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ABSTRACT

In this work, two rayon fibers were investigated as carbon fiber precursors. A detailed
consideration has been applied to a domestically produced cellulose fiber to carbon fiber (CF)
transition. This transition of precursor to carbon fiber can be subdivided into two stages:
pyrolysis (thermal decomposition) of cellulose in air and high temperature treatment in an inert
atmosphere. The specific objectives were to investigate the stabilization stage of the produced
rayon with respect to changes taking place during thermal decomposition, and to evaluate the
effects on the properties of the carbonized fiber. Changes taking place during the conversion

process of the domestic precursor are compared with respect to the commercial rayon fiber.

Phosphoric acid was used as a catalyst and a flame retardant during stabilization. It was
observed that the acid plays a multirole of heat absorption, catalytic dehydration by lowering
the required temperatures, and acts as a protection during carbonization. The effects of time
and temperature during stabilization were studied systematically. The temperature affects the
structural changes taking place, and the time required for completion of stabilization reactions.
The thermal behaviors of rayon fibers were analysed by Thermogravimetry Analysis (TGA) and
Differential Scanning Calorimetry (DSC). The results showed that the phosphoric acid treated
fibers underwent pyrolysis under lower temperatures and over a wider temperature range.
Wide Angle X-ray Diffraction (WAXD) was used to analyse the degree of cristallinity of the
precursor and the subsquent carbon fibers. The highly ordered and oriented precursor becomes
totally amorphous after pyrolysis. The crystallite order was reinduced during carbonization
under tension. Fourier Transform Infrared Spectroscopy (FTRI) was utilized to investigate the
chemical transition during the heat treatment. The intensity of peaks corresponding to
chemical groups present in the precursor decreased by the end of low temperature pyrolysis
and disapeared during carbonization indicating the fibers were mostly carbon. The mechanical
properties, morphology and structure of the precursor and the obtained carbon fibers were
studied by Scanning Electron Microscopy (SEM). An increase in applied tension during

carbonization increased the carbon content slightly leading to better quality fibers.
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CHAPTER 1: INTRODUCTION

Considerable efforts have been made to develop rayon-based carbon fibers for years on a
commercial scale. Aside rayon (or regenerated cellulose), PAN (Polyacrylonitrile) and pitch
(petroleum and coal tar based) have been used as precursors in the commercial production of
carbon fibers. Various other precursors ranging from natural materials such as lignin, wool,
cotton, ramie, and jute to high performance highly crystalline aramid fibers such as Kevlar were
also investigated. The primary requirement is a material that does not melt on pyrolysis in an

inert atmosphere and gives sufficient carbon yield.

Rayon is produced from naturally occurring cellulose polymers (figure 1) and has excellent
characteristics. It is manufactured in three types: viscose, cuprammonium, and saponified
acetate [1, 2]. The viscose grade is usually used for carbon fiber production because of
relatively few defects. Viscose rayon is a promising raw material because of its availability, low
cost, non-melting character, low density, low metal ion content and the ease of production.
These characteristics explain the high mechanical and physicochemical properties of the
produced carbon fibers. The cellulose based carbon fibers present a network structure with
high disorder, which gives the fiber a very low thermal conduction coefficient and the ability to

be used in many applications [2].

CH,OH H OH
H H
H O OH H
H
H OH H

Figure 1 Repeat unit of cellulose in rayon [1].



The transition of rayon fibers to carbon fiber consist of oxidation in air at lower temperature
(<300°C) also known as pyrolysis (thermal degradation); carbonization in an inert atmosphere,
and graphitization in an inert environment at higher temperature up to 3000°C [3]. The typical

sequence of production is as follows:

A. Stabilization. During pyrolysis of the cellulose fiber; dehydration, rearrangement, formation
of carbonyl groups, evolution of carbon monoxide and carbon dioxide, and formation of
carbonaceous residue occurs alongside the thermal scission of glycosidic bonds between the
glycopyranose units of the cellulose. The scission produces oxygenated compounds that lead to
maximum loss of the mass. Tars and coke residue are the main volatiles gaseous products
formed during the thermal degradation [4]. By adding proper chemical such as impregnants or
flame-retardants, one can moderate the pyrolysis mechanism by lowering the temperature

range and subsequently improving the carbon yield by reducing the burning loss.

