CoA dehydrogenase (LCAD) (Abe et al., 2006). The 

transcriptomic profile of visceral white adipose tissue after a short term five hour fast 

showed increased expressions of key lipid oxidation regulators (e.g. pyruvate 

dehydrogenase kinase 4 (PDK4) and early growth response 1 (EGR1)), and decreased 

expressions of genes key in glucose metabolism and fatty acid synthesis (e.g. ATP citrate 

lyase (ACLY) and acetyl-Coenzyme A carboxylase alpha (ACACA)) of young broiler chickens 

(Ji et al., 2012). Our results support previous reports that fasting stimulates lipolysis, 

decreases circulating glucose, and switches fuel utilization towards lipid catabolism and 

glucose sparing. To our knowledge, no studies have reported the fatty acid oxidation 

capacity of broiler chicken visceral white adipose tissue following short term fasting. 

Citrate synthase is the rate limiting enzyme that regulates the entry of acetyl-CoA into the 

TCA Cycle to produce citrate in the presence of oxaloacetate. In the present study, we 

show that following a longer fasting time course, seven hour feed restriction, the activity 

of CS significantly increased in visceral white adipose tissue of broiler chickens. This 

heightened activity, in conjunction with increased complete palmitate oxidation, 
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demonstrates the capacity of white adipose tissue to oxidize fatty acids locally. Further, 

our findings indicate an increased beta-oxidative efficiency, and a positive correlation 

between citrate synthase enzyme activity and 14CO2 production.  

Measuring the effect of fasting or feeding on the rates of metabolism, although 

more informative, would require the use of isotopic labeling (e.g. by feeding 1-13C-

labelled glucose), which was not done in this study. For the purpose of discovery, liquid 

chromatography coupled with mass spectrometry were used to investigate differences in 

metabolite pool size differences between fasted and fed energy states. We have 

previously reported a difference in adipose tissue metabolites of lean chickens and fasted 

broilers in comparison with fed broiler chickens (Ji et al., 2012; Ji et al., 2014). Our findings 

support the previous report by demonstrating the significant differences of metabolites 

that differed between fed and fasted chickens. We observed differences in some 

metabolites known to have antioxidant properties, such as ascorbate, urate, and 

glutathione disulfide. In particular, glutamate, oxogluterate, and tyrosine are metabolites 

known to be involved in oxidation that differed among fed, three, five, and seven hour 

fasted broiler chickens, which supports the observed changes in lipid catabolism across 

treatments.  

Taken together, our findings provide compelling evidence that (i) white adipose 

tissue, devoid of brown adipocytes, is capable of engaging in elevated rates of fatty acid 

oxidation, (ii) there is a positive association between the efficiency of white adipocytes to 
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catabolize lipids locally and the length of fasting, (iii) during negative energy balance, 

elevated levels of NEFA are accompanied by increased lipid oxidation, and (iv) the 

transcriptional changes in fasted white adipose that we previously reported (Ji et al., 

2012) translate into increased lipid catabolism in parallel to citrate synthase enzyme 

activity. 

 

  



43 

 

2.6 References 

Abe, T., Mujahid, A., Sato, K., Akiba, Y., & Toyomizu, M. (2006). Possible role of avian 

uncoupling protein in down-regulating mitochondrial superoxide production in 

skeletal muscle of fasted chickens. FEBS Lett, 580(20), 4815-4822. doi: 

10.1016/j.febslet.2006.07.070 

Boss, O., Bobbioni-Harsch, E., Assimacopoulos-Jeannet, F., Muzzin, P., Munger, R., 

Giacobino, J. P., & Golay, A. (1998). Uncoupling protein-3 expression in skeletal 

muscle and free fatty acids in obesity. Lancet, 351(9120), 1933. doi: 

10.1016/S0140-6736(05)78617-7 

Boss, O., Muzzin, P., & Giacobino, J. P. (1998). The uncoupling proteins, a review. Eur J 

Endocrinol, 139(1), 1-9.  

Collins, K. E., Kiepper, B. H., Ritz, C. W., McLendon, B. L., & Wilson, J. L. (2014). Growth, 

livability, feed consumption, and carcass composition of the Athens Canadian 

Random Bred 1955 meat-type chicken versus the 2012 high-yielding Cobb 500 

broiler. Poult Sci, 93(12), 2953-2962. doi: 10.3382/ps.2014-04224 

Dulloo, A. G., Seydoux, J., & Jacquet, J. (2004). Adaptive thermogenesis and uncoupling 

proteins: a reappraisal of their roles in fat metabolism and energy balance. Physiol 

Behav, 83(4), 587-602. doi: 10.1016/j.physbeh.2004.07.028 



44 

 

Edwards, M. R., McMurtry, J. P., & Vasilatos-Younken, R. (1999). Relative insensitivity of 

avian skeletal muscle glycogen to nutritive status. Domest Anim Endocrinol, 16(4), 

239-247.  

Fan, H. P., Xie, M., Wang, W. W., Hou, S. S., & Huang, W. (2008). Effects of dietary energy 

on growth performance and carcass quality of white growing pekin ducks from 

two to six weeks of age. Poult Sci, 87(6), 1162-1164. doi: 10.3382/ps.2007-00460 

Fouad, A. M., & El-Senousey, H. K. (2014). Nutritional factors affecting abdominal fat 

deposition in poultry: a review. Asian-Australas J Anim Sci, 27(7), 1057-1068. doi: 

10.5713/ajas.2013.13702 

Fruhbeck, G., Mendez-Gimenez, L., Fernandez-Formoso, J. A., Fernandez, S., & Rodriguez, 

A. (2014). Regulation of adipocyte lipolysis. Nutr Res Rev, 27(1), 63-93. doi: 

10.1017/S095442241400002X 

Gannon, M. C., Nuttall, F. Q., Lane, J. T., Fang, S., Gupta, V., & Sandhofer, C. R. (1996). 

Effect of 24 hours of starvation on plasma glucose and insulin concentrations in 

subjects with untreated non-insulin-dependent diabetes mellitus. Metabolism, 

45(4), 492-497.  

Havenstein, G. B., Ferket, P. R., & Qureshi, M. A. (2003). Growth, livability, and feed 

conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 

broiler diets. Poult Sci, 82(10), 1500-1508.  



45 

 

Hermier, D. (1997). Lipoprotein metabolism and fattening in poultry. J Nutr, 127(5 Suppl), 

805S-808S.  

Hermier, D., Quignard-Boulange, A., Dugail, I., Guy, G., Salichon, M. R., Brigant, L., 

Ardouin, B., & Leclercq, B. (1989). Evidence of enhanced storage capacity in 

adipose tissue of genetically fat chickens. J Nutr, 119(10), 1369-1375.  

Hue, L., & Taegtmeyer, H. (2009). The Randle cycle revisited: a new head for an old hat. 

Am J Physiol Endocrinol Metab, 297(3), E578-591. doi: 

10.1152/ajpendo.00093.2009 

Ji, B., Ernest, B., Gooding, J. R., Das, S., Saxton, A. M., Simon, J., Dupont, J., Metayer-

Coustard, S., Campagna, S. R., & Voy, B. H. (2012). Transcriptomic and 

metabolomic profiling of chicken adipose tissue in response to insulin 

neutralization and fasting. BMC Genomics, 13, 441. doi: 10.1186/1471-2164-13-

441 

Ji, B., Middleton, J. L., Ernest, B., Saxton, A. M., Lamont, S. J., Campagna, S. R., & Voy, B. 

H. (2014). Molecular and metabolic profiles suggest that increased lipid 

catabolism in adipose tissue contributes to leanness in domestic chickens. Physiol 

Genomics, 46(9), 315-327. doi: 10.1152/physiolgenomics.00163.2013 

Mezentseva, N. V., Kumaratilake, J. S., & Newman, S. A. (2008). The brown adipocyte 

differentiation pathway in birds: an evolutionary road not taken. BMC Biol, 6, 17. 

doi: 10.1186/1741-7007-6-17 



46 

 

Nielsen, T. S., Jessen, N., Jorgensen, J. O., Moller, N., & Lund, S. (2014). Dissecting adipose 

tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol 

Endocrinol, 52(3), R199-222. doi: 10.1530/JME-13-0277 

Rabie, M. H., & Szilagyi, M. (1998). Effects of L-carnitine supplementation of diets differing 

in energy levels on performance, abdominal fat content, and yield and 

composition of edible meat of broilers. Br J Nutr, 80(4), 391-400.  

Randle, P. J., Garland, P. B., Hales, C. N., & Newsholme, E. A. (1963). The glucose fatty-

acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes 

mellitus. Lancet, 1(7285), 785-789.  

Richards, M. P., Poch, S. M., Coon, C. N., Rosebrough, R. W., Ashwell, C. M., & McMurtry, 

J. P. (2003). Feed restriction significantly alters lipogenic gene expression in broiler 

breeder chickens. J Nutr, 133(3), 707-715.  

Samec, S., Seydoux, J., & Dulloo, A. G. (1998). Role of UCP homologues in skeletal muscles 

and brown adipose tissue: mediators of thermogenesis or regulators of lipids as 

fuel substrate? FASEB J, 12(9), 715-724.  

Samec, S., Seydoux, J., Russell, A. P., Montani, J. P., & Dulloo, A. G. (2002). Skeletal muscle 

heterogeneity in fasting-induced upregulation of genes encoding UCP2, UCP3, 

PPARgamma and key enzymes of lipid oxidation. Pflugers Arch, 445(1), 80-86. doi: 

10.1007/s00424-002-0879-9 



47 

 

Scanes, C. G. (2008). Perspectives on analytical techniques and standardization. Poult Sci, 

87(11), 2175-2177. doi: 10.3382/ps.2008-11-2175 

Serra, D., Mera, P., Malandrino, M. I., Mir, J. F., & Herrero, L. (2013). Mitochondrial fatty 

acid oxidation in obesity. Antioxid Redox Signal, 19(3), 269-284. doi: 

10.1089/ars.2012.4875 

Wang, T., Zang, Y., Ling, W., Corkey, B. E., & Guo, W. (2003). Metabolic partitioning of 

endogenous fatty acid in adipocytes. Obes Res, 11(7), 880-887. doi: 

10.1038/oby.2003.121 

Zhang, S., McMillan, R. P., Hulver, M. W., Siegel, P. B., Sumners, L. H., Zhang, W., Cline, M. 

A., & Gilbert, E. R. (2014). Chickens from lines selected for high and low body 

weight show differences in fatty acid oxidation efficiency and metabolic flexibility 

in skeletal muscle and white adipose tissue. Int J Obes (Lond), 38(10), 1374-1382. 

doi: 10.1038/ijo.2014.8 

Zhong, C., Nakaue, H. S., Hu, C. Y., & Mirosh, L. W. (1995). Effect of full feed and early feed 

restriction on broiler performance, abdominal fat level, cellularity, and fat 

metabolism in broiler chickens. Poult Sci, 74(10), 1636-1643.  

 



48 

 

2.7 Appendix: Figures and Tables 

 

Figure 2.1 Serum glucose and free fatty acid levels 

Values are group averages and error bars are SEM. Treatments: control (Fed) (n=5), 

fasted for three hours (3 Hr) (n=4), fasted for five hours (5 Hr) (n=7), and fasted for 

seven hours (7 Hr) (n=6). A. serum levels of glucose expressed in mg/dL with P=0.0269 

and the y-axis starting at 200 mg/dL. B. serum NEFA levels expressed in mg/dL with 

P=0.0024. 
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Figure 2.2 Fatty acid oxidation and citrate synthase activity in abdominal fat.  

Values are group averages and error bars are SEM. Treatments: control (Fed) (n=8), fasted 

for three hours (3 Hr) (n=4), fasted for five hours (5 Hr) (n=8), and fasted for seven hours 

(7 Hr) (n=8). A. 14CO2 production (nmol/mg pro/hr) with P=0.0246, B. acid soluble 

metabolites (14ASM) (nmol/mg pro/hr) with P=0.1597, C. ratio of 14CO2 : 14ASM production 

with P=0.0044, and D. citrate synthase enzyme activity (nmol/mg pro/min) with 

P=0.0118. 
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Figure 2.3 Correlation between CO2 production and citrate synthase enzyme activity. 

Oxidative output as 14CO2 production is on the X-axis and citrate synthase enzyme activity is on the Y-axis of fasted and fed 

broiler chicken white adipose tissue. Treatments: control (Fed) (n=8), fasted for three hours (3 Hr) (n=4), fasted for five hours 

(5 Hr) (n=8), and fasted for seven hours (7 Hr) (n=8). 14CO2 production on X-axis and citrate synthase enzyme activity on Y-

axis. Pearson correlation coefficient = 0.619 with P=0.0004. 
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Table 2.1 Abdominal adipose tissue metabolites 

Compounds P-values 

N-Acetyl-L-alanine 0.008161 
Acetyllysine 0.000744 
N-Acetylornithine 0.012155 
L-Arginine 0.038796 
Ascorbate 0.014388 
Cellobiose 0.000923 
CMP 0.037222 
L-Cystine 0.03684 
D-Glucono-1-5-lactone 0.039805 
L-Glutamate 0.007629 
Glutathione disulfide 0.009138 
Guanine 0.030518 
leucine/isoleucine 0.017593 
L-Lysine 0.000497 
L-Methionine 4.13E-05 
2-Oxoglutarate 0.032885 
Sucrose 0.000923 
L-Tyrosine 0.014887 
Urate 0.001869 

 

Broiler chicken white adipose tissue metabolites pools altered by feeding and time 

dependent fasting. Treatments: control (Fed), fasted for 3 hours (3 Hr), fasted for 5 

hours (5 Hr), and fasted for 7 hours (7 Hr). 
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CHAPTER III 
ENRICHING THE DIET IN N-3 POLYUNSATURATED FATTY ACIDS REDUCES 

ADIPOSITY AND ADIPOCYTE SIZE IN A BROILER CHICK MODEL FOR 
CHILDHOOD OBESITY 
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A version of this chapter will be submitted for publication by Emmanuelle Torchon 

and Brynn Voy to Adipocytes. 

The article will be revised by Dr. Brynn Voy and the final draft will be submitted 

for publication. The primary authors will be Emmanuelle Torchon, Suchita Das, who 

assisted in sample collection and assays, and Dr. Brynn Voy.  

