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Abstract 

 HID lamps are used in applications where high luminous intensity is desired. 

They are used in a wide range of applications from gymnasiums to movie theatres, from 

parking lots to indoor aquaria, from vehicle headlights to indoor gardening. They require 

ballasts during start-up and also during operation to regulate the voltage and current 

levels. Electronic ballasts have advantages of less weight, smooth operation, and less 

noisy over electromagnetic ballasts. A number of topologies are available for the 

electronic ballast where control of power electronic devices is exploited to achieve the 

performance of a ballast for lighting. A typical electronic ballast consists of a rectifier, 

power factor control unit, and the resonant converter unit. Power factor correction (PFC) 

was achieved using a boost converter topology and average current mode control for gate 

control of the boost MOSFET operating at a frequency of 70 kHz. The PFC was tested 

with Si and SiC MOSFET at 250 W resistive load for varying input from 90 V to 264 V. 

An efficiency as high as 97.4% was achieved by Si MOSFET based PFC unit. However, 

for SiC MOSFET, the efficiency decreased and was lower than expected. A maximum 

efficiency of 97.2% was achieved with the SiC based PFC. A simulation model was 

developed for both Si and SiC MOSFET based ballasts. The efficiency plots are 

presented. A faster gate drive for SiC MOSFET could improve the efficiency of the SiC 

based systems. 

 

 

 iii



 

Table of Contents 

Acknowledgements ................................................................................................................ ii 

Abstract..................................................................................................................................iii 

Table of Contents .................................................................................................................. iv 

List of Figures.......................................................................................................................vii 

Chapter 1 

Introduction............................................................................................................................ 1 

1.1 TYPES OF LAMPS ........................................................................................................ 2 

1.1.1 LIGHTING SYSTEM IN US AND HID LAMPS............................................................. 5 

1.2 BALLAST.................................................................................................................... 6 

1.2.1 Types of Ballasts ................................................................................................ 7 

1.2.2 Electronic Ballasts for HID Lights .................................................................... 9 

1.3 SEMICONDUCTOR MATERIALS ................................................................................... 9 

1.3.1 Wide Band Gap Materials ............................................................................... 10 

1.3.2 Silicon Carbide ................................................................................................ 12 

1.4. CHAPTERS’ DESCRIPTION........................................................................................ 13 

1.5. SUMMARY............................................................................................................... 14 

Chapter 2 

Literature Review ................................................................................................................ 15 

2.1. INTRODUCTION TO ELECTRONIC BALLASTS FOR HID LAMPS................................... 15 

 iv



 

2.2. EMI FILTER............................................................................................................. 17 

2.3. POWER FACTOR CORRECTION................................................................................. 18 

2.3.1. PFC Design for Simulation............................................................................. 22 

2.4. INVERTER................................................................................................................ 29 

2.5. RESONANT FILTER................................................................................................... 30 

2.6. PREVIOUS WORK ..................................................................................................... 30 

2.7. BENEFITS OF SIC SCHOTTKY DIODES...................................................................... 34 

2.8 SUMMARY................................................................................................................ 36 

Chapter 3 

Simulation Model ................................................................................................................. 37 

3.1. INTRODUCTION TO PFC DESIGN.............................................................................. 37 

3.2. SIMULATION MODEL IN PSIM ................................................................................ 38 

3.3. MATHEMATICAL LOSS MODELING IN SIMULINK ..................................................... 39 

3.4 SUMMARY................................................................................................................ 43 

Chapter 4 

Simulation and Experimental Results................................................................................ 45 

4.1 SI AND SIC CHARACTERISTICS ................................................................................. 45 

4.2 SIMULATION AND EXPERIMENTAL RESULTS OF PFC ................................................ 48 

4.3 SUMMARY................................................................................................................ 57 

Chapter 5 

Conclusion and Future work .............................................................................................. 58 

 v



 

5.1 CONCLUSIONS .......................................................................................................... 58 

5.2 FUTURE WORK ......................................................................................................... 60 

5.3 SUMMARY................................................................................................................ 61

 

List of References................................................................................................................. 62 

Vita ........................................................................................................................................ 67 

 vi



 

List of Figures 

Figure 1.1 US lighting energy used by sector in 2001………………………. 2 

16 

17 

 

18 

20 

20 

 

 

 

23-27 

 

 

 

 

 

31-32 

38 

39 

44 

Figure 2.1 Basic block diagram of an electronic ballast for lamps………….. 

Figure 2.2 EMI filter………………………………………………………... 