B. Carbonization. This step consists of heating the fibers between 600°C to 1300°C for a short
period. This removes any non-carbon atoms from the atomic structure. At this stage, all
chemical processes are completed, structural transformations take place, the coke becomes
enriched with carbon, and set of fiber properties changes. The resulting fiber has tightly bonded
crystalline structures with better alignment and orientation [5]. As the temperature rises, the
structure of the residue becomes more complicated, in spite of simplification of the elemental
composition. The effect is explained by the diversity of the transient forms of carbon and by

various combinations of the bonds between the atoms of carbon.

C. Graphitization. It is the final stage of the production process. The carbonized fiber is
subjected to high temperature treatment. Most of the process is energy consuming and adds to
the cost of the material. Depending on their purpose and fields of application, either carbonized
or graphitized carbon fiber can be the end product. The main phenomena are structural
transformations and concurrent changes in the properties of the fibers. The most important
processes occurring at this stage are: further aromatization of carbon, growth of the size of
crystallites and of graphite like ribbons, and perfection of the orientation of the ribbons along

the fiber axis [4].



It is essential to understand the effect of catalysts or impregnants as well as the effect of time,
temperature, tension, protective medias, during both pyrolysis and carbonization stages.
Studies have shown that the final product in the preparation of rayon-based carbon fibers is
influenced to an extent by each of these variables [6, 7]. It includes the physicochemical process
and changes in the properties of the product. It also leads to an improvement of the overall
quality of the fibers. Lewin et al. [8] showed that most Lewis acids could be used as
impregnants in rayon to carbon fiber conversion. The impregnants also serve as flame-
retardants for cellulosic materials. In general, inorganic phosphates and sulfates with nitrogen
have better flame retardant effects; however, which ones work best during conversion of
rayon-based carbon fibers has not been reported in literature. One can improve the produced
fiber by stretching and maintaining tension during carbonization and graphitization by

promoting axial orientation of the carbon layers [9].

Rayon precursor can be stabilized to avoid extensive volatilization and or partial melting of the
polymer. The stabilized fiber is expected to have high carbon yield and also have the same
filament-like morphology as the precursor. A preferential orientation of the layer parallel to the
fiber axis and a development of the graphitic basal planes by removal of their microstructural
defects are required for the preparation of high modulus carbon fibers [10]. In the literature,
carbon fibers are classified based on tensile modulus. The low modulus has a tensile modulus
below 240 GPa. The ultrahigh modulus carbon fibers have a tensile modulus of 500 to 1000
GPa. As a comparison, steel has a tensile modulus of about 200 GPa and the strongest carbon

fiber is about five times stronger than steel [11].

The aim of the present research was to investigate the feasibility of producing rayon-based
carbon fibers, especially looking at a domestically produced rayon fiber, and try to optimize the
production process to a certain extent. The fibers were impregnated with phosphoric acid and
its effect on dehydration and decomposition of rayon was studied. The specific objectives were
to evaluate the stabilization stage with respect to changes in the structure and properties of the
fiber. Also the processing conditions were optimized for efficient production. Various test

methods were used throughout the investigation to characterize the fibers. This investigation



was conducted as a comparison with respect to a commercial rayon fiber. The study clearly
showed that by using appropriate processing conditions, it is possible to produce good quality

carbon fibers from an experimental rayon precursor produced in the US.



CHARPTER 2: LITERATURE REVIEW

2.1 Carbon fibers through the years

Carbon fibers are high strength materials that have attracted worldwide attention and hold
great promise. The term “Carbon fiber” is defined as a material that has been heat treated at
high temperature (1000- 3000°C) and has markedly different properties and structure. The
carbon fibers contain 92-99.99 % carbon [12].

Nearly a century ago, carbon fibers were produced by thermal decomposition of natural fibers
like bamboo or cotton. Thomas Edison was the first to develop and use the early CF as filaments
for incandescent lamps in 1880 [12]. These early carbon fibers were very weak and fragile
because of the presence of pores, and were abandoned quickly. In 1950, carbon fiber
development took a new direction when mechanically weak fibers were prepared by rayon
pyrolysis. These rayon-based carbon fibers were used for thermal insulation but they could not

compete with the glass fibers during that period.

