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Abstract

As Moores Law has come to a halt, it has become necessary to explore alternative forms

of computation that are not limited in the same ways as traditional CMOS technologies

and the Von Neumann architecture. Neuromorphic computing, computing inspired by the

human brain with neurons and synapses, has been proposed as one of these alternatives.

Memristors, non-volatile devices with adjustable resistances, have emerged as a candidate

for implementing neuromorphic computing systems because of their low power and low area

overhead. This work presents a C++ simulator for an implementation of a memristive

neuromorphic circuit. The simulator is used within a software framework to design and

evaluate these circuits.

The first chapter provides a background on neuromorphic computing and memristors,

explores other neuromorphic circuits and their programming models, and finally presents

the software framework for which the simulator was developed. The second chapter presents

the C++ simulator and the genetic operators used in the generation of the memristive

neuromorphic networks. Next, the third chapter presents a verification of the accuracy of

the simulator, and provides some analysis of designs. These analyses focus on variation,

the Axon-Hillock neuron model, limited programming resolutions, and online learning

mechanisms. Finally, the fourth chapter discusses future considerations.

Thus, this thesis presents the C++ simulator as a tool to generate memristive

neuromorphic networks. Additionally, it shows how the simulator can be used to understand

how the underlying hardware impacts the application level performance of the network.
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Chapter 1

Introduction and Background

1.1 Neuromorphic Computing

Neuromorphic computing is an emerging field that seeks to leverage our understanding of the

human brain to develop new systems capable of computation unlike that of the Von Neumann

architecture. These systems are typically characterized as neurons connected in parallel

by synapses. Unlike the Von Neumann architecture, data is stored in the computational

components [14]. Thus, a neuron readily has its data available throughout operation, and

the neuromorphic system does not suffer the same memory bottleneck as a Von Neumann

system.

With a reduction in data movement also comes a reduction in energy consumption. The

human brain is estimated to consume about 20 watts, while the average laptop consumes

around 60 watts. However, as the size of the Von Neumann systems begins to increase,

their power requirements become more unrealizable. It has been estimated that it would

require over 500 megawatts, the approximate power output of a nuclear reactor, to power an

exascale super computer using the Von Neumann architecture. Neuromorphic architectures

do not suffer from the same scaling issues as Von Neumann architectures in this respect, as

they do not need to scale their systems for data movement.

The human brain not only consumes less power, but also includes mechanisms for

learning. Humans can continue to learn new concepts, and make novel connections[31].

A computer capable of such a feat would revolutionize the world of data science, as we
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could allow computers to find new patterns in data that humans might not have considered

before. Therefore, exploring computation in a manner similar to the brain provides powerful

potential opportunities.

While it is clear that neuromorphic computing has much potential, there are still many

challenges in designing such systems. One of the major problems has been determining

the appropriate network topology. It is well known that a neural network must contain a

hidden neuron to complete even a simple XOR operation[20]. Furthermore, neural networks

have seen staggering performance in classification tasks when adding convolutional layers[17].

While it is generally understood why these topological approaches work, there is no clear

reason as to how to pick the best topology for an arbitrary task. One approach has been to

use genetic algorithms to generate networks that can complete a task up to some standard.

1.2 Memristors

Memristors, memory resistors, were first proposed in 1971 by Leon Chua as a theoretical

device that relates charge and flux[6]. This proposed device was given the name memristor as

it would have a resistance that would depend on the electrical charge that had passed through

the device giving it memory. Their low area and power overhead make them an appealing

alternative to traditional CMOS. Additionally, because of their non-volatility, memristors

have been proposed as a way to implement new forms of memory, new security primitives,

and neuromorphic circuits[32].

While there have been many proposed implementations, there is no standard consensus

on what constitutes a neuromorphic system. Many of the proposed models use some

form of synapse and neuron. Memristors have emerged as a popular candidate for many

synapse implementations. Not only does their low area allow for scalability in the size of

the neuromorphic processor, but their low power consumption means that processors can

scale in a high performance computing environment, where the Von Neumann architecture

currently struggles. Memristors also function well as synapses because of their non-volatility

and memory properties. Many of these biologically inspired systems have been looked at for

including long term potentiation and depression of synapses in their model. A memristor can
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have its memristance adjusted on-chip by simply applying the appropriate voltage, and it

will maintain it’s new memristance value. In this way, memristors can function as synapses

by providing a simple means to adjust the strength of a synapse on-chip.

1.3 Existing Neuromorphic Implementations

Many different neuromorphic systems have been designed and provide different sets of tools

to aid developers in building networks for different applications. Therefore, it is important

to understand the purpose of the different designs and provide similar tools for programming

a memristive neuromorohic circuit.

One of the most well known neuromorphic systems is IBMs TrueNorth. TrueNorth is a

digital CMOS implementation where the chips contain many cores, with each core containing

many neurons. All computation is handled within the cores which are highly intra-connected

[2]. In this way, the TrueNorth design avoids the pitfalls of the Von Neumann architecture,

particularly the massive communication and memory overheads. Programmers are able to

program networks on the chip using the Corelet language. Unlike traditional programs which

provide a sequential set of instructions to execute, the Corelet language allows the user to

program TrueNorths individual cores. Once a core is programmed, it can be copied and

used elsewhere in the system, or it can be used within a larger core. This allows the user

to populate a chip with many special cores functioning in parallel. In this way, TrueNorth

provides a new programming paradigm to program networks in a way that is in line with

the goals of neuromorphic computing. Despite the freedom these tools provide, the network

topology still must be hand selected by the designer of the system. Though there are tools

for mapping some known artificial neural networks to TrueNorth, there is no guarantee that

the network selected is suitable for the target application [10]. In the case where no good

network structure is known, it is possible for a designer to build a network by hand using the

Corelet language, but such a process can be tedious. Thus, TrueNorth provides a platform

for neuromorphic engineers to implement and develop a variety of networks, but lacks the

tools for generating these networks.
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In contrast to TrueNorth, which is more biologically inspired, the Human Brain Projects

SpiNNaker is focused on bio-mimicry [16]. The ultimate goal of the Human Brain Project

is to provide a tool that can simulate the human brain. To aid in this goal, a Python

library for neural networks, PyNN, has been produced. PyNN provides both high and low

level abstractions to aid in the design of these large scale networks [7]. At the low level,

a developer can specify the behavior of synaptic plasticity, while at the high level the user

can specify network topology. Additional tools exist for mapping known networks onto the

SpiNNaker hardware. Such tools, however, suffer from the same problem as TrueNorths in

that they do not provide methods for selecting the ideal topology for a target application.

Within our larger research group, there have been two neuromorphic systems proposed,

NIDA and DANNA. NIDA, Neuroscience-inspired dynamic architecture, is a software

implementation of a spiking time dependent neural network. Neurons are embedded in

a three dimensional space, and their distance in this space determines the temporal delay

along their synapses [25]. NIDA provides tools for developers to generate networks for

specific applications with specific performance characteristics. For example, if one wanted

a NIDA network for a polebalancing task, they could specify how long they want the pole

to be balanced for, and let NIDAs generation produce the network for them. The network

generated could be a recurrent neural network or a convolutional neural network, and it

will meet a minimum performance standard for a target application. In this way, NIDA

provides tools for selecting efficient network topologies. DANNA, dynamic adaptive neural

network arrays, provide a hardware implementation on FPGAs, field programmable gate

arrays [26]. In this way, DANNA can potentially act as a low power solution to a variety

of applications. To aid in this effort, DANNA provides a simulator to leverage a similar

evolutionary optimization to NIDA. A DANNA network can quickly be generated in software

for a target application, and be directly mapped to the hardware. Thus, DANNA and NIDA

provide tools to generate networks with known performance characteristics unlike SpiNNaker

and TrueNorth [23] [15].

From reviewing these architectures, it is clear that it is necessary to provide tools to aid in

the development of neuromorphic systems. Like SpiNNaker and TrueNorth, the tools should

support abstraction both at lower and higher levels of the network. It should be possible
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for a developer to understand the impact of using specific memristors at the lower level on

the performance of networks at an application level. Additionally, the tools should provide

a way for users to generate networks for target applications as in NIDA and DANNA.

1.4 Software Framework

There is an ongoing effort to create software tools to aid developers in neuromorphic

computing. One of the efforts has been led by Plank et al [22]. in their design of

the University of Tennessees neuromorphic software library. This software stack divides

neuromorphic implementations into three parts: application, evolutionary optimization, and

model. Each part is self contained, and has specific interfaces to communicate with the other

parts. In this way, the implementations for the individual parts can be changed without

having to adjust the other parts. An application developer does not need to develop an

application for one specific neuromorphic model such as DANNA, but instead develops the

application for any model that uses the neuromorphic interface.

Figure 1.1: Interaction of the layers of the software framework
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Models specify the behavior of the neuromorphic architecture. They provide functions

to read and write representations of a network. Additionally, they provide functions to

apply input into, and read output from a given network, and simulate the network for some

specified time. Besides modeling the networks functional behavior, models are also required

to provide implementations of the genetic operators random, mutate, and crossover. These

operators facilitate the evolutionary optimization to create and modify networks.

Applications generate and run networks in order to accomplish some task such as

classification, XOR, or balancing a pole[8]. To accomplish this an application encodes input

into a network, interprets output from a network, and updates the state and performance

statistics for the task the network is meant to accomplish. In addition to this, the application

is responsible for measuring the fitness of the network. A networks fitness is a quantification

of how well the network performs the task. For a classification application, fitness is usually

represented with accuracy. For control applications, fitness is usually a measure of how long

the network can perform the task before failure.

The evolutionary optimization piece of the software framework is used to generate

networks for different applications. Using application defined parameters, it generates an

initial population of networks from the models random function. It then tests the fitness of

each network in the initial population. The networks with higher fitness are saved for the next

generation of networks, while low performing networks are discarded. Next, the population

is refilled by applying mutations to the high fitness networks in addition to performing

crossover between two of the high fitness networks. This new generation of networks is then

tested in the same way that the previous one was. Generations of networks continue to be

generated until either a stop fitness value is reached, or the maximum number of generations

is tested.

While the framework provides effective support for developers in neuromorphic comput-

ing, there are still many questions that make designing applications and systems difficult.

First, the application decides how to apply input into the network, and how to interpret

network output. This can be arbitrary, and there might not be an optimal encoding for

all networks. Some neuromorphic models might benefit from more inputs, while others

might benefit from less. If the output is looked at in a window, then it might be necessary to
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understand what sort of average delay occurs within the model. Despite these difficulties, one

of the advantages of the framework is the robustness of evolutionary optimization. Should a

network require a longer than average delay to be successful, then evolutionary optimization

will tend to select those networks as they should perform better. Though this does not

solve the problems, it allows a developer to generate networks for specific applications, and

to compare the performance of that network with other networks, even those generated

without evolutionary optimizaiton.
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Chapter 2

Memristive Neuromorphic Simulator

In order to study the behavior and efficacy of our particular memristive neuromorphic circuit,

it was necessary to design a simulator of such a circuit. It was not feasible to use previous

approaches as their designs were too different from our target hardware design and did

not fit into our software framework. While there are tools for general hardware simulation

such as Cadence Spectre, these tools are relatively slow, and do not scale well for large

networks. Additionally, they also are not incorporated into the software framework described

previously, so they are unable to examine the neuromorphic systems from an application

level. Therefore, a new simulator was needed that could accurately capture the behavior

of our design, as well as take advantage of the software framework and its applications and

network generating ability.

Within the software framework, the memristive neuromorphic simulator acts as a model.

Thus, the simulator provides tools for all of the functions of a model including the genetic

operators. Additionally, the simulator provides tools to collect information about network

activity, so that energy use can be estimated. In order to work with the software framework,

it was necessary to write the simulator in C++. Because C++ is a compiled language, there

is an advantage in speed over alternative interpreted languages. This advantage is important,

as evolutionary optimization is computationally intensive.

The simulator source code is divided into component code and network code. Components

represent the hardware units that make up a memristive neuromorphic circuit. The network

code is responsible for setting up the topology of the network, simulating the network,
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collecting activity information, and facilitating evolutionary optimization. This separation

allows for behavioral changes to be made at a component level, but not at the network level.

Therefore, it is simple to evaluate design decisions that occur at the component level without

requiring changes at the network level. Similarly, design decisions at the network level can

be evaluated with no consequence to the components.

2.1 Components

There are three major components that require simulation within the memristive neuro-

morphic circuits: neurons, synapses, and delay blocks. Each of these components has

functionality to manage its own state information, communicate with other components, and

collect any data to monitor performance if needed. Components are meant to be contained

within networks, and are not meant to be accessed directly. In this way, it is not possible for

an application to interfere with components at run time. Instead, the network code provides

ways for applications to put input into, or retrieve output from the network, as well as set

flags to collect information.

Figure 2.1: Circuit representation of important network components
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Neuron

Neurons accumulate weight changes from their incoming synapses, and broadcast fire events

to all of their outgoing synapses once the accumulated charge goes over some threshold [5].

Incoming synaptic fires, though they come in separately within the simulator, are handled

as if they are simultaneous. The threshold is an integer, and it is assumed that there is

some known ratio between the incoming synaptic weight and threshold. A neuron fire is

not immediate, but instead occurs two cycles after the threshold is exceeded. During the

first cycle, the neuron state variables are reset appropriately, and during the second cycle

the neuron fires, sending an alert to its outgoing connections. A neuron cannot accumulate

charge during any of these cycles as they constitute a refractory period.

When a neuron fires it goes into a refractory period. This is an integer number of cycles

for which that neuron cannot accumulate any charge. After the refractory period ends a

neuron is free to continue to accumulate charge. The charge accumulated by the neurons

is a double value that is expected to be both positive and negative, and cannot go below a

specified parameter.

Neurons also collect activity about how many cycles a neuron was active or passive, which

cycles a neuron fired, and how much stored accumulation a neuron had in each cycle. This

collection is optional, and can be turned on or off by setting the appropriate parameter in

the parameters file. By default, collection is turned off. In order to facilitate online learning

mechanisms, it is necessary for the neuron to also store information related to previous

synaptic fires.

Synapse

Synapses are responsible for collecting their activity information and maintaining their

internal state. The activity information measures whether a neuron was active or passive,

and like the neurons collection, can be turned on or off. A synapses state is used to determine

the effective synaptic weight. Synaptic weights are initialized as integers, but can take on real

values up to a maximum magnitude if they are updated through online learning. Without

online learning, the synaptic weight only needs to be mapped to the threshold of a neuron.
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Typically, this ratio is kept one-to-one for simplicity in reasoning about the network, but

might need to be updated to maintain integrity to the behavior of the hardware.

To facilitate online learning it is necessary for a synapse to maintain information about

the state and properties of its memristors. The hardware implementation of the synapse

uses two memristors to allow for both positive and negative weights. As a consequence,

online learning is achieved by updating both memristors [24]. This update, however, causes

a nonlinear change on the weight, and requires knowledge about the memristors previous

states. Therefore, when online learning is being used, the simulator requires a mapping from

the state of the memristors to an effective synaptic weight. This mapping is implemented

when a synapse is first instantiated. First, a normalization factor is derived by the following

equation: With this normalization factor, it is now possible to initialize a synapse to any

desired synaptic weight with appropriate memristance values. Furthermore, when online

learning occurs, a synapse can now update its memristance values, calculate its new effective

conductance, and then normalize that value to the new synaptic weight. The switching

behavior of the memristors in the synapse is based on a model proposed by Amer et al. [1].

Figure 2.2: A synaptic weight can be realized through multiple combinations of
memristances

Delay

The delay unit is the last major component, and is responsible for adding cycles between

the time a neuron fires to its outgoing connections, and the time that signal is received by
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the outgoing neurons. Though they are separate entities in the hardware, the delay unit

can be thought of as part of the synapse, as each synapse has its own delay unit. The time

delay is an integer number of clock cycles. If a delay were long enough, it is possible to have

multiple neuron fires being processed simultaneously by the same delay unit. The signals are

processed using a cyclic array, and when a signal reaches the end of that delay, a signal is

sent to the delay units corresponding synapse. The synapse then passes this signal through

to an outgoing neuron, which will process the signal appropriately. In this way, synapses are

passive in the way they handle fire signals, as they are passed through the synapse when they

are received. Besides acting as a temporal delay, delay units collect activity information for

how many charges pass through the unit. This statistic is used along with the cycle length

of the delay unit to estimate energy consumption.

Figure 2.3: The delay unit is modeled in the simulator using a programmable cyclic array

Besides the three major components there is an additional component known as an output

element. Output elements are purely abstract and do not have any hardware implementation.

These components are added as an outgoing connection to any output neuron. When an

output neuron fires this event is considered to be visible to outside entities. Thus, output

elements record these fires in a network level data structure so that it is possible to track

when output neurons fire.
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2.2 Network

The network code for the memristive neuromorphic simulator is responsible for managing

the topology of the components, advancing the state of the simulation, reading and writing

networks, and facilitating evolutionary optimization. In these roles, the network serves as a

layer above the components. While it might be necessary to get the state of the components,

this is done through and facilitated by the network.

Topology is handled within the network through the element interface. There is a class

named element within the components code that specifies which actions components can take

to communicate between one another. The primary two functions in this role are apply and

update. Update is a function that the network calls to advance the state of the simulation

for each required component. For example, a neuron in its refractory period will move out of

the refractory period if update is called, and the appropriate amount of cycles have passed.

Updating a delay will cause any signals in the delay pipeline to move one stage forward. If

a signal reaches the end of the pipeline, then the delay unit will alert its outgoing synapse.

This is done with the apply function. Apply is the function that components use to alert

each other of a spike being passed between one another. For example, when a synapse calls

apply for its outgoing neuron, the neuron will update its stored accumulation based on the

weight of the synapse that made the call, and prepare itself to fire if it crosses the threshold.

An example of the code for the apply and update functions is displayed in Fig. 2.4.

Besides apply and update, the element interface provides functions for resetting a

component, getting activity information, or facilitating online learning. Resetting is simple,

and is initiated from the network level. The network broadcasts to all components to reset.

The implementation of reset is different for each component, but they are all similar in that

they reset any state information about the component to its initial state. Activity collection is

triggered by the network in the same way a reset is. The implementation for each component

is described earlier. Finally, the element interface provides a way for networks to provide

feedback to one another. Normally, components are only concerned with propagating signals

to their outgoing connections. However, online learning in synapses requires the neuron to

send information to its incoming synaptic connections.
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Figure 2.4: Code snippet for apply and update functions for the delay block

One of the most important functions of the network code is to manage and run the

simulation of the circuit. Simulators typically accomplish this task in either a cycle-accurate

simulation or an event simulation. A cycle-accurate simulation simulates a system one cycle

at a time, and processes all of the activity for that cycle in the necessary order. In contrast,

event driven simulators only simulate activity that defined by events. Events are placed in

a queue, and processed chronologically. An event can be added to the queue through some

external stimulus on the system, or can be added as a result of processing other events.

Both simulations have distinct advantages and disadvantages [18]. Event simulators only

need to simulate activity within the network. If a simulations activity is particularly sparse,

then there can be significant performance benefits from only simulating the active parts.

Cycle-accurate simulators, in contrast, simulate every cycle whether there is activity or not.

While event simulators tend to outperform cycle-accurate simulators in simulation time on

average, they tend to perform better for dense activity. For these cases, the event simulator

incurs additional overhead for processing the events, which the cycle-accurate simulator
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would default to anyway. Additionally, optimizations can be made at the cycle level in

cycle-accurate simulators where they cannot be made in an event based simulation.

In designing the simulator, one of the most important design requirements was that the

simulator should simulate the hardware behaviorally with little to no error. The simplest

way to capture the behavioral information of the networks is looking at whether or not a

neuron fired on any particular cycle. By ensuring that all of the neurons are firing on the

same cycles in both the simulator and hardware, we can be confident that our simulator is

accurate. Further verification that the simulator is accurate requires a deeper look at the

components. For further analysis, the simulator state of each component can be compared to

the state of the hardware. These states can be accumulated voltages, memristance values, or

any other important state variable within the network. With this state information, it is also

much easier to understand differences between the simulator and the hardware. For example,

there might be some edge case where the hardware causes a neuron to fire due to variance,

but the simulator would not fire. Analyzing these states provides insight into the differences.

Therefore, in order to achieve an accurate simulation, a cycle-accurate simulator was chosen.

This made it simple to obtain cycle by cycle information about components, while also not

hurting the performance in such cases. An event simulator would require collection events

to be injected and processed at each cycle, or would have required interpolation of those

states if possible. With a cycle-accurate simulator it is easy to advance the state of the

network. For each cycle, the network simply calls update for all of the components, and

records activity if necessary. The network continues until the maximum number of cycles to

run for is reached.

In order to pass networks throughout the software framework, it is necessary to represent

them as text strings. Thus, the network has code to both read and write networks to and

from a string or file. The format is intended to be human readable, and an example network is

displayed in Fig. 2.5. The first line specifies how many dimensions the network is embedded

into, which will be described later in chapter 3 on evolutionary optimization, and should be

an integer number. On the next line are the maximum lengths of each dimension. These are

expressed as real values. The third and fourth lines specify the number of input and output

neurons. Lines starting with either an I, O, or N mark the start of a neuron declaration. An
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Figure 2.5: A visualization of a network(left) and a string representation of a network(right)

I means the neuron is an input neuron, an O means the neuron is an output neuron, and

an N means the neuron is a hidden neuron. For input and output neurons the next term on

the line is an integer representing that neurons input or output ID. Input and output IDs

are used to ensure that input and output is consistent. For hidden neurons there is no term

for ID. The next n terms, where n is the number of dimensions, are real coordinates of that

neurons place in the embedding. These values are used in evolutionary optimization, and

serve no functional role in the network. The next two terms on the line specify a neurons

refractory period, and the final two terms specify that neurons threshold. Lines following a

neuron are used to specify synapses going out from that neuron. There can be an arbitrary

number of synapses, and the list is discontinued when the next neuron line is reached or the

end of the file is reached. An input neurons first synapse line will always start with an S to

indicate the weight and delay of the input synapse. Note that S is only used to represent

an input synapse, and a different character is used to represent a regular synapse. The next

term is an integer value indicating the weight of the synapse. After the synaptic weight is

the character D followed by an integer to specify the delay. This delay is set to 0 by default,

and the synaptic weight is defaulted to be a weight that will force the input neuron to fire
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if there is no negative accumulation. For non input synapses, the lines in the network file

begin with the D character followed by the integer delay value. The next two terms are

the character W followed by the synaptic weight of the synapse. Finally, the last n terms

indicate the coordinates of the neuron that the synapse fires to. Networks are both read and

written in this format.

Networks are meant to function in two distinct ways. The first is acting as a model in the

neuromorphic software framework. This function is effective for generating and measuring

the performance of networks. However, it might be necessary to test the network on a set of

predefined inputs, or test a network that was generated by hand. For such cases, the network

provides support for loading a network from a file, and simulating for an arbitrary number

of clock cycles with inputs from a user provided file. These input files contain a line for each

clock cycle of simulation. The first two terms specify which clock cycle the line represents.

The next 2n terms, where n is the number of input neurons, are used to specify whether or

not there is input on each of the inputs.

2.3 Evolutionary Optimization

Evolutionary optimization has proven that it can be an effective way to generate networks

for a variety of tasks without having to fix a topology before training [28]. In this way,

the developer of an application or a model do not have to worry about selecting topologies

ahead of time. If an application can find a way to define inputs and outputs, then a genetic

algorithm can begin to look for candidate solutions without any knowledge of what a good

solution might look like. This is in contrast to other methods of training neural networks,

where a topology and some learning parameters are selected before training. Multiple

approaches were considered, but eventually evolutionary optimization for the memristive

neuromorphic model was implemented using an embedding similar to NIDA. This embedding

is managed by the network and neurons, and is an integral part of the random, mutation,

and crossover operations.

One of the challenges of implementing the genetic operators was determining what an

effective approach might look like, and determining whether that approach can function
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within the software framework. The first method considered was an approach that treated

the network as a graph made of vertices and edges. Neurons would act as vertices within the

graph, and an edge would be composed of a synapse and a delay unit. With this approach,

implementing the random operator would be simple, as there are many well studied methods

for generating a random graph such as Erdos-Renyi and the Gilbert method to randomly

generate arbitrary graphs [9] [12]. Mutation would also be simple for these graphs, as it would

be trivial to add or delete vertices and edges from the graph, or change the properties of a

random vertex or edge. The challenge, however, with this approach is the implementation of

the crossover operation. Using graphs for crossover is intuitively desirable, because graphs

inherently maintain structure, while the goal of crossover in our neuromorphic model is to

combine two proven computational structures to achieve a superior computational structure.

Graph partitioning is a particularly difficult problem, however, and most of the study of

the problem has focused on deterministic methods for partitioning the graph [3]. While

deterministic methods are desirable in many domains such as clustering, it is desirable that

the crossover implementation be random for our implementation. If not, then performing

crossover multiple times will yield the same structure, while we would like to be able to test

many different structures. One idea to remedy this was to select a random partition of the

graph, but this was determined to be too computationally difficult. Therefore, even though

graph partitions present an intuitive potential way to do crossover, they were determined to

be too difficult to implement in practice.

Another method considered was one based on the Neuroevolution of Augmenting

Topologies(NEAT) algorithm [30]. Unlike other neuromorphic genetic algorithms, NEAT

uses a speciated approach to ensure diversity in its candidate solutions. In this way, NEAT

tracks the history of networks within the population, and groups them based on how similar

their structures are. One of the motivations for NEAT is that by preserving species, it is

possible for some candidate networks to succeed where they otherwise would be unable to.

For example, it is possible that one network structure starts at a relatively high fitness, but

does not offer much room for growth. We can then consider another structure which, in

contrast, might start out at a relatively lower fitness, but has the potential to become a near

optimal network. A typical genetic algorithm would discard networks of the second type,
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and populate itself with networks of the first. NEAT, however, would preserve both networks

due to their unique structures, and allow both to advance toward candidate solutions.

In this way, we can be confident that NEAT will allow for topological diversity. Despite

these advantages of the NEAT algorithm, there are challenges in implementing NEAT for

memristive networks. The first major challenge comes in the temporal components that are

present in the memristive networks, but are absent from NEAT. This can be overcome by

averaging the clock cycle delay for any common synapses in the two networks being crossed

over, or simply taking delays from network for one of the offspring, and another for the other.

One of the other challenges with NEAT is that NEAT was designed for artificial neural

networks which do not generally have a spiking implementation. As our neural networks

are spiking networks, it is unclear what the impact would be on NEATs effectiveness. The

primary challenge with NEAT comes from the fact that it is not simple to include in the

software framework. The evolutionary optimization piece of the framework currently does

not have support for speciation. This approach would require an implementation of NEAT

that adheres to this framework. In addition, model developers would now be forced to

support speciation with NEAT by providing compatible network representations. Because

there were still many open questions about the feasibility of the hardware implementation,

it was decided that the focus should be on making the memristive model compatible with

the framework, instead of adding to the framework to support the model. Therefore, despite

the appeal of the NEAT algorithm, it was ultimately decided that the implementation was

not feasible at the time.

The approach that was ultimately selected was based on the two other models in the

neuromorphic software framework, NIDA and DANNA [27]. NIDA networks are entirely

abstract, and have no hardware implementation. The DANNA model, however, models the

FPGA implementation of DANNA. To facilitate evolutionary optimization, NIDA networks

are embedded in a three dimensional space. In contrast, DANNA maps its networks directly

onto the FPGA. When designing the genetic operators for the memristive model there was

no sense of how hardware components would be mapped. Therefore, it was decided that an

approach similar to NIDA would be better. Not only has this approach been shown to work,

but the networks could be generated, and then later mapped onto the hardware with some
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other software. In this way, the memristive model facilitates evolutionary optimization by

embedding the networks it generates into a two dimensional grid. This approach allows for

simple and proven implementations of the genetic operators, and can easily be incorporated

into the software framework.

Figure 2.6: Random takes application specific starting parameters and produces a sparse
random network

Random

The random operation is the simplest genetic operator implemented for the memristive

model. Random creates a sparse random network that is meant to fill the initial population.

This operation requires that the number of inputs and outputs be set by the network

constructor using a configuration string. Typically, the application will be responsible for

creating this string and initializing the parameters. Using this function outside of the

software framework requirez that the constructor be invoked manually by the developer.

Input neurons are placed along the first dimensions, and are placed one unit of distance

apart from one another. All other coordinates for the neuron are zero. Output neurons

are placed along the opposite end of the second dimension, such that they are placed at

the maximum value for that dimension. They are spaced similarly to input neurons for

the first dimension. From there, between one and five hidden neurons are added into the

network. These neurons cannot be placed where input and output neurons are located, and

are placed at integer coordinate pairs. Thus, the number of neurons in a network is limited

by the dimensions. Because the dimensions are defined by application parameters, it is up
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to an application developer to pick a parameter such that the dimensions allow for feasible

networks. All of the neurons generated by this function have a random threshold between

one and the maximum threshold specified in the parameter file. The refractory period is

randomly generated from parameters within the parameter file. These parameters allow for

variable and fixed refractory periods of tunable durations. After placing the random neurons

on the grid, between one and ten synapses are initially placed into the network. This ensures

that our initial networks are sparse, and allows the genetic algorithm to build up candidate

networks. The source and destination neuron are selected at random. The magnitude of the

weight of the synapse is a random integer between one and the maximum value specified

in the parameter file. The sign of the weight is then determined randomly. Setting the

delay of the synapse is done by calculating the Euclidean distance between the neurons, and

rounding up to the nearest integer. In this way, the delays inside the network are a function

of the distance of the neurons. This allows for local structures to emerge which helps in the

crossover operation.

Mutate

Mutation is the second genetic operator models are required to implement in order to

make use of the evolutionary optimization provided by the software framework. The

implementation for mutation for all models should take a network and attempt to modify

it in some nontrivial way. The memristive neuromorphic model will perform one of seven

random mutations. Each mutation has the same probability of occurring. The first mutation

is adding a neuron to the network. This mutation generates a random pair of integer

coordinates, and attempts to place the neuron there. It will continue trying to place a neuron

at other destinations one hundred times if a coordinate pair is occupied. After placing the

neuron, two neurons are randomly chosen from the existing network. One synapse is added

from the first existing neuron to the new neuron, while another is added from the new neuron

to the second existing neuron. This helps ensure that the neuron plays a functional role in

the network. Otherwise, synapses would need to be added to this neuron through another

mutation. In contrast to the first mutation, the second mutation deletes a neuron from the

network. For this operation a hidden neuron is randomly selected, and deleted from the
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network. With the deletion of the neuron, all of its incoming and outgoing synapses are

deleted as well. It is important that this operation does not delete input or output neurons,

as they are considered static. One future approach, however, might allow for the deletion

of these neurons from the functional network, but allow them to continue as virtual. This

might desirable if applications are developed for which there are many inputs, and it is

not clear which inputs are valuable. In this case, deleting an input neuron that causes a

negative impact on performance might be beneficial. Besides adding and deleting neurons,

mutations exist for adding and deleting synapses as well. These implementations are much

more straightforward, as adding or deleting a synapse has less of a topological impact on

the network, and can make more of an immediate impact. Adding a synapse simply involves

randomly selecting two unique neurons, generating a random synaptic weight as described

in the random operation, and calculating the appropriate delay as described in the random

operation. For deletion, a synapse is selected at random, and is deleted from the network.

Besides adding or deleting structures, the only other mutation that alters the topology

of the network is a mutation that moves a neuron to a new location in the embedded space.

While this mutation does not affect the connectivity of the network, it does have an impact

on the temporal part of the network. First, the network tries up to one hundred times to

find a new integer coordinate pair that is not currently occupied. The neuron is then moved

to that location, maintaining any previous connections it had. Finally, the clock cycle delay

is recalculated for all of the neurons corresponding incoming and outgoing synapses. Thus,

though there is no change in the connections of the network, the delays will be altered

affecting the temporal behavior of the network.

The final two mutations adjust the threshold and synaptic weights of existing neurons

and synapses. For adjusting thresholds, a random neuron is selected, and has its threshold

randomly set as if it were being generated in the random operation. For input neurons, the

weight of the corresponding input synapse is adjusted appropriately to force a fire assuming

no negative accumulation as was mentioned previously. Adjusting a synaptic weight is simple

as well. A synapse is selected at random, and its weight is determined in the same way as

the random operation. Currently, input synapses are excluded from this operation, as well

as the deletion operation. This ensures that their behavior is uniform, and keeps them
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as static elements in the network. However, allowing mutations for input synapses might

serve similar purpose as virtual input neurons for some applications, and could be worthy of

further exploration.

Crossover

The final genetic operator that a model must implement is the crossover operation. For

all models, the crossover operation takes two known networks as its input, and creates two

networks as its output. The two output networks should be generated as some meaningful

combination of the input networks. For a graph approach this might be combining partitions

from two graphs into one structure. For NIDA, a random plane is generated to cut the two

networks in half, and combines one half of the first network, with the other half of the

second. Then, the other half of the first network is combined with the unused half of the

second. The halves are chosen such that dimensionality of the two new networks will be the

same as the parents. This approach will preserve any local structure on either half of the

cutting plane, and hopefully will combine two high fitness structures into a network that

has a higher fitness than both of the parents. For the memristive model a similar approach

has been adopted. Because memristive networks are embedded in two dimensions instead of

three, a line is used to divide the network in half. Furthermore, this line is parallel to either

of the two boundaries of the space. The direction that the line is parallel to is chosen at

random, and the location along the dimension is random as well. The same line divides both

parent networks. In this way, the crossover operation is similar to DANNA, which is also

laid out on a grid, but DANNAs grid embedding is functional while the memristive models

embedding is purely abstract to facilitate evolutionary optimization. After selecting the line

to divide the network, inputs and outputs from one parent network are placed into one of

the offspring networks, and inputs and outputs from the other parent network are placed

into the other offspring network. As these components are static, with the exception of their

thresholds, across networks it will not disrupt the crossover.

After the static components are instantiated inside of each of the offspring networks,

copies of the hidden neurons from each parent network are divided among the offspring

networks based on which side of the cut line they are on. For example, a child will get copies
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of one set of neurons from one side of the cut from the first parent network, and copies

of a second set of neurons from the other side of the cut from the second parent. These

two sets of copied neurons, along with the static neurons input and output neurons, will

form the full set of neurons for this new child network. Synapses are then added into the

network after the neurons. First, input synapses are added with appropriate weights for their

corresponding input neurons. Then, for each neuron in the new child network, its copy in

the parent network is examined. For each outgoing synapse, the destination neuron is found,

and it is determined whether or not a copy of that neuron exists in the child. If a copy does

exist, then the synapse is added with the same weight and delay value as the parent network.

If a copy does not exist, then the potential synapse is added to a list to be processed after

all other potential synapses are examined. Finally, the synapses whose destination neurons

did not exist in the child network are processed. For each of these synapses, the closest

neuron to the source neuron is found. If a synapse does not already exist between these two

neurons, then a synapse is added between them with the same synaptic weight as the parent

network. The delay for this synapse is determined to be the Euclidean distance between the

two neurons. Note that if a synapse is connected to a static neuron then it will remain in the

network despite where a cut occurs, as these neurons are always present. After this process

is done for both child networks, crossover is complete.
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Figure 2.7: The move neuron operation optimizes the temporal components of the networks
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Figure 2.8: An example of the crossover operation for two arbitrary memristive networks
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Chapter 3

Experimental Verification and

Analysis

One of the major benefits of incorporating the memristive neuromorphic simulator as a model

in the software framework is the ability to understand how the design fairs at an application

level. Before making any design evaluations based on the results of the simulator, it is

important to verify that the simulator is accurate with respect to the hardware. For this

purpose, networks were tested both in the high level model simulation, and the low level

Cadence Spectre simulation. The fidelity of the networks was evaluated with a suite of

metrics. After the simulator was confirmed to be an accurate representation of the hardware

implementation, the simulator was then used to answer questions about the feasibility of

design parameters, alternative neuron designs, and comparisons to other models in the

software framework.

3.1 Verification

The memristive C++ simulator gains speed over traditional hardware simulators such as

Cadence Spectre by sacrificing granularity. Whereas the hardware simulator must simulate

each transistor in the circuit, the C++ simulator is only concerned with capturing the

behavior of the higher level circuit components. However, it is important the behavior

predicted by the C++ simulator is the same as that of the hardware simulator. Otherwise,
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any conclusions we draw from the C++ simulator could not be made for the hardware.

Therefore, four metrics were used to verify that the behavior of networks in both simulators

was the same. The four metrics measure the accuracy of neurons in the simulator. To

measure the behavior of neurons we look at whether or not a neuron fired in a given clock

cycle. For that neuron on that clock cycle, the bit 0 is assigned if the neuron did not fire, and

the bit 1 is assigned otherwise. Then, a bit string for that neuron is formed by placing that

neurons bits in chronological order. These bit strings are generated from both simulators.

For simple networks with sparse activity, the outputs of the simulators can be compared by

hand. For example, the simple network in Fig. 3.1 was created to verify the behavior of

the high level simulator was consistent with the circuit level simulator when online learning

was enabled. Sample output waveforms are displayed in Fig. 3.2. From the figure it is

clear that potentiation and depression in both simulators changes the network behavior over

time. When initially two sets of fires on the input neurons were needed to produce an output

neuron fire, after two fires on the output neuron only one set of fires on the input neurons is

needed.

Figure 3.1: Simple network simulated at the high level and circuit level

The simplest metric used to compare neuron bit strings is the matching percentage. This

metric is the percentage of cycles that both simulators agree about a neurons behavior. An

ideal score for this metric is one hundred percent, or that the behavior matches perfectly.

While this metric is simple, and ideally it would always be perfect, there are quirks in the

hardware behavior that are not captured by the simulator. Variations and noise margins

can either cause a neuron to fire or not fire when it is close to a threshold and the opposite

behavior would be expected. In some extreme cases this can cause this metric to make it
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Figure 3.2: Output from the C++ simulator plotted using MATLAB(left) and output from
Cadence Spectre(right)

look as if the C++ simulator is highly inaccurate when this is not true. Consider the case

of a highly active neuron that fires every other cycle. If early on the hardware had a glitch

or variation that shifted the fire by a cycle, then the strings would have a nearly zero match

percentage. Despite the low score from the match percentage metric, both simulators display

almost identical behavior. Additionally, most applications track the output in either some

window or the number of fires over some specific time. Therefore, because the applications

are already resistant to such noise, it is helpful to have a metric that is resistant to this noise

as well. To combat this case, the edit distance metric was incorporated into the verification

tools [33]. Edit distance is a well known way to measure the difference between two strings.

There is a cost associated with making an addition or deletion to alter the strings so that

they match. We set these costs to be one, and in the case that both strings match the edit

distance will be zero. For the example presented above, a low cost addition the beginning

of one string, and the end of the other string will make the strings match. In this way, even

though the strings displayed a high mismatch percentage, they will also display a low edit

distance. Because of the possibility of variation that the C++ simulator cannot account for,

edit distance provides another revealing metric about the accuracy of the simulator.

The errors that necessitate metrics such as edit distance are a reality of the limited

granularity of the C++ simulator. In order to characterize the errors that occur, two more

metrics were proposed. The first is time to error. This metric measures how many clock cycles

occur before a difference in the two simulations arises. Thus, with this metric it is possible to

characterize how long it takes before errors begin occurring for different applications. This
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metric, much like the match percentage, also suffers from the problem of characterizing some

cases. If we consider a network that has one error at the start of the simulation, and one other

error at the end, then we might think our simulation is inaccurate because it immediately

makes an error. By introducing a metric to track the average time between errors, however,

we can see that the errors that occur are far between. In fact, such a network would have

a low edit distance value as well as a high match percentage. Thus, it is important that all

of the metrics presented be used to characterize the error that occurs. Not only do these

metrics provide a tool to verify that the C++ simulator is accurate, but they also help in

characterizing errors, so that the simulator can be fixed, or the error can be classified as

benign.

In addition to verification on a simple handcrafted network, the simulator was also

verified for a network generated using evolutionary optimization. A network was generated

to perform the XOR operation, and tested in both the simulator and Cadence Spectre. Table

3.1 contains the results. All but one of the neurons displayed good fidelity to the hardware.

The seventh neuron, however, displayed multiple errors. When looking back at the output

files from both simulators, the errors on this neuron occurred as the result of a hardware

glitch. Particularly, this neuron fired two cycles in a row, and the error cascaded in the

behavior in later cycles. Thus, the verification scheme can be used to find errors in the

hardware implementation as well as characterizing error.

Table 3.1: Table of verification metrics for an XOR network

Neuron 1 2 3 4 5 6 7
Percent Match 99% 100% 100% 100% 99% 100% 83%
Time To Error 96 N/A N/A N/A 98 N/A 13

Time Between Error 3 N/A N/A N/A 1 N/A 4.11
Edit Distance 1 0 0 0 1 0 17
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3.2 Analysis

Having verified the correctness of the C++ simulator, it is now possible to use the simulator

to explore the impact of certain parameters at the hardware level on the viability of networks

at the application level. For example, one might wonder whether the device characteristics of

a particular memristor allow for the generation of networks for a particular application. If the

evolutionary optimization were able to find high fitness networks using that device, it would

suggest that the device is a viable candidate for implementing the memristive neuromorphic

circuit. If, on the contrary, networks were unable to be generated, it would be revealing that

those devices would be inadequate. Not only can a designer test the viability of devices, but

they can also measure the impact certain tunable parameters such as the clock frequency

have on the types of networks generated. One could even quantify the difference in average

power consumption of networks generated using both frequencies. Most of the analysis will

focus on measuring the feasibility of specific designs and choice of devices in comparison to

existing models, particularly DANNA.

3.2.1 Variation

As an emerging technology, memristors are particularly prone to process variations. These

variations have been shown to affect the extreme resistance states, as well as the switching

characteristics of the memristors [21]. Besides process variation, there is also variation on-

chip while the devices are running. The pulses used to switch the memristors are not exact,

and it cannot be expected that a memristor can be set to a precise memristance value. While

there are techniques to understand the impact of these variations at the circuit level, it was

uncertain whether these variations would affect the neuromorphic system at the application

level.

To understand variation at the application level, the simulator was expanded to include

adjustable parameters that add variability to memristor parameters. Particularly, when

the simulator instantiates a synapse it normally assumes the nominal resistance states and

switching properties. When the appropriate variability parameter is set ”ON”, however,

these parameters are initialized to a normally distributed random value. Therefore,
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these variability options can allow the user to understand the application performance of

memristive networks given uncontrollable variations.

The first application explored in this way was the simple XOR application. While not a

particularly difficult application, it can be important in characterizing the impact of a change

to the model. If the variation made it impossible to complete an XOR, then this would be

informative about the types of applications that this neuromorphic device could be used

for. There were two cases considered in testing networks with the XOR application. First,

networks were trained with no variation, and then tested with noise. This set of tests was

used to measure whether the trained networks were resistant to variation in their synaptic

weights. Second, networks were trained and tested with noise. This was done in parallel with

the first test case with the intention to understand whether training with variation provided

any performance advantage at an application level. Ten networks were trained for each test

case. For the first case, networks were tested with three different variation profile: cycle-to-

cycle variation only, process variation only, both cycle-to-cycle and process variation. For all

three noise profiles across all ten of the XOR networks there was no impact on the ability of

the networks to perform the XOR operation. All ten networks trained with noise also tested

perfectly.

Next, the impact of variation was measured for the iris classification application. The

iris classification application involves training a network to classify iris flowers from the well

known iris flower dataset [19]. To measure the impact of variation, ten networks were trained

with and without variation. After training, the classification accuracy was then measured

on the test set for the different variation profiles. Like in the case of the XOR application,

the variation did not impact the performance of any of the networks generated. Thus, for

simple tasks, it can be concluded that memristive networks generated using evolutionary

optimization are resistant to both process variation and cycle to cycle variation.

3.2.2 Axon-Hillock Neuron Model

Not only can the simulator be used to test alternative design parameters, but it can also

be used to test alternative architectures. Particularly, an alternative neuron model was

explored. The neuron described in previous sections is an integrate and fire neuron. However,
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the Axon-Hillock neuron has been put forth as an alternative to this model [34]. The

Axon-Hillock neuron is different in three primary ways from the integrate and fire neuron.

First, the amount of charge accumulated by the neuron is non-linear, and based on the

current accumulation. Second, parallel synaptic fires cause an average accumulation from

the synapses as opposed to a sum of accumulations. Third, the weight of the synaptic fire

moves the accumulation towards an associated asymptote.

The Axon-Hillock model tested only included the average accumulation and asymptotic

behavior of the neurons. This was done to avoid the complexity of a non-linear model, and

to test the viability of the other two behavioral features. Before implementing the model,

it was determined that the accumulation to threshold ratio of the default neuron would

require at least four synaptic fires to cause a neuron to fire. Because application input spikes

are typically sparse, this would make it impossible for the Axon-Hillock neuron model to

complete even the most simple tasks such as an XOR. This was confirmed when the genetic

algorithm was unable to find a viable network when the Axon-Hillock model was enabled.

While the default accumulation behavior made it impossible for the Axon-Hillock neuron

to complete the simple XOR task, it is possible to increase the amount accumulated by

adding gain in the hardware. Adding gain to the Axon-Hillock neuron not only increases the

amount accumulated, but also changes the asymptotes to which a particular synaptic weight

will try to accumulate to. The simulator was thus modified to support an adjustable gain

parameter for the Axon-Hillock model. With a gain of two, the model was able to generate

networks for the XOR application and the polebalancing application.

The results for the networks generated by the genetic algorithm are displayed in Table

3.2. For the polebalancing application networks are trained to balance a pole continuously

for five minutes. The runs complete metric specifies how many runs of the genetic algorithm

completed. The average epochs to completion specifies how many generations on average

it took before a run completed, not counting runs that failed to complete. From the table

it is clear that while the Axon-Hillock neuron was not able to generate as many networks,

it was still a feasible model. One particular point of interest is the difference in the size of

the networks generated. Networks with Axon-Hillock models were, on average, much larger

than networks without. It would be possible to use the simulator to calculate the average
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energy of networks using either model and their different energy requirements to determine

if there would be a significant difference in energy consumption.

Table 3.2: Comparison of networks generated from DANNA, the standard memristive
model, and the memristive Axon-Hillock model

Architecture Percent Runs
Completed

Average
Epochs
to Complete

Number
of Neurons
in Complete
Networks

Number
of Synapses
in Complete
Networks

Average Fit-
ness of All
Networks

DANNA 83.5% 42.5 18.8 55 14095
mrDANNA
21 Levels
with LTPD

35.3% 58.6 22 37.3 8604.5

mrDANNA
Axon-Hillock

22.7% 43.3 30.9 59.2 4404.3

3.2.3 Programming Resolution

While memristors can theoretically take on any memristance value between their high

resistance state and low resistance state, it is difficult to program to an arbitrary memristance

state on-chip. As the programming granularity increases, so does the overhead of the circuitry

to support that programming. Thus, it was questioned whether reducing the programming

granularity would impact the performance of the networks that could be generated with

evolutionary optimization.

In order to describe this limited programming, the term programming resolution was used.

The number of integer weights a synapse can be programmed to is said to be its programming

resolution. A programming resolution of 21 means a synapse can be programmed to 21

distinct integer weights. These weights are typically symmetric. A programming resolution

of 3 symmetric weights would mean a synapse can be programmed to either 1, 0, or -1. In

both cases note that the maximum and minimum weights correspond to the same effective

conductance, but networks with a higher programming resolution will be able to achieve

more combinations of weights thusly increasing the potential solution space.
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For the initial chip design, it was desirable to reduce the overhead as much as possible.

In this way, the memristors would be limited to only being programmed to either the high

resistance state or low resistance state. This extremely limited programming corresponds

to a programming resolution of 3. It was unclear if networks with this limited resolution

would be able to perform complex applications. To understand the impact of this resolution,

networks were generated with this resolution for both the iris classification and polebalancing

tasks. The results are displayed in Tables 3.3 and 3.4.

Table 3.3: Performance of networks with programming resolution of 3 for iris classification
application

Architecture Best Fitness Average
Epochs
to Complete

Number
of Neurons
in Complete
Networks

Number
of Synapses
in Complete
Networks

Average Fit-
ness of All
Networks

DANNA 97.3% 261.2 13.8 7.3 86.9%
mrDANNA
21 Levels

97.3% 223.6 11.6 23.1 90.7%

mrDANNA
3 Levels

98.7% 160.4 12 24.8 96.4%

From the tables it is clear that programming with a limited resolution is feasible, as

networks are still able to perform successfully in both the polebalancing and iris classification

tasks. For the polebalancing task, networks take longer to train, and are less likely to

successfully balance the pole for five minutes, but some networks can still be generated,

and these networks are of comparable size to networks with a larger resolution. For the

iris classification application, the genetic algorithm actually produces better networks with

the limited resolution. Not only was the best network better than the other architectures

considered, but the average network was better as well. This might be due to the simplicity of

the iris classification task, however. With the reduced solution space, the genetic algorithm

might be able to find a solution more quickly, and optimize the synaptic weights more easily.
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3.2.4 Online Learning

Online learning is an unsupervised learning technique to improve the performance of a

network dynamically. Unlike training which is conducted using a genetic algorithm, online

learning occurs as the network is in use. There have been many proposed systems for

implementing online learning. One of the main ones, and the one implemented in the

memristive model, is potentiation and depression of synapses. In this way, synaptic weights

are either increased or decreased based on the function of that synapse.

There are many motivations for including online learning in a neuromorphic model.

Online learning has been shown to be a suitable mechanism for training in some problems,

meaning that a neuromorphic system with these feature could be trained without supervision

[11]. Additionally, online learning has been shown to combat process variation, which is

important in a memristive system due to their variability [4]. Finally, online learning can be

implemented in a way that is separate from the programming of the memristors such that

it can achieve memristance states online that a network cannot be programmed to. Because

online learning only adjusts a synaptic weight by a small amount, this can be implemented in

hardware with little overhead. Because the initial chip design was considering an extremely

limited programming resolution, this is particularly important as online learning can provide

additional resolution online thusly increasing the potential solution space.

The first online learning mechanisms considered were a simple long term potentiation

and depression model. Synaptic weights that occurred the cycle before a neuron fired, and

thus contributed to the neuron firing, were potentiated, while synaptic weights that occurred

in a neuron’s refractory period were depressed [13]. These dynamic updates of the weights

would permanently affect that synapse until the network was reset. The update in a synaptic

weight is determined by the switching characteristics of the memristor, and the length of the

pulse to cause the switch. These values can be set as parameters within the simulator.

To study the impact of this simple potentiation and depression scheme, networks were

generated for the iris classification task. Networks were then tested both with and without

online learning enabled, and their accuracy was compared. The results are displayed in

Fig. 3.3. These results make it clear that these online learning mechanisms are able to
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dynamically improve the performance of networks, as there is a significant drop in accuracy

when they are disabled.

Figure 3.3: Performance of networks with and without LTPD for the classification of
different datasets

After seeing the improvement from simple potentiation and depression mechanisms, a

more biologically accurate mechanism was explored in spike-timing-dependent plasticity [29].

Unlike the simple mechanism described before, spike-timing-dependent plasticity considers

synapses that contribute to a neuron fire in larger time windows. Not only is the window

of time larger, but the magnitude of the potentiation and depression are affected based on

where a synaptic fire occurs within that window. Synapses that occur immediately before

and after a neuron fires are potentiated and depressed the most, while those at the edge of

the window are adjusted the least. The difference in magnitude in both of these cases is

exponential with respect to the temporal distance in that window.
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The XOR application was the first considered to understand the impact of spike-timing-

dependent plasticity on network performance. A network was generated with spike-timing-

dependent plasticity enabled, and then tested in two cases. In the first case spike-timing-

dependent plasticity was disabled, and the synaptic weights were restricted to their original

programmed values. In the second case, spike-timing-dependent plasticity was enabled,

and the synaptic weights were potentiated and depressed based on their contributions to

a neuron’s fire within a three cycle window before and after the fire. The accuracy of the

network over several runs in each test case is displayed in Fig. 3.4.

From Fig. 3.4 it is clear that the inclusion of spike-timing-dependent plasticity in the

network is vital to the network’s success. Without spike-timing-dependent plasticity the

network can only achieve approximately 60% accuracy. However, the network with spike-

timing-dependent plasticity, though it begins around the same accuracy, eventually converges

to a network that perfectly does the XOR operation. The improvement provided by spike-

timing-dependent plasticity is different than the improvement from evolutionary optimization

as spike-timing-dependent plasticity is unsupervised.

These improvements lend credence to the idea that not only can spike-timing-dependent

plasticity improve performance dynamically and unsupervised, but also suggest that spike-

timing-dependent plasticity might be able to be used as a mechanism to expand the solution

space. Even though the network could only be programmed to a limited number of integer

values, spike-timing-dependent plasticity enabled the network to achieve new weights it

might not have been able to before. Thus, spike-timing-dependent plasticity can increase

the granularity of synaptic weights in systems with limited resolution.

After confirming that spike-timing-dependent plasticity was able to dynamically optimize

a network for the XOR application, it was necessary to investigate the performance on other

applications. While XOR can be a good application to gain insight on the viability of a

design, it is still much too simple to quantify the benefits or detriments of that design.

To expand the results, the impact of spike-timing-dependent plasticity was measured on

the iris classification application. Iris classification allows us to more easily quantify the

impact of spike-timing-dependent plasticity through the classification accuracy. For the

XOR application, a network is considered a failure if it is unable to reliably perform the
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Figure 3.4: Accuracy over time for same XOR network with and without STDP enabled

operation. The iris classification task also allows us to measure whether spike-timing-

dependent plasticity provides any generalization, improved performance on data the network

was not trained on.

In order to study the impact of spike-timing-dependent plasticity on the memristive

model, two sets of networks were trained. The first set of networks was trained without spike-

timing-dependent plasticity, and the second set was trained with spike-timing-dependent

plasticity. These sets were further divided by the resolution for which the synaptic weights

were allowed to be programmed to. Networks were trained with programming resolutions of

3, 7, and 21.

After the networks were generated, their accuracy was evaluated on a testing set that is

separate from the training set. Networks that were trained without spike-timing-dependent

plasticity were tested without STDP as well. Networks that were trained with STDP,

however, were tested both with spike-timing-dependent plasticity on and off. In doing so the

effect of STDP on these specific networks can be observed. It is possible that evolutionary

optimization was able to find networks in spite of spike-timing-dependent plasticity, and that

spike-timing-dependent plasticity did nothing to improve the performance of these networks.

Testing the network with spike-timing-dependent plasticity both on and off reveals whether

or not spike-timing-dependent plasticity actually does anything within these networks.
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The results from the iris classification are displayed in Fig. 3.5 and Fig. 3.6. From

Fig. 3.5 it is clear that spike-timing-dependent plasticity is important to the success of

networks that are trained with it. When spike-timing-dependent plasticity is turned off

during testing, the accuracy drops on average from 94% to 79%. Thus, like in the XOR task,

spike-timing-dependent plasticity is able to take networks that are initially programmed to

suboptimal values, and improve the network fitness by adjusting the synaptic weights online.

Additionally, the inclusion of spike-timing-dependent plasticity in the model improves the

performance on average. Fig. 3.6 shows that, while small, STDP improves the performance

on the testing set for networks with 3, 7, and 21 programmable levels. Additionally, the

improvement from the inclusion of spike-timing-dependent plasticity in the model is increased

as the resolution decreases. This is likely a result of the ability of spike-timing-dependent

plasticity to increase granularity more when the resolution is limited most.

Figure 3.5: Impact of STDP in networks for the iris classification task
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Figure 3.6: Improvement in performance of networks trained with STDP over those without

Table 3.4: Performance of networks with programming resolution of 3 for polebalancing
application

Architecture Percent Runs
Completed

Average
Epochs
to Complete

Number
of Neurons
in Complete
Networks

Number
of Synapses
in Complete
Networks

Average Fit-
ness of All
Networks

DANNA 83.5% 42.5 18.8 55 14095
mrDANNA
21 Levels
with LTPD

35.3% 58.6 22 37.3 8604.5

mrDANNA
3 Levels

27.3% 66.9 23.4 42.3 5319.5
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Chapter 4

Conclusions and Future Work

In this work a high level C++ simulator is presented to efficiently model memristive

neuromorphic circuits. The simulator is built into a software framework that allows for

the generation of networks using evolutionary optimization, and achieves faster simulation

by sacrificing granularity for speed. The simulator is verified using a simple handcrafted

network, and a network to perform the XOR operation. Additionally, three genetic operators

were implemented to facilitate evolutionary optimization: random, mutate, and crossover.

These operators are facilitated by a planar embedding.

With the capabilities of the simulator to understand the impact circuit design parameters

on the application level performance of the network, various design decisions were examined.

The impact of memristor process variation was examined, and determined to be negligible for

simple applications. An alternative neuron model, the Axon-Hillock model, was simplified

and modeled. The circuit design was updated to produce viable networks at an application

level based on results obtained from the simulator. A limited programming resolution was

added to the model, and it was determined that the resolution did not negatively impact the

networks generated. Finally, online learning mechanisms were evaluated, and it was shown

that not only can online learning improve the performance of networks dynamically, but it

can also increase generalization in networks for classification tasks.

While this work focuses on the model piece of the software framework, there are

many questions about the application and evolutionary optimization pieces that have

yet to be answered. First, it is unclear exactly how the way an application defines
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inputs and outputs affects the performance of different models. For example, would the

Axon-Hillock model benefit from an I/O scheme that includes more spikes into input

neurons. Additionally, further work can be done to understand whether alternative forms of

evolutionary optimization such as speciation can improve the networks generated.

Additional work can also be done to more thoroughly study online learning and spike-

timing-dependent plasticity. In this work a three cycle window was considered. However,

it is not clear how the impact of spike-timing-dependent plasticity might change as that

window is expanded. Further work can also be done to understand the impact of spike-

timing-dependent plasticity in other models, as well as for other applications.
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A Sample Code

This section contains samples of code relevant to the functional behavior of the network.

The neuron code presented is responsible for accumulating and firing. The synapse code is

an implementation of online learning modeled from the underlying memristors. The delay

code is responsible for managing the cyclic array. The random code is the complete code to

generate a random network for evolutionary optimization. The mutation code highlights the

move neuron mutation. The crossover code performs the entire crossover operation.

A.1 Neuron

void mrNeuron : : apply ( f l o a t w, i n t c lockCycle , e lement∗ sender )

{

double THRESHOLDLIMIT = NeuroUti l s : : ParamsGetDouble (” mrdanna ” ,”

THRESHOLDLIMIT” , t rue ) ;

s t r i n g PRINTEVENTS = NeuroUti l s : : ParamsGetString (” mrdanna ” ,”

PRINTEVENTS” , t rue ) ;

i f (PRINTEVENTS == ”TRUE”){

s t r i n g e ;

f o r (NeuroIOMap : : i t e r a t o r i t = inElements . begin ( ) ; i t !=

inElements . end ( ) ; ++i t ){

i f ( i t−>second == sender ){

i f ( i t−> f i r s t [ 0 ] == −1.0){

e = ”Time : ” + t o s t r i n g ( c lockCyc l e ) + ” Type :

Pulse Neuron Locat ion : ” + printCoords ( ) ;

break ;

}

e l s e {

e = ”Time : ” + t o s t r i n g ( c lockCyc l e ) + ” Type :

Synapse Fire Synapse Locat ion : ” + printCoords ( i t−>

f i r s t ) + ” −−> ” + printCoords ( ) ;
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break ;

}

}

}

cout << e <<endl ;

/∗

events . push back ( e ) ;

eventTimes . push back ( c lockCyc l e ) ;

∗/

}

i f ( s to redCyc l e != c lockCyc l e ){

update ( c lockCyc l e ) ;

}

i f ( inRe f racPer iod ){

depressSynapse ( sender , ( c lockCycle−cyc l eLa s tF i r ed + 1) ) ;

r e turn ;

}

i f ( r e s e tCyc l e ){

depressSynapse ( sender , ( c lockCycle−cyc l eLa s tF i r ed + 1) ) ;

r e turn ;

}

i f ( s i g n a l s [ s i g n a l s . s i z e ( ) −1]. empty ( ) ){

accumInput++;

}

s i g n a l s [ s i g n a l s . s i z e ( ) −1]. push back ( sender ) ;

accumulator += w;

// Set a lower l i m i t f o r negat ive − wont e x i s t f o r p o s i t i v e

i f ( accumulator < (−1.∗THRESHOLDLIMIT) ){

accumulator = (−1.0∗THRESHOLDLIMIT) ;

}
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i f ( accumulator < th r e sho ld ){

f i r eNextCyc l e = f a l s e ;

}

e l s e i f ( accumulator >= thre sho ld ){

f i r eNextCyc l e = true ;

}

}

/∗ Making a f u n c t i o n a l change to match the hardware

∗ a f t e r a neuron pas s e s i t s th r e sho ld i t e n t e r s a r e s e t c y c l e

∗ f i r e s c y c l e a f t e r that

∗ a l s o a l l de lays are doubled as a r e s u l t ( handl ing that in de lay )

∗/

void mrNeuron : : update ( i n t c lockCyc l e )

{

// col lectAccums . push back ( accumulator ) ;

s t r i n g PRINTEVENTS = NeuroUti l s : : ParamsGetString (” mrdanna ” ,”

PRINTEVENTS” , t rue ) ;

i f ( s to redCyc l e == c lockCyc l e ){

r e turn ;

}

t o t a l C y c l e s++;

s toredCyc l e = c lockCyc l e ;

i f ( f i r eNextCyc l e ){

r e s e tCyc l e = true ;

f i r eNextCyc l e = f a l s e ;

}

e l s e i f ( r e s e tCyc l e ){
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f o r (NeuroIOMap : : i t e r a t o r i t = outElements . begin ( ) ; i t !=

outElements . end ( ) ; ++i t ){

i t−>second−>apply ( 1 . 0 , c lockCycle , t h i s ) ;

}

i f (PRINTEVENTS == ”TRUE”){

s t r i n g e ;

e = ”Time : ” + t o s t r i n g ( c lockCyc l e ) + ” Type : Neuron Fire

Neuron Locat ion : ”+ printCoords ( ) ;

cout<< e <<endl ;

// events . push back ( e ) ;

// eventTimes . push back ( c lockCyc l e ) ;

}

i nRe f racPer iod = true ;

f i r eNextCyc l e = f a l s e ;

cyc l eLa s tF i r ed = c lockCyc l e ;

accumulator = 0 . 0 ;

f o r ( unsigned i n t i = 0 ; i < s i g n a l s . s i z e ( ) ; i++){

f o r ( unsigned i n t j = 0 ; j < s i g n a l s [ i ] . s i z e ( ) ; j++){

potent ia teSynapse ( s i g n a l s [ i ] [ j ] , s i g n a l s . s i z e ( )− i ) ;

}

}

f o r ( unsigned i n t i = 0 ; i < s i g n a l s . s i z e ( ) − 1 ; i++){

s i g n a l s [ i ] = s i g n a l s [ i + 1 ] ;

}

s i g n a l s [ s i g n a l s . s i z e ( ) − 1 ] . c l e a r ( ) ;

f i r e d ++;

// c o l l e c t F i r e d s . push back ( c lockCyc l e ) ;

r e s e tCyc l e = f a l s e ;

}

53



e l s e {

f o r ( unsigned i n t i = 0 ; i < s i g n a l s . s i z e ( ) − 1 ; i++){

s i g n a l s [ i ] = s i g n a l s [ i + 1 ] ;

}

totalAccum += accumulator ;

i f ( inRe f racPer iod ){

i f ( cyc l eLa s tF i r ed + r e f r a c t o r y P e r i o d == clockCyc l e ){

i nRe f racPer iod = f a l s e ;

}

}

}

}

A.2 Synapse

void mrSynapse : : potentiateSTDP ( i n t va l )

{

double LEARNINGPARAM = NeuroUti l s : : ParamsGetDouble (” mrdanna ” ,”

LEARNINGPARAM” , t rue ) ;

i n t USECYCVARIATION = NeuroUti l s : : ParamsGetInt (” mrdanna ” ,”

USEMEMVARIATION” , t rue ) ;

i f (USECYCVARIATION){

double PDRDEV = NeuroUti l s : : ParamsGetDouble (” mrdanna ” ,”PDRDEV

” ,” t rue ”) ;

double NDRDEV = NeuroUti l s : : ParamsGetDouble (” mrdanna ” ,”NDRDEV

” ,” t rue ”) ;

de fau l t random eng ine genera to r ;

no rma l d i s t r i bu t i on<double> PDRdis ( pdelR , pdelR ∗(PDRDEV/100 .0 ) )

;
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norma l d i s t r i bu t i on<double> NDRdis ( ndelR , ndelR ∗(NDRDEV/100 .0 ) )

;

double pdelRVar = PDRdis ( genera to r ) ;

double ndelRVar = NDRdis ( genera to r ) ;

Rn += ( ndelRVar ∗(LEARNINGPARAM−va l + 1) ) ;

Rp −= ( pdelRVar ∗(LEARNINGPARAM−va l + 1) ) ;

}

e l s e {

Rn += ( ndelR ∗(LEARNINGPARAM−va l + 1) ) ;

Rp −= ( pdelR ∗(LEARNINGPARAM−va l + 1) ) ;

}

// Rn += ( delR/ va l ) ;

// Rp −= ( delR/ va l ) ;

Gef f = (1 . 0/Rp) − ( 1 . 0/Rn) ;

weight = Gef f /normG ;

i f ( weight > max){

weight = max ;

Gef f = GeffMax ;

Rn = HRS;

Rp = LRS;

}

eWeight = weight ;

}

/∗Depress in based on how the dev i c e w i l l do i t ∗/

void mrSynapse : : depressSTDP ( i n t va l )

{

double LEARNINGPARAM = NeuroUti l s : : ParamsGetDouble (” mrdanna ” ,”

LEARNINGPARAM” , t rue ) ;
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i n t USECYCVARIATION = NeuroUti l s : : ParamsGetInt (” mrdanna ” ,”

USEMEMVARIATION” , t rue ) ;

i f (USECYCVARIATION){

double PDRDEV = NeuroUti l s : : ParamsGetDouble (” mrdanna ” ,”PDRDEV

” ,” t rue ”) ;

double NDRDEV = NeuroUti l s : : ParamsGetDouble (” mrdanna ” ,”NDRDEV

” ,” t rue ”) ;

de fau l t random eng ine genera to r ;

no rma l d i s t r i bu t i on<double> PDRdis ( pdelR , pdelR ∗(PDRDEV/100 .0 ) )

;

no rma l d i s t r i bu t i on<double> NDRdis ( ndelR , ndelR ∗(NDRDEV/100 .0 ) )

;

double pdelRVar = PDRdis ( genera to r ) ;

double ndelRVar = NDRdis ( genera to r ) ;

Rn −= ( ndelRVar ∗(LEARNINGPARAM−va l + 1) ) ;

Rp += ( pdelRVar ∗(LEARNINGPARAM−va l + 1) ) ;

}

e l s e {

Rn −= ( ndelR ∗(LEARNINGPARAM−va l + 1) ) ;

Rp += ( pdelR ∗(LEARNINGPARAM−va l + 1) ) ;

}

// Rn −= ( delR/ va l ) ;

// Rp += ( delR/ va l ) ;

Gef f = (1 . 0/Rp) − ( 1 . 0/Rn) ;

weight = Gef f /normG ;

i f ( weight < (−1.0∗max) ){

Geff = −1.0∗GeffMax ;

Rn = LRS;

Rp = HRS;
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}

eWeight = weight ;

}

A.3 Delay

//Apply − How other e lements s i g n a l the de lay block to add a new

charge

void de lay : : apply ( f l o a t w, i n t c lockCycle , e lement∗ sender ){

chargesPassed++; // energy e s t imat ion

//Put sp ike in to c y c l i c array

i f ( head != 0){

charges [ head − 1 ] = w;

}

e l s e {

charges [ charges . s i z e ( )−1] = w;

}

}

//Update − How the network s i g n a l s the de lay block to advance the

s imu la t i on by 1 c y c l e

void de lay : : update ( i n t c lockCyc l e ){

// Pass on sp ike i f i t has reached end o f de lay block

i f ( charges [ head ] != 0 . 0 ) {

f o r ( ElementMap : : i t e r a t o r i t = outputElements . begin ( ) ; i t !=

outputElements . end ( ) ; ++i t ){

i t−>second−>apply ( charges [ head ] , c lockCycle , t h i s ) ;

}
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}

charges [ head ] = 0 . 0 ; // r e s e t va lue

//manage c y c l i c array

i f ( head != ( charges . s i z e ( ) − 1) ){

head++;

}

e l s e {

head = 0 ;

}

}

A.4 Random

void mrNetwork : : Random( )

{

inCount = 0 ;

outCount = 0 ;

c l o c k c y c l e = 0 ;

outputVector . r e s i z e (nOut) ;

mrNeuron∗ n ;

mrSynapse∗ s ;

outputElement∗ o ;

// de lay ∗ d ;

vector<double> cIn ;

vector<double> cOut ;

cIn . r e s i z e ( embeddedDimension ) ;

cOut . r e s i z e ( embeddedDimension ) ;

f o r ( i n t i = 0 ; i < embeddedDimension ; i++){
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cIn [ i ] = −1.0;

cOut [ i ] = −2.0;

}

inputComponents . r e s i z e ( nIn ) ;

f o r ( i n t i = 0 ; i < nIn ; i++){

n = new mrNeuron (maxDims , maxThreshold , ” I ” , inCount ) ;

//n = new mrNeuron (maxDims , maxThreshold , ” I ” , inCount , nIn ) ;

s = new mrSynapse (n−>getThreshold ( ) + 1 ,”S”) ;

de lay ∗d = new delay (0 ,”D”) ;

de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )d , ( element ∗)d)

) ;

d−>addOutputElement ( ( element ∗) s ) ;

s−>addInputElement ( ( element ∗) d) ;

s−>addOutputElement ( ( element ∗)n) ;

n−>addInputElement ( ( element ∗) s , cIn ) ;

inCount++;

inputComponents [ i ] = ( element ∗)d ;

mrNetworkGrid [ n−>coords ] = n ;

}

f o r ( i n t i = 0 ; i < nOut ; i++){

n = new mrNeuron (maxDims , maxThreshold , ”O” , outCount ) ;

//n = new mrNeuron (maxDims , maxThreshold , ”O” , outCount , nOut) ;

o = new outputElement ( i ,& outputVector ) ;

outCount++;

n−>addOutputElement ( ( element ∗) o , cOut ) ;

mrNetworkGrid [ n−>coords ] = n ;

}

i n t h iddenSize = rand ( )%5 + 1 ;
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hiddenSize = max( hiddenSize , 0 ) ;

f o r ( i n t i = 0 ; i < hiddenSize ; i++){

n = new mrNeuron (maxDims , maxThreshold , ”N”) ;

i n t f u l l = 0 ;

whi l e ( mrNetworkGrid . f i n d (n−>coords ) != mrNetworkGrid . end ( ) ){

d e l e t e n ;

i f ( f u l l == 100){

n = NULL;

}

n = new mrNeuron (maxDims , maxThreshold , ”N”) ;

f u l l ++;

}

// i f (n != NULL){

mrNetworkGrid [ n−>coords ] = n ;

//}

}

// double connect ;

// i n t weight ;

i n t numSynapses = rand ( )%10 + 1 ;

// Using mutation − might cause t r oub l e

f o r ( i n t i = 0 ; i < numSynapses ; i++){

mutationAddSynapse ( ) ;

}

}

A.5 Mutate

void mrNetwork : : mutationMoveNeuron ( )

{
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i n t randVal = rand ( )%mrNetworkGrid . s i z e ( ) ;

NeuronGrid : : i t e r a t o r randNeuron = mrNetworkGrid . begin ( ) ;

advance ( randNeuron , randVal ) ;

i f ( randNeuron−>second−>getType ( ) ==”O” | | randNeuron−>second−>

getType ( ) == ” I ”){

f o r ( i n t i = 0 ; i < 100 ; i++){

randVal = rand ( )%mrNetworkGrid . s i z e ( ) ;

randNeuron = mrNetworkGrid . begin ( ) ;

advance ( randNeuron , randVal ) ;

i f ( randNeuron−>second−>getType ( ) == ”N”){

break ;

}

e l s e i f ( i == 99){

r e turn ;

}

}

}

auto w = randNeuron−>second−>getOutgoingWeights ( ) ;

auto edgeO = randNeuron−>second−>getOutgoing ( ) ;

auto edgeI = randNeuron−>second−>getIncoming ( ) ;

auto w2 = randNeuron−>second−>getIncomingWeights ( ) ;

mrNeuron∗ n = new mrNeuron ( randNeuron−>second ) ;

/∗What needs to happen −

∗ update s h u f f l e to be g r id coords ( comment out )

∗ check the r e s u l t

∗/

i n t f u l l = 0 ;

n−>s h u f f l e (maxDims) ;

//Look at t h i s loop c l o s e r i f t h e r e s an i s s u e

whi l e ( mrNetworkGrid . f i n d (n−>coords ) != mrNetworkGrid . end ( ) ){
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f u l l ++;

i f ( f u l l == 100){

deleteNeuron ( randNeuron−>second ) ;

d e l e t e n ;

r e turn ;

}

n−>s h u f f l e (maxDims) ;

}

deleteNeuron ( randNeuron−>second ) ;

mrNetworkGrid . i n s e r t ( pair<vector<double >, mrNeuron∗>( n−>coords ,

n ) ) ;

/∗

f o r ( i n t i = 0 ; i < coords . s i z e ( ) ; i++){

coords [ i ] = randNeuron−>second−>coords [ i ] ;

}

∗/

NeuronGrid : : i t e r a t o r i t ;

double d i s t ;

de lay ∗ d ;

mrSynapse∗ s ;

f o r ( unsigned i n t i = 0 ; i < edgeO . s i z e ( ) ; i++){

i t = mrNetworkGrid . f i n d ( edgeO [ i ] ) ;

i f ( i t−> f i r s t != edgeO [ i ] ) {

cout<<”key−coord mismatch” <<endl ;

cout<<”going to : ” ;

f o r ( unsigned i n t j = 0 ; j < i t−> f i r s t . s i z e ( ) ; j++){

cout<<i t−> f i r s t [ j ] <<” ” ;

}
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cout<<endl ;

cout<<”me : ” <<n−>pr intCoords ( ) <<endl ;

}

d i s t = n−>distanceTo ( i t−>second ) ;

d = new delay ( ( i n t ) round ( d i s t ) ,”D”) ;

de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )d , ( element ∗)d)

) ;

s = new mrSynapse (w[ i ] , ”W”) ;

d−>addOutputElement ( ( element ∗) s ) ;

s−>addInputElement ( ( element ∗) d) ;

s−>addOutputElement ( ( element ∗) i t−>second ) ;

n−>addOutputElement ( ( element ∗)d , edgeO [ i ] ) ;

i t−>second−>addInputElement ( ( element ∗) s , n−>coords ) ;

}

/∗

f o r ( NeuronGrid : : i t e r a t o r i t 2 = mrNetworkGrid . begin ( ) ; i t 2 !=

mrNetworkGrid . end ( ) ; ++i t 2 ){

i f ( i t2−>second−>i sConnect ion ( coords ) ){

i t 2−>second−>remove ( coords ) ;

d i s t = i t2−>second−>distanceTo ( randNeuron−>second ) ;

d = new delay ( ( i n t ) round ( d i s t ) ,”D”) ;

de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )d , ( element

∗)d) ) ;

s = new mrSynapse (w2 [ i ] , ”W”) ;

d−>addOutputElement ( ( element ∗) s ) ;

s−>addInputElement ( ( element ∗) d) ;

randNeuron−>second−>addInputElement ( ( element ∗) s , edgeI [ i ] ) ;

i t−>second−>addOutputElement ( ( element ∗)d , randNeuron−>

second−>coords ) ;
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}

}

∗/

f o r ( unsigned i n t i = 0 ; i < edgeI . s i z e ( ) ; i++){

i t = mrNetworkGrid . f i n d ( edgeI [ i ] ) ;

i f ( i t == mrNetworkGrid . end ( ) ){

cout<<”cant f i n d known input neuron” <<edgeI [ i ] [ 0 ] << ” ” <<

edgeI [ i ] [ 1 ] <<endl ;

}

e l s e {

d i s t = i t−>second−>distanceTo (n) ;

d = new delay ( ( i n t ) round ( d i s t ) ,”D”) ;

de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )d , ( element ∗)

d) ) ;

s = new mrSynapse (w2 [ i ] , ”W”) ;

d−>addOutputElement ( ( element ∗) s ) ;

s−>addInputElement ( ( element ∗) d) ;

s−>addOutputElement ( ( element ∗)n) ;

n−>addInputElement ( ( element ∗) s , edgeI [ i ] ) ;

i t−>second−>addOutputElement ( ( element ∗)d , n−>coords ) ;

}

}

}

A.6 Crossover
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vector<mrNetwork∗> mrNetwork : : CrossoverRC ( mrNetwork∗ partner )

{

// cout<<”∗∗∗DOING CROSSOVER∗∗∗” <<endl ;

//Add check f o r network dimensions

mrNetwork∗ c h i l d 1 = new mrNetwork ( inCount , outCount , maxDims ,

connec t i v i ty , weightMaxMag , maxThreshold , avgHidden ) ;

mrNetwork∗ c h i l d 2 = new mrNetwork ( inCount , outCount , maxDims ,

connec t i v i ty , weightMaxMag , maxThreshold , avgHidden ) ;

//mrNetwork∗ c h i l d 2 = new mrNetwork ( inCount , outCount , maxDims) ;

//HERE − s e t the EO parameters f o r the c h i l d r e n

/∗ Quick pseudo

∗ Add to neurogr id s o f new nets

∗ add f i x e d s t r u c t s and neurons from p1 and p2

∗ get l i s t o f connect ions f o r each neuron

∗ r e s o l v e a l l o f the connect i ons

∗ do again f o r oppos i t e s i d e s o f cut

∗/

map< vector<double >, vector< vec to r <double> > > edgeContainer1 ;

map< vector<double >, vector< vec to r <double> > > edgeContainer2 ;

map< vector<double> , vector<int> > weightContainer1 ;

map< vector<double >, vector<int> > weightContainer2 ;

// I f 0 we cut v e r t i c a l 1 h o r i z o n t a l

i n t RowOrCol = rand ( ) %2;
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double cut ;

i f (RowOrCol ){

cut = ( rand ( ) / (RAND MAX / maxDims [ 0 ] ) ) ;

}

e l s e {

cut = ( rand ( ) / (RAND MAX / maxDims [ 1 ] ) ) ;

}

f o r ( NeuronGrid : : i t e r a t o r i t = mrNetworkGrid . begin ( ) ; i t !=

mrNetworkGrid . end ( ) ; ++i t ){

i f ( i t−>second−>getType ( ) == ”O”){

ch i ld1−>mrNetworkGrid [ i t−>second−>coords ] = new mrNeuron ( i t

−>second ) ;

i n t pos = i t−>second−>getOutputPos ( ) ;

edgeContainer1 [ i t−>second−>coords ] = i t−>second−>getOutgoing

( ) ;

weightContainer1 [ i t−>second−>coords ] = i t−>second−>

getOutgoingWeights ( ) ;

// vector<bool> ∗oV =outputVector ;

outputElement∗ oe = new outputElement ( pos ,& ch i ld1−>

outputVector ) ;

vector<double> outC ;

outC . r e s i z e ( embeddedDimension ) ;

f o r ( i n t i = 0 ; i < embeddedDimension ; i++){

outC [ i ] = −2.0;

}

ch i ld1−>mrNetworkGrid [ i t−>second−>coords]−>addOutputElement

( ( element ∗) oe , outC ) ;

ch i ld1−>mrNetworkGrid [ i t−>second−>coords]−>IOid = pos ;

}
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e l s e i f ( i t−>second−>getType ( ) == ” I ”){

ch i ld1−>mrNetworkGrid [ i t−>second−>coords ] = new mrNeuron ( i t

−>second ) ;

edgeContainer1 [ i t−>second−>coords ] = i t−>second−>getOutgoing

( ) ;

weightContainer1 [ i t−>second−>coords ] = i t−>second−>

getOutgoingWeights ( ) ;

i n t pos = i t−>second−>getInputPos ( ) ;

ch i ld1−>mrNetworkGrid [ i t−>second−>coords]−>IOid = pos ;

mrSynapse∗ i s = new mrSynapse ( i t−>second−>getThreshold ( ) +

1 ,”S”) ;

de lay ∗ idy = new delay (0 ,”D”) ;

de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t ) idy , ( element

∗) idy ) ) ;

idy−>addOutputElement ( ( element ∗) i s ) ;

i s−>addInputElement ( ( element ∗) idy ) ;

i s−>addOutputElement ( ( element ∗) ch i ld1−>mrNetworkGrid [ i t−>

second−>coords ] ) ;

ch i ld1−>inputComponents [ pos ] = ( element ∗) idy ;

vector<double> inC ;

inC . r e s i z e ( embeddedDimension ) ;

f o r ( i n t i = 0 ; i < embeddedDimension ; i++){

inC [ i ] = −1.0;

}

ch i ld1−>mrNetworkGrid [ i t−>second−>coords]−>addInputElement ( (

element ∗) i s , inC ) ;

}

e l s e i f ( i t−>second−>coords [ RowOrCol ] < cut ){
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ch i ld1−>mrNetworkGrid [ i t−>second−>coords ] = new mrNeuron ( i t

−>second ) ;

edgeContainer1 [ i t−>second−>coords ] = i t−>second−>getOutgoing

( ) ;

weightContainer1 [ i t−>second−>coords ] = i t−>second−>

getOutgoingWeights ( ) ;

}

e l s e {

ch i ld2−>mrNetworkGrid [ i t−>second−>coords ] = new mrNeuron ( i t

−>second ) ;

edgeContainer2 [ i t−>second−>coords ] = i t−>second−>getOutgoing

( ) ;

weightContainer2 [ i t−>second−>coords ] = i t−>second−>

getOutgoingWeights ( ) ;

}

}

f o r ( NeuronGrid : : i t e r a t o r i t = partner−>mrNetworkGrid . begin ( ) ; i t

!= partner−>mrNetworkGrid . end ( ) ; ++i t ){

i f ( i t−>second−>getType ( ) == ”O”){

ch i ld2−>mrNetworkGrid [ i t−>second−>coords ] = new mrNeuron ( i t

−>second ) ;

edgeContainer2 [ i t−>second−>coords ] = i t−>second−>getOutgoing

( ) ;

weightContainer2 [ i t−>second−>coords ] = i t−>second−>

getOutgoingWeights ( ) ;

i n t pos = i t−>second−>getOutputPos ( ) ;

outputElement∗ oe = new outputElement ( pos ,& ch i ld2−>

outputVector ) ;

vector<double> outC ;
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outC . r e s i z e ( embeddedDimension ) ;

f o r ( i n t i = 0 ; i < embeddedDimension ; i++){

outC [ i ] = −2.0;

}

ch i ld2−>mrNetworkGrid [ i t−>second−>coords]−>addOutputElement

( ( element ∗) oe , outC ) ;

ch i ld2−>mrNetworkGrid [ i t−>second−>coords]−>IOid = pos ;

}

e l s e i f ( i t−>second−>getType ( ) == ” I ”){

ch i ld2−>mrNetworkGrid [ i t−>second−>coords ] = new mrNeuron ( i t

−>second ) ;

edgeContainer2 [ i t−>second−>coords ] = i t−>second−>getOutgoing

( ) ;

weightContainer2 [ i t−>second−>coords ] = i t−>second−>

getOutgoingWeights ( ) ;

i n t pos = i t−>second−>getInputPos ( ) ;

ch i ld2−>mrNetworkGrid [ i t−>second−>coords]−>IOid = pos ;

mrSynapse∗ i s = new mrSynapse ( i t−>second−>getThreshold ( ) +

1 ,”S”) ;

de lay ∗ idy = new delay (0 ,”D”) ;

de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t ) idy , ( element

∗) idy ) ) ;

idy−>addOutputElement ( ( element ∗) i s ) ;

i s−>addInputElement ( ( element ∗) idy ) ;

i s−>addOutputElement ( ( element ∗) ch i ld2−>mrNetworkGrid [ i t−>

second−>coords ] ) ;

ch i ld2−>inputComponents [ pos ] = ( element ∗) idy ;

vector<double> inC ;

inC . r e s i z e ( embeddedDimension ) ;

f o r ( i n t i = 0 ; i < embeddedDimension ; i++){
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inC [ i ] = −1.0;

}

ch i ld2−>mrNetworkGrid [ i t−>second−>coords]−>addInputElement ( (

element ∗) i s , inC ) ;

}

e l s e i f ( i t−>second−>coords [ RowOrCol ] > cut ){

ch i ld1−>mrNetworkGrid [ i t−>second−>coords ] = new mrNeuron ( i t

−>second ) ;

edgeContainer1 [ i t−>second−>coords ] = i t−>second−>getOutgoing

( ) ;

weightContainer1 [ i t−>second−>coords ] = i t−>second−>

getOutgoingWeights ( ) ;

}

e l s e {

ch i ld2−>mrNetworkGrid [ i t−>second−>coords ] = new mrNeuron ( i t

−>second ) ;

edgeContainer2 [ i t−>second−>coords ] = i t−>second−>getOutgoing

( ) ;

weightContainer2 [ i t−>second−>coords ] = i t−>second−>

getOutgoingWeights ( ) ;

}

}

mrSynapse∗ s ;

de lay ∗ d ;

f o r ( NeuronGrid : : i t e r a t o r i t = ch i ld1−>mrNetworkGrid . begin ( ) ; i t

!= ch i ld1−>mrNetworkGrid . end ( ) ; ++i t ){
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f o r ( unsigned i n t i = 0 ; i < edgeContainer1 [ i t−> f i r s t ] . s i z e ( ) ;

i++){

i f ( ch i ld1−>mrNetworkGrid . f i n d ( edgeContainer1 [ i t−> f i r s t ] [ i ] )

== chi ld1−>mrNetworkGrid . end ( ) ){

mrNeuron∗ c l o s e s t ;

double d i s t = (maxDims [ 0 ] ∗maxDims [ 0 ] ) + (maxDims [ 1 ] ∗

maxDims [ 1 ] ) ;

f o r ( NeuronGrid : : i t e r a t o r i t 2 = ch i ld1−>mrNetworkGrid . begin

( ) ; i t 2 != ch i ld1−>mrNetworkGrid . end ( ) ; ++i t 2 ){

i f ( i t != i t 2 ){

i f ( d i s t > i t−>second−>distanceTo ( i t2−>second ) ){

c l o s e s t = i t2−>second ;

d i s t = i t−>second−>distanceTo ( i t2−>second ) ;

}

}

}

i f ( ! i t−>second−>i sConnect ion ( c l o s e s t−>coords ) ){

d = new delay ( ( i n t ) round ( d i s t ) ,”D”) ;

de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )d , (

element ∗)d) ) ;

s = new mrSynapse ( weightContainer1 [ i t−> f i r s t ] [ i ] , ”W”) ;

d−>addOutputElement ( ( element ∗) s ) ;

d−>addInputElement ( ( element ∗) i t−>second ) ;

s−>addInputElement ( ( element ∗)d) ;

s−>addOutputElement ( ( element ∗) c l o s e s t ) ;

ch i ld1−>de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )

d , ( element ∗)d) ) ;

i t−>second−>addOutputElement ( ( element ∗)d , c l o s e s t−>coords

) ;
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c l o s e s t−>addInputElement ( ( element ∗) s , i t−>second−>coords )

;

}

}

e l s e {

NeuronGrid : : i t e r a t o r match = chi ld1−>mrNetworkGrid . f i n d (

edgeContainer1 [ i t−> f i r s t ] [ i ] ) ;

i f ( ! i t−>second−>i sConnect ion ( match−>second−>coords ) ){

double d i s t = i t−>second−>distanceTo ( match−>second ) ;

d = new delay ( ( i n t ) round ( d i s t ) ,”D”) ;

de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )d , (

element ∗)d) ) ;

s = new mrSynapse ( weightContainer1 [ i t−> f i r s t ] [ i ] , ”W”) ;

d−>addOutputElement ( ( element ∗) s ) ;

d−>addInputElement ( ( element ∗) i t−>second ) ;

s−>addInputElement ( ( element ∗)d) ;

s−>addOutputElement ( ( element ∗) match−>second ) ;

ch i ld1−>de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )

d , ( element ∗)d) ) ;

i t−>second−>addOutputElement ( ( element ∗)d , match−>second−>

coords ) ;

match−>second−>addInputElement ( ( element ∗) s , i t−>second−>

coords ) ;

}

}

}

}

f o r ( NeuronGrid : : i t e r a t o r i t = ch i ld2−>mrNetworkGrid . begin ( ) ; i t

!= ch i ld2−>mrNetworkGrid . end ( ) ; ++i t ){
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f o r ( unsigned i n t i = 0 ; i < edgeContainer2 [ i t−> f i r s t ] . s i z e ( ) ;

i++){

i f ( ch i ld2−>mrNetworkGrid . f i n d ( edgeContainer2 [ i t−> f i r s t ] [ i ] )

== chi ld2−>mrNetworkGrid . end ( ) ){

mrNeuron∗ c l o s e s t ;

double d i s t = (maxDims [ 0 ] ∗maxDims [ 0 ] ) + (maxDims [ 1 ] ∗

maxDims [ 1 ] ) ;

f o r ( NeuronGrid : : i t e r a t o r i t 2 = ch i ld2−>mrNetworkGrid . begin

( ) ; i t 2 != ch i ld2−>mrNetworkGrid . end ( ) ; ++i t 2 ){

i f ( i t != i t 2 ){

i f ( d i s t > i t−>second−>distanceTo ( i t2−>second ) ){

c l o s e s t = i t2−>second ;

d i s t = i t−>second−>distanceTo ( i t2−>second ) ;

}

}

}

i f ( ! i t−>second−>i sConnect ion ( c l o s e s t−>coords ) ){

d = new delay ( ( i n t ) round ( d i s t ) ,”D”) ;

de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )d , (

element ∗)d) ) ;

s = new mrSynapse ( weightContainer2 [ i t−> f i r s t ] [ i ] , ”W”) ;

d−>addOutputElement ( ( element ∗) s ) ;

d−>addInputElement ( ( element ∗) i t−>second ) ;

s−>addInputElement ( ( element ∗)d) ;

s−>addOutputElement ( ( element ∗) c l o s e s t ) ;

ch i ld2−>de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )

d , ( element ∗)d) ) ;

i t−>second−>addOutputElement ( ( element ∗)d , c l o s e s t−>coords

) ;
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c l o s e s t−>addInputElement ( ( element ∗) s , i t−>second−>coords )

;

}

}

e l s e {

NeuronGrid : : i t e r a t o r match = chi ld2−>mrNetworkGrid . f i n d (

edgeContainer2 [ i t−> f i r s t ] [ i ] ) ;

i f ( ! i t−>second−>i sConnect ion ( match−>second−>coords ) ){

double d i s t = i t−>second−>distanceTo ( match−>second ) ;

d = new delay ( ( i n t ) round ( d i s t ) ,”D”) ;

de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )d , (

element ∗)d) ) ;

s = new mrSynapse ( weightContainer2 [ i t−> f i r s t ] [ i ] , ”W”) ;

d−>addOutputElement ( ( element ∗) s ) ;

d−>addInputElement ( ( element ∗) i t−>second ) ;

s−>addInputElement ( ( element ∗)d) ;

s−>addOutputElement ( ( element ∗) match−>second ) ;

ch i ld2−>de lays . i n s e r t ( pair<u int64 t , element ∗>(( u i n t 6 4 t )

d , ( element ∗)d) ) ;

i t−>second−>addOutputElement ( ( element ∗)d , match−>second−>

coords ) ;

match−>second−>addInputElement ( ( element ∗) s , i t−>second−>

coords ) ;

}

}

}

}

vector<mrNetwork∗> c h i l d r e n ;

c h i l d r e n . push back ( c h i l d 1 ) ;
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c h i l d r e n . push back ( c h i l d 2 ) ;

r e turn c h i l d r e n ;

}
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B Sample Files

B.1 Network File

A sample network file from an XOR network. The first 4 lines specify the embedding and

the number of I/O neurons. The rest of the lines describe the neurons and their outgoing

synapses. Synapse lines starting with S specify an input synapse for an input neuron, unlike

other synapses.

Embedded : 2

MaxDims : 5 .000000 5.000000

In : 4

Out : 2

I 0 0 .000000 0.000000 Refrac : 1 Thres : 8

S 9 D 0

D 5 W 5 O 1.000000 5.000000

D 2 W 4 I 2.000000 0.000000

D 3 W 7 I 3.000000 0.000000

O 0 0.000000 5.000000 Refrac : 1 Thres : 6

I 1 1 .000000 0.000000 Refrac : 1 Thres : 2

S 3 D 0

N 1.000000 1.000000 Refrac : 1 Thres : 1

D 1 W −1 I 1 .000000 0.000000

D 1 W 4 I 2.000000 0.000000

O 1 1.000000 5.000000 Refrac : 1 Thres : 1

D 5 W 5 I 0.000000 0.000000

I 2 2.000000 0.000000 Refrac : 1 Thres : 5

S 6 D 0

D 2 W 5 I 0.000000 0.000000

D 5 W −6 O 1.000000 5.000000

I 3 3.000000 0.000000 Refrac : 1 Thres : 1

S 2 D 0
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B.2 Parameter File

A sample parameter file. Sets of parameters include comments above them. Comment lines

start with #. The comments describe the valid values for that parameter, and explain how

that parameter affects the networks.

#This i s the maximum magnitude o f the synapt i c weights

#I f the va lue i s s e t to k , then the weights can range from −k to k

#Also note that i f Real LTP/LTD i s used , then the model w i l l s t i l l

#be cons t ra ined by the same LRS −> HRS range

#Should be an i n t e g e r va lue

MAXLEVEL: 10 ,

#This i s the maximum thre sho ld value o f the neuron

#Notice the r e l a t i o n s h i p between the weight and thre sho ld

#I f a synapse has a weight o f 1 , and neuron has a th r e sho ld o f 2

#then i t w i l l take 2 synapt i c f i r e s to produce 1 neuron f i r e

#Should be an i n t e g e r va lue

MAXTHRESHOLD: 10 ,

#This d e f i n e s the behavior o f the th r e sho ld

#I f VAR then thre sho ld v a r i e s from 1 to MAXTHRESHOLD

#I f FIXED thre sho ld i s f i x e d at MAXTHRESHOLD

THRESHOLDTYPE: VAR,

#This s p e c i f i e s the dimension that the network i s embedded in

#Currently , the model i s only capable o f 2D embeddings

#Arbi t rary embeddings are a c o n s i d e r a t i o n f o r fu tu r e work
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#Should be an i n t e g e r va lue

DIMENSION: 2 ,

#This s p e c i f i e s whether any l e a r n i n g should be done

#I f on , then l e a r n i n g based on LEARNINGTYPE w i l l be used

#Should be a s t r i n g ON or OFF

LEARNING: ON,

#This s p e c i f i e s the l e a r n i n g type and c o n t r o l s LTP/LTD

#CONSTANT − i n c r e a s e / dec r ea s e weight by constant value , s p e c i f i e d

by

#the LEARNINGPARAM v a r i a b l e

#REAL − perform l e a r n i n g that a c cu ra t e l y models the dev i c e

#STDP − not implemented yet

#Should be a s t r i n g s p e c i f i e d above

LEARNINGTYPE: REAL,

#This i s a va lue used by the the p o t e n t i a t i o n / depr e s s i on f u n c t i o n s

#Constant − value to i n c r e a s e / dec r ea s e by

#Real − unused , might make t h i s the delR value

#STDP − the i n t e g e r number o f c y c l e s to t rack f o r STDP

#Should be f l o a t i n g po int va lue

LEARNINGPARAM: 3 . 0 ,

#This s e t s the maximum value f o r a neuron ’ s r e f r a c t o r y per iod

#Should be an i n t e g e r
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MAXREFRACPERIOD: 1 ,

#This s e t s the minimum value f o r a neuron ’ s r e f r a c t o r y per iod

#This i s important f o r STDP

#with STDP t h i s va lue should be at l e a s t the l e a r n i n g param

#i f REFRACTYPE i s FIXED t h i s va lue i s not used

#not sure how t h i s w i l l work f o r 0

#should be an i n t e g e r

MINREFRACPERIOD: 1 ,

#This determines how the r e f r a c t o r y pe r i od s should vary

#FIXED − Al l neurons w i l l have the same r e f r a c t o r y per iod

# t h i s r e f r a c t o r y per iod w i l l be MAXREFRACPERIOD

#VAR − The r e f r a c t o r y pe r i od s w i l l be uniform random

# from 1 to MAXREFRACPERIOD

#Should be a s t r i n g

REFRACTYPE: FIXED,

#These are the synapse / memristor parameters

#These f a c i l i t a t e LTP/STDP

MEMHRS: 50000 ,

MEMLRS: 5000 ,

CLOCKPERIOD: 40E−9,

POSITIVESWITCHTIME: 1E−6,

NEGATIVESWITCHTIME: 1E−6,

POSITIVETHRESHOLDVOLTAGE: . 7 5 ,

NEGATIVETHRESHOLDVOLTAGE: . 7 5 ,
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LEARNINGVOLTAGE: 1 . 2 ,

#t h i s s e t s a lower l i m i t on the accumulation

#ex . you have a neuron r e c e i v e 3 charges from a synapse with a

weight −5

#t h i s neuron w i l l accumulate to −12, not −15

#only used f o r lower l im i t , upper l i m i t i s i r r e l e v a n t as th r e sho ld

handles that

#Note , t h i s param i s very important f o r accuracy between model and

hardware

THRESHOLDLIMIT: 12 ,

#Parameters we ’ re us ing f o r v a r i a b i l i t y a n a l y s i s

#use v a r i a t i o n as 1 or 0( on or o f f )

#d e v i a t i o n s are read as pe r cent s

USEMEMVARIATION: 0 ,

HRSDEV: 20 . 0 ,

LRSDEV: 10 . 0 ,

PTDEV: 10 . 0 ,

NTDEV: 10 . 0 ,

PSTDEV: 5 . 0 ,

NSTDEV: 5 . 0 ,

USECYCVARIATION: 0 ,

PDRDEV: 10 . 0 ,

NDRDEV: 10 . 0 ,

#make t h i s TRUE i f you want to have events dynamical ly pr in ted

during runtime

PRINTEVENTS: FALSE,
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#make t h i s TRUE i f you want to c o l l e c t a c t i v i t y f o r energy

e s t imat i on

COLLECT ACTIVITY: FALSE,

#Parameters f o r energy e s t imat ion

#Spec i f y energy consumed f o r each opera t i on o f component

#Al l un i t s are assumed to be the same

NEURON FIRE: 1 . 0 ,

NEURONACCUM: 1 . 0 ,

NEURON PASSIVE: 1 . 0 ,

SYNAPSE ACTIVE: 1 . 0 ,

SYNAPSE POT: 1 . 0 ,

SYNAPSE DEP: 1 . 0 ,

DELAY MOVESPIKE: 1 . 0 ,

DELAY PASSIVE: 1 . 0 ,

}

B.3 Input File

A sample 40 cycle input for an XOR network. Every 10 cycles the input neurons are pulsed.

CC 0 I 0 I 1 I 0 I 1

CC 1 I 0 I 0 I 0 I 0

CC 2 I 0 I 0 I 0 I 0

CC 3 I 0 I 0 I 0 I 0

CC 4 I 0 I 0 I 0 I 0

CC 5 I 0 I 0 I 0 I 0

CC 6 I 0 I 0 I 0 I 0

CC 7 I 0 I 0 I 0 I 0
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CC 8 I 0 I 0 I 0 I 0

CC 9 I 0 I 0 I 0 I 0

CC 10 I 0 I 1 I 1 I 0

CC 11 I 0 I 0 I 0 I 0

CC 12 I 0 I 0 I 0 I 0

CC 13 I 0 I 0 I 0 I 0

CC 14 I 0 I 0 I 0 I 0

CC 15 I 0 I 0 I 0 I 0

CC 16 I 0 I 0 I 0 I 0

CC 17 I 0 I 0 I 0 I 0

CC 18 I 0 I 0 I 0 I 0

CC 19 I 0 I 0 I 0 I 0

CC 20 I 1 I 0 I 0 I 1

CC 21 I 0 I 0 I 0 I 0

CC 22 I 0 I 0 I 0 I 0

CC 23 I 0 I 0 I 0 I 0

CC 24 I 0 I 0 I 0 I 0

CC 25 I 0 I 0 I 0 I 0

CC 26 I 0 I 0 I 0 I 0

CC 27 I 0 I 0 I 0 I 0

CC 28 I 0 I 0 I 0 I 0

CC 29 I 0 I 0 I 0 I 0

CC 30 I 1 I 0 I 1 I 0

CC 31 I 0 I 0 I 0 I 0

CC 32 I 0 I 0 I 0 I 0

CC 33 I 0 I 0 I 0 I 0

CC 34 I 0 I 0 I 0 I 0

CC 35 I 0 I 0 I 0 I 0

CC 36 I 0 I 0 I 0 I 0

CC 37 I 0 I 0 I 0 I 0
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CC 38 I 0 I 0 I 0 I 0

CC 39 I 0 I 0 I 0 I 0
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