Figure 2.3 Current and voltage waveforms without PFC gate control for 

boost MOSFET ………………………………………………… 

Figure 2.4 Passive Power factor correction circuit ………………………… 

Figure 2.5 Active power factor correction circuit.………………………….. 

Figure 2.6  general circuit topologies of a single phase PFC with (a) boost, 

(b) with ac power switch, (c) full bridge type, (d) Zeta type, (e) 

Sepic type, (f) Cuk type, (g) buck-boost type, (h) semiconductor 

type, (i) half bridge type, (j) semiconverter type 1 ……………… 

Figure 2.7 The general resonant inverter topologies with lamp load (a) LCC 

type with full-bridge series resonant inverter, (b) half bridge 

inverter with LCC type resonance, (c) full bridge inverter with 

LC type series resonance parallel-loaded inverter (d) LC type 

with half-bridge parallel resonant inverter, (e) single-ended 

resonant typed inverter…………………………………………... 

Figure 3.1 Experimental design of the ballast ………………………………. 

Figure 3.2 PSIM model for power factor correction circuit ………………… 

Figure 3.3 MATLAB Simulink model of the losses in the PFC circuit.…….. 

 vii



 

Figure 4.1 Forward and transfer characteristics of SiC from experimental 

tests……………………………………………………………….. 

Figure 4.2 Variation of on-resistance with temperature for Si and SiC 

MOSFETs……………………………………………………..... 

Figure 4.3 Variation of threshold voltage with temperature in Si and SiC 

MOSFETs……………………………………………………….. 

Figure 4.4 Variation of turn-on and turn-off losses in SiC MOSFET with 

temperature.……………………………………………………… 

Figure 4.5 Input and output waveforms of current and voltage of the Si 

MOSFET based PFC circuit at input voltage of 120V and output 

power of 250 W.…………………………………………………. 

Figure 4.6  Input and output waveforms of current and voltage of the SiC 

MOSFET based PFC circuit at input voltage of 120V and output 

power of 250 W………………………………………………….. 

Figure 4.7 Efficiency versus input voltage obtained by plotting 

experimental and simulation results of Si based PFC…………… 

Figure 4.8 Efficiency versus input voltage obtained by plotting 

experimental and simulation results of SiC based PFC…………. 

Figure 4.9 Comparison of experimental results of Si and SiC based PFC 

unit……………………………………………………………….. 

 

46 

 

47 

 

47 

 

49 

 

 

50 

 

 

50 

 

52 

 

53 

 

54 

 Figure 4.10. Comparison of simulation results of Si and SiC based 

PFC………………………………………………………………. 55 

 viii



 

Chapter 1 

Introduction 

  Direct lighting is one of the largest users of electricity. It amounts to 8.2quads or 22% 

of all the electrical energy in the US. In addition, it is one of the growing users of electrical 

energy. The cost of lighting is over $12 billion a year. This is the cost to individuals, families, 

businesses, and government agencies to light homes, offices, factories, sporting stadiums, 

roadways, streets, and airports. The total US site lighting consumption is 765 Terawatt-

hours/year. Figure 1.1 is a pie diagram indicating US lighting energy usage in 2001. The 

commercial sector uses the largest part of lighting which is about one half (51%) of the lighting 

energy. The second largest sector is the residential housing sector using over a quarter (27%) of 

the lighting energy. The industrial sector uses about 14%, while outdoor stations use the 

remaining 8% of the lighting energy. 

Lighting electricity generation incurs huge indirect environmental and direct costs. 

Indirect environmental costs include environmental pollution due to smog, particulate 

emissions, acid rains, global warming, waste disposal, and health related illnesses.  

A significant amount of energy is spent on lighting in buildings, commercial places, 

and street lighting. A good lighting system should ensure comfort, economy, and innovation. 

The design of a building depends on the lighting to achieve the desired effect and function, both 

inside and outside. Lighting can be classified based on the purpose of its use into four types-

commercial lighting, industrial lighting, architectural lighting, and decorative lighting.  
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1.1 Types of lamps 

 There are four types of lamps which are described below. 

Incandescent lamps: They are the most common lamps with numerous 

applications as light sources in homes, shops, and other commercial environments. A thin 

filament, most commonly tungsten, glows when current is passed through it producing 

heat and light. They have many advantages: low initial cost, excellent color reproduction 

qualities, and good optical central over spread and direction of light, flexibility and 

versatility, with no need for electronic starting or control systems. However, incandescent 

lamps are wrought with short life (around 1000 hours) and less luminous efficiency- only 

5% of the energy is illuminated as light the remaining 95% as heat. 