Bacon [13] patented a continuous process using viscose rayon fibers to produce high strength,
high modulus carbon fibers. The experiments resulted in commercial production of continuous
lengths of CF having tensile strength between 690 and 1030 MPa and tensile modulus of
elasticity values in the order of 40 MPa. Union Carbide later used stress graphitization to
produce strong rayon-based CF in 1959 [14, 15]. The fibers produced possessed tensile strength
between 330 and 900 MPa. The stress graphitization process is a solid state transformation of
non-graphitic carbon into graphite by heat treatment combined with application of mechanical
stress, resulting in a defined degree of graphitization being obtained at a lower temperature

and /or after shorter time of heat treatment than in the absence of applied stress.

Concurrently, the conversion of polyacrylonitrile (PAN) fibers into high modulus carbon fibers
was investigated. Shindo [16] showed the variation in the tensile strength and modulus of PAN
based CF with heat treatment temperature and also investigated their electrical properties.

Watt and his colleagues at the Royal Aircraft Establishment in England developed a commercial



process for PAN based fibers [17]. In 1966, Courtelle introduced a specially prepared PAN fiber
that could be oxidized at temperatures around 200°C under tension, while exothermic
oxidation reactions were avoided. Subsequent carbonization at 1000°C resulted in CF with
tensile modulus in the range 155 to 190 GPa, and the value could be increased to 350 - 420 GPa
after heat treatment at 2500°C [18]. Since 1966, numerous patents on PAN-based carbon fibers

were granted[19-21] .

The quest for lower processing cost led to the possibility of pitch as precursors of carbon fibers.
Otani [22] used polyvinyl chloride (PVC) pitch as a raw material in 1965. Kureka Chemical
Company built a commercial plant with production capacity of 200 tons per year of carbon fiber
from petroleum pitch [23]. The company was one of the leading producer of Pitch based CF in
the world. Improvements to early pitch based CF were reported by Hawthorne in 1970 and
1971 [24, 25]. By stretching the fibers during the initial stage of carbonization at temperatures
above 2500°C, a high degree of basal plane preferred orientation could be induced, and also
tensile strength as high as 2585 MPa and tensile moduli of elasticity in excess of 480 GPa could
be attained. In 1973, mesophase state liquid was developed from pitch and spun into precursor
fibers [26]. These fibers were transformed to CF by oxidizing and subsequent carbonization at
1000 - 3000°C leading to fibers with high degree of preferred orientation because the liquid

crystalline state was formed prior to spinning.

Studies and innovations in CF have increased over the years. Researchers are developing new
methods to improve overall quality of the fiber and make it available for suitable applications
while relying on early findings [27-31]. Despite the early developments in rayon based CF, it is
carbon fibers from PAN and mesophase pitch (MP) precursors that now dominate the market.
Today more than half of the commercially marketed carbon fibers are made from PAN. PAN
based carbon fibers possess higher strength, modulus and failure strain with high yield
compared to fibers made from pitch or rayon [32]. Many consider pitch based CF for special
applications because they present properties not readily obtained with PAN based CF such as
good thermal and electrical properties [33]. In the last half-century, U.S, Asian and European

companies have successfully manufactured and commercialized PAN-based and pitch-based



carbon fibers. Rayon-based carbon fibers became almost forgotten. CF industry has recently
experienced a significant resurgence due to increasing demand for the technology in wide

range of applications after years of prosperity followed by rapid decrease in interest.

2.2 Solution Process for of Rayon Fibers

Rayon is a manufactured fiber composed of cellulose obtained mainly from plants (cotton
linters and pulps). Rayon is called a semi-synthetic fiber because it has a long polymer chain
structure that is supplied by nature and is only modified and degraded in part by chemical
process[1]. The manufacture of rayon fibers involves basic principles. During production, pure
cellulose is dissolved chemically and then regenerated in acid solution. The dissolved cellulose
is passed through a spinneret into a bath of solution that regenerates pure cellulose fibers.
Literature suggests different methods to convert cellulose to soluble form and then regenerate
it[1, 34]. Rayon fibers are named according to the production methods: viscose,

cuprammonium, and saponification.

The viscose method is the most used, and is also referred to as the Xanthate process. 