3.1 Abstract 

Epidemiological studies suggest that enriching prenatal and perinatal diets in long-

chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may be a tool with which to reduce 

adiposity, improve metabolic status and reduce the risk of childhood obesity. We used 

broiler chickens, which rapidly deposit adipose tissue post-hatch and have similar 

metabolic features with humans, to test the hypothesis that consumption of diets 

enriched in LC n-3 PUFA during the early post-hatch period of rapid adipose development 

reduces adiposity. From seven to 21 days of age, Cobb500 broiler chicks (n=10/group) 

were fed isocaloric diets formulated using either lard (primarily saturated), corn oil 

(primarily monounsaturated), flaxseed oil (PUFA, enriched in alpha linolenic acid (ALA, 

18:3, n-3)), or fish oil (PUFA, enriched in eicosapentaenoic acid (EPA, 20:5, n-3) and 

docosahexaenoic acid (DHA, 22:6, n-3)), each at 8% by mass.  Abdominal fat pad weight, 

but not body weight, was significantly (p=0.0327) lower in birds fed the fish oil diet 
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(21.3g±5.5) than those fed lard (26.7g±5.9), but did not differ in birds fed flax and canola-

oil based diets relative to lard. Fish oil also significantly reduced abdominal adipocyte size 

compared to all other diets (p<0.05). Plasma non-esterified fatty acid levels, as a 

reflection of lipolysis, increased in birds fed fish oil diets as compared to lard diets 

(p=0.0017). Collectively, our data suggest that altering the type of fatty acids consumed 

during childhood may attenuate adipose deposition and adipocyte size, which could have 

benefits in reducing childhood obesity. 
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3.2 Introduction 

In the United States, Europe and Australia childhood obesity, has increased in 

severity and frequency since the 1980s. In 2012, in the United States, 17% of children and 

adolescents and 35% of adults were obese (Ogden et al., 2014). The rising incidence of 

childhood obesity is of clear concern because obesity is associated with a myriad of 

comorbidities including: sleep apnea, asthma, cancer, cardiovascular disease, type 2 

diabetes, nonalcoholic fatty liver disease, infertility, hypertension, and orthopedic 

complications (Daniels et al., 2005). 

Broiler chickens possess attractive characteristics that make them a model 

organism for the study of childhood obesity and adipose biology. Modern broilers, or 

meat-type chickens, have been selectively bred for the past 70 years to “improve” the 

meat-type strains, and consequently modern chickens carry desirable traits such as: 

decreased rearing time, increased breast weight, rapid body weight gain, increased feed 

efficiency, and increased meat yield, compared to their ancestry meat-type strains 

(Collins et al., 2014; Havenstein et al., 2003). This intensive selection has produced 

broilers that rapidly deposit adipose tissue and are prone to obesity relative to other types 

of chickens (Collins et al., 2014; Ji et al., 2014). Like humans, de novo lipogenesis occurs 

primarily in the liver rather than in the adipose tissue of chickens, and locus linked to 

fatness in chickens are similar to those linked to human susceptibility for obesity and 

diabetes (Hermier, 1997; Ji et al., 2012).  
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Furthermore, the burden of using rodents, and other lactating animals, lies on the 

required use of the mother to deliver nutrients after birth until weaning, but chickens can 

eat independently immediately post hatch. The weeks preceding chicken sexual 

maturation, which occurs at approximately 14 weeks of age (Hood, 1982), resemble 

childhood and pre-adolescent stages in humans. Broilers rapidly deposit fat in the first 

several weeks of life through both adipocyte hyperplasia and hypertrophy, however 

hypertrophy becomes the dominant mechanism for fat deposition as they mature 

(Cartwright, 1991; Hood, 1982).  

Lipid metabolism can be regulated by dietary nutrition to reduce fatness by 

inhibiting fatty acid synthesis, reducing the uptake of dietary fat, and/or promoting fatty 

acid catabolism. Using dietary programming, chickens offer a window to manipulate and 

monitor adipose development to study the effects of diet on both hyperplasia and 

hypertrophy. Using progressive ovum dissections, we have observed that chicks hatch 

with subcutaneous fat and do not develop an abdominal fat depot, which resembles the 

visceral fat depot of the greater omentum in humans, until the days post hatch and 

feeding. Consequently, abdominal fat deposition in chickens is wholly controlled by 

dietary nutrition.  

Restricting energy intake by cutting calories and increasing physical activity is the 

conventional approach used to promote fat loss and prevent excessive weight gain in 

obesity treatments and for general weight loss. However, some studies have also shown 
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that diet composition can be altered to impede fat accumulation and promote fat loss 

(Munro et al., 2013). Long chain n-3 polyunsaturated fatty acids (n-3 PUFA) and n-6 

polyunsaturated fatty acids (n-6 PUFA) play pivotal roles in the regulation of 

inflammation, neuronal health, hormonal balance, and carbohydrate and lipid 

metabolism. As the average American consumes more n-6 PUFA, found in cheap 

hydrogenated oils, versus n-3 PUFA, the dietary imbalance between these fatty acids may 

play important roles in the prevalence, and health problems associated with obesity 

(Fekete et al., 2015).  

The n-3 PUFA and n-6 PUFA fatty acid contents in blood and adipose tissue have 

been linked to obesity. In obese children, Micallef et al. (2009) reported that the plasma 

n-3 PUFA content had a negative association, and Savva et al. (2004) reported the 

contrary with the plasma content of arachidonic acid, an n-6 PUFA. Most studies that 

examine the beneficial effects of n-3 PUFA using animal models, including the limited 

number of studies that use chickens, have used adult models (Gonzalez-Ortiz et al., 2013; 

Newman et al., 2002).  

The objective of this study was to examine the effects of enriching developing 

adipose tissue of growing broiler chickens with different dietary oils. We enriched adipose 

tissue through dietary supplementation and compared their effects on adipose 

deposition and candidate gene expression to examine if long chain n-3 PUFA enhanced 

fatty acid oxidation in white adipose tissue and attenuated fat deposition. In humans and 
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other mammals, n-3 PUFA supplementation reduced caloric intake through appetite 

suppression and promoted weight loss (Harden et al., 2014; Munro et al., 2013). Dietary 

supplementation with n-3 PUFA, precursors for anti-inflammatory eicosanoids, have also 

affected adipose mass by increasing fatty acid oxidation in other tissues and reducing 

inflammation by competing with n-6 PUFA, which are precursors for pro-inflammatory 

eicosanoids (Fekete et al., 2015; Nakamura et al., 2014).  

3.3 Materials and Methods 

3.3.1 Animals and experimental diets 

Forty 1-day old mixed sex Cobb 500 broiler chicks were obtained from a 

commercial hatchery and raised in stacked wire cages for this study. The animal care 

protocol included humane euthanasia and was approved by the Institutional Animal Care 

and Use Committee (IACUC) of The University of Tennessee. Birds were reared under 

standard management conditions, having free access to water and feed until 30 days of 

age. On day one until day six, birds were supplied with a standard commercial starter diet. 

On day seven, the four treatment diets were mixed with the base diet at 8 % fat by mass 

using lard (LA) (Refined Lard, Lundy’s, USA), canola oil (CA) (Pure Wesson 100% Natural, 

ConAgra Foods Inc., USA), flaxseed oil (FL) (JEDWARDS International Inc., Quincy 

Massachusetts), and fish oil (FO) (JEDWARDS International Inc., Quincy Massachusetts).  
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At day three, birds were weighed and allocated to treatment groups to establish 

approximately equal weights across treatments LA (n=10), CA (n=10), FL (n=10), and FO 

(n=10): 67.4 g, 67.8 g, 70.2 g, and 68.0 g, respectively. For 23 days, the chickens were 

housed in cages with five birds/cage and weighed individually twice per week until the 

conclusion of the study, at 30 days. A bulk base diet, sans fat, was mixed and stored at 

room temperature throughout this study. Treatment feed was constituted every five days 

and stored at 4⁰C in-between feedings and all birds were left to feed and drink ad-lib 

throughout the study. Dietary composition of the bulk base diet is shown in Table 3.1. The 

birds were euthanized by carbon dioxide inhalation and blood, tissue samples, final body 

weight, breast weight, and abdominal fat pad weights were collected at 30 days of age.  

3.3.2 Blood serum parameters 

A 5 ml syringe with a 25 gauge needle was used to collect blood through cardiac 

puncture from euthanized chickens. The blood was then transferred and inverted in SST 

tubes (Fisher Scientific, Pittsburgh, PA) containing then stored on ice for no more than 4 

hours to allow coagulation. Samples were spun for 10 minutes at 1,000 x g then 

transferred and stored at -80⁰C. Free fatty acid (NEFA) levels in the plasma were 

measured using a commercially available colorimetric assay kit (Wako Chemicals, Neuss, 

Germany). 
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3.3.3 Fatty acid analysis 

Abdominal fat from one randomly selected bird for each treatment group was 

analyzed for phospholipids (PL), neutral lipids (NL), and total lipids (TL) fatty acid 

compositions. Frozen adipose tissue (~34 mg) was homogenized in glass tubes with a 1:2 

volume ratio of chloroform and methanol approximating 1.5 mL (2x). Homogenates were 

then separated into three equal volume fractions and labelled PL, TL, or NL. Then, 

homogenates of all fractions were diluted using 1.5 mL of chloroform and methanol at a 

1:2 volume ratio, and 50 μL of 17:0 internal standard (NuChek Prep, Elysian, MN) was 

added. Samples were vortexed, chilled for 30 min then, to ensure phase separation did 

not occur, the samples were again vigorously vortexed. Saturated saline and chloroform 

were added to dissolve proteins, carbohydrates, and polarize the solutions prior to 

centrifugation (900 x g) for phase separation. The lowest phase, containing the 

hydrophobic layer of chloroform and lipids, was carefully extracted and dried beneath a 

steady stream of nitrogen.  

Thin layer chromatography (TLC) plates, pre-coated with silica gel 60 (Merck, 

Darmstadt, Germany), were labelled and divided into three ~1-1.5 cm columns (i.e. 17:0 

standard, PL, and NL) with loading areas marked 2.5 cm from the bottom using a pencil. 

The lipids of the PL and NL fractions were re-suspended in 25 μL of chloroform that was 

then slowly added along the marked lines of respective lanes (2x).  Quickly and gently, 

the TLC plates were dried beneath the hood and placed into the TLC chamber loaded 
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with an 8:1 volume ratio of chloroform-methanol solvent until the solvent reached the 

top (~15 mins), before being dried again.  Then silica was scraped into glass screw cap 

test tubes, one centimeter above and below the loading mark for the standard and PL 

columns, and above one centimeter until solvent front for the NL column, because PL 

remain at the loading mark while NL travel upwards with the solvent. 

Boron tri-fluoride in methanol and heat were used to saponify all lipid samples 

into fatty acid methyl esters (FAME). Hexane was used to extract and dissolve the FAME 

to undergo separation by gas chromatography using a Hewlett-Packard 5880 gas 

chromatograph (Rochester, NY) and a DB23 capillary column (0.25 mm × 30 m) (J and W 

Chromatography, Folsom, OH) with hydrogen as the carrier gas. Based on the known 

internal standard (NuChek Prep, Elysian, MN), fatty acids were identified by retention 

times and fatty acid composition was calculated as a mole percentage relative to total 

fatty acids.  

3.3.4 Adipose tissue histology 

Abdominal fat and subcutaneous fat, from the thigh, were removed and 

submerged in chilled 4% paraformaldehyde in 0.1 molar sodium phosphate buffer at pH 

= 7.4 for tissue fixation. Tubes were then transferred to 4C for 12 hour incubation, 

washed in sodium phosphate buffer at 0.1 molar, then transferred into chilled sodium 

phosphate buffer for storage. Under standard tissue processing protocols, a histochemist 
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at Ridge Microtome (Ridge Microtome, Knoxville, TN 37932) dehydrated the samples in 

gradually more potent alcohol baths, removed the alcohol with a hydrophobic clearing 

agent, and infiltrated the tissues with molten wax. Then tissues were sliced in a 

microtome and mounted onto a glass microscope slide prior to light microscopical 

staining. Two slides were made for each sample.  

Images were captured from the slide with the least defects and blood vessels with 

the Advanced Microscopy Group (AMG) EVOS XL Core microscope (Fisher Scientific, 

Pittsburgh, PA). Four images were captured on each slide under 20x magnification. Using 

Image J (Version 1.48, National Institutes of Health) with MRI Adipocyte tools, adipocytes 

were counted and area was determined using microscope settings of 3.2 um/pixel and 

treated with the area restriction that measurements must exceed 100 µm2. Then, 

assuming circularity, adipocyte volume was calculated using the following formula = (4/3) 

*  * (Adipocyte Area (um2) / )3/2. 

3.3.5 Real Time Quantitative PCR assay 

Total RNA was isolated from chicken abdominal adipose tissue collected and snap 

frozen from 24 mixed sex birds, with 6 birds from each treatment group. The birds were 

chosen based on average adiposity for each treatment ± one standard deviation. 

Approximately 200mg of adipose tissue was homogenized in 1 ml of TRIzol reagent 

(Ambion RNA, Life Technologies Corporation, Carlsbad, CA). Chloroform at 200 μl volume 
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was added for phase separation and samples incubated at room temperature for 3 

minutes then centrifuged at 12,000 x g for 15 minutes at 4⁰C. The clear upper aqueous 

phase was transferred into fresh tubes and RNA was precipitated using 500 ul of 100% 

isopropyl alcohol and incubated at room temperature for 10 minutes, then centrifuged at 

12,000 x g for 10 minutes at 4⁰C. The supernatant was removed and the RNA pellet 

washed with 1 ml of 75% ethanol twice and centrifuged at 7,500 x g for 5 minutes at 4⁰C. 

Then the supernatant was removed and the pellets were air dried. RNA was then re-

suspended in 50 ul of nuclease free water in a 37⁰C water bath for 10 minutes. The quality 

and concentration of RNA were determined by measuring the absorbance at 260 and 280 

nm on an Amersham Biosciences UltraSpec 3100 pro spectrophotometer (Piscataway, 

NJ). Then RNA integrity was confirmed by RNA gel electrophoresis. 

CDNA was synthesized from 500 ng total RNA in 20 µL reactions using iScript cDNA 

Synthesis kit (BIORAD, USA), following the manufacturer’s instructions with the following 

thermo-cycler conditions: 25C for 5 minutes, 42C for 30 minutes, and 85C for 5 

minutes. Primers for real time quantitative PCR (RT-QPCR) were designed by Qiagen 

(Venlo, Limburg, Netherlands) and integrated DNA technologies (IDT). RT-QPCR was 

performed in triplicates in 10µL volume reactions that contained 0.5 µL 10 fold diluted 

cDNA, 0.5 ul of each forward and reverse primers, and 5 ul of IQ SYBR Green Supermix 

Master Mix (BIORAD, USA) and 3.5 µL of water. PCR was performed for 40 cycles under 

the following conditions: 95C for 1 minute, 54C for 45 seconds, then 72C for 2 minutes. 
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The housekeeping gene used for relative expression calculations was TBC1 domain family 

8 [UniGene ID 1180728—Gga.10877]. Primer sequences are shown in Table 3.2. 

3.3.6 Statistical analysis 

Data were analyzed for normality and homogeneity of variance using SAS (version 

9.4, SAS Institute Inc., Cary, NC) and statistical significance was set to P < 0.05. A mixed 

model analysis of variance (MMANOVA) using Fischer’s least significant difference (LSD) 

post hoc comparisons for mean separation was used for each data set. Significance levels 

are noted in figure legends and data are presented as means ± standard error. All figures 

and tables for this section are in the appendix at the end of this chapter. 

3.4 Results 

3.4.1 Effects of dietary fatty acid supplementation on tissue fatty acid composition 

The experimental diets were formulated identically except in terms of the fat 

source (Table 3.1), therefore observed differences in all data are credited to fat source. 

The effects of diet on adipose tissue phospholipid fatty acid profiles are shown in Figure 

3.1. The fatty acid profile of all abdominal white adipose tissue fractions (i.e. PL, NL, and 

TL) from 1 randomly selected chicken for each treatment are shown in Table 3.3. As 

expected each fraction was enriched in the corresponding dietary fatty acids. The 
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membrane phospholipids of the LA group are enriched with n-6 PUFA and have the 

greatest n-6 : n-3 ratio (14.29) among all other groups (CA=5.22, FL=0.58, and FO=0.04), 

and phospholipids of the CA group show the greatest dietary MUFA (41.30%) enrichment. 

The FO group, being fed the only diet having very long chain n-3 PUFA, show EPA (20:5n-

3) (28.69%) and DHA (22:6n-3) (16.68%) enrichments, and the FL group shows the 

greatest ALA (18:3n-3) enrichment (21.12%) compared to all other groups (LA=2.15%, 

CA=4.27%, and FO=3.97%).  

3.4.2 Effects on body composition and growth rate 

There were no effects observed in the chickens other than the effects of the diet 

among all groups. The physical effects in response to 21 day fatty acid dietary 

supplementation during the growth phase until day 30 are shown in Table 4. There was a 

difference in average body weight (p=0.0150), only in response to the LA (1752.0 ± 44.3 

g) and FO (1526.0 ± 42.7 g) diets (CA=1650.0 ± 51.8 g, and FL=1694.0 ± 42.8 g). There was 

a diet effect on the average carcass weight, calculated by subtracting breast weight from 

overall body weight (p=0.039). The average weight of the whole breast muscle plate was 

significantly affected by dietary fatty acid composition (p=0.0054) as indicated by the FO 

group (309.17 ± 14.2 g) having the lightest average breast muscle weight to the FL (351.28 

± 12.9 g) and LA (388.38 ± 13.1 g) groups, but not the CA group (336.56 ± 15.7 g). The LA 

group showed the greatest ratio of breast weight relative to overall body weight 
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(p=0.048) and carcass weight (p=0.042) compared to all other groups. There was no effect 

of diet on the average overall body growth rate from day 7 to day 30, the omental fat pad 

weight, nor the percentage of omental fat tissue relative to body weight. Indicating that 

dietary fatty acids did not inhibit or accelerate broiler chicken growth or abdominal fat 

deposition.   

3.4.3 Effects on Lipolysis and Adipose Tissue Cellularity  

The effects of dietary fatty acid supplementation on adipocyte size and serum 

NEFA are presented in Figure 3.2. The averages and statistical differences among 

adipocytes of ≥100 μm2, and the average adipocyte sizes for FO, FL, LA, and CA groups 

were calculated (n=5, 5, 5, and 4 birds, respectively). Dietary n-3 PUFA supplementation 

caused the average abdominal adipocyte size to decrease as shown in panel A. The lowest 

overall average adipocyte size, at significance level p<0.0001, is a result of providing 

dietary fat as FO (223.05 ± 6.61 μm2). Providing dietary fat as FL (246.6 ± 6.61 μm2) causes 

smaller fat cells as compared to LA (275.18 ± 6.61 μm2) and CA (275.41 ± 7.39 μm2) diets 

but not the FO diet, indicating that the length of dietary n-3 PUFA and not simply n-3 PUFA 

affect adipocyte cellularity.  

The effect of dietary fatty acid supplementation on the average serum NEFA levels 

are shown in Panel B of Figure 3.2. The FO birds had the highest level of lipolysis measured 

from sera (10.04 ± 0.88 mg/dL) using n=8 birds at significance level p=0.002. The serum 
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NEFA was not influenced by the LA (5.63 ± 0.88 mg/dL), CA (6.25 ± 0.94 mg/dL), or FL (5.01 

± 0.88 mg/dL) diets, measured using n=8, 7, 8 birds, respectively.  

Adipocyte volume was calculated from adipocyte size and is presented in Figure 

3.3. Expressed as relative frequency percentages, FO birds, having the smallest average 

adipocyte size, had the highest incidence of smaller adipocyte volumes (49.2 ± 3.13 %) as 

compared to LA (36.0 ± 3.13 %), CA (37.7 ± 3.5 %), and FL (41.8 ± 3.13 %) of the adipocytes 

being less than or equal to 2000 μm3. As cell volume increases, the incidence of larger 

adipocyte volumes occur as a result of LA and CA dietary supplementation. Summing the 

frequencies of adipocytes of 6000 μm3 and greater yields values of 33.6%, 33.8%, 25.3%, 

and 18.2% for LA, CA, FL, and FO birds, respectively, indicating that providing dietary fat 

as LA and CA causes fat cell growth. To provide visual aid for comparison to show the 

effects of LA (Panel A), CA (Panel B), FL (Panel C), and FO (Panel D) on dietary fats on 

adipocyte cellularity, Figure 3.4 shows the histological sections of one randomly chosen 

abdominal fat tissue slide for each diet with 50 μm scale bars.    

3.4.4. Effects on Relative mRNA Expression in Visceral White Adipose Tissue  

The average mRNA expression in visceral white adipose tissue are compared 

across diets and relative to TBC1D8. Panel A of Figure 3.5 indicates that in broilers that 

consumed the lard diet, mRNA expression levels of PPARG and EGR1 were significantly 

elevated. Peroxisome proliferator-activated receptor gamma (p=0.0198) and EGR1 
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(p=0.0485) show similar expression patterns, with the canola oil and fish oil diets 

produced the lowest relative mRNA expressions while the flaxseed oil diet did not 

significantly change mRNA expressions. These two genes were chosen to investigate if the 

present dietary fatty acids function as ligands to regulate energy metabolism by altering 

gene transcription in white adipose tissue. Both PPARG and EGR1 help to regulate cell 

differentiation, transcription, and glucose-fatty acid metabolism.  

Panel B of Figure 3.5 indicates if the present dietary fatty acids effect energy 

homeostasis through lipid hydrolysis and synthesis. The mRNA expression levels of 

lipoprotein lipase (LPL), patatin-like phospholipase 8 (PNPLA8), and phosphatidate 

phosphatase 1 (LPIN1) are reported. Broilers fed the lard diet showed significant 

elevations of PNPLA8 (p=0.0011), and LPL and LPIN1 indicate no change across dietary 

treatment groups.  

Panel C investigates the effects of the present dietary fatty acids on expression 

profiles of regulatory genes for energy balance through lipid breakdown and synthesis. 

The mRNA expression profiles of ACOX1, PDK4 (multiplied by factor 10 to fit onto the 

graph), CPT-1a, and fatty acid synthase (FASN) are presented. The mRNA expression of 

PDK4 (p=0.0229) was highest in white adipose tissue of broilers that consumed the fish 

oil diet. The canola oil and flaxseed oil diets showed the lowest mRNA levels and the lard 

diet indicate no difference compared to other diets. The graphs of ACOX1, CPT-1a, and 

FASN show that there is no significant effect of dietary fatty acids on mRNA expressions. 
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Panel D reports mRNA expressions of the key enzyme for gluconeogenesis, 

phosphoenolpyruvate carboxy-kinase 1 (PCK1), and inflammatory lymphocytes, 

chemokine C-C ligand 20 (CCL20), are not significantly altered in white adipose tissue 

across in response to dietary fatty acids.  

3.5 Discussion 

This study investigated the effects of ad libitum feeding of diets enriched in 

saturated and n-6 poly-unsaturated (lard fat), mono-unsaturated (canola oil), and 

different n-3 poly-unsaturated (flaxseed oil and fish oil) fatty acids on fat deposition and 

body composition traits during the critical developmental growth period of broiler 

chickens, as a model for childhood obesity. Compared to dietary SFA, some studies using 

chicken models have reported that dietary n-6 PUFA, provided as sunflower or soybean 

oils, caused a reduction in fatness by decreasing adiposity, abdominal fat pads, and 

adipocyte sizes (Newman et al., 2002; Sanz et al., 2000; Wongsuthavas et al., 2008). Other 

studies using chickens as a model have reported that dietary n-3 PUFA, provided as a mix 

of fish and flaxseed oils, also reduce fatness compared to dietary SFA (Gonzalez-Ortiz et 

al., 2013; Villaverde et al., 2006). Our findings support previous reports that unsaturated 

fatty acids cause a decreasing effect on fatness in broiler chickens. However, as the LA 

and CA groups had a propensity toward larger adipocytes compared to the FO and FL 
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groups, our findings extend to include that the type and level of fatty acid unsaturation 

alters fatness in broiler chickens. Further, the types of n-3 PUFAs influence glucose and 

lipid metabolism differently in young broiler chickens, as indicated by the FO and FL diets 

having conflicting effects on body and breast weights, although both diets are rich in n-3 

PUFAs.  

Modern meat-type chickens have been bred to yield disproportionately larger 

breast muscles compared to other body parts (Collins et al., 2014). Carcass weight was 

calculated to safeguard our findings that the diet treatments truly affected whole body 

growth. Carcass weight was also significantly different between diet groups, supporting 

that differences in body weight were truly effected by dietary fatty acids and not a result 

of the massive breast plates. 

In mammals, insulin inhibits lipolysis, and insulin sensitivity is inversely associated 

with the level of serum free fatty acids (Unger, 2003). However, in chickens, elevated 

serum free fatty acids are a characteristic of leanness (Ji et al., 2014). The FO diet caused 

elevated levels of serum lipolysis, and the highest incidence of smaller adipocytes. 

Further, dietary LA caused decreased levels of serum NEFA compared to FO, and effected 

adipose cellularity in both subcutaneous (not reported) and visceral depots by influencing 

cell size towards larger adipocytes, compared to dietary FL and FO. The mechanism by 

which longer chained n-3 PUFAs, EPA and DHA, impact glucose and lipid homeostasis may 
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be through inhibition of lipid storage signals and stimulation of fatty acid catabolism, as 

indicated by elevated levels of circulating NEFA.  

The major regulator of adipogenesis is PPARG (Rosen et al., 2006) while EGR1 

functions as a transcription regulator for cell differentiation and suppresses lipolysis by 

inhibiting adipose tissue lipase expression (Chakrabarti et al., 2013). In vitro and in vivo 

studies in humans and rodents have demonstrated that n-6 PUFA and n-3 PUFA have 

contrasting effects on fatness. Some studies report that n-6 PUFA promote adipogenesis 

through the activity of prostacyclin (Gaillard et al., 1989; Massiera et al., 2003) and causes 

increased expression of lipogenic genes while n-3 PUFA encourage the opposite 

(Muhlhausler et al., 2010). Although we did not measure prostacyclin, the effect of n-6 

PUFA compared to n-3 PUFA is cross-species and includes chickens. This is indicated by 

our in vivo studies of the response of chicken adipose tissue to dietary n-6 PUFA and n-3 

PUFA. The abdominal white adipose tissues of birds fed the lard supplemented diet, 

enriched in n-6 PUFA and SFA, had the highest mRNA expressions of EGR1 and PPARG, 

indicative of cell differentiation and adipogenesis. Our findings support those of Royan et. 

al. who reported an elevated relative PPARG expression in adipose tissue of chickens fed 

a diet enriched in palm oil compared to diets enriched in soybean oil, fish oil, and 

conjugated linoleic acid. They reported a the fatty acid composition of the dietary palm 

oil as having the highest fatty acid composition of SFA relative to the other dietary fats, 

and a n-6 : n-3 ratio of 18.31 (Royan et al., 2011). Further, compared to the FO 
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supplemented birds, LA diet had decreased levels of lipolysis and a higher average 

abdominal adipocyte size, supporting and explaining the relatively heightened expression 

of EGR1.  

Spalding et al. (2008) reported that adipocyte number in humans is established in 

early development, which reinforces the need for childhood obesity research. An isoform 

of PPARG that regulates adipocyte size by promoting lipid storage to prevent lipotoxicity 

is PPARG-2 (Medina-Gomez et al., 2007). If adipocyte number is set in early childhood for 

chickens, we postulate that the significantly elevated PPARG mRNA expression in fat 

tissue of the LA broilers may be due to the presence and expression of PPARG-2 because 

the average abdominal adipocyte number (not reported) did not differ between diets. 

This may be as result of an already established adipocyte number from hatch until day 6, 

as chickens began their diets when aged seven days.  

The patatin-like phospholipase family members have high cleavage specificity for 

both saturated and mono-unsaturated fatty acids (Yan et al., 2005). The phospholipid 

fatty acid analysis reveals the relatively heightened level of MUFA in the CA and FL diets. 

We expected the gene expression profiles of the CA and FL diets for PNPLA8 to increase 

but they did not. Instead, the LA diet showed significantly increased PNPLA8 mRNA 

expression. Although we did not measure the positional abundance of phospholipids, we 

postulate that there is a greater presence of SFA, because of its straight chain structure, 

compared to MUFAs on the sn-1 and sn-2 positions of phospholipids.  
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Pyruvate dehydrogenase kinase 4 contributes to the energy metabolism by 

regulating energy substrates, and shifting substrate oxidation from glucose to fatty acids 

and stimulating glucose storage (Connaughton et al., 2010; Ji et al., 2012). As expected, 

the relative expression of PDK4 was elevated in the adipose tissue of birds fed FO 

compared to birds fed FL and CA diets, which had the overall lowest relative mRNA 

expressions for PDK4. This increased PDK4 expression in the FO diet suggests locally 

oxidized fatty acids in white adipose tissue, despite not having observed any changes in 

CPT-1a and ACOX1 expressions. Surprisingly, visceral white adipose tissue of birds fed LA 

diet demonstrated PDK4 expression that was not relatively different from any diet, and 

further investigations are necessary. The LA diet shows the highest phospholipid fatty acid 

mole percentage of n-6 PUFA and the FO diet shows the highest phospholipid 

composition of n-3 PUFA. Ferrer-Martinez et al. (2006) reported that a high fat diet vs a 

high sucrose diet did not alter the expression of PDK4 in skeletal muscle of rats. If the type 

of endogenous fatty acids, rather than a high fat diet, effect PDK4 expression this could 

offer clarification as to why the LA diet, rich in n-6 PUFA and SFA, did not have the lowest 

PDK4 expression. 

In this study, n-3 PUFAs altered several components of adipose metabolism, 

however further studies are necessary to identify the underlying mechanisms through 

which dietary n-3 PUFAs reduce fatness. This study validates our ability to use broiler 

chicks as a model for human obesity research, to manipulate adipose development, and 
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to study the effects of nutritive changes on white adipose tissue. Enriching the diet of 

growing chicks in fish oil significantly reduced adipocyte size, and both flaxseed and fish 

oil supplementation promoted the incidence of smaller adipocytes relative to lard and 

canola oil supplemented diets. Dietary fatty acids had diverse effects on gene expression 

profiles involved in adipogenesis, insulin sensitivity, lipolysis, and gluconeogenesis. Our 

findings do not include evidence that dietary n-3 PUFAs acted to reduce fatness by 

stimulating white adipose tissue to oxidize fatty acids locally. Nevertheless, we observed 

that FO birds had elevated PDK4 mRNA expressions suggesting local fatty acid oxidation 

because PDK4 functions as a fuel switch for lipids.  

Overall, diet and lifestyle are the major factors that contribute to the incidence of 

obesity, which presents the need for studies of dietary supplementation. This study 

confirms that dietary programming during development effects fat storage and adipocyte 

size, and additional investigations of dietary nutrition can help identify the mechanisms 

that network to regulate energy homeostasis as influenced by dietary programming. 

Collectively, our data suggest that altering the type of fatty acids consumed during 

childhood moderates fat deposition, and offers a preventative approach to reduce the 

incidence of obese children and pre-adolescents who would likely develop into obese 

adults. 
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3.7 Appendix: Figures and Tables 

 

Figure 3.1 Abdominal adipocyte membrane fatty acid composition  

Phospholipid fatty acid composition of visceral white adipose from 30 day old broiler chicken adipocytes expressed in mole%. 

Treatment groups: 8% lard fat (LA), 8% canola oil (CA), 8% flaxseed oil (FL), 8% fish oil (FO)
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Figure 3.2 Abdominal adipocyte size and serum free fatty acid levels 

Values are group averages and error bars are SEM. Treatment groups: 8% lard fat (LA), 

8% canola oil (CA), 8% flaxseed oil (FL), 8% fish oil (FO). A. adipocyte area at P<0.0001 

for LA (n=5 birds), CA (n=4), FL (n=5), FO (n=5) expressed in μm3. B. serum NEFA levels at 

P=0.0017 for LA (n=10 birds), CA (n=10), FL (n=10), FO (n=10) expressed in mg/dL. 
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Figure 3.3 Relative frequency of fat cell volume in abdominal adipose tissue 

Relative adipocyte volume frequency from broiler chicken white adipose tissue. Error 

bars are SEM. Treatment groups: 8% lard fat (LA), 8% canola oil (CA), 8% flaxseed oil 

(FL), 8% fish oil (FO). ≤ 2000 μm3 (P=0.0393), ≤ 4000 μm3 (P=0.0418), ≤ 6000 μm3 

(P=0.0324), ≤ 8000 μm3 (P=0.0972), ≤ 10000 μm3 (P=0.0341), ≤ 12000 μm3 (P=0.1726), > 

12000 μm3 (P=0.0455). 
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Figure 3.4 Histological cellularity of abdominal adipose tissue 

Histological sections of abdominal white adipose tissue of broiler chickens. Treatment groups: A. 8% lard fat (LA), B. 8% 

canola oil (CA), C. 8% flaxseed oil (FL), D. 8% fish oil (FO). 
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Figure 3.5 Relative mRNA expression in abdominal adipose tissue. 

Relative mRNA expression in abdominal white adipose tissue of young broiler chickens. 

N=6 birds for each diet. Values are group averages and error bars are SEM. Treatment 

groups: 8% lard fat (LA), 8% canola oil (CA), 8% flaxseed oil (FL), 8% fish oil (FO). A. 

PPARG (values divided by 10) (P=0.0198) and EGR1 (P=0.0485), B. LPL (values divided by 

100) and PNPLA8 (P=0.0011) and LPIN1, C. ACOX1 and CPT-1a (values multiplied by 10) 

and PDK4 (values multiplied by 10) (P=0.0229) and FASN, D. CCL20 and PCK1. 
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Table 3.1 Base experimental diet composition  

Element Grams (g) Composition (%) 

Corn, grain 
Soybean meal 
Corn gluten meal 
Fish meal 
Rice Bran 
Vitamin Premix 
Filler 
Choline, Mg/kg 
Betaine, Mg/kg 
DL Met 
Salt 
Limestone 
Dicalcium  phosphate 
Trace Min. Premix 
Fat, animal  
Coban 
Lysine 

25632.5 
14424.2 
- 
- 
- 
226.8 
- 
90.7 
- 
45.4 
136.1 
526.2 
648.6 
- 
3628.7 
- 
- 

56.5% 
31.8% 
- 
- 
- 
0.5% 
- 
0.2% 
- 
0.1% 
0.3% 
1.2% 
1.4% 
- 
8.0% 
- 
- 

 

Base experimental diet composition with values represented as the percentage by 

weight of dietary compound. 
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Table 3.2 Fatty acid composition (mole %) of abdominal fat 

Fatty acid composition of abdominal fat in mole %. Snap frozen abdominal fat from one 

chicken was randomly selected from each diet to run the analyses.   

Total FA = ∑SFA + ∑MUFA + ∑PUFA 

Total SFA = C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C20:0 + C22:0 + C24:0 

Total MUFA = C16:1 + C17:1 + C18:1 n-7 + C18:1 n-9 + C20:1 n-9 + C22:1 n-9 

Total PUFA = C18:2 n-6 + C18:3 n-3 + C18:3 n-6 + C20:4 n-6 + C20:5 n-3 + C22:6 n-3 

Total n-6 = C18:2 n-6 + C18:3 n-6 + C20:4 n-6 

Total n-3 = C18:3 n-3 + C20:5 n-3 + C22:6 n-3 
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 Phospholipids lipids (mole%) Neutral lipids (mole%) Total lipids (mole%) 

 Treatments Treatments Treatments 

 LA CA FL FO LA CA FL FO LA CA FL FO 

C14:0 2.46 1.19 1.26 19.30 1.82 - 1.05 - - - - 8.45 

C16:0  38.26 19.05 13.10 8.64 26.03 20.94 25.24 28.35 26.36 19.47 18.87 - 

C16:1n-7 - - - - 8.42 6.26 8.37 9.43 7.49 4.51 5.62 12.64 

C18:0 7.13 5.25 3.48 17.06 3.55 3.26 4.31 - 4.75 4.70 4.40 9.05 

C18:1n-9 - 41.30 18.27 - 36.44 43.58  25.27 39.63 48.05 28.00 33.75 

C18:2n-6 30.24 20.45 12.35 - 22.06 20.87 22.66 10.56 4.43 18.83 16.51 14.48 

C18:3n-3 2.15 4.27 21.12 3.97 1.69 5.36 38.37 - - 4.44 26.59 - 

C20:4n-6 0.48 1.82 - 2.08 - - - - - - - - 

C20:5n-3 - - - 28.69 - - - 7.98 - - - 13.44 

C22:6n-3 - - - 16.68 - - - - - - - 8.18 

Total FA 80.72 93.33 69.58 96.42 100.0

0 

100.2

7 

100.0

0 

81.59 82.67 100.0

0 

100.0

0 

100.0

0 
Total SFA 47.85 25.49 17.84 45.00 31.40 24.19 30.60 28.35 31.11 24.17 23.27 17.50 

Total 

MUFA 

0.00 41.30 18.27 0.00 44.86 49.84 8.37 34.70 47.13 52.55 33.62 46.40 

Total 

PUFA 

32.86 26.54 33.47 51.42 23.75 26.23 61.03 18.54 4.43 23.28 43.11 36.10 

Total n-6 30.72 22.27 12.35 2.08 22.06 20.87 22.66 10.56 4.43 18.83 16.51 14.48 

Total n-3 2.15 4.27 21.12 49.35 1.69 5.36 38.37 7.98 - 4.44 26.59 21.62 

n-6 : n-3 14.30 5.22 0.58 0.04 13.07 3.89 0.59 1.32 4.43 4.24 0.62 0.67 
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Table 3.3 Carcass traits of broiler chickens at day 30  

 Treatments   

 LA CA FL FO SEM p-values 

Body (g) 1752.0 1650.0 1694.0 1526.0 48.02 0.015 

Carcass (g) 1363.6 1313.5 1342.7 1216.8 36.83 0.039 

Fat pad (g) 26.0 24.0 24.9 22.2 1.583 0.385 

Breast (g) 0.29 0.26 0.26 0.25 14.79 0.0054 

Breast:Body 0.22 0.20 0.21 0.20 0.0054 0.048 

Breast:Carcass 0.29 0.26 0.26 0.25 0.0086 0.042 

Adiposity (%) 1.90 1.83 1.87 1.82 0.108 0.95 

Growth Rate (g/d) 9.12 10.20 10.18 10.04 0.3326 0.0836 

 

Growth performance of young broiler chickens at day 30 with n=10 per group. Carcass 

(g) = Body (g) – Breast (g). Adiposity = 100 x Fat pad (g) ÷ Body (g). Growth Rate = (Day 

30 Body (g) – Day 7 Body (g)) ÷ Day 7 Body (g). 
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CHAPTER IV 
CONCLUSION 

To conclude, the broiler chicken offers many advantages because it can serve as a 

model organism for human obesity, and diabetes studies. Further, young broiler chickens 

represents a research model for assessing the complex mechanisms that regulate energy 

homeostasis in obesity during childhood. Identifying the underlying mechanisms will 

provide new targets to increase in situ fatty acid oxidation and protect against childhood 

obesity and the harmful effects hyperlipidemia.  

Cutting caloric intake is the default method employed to combat obesity, and to 

prevent excessive weight gain. In addition to cutting calories, we asked if white adipose 

tissue, devoid of brown adipocytes, could be stimulated to promote fat loss or inhibit lipid 

storage. A previous study from our lab reported elevated gene transcription profiles for 

lipid catabolism and glucose storage in adipose tissue after a short-term five hour fast, in 

our first study we used fasting to promote negative energy balance to assess this 

contention. Fasts over a short term confirmed the capability of visceral white adipose 

tissue to rapidly increase fatty acid oxidation locally and the positive correlation between 

increased fasting time and increased lipid oxidation. The implications of these findings are 

tremendous in that these results elucidated a mechanism in white adipose, without the 

oxidative capacity of brown adipocytes, to catabolize lipids locally. Additional research is 

needed, however, to (i) fully characterize the mechanism and its key regulators, and (ii) 



94 

 

to target and exploit these control points to help in reducing the incidence of obesity in 

humans, and fatness in chickens.  

Some studies have shown that fatty acids can act as activating ligands for the PPAR 

nuclear receptor family for downstream regulation of energy metabolism, and others 

have reported that dietary n-3 PUFA can reduce fatness. Previously reported 

transcriptomic data from our lab showed that a short-term five hour fast caused the gene 

expressions of the PPAR family nuclear receptors and lipid oxidation to up-regulate in 

white adipose tissue. In our second study, we explored the relationship between different 

endogenous fatty acids, lipid storage in white adipocytes, and concomitant gene 

expression profiles. Using isocaloric diets enriched in different fatty acids, we confirmed 

that ALA, EPA, and DHA n-3 PUFAs impede fat deposition through attenuated adipocyte 

size in broiler chickens. Furthermore, although fat deposition and lipolysis were reduced, 

dietary EPA and DHA caused decreases in body and breast weights, which is not ideal for 

the poultry industry. Saturated dietary fatty acids altered gene expression profiles for 

increased adipogenesis, cell differentiation, and inhibition of lipase activity. Future 

research should aim towards fully characterizing the mechanism(s) that very long chain 

n-3 PUFAs utilize to reduce fatness. 

Our first study confirmed that white adipose tissue has the capacity to oxidize fatty 

acids locally after a five hour fast and that this function is augmented during starvation. 

The second study confirmed that supplementing the diet with EPA and DHA improved 
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adipose tissue metabolism. This was observed through increased lipolysis, lowered body 

weight, and gene expression for adipocyte differentiation. Our findings do not show 

upregulated transcription of rate limiting genes for fatty acid oxidation, however, as 

suggested by increased PDK4 expression, EPA and DHA encouraged white adipose tissue 

to utilize fatty acids for energy.  
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