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Abstract 
 

The value of air quality improvement following the 1990 Clean Air Act Amendments is 

estimated at the county level in the lower 48 United States. This study applies a hedonic 

model to assess the economic benefits of air quality improvement using an instrumental 

variable approach that combines geographically weighted and spatial autoregression 

methods to account for spatial heterogeneity and spatial autocorrelation. Positive amenity 

values of improved air quality are found in five major clusters of areas across Eastern 

Kentucky and most of Georgia around Southern Appalachian area, the State of Illinois, on 

the border of Oklahoma and Kansas, on the border of Kansas and Nebraska, and Eastern 

Texas. The reason for the clusters of significant positive amenity values may be due to 

the combination of intense air pollution, consumers’ awareness of diminishing air quality, 

and higher marginal benefit of reductions of TSPs in communities with relatively low 

pollution levels. Surprisingly, negative amenity values of improved air quality are found 

in the three distinctive clusters of east Virginia, west and central Texas, and southeast 

Montana. This unexpected result may be explained by worsening air quality with 

intensive economic growth, greater appreciation in housing prices in those regions, 

and/or missing variables reflecting regionally specialized economic growth. 
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1. Introduction 

Air quality directly affects our quality of life. Air pollution is composed of many 

environmental factors. They include carbon monoxide, nitrates, sulfur dioxide, ozone, 

lead, secondhand tobacco smoke and particulate matter. Particulate matter, also known as 

particle pollution, is composed of solid and liquid particles within the air. These particles 

vary considerably in size, composition and origin. They can be generated from vehicle 

emissions, tire fragmentation and road dust, power generation and industrial combustion, 

smelting and other metal processing, construction and demolition activities, residential 

wood burning, windblown soil, pollens, molds, forest fires, volcanic emissions and sea 

spray (American Heart Association 2006). The U.S. Environmental Protection Agency 

(EPA) has reported that tens of thousands of people die each year from breathing airborne 

particulate matter (EPA 1997a). It was found that overall death rates in the 90 largest U.S. 

cities rose by 0.5 percent with an increase of 10 ug/m3 in particles less than 10 

micrometers in diameter (Kaiser 2000).  

Clean air is considered to be a public good because consumption of clean air by 

one individual does not reduce the amount of clean air available for consumption by 

others (Kaul and Mendoza 2003). Pollution causing lack of clean air is typically regarded 

as a negative externality. A negative externality occurs when the by-product of production 

or consumption is perceived as a social cost (Lewin 1982). For instance, air pollution 

created by cars can have harmful health effects on other people; however, drivers of cars 

usually are not accountable for the costs of the harmful health effects. Negative 

externalities lead to market failure when the market supplies too much pollution. 
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Pollution is an example of a market failure that justifies government intervention. 

One of the most publicized government interventions associated with negative 

externalities of air pollution in the United States is the Clean Air Act (CAA), which has 

been among the most controversial interventions mandated by the U.S. government 

(Chay and Greenstone 2005). The CAA was imposed to protect and to enhance the 

nation’s air quality in 1963 after air pollution was recognized as a national problem in 

1955 by the Air Pollution Control Act. The intention of the CAA was to bring all counties 

in the United States into compliance with the National Ambient Air Quality Standard by 

reducing local air pollution concentrations (Greenstone 2004). Amendments in 1970 

yielded an entirely rewritten version of the original CAA. The Amendments included new 

primary and secondary standards. For example, the federal Total Suspended Particulates 

(TSPs) standards were set at an annual geometric mean not to exceed 75 micrograms of 

particulates per cubic meter of air (75 ug/m3) in the long-term, and a 24-hour average of 

260 ug/m3 not to be exceeded more than once per year in the short-term (EPA 2003). The 

amended CAA set new limits and deadlines on emissions from stationary and mobile 

sources to be enforced by both state and federal governments. Funds for air pollution 

research were also increased.  

The legislation required the EPA to annually report attainment status for six 

principal pollutants: ozone, particulate matter, carbon monoxide, sulfur dioxide, nitrogen 

dioxide, and lead. When counties were non-compliant, the EPA penalized the county by 

restricting new polluters and regulating pollution control methods of existing polluters. 

The amended CAA of 1970 was revised again in 1990 as a result of growing 

environmental concerns. The 1990 CAA amendments (CAAAs) addressed five additional 
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areas: air-quality standards, motor vehicle emissions and alternative fuels, toxic air 

pollutants, acid rain, and stratospheric ozone depletion. This revision was hailed by 

supporters as strengthening and improving existing regulations (American 

Meteorological Society 2007).1  

Since the inception of the CAA, aggregate emissions of the six principal 

pollutants have been reduced by 25%, even as U.S. gross domestic product (GDP) 

increased by 161%, energy consumption increased by 42%, and vehicle miles traveled 

increased by 149% during the 1970-2002 period. Despite obvious improvements in air 

quality, no consensus exists on whether the CAA and its amendments are responsible for 

the improvements, and how much the extent of economic benefits associated with this 

legislation has created (Chay and Greenstone 2003, 2005; Goklany 1999; Greenstone 

2004; Henderson 1996; EPA 1997b).  

                                                 
1 For instance, a more restrictive annual standard was set for particles in the 0-10 micron range of 40 

ug/m3. In addition, EPA proposed new air quality standards for particulates less than 2.5 micrometers 

(PM2.5) in diameter by adding a new annual PM2.5 standard set at 15 ug/m3 and a new 24-hour PM2.5 

standard set at 65 ug/m3, and changing the form of the standard (EPA). 
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2. Objectives 

The objective of this research is to accurately estimate the value of air quality 

improvement following the 1990 CAAAs at the county level in the lower 48 United 

States. Reliable estimation of the economic benefits of air quality improvements is useful 

for policymakers because controversy over the CAAAs originates from the lack of a 

dependable measure of the value of air quality improvement. This study applies a hedonic 

model to assess the economic benefits of air quality improvement using an instrumental 

variable approach that combines geographically weighted and spatial autoregression 

methods to account for spatial heterogeneity and spatial autocorrelation. This valuation 

method tests the hypothesis that air quality improvement has economic benefits at the 

county level and also tests how the measurement of those benefits can be improved by 

adopting spatial process models. Because this spatial-hedonic model captures spatial 

variation of the marginal effect of air quality improvement across the country, regional 

differences in the economic benefits of air quality can be found. 
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3. Literature Review 

Because air quality affects human with various ways, it can be measured with different 

aspects. For example, air quality can affect human health, so the benefit of improved air 

quality can be measured by the cost of respiratory disease. Air quality also affects 

ecosystem, it can be measured by ecological perspective. One method of estimating the 

economic values of non-market benefits is hedonic pricing approach. Hedonic methods 

have been gaining popularity in recent years with the application of spatial analysis using 

geographical information systems (GIS). The hedonic approach estimates the economic 

benefits of air quality using the functional relationship between observed housing sale 

prices and air pollution. The effect of air quality on housing sale prices is isolated by 

controlling for the other factors that influence the housing market. Better control of these 

other factors allows for better measurement of the economic benefits of air quality 

improvement.  

The hedonic approach to estimating the value of air quality has a long history. 

Since the enactment of the Clean Air Act and Clean Water Act, a number of hedonic 

studies have estimated implicit prices for the effect of pollution on property values 

(Michael, Boyle, and Bouchard 2000). Ridker (1967) and Ridker and Henning (1967) 

reported the first application of hedonic methods to estimate the effect of air pollution on 

property values. Since then, many studies have used the hedonic-price model to measure 

the value of air quality (e.g., Anderson and Crocker 1971; Brucato, Murdoch, and Thayer 

1990; Deyak and Smith 1974; Freeman 1974; Graves et al. 1988; Harrison and Rubinfeld 

1978; Murdoch and Thayer 1988; Nelson 1978; Smith and Deyak 1975; Wieand 1973)  
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Smith and Huang (1995) conducted a meta-analysis of 37 cross-sectional 

hedonic studies of the value of air quality. The authors found that a decrease in TSPs of 1 

ug/m3 resulted in a 0.05-0.07% increase in property values. From this small increase, 

many researches concluded that individuals either place a small value on air quality or the 

hedonic approach cannot produce reliable estimates of the marginal willingness to pay for 

air quality improvement (Chay and Greenstone 2005).  

Chay and Greenstone (2005) pointed out that these weak results may be 

explained by two econometric identification problems: omitted variables in the housing 

price-air pollution gradient and heterogeneity across individuals represented by 

preferences for clean air. They used attainment status as an instrumental variable to 

resolve the identification problem resulting from the endogeneity of TSP in the hedonic 

price equation. The change between 1970 and 1980 at the county-level was used as the 

dependent variable in a first-difference model. They claimed their estimates were less 

sensitive to model specification than estimated from the cross-sectional and fixed effects 

models typically used in hedonic studies.  

Although their findings resolve the two econometric identification problems, i.e., 

omitted variable and endogeneity, there are more issues associated with spatial 

heterogeneity and spatial autocorrelation that need to be addressed to improve the 

findings. While the conceptual logic of the hedonic price approach for capturing the 

impacts of air quality appears sound, hedonic models are often criticized with regard to 

spatial autocorrelation caused by spatial dependence (Beron et al. 2004). Furthermore, 

urban and regional economists have long challenged the control of spatial heterogeneity 

(Adair, Berry, and McGreal 1996; Goodman and Thibodeau 1998). Spatial heterogeneity 
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means that structural relationships are not stable over space. Spatial dependence is a 

systematic spatial variation that results in observable clusters or a systematic spatial 

pattern (Florax and Nijkamp 2003). The development and application of consistent and 

efficient estimators to capture spatial dependence and spatial heterogeneity has been an 

important part of the spatial econometric/statistics literature over the last few decades 

(e.g., Anselin 1998a, 1998b; Can 1990, 1992; Casetti 1972; Cliff and Ord 1973; Dubin 

1992, 1998; Fotheringham and Brunsdon 1999; Getis and Ord 1992; Kilkenny and Thisse 

1999; LeSage 1997; Leung et al. 2000; McMillen 1992, 2003; Monchuk 2003; Monchuk 

and Miranowski 2004; Tse 2002).  

Modeling spatial heterogeneity using regional indicator variables is one 

approach to account for heterogeneity caused by spatial units. This technique is effective, 

but has some limitations. Critics suggest that this approach captures unobserved 

heterogeneity at a regional level but not at local level (Clapp 2003, 2004). Instead, 

researchers have proposed a so-called geographically weighted regression (GWR) as a 

way of accounting for the potential presence of spatial heterogeneity in a hedonic model. 

GWR is a local regression technique accommodating spatial heterogeneity by locally 

weighted regression as first proposed by Cleveland and Devlin (1988) that is similar to 

other semi-parametric methods which allow coefficients to vary across space (Clapp 

2003, 2004; McMillen 2003).  

While, in general, GWR appropriately controls spatial heterogeneity, the residual 

of the GWR is not free from spatial error autocorrelation, causing efficiency loss in 

standard errors (Anselin 1988a). Housing prices are influenced by a variety of factors, 

many of which vary by spatial location. Although hedonic models attempt to capture at 
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least some of that variation, there is likely to remain some unexplained spatial variation 

in price, and therefore spatial correlation of the error terms. If such spatial autocorrelation 

is not accounted for in the estimation, the results may be misleading (McConnell and 

Margaret 2005). To address this problem, spatial lag and spatial error models developed 

by Anselin (1988a) are used to detect and accommodate spatial autocorrelation.  
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4. Empirical Model 
 

Under the assumption that the housing market is in equilibrium, a household chooses to 

reside in a location that maximizes utility as follows: 

(1) ( )( , ), ,i i i i i iMax u h a g y p a g⎡ ⎤−⎣ ⎦ , 

where ( )u ⋅  is a continuous twice-differentiable utility function with u′ > 0 and u″ < 0; hi 

is the flow of housing services from location i, which is a function of ia (air quality) and 

gi (vector of other housing attributes), y is household income; and pi is the price of house 

i, which is also a function of ia  and gi (Brueckner 1990; Capozza and Helsley). The 

difference between household income and housing price represents total expenditures on 

commodities other than housing (i.e., a composite numéraire commodity). The utility 

gained from consuming housing services subject to a budget constraint generates a 

quasilinear function with respect to all other goods.  

The solution to the consumer’s utility maximization problem allows the testing 

of hypotheses about consumer behavior using the hedonic price model. Although 

Equation 1 is typically applied to individual housing data, the interest here is in aggregate 

housing demand for a group of neighbors as follows.  

