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Abstract

Nanoindentation has become a powerful tool in the measurement of the
mechanical properties of diverse materials, such as metallic materials, polymer

materials, and even biomaterias.

In this thesis, three types of Zr-based bulk metdlic glasses (BMGs) were
investigated by nanoindentation. Our work focuses on the characterization of the
hardness, the reduced modulus, and the deformation behavior under different
indentation conditions. The study of the hardness and the reduced modulus is to
access the effect of the indentation load on deformation behavior and to determine the
inhomogeneous deformation. The morphological profiles of the residua indentation
on the surface of the specimen after an indentation were observed by the atomic force
microscope (AFM). Differential scanning calorimetry (DSC) measurements were
performed to determine characteristic thermal properties, the glass transition

temperature (Tg), and the crystallization temperature (Ty).

The serrated-flow behavior (or pop-in behavior) was investigated at different
loading rates. It is concluded that the pop-in size gradually increases with the decrease
in the loading rate and the increase of the indentation depth. And the research of the
indentation tests on the several metallic glasses at different indentation rates indicates

that a much higher critical strain rate will lead to the disappearance of flow serrations.

Another type of material of a high-entropy alloy (HEA) was also investigated in
this thesis. The hardness, reduced modulus, and deformation behavior were

investigated by the indentation tests. Compared to Zr-based BMGs, this type of HEA

\Y



has lower hardness and higher reduced modulus. Creep behavior was observed in the
indentation tests. However, serrated flow behavior disappears. The microstructure of
this HEA was investigated by the X-ray diffraction (XRD), atomic force microscopy
(AFM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy
(EDS). For the advanced research, the simulation of ion-implantation of HEAS was
preformed, because the advanced reactor is one of the important potential applications
of HEAs and advanced nuclear-energy systems, which will require materials that can
withstand extreme reactor environments of high-temperature and high-doses

radiation.
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Chapter 1 Literature Review

1.1 Introduction

For more than a century, the materials science researchers have recognized that
mechanical properties are the determinant factor in surface contacts between materials.
In order to measure such mechanical properties from a contact of known geometry,
researchers have been developing many different indentation and impresson tests.
Due to the development of new sensors and actuators, the instrumented indentations
can be routinely performed on submicron scales. Thus, the nanoindentation was
developed for mechanical-property measurements at surfaces. It is well known that
the metals are the workhorse material of the modern society, owing to their excellent
formability, toughness, and strength. Bulk metallic glasses (BMGs) and high entropy
aloys (HEAS) are the alloys developed in recent years and have novel properties,
such as high strength. Thus, nanoindentation is a very good instrument to research the
fundamental deformation mechanisms of these materials [1, 2]. In our work, we will
focus on the characterization of the hardness, reduced modulus, serrated flow, and

many other properties of BMGs and HEAs by nanoindentation.

1.2 Nanoindentation

The nanoindentation technique, developed in the mid-1970s [3, 4], has been
widely used to test mechanical properties of materials in the last decades, and it is

commonly applied in the small volume of samples at small scales[1, 2]. Traditionally,
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the indentation experiment is only used to test the hardness of a material, until
Ternovskii et al. [4] derives the reduced modulus of interest using the measured
load-displacement data by introducing the stiffness equation. The stiffness equation

introduced by Ternovskii et al. is as follows

dP_ 2
E_prfﬂ (1)

where dP/dh is the slope of the load-displacement curve, E; is the reduced modulus of
a material, and A is the projected contact area of the indent. Oliver and Pharr [1]
re-introduce the stiffness equation and claim that this equation can be used in all
axisymmetric indenters with any infinitely smooth profile. They proposed this
technical approach, which received the wide acceptance by the community, and make

the nanoindentation as a technique very popular to extract elastic materia properties.

This method of nanoindentation is derived from traditional indentation tests.
However, the size of manufactured tips was reduced, and the accuracy and resolution
of depth were improved due to the technological developments [5]. The hardness
value and elastic modulus are the primary properties, which were measured by means
of nanoindentation, and it measures the load-displacement response by the
high-resolution equipment. Moreover, with the increased interest in small volumes of
thin films and specimens and the modern applications, nanoindentations become more
and more popular and have some new innovations, such as the atomic force
microscopy (AFM) [6, 7, 8] or in-suit transmission electron microscopy (TEM)

[9,20,11]. Nanoindentation has also been used to research the rate-dependent



processes, such as mechanical properties of creep [12]. Furthermore, the development
of the high-temperature stage helps the research on the temperature dependence of
mechanical properties. The nanoindentation technique has some relative advantages in
mechanical testing in the sub-micron range, when compared to other testing methods,
such as the simple setup and specimen preparation, leaving a small imprint and

commonly perceived as relatively nondestructive [13].

Several analytical approaches have been developed for measuring mechanical
properties, such as hardness, elastic modulus, and yield stress from the indentation
load-displacement data of a bulk material. The typical procedure of the
nanoindentation experiment is to use a specidly-designed tip penetrating into a
specimen, records the load and the corresponding displacement, and then use the load
and displacement to calculate the hardness and elastic modulus. To date, many kinds
of indentation tips are designed with the development of the indentation technique,
and the different kinds of indentation tips and their characterization are summarized in
Figure 1. In our experiments, we smply use the diamond Berkovich tip, which is also
used most widely. The Berkovich tip is athree-sided pyramid, which is geometrically

self-similar and the centerline-to-face angle, a , is 65.35°, as shown in Figure 2 [14].

The most common method was developed to measure the hardness and the
reduced modulus of a material from the load-displacement data obtained with the
Berkovich indenter, which was proposed by Oliver and Pharr in 1992 [1]. Figure 3 is
a schematic profile of the indentation process for the Berkovich indenter. When the

indenter is penetrating into the specimen, both elastic and plastic deformations on the



material’s surface occur, which produces an impression in the specimen that has the

same geometric shape of the indenter, and generates a contact depth referred to as h.

The typical loading and unloading procedure consists of five steps:

(1) Increasing the load linearly to a determined maximum value (Pma) & a
constant loading rate;

(2) Holding the load of Prmax constant for the different hold time, thog;

(3) Decreasing linearly the load to 10% of Pyux With the same rate as the loading
stage;

(4) Holding the load constant for a specified time to record the thermal drift of
the instrument;

(5) Decreasing the load linearly to zero with the same loading rate as the loading

stage.

The hardness and reduced modulus can be caculated by analyzing the
load-displacement curve, as shown in Figure 4. In order to calculate the hardness of a
material from the nanoindentation data, some important quantities must be recorded
by the test system, such as maximum load (Prax), maximum depth (hmy), and the final
depth of the residual hardness impression (h). The equation used to extract the

hardness, H, is

A @)
where Py is the peak load, and A is the project contact area at the peak load. For the

unloading stiffness, S is determined by curve-fitting the upper portion of the



unloading curve and measuring its slope at the peak load and the equation is:

édP u 2b
S=g ==EA (3)
Sdh lflmloading \/a r

Here, S= dP/dh is the experimentally-measured stiffness of the upper portion of
the unloading data, and E; is the reduced modulus. The widely-used relationship for
the reduced modulus, E;, which relates projected area, A, and contact stiffness, S. is

given by

NS
- (4)

1
a

>

where f is a correction factor corresponding to the geometry of the indenter, with S =
1 for axisymmetric indenters and f = 1.03~1.05 for indenters with square or
rectangular cross sections. The relationship between the elastic modulus of the
specimen, E, and the measured reduced modulus, E;, are given by the following

equation as.

(5)

where n; and E; are the Poisson’sratio and elastic modulus for the indenter, and vs and
Es are the same parameters for the specimen, respectively. For the diamond indenter,
Ei equals to 1,141 GPaand n; equals to 0.07 [15]. Hey et al. [16] point out that even if
the material’s Poisson ratio is roughly estimated around 0.25 + 0.1, there still has more

than 5% uncertainty in the calcul ated value of E for the materials.



1.3 Bulk Metallic Glass

Metallic glasses (that is, metallic amorphous glasses), first formatived by Duwez
a Cdtech, USA, in 1960 [17], are aloys without long-range periodicity or
quasicrystalline common to conventional metals. They used the rapid quenching
techniques to freeze the liquid structure at an extremely high rate of 10°K/s to avoid
the crystallization. Following this discovery, the research on the metallic glasses was
accelerated in the early 1970s because a melt spinning method was invented and
developed [18]. This technique, which is a rapid cooling method, can quench liquid
alloys through impinging a melt stream on a spinning copper wheel with 10 — 50 xm
thick ribbons at cooling rates of 10° — 10° K/s. At this stage, the formation of metallic
glasses should require the high cooling rates, and this trend limit the amorphous alloys
geometry and restrict the development of the bulk metallic glasses. Therefore, the
most important thing is to develop new metallic glasses with lower critical cooling
rates for keeping the amorphous structure. However, some noble-metal-based alloys,
such as Pd-Cu-S and Pd-Ni-P [19, 20, 21], were found to the few exceptions.
Drehman et al. [20] claim that these alloys could fabricated with very low critical
cooling rates of ~10 K/s, and the bulk size of these glassy samples could be ~10 mm
in thickness. Although this is a big development of the research in the BMGs, these
pioneering works did not make any real impact in the materials science community.
The main reason is that the noble metals, such as paladium and platinum, are very
expensive and cannot be used for a wide range of applications, even if these metas

are very good for improving the glass-forming ability.



Inoue et al. [22] discovered the multicomponent glass formers in 1990s, and
these new bulk glassy alloys have very low critical cooling rates for the bulk glass
formation and exhibit the excellent glass-forming ability (GFA). So, the discovery of
multicomponent glass formers could be considered the breakthrough in the BMG
research, because some inefficiencies transition metals, not the expensive noble
metals, can be used for essential constituent elements in these new BM G aloys. Peker
et al. [23] at Caltech in 1993 reported that they successfully prepared an excellent
multicomponent BMG and the composition is Zr;2Tii38Cui25Ni0oBes; s, in aomic
percent (at. %). The most important thing is that this new kind of BMG alloys
contains 22.5 at% beryllium, which is first used as the glass former. Beryllium is the
smallest metallic atom in the world. Thus, it is not only used to fill empty space in the
defective glass structure, but also employed to make the stabilization of the liquid and

glass phases more efficient.