Halogen lamps: They are high output light sources. They use halogen gas to 

improve life of the lamp and also burn brightly. Advantages of Halogen lamps include 

longer life (about six times of life expectancy of incandescent lamps), whiter light, and 

better beam control, direction of light, and compact. 

Fluorescent lamps: Fluorescent light is produced when the phosphor coating 

converts UV light to visible light when a gas discharge is created in the tube. Advantages 

are due to large surface area that ensures more diffused and directional light. Proper 

choice of coatings is necessary to obtain low initial cost, improved color rendering, and 

energy savings. 

High Intensity Discharge lamps: HID lamps produce light when an electric arc is 

produced across tungsten electrodes inside fused quartz or alumina tube filled with gas 
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and metals. The gas helps in starting while the metals produce light when heated to 

evaporation forming plasma. 

 Ballasts are required to start HID lamps. While some of the lamps are started 

using high voltage pulses, mercury vapor and metal halide lamps are started using 

another electrode near one of the main electrodes. 

Applications:  When high lighting over large areas, high efficiency and luminous 

intensity are desired, HID lamps find their use. Gymnasiums, large public areas, 

warehouses, movie theaters, outdoor activity areas, roadways, parking lots, residential 

areas, indoor aquaria, indoor gardening, etc. are some of the places where HID lamps are 

used. 

HID lamps are being used as vehicle headlamps. They are also being used on 

Airbus and other aircraft for landing and taxi lights. 

Types of HID lamps: 

1) Metal Halide lamps: Offers high energy efficiency, white light, and excellent 

color reproduction. 

Applications: retail displays, high bay industrial areas, sports lighting, and flood 

lighting. 

Advantages: efficient compared to mercury and incandescent lamps. 

Disadvantages: Specially designed ballasts used, short life among HID lamps, 

horizontal operation reduces lamp life. 

2) High pressure sodium lamps: long term economics, efficient. 

Applications: large parks, shopping centers, roadways and amenity areas. 
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Advantages: most efficient among HID lamps, warm-up time is the shortest, 

long lamp life. 

Disadvantages: requires ballast, time taken to reach full output is considerably 

high (five to ten minutes). Ballast maintenance problems might limit life. 

3) Low pressure sodium lamps: extremely efficient, economic operation over 

long periods.  

Applications: best suited for street lighting. 

Advantages: the most energy efficient, restart immediate, uniformity of light 

distribution. 

Disadvantages: poorest color rending, expensive to install, wattage increases 

during lifetime. 

4) Mercury Vapor: Produces light when current passes through mercury vapor 

Applications: Industrial applications and outdoor lighting. 

Advantages:  more efficient than incandescent lamps, wide range of ratings, 

colors and sizes, low unit cost, high average life. 

Disadvantages: least efficient among HID, special ballast for dimming 

required, maximum warm-up time, restart time. 

1.1.1 Lighting System in US and HID Lamps 

HID lights find their applications mainly in industrial lighting which form, as 

already mentioned, about 14% of the total lighting in US in 2001, as high bay warehouse 

lighting. In outdoor stationary sector (8% of total lighting in 2001), HID lamps account 

for 87% of electricity of which 54% is used by roadway lighting and parking lots use 
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39%. Well lit parking areas create a sense of personal safety, attract customers, and 

facilitate better traffic flow, improving economic development and deterring crime and 

vandalism.   

1.2 Ballast 

The ballast is used to control the starting and operating voltages for the lamp. It is 

usually required for gas discharge lights: fluorescent, neon lights and High Intensity 

Discharge lamps. It can be as simple as a resistor or as complex as power electronic 

circuit. 

  The discharge lights have negative resistance i.e., as temperature increases, their 

resistance decreases thereby increasing the current flow through them. Hence, a ballast is 

used to control the flow of current and protect the light. Small lights use passive 

components which are run by less or almost no power.  

During the starting of the lamp, high voltage is required to establish an arc 

between the two electrodes and as the arc is established, the voltage should be reduced 

and current regulated to produce steady light output. These functions are achieved with 

the help of a ballast. 

The life of a lamp is dependent on the electrode temperature, and maintaining an 

optimum temperature ensures that the lamp lasts long. This can be achieved by using a 

separate unit to provide low voltage during starting and typical voltage during the normal 

operation. 

For maximum utilization of the lamp at rated output and life, it is advisable to 

match the electrical characteristics of the lamp with that of the ballast. Conventionally, to 
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ensure maximum utilization, ballasts are designed to operate at a specific voltage, for a 

specific lamp type, and specific number of lamps.  