(2) ( )( , ), ,i i i i i iMax u H A G Y P A G⎡ ⎤−⎣ ⎦ , 

Where, Hi is the flow of housing services from county i, which is a function of iA (air 

quality in county i) and Gi (vector of other housing attributes in county i), Y is average 

household income in county i; and Pi is the median price of house in county i, which is 

also a function of iA  and Gi. The county i is used as the unit of observation in 
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identifying groups of neighbors because the CAAAs are imposed at the county level and 

air quality improvement is measured at that level.   

An important methodological issue in air quality hedonic models is the potential 

endogeneity of air quality improvement. Previous research has suggested endogeneity of 

the air quality measure in the estimation of hedonic models (e.g., Anselin and Le Gallo 

2006; Anselin and Lozano 2007; Chattopadhyay 1999; Chay and Greenstone 2003, 2005). 

Because local air quality is likely to be correlated with unobserved local economic factors 

that also affect housing prices, ordinary least square (OLS) estimation likely will yield 

biased and inconsistent parameter estimates. TSPs attainment status is a potential 

instrument for the county fixed effect to isolate changes in TSPs that are orthogonal to 

changes in the unobserved determinants of housing prices (Bayer, Keohane, and Timmins 

2006; Chay and Greestone 2005).   

Following Chay and Greenstone (2005), a first difference model using an 

instrumental variable approach is employed to absorb county fixed effects: 

(3) *i i i i i i iP X TSP R R TSP e′∆ = ∆ β+ θ∆ + δ +α ∆ +  

(4) 95i i X i Z iTSP X Z′∆ = ∆ Π + Π + υ , 

where iP∆  is the change in the logarithm of housing price, iX∆  is the change in a 

vector of observed characteristics, iTSP∆  is the change in TSPs density in tons per 

square mile between 1990 and 2000, iR  is a vector of regional dummy variables to 

control for region-specific heterogeneity, *i iR TSP∆  is a vector of their interactions with 

the change in TSPs, 95iZ  is the mid-decade TSP attainment status in county i for 1995, 
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and ie  and iυ  are the unobserved determinants of housing prices and TSPs levels 

respectively. For identification, the least-squares estimator of θ  requires [ ] 0i iE e ⋅ υ = .  

Mid-decade TSP attainment status ( 95iZ ) is used as an instrument in Equation 4 

to account for the potential endogeneity of TSP in Equation 3. Chay and Greenstone 

(2005, pp. 401-406) explained that mid-decade attainment status is a better candidate 

instrument than the attainment designation at the beginning of the decade because a 

smaller time window is available for general equilibrium responses to affect the 

composition of households and houses and because mid-decade attainment status is also 

uncorrelated with most observable determinants of housing prices, including economic 

shocks. TSP reduction is attainment counties and nonattainment counties are -34.64 and -

2.11, respectively. 

Anselin and Lozano (2007) raised another important issue regarding spatial 

structure of house values in the hedonic model. They establish that the hedonic model 

should take account for the effects of neighboring housing values with a spatial lag model. 

Without accounting for spatial lag effects, inference may be compromised because spatial 

error autocorrelation produces inefficient standard errors of the estimates, while spatial 

lag dependence yields inconsistent and biased estimates (Anselin 1998a). To correct for 

spatial error autocorrelation, the hedonic model of Equation 3 can accommodate the 

potential spatial lag dependence of housing value: 

(5) *i j i i i i i iP W P X T R R T′∆ = ρ ∆ + ∆ β+ θ∆ + δ +α ∆ + ξ  

where W is a spatial weight matrix which can be measure as a default minimum threshold 

distance, ρ  is spatial autoregressive coefficient explaining spatial lag dependence 
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between housing prices ( iW P∆ ). An instrumental variable (or two-stage least squares 

regression) approach is used to estimate Equation 5 (Anselin 1988a). The first stage 

entails regressing the spatial lag of the differenced housing prices on all exogenous 

variables, and their first and second spatial lags:  

(6) 2
1 2 3 µi i i i iW P X W X W X∆ = δ ∆ + δ ∆ + δ ∆ +% % % , 

where iX∆ %  is a matrix containing , , ,i i iX T R∆ ∆ and *i iR T∆ . For the second stage, 

Equation 5 is estimated using the predicted value of îW P∆  from the Equation 6.  

In order to account for potential spatial heterogeneity at the local level, GWR is 

applied to Equations 3 and 5. Equation 3 with GWR can be specified as:  

(7) ( , )i i i i iP X u v′∆ = ∆ β + ε% . 

where iε  is a random disturbance term; and (ui, vi) are location coordinates. Given 

predicted values of îW P∆  from Equation 6, Equation 5 can be specified as a 

geographically weighted regression: 

(8) ˆ( , ) ( , )i i i i i i i iP u v W P X u v′∆ = ρ ∆ + ∆ β + ε% . 

The GWR assigns weights to other counties according to their spatial proximity 

to county i . These weights allow counties in closer proximity to county i  to have more 

influence in the estimation of the local ˆ ( , )i iu vβ ’s than counties located farther away. An 

adaptive bi-weight function is used to geographically weight observations. The function 

is “adaptive” in the sense that the trace of the weight matrix is allowed to expand and 

contract, conditional upon a given location. The bi-weight function for each wij is: 
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(9) ( )
22

max1ij ijw d d⎡ ⎤= −⎢ ⎥⎣ ⎦
if maxijd d≤ , otherwise wij = 0, 

where j represents a point in space at which data are observed, i represents any point in 

space for which parameters are estimated, ijd is the Euclidean distance between point i 

and j, and dmax in the maximum distance between observation i and its q nearest 

neighbors. The weight attributed to regression point i is one. Weights attributed to the j 

observations in the neighborhood of i are less then one and become zero when the 

distance between i and j is greater than dmax. Therefore, as dij increases the influence of 

observation j on local regression point i decreases.  

A cross-validation approach selects the optimal neighborhood bandwidth q as in 

the cross-validation function: 

(10) Cross validation = 2

1
)](ˆ[min qyy ii

n

iq ≠
=

−∑  

where )(ˆ qy i≠  is the fitted value of iP∆  with the observations for point i omitted during 

the fitting process. The bandwidth minimizes the cross-validation function. Thus, in the 

locally weighted regression model, only counties up to the nearest q neighbors are 

assigned non-zero weights with respect to county i. The influence of observations 

decreases as distance increases from the regression point (ui, vi).  

To allow for potential correlation between the disturbance terms, the error 

structures of the Equations 7 and 8 are assumed to have the following structure 

1,
λ

= ≠
ε = ε + ξ∑n

i ij j ij j i
w , ( )2~ 0,i iidξ σ , where wij is an element of an n by n row-

standardized spatial weighting matrix, and λ is a spatial error autoregressive parameter. 

GWR residuals are tested for spatial error autocorrelation using a Lagrange Multiplier 
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(LM) test (Anselin 1998a). In this analysis a row-standardized inverse distance matrix 

was used to construct the test statistic 

(11) ( ) ( )WWWεWε ′+′= 22ˆˆ trLM GWRGWRGWRerror σ , 

with tr the trace operator. The statistic is distributed as a χ2 variate with 1 degree of 

freedom. The null hypothesis is λ = 0.  

To test how spatial heterogeneity and spatial autocorrelation can be mitigated by 

adopting a spatial process model, models with and without the specifics of the spatial 

process are estimated and compared, i.e., OLS controlling for regional fixed effects, 

GWR to account for spatial heterogeneity, and GWR corrected for spatial autocorrelation 

(GWR-SAR).  

Hot spot analysis (Getis-Ord Gi*, Gi statistics) is used to identify the clusters of 

high and low marginal effect of TSP changes (Ord and Getis1995). This analysis is 

implemented by looking at each county within the context of neighboring counties. The 

distance for identifying neighboring counties is calculated from Geoda 0.9.5-i as a default 

minimum threshold distance (Anselin 2005). The local sum of the marginal effects of 

TSP changes for a county and its neighbors is compared proportionally to the sum of all 

counties. When the local sum is much different than the expected local sum, and that 

difference is too large to be the result of random chance, those counties with much 

different local sum are identified as clusters of high and low marginal effect of TSP 

changes (ESRI 2007). Once the clusters are mapped, marginal effects of TSP are overlaid 

on the Gi statistics map. By doing so, only negative marginal effects among clusters of 

negative Gi statistics and only positive marginal effects among clusters of positive Gi 

statistics are mapped. 
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5. Study Area and Data 
 

The study area includes the entire continental United States which consists of 3,107 

counties and county equivalents in the 48 States and District of Columbia. After 

excluding missing observations from five counties, 3,102 counties are used in the 

empirical model. The empirical model uses four county-level datasets in a geographical 

information system (GIS): (a) TSPs (PM-10, which includes only those particles with 

aerodynamic diameter smaller than 10 um) attainment status for 1995 and TSPs emission 

density in 1990 and 2000 from the U.S. EPA (EPA 2006), (b) socioeconomic and housing 

variables from the 1990 and 2000 County and City Data Books (2003) and the GeoLytics 

Census CD, (c) 1999 Natural Amenities Scales and Rural-Urban Continuum Code from 

USDA Economic Research Service (McGranahan 1999), and (d) regional dummy 

variables and their interactions with the TSP variable based on Census Bureau Regions 

and Divisions with State Federal Information Processing Standard (FIPS) codes (U.S. 

Census Bureau 2007). All of these variables are joined together by means of county FIPS 

codes.  

TSP nonattainment counties in 1995 are presented in Table 1. At least one county 

could not meet the annual TSPs standard in 21 states. California had the most number of 

counties in nonattainment (15), followed by Colorado with 12, Arizona with 8, Montana 

with 7, and Oregon with 6. It is somewhat unexpected that Montana and Oregon, states 

with relatively small populations, contain a number of nonattainment. It is also a little 

surprising that the states in the Southeast with rapidly growing populations, i.e., Georgia, 

are free of nonattainment counties.   

Simple descriptive statistics for county-level TSPs emission density, and 



 16

socioeconomic and housing variables for 1990 and 2000 are presented in Table 2. All 

dollars values are converted to year 2000 dollar. Over the period of 1990-2000, TSPs 

emission density decreased from 19.4 tons/mile2 to 15.9 tons/mile2. During the same 

period, median housing value increased from $54,183 to $84,145, unemployment rate 

dropped from 7.17 to 4.72, and the percentage of the population with high school and 

college graduates increased from 0.70 and 0.13 to 0.77 and 0.22, respectively.  

The natural amenities scale is a measure of the physical characteristics of a 

county area that enhance the location as a place to live (ERS 1999), The scale was 

constructed by ERS (1999), combining six measures of climate, topography, and water 

area that reflect environmental qualities most people prefer. These measures are warm 

winter, winter sun, temperate summer, low summer humidity, topographic variation, and 

water area. The 1993 Rural-urban continuum code, also constructed by ERS (2003), is 

used to categorize counties into groups that go beyond a simple metro-nonmetro 

dichotomy. The codes form a classification scheme that distinguishes metropolitan 

counties by the population size of their metro area, and nonmetropolitan counties by 

degree of urbanization and adjacency to a metro area or areas.  

Census region is used to create regional indicator variables to account for 

heterogeneity caused by spatial units. Census regions are groupings of states that 

subdivide the United States (U.S. Census Bureau 2007). Because the census regions 

represent the nation's macro-scale subnational regions, it is reasonable to assume the 

regional indicator variables using the census region capture non-stationarity between 

housing value and housing attributes. According to the U.S. Census Bureau (2007), the 

continental United States is delineated as four regions which consist of nine divisions: 
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New England, Middle Atlantic, East North Central, West North Central, South Atlantic, 

East South Central, West South Central, Mountain, and Pacific. Eight regional dummy 

variables are created to capture the regional variation in housing value to account for 

spatial heterogeneity. The West South Central division is chosen as the reference region. 

Figure 1 shows census regions and divisions of the United States. 

Definitions and descriptive statistics for the variables used in the model are 

presented in Table 3. The change of emissions of TSPs in tons per square mile is chosen 

to reflect air quality improvement because the TSPs are the most visible form of air 

pollution and have the most pernicious health effects of all the pollutants regulated by the 

CAAAs (Chay and Greenstone 2003; Graves et al. 1988; Palmquist and Israngkura 1999). 

Change of median housing value during the 1990s, instead of median housing value for 

1990 or 2000, is used as a dependant variable because first-differencing the data absorbs 

the county permanent effects under the framework of the hedonic model (Chay and 

Greenstone 2005). Accordingly, all explanatory variables except natural amenity scale, 

regional dummy variables, and their interactions with TSP are measured as changes 

between 1990 and 2000.  

One of the concerns of using aggregate housing value at the county-level instead 

of at the individual level is that the aggregate values may mask considerable spatial 

heterogeneity within the county that may be critical to measuring attributes of housing 

value. This spatial heterogeneity may induce some bias. Nevertheless, Chay and 

Greenstone (2005) assert that the aggregation to the county level may not be an important 

source of bias for two reasons noting that their estimates, generated by aggregation to the 

county level, are similar to the results based on more disaggregated data summarized in 
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Smith and Huang (1995). First, the aggregation does not lead to the loss of substantial 

variation in TSPs, thus the bias generated by the spatial heterogeneity of TSPs within the 

county should not be significant. Using the availability of readings from multiple 

monitors in most counties, they find that only 25 percent of the total variation in 1970–80 

TSPs changes is attributable to within-county variation, Second, since there are 

substantially fewer monitors than disaggregated data, i.e., at the census tract level or the 

individual house level, disaggregated analysis introduces inference problems that a more 

aggregated county-level analysis avoids. 

The changes in socioeconomic conditions that may affect changes in housing 

values are represented by changes in income, unemployment, employment in 

manufacturing, population density, white ratio, senior ratio, population with high school 

degree, population with college degree, urban population ratio, poverty ratio, and per 

capita tax (County and City Data Books 2003). The changes in housing characteristics 

that may have effects in the change of housing value include the changes in the 

percentage of houses built in last 10 years, percentage of houses built 10-20 years ago, 

percentage of houses built more than 40 years ago, percentage of houses without 

plumbing, percentage of vacant houses, and percentage of owner-occupied houses. The 

natural environment and regional characteristics that may influence housing values 

consists of the natural amenity scale and rural-urban continuum code. These variables are 

chosen on the basis of the general hedonic specification and the framework laid out in 

Chay and Greenstone (2005). 

Changes in the level of TSPs emission densities between 1990 and 2000 are 

mapped in Figure 2. During this period, TSPs emission declined by 0.17 (tons/mile2) over 
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the continental United States. The TSPs emission density decreased the most in Kings 

County, New York (226.9 tons/mile2) whereas it increased most in Convington City, 

Virginia (227.2 tons/mile2). Figure 3 shows the change in median housing price (2000 

dollars) during the 1990s. The median housing price doubled in 188 out of 3,102 counties 

(6%). It increased between 50% to 100% in 1,842 counties (59%), establishing two major 

clusters in the eastern and the western regions. It increased by less than 50% in 1,019 

counties (33%). It dropped in 53 counties during the 1990s. 
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6. Empirical Results 
 

The overall performances of the three models in the second stage of 2SLS are compared 

in Table 4. The LM test for spatial error shows that the OLS and GWR residuals are 

spatially autocorrelated. The spatial error LM test based on the GWR residuals is reduced 

by 80% compared to the LM test based on the OLS residuals. However, spatial 

autocorrelation still remained in the GWR residuals. Finally, the null hypothesis of no 

spatial error autocorrelation could not be rejected in the GWR-SAR. The adjusted R2 for 

the GWR-SAR is 0.85, higher than for the OLS (0.53), and slightly lower than for the 

GWR (0.87) regression. The error sum of squares for the GWR-SAR is 14.4, lower than 

for the OLS (47.0) and slightly greater than for the GWR (13.5). The global F-test 

comparing the global and local models confirms that the local models of GWR and 

GWR-SAR outperform the global model of OLS. The overall fit of the GWR model is 

slightly better than the GWR-SAR model. However, the GWR-SAR model effectively 

controls for spatial error autocorrelation, which is still present in the GWR residuals.  

 Results for the change in TSPs pollution and other variables that control the 

effects on housing price for the three models are presented in Table 5. The effect of the 

TSP variable is not trivial due to interactions with the regional fixed effects, and more 

insight can be gained by calculating the marginal effect of TSPs variable by regions. The 

marginal effects of TSPs on housing price across all regions for the three models are 

presented in the Table 6.  

The marginal effects of TSPs in the OLS model are insignificant. The median 

value for the marginal effect of overall area from the GWR model is negative and varies 

between -0.837 and 0.811, showing significant spatial variation of the marginal effect of 
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TSP. The marginal effects of the GWR-SAR model are also negative but the variation is 

smaller than that of GWR, between -0.705 and 0.569. The GWR model and GWR-SAR 

model consistently show that the marginal effect of the economic benefit of air quality 

improvement is higher in Middle Atlantic, East North Central, South Atlantic, and East 

South Central regions than the average at the median value.  

The estimates from the GWR-SAR were used to identify clusters of areas where 

the marginal effects of TSPs on housing price are significantly different from others. The 

spatial clusters of significant marginal effects at the level of 5% are mapped using the 

Getis-Ord Gi* statistics (Ord and Getis 1995). The threshold distance of 1.46 decimal 

degrees (approximately 100 miles) is used. This distance is calculated from Geoda as a 

default minimum threshold distance for identifying neighborhood. Once the clusters are 

mapped, marginal effects of the TSPs are overlaid on the Gi statistics map. By doing so, 

only negative marginal effects among clusters of negative Gi statistics and only positive 

marginal effects among clusters of positive Gi statistics are mapped in Figure 4.  

The clusters of negative marginal effects represent the areas with significant 

increases in housing prices from reductions in TSPs. The clusters of positive marginal 

effects represent the areas with significant increases in housing prices from increases in 

TSPs. There are four major clusters of areas with positive amenity values of air quality 

improvement. The largest cluster is in East Kentucky and most of Georgia in the 

Southern Appalachian area. In this cluster, a decrease in TSPs 1 ton/mile2 increases the 

average housing price by 2.02%. This implies that marginal implicit price increased air 

quality by This cluster can be characterized by successful TSPs reductions coupled with a 

fast growing economy. Georgia is one of the fastest-growing states in the United States, 
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with its gross state product(GSP) and population increases from 149,956 million dollars 

(1992 constant) and 6.5 million in 1990 to 238,175 million dollars and 8.2 million in 

2000, respectively. In spite of vibrant and growing economies around Atlanta, Georgia 

succeeded in reducing TSP emission by 1.9 tons per square mile which is close to the 

national average reduction of 2.1 tons per square mile over the period of 1990-2000. As 

shown in the Table 1, no county in Georgia has TSP nonattainment status in 1995. From 

1992 until 2002, Georgia participated in the Southern Appalachian Mountains Initiative 

(SAMI), a decade long federal-state collaboration aimed at improving air quality in the 

Appalachian premier natural areas. Positive impacts on the housing market of TSPs 

reductions in the cluster around Southern Appalachian areas are in accordance with 

expected benefits (SAMI 2002), which is developing and evaluating potential incentive-

based approaches to reducing emissions in the SAMI region. 

Another cluster of positive marginal effects of TSPs on housing prices is in few 

counties in the State of Illinois. In this cluster, a decrease of 1 ton/mile2 increases the 

average housing price by 2.17%. Illinois has been regulating motor vehicle inspection 

and maintenance as one of the sources for air quality control. Regulation motor vehicles 

for air quality improvement may have raised public recognition and concern about air 

quality and may have built their significant public preference for impaired air quality.  

Another cluster with positive marginal effects of TSPs on housing prices 

includes areas on the border of Oklahoma and Kansas, on the border of Kansas and 

Nebraska, and in east Texas. In this cluster, a decrease of 1 ton/mile2 increases the 

average housing price by 4.37%. A possible explanation for the cluster is the locational 

preponderance of oil industry firms drawn by the natural gas basin in and around the area. 
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Because of intense air pollution from oil processing, residents of the area may be more 

sensitive about air quality and thus the marginal value of air quality is significantly higher 

than most other areas. The cluster along the border of Oklahoma and Kansas may be 

associated with beef processing firms in the area. This industry’s emissions produced 

severe air pollution and damaging enough to affect the area’s residents, thus the marginal 

value of air quality impairment is significantly higher than most other areas.    

Another cluster with positive amenity value of air quality improvement is found 

in a few counties of Montana. This cluster includes Montana Indian reservation Blackfeet. 

In this cluster, a decrease of 1 ton/mile2 increases the average housing price by 3.95%. 

This cluster can be explained by the fact that the marginal benefit of reductions of TSPs 

is higher in communities with relatively low pollution levels. This finding is consistent 

with finding by Chay and Greenstone (2005).  

Three distinctive clusters with negative amenity values of reductions of TSPs are 

found in east Virginia, west and central Texas, and southeast Montana. These clusters are 

more difficult to explain because they contradict the expectation of a positive marginal 

value of air quality improvement. Our general justification is that these clusters are under 

intensive economic growth that boosts real estate market diminishing air quality. For 

example, the cluster in southeast Montana experienced significant deterioration in air 

quality with a TSP increase of 1.1 ton/mile2 during the 1990s in concert with booming 

real estate market in Montana. Although these areas experience significant deterioration 

of air quality, because the air quality of the areas is still relatively better than average, the 

worsening air quality with intensive economic growth is found to appreciate housing 

price. This maybe also partially due to the fact that the explanatory variables that reflect 
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economic growth, i.e., income and unemployment rate, in the model do not control the 

effect of regionally specialized economic growth on housing price. For example, the 

cotton industries should control economic growth better for the areas of the central Texas. 

These variables are missing in the model because of the lack of appropriateness as 

explanatory variables for the rest of areas. 



 25

7. Conclusions 
 

Air quality has been evaluated with the hedonic housing price model by 

numerous researchers. Many concluded that either individuals place a small value on air 

quality or the hedonic approach cannot produce reliable estimates of the marginal 

willingness to pay for air quality improvement. In contrast, Chay and Greenstone (2005) 

recently concluded that their estimates of the average marginal willingness to pay for 

clean air are robust. In the midst of these mixed results, this study uses the hedonic model 

to estimate the value of air quality improvement using an instrumental variable approach 

that combines geographically weighted and spatial autoregression methods to account for 

spatial heterogeneity and spatial autocorrelation.  

Positive amenity values of improved air quality are found in four major clusters: 

1) East Kentucky and most of Georgia around the Southern Appalachian area; 2) a few 

counties in Illinois; 3) on the border of Oklahoma and Kansas, on the border of Kansas 

and Nebraska, and in east Texas; and 4) a few counties in Montana. The reasons for the 

clusters of significant positive amenity values may be different for different clusters. The 

first cluster is explained by successful TSP reductions coupled with a fast growing 

economy; the second cluster is explained by awareness of diminishing air quality; the 

third cluster is explained by higher willingness to pay for improved air quality in an area 

with poor air quality; and the fourth cluster is explained by higher willingness to pay for 

maintaining air quality in an area with good air quality. Surprisingly, negative amenity 

values of improved air quality are found in the three distinctive clusters of eastern 

Virginia, western and central Texas, and southeastern Montana. This unexpected result 

may be explained by worsening air quality with a booming real estate market and the 
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inability of the model to capture all of the amenity values of economic growth and the 

resulting air pollution. 

The clusters of positive amenity values of better air quality are found mostly in the 

eastern regions of the United States. A contributing factor to this phenomenon might be 

that the relatively small counties in the eastern regions fit the spatial hedonic model better 

than the larger western counties. Because the locations of specific counties are proxied by 

county centroids in establishing the weight matrix in the GWR-SAR model, the larger the 

county, the larger the area the location of the centroid represents. The larger the area 

represented by the centriod, the wider and the larger the area represented by the optimal 

bandwidth, the smaller the spatial heterogeneity inherent in the variables. Uneven county 

sizes may be a disadvantage of spatial analysis with county-level data. Further analysis 

may compare differences between the states with similar county sizes; one for the 

western and one for the eastern United States 
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Table 1. TSP nonattainment counties in 1995 

State County Count 

Arizona Cochise, Gila, Maricopa, Mohave, Pima, Pinal, Santa Cruz, 
Yuma 8 

California 
Fresno, Imperial, Inyo, Kern, Kings, Los Angeles, Madera, 
Mono, Orange, Riverside, Sacramento, San Bernardino, San 
Joaquin, Stanislaus, Tulare 

15 

Colorado Adams, Arapahoe, Archuleta, Boulder, Denver, Douglas, 
Fremont, Jefferson, Pitkin, Prowers, Routt, San Miguel 12 

Connecticut New Haven  1 

Idaho Ada, Bannock, Bonner, Power, Shoshone,  5 

Illinois Cook, La Salle, Madison  3 

Indiana Lake, Vermillion  2 

Maine Aroostook  1 

Michigan Wayne  1 

Minnesota Olmsted, Ramsey  2 

Montana Flathead, Lake, Lincoln, Missoula, Rosebud, Sanders, Silver 
Bow  7 

Nevada Clark, Washoe  2 

New Hampshire Dona Ana  1 

Ohio Cuyahoga, Jefferson  2 

Oregon Jackson, Josephine, Klamath, Lake, Lane, Union  6 

Pennsylvania PA, Allegheny  1 

Texas El Paso  1 

Utah Salt Lake, Utah, Weber  3 

Washington King, Spokane, Thurston, Walla Walla, Yakima  5 

West Virginia Brooke, Hancock  2 

Wyoming Sheridan  1 

Total  81 
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Table 2. Simple descriptive statistics 

 Mean Definition Unit  1990  2000 

 TSPs emission density tons/mile2 14.33 12.16 

 Median housing value   $ 54,182.75 84,145.29 

 House income $ 23,852.68 32,542.11 

 Unemployment rate  % 7.17 4.72 

 Percentage of employment in manufacturing % 0.19 0.16 

 Population density Population/ 
mile2 223.52 244.72 

 Percentage of white  % 0.87 0.85 

 Percentage of age above 65  % 14.94 14.82 

 Percentage of persons with high school graduate  % 0.70 0.77 

 Percentage of persons with college graduate  % 0.13 0.22 

 Percentage of urban population  % 0.37 0.40 

 Percentage of persons in poverty  % 0.13 0.14 

 Percentage of houses built in last 10 years  % 0.20 0.18 

 Percentage of houses built 10-20 years ago  % 0.24 0.15 

 Percentage of houses built before 1939  % 0.22 0.18 

 Percentage of houses without plumbing  % 0.02 0.02 

 Percentage of vacant house  % 0.15 0.14 

 Percentage of owner-occupied house  % 0.73 0.74 

 Per capita taxes  $ 501.20 845.35 
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Table 3. Definitions and descriptive statistics of variables 

Variable Definition Mean 
(Std. Dev.) 

Dependent variable: 

  HVAL Change in log median housing value from 1990 to 2000 ($) 0.45 
(0.18) 

Variable of interest: 

  TSP Change in TSPs emission from 1990 to 2000 (tons/mile2) 2.17 
(13.24) 

Economic condition variables: 

  INCOME Change in household income from 1990 to 2000 8,683.37 
(2,599.22) 

  UNEMP Change in unemployment rate from 1990 to 2000 ($) -2.45 
(2.34) 

  MANF Change in percentage of employment in manufacturing from 1990 to 2000 -0.03 
(0.04) 

Demographic and socioeconomic variables: 

  POPDEN Change in population density from 1990 to 2000 (population per square 
mile) 

14.38 
(76.83) 

  WHITE Change in percentage of population that is white from 1990 to 2000 -0.03 
(0.03) 

  SENIOR Change in percentage of population above 65 years of age from 1990 to 
2000 

-0.13 
(1.44) 

  HIGHSCH Change in percentage of population that is high school graduate from 1990 
to 2000 

0.07 
(0.03) 

  COLLEGE Change in percentage of population that is college graduate from 1990 to 
2000 

0.09 
(0.03) 
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Table 3. Continued 

Variable Definition Mean 
(Std. Dev.) 

  URBAN Change in percentage of population in urban areas from 1990 to 2000 0.04 
(0.11) 

  POVERTY Change in percentage of persons in poverty from 1990 to 2000 0.01 
(0.03) 

Housing variables: 

  BLTTEN Change in percentage of houses built in last 10 years from 1990 to 2000 -0.02 
(0.06) 

  BLTTWTY Change in percentage of houses built 10-20 years ago from 1990 to 2000 -0.09 
(0.05) 

  BLTOLD Change in percentage of houses built before 1939 from 1990 to 2000 -0.03 
(0.03) 

  PLUMB Change in percentage of houses without plumbing from 1990 to 2000 0.00 
(0.02) 

  VACANT Change in percentage of house that are vacant from 1990 to 2000 -0.01 
(0.04) 

  OWNER Change in percentage of owner-occupied houses from 1990 to 2000 0.01 
(0.02) 

Tax and neighborhood variables: 

  TAX Change in per capita taxes ($) from 1990 to 2000 341.47 
(1,423.48) 

Natural environment: 

  AMENITY Natural amenity scale 0.05 
(2.28) 

  RURAL Rural urban continuum code 5.59 
(2.72) 
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Table 3. Continued 

Variable Definition Mean 
(Std. Dev.) 

Regional dummy variables: 

  New England New England = 1, otherwise = 0 0.22 
(0.15) 

  Middle Atlantic Middle Atlantic = 1, otherwise = 0 0.05 
(0.21) 

  East North Central East North Central = 1, otherwise = 0 0.14 
(0.35) 

  West North Central West North Central = 1, otherwise = 0 0.20 
(0.40) 

  South Atlantic South Atlantic = 1, otherwise = 0 0.19 
(0.39) 

  East South Central East South Central = 1, otherwise = 0 0.12 
(0.32) 

  Mountain Mountain = 1, otherwise = 0 0.09 
(0.29) 

  Pacific Pacific = 1, otherwise = 0 0.04 
(0.20) 
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Table 4. Comparison of overall performance of the three models 

Statistic     OLS     GWR  GWR-SAR 

Adjusted R square 0.53 0.87 0.85 

Error sum of squares 47.0 13.5 14.4 

Effective parameters [tr(H)] 37 1,196 1,232 

Improvement over OLS  33.5 32.6 

degrees of freedom improvement  1,158.8 1,195.0 

Global F test for global vs. local models  4.1* 3.5* 

Spatial error LM test 896.0 175.0 1.9* 

* indicates significance at the 0.01% level.
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Table 5. Parameter estimates of the three models 

    OLS     GWR     GWR-SAR 
  Variable 

Coefficient 
(Std Err.) Min Median Max Min Median Max 

 Intercept 0.384* 
(0.202) -0.522 0.215 0.877 -0.646 0.084 1.332 

Air quality variables: 

 TSP 0.017 
(0.023) -0.433 0.000 0.246 -0.431 0.000 0.236 

 TSP*New England  0.011 
(0.017) -0.059 0.000 0.092 -0.067 0.000 0.096 

 TSP*Middle Atlantic 0.015 
(0.022) -0.046 0.000 0.092 -0.067 0.000 0.096 

 TSP*East North Central 0.015 
(0.021) -0.101 0.000 0.225 -0.092 0.000 0.225 

 TSP*West North Central 0.012 
(0.015) -0.181 0.000 0.440 -0.181 0.000 0.431 

 TSP*South Atlantic 0.015 
(0.023) -0.708 0.000 0.143 -0.691 0.000 0.135 

 TSP*East South Central 0.008 
(0.011) -0.286 0.000 0.236 -0.270 0.000 0.254 

 TSP*Mountain 0.016 
(0.019) -0.109 0.000 0.369 -0.098 0.000 0.197 

 TSP*Pacific  0.014 
(0.020) -0.089 0.000 0.093 -0.067 0.000 0.105 
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Table 5. Continued 

    OLS    GWR     GWR-SAR 
  Variable 

Coefficient 
(Std Err.) Min Median Max Min Median Max 

Regional dummy variables: 

 New England 0.256*** 
(0.041) -0.086 0.000 0.364 -0.232 0.000 0.269 

 Middle Atlantic 0.166** 
(0.066) -0.241 0.000 0.364 -0.280 0.000 0.269 

 East North Central -0.041 
(0.046) -0.438 0.000 0.364 -0.717 0.000 0.255 

 West North Central -0.044*** 
(0.017) -0.557 0.000 0.570 -0.695 0.000 0.636 

 South Atlantic 0.035 
(0.068) -0.266 0.000 0.364 -0.631 0.000 0.316 

 East South Central -0.008 
(0.036) -0.621 0.000 0.364 -0.782 0.000 0.369 

 Mountain -0.084* 
(0.051) -1.222 0.000 0.244 -0.443 0.000 0.269 

 Pacific -0.069 
(0.050) -0.320 0.000 0.364 -0.219 0.000 0.269 

Economic condition variables: 

 INCOME 0.014*** 
(0.004) -0.018 0.012 0.068 -0.021 0.011 0.064 
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Table 5. Continued 

    OLS     GWR     GWR-SAR  
  Variable Coefficient 

(Std Err.) Min Median Max Min Median Max 

 UNEMP -0.003 
(0.003) -0.094 -0.002 0.052 -0.094 -0.002 0.043

 MANF -0.367** 
(0.183) -2.020 0.053 2.904 -1.900 0.060 1.931

Demographic and socio-economic variables: 

 POPDEN 0.000 
(0.000) -0.077 0.000 0.046 -0.065 0.000 0.045

 WHITE 0.772 
(0.529) -2.515 0.480 4.021 -2.033 0.486 3.644

 SENIOR -0.009*** 
(0.002) -0.089 -0.005 0.060 -0.068 -0.006 0.046

 HIGHSCH 0.084 
(0.419) -3.465 0.341 2.682 -2.898 0.308 2.310

 COLLEGE -0.405** 
(0.194) -3.512 -0.043 3.470 -2.588 -0.005 3.460

 URBAN 0.020 
(0.048) -0.734 -0.003 0.966 -0.685 0.002 0.786

 POVERTY -0.067 
(0.122) -2.370 -0.095 2.191 -2.147 -0.083 1.998

Housing variables: 

 BLTTEN 0.977*** 
(0.061) -0.829 0.697 2.876 -0.626 0.653 2.714
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Table 5. Continued 

    OLS     GWR     GWR-SAR  
  Variable 

Coefficient 
(Std Err.) Min Median Max Min Median Max 

 BLTTWTY 0.100 
(0.186) -1.702 0.167 2.494 -1.411 0.182 2.161 

 BLTOLD -0.060 
(0.095) -2.581 -0.086 3.210 -2.224 -0.065 2.668 

 PLUMB -0.394*** 
(0.146) -8.940 -0.104 4.874 -7.677 -0.136 4.599 

 VACANT -0.522* 
(0.319) -4.582 -0.176 2.027 -3.777 -0.217 1.556 

 OWNER 0.375 
(0.947) -3.398 0.046 4.220 -3.000 0.013 3.849 

Neighborhood variables: 

 TAX -0.004** 
(0.002) -1.026 -0.025 0.300 -0.860 -0.016 0.201 

 AMENITY 0.005*** 
(0.002) -0.049 0.008 0.093 -0.044 0.007 0.079 

 RURAL 0.001 
(0.008) -0.080 0.003 0.040 -0.073 0.003 0.034 

Spatial variable: 

 Spatial lag      -3.183 0.438 2.980 

* , **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. 
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Table 6. Marginal effect of 1990-2000 changes in TSPs pollution on change in log housing prices 

 Region     OLS    GWR    GWR-SAR 

 Marginal Effect Min Median    Max  Min Median Max 

 Overall 0.027 -0.837 -0.001 0.811 -0.705 -0.001 0.569 

 New England 0.045 -0.062 0.000 0.045 -0.064 0.000 0.019 

 Middle Atlantic 0.051 -0.061 -0.001 0.135 -0.105 -0.001 0.138 

 East North Central 0.049 -0.161 -0.001 0.811 -0.141 -0.001 0.473 

 West North Central 0.045 -0.788 0.000 0.274 -0.279 0.000 0.298 

 South Atlantic 0.051 -0.142 -0.001 0.141 -0.215 -0.001 0.149 

 East South Central 0.038 -0.837 -0.001 0.102 -0.705 -0.001 0.076 

 West South Central -0.142 -0.377 0.000 0.364 -0.369 0.000 0.569 

 Mountain 0.051 -0.144 0.000 0.225 -0.185 0.000 0.235 

 Pacific 0.049 -0.079 0.000 0.216 -0.079 0.000 0.181 
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      Source: U.S. Census Bureau 

Figure 1. Census regions and divisions of the United States 
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Figure 2. Changes in TSP emission density between 1990 and 2000 (ton/mile2) 
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Figure 3. Changes in log housing price between 1990 and 2000 



51 

 

Figure 4. Clusters of marginal effects of changes in TSPs between 1990 and 2000 
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