Due to the excellent high thermal stability and glass-forming ability, metallic
aloys, which are usualy referred to as BMGs, have been paid much scientific and
engineering attentions from the early 1970s to 1990s. During this time, many kinds of
BMGs, such as iron-, nickel-, titanium-, copper-, and based zirconium-based alloy
systems [24], have been developed and an explosion of academic and industria study

has occurred owing to their various applications.

With the development of BMGs, both the glass-forming ability and the critical
casting thicknesses are increased observably. Siegrist et al. [25] reviewed the progress

history of the research of the BMG aloys and summarized the critical casting



thicknesses of these metallic glasses in a plot, which is reprinted in Figure 5. It is
pointed out that, over last four decades, the critical casting thickness tends to increase
by one order of magnitude approximately every 12 years and increased total by more
than three orders of magnitudes [25]. So far, more than one thousand of different
BMGs have now been reported. In these different BMGs systems, the PdCuNiP
family has the highest glass-forming ability and a critical casting thickness of 72 mm

was developed by Inoue group.

1.3.1 BMG formation

A growing number of BMGs have been successfully prepared and
commercialized for many potential structural and functional applications because of
their novel properties. Although the glass forming ability (GFA), an important
terminology in studying the metallic-glasses formation, has been improved with the
development of metdlic glasses, the relative low GFA is still one of the largest
stumbling blocks for their commercia use. Many indicators of the GFA have been
proposed, nevertheless, no standard definition has been made by now. From the
engineering aspect, the higher GFA of a metallic glass need the lower critical cooling
rate (R;) and the larger critical dimension or thickness. Owing to the fact that it is still
difficult to measure the critical cooling rate precisely in the experiment, the reliable

criteria of characterizing the GFA need to be designed.

The first used indicator for predicting the GFA, the reduced glass-transition

temperature, T,q , was reported by Turnbull [26, 27] in 1970s. T, =Ty /T, where Tq
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is glass-transition temperature, and T, is liquid temperature or T,, =T, /T,, where
Tm is melting temperature. It is reported that when the T4 in the range of 0.66-0.69,
the metallic glasses have the high GFA [28]. Figure 6 shows a good correlation

between the criterion, T,g, and GFA [29].

In 1980s, Inoue [24] report a new kind of GFA indicator, 4Ty, the supercooled
liquid region. DT,, =T, - T, where Ty is the crystallization temperature, and Tg is
the glass-transition temperature. The parameter indicates that with the increase of the
accessible supercooled liquid region, there was corresponding improvement in GFA

[30].

Some researchers point out that the T,y has a better correlation than AT,y with
GFA in most glass-forming systems [31, 32]. However, with the prepared and
development of new metallic-glass compositions, both indicators of T,y and 4Tyy show
unreliable correlations with GFA, even presenting a contrasting trend in many BMGs
systems [31]. For example, Shen et al. [33, 34] report that in some Pd- and Fe-based
metallic-glasses compositions, T.q is found to be unsatisfactory to predict GFA. Until
recently, Lu et al. [35, 36] developed a new indicater, y, which shows a reliable
correlation to reflect the GFA of most metallic-glasses compositions and some oxide
glasses. In Lu et al.[35, 36] theory, the average of the stability of the liquids in
equilibrium and metastable states, 1/2(Ty +T;), can be used to represent the
liquid-phase stability if two liquids have different T) and T, as shown in Figure 7. In
general, aglass-forming liquid should have arelatively higher liquid phase stability if

it has a smaller value of 1/2(T, +T,). If al liquids have the same liquid-phase



stability, the onset crystallization temperature, Ty, can assess the GFA alone, as shown
in Figure 8, which schematically point out the function of T, and GFA [36]. Thus, Lu
et al. proposed a new indicator, y, which is the normalized Tx and used as a gauge for

GFA, expressed as follows [35, 37].

¢ 1 u- T
2T, +T)E Ty +T, ©
e ( g |)g g |

gu Ty

From this equation, it is clear that the higher onset crystallization temperature Ty,
which represent greater resistance to crystallization, and the lower sum of Ty and T,
which means lower stability in the metastable and equilibrium state, will result in
higher y, which gives good GFA. The correlation between the critical cooling rate, R;
and indicator, y for typical bulk metallic glasses are shown in Figure 9 [36] and the
correlation between the critical thickness, tma, and indicator, y, are shown in Figure

10[36].

There are many other indicators proposed by the researchers. Fan et al. [38]
proposed a dimensionless criterion, ¢, ground on the theoretical calculations usng the

fragility concept and the nucleation theory, and the ¢ can be expressed by

.a
apT, O

f =T, é—xz 7
Ty 5

where « is a congtant. Based on the experimental data associated with the thermal
analysis of BMG alloys, Chen et al. [39] proposed a new criterion, defined as
0 = TW/(T) —Tg). The author claim that the ¢ criterion is distinctly better than other

currently used criteria and it has a much better interrelationship with GFA than y and
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Trg. Based on the nucleation and growth theory, Yuan et al. [40] proposed a
dimensionless criterion, £, which can be expressed by

Ty ng

=29 8
(T - To* ©

It was aso claimed that the new criterion, f, is better than other currently used

criteriain statistical.

As mentioned above, GFA includes two important components: the stability of
the liquid structure and the resistance to crystallization. Many criteria have been
developed by the researchers. However, it is ill a long way to develop proper

indicators for GFA.

1.3.2 Mechanical propertiesand composites

Due to the absence of dislocations and crystalline lattice, we have the realization
that the BMGs have a unique deformation mechanism, such as the high strength (> 2
GPa), high hardness (600 - 1,300 DPH), high fracture toughness (> 70 MPa-m“?),
high elastic strain (~ 2% elastic strain), good castability and formability (> 1,000%
elongation), superior agueous corrosion resistance, good wear resstance, excellent
soft magnetic properties (Fe-based BMGs) and other interesting optical and physical
properties. Amiya and Inoue et al. prepared the (Fe, Co)-Cr-Mo-C-B-Tm glassy
alloysin acylindrical form with a diameter of 18 mm and they claim that this glassy
alloys show an excellent GFA and high strength exceeding 4 GPa [41].

CossFexTasBsis glassy aloy prepared by Inoue et al. [42] exhibiting ultrahigh
11



fracture strength over 5 GPa, high Y oung’s modulus of 270 GPa, and it also have high
specific strength and high specific Young’s modulus. This glassy alloy also has

excellent formability, which the large tensile elongation is 1,400%.

Mechanical properties of Zr-based BMGs with respect to yield (gy) and fracture
strength (ot), vickers hardness as well as the Y oung’s modulus (E) are given in Tables

1 and 2 [43].

1.3.3 Plastic defor mation

Due to no grain boundaries or didocations in BMGs, their deformation
mechanisms are distinctly different from the conventional crystal materials and their
plastic-deformation behavior cannot be explained by the traditional dislocation theory.
Furthermore, the formation and rapid propagation of the localized shear bands be

supposed to the reason of the deformation of BMGs at room temperature [44, 45].

To date, the inhomogeneous shear-band operation theory have a widely accepted
[30, 46] and it can be used in many deformation process, such as nanoindentation [47,
48], bending [49], compression [46], and fatigue tests [50]. Figure 11(a) shows a
typical nanoindentation impression induced by a Berkovich indent on the surface of a
Pd-based metallic glass and Figure 11(b, c) present two |load-displacemnet curve (i.e
the P-h curve) corresponding to the Pd-based metallic glass. It is well know that the
rise of work hardening mechanisms which caused by the motion and mutual

interaction of dislocations will make the crystaline meta’s plastic flow stable,
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however, no grain boundaries or dislocations in metalic glasses will lead to the
unstable of the plastic deformation and shear-band emission [51, 52, 53, 54]. It has
been reported that serrated flow is highly affected by the loading rate in BMGs under
nanoindentation and uniaxial compression [55, 56, 57, 58, 59], as shown in Figure 12.
A pattern of atypical loading rate dependence of the serrated flow in nanoindentation
for BMGs show that the pop-in size gradually increases with the decrease in the
loading rate, as shown in Figure 13 [58]. Although there have been many
development on the understanding of the mechanical properties of BMGs from the
literature above, there are ill many problems needed to be explained by the

researchers, such as source of the shear band on the BM Gs.

1.4 High-entropy Alloys

An exciting new class of dloy, HEAS, has attracted increasing attention for their
unusual sructural properties in recent years [60, 61, 62]. They are typicaly defined as
single-phase solid-solution dloys that consist of at least five principa metallic elementsin
equa or near-equal atomic percent (at. %), which is very different from the traditiond aloy
design, which is the mgor metalic element is selected based on a specific property
requirement and other elements are added in with a smdl amounts to achieve different
properties without sacrificing the primary one. Normally, the concentration of each element
is between 5 and 35 at. %. Although consst of alarge number of components, the HEA
actualy exhibit a surprising degree of mutud solubility in a single fcc phase or bec phase

[63]. Due to their high-temperature strengths, high hardness, corroson resistance, wear
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resistance and oxidation resistance [64], HEAs show great potential for engineering
applications, making them favorable candidates for various elevated-temperature
gpplications, such as advanced reactors, which require operating temperatures in excess of
750 ~ 850 °C for the next 80 years. Described thermodynamically using Boltzmann’s
Hypothesis, the configuration entropy, DS,,,; , of random mixing of N elements is

defined by the following eguation:

n
DSconf =- Ré % Inxi (9)
1

where R is the gas congtant, n is the number of eements, and X is the molar fraction. And

the entropy of mixing of N elements approaches the maximum value, DS,

DS,=RInN (10)

So, ASy increases rapidly with increasing the number of the alloying elements,

when the elements are mixed at an equa or near-equal atomic percent.

One of the potential applications of HEAS, as an advanced reactor, in advanced
nuclear-energy systems will require materials that can withstand extreme reactor
environments of high-temperature and high-doses radiation. Knowledge of the
radiation response in HEAs is, therefore, essential for their application in
nuclear-energy systems. The irradiation studies will provide the critical understanding
and data to validate computationa predictions of radiation behavior in the HEA under
high irradiation doses, such as 100 dpa, a temperatures to 700 °C. The experimental
validation is essential to the assessment and development of the materials to be used
in next-generation nuclear reactors. In the irradiation studies, the impacts of the
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self-ion irradiation, such as Al, Co, and Ni, to smulate damage created by atomic
collisions through primary recoils generated during fast neutron irradiation should be
carried out. Very heavy ions, such as Au, will be used to study the HEAS’ responses to
high irradiation doses, which is an efficient way to provide the benchmark data in
designing time-consuming self-ion irradiation experiments. In order to study the
deformation behavior of the HEA before and after the irradiation, the experiment

should be performed by nanoindentation.

1.5 Summary

Nanoindentation has become a powerful tool in the measurement of the
mechanical properties of diverse materials, such as metallic materials, polymer
materials, and even biomaterials. From the phase transformations in microscale of
materials to the formation and motion of the defects, such as lattice dislocations or
shear bands, the nanoindentation makes us have the considerable potentiad for
understanding discrete atomic rearrangements under stress. From the literature review
above, the researchers have been made many significant achievements on the studying
of mechanical properties of BMGs in the past 40 years. The understanding of the
deformation behavior of the BMGs aso improved with the development of the
nanoindentation technique. However, there are also several misunderstanding and
debates on the mechanism for deformation behavior in BMGs. For example, the
researchers still do not understand how the flow serration formed or where is the

origin of a shear band even though it is widely accepted that the flow serration is
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strongly associated with the shear-band emission.

The thesis focuses on the deformation behavior of the BMGs and HEAS under
nanoindentation at the room temperature. The hardness and the reduced modulus also
investigated in our indentation experiments. The different loading rate of the

indentation will also be performed to research the serrated flow behavior.
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Chapter 2 Experimental

2.1 Preparation of specimens

Zr-based BMGs specimens with the nominal composition of ZrsoCugAlig,
Zrs50CuzAl10Nio, and ZresCuigNizAl1o atomic percent (at.%) were investigated in the
present experiments. The amorphous alloy specimen were fabricated by the
high-purity elements (Zr-99.5%; Cu-99.999%; Al-99.999%) and prepared by
arc-melting master-alloy buttons in an argon environment. In order to obtain the
low-oxygen concentration of the Zr-based BMGs, a specia Zr-crystal rod, which
oxygen content is less than 0.05 at.%, was used in the experiments [50]. At the
temperature of 1,200 K, the melting was repeated at least five times to improve the
chemical homogeneity of the alloys. The cast rod, 5 mm in diameter and 60 mm in
length, was fabricated at a cooling rate of 100 K/s, using the tilt-casting method in an
arc furnace via a pseudo-floating-melt state before casting to obtain a completely
melted state [50]. Then the samples were machined into a cuboid with a length of 3
mm, width of 3 mm and thickness of 1.5 mm by electrical discharge machining
(EDM). The samples were then polished by polishing cloth with 0.05 pm
aluminum-oxides grain to obtain two parallel surfaces of mirror quality to avoid
surface effects, such as roughness and unparalel surfaces. The energy dissipated,
which result from the roughness and unparallel surface, will lead to the surface effect

on nanoindentation [65].

The HEA specimens with the nominal composition of AlosCrCuFeNi,, at.%,

were investigated in our experiments. Alloys were prepared in a Ti-gettered
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high-purity argon atmosphere by arc-melting a mixture of constituent elements with
purity higher than 99.9 weight percent (wt.%). The ingot alloys were remelted several
times in order to maintain homogeneity, and the molten alloys were drop-cast into a
10 mm diameter copper mold a last. In order to facilitate the microstructure
observation and avoid surface the effects, the samples were sequentially polished by
polishing cloth with 0.05 um auminum-oxides grain, and then the samples etched
with the Kalling’s reagent.

The structure of the as-cast samples was performed by X-ray diffraction (XRD)
with Cu Ka radiation (A = 1.541874 A). The microstructures morphology were
investigated by using metallographic microscope and a Leo 1525 Field Emission

Scanning Electron Microscopy (FE-SEM).

2.2 Nanoindentation tests

The nanoindentation tests were conducted using a Hysitron TriboScope
(Minneapolis, MN) attached to a Quesant (Agoura Hills, CA) aomic force
microscope (AFM). A non-conducting-diamond NorthStar cubic indenter with a
nominal tip radius of 40 nm (Minneapolis, MN) was used. For each loading or loading
rate, at least five indents were performed. The indentation depth and indentation load
were recorded, and the slope of the upper portion of the unloading curves was used to
caculate the contact modulus and indentation hardness. The machine compliance was
caibrated to be 1.0 nm/mN. The calculated gpparent contact modulus and apparent

indentation hardness were statistically analyzed; and the standard deviation for each
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condition was used for the error bar in the corresponding diagrams. The typical
indentation procedure contains three parts: loading stage (t.), holding stage (t) and

unloading stage (ty) respectively, as shown in Figure 14.

2.2.1 Nanoindentation experiments on BMGs

In order to investigate the effect of different maximum loading on the hardness,
reduced contact stiffness and other characteristic, the indentation load ranging from
300, 600, 1,000, 1,500, 2,000, 2,500, 3,000, 5,000 and 8,000 uN was used during the
tests. And constant loading and unloading times of 10 second were used in the
indentation tests without an intermediate pause between the loading phase and the
unloading phase. In order to explore the indentation loading rates dependence of the
flow serration in Zr-based bulk metallic glasss under nanoindentation test, with the
same peak load, eight loading time and unloading time were used to generate different
loading rates. The loading time is range from 1, 2, 5, 10, 20, 40, 80, 160 to 400 s,
corresponding to the loading rate of 8, 4, 1.6, 0.8, 0.4, 0.2, 0.1 and 0.05 mNs™,

respectively.

2.2.2 Nanoindentation experimentson HEAS

For the HEA, we only use the indentation load ranging from 1,000, 3,000, 5,000,
7,000 and 9,000 uN during the indentation tests. Constant 10 second was used in the

loading and unloading stage of the indentation tests and with an intermediate pause of
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10 second between the loading phase and the unloading phase.

2.3 The Stopping and Range of lon in Matter (SRIM) Simulation of

the HEA

SRIM, as one of the most accepted simulation programs in the fields of ion
implantation and ion-beam analysis, is widely used for estimating displacement
damage and ranges of ions in matter [66, 67, 68]. Since the stopping prediction from
SRIM is based on fits to experimental data, it usually provides reasonable predictions.
Local dose in displacements per atom (dpa) and ion range distribution of the
AlosCrCuFeNi, HEA can be predicted usng SRIM 2008.04 full-cascade smulations
under the assumptions of a sample density of 7.467 g/cm®, and threshold displacement
energy of 40 eV is assumed for dl elements in the SRIM simulation. Both the
ion-irradiation-induced disorder profile and ion distribution for certain ion fluence can

be estimated.
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Chapter 3 Nanoindentation Experiments on BM Gs

3.1 Analysis of Nanoindentation Deformation

Due to the plastic flow during nanoindentation, the excessive free volume
coalesces in the surface of the metallic glasses and this will change the atomic orders
and creates the loca stresses in the metallic glasses. The concept of diffusion-induced
stresses, which was developed by Yang et al. [69], can express that the flow stress and
the change of the excessive free volume have the following relaionship, and the
equation is[70]

s =aKW/DV (11)
where K is the bulk modulus, ¢ is the uniaxial flow stress, Wmeans the volume of
each free volume unit, V is the excessive free volume’s concentration and a is a
constant related with the Helmholtz free energy and temperature. It is well know that
the strain gradient is a determinant role in the deformation behavior of materias by
nanoindentation. Thus, the excessive free volume contains two parts, the statistically
stored excessive free volume and geometrically necessary excessive free volume. So,
the Equation 1 can rewrite as

s =a KW,/DVg+DVg (12
where Vg is the concentration of the statistically stored excessive free volume and
\ is the concentration of the geometrically necessary excessive free volume. For a
Berkovich indenter in BMGs, the deformation induced by the indentation is
accompanied by the formation and growth of equally distributed triangular loops of

strain gradient clusters, as shown in Figure 15 [71]. The Berkovich indenter is
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pyramid shape, so, the length of thefirst triangular loop L1 is

L, =33 (13)
wherer defined as the radius of the deformation zone. Similarly, one can obtains
h h
h- 2b h- 2b h- 2b
L= L, = L= 3r 15
3510 2 h LT h 3J3 (15)
and
h- (n-1)b h-(n-1)b h- (n-1)b
L=— 7 | .= L, = 3r 16
" h-(n-2)b ™! h ! h 33 (19

where h is the indentation depth, £ defined as the length of the adjacent triangular
loops and n defined as n = h/g. Thus the total length of the digtributed triangular

loops can be calculated as

bu
—i 17
nd (17)

Assumingn=h/b ?? 1, so one can obtain that

_3J/3rh
2b

L (18)

Schuh et al. [72] review some other researchers’ work and point out that the hardness
for a metalic glass can be defined asH =hs , where the value of 7 is related to the
surface profile of the indenter as well as the mechanical properties of the material. For

metallic glasses, 7 is approximate to 3. Thus, the hardness would be

93tan’q
16pbh

s =ah KWJWS+ (29
9/3tan?q

where DV, defined asDV-=
G ¢” 16pbh

[70], 6 isthe angle of the side surface of the
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indenter and the material surface. It is well know that E =3K (1- 2n), one can rewrite

equation as
H _ahWDVs 1 To (20)
E  3(1- ) h

where E is Young’s modulus, v is Poisson’s ratio, and hy is defined as

2
ho :m. For larger indentation with h 2 hy, thus hy/h»0.
16pbDVs

3.2 Defor mation Behavior of BM Gs

3.2.1 L oad-displacement curves

The load-displacement curves for ZrsCusAlNiyp Specimen obtained by
Berkovich indenter are depicted in Figure 16. Because no bulge behavior is observed
during the unloading, this trend means that there is not viscoelastic deformation under
the indentation conditions. So, we chose zero second as the holding time in the
nanoindentation experiments. From this image, one can easily find that there is a
depth increase when the load reaches the maximum. In other words, the depth of the
indenter penetrate into the specimen will increase in the ten seconds holding time. The
load-displacement curves with different maximum loads overlapped perfectly during
the loading stage, and this trend demonstrates that the experimental data have a good

reproduction and no surface effects or instability of instrument.
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3.2.2 Dependence of the maximum indentation depth on indentation load

In the research of the nanoindentation deformation, one simply uses the
Oliver-Pharr approach [1] to andysis the results. However, it is difficult to accurately
measuring the size of the pile-up at the submicrometer scale; the effect of the material
pile-up is not consdered. Figure 17 shows the dependence of the maximum
indentation depth on the maximum indentation load with zero second holding time, in
which the results were averaged over more than five indentations for each testing
condition. From this image, one can easly to find that the depth of the indenter

exponential increased with the increasing of the indentation load.

In general, for homogeneous materials, the load-displacement relationships for
the indentation load (P) and the eastic displacement of the indenter (h) can be
expressed by the following equation [73]:

P=K" (21)
where K, is a constant associated with the elastic behavior of the metallic glasses
and n is the index. Kick'sLaw point out that for al indenters and al geometrically
similar indentations, n is postulated equal to 2 when they calculated. Cheng [74] claim
that the power law exponent, n, isequal to 2 for ageometrically similar indenter when
using dimensional analysis for the geometrically similar indenter. For the three kind
of Zr-based BM Gs glasses in our experiment, one obtain the exponential index of 1.1,
which is different from the value of 2 obtained in Kick and Cheng’s work. It has been
reported by Schuh et al. [72] that the metallic glasses do not obey the maximum-shear
stress criterion such as the Tresca or von Mises yield criterion from the growing body
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of both experimental and theoretical evidence, even if most all mechanical analyses of
indentation problems have been performed these common criteria. Instead,
Vaidyanathan et al. [75] elucidated in detail that the Zr-based metallic glass exhibit
some pressure or normal-stress dependence to their yield criterion, such as the
Drucker-Prager yield criterion and the Mohr-Coulomb criterion. So, the von-Mises
flow ruleis probably inapplicable in the analysis of the deformation behavior of BMG
materials and the exponential index, n, in Equation (21) may be different from the
value of 2 which obtained from the dimensional anaysis based on the von-Mises flow

rule [76].

3.2.3 Effect of indentation load on reduced modulus

The dependence of the contact modulus, E;, on the indentation load with zero
seconds holding time is depicted in Figure 18. From this image, one can easily to find
that the contact modulus of the three kind of Zr-based BMG alloys decreases with the
increase of the indentation load. For the difference between simple tensile and
compressive tests and nanoindentation test, a complicated stress field in specimen
surface is created in the nanoindentation test due to the contact between indentation
tip and specimen surfaces. Due to the nanoindentation coal escience in the shear band,
it will generate the excessive free volume and leads to nucleation and formation of
voids. The voids in the region subjected to the tensile stress are easily to growth and
linkage, so, this will cause less dense packing of atoms and a larger average
interatomic spacing. Owing to this reason, the mechanical strength of the specimen
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will weakened and the loca elastic modulus will reduced. Thus, the decrease of the
reduced contact stiffness with the indentation load was caused by the overall effect of
the stress-assisted formation of the excessive free volume and the nucleation and

formation of voids.

3.2.4 Effect of indentation load on hardness

The dependence of the indentation hardness on the indentation load is depicted in
Figure 19. We can dso observe that the indentation hardness decreases with the
increase of the indentation load, which is similar to the indentation size effect
observed in crystalline and polymeric materials. For ZrsoCuspAlip and ZresCuigNizAl 1o,
they have the same slope of the hardness decrease with the increase of the indentation
load; however, the slope of the hardness decrease of ZrsoCuspAligNiyg is relatively

gently.

In general, with the increase of the indentation load, the amount of the excessive
free volume and the plastic deformation zone which generated during the indentation
loading will aso increased. Although more excessive free volume is nucleated during
the indentation loading stage, the specific nucleation rate of excessive free volume is
lower than the specific growth rate of the plastic zone. Due to this reason, the average

concentration of the excessive free volume will decreased.
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3.2.5 Effect of loading rate on reduced modulusand hardness

The variation in contact modulus (E;), hardness (H) and indentation loading rate
of the three types of Zr-based BMGs was plotted, as shown in Figures 20 and 21,
respectively. We use the model of constant load-rate during the loading and unloading
stage in each indentation and the range of the loading rate is from 0.05 to 8 mNs* for
the series of indentation. From this image, one can easily to find that the hardness and
reduced modulus exhibit different trends with changing loading rate. For ZrsoCuspAlig
and ZrsoCuszpAl1oNiio BMGs, there is a bit rise in the reduced modulus as the loading
rate is increased from 0.05 to 8 mNs?, whereas the reduced modulus is a bit decrease
of ZresCuigNizAl1o in this loading rate range. However, the hardness is virtualy
unchanged throughout the whole range from 0.05 to 8 mNs™. From the Equation (2),
we can find that the hardness is determined from the value Prax and A, 0, it implies
that the A, the project contact area at peak load, is not strongly time-dependent under
these experimental conditions. Nevertheless, the elastic modulus is calculated from
the slope of the unloading curve, this means that the elastic modulus is sensitive to the
loading rate and the recovery is time-dependent under the indentation. The elastic
modulus to be sensitive to the loading rate have previously shown by Flores et al. [77]
in the microhardness measurements on amorphous PET films, the authors find that the
loading rate was increased from 0.47 to 13.2 mNs™ will lead to the elastic modulus
increased 20% and they attributed to increased viscoelastic recovery at the higher
loading rates. However, Beake et al. [ 78] investigated the nanoindentation behavior of

the poly film and concluded that with the increasing of the loading rate, the hardness
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decreased and the reduced modulus keeps unchanged.

3.2.6 Atomic force microscopy (AFM) image of nanoindentation

Figure 22(a, b) show atypical AFM image of the impression mark obtained after
an indentation load of 5,000 uN on the Zr-based BMGs and the corresponding
morphological profiles of the residual indentation on the surface of the specimen. As
presented in Figure 22(b), it is easily to find that the indentation profiles are
self-similar, and a surface pile-up around the indentation. The contact surface of the
specimen and the indent tip became wrinkled and highly pile-up, which means greater
inhomogeneity flow around the indent. There are about as high as 160 nm pile-up
above the average surface level in Zr-based BMGs by quantitative analysis, this also
means that the metalic glasses have the severity of local plastic flow during the
indentation. The final depth of the contact impression after unloading is about 340 nm,

and thisis aso corresponding to the load-displacement curves, as shown in Figure 16.

Figure 22(c) shows the three-dimensiona (3D) image of the nanoindentation
deformation, and we can also easily to observe the pile-up around the indentation area.

Figure 22(d) presents the image of cameratop view during the indentation test.

3.2.7 Evaluation of nanoindentation behavior of BMGs

The function of the reciprocal of the indentation depth and the ratio of the
indentation hardness to the reduced contact modulus is plotted, as shown in Figure 23.
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Due to the effect of the system stiffness to the reduced contact stiffness is negligible;
we can propose that Young’s modulus of the metallic glass is proportiona to the
reduced contact modulus [70]. The data points, which are fitted by a straight line,
support the proposed model when we using the reduced contact modulus in Equation
(20). From the results of Figure 23, we can conclude that on the nano- and
submicrometer scales, the strain gradient contributes to the nucleation and formation
of the excessive free volume for the indentation, which is also corresponding to the

dependence of the stresses on the variation of the excessive free volume in Equation
).

Another method of evaluating the indentation behavior of metallic glasses is to
analyze the data taken during the indentation test and exploits the dependence of a

new parameter hardnessmodulus® (H/E?), which suggested by Joslin et al. [79].

ey @
ES P S
where /3 is a constant depending on the indenter geometry. The ratio of H/E? is
proportional to the indentation load and inversely proportional to the square of the
contact stiffness. The dependence of the contact modulus on the indentation load is
depicted in Figure 24, from which one concludes that the H/E? is a constant
independent of the indentation load. This trend means that, for the metallic glasses,
the indentation hardness influenced by the indentation-size effect is related to the

change of the reduced contact stiffness and the indentation load. The result is also

confirms by the observations in Figures 18 and 23.
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3.2.8 DSC resultsof the Zr-based BM Gs

DSC measurements were performed to determine characteristic thermal
properties, the glass transition temperature (Ty), which is defined as the onset
temperature of the endothermic reaction, and the crystallization temperature (T),
which is defined as the onset value of the exothermic peak. Figure 25 shows the DSC
profiles of the three kinds of Zr-based BM Gs under the speed hesating rate of 20 K/min.
As shown in this fugure, when we increase the Zr-content, the Ty decreased, which
resulting in DTx (= Tx- Tg) increasing from 64K in ZrsoCuzoNi10Al10 up to about 111K

in ZresCuisNi7Al10.

3.3 Serration-flow Behavior of BMGs

3.3.1 Effect of loading rate on the serration behavior

Nanoindentation load-displacement (P-h) curves of Zr-based BMGs at
indentation loading rate from 0.02 to 8 mNs-1 are shown in Figure 26(a). For clarity
of presentation and focus on the serrated flow, only the loading portions of the
load-displacement curves are plotted and al the P-h curves are displaced on the same
axes with the origins offset 100 nm, except the curve a 8.0 mNs”, so that multiple
curves can be shown on one graph. It is readily seen in Figure 26 that the serrated
flow occurs at the slower loading rate (0.4 mNs® to 0.02 mNs™) and that the pop-in
size gradually increases with the decrease in the loading rate. There is no serrated

flow was observed at the loading rate of 0.8 mNs™ or more loading rate. It is also
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easily to observe that the pop-in size gradudly increases with the increase of the
indentation depth, as shown in the slower loading rate curves. About the absence of
the serrated flow in the higher loading rates, different researchers have different
opinions. Schuh et al. [48] proposad that the kinetic limitation for the nucleation of
shear bands was the reason of the disappearance of serrated flow at higher loading
rates and they also claim that a new homogeneous flow region is exist in the BMGs.
Greer et al. [80] pointed out that the absence of serrated flow was caused by the

instrumental blurring at high loading rates.

Due to the load P is constant in the serrated plagtic flow, Yang et al. [58]
concluded that the the displacement increment a a pop-in event (Dh) should have a

function with the indentation depth (h), and it can be calculated as

24.5DH
2K

Dh= h (23)

m

where K, is a material constant, and DH is the hardness reduction. This equation
shows that the pop-in size Dh is increases linearly with the indentation displacement

since the hardness reduction lead to the shear band propagation terminated.

Yang et al. [58] research the time duration of the serrated plagtic flow at different
loading rates, and they point out that the time of each serrated flow was about ~1.4 ms,
which is independent of the loading rates. Thus, the load increment in 1.4 ms cannot
be neglected at higher loading rates, and we can readily observe that P-h curves have
different slopes in each serrated flow event, not the horizontal lines, as shown in
Figure 26(b). It is also easily find that with the decreased of the loading rate, the

pop-in slops aso decreased, however, the pop-in size increased. The pop-in Slop in
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the 0.8 mNs™ is very high and it very close to the eastic slop of the P-h curve. Thus,
in the higher loading rates, the pop-in event cannot be easily distinguished and it
looks like disappear. However, this does not mean that there are no pop-in events (or
shear-band emission) in the higher loading rates above 0.8 mNs?, it is noted that this

event still occur in the specimen during indentation.

Form the literature review and results of our experiment; we can conclusion that
the shear-band emission is highly affected by the indentation loading rate. Jiang et al.
[81] proposed an explanation about the rate-dependent shear-band behavior in their
work, that is temporally intermittent shear-banding operations produce a spatialy
discrete configuration of a few large shear bands at the lower strain rate, and these
large shear band may correspond to simultaneous operations of many fine shear bands.
On the country, at the higher strain rate, temporally successive shear-banding operates
in front of the plastic zone, which will lead to the spatially dense distribution of many
fine shear bands takes the place of shear banding repeatedly at pre-existing shear
bands. Li et al. [82] studies the compressive tests and Vickers microhardness of the
BMGs at different temperatures and conclude that both the formation and propagation
of the shear bands are related to diffusion and thermally activated processes. Schuh et
al. [83] investigated two kinds of the BMGs and proposed that the formation of the

shear bands includes the three steps:
1 Stage 1: form asingle shear transformation zone (STZ) in the matrix;
1 Stage 2: formation of STZ clusters,

1 Stage 3: shear band nucleation.
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Then, the shear band began to propagation in the specimen.

In Figures 27 and 28, the load-displacement is plotted with different indentation
loading rate from 0.02 to 8 mNs*for ZrssCusAl10Ni1o and ZrseCusoAl o, respectively.
It isreadily to observed that in ZrssCusoAl1o Serrated plastic flow occurs at the slower
loading rate (1.6 mNs™ to 0.05 mNs™) and absence at the higher loading rate (8.0
mNs® to 4.0 mNs?). However, there is no serrated plastic flow observed in the
ZrsoCusoAl1oNiz during the indentation, even the smallest loading rate 0.02 mNs™.
According to the observation on the plastic zone beneath an indent, Jiang et al. [81]
schematically drawing the cross-section pattern of the plastic zone and shear bands
during nanoindentation at lower and higher strain rates, as shown in Figure 29. In
front of the plastic zone, shear-banding operations will lead to a configuration of the
shear bands, and this is different of the uniaxial compression. During the
nanoindentation, the plastic zone beneath an indenter expands radialy with the
change of time, and the shear banding is accompanied in front of the plastic zone.
Thus, the stresses are unevenly distributed in the space during the indentation, and the
shear bands spatial distribution is closely related to the temporal characteristic of the
shear-banding operations, not the spatial characteristic of the shear-banding
operations. As shown in Figure 29(a), a spatialy discrete configuration of afew large
shear bands was produced by temporally intermittent shear-banding operations at the
lower strain rate, and this is corresponding to s multaneous operations of many fine
shear bands. However, at the higher strain rate in Figure 29(b), the spatialy dense

distribution of many fine shear bands generated by the temporally successive shear
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banding operations in front of the plastic zone, rather than the shear banding

repeatedly at pre-existing shear bands.

3.3.2 Effect of composition on the serration behavior

For readily observed, we choose P-h curves with the loading rate of 0.1 mNs*for
three kinds of Zr-based BM Gs and plotted in one pattern, as shown in Figure 30. In
the same loading rate, the serrated plastic flows of the three kinds of BMGs are
different, the ZrspCusAly is more pronounced than that for ZrgsCuigNizAl, and
however, ZrsoCuspAligNiig do not have the serrated plastic flows. Another
phenomenon is that the curve on the top of the ZrgsCuigNizAlqg is very close to the
curve of ZrsoCuaAlio and far away of the ZrsoCuspAl1oNiie. Due to the P-h curves are
displaced on the same axes with the origins offset 150 nm, the final load depth of the
ZresCuigNizAl g is greater than ZrsoCuspAlio and ZrsoCusoAlioNise. This trend means
that the hardness of the ZrgCuigNizAlye is bigger than ZrsoCusAlye and
Zrs50CuzAl10Nito, Which corresponding the results in Figure 19. The significant
difference of the three Zr-based metallic glasses reflects their microstructures, in
terms of free volume, and short and middle-range ordering are dissimilarity. As
shown in Figure 19 and Figure 30, the hardness and reduced modulus of
ZresCusigNizAl 1 is smaller than ZrsgCusoAl1o, and that the plastic flow of former aloy
shows less serration than the latter. The basic principle for this phenomenon is not
well understood at this moment, but will be deep research in the future. Liu et al. [83]
test two Zr-based metallic glasses and concluded that the serrated flow is closely
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related to these innate properties. They point out that smaller modulus and hardness
lead to a smaller atomic binding strength and a looser topological structure, which
means a higher free volume in an amorphous structure. Due to the serrated plastic
flow are related to the shear bands activity, which usually formed in the sites of more
free volume, then cause to the serrated plastic flow during indentation. However, this
explanation is contradicting to our results, so, the reason of this phenomenon need

more in-depth study.

3.3.3 Therelationship between pop-in size and indentation depth

It is easily to find that the pop-in size and the indentation depth have the linear
relationship, with the increase of the indentation depth, the pop-in size also increased,
as shown in Figure 31. Schuh et al. [44] and Greer et al. [80] have reported this
phenomenon and they explained as “‘length scaling’’. They point out that the larger
pop-ins lead to greater shear displacements within the shear band, because a single
shear band can produce several microns displacements. Thus, the total number of the
pop-in events will decrease with the same amount of indentation displacement, and is

the reason why the fewer pop-in events in the deeper indentation depth.

3.3.4 Therelationship between strain rate and indentation depth

According to the Sargent and Ashby’s research [84], the displacement rate is a

non-linear function of time during an indentation with a constant loading rate, which
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means the indentation strain rate can be defined as:;

9§ _1dh
SRy (24)

where h is the indenter displacement during indentation. The instantaneous
indentation strain rate is plotted at 0.4, 1.6 and 8.0 mNs" as a function of the
indentation depth for Zrs,CuseAl1o and plotted at 0.1, 0.4 and 1.6 mNs™* as a function
of the indentation depth for ZresCuigNizAl1 in Figures 32(a) and (b), respectively. For
the clarity of observation, except the curve a the strain rate of 0.4 mNs® in Figure
32(a) and 0.1 mNs™ in Figure 32(b), al the other curves are plotted on the same axes
with the strain rates offset by one order of magnitude. Due to the equation is singular
at h=0, the strain rate is effectively infinite at the outset of each experiment. However,
with the indentation depth increased, the strain rate decreased as ~1/h and eventualy
approaches an approximately congtant value at a large indentation depth. There are
several obvious strain rate spikes at each indentation rate and the strain rate sizes
appear to increasing with the indentation proceeds. The strain rate peaks highlight and
corresponding exactly with the pop-in events or the displacement serrations in the
load-displacement curves in Figures 26 and 27. One can also observed that for the
same indentation strain rate, such as 0.4 mNs™, these peaks are more pronounced in
the ZrsoCuaoAl1o than the ZresCuigNizAl 10, and their magnitude is strongly affected by

the indentation strain rate.
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3.3.5 Therelationship between displacement and time

Figure 33 shows a typical curve of the indenter displacement versus time (h-t),
which is obtained from the Zrs,CusAlyo @ the loading rate of 0.1 mNs™. In order to
evidently observation, we cut out a section of the h-t curve and plotted as insertion
shows. Here, t is defined as the time duration or of a pop-in event. Li et al. [85]
developed a simple protocol to identify the pop-in event, and to distinguish them from
the noise. The low-frequency and high-amplitude signal is clearly the real pop-in
events representing the jumpy plastic deformation of the metalic glass, but the
high-frequency and low-amplitude signal is the machine’s noise floor. Li et al. [85]
point out that there are three stages can be used to identify the pop-in events. A
maximum homogeneity smoothing technique was used in the first stage which
involves a data smoothing algorithm to filtering out the noise and obtains the original
configuration of the curve. The second stage makes use of a median smoothing
technique to filtering out the noise with same method of the first stage. The third stage
uses a burst search algorithm to detect and record the pop-in data throughout the

whole h-t curve according to the pre-set values.

3.3.6 Theconsolidated dastic curve

A single sarrated P-h curve obtained at a loading rate of 0.1 mNs® on the
Zrs0CusAli0 BMGs dloy, including the elastic unloading section of the curve, is
shown in Figure 34. The recovered eastic depth, hyasic, IS observed about 393 nm

after removal of the indenter tip. Gouldstone et al. [86] proposed ainteresting method,
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which is assess the contribution of discrete shear bands to plastic deformation of the
aloy, and describe the construction of a “‘consolidated elastic’’ loading curve, which
obtained by removing all of the pop-in gap from the loading stage of the P-h curve.
As illustrated by the arrows in Figure 34, a smooth and continuous curve was
obtained by the Gouldstone et al.’s method, which can essentially corrects the
experimental P-h curve by remove the total depth of the serrated flow (hpgp.in). At the
maximum loading, we can clearly observed that the depth of the hpop.in is @bout 214.5
nm, the depth of the ‘‘consolidated elastic’’ hyey is equal to 281.44 nm, and the true
elagtic depth is about 102 nm. For different materials, they exhibit different results of
these experiment results. In the work of the Schuh et al. [44], the value of the hyey iS
close to the haasic and they point out that due to the motion of individual shear bands,
the plastic drain experienced by the Pd-30Cu-10Ni-20P (at %) during
nanoindentation occurs in discrete bursts. However, in the indentation tests of
La-25AI-10Cu-5Ni-5Co (at %) BMG aloy investigated by Nieh and Schuh et al. [87],
the value of the hyea is approximately three times of the hgasic. The ratio of the hrea
and hgagic IS nearly about 2.8, which is very close to the ratio in the

La-25AI-10Cu-5Ni-5Co BMG dloy.

3.4 Conclusions

The deformation behavior of the metallic glasses is inhomogeneous and serrated
flow was observed in the indentation experiments. From the investigated of the

deformation behavior and the serrated flow behavior in the Zr-based BMGs, we can
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conclude that:

The load-control mode was used in the indentation experiment and both the
indenter hardness and reduced modulus of the three kinds Zr-based BM Gs decreased

with the increase of the indentation load.

With the increasing of the loading rate in the indentation experiment, the reduced
modulus of both ZrsgCusAlig and ZrsgCuzAlioNig BMGs were increased and
ZresCusgNizAl10 was decreased. However, the hardness of the three kinds of Zr-based
BMGs was kept constant when the loading rates increased in the indentation

experiments.

From the AFM image of the impression mark obtained after an indentation load,
we can readily find that the indentation profiles are salf-similar, and a surface pile-up
around the indentation. The contact surface of the specimen and the indent tip became
wrinkled and highly pile-up, which means greater inhomogeneity flow around the

indent.

The serration flow was observed in the indentation experiment in both
Zr50CusAl10 and ZresCuigNizAl1 g BMGs. However, no serration flow was revealed in
the ZrsoCusoAl10Niio BMG. Increasing with the loading rate, the pop-in size decreased

and the serration behavior became wesak, then it disappears in the higher loading rates.
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Chapter 4 Nanoindentation Tests and Irradiation Simulation on

HEA

4.1 XRD Resultsof HEA

Figure 35 illustrates the XRD patterns of as-cast AlosCrCuFeNi, alloys which
are identified crystalline structure. The picks of the (111), (200) and (220) shown that
this HEA basically belong to fcc structure. The small peaks slightly on the left of the
matrix fcc of AlgsCrCuFeNi, in XRD curve is identified as Cu-rich interdendrites,
which have the same location of copper. Guo et al. [88] investigated a series of
AlLCrCuFeNi, dloys and point out that at x < 0.7, the HEA alloy is fcc structure; at
0.8 < x < 1.8, the HEA dloy is fcctbee structure; and when 1.8 < x, fcc solid

solutions could not be detected, which means that the HEA aloy is bcc structure,

4.2 SEM Analyssof HEA

4.2.1 SEM image of HEA

A typical SEM image the as-cast AlosCrCuFeNi, sample is shown in Figure 36.
As shown in this image, one can readily to observation that the HEA specimen has
two phases, which are indicated as dark gray area and light grey area, respectively.
The microstructure of the HEA dloys showed a typical dendritic structure, the fcc
dendrite phase which contains the poly-grained fcc matrix phase (dark gray area) and

the fcc Cu-rich interdendritic phase which consists of the poly-grained fcc Cu-rich
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phase (light grey area) [89, 90, 91].

4.2.2 EDSresultsof HEA

The two phases are clearly visible in Figure 37(a) on the polished HEA surface.
In order to identify composition of the different phase, the elemental concentration
analysis was examined by EDS. As shown in Figure 37, the white (b), red (c), purple
(d), yellow (e), and blue (f) maps correspond to auminum, chromium, copper, iron,
and nickel, respectively. It is observed that copper atoms (Figure 37(d)) concentrate in
the light grey area, suggesting that this grey area contains higher concentration of
copper than the dark gray area. For the element of chromium, iron, and nickel, shown
as the red [Figure 37(c)], yellow [Figure 37(e)], and blue [Figure 37(f)] color, higher
concentration of these elements are found in the dark grey area rather than the light
grey aea. Relatively, the element of auminum has uniform concentration as

compared to the other elements.

The chemical composition analysis of the different phase was performed by EDS
(Figure 38). The analysisis carried out from 5 different locations, two in the light grey
area and three in the dark gray areato achieve more reliable results. As shown Figure
38, the result of the point A is shown on the top right and the result of the point D is
shown on the bottom right. Elements concentration in the different region and the
nominal element concentration are summarized in Table 3. In the light grey ares,
denoted by the points A and B, the copper concentrations are 55.41% and 51.20%,

approximately three times of the estimated copper concentration. Furthermore, the
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aluminum concentration is more than the estimated aluminum concentration. On the
contrary, the concentration of the chromium, iron, and nickel is lower than their
estimated concentration. In the dark gray area, the concentration of the copper and
aluminum in the points of C, D, and E is less than their estimated concentration.
Conversely, the concentration of the chromium, iron, and nickel are all higher than
their estimated concentration. As a summary, the composition of the light gray areais
approximately Ali; 7Crz75CussFesNi2 s, at.%, and the dark gray area is gpproximately
Al77Cr0CuizsFexn7Niss2, at.%. All of these results are in agreement with the

elemental mapping results in Figure 37.

4.3 Deformation behavior of HEA

4.3.1 AFM image of HEA

Figure 39 shows a typical AFM image of the impression mark obtained after an
indentation load of 5,000 uN on the AlysCrCuFeNi» HEA and the corresponding
morphological profiles of the residual indentation on the surface of the specimen. It is
readily to find that a surface pile-up around the indentation, as shown Figure 39(b).
Compare to the high of 160 nm pile-up above the average surface level in Zr-based
BMGs by quantitative analysis, the AlosCrCuFeNi, HEA only have 120 nm pile-up
above the average surface level when they use the same indentation load, which also
means that the AlosCrCuFeNi, HEA have the lower hardness than the Zr-based

BMGs and thisis also corresponding to the results from Figure 41 and Figure 19. The
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final depth of the contact impression after unloading is about 350 nm, which is almost
the same with the Zr-based BMGs’ contact impression depth. Figure 39(c) shows the
3 dimensions (3D) image of the nanoindentation deformation and the pile-up around
the indentation area are readily observed. Figure 39(d) is the image of camera top

view during the indentation test.

4.3.2 L oad-displacement curves of HEA

Figure 40 display the typical load-displacement curves at different peak
indentation load on the AlgsCrCuFeNi, HEA. A considerable amount of creep strain
was found for the entire different indentation load, this means that the Alg sCrCuFeNi»
HEA exhibit viscod astic behavior under the indentation conditions. Thus, the holding
section is necessary for the dissipation of creep displacement at the peak and we chose
ten seconds as the holding time in the indentation experiments. It is clearly observed
that no cracks were formed during indentation, which is means no serration behavior
in the AlosCrCuFeNi, HEA. The load-displacement curves with different maximum
loads aso overlapped perfectly during the loading stage, and this demonstrates that
the experimental data have a good reproduction and no surface effects or instability of

instrument.



4.3.3 Effect of indentation load on thereduced modulus and hardness

Figure 41 shows the function between the indentation load and the contact
modulus (left axis) and the indentation load and the hardness (right axis) of th contact
e AlgsCrCuFeNi, HEA, and it also shown that the both the contact modulus and
hardness have a strong load-dependence. It is easily observed that both the contact
modulus and hardness decreased with the increasing of the indentation load. The
indentation size effect lead to the higher hardness and modulus at lower indentation
load, and this phenomenon is occur in most materials [92]. The high values of the
contact modulus (177GPa) and hardness (7GPa) are decreased to 155 GPaand 4 GPa,
respectively. And at the higher indentation load (P > 5000uN), the value of the contact

modulus and hardness get very closer.

4.4 Irradiation Analysisof HEA

4.4.1 Parameter setting of irradiation smulation

The as-cast HEAs samples of AlysCoCrFeNi, are prepared, and the density
measured by the drainage method is 7.467 g/cm®. In order to predict the
energy-dependent penetration depth of heavy ions, Au ions with the energy ranging
from 0.05 to 20 MeV are calculated. The SRIM-predicted ion range is summarized in
Figure 42. The result shows that with increasing the energy of the incident ions, the
ion range aso increases. When the incident ion energy is 10 MeV, theion range is 1

um. To better estimate the displacement damage, 10 MeV Au is chosen for the full
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collision cascade simulation. In order to predict the maximum reachable dose, dose
and ion profiles are calculated, assuming under optimized irradiation conditions and
long irradiation time of 10 hours. Detailed information is listed in the Table 4,

together with the SRIM simulation results.

4.4.2 Irradiation of Auin HEA

Figure 43 shows the caculated depth-dependent displacement damage and
implanted ion profiles by SRIM for 10 MeV Au-irradiated HEA and for the ion
fluence of 2.0 x 10" Au/cm® These results were obtained from Monte Carlo
simulations using the SRIM-2008.04 full-cascade mode, in which the calculations
were carried out under the assumptions of a sample density of 7.467 g/cm® and
threshold displacement energies of 40 eV for every element. The predicted dose
maximum is 158.76 dpa, and the damage level above 40 dparanges from 0 to ~ 1,300
nm. The highly-damaged region (above ~ 80 dpa) expands from 300 to 1,200 nm with
the damage peak at 900 nm. In the surface region of the specimen, the damage dose is
about 50 dpa. However, with the increase of the depth, the damage dose increased
rapidly. And it also decreased quickly from the maximum to the O dpa, when the depth
is larger than 1500 nm. The rapid increase and decrease of the damage dose in the
specimen indicate that the Au irradiation produces non-uniform damage. Moreover, as
shown in Figure 43, the maximum concentration of Au is approximately 0.49% (at.%)
at a depth of 1,060 nm, which is somewhat greater than the depth of the maximum
damage dose as expected, and the cdculated full width at half maximum for the
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implanted ion distribution is 460 nm for 10 MeV Au ions. In order to obtain the
approximate 100 dpa damage in the proposed HEA samples, 10 MeV Au to the

fluence of 1.5 x 10" cm™ may be used to create radiation damage.

443 |rradiation of Coin HEA

The profiles of damage and Co concentration are caculated by SRIM
full-cascade smulations in the HEA under 10 MeV Co irradiation for an ion fluence
of 2.0 x 10 Co/cm?, assuming the average displacement energy of 40 eV for dl of
the elements in the HEA and in this research, as shown in Figure 44. In this study, the
predicted dose maximum is approximately 41.57 dpa. The highly-damaged region
(above 25 dpa) ranged from 1,400 to 2,400 nm, and the damage peak is approximately
2,100 nm. The Co profile is also shown in Figure 44, where the calculated
concentration maximum is 0.436% (at.%) at the depth of 2,300 nm, and the calculated
full width at half maximum for the implanted ion distributions is 485 nm for 10 MeV
Co ions. At depths midway between the surface and implanted Co-ion regions, the
caculated implanted Co concentration is negligible, and the calculated displacement

damage is about half of the peak damage level.

45 Conclusions

The XRD patterns of as-cast AlgsCrCuFeNi, aloys revea that the crystalline

structure of this HEA was an fcc structure.
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The HEA specimen has two phase sand showed a typical dendritic structure, the
fcc dendrite phase which contains the poly-grained fcc matrix phase and the fcc
Cu-rich interdendritic phase which consists of the poly-grained fcc Cu-rich phase.
And thisresult is also corresponding to the EDS analysis.

Both the contact modulus and indentation hardness of the AlysCrCuFeNi; alloys
have a strong load-dependence and they were both decreased with the increasing of

the indentation load.

Based on the results of the SRIM simulation, we establish the relationship
between the ion energy and ion range from the SRIM smulation. The Au and Co
irradiation simulation reveal that the highly-damaged region is around from 200 to
1,200 nm and from 1,400 to 2,400 nm for the Au-irradiated and Co-irradiated samples,

respectively.
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Chapter 5 Conclusions

The nanoindentation experiments on the ZrsgCusAli, ZrsoCuspAligNie and
ZresCuigNizAlio BMG dloys were performed at different loading (300 uN ~ 8000
uN) and different loading rates (0.02 mNs® ~ 8 mNs™). The deformation behavior
and the serration behavior of the three kinds of Zr-based BMGs were investigated
with a load-control mode and the data were compared. Both the indenter hardness and
reduced modulus of the three kinds of Zr-based BM Gs decreased with the increase of
the indentation load. However, they have different trend with the change of the

loading rate, such as the constant hardness in the different loading rates.

The serration flow was observed in the indentation experiment in both
Zr50Cus0Al10 and ZresCuigNizAl1 g BMGs. However, no serration flow was revealed in
the ZrsoCuspAloNizo BMG. Serration-flow behavior was strongly associated with the
shear-band emission and dependent on the loading rate in the nanoindentation
experiments. It was also observed that the serration-flow behavior occurs at lower
loading rates but disappeared at the higher loading rate. However, this trend does not
mean that there are no serration flow in the higher loading rates, it is noted that this

event still occur in the specimen during indentation.

The morphological profiles of the residual indentation on the surface of the
specimen after an indentation were observed by the AFM, and the DSC measurements
were performed to determine characteristic thermal properties, the glass-transition

temperature (Tg), and the crystallization temperature (Ty).



The deformation behavior in the AlgsCrCuFeNi, HEA was also investigated
using the nanoindentation test at different load. The indenter hardness and reduced
modulus of the AlgsCrCuFeNi, HEA decreased with the increase of the indentation
load. However, no serration behavior was observed during the indentation experiment.
Creep behavior was observed in the indentation tests because the HEA exhibits

viscod astic behavior under the indentation conditions.

The microstructure of the HEA was investigated by the XRD, AFM, SEM, and
EDS. For the advanced research, the ion implantation simulation of the HEA was
preformed. Based on the results of the SRIM simulation, we establish the relationship
between the ion energy and ion range from the SRIM smulation. The Au and Co
irradiation simulation reveals that the highly-damaged region is from 200 to 1,200 nm
and from 1,400 to 2,400 nm for the Au-irradiated and Co-irradiated samples,

respectively.
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Chapter 6 Future Work

In order to further understand the deformation behavior and the serration-flow
characteristics of the BMGs and HEAS, and revea the misunderstanding or debates
on the nanoindentation, such as the origin of the serration flow and the site of a shear
band formed, there are still alot of work should be down in the future, which is listed

asfollows:

() It is widely accepted that the serration flow is associated with the shear-band
emission. However, deep research should be done to reveal that how the
shear-band influences the serration-flow behavior and the fundamental origins

of the shear band.

(2) This thesis investigated the deformation behavior and the serration-flow
characterigtics of BMGs and HEAS a room temperature. However, there will
have totally different deformation and serration-flow behavior in the high
temperature. So, the nanoindentation experiment at higher temperatures
should be performed to characterize the deformation and serration-flow

behavior.

(3) Anti-corrosion is a very important aspect in the application of BMGs and
HEAs. So, the investigation of the deformation and serration-flow behavior in
the nanoindentation experiment under a corrosion condition must be very
interesting in the future, and these studies are aso very important in the

application of BMGs and HEAs.

50



(4) Potential applications of HEAs in advanced nuclear-energy systems will
require materials that can withstand extreme reactor environments of
high-temperature and high-doses radiation. So, the investigation of the change
of the mechanical properties before and after ion irradiation is very important in the
HEAS’ research. My thesis only investigated the deformation and serration-flow
behavior of the as-cast HEAS, and the nanoindentation experiment of the

irradiated specimen should be performed in the next stage.
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Appendix A Tables

Table 1 Compositions and mechanical properties of ternary Zr-based bulk metallic
glassy alloys. [43]

Element Content, at%

1 2 3 1 2 3 %y of E HV
cu | zr | Ag | 50 45 5 — | 1040 | 112 | 59
cu | zr | Ag | 50 45 5 — | 1040 | 112 | 59

Cu Zr Ag 45 475

-
o
|

1,820 | 108 556

Cu Zr Ag 45 45 — 1,810 | 108 542

Cu Zr Ag 425 | 475 — 1,780 | 106 534

Cu Zr Ag 45 50 — 1,885 | 111 585

Cu Zr Al 475 | 475 1,547 | 2,265 87 —

Cu Zr Al 55 40 — 2,210 | 115 581
Cu Zr Al 525 | 425 — 2115 | 111 573
Cu Zr Al 50 45 — 1,885 | 102 546
Cu Zr Al 46 46 1,894 | 2,250 — 580
Cu Zr Al 55 40 2,210 | 115 581
Cu Zr Al 525 | 425 — 2115 | 111 573
Cu Zr Al 50 45 — 1,885 | 102 546
Cu Zr Al 48 48 1,199 | 1,882 | 103 —

Cu Zr Al 47 47 1,733 | 2,250 — 580

Cu Zr Ga 525 | 425 — 1,940 | 105 552

Cu Zr Ga 55 40 — 2,025 | 109 565

Cu Zr Ga 52.5 40 — 2,130 | 111 581

e B
o |o|loslala|la|lo|laloajalalals5

Cu Zr Ga 57.5 40 — 1,910 | 105 547

Cu Zr Ti 60 30 10 1,785 | 2,150 | 114 —

Zr Al Ni 70 10 20 1,411 | 1,335 61 432
Zr Al Ni 65 10 25 1581 | 1,520 | 64.5 484
Zr Al Ni 65 15 20 1,614 | 1,640 | 70.5 494
Zr Al Ni 60 15 25 1,640 | 1,715 | 72.6 502
Zr Al Ni 60 20 20 1,795 | 1,720 | 78.2 549
Zr Co Al 55 30 15 — 1,790 98 543




Table 1 Compositions and mechanical properties of ternary Zr-based bulk metallic
glassy alloys. [43] Continued.

. Eler;ent , . Conter;t, at% , 5, o £ Hv
Zr Co Al 55 25 20 — 1,750 96 530
Zr Co Al 55 25 20 — 1,900 | 114 —
Zr Cu Al 50 40 10 — 1,821 89 —
Zr Cu Al 50 40 10 — 1,860 88 496
Zr Cu Al 525 | 375 10 — 1,840 86 485
Zr Cu Al 50 375 | 125 — 1,960 93 511
Zr Cu Al 50 42,5 75 — 1,820 86 475
Zr Cu Al 55 35 10 — 1,810 83 470
Zr Cu Al 60 30 10 — 1,720 80 446
Zr Cu Al 475 | 425 10 — 1,920 20 508
Zr Ni Al 60 25 15 — 1,760 88 495
Zr Ni Al 55 25 20 — 1,780 89 502
Zr Ni Al 55 30 15 — 1,820 99 514
Zr Ni Al 60 20 20 1,793 | 1,720 | 78.2 549
Zr Ni Al 70 20 10 1411 | 1,335 61 432
Zr Ni Al 65 25 10 1520 | 1,581 | 645 484
Zr Ni Al 65 20 15 1,614 | 1,640 — 494
Zr Ni Al 60 25 15 1,640 | 1,715 — 502
Zr Ni Ti 40 37 23 — 1,630 — 524
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Table 2 Compositions and mechanical properties of quaternary Zr-based bulk metallic
glassy alloys. [43]

0

. Ezlemegt . . Cor;tent, a?t Y% . 5, o £ Hv
Cu| Zr | Ag| Al | 45 45 7 3 — 1,836 | 110 540
Cu| Zr | Ag| Al | 45 45 5 5 — 1,890 | 112 556
Cu| Zr | Ag| Al | 45 45 3 7 — 1912 | 112 561
Cu| Zr | Hf | Ag| 45 25 20 | 10 — 2,000 | 122 579
Cu| Zr | Ti | Be |555|27.75]1925| 75 — 2450 | 146 710
CulZr | Ti|Y |588| 294 |98 | 2 | 1,780 | 2050 | 115 —
Ni | Nb | Ti | Zr | 60 15 10 | 15 — 2,770 | 156 —
Ni | Ta| Ti | Zr | 60 15 15 | 10 — 3,180 67 —

Zr | Al | Co | Cu| 55 20 20 5 | 2,000 | 1,960 92 —

Zr | Al | Ni | Pd| 65 | 75 10 | 17.5] 1,340 | 1,510 — —

Zr | Cu | Ni | Al | 52 32 4 12 — 1,780 88 501
Zr | Cu | Ni | Al | 52 30 6 12 — 1,820 93 506
Zr | Cu | Ni | Al | 50 26 12 | 12 — 1,878 88 498
Zr | Cu | Ni | Al | 50 34 4 12 — 1,905 91 517
Zr | Cu | Ni | Al | 48 32 8 12 — 1,894 94 513
Zr | Cu | Ni | Al | 50 32 6 12 — 1,875 92 521
Zr | Cu | Ni | Al | 52 28 8 12 — 1,798 94 512
Zr | Cu | Ni | Al | 50 30 8 12 — 1,820 92 526
Zr | Cu | Ni | Al | 46 34 8 12 — 1,777 | 111 562
Zr | Cu | Ni | Al | 48 28 12 | 12 — 1,906 | 102 530
Zr | Cu | Ni | Al | 48 34 6 12 — 1,899 94 529
Zr | Cu | Ni | Al | 50 28 10 | 12 — 1,993 92 517
Zr | Cu | Ni | Al | 48 30 10 | 12 — 1,378 94 520
Zr | Cu | Ni | Al | 48 30 10 | 12 — 1,980 92 528
Zr | Cu | Ni | Al | 52 26 10 | 12 — 1,960 89 509
Zr | Cu | Ni | Al | 46 30 12 | 12 — 1,399 | 106 552
Zr | Cu| Fe | Al | 60 25 5 10 | 1,643 — 92 —

Zr | Cu| Fe | Al | 60 20 10 | 10 | 1,708 — 104 —

Zr | Fe | Al | Cu| 60 10 | 75 225 1,718 — 100 —
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Table 3 Element of concentrations in different points and nominal element of
concentration

Al (a-%) | Cr(a-%) | Cu(at-%) | Fe(a-%) | Ni(a-%)
A 11.22 7.93 55.41 5.79 19.65
B 12.22 7.02 51.20 6.12 23.44
C 9.03 19.41 15.10 18.44 38.02
D 757 20.67 1291 2121 37.64
E 6.38 20.95 12.19 22.23 38.25
Nominal 9.1 182 182 182 36.4

Concentration
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Table 4 Irradiation parameters and peak positions predicted by SRIM under Au
irradiation conditions.

lon Au
lon energy (MeV) 10
Irradiation angle (°) 0
Irradiation area (mm?) 100
lon current (nA) 500
Irradiation time (hour) 10
lon fluence (cm®) 2.0 x 10
SRIM Au peak (nm) 1,130
SRIM dpapeak (nm) 900
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Appendix B Figures

Indenting Tips Summary
Berkovich Vickers Cube-Corner Cone (angle \s) |Sphere (radius R)
Features
Shape 3-sided pyramid 4-sided pyramid |3-sided pyramid w/ Conical Spherical
perpendicular faces
Bulk Materials, Thin Films, Madeling,
o Thin Films, Bulk Materials, Scratch Testing, | Scratch Testing,

Applications Polymers, Films and Foils, Fracture Wear Testing, MEMS

Scratch Testing, | Scratch Testing, Toughness, Imaging,

Wear Testing, Wear Testing Wear Testing. MEMS

MEMS, Imaging MEMS, Imaging
Available as
Traceable Standard Yes Yes Yes No No
Parameter
Centerline-to-face angle, o A 65.3° 68° 35.2644° - —
Area (projected), A(d) 24,5642 24.504d2 2.5981d2 al wal
Volume-depth relation, V(d) 8.1873d3 8.1681d3 0.8657d3 = =
Projected area/face area, A/Ag 0.908 0.927 0.5774 - —
Equivalent cone angle, 70.32° 70.2996° 42.28° ] —
Contact radius, a — — — d tan s (2Rd-d2)1/2

Figure 1 Summary indentation-tip configurations [93]
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Figure 2 Berkovich indenter
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Figure 3 Nanoindentation loading and unloading
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Figure 4 Schematic plot of atypical load-displacement curve.
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Critical casting thickness [cm)]
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Figure 5 Critical casting thicknesses for glass formation as a function of the year the

corresponding alloy has been discovered. Over 40 years, the critical casting thickness

has increased by more than three orders of magnitude. [25]
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Figure 6 Relation among the critical cooling rate for glass formation (R;), maximum
thickness for glass formation (tyax), and reduced glass-transition temperature (Ty/T;)

for metallic glasses. [29]
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Figure 7 Schematic time-temperaturetransformation (TTT) diagram. Crystallization
occurs between T, and Ty, and can be avoided by sufficiently cooling of the liquid (R.);
when the amorphous solids are isochronally heated at a constant heating rate, the

sample starts to crystallize at an onset temperature denoted as Tx. [36]
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Figure 8 Schematic TTT curves showing the effect of Ty measured upon continuous
heating for different liquids with similar T, and Tg; liquid b with higher onset
crystallization temperature bTx (aTx < bTx) shows alower critical cooling rate bR:

(bR. < aR). [36]
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Figure 9 The correlation between the critical cooling rate and the parameter y for 49

metallic glasses. [36]
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Figure 10 The critical cooling rates as a function of the reduced glass transition
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temperature T,q for cryoprotective agents. [36]
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Figure 11 Localized plastic flow around a Berkovich indent on the surface of bulk

amorphous PdoCuszNi1oP2o. Indentation diagrams obtained by action of symmetric
triangle force pulses with the duration of 20s (b) and 0.5s (¢). Theinsets show the

parts of the diagrams on an enlarged scale. [51]
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Figure 12 Compilation of the present indentation results, showing the range of strain
rates over which serrated flow is and is not observed. Data from the literature are also
assembled, illustrating the same general trends found in thiswork, in several different

modes of loading. [44]
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Figure 13 Pop-in size variation with the loading rates during nanoindentation of an

Au-based bulk metallic glass. (a) P-h curves at nine different loading rates and (b)
typical pop-in step at high loading rates of 10, 30, and 100 mNs™. [44]
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Figure 14 Sketch of the Indentation load versus time curve
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Figure 15 Schematic of the strain gradient clusters, (A) Top view of indentation

impression, (B) Cross-sectional view along line p1-p2. [71]
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Figure 16 Load-Displacement curves of the ZrsoCuzoAl1oNizo BMGs at different

indentation loading.
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Figure 17 Dependence of the maximum indentation depth on the indentation load for
the ZI’50CU40A|10, ZI’50CU30A|10Ni10, and Zr65Cu18Ni7AI10 BMGs.
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Figure 18 Effect of the indentation load on the reduced contact stiffness for the
ZI’50CU40A|10, ZI’50CU30A|10Ni10, and ZI’55CU13Ni7A|10 BMGs.
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Figure 19 Dependence of the indentation hardness on the indentation load for the

ZI’50CU40A|10, ZI’50CU30A|10Ni10, and Zr65Cu18Ni7AI10 BMGs.
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Figure 20 The reduced modulus (E;) variation with the loading rate during
nanoindentation of the ZrsoCusAl1g, Zrs0CuggAl1oNiig, and ZresCuigNizAl1 o BMGs.
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Figure 21 The hardness (H) variation with the |oading rate during nanoindentation of

the ZI’50CU40A|10, ZI’50CU30A|10Ni10, and Zr65Cu18Ni7AI10 BMGs.
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Figure 22 Slip-step patterns over the contact surface and the surrounding area of the

Zrs0CusAl1o BMGs.
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Figure 23 Indentation-size effects in the indentation of the ZrsoCuspAl 1o,
ZI’50CU30A|10Ni10, and Zr65Cu18Ni7AI10 BMGs.
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Figure 24 Correlation between the indentation hardness and the reduced contact
modulus for the ZrsoCuaoAl1o, ZrsoCusoAligNisg, and ZresCuigNizAl1g BMGs.
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Figure 25 The temperature dependence of the DSC thermogram for the ZrsoCuaoAl 1o,
ZI’50CU30A|1oNi10, and ZI’55CU18Ni7A|1o BMGs.
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Figure 26 Pop-in size variations with the loading rates during nanoindentation of a
ZrgsCuigNizAlg BMG. (@) Typical load-displacement (P-h) for the loading portion of
a nanoindentation test. (b) Typical pop-in gap at the loading rates of 0.8, 0.4, 0.1 and

0.05 mNs™.
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Figure 27 Typical load-displacement (P-h) for the loading portion of a

nanoi ndentation test on a ZrsgCusgAl10 BMG.
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Figure 28 Typical load-displacement (P-h) for the loading portion of a
nanoindentation test on a ZrspCuspAl1oNizg BMG.
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Simultaneous operations of more
shear bands develop discrete
and coarse shear bands.
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Figure 29 Schematic illustrations of cross-sectional views of the plastic deformation

of ametallic glass during the nanoindentation at (a) a lower strainrate and (b) a

higher strain rate. P(t) and r(t) represent the load and the plastic-zone size,

respectively, both of which are afunction of time. The shear-band patterns beneath

the indents manifest the temporal characteristic features of shear-banding operations

that we observed in the uniaxial compression. [81]
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Figure 30 The typical P-h curves with the loading rate of 0.1 mNs™ for ZrsoCuaoAl 1o,
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ZI’50CU30A|10Ni10 and Zr65Cu18Ni7AI10 BMGs.
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Figure 31 The function of measured pop-in size and the indentation depth for
Zr50CusAlio BMGs indented at a constant loading rate of 0.1 mNs* during

nanoi ndentation.
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Figure 32 The indentation strain rate plotted as a function of the indentation depth for

(@) ZrsoCusAlio and (b) ZresCuigNizAl10BM Gs at different loading rates.
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Figure 33 A typical curve of the indenter displacement vs. time (h-t) of the
ZrsoCusoAlio BMGs at the loading rate of 0.1 mNs™.
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Figure 34 An example of atypical serrated P-h curve at aloading rate of 0.1 mNs™*
for the ZrsoCusoAl10 BMGs, including the elastic-plastic loading and elastic unloading
curve. Asindicated by the arrows, a smooth “consolidated elastic” curve is obtained

by removal of the pop-in gap.
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Figure 35 XRD patterns of as-cast AlosCrCuFeNi» alloys. The structure of the as-cast
and irradiated samples was performed by X-ray diffraction (XRD) with Cu Ka
radiation (A = 1.541874 A).

Figure 36 Scanning eectron microscopy (SEM) image of the surface of the as-cast

AlosCrCuFeNi, HEA samples.
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Figure 37 Elemental mapping of the AlpsCrCuFeNi, HEA.
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Figure 39 Slip-step patterns over the contact surface and the surrounding area of the

Figure 38 Surface elements analysis of the AlosCrCuFeNi, HEA.
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Figure 40 Load-displacement curves (P-h) as afunction of normal load during
nanoindentation of the AlosCrCuFeNi; HEA.
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Figure 41 The reduced modulus (E;) and hardness (H) variation with the value of load
during nanoindentation of the AlysCrCuFeNi, HEA.
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Figure 42 The relationship between ion energy and ion range
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Figure 43 The SRIM-predicted damage profile in the unit of dpaand Au
concentration for AlpsCrCuFeNi, HEA irradiated by 10 MeV Au to afluence of
2.0x10" cm.
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Figure 44 The SRIM-predicted damage profile in the unit of dpa and Co concentration
for AlosCrCuFeNi, HEA irradiated by 10 MeV Co to a fluence of 2.0x10™ cm™
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