For efficient lamp-ballast system, the efficiency of the ballast has to be increased 

by decreasing the losses. The ballasts for fluorescent lamps include the features of 

preheating, instant start, and rapid restart. In a preheat ballast, a starter preheats the lamp 

filament before starting voltage to arc the lamp is provided. During operation, the power 

from the filaments is removed to minimize losses. Instant start ballasts do not need 

filament power, but instead need high starting voltages to start the lamp instantly. In rapid 

start ballasts, the filament is heated continuously as the lamp is started and operated. A 

separate starter is not required for instant and rapid start ballasts.  

1.2.1 Types of Ballasts 

Ballasts can be classified into three types: resistive ballasts, electromagnetic 

ballasts, and electronic ballasts.  

Resistive ballasts are the most primitive and simplest of ballast types. Earlier 

automobile ignition systems used resistors as ballasts to regulate the ignition voltage. The 

resistor can be fixed or variable. A fixed resistor is used for simple, low-powered loads 

such as a neon lamp. The large ballast resistance dominates the resistance of the lamp 

even during its operation in negative resistance and limits the current flow through the 

lamp. Self variable resistors act like positive resistances to compensate for the negative 

resistance of the lamp. 

Advantages: simple. 

Disadvantages: high power losses (for lamps, no precise control). 
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Electromagnetic ballasts use the principle of electromagnetic induction to provide 

starting and operating voltages. An inductor is used to generate the necessary 

electromagnetism. In an ideal or theoretically perfect reactance, no power would be lost 

while limiting the current flow; realistically, losses due to resistance can only be 

minimized, not eliminated entirely. Usually, these ballasts are used to power fluorescent 

lamps, neon lamps, and HID lamps. For high power applications, the ballast can include 

an igniter also. 

Electromagnetic ballasts limit the flow of current to the light but do not change 

the frequency of the input power. Hence a flicker is introduced in the light. The rate of 

flicker is twice the frequency of the power source at 100Hz or 120Hz. A lead-lag lighting 

ballast can minimize flicker when connected to two lamps by alternating the flow of 

current to them: one leading the frequency of the input power and the other lagging 

behind it. 

Advantages: Minimal losses in the inductor; the sudden change in current 

produces a voltage spike which can be used to strike an arc to light the lamp; 

longer ballast life. 

Disadvantages: phase difference between current and voltage introduced resulting 

in poor power factor, bulky, low efficiency, high starting current, flickering, noisy 

and single use restriction.  

Electronic ballasts start and regulate fluorescent lamps with solid state electronic 

circuitry rather than the traditional core and coil assembly. They can alter frequency as 

high as 20 kHz -1MHz. Operation at high frequency has two advantages: improved 

efficiency and elimination of flickering in the lamps completely. Due to the absence of 
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magnetic coils, losses are reduced and hence higher efficiency and cooler operation as 

compared to electromagnetic ballasts is achieved. 

Advantages: higher efficiency, high frequency operation, cooler operation, less 

weight, less noise, no flicker. 

Disadvantage: complex circuitry. 

1.2.2 Electronic Ballasts for HID Lights 

 HID lamps make a major impact on lighting and energy consumed in lighting. 

The HID lighting systems can be made more efficient by improving the ballast energy 

efficiency and by providing flexible energy saving service features. Therefore an 

opportunity to provide an impact on the illumination efficiency of the mentioned lighting 

sectors is significant. Innovative power electronics technology and optimum circuit 

design are considered to improve efficiency of the ballast in the power range of HID 

wattage. 

1.3 Semiconductor Materials 

Silicon is the most commonly used material for making semiconductor devices 

because it is freely available in pure form. There are materials that exhibit superior 

properties than Silicon. Gallium Arsenide (GaAs), Silicon Carbide (SiC), and diamond 

are some of those materials that are being tested for different characteristics superior to 

Silicon. 

Disadvantages of Silicon based semiconductor devices acting as switches are: 

• They are thwarted with limited breakdown voltage and power ratings. 
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• Limited junction temperature 

• Limited switching frequency for power ratings more than a few tens of kilowatts. 

1.3.1 Wide Band Gap Materials 

The present day Silicon technology cannot meet all the application requirements 

(especially high voltage and temperature). Wide band gap semiconductors have several 

advantages.  

• The potential difference between the valence band and the conduction band in 

wide band gap semiconductors is greater than that of Silicon; this allows the 

device to withstand higher electric field than that of Silicon. 

• Higher breakdown electric field allows higher doping levels which in turn results 

in  

a) lower conduction on-resistance, thereby higher efficiency 

b) Less number of devices required in series to achieve high breakdown 

voltage. 

c) Thin wafers that occupy less space. 

• Wide band gap materials have higher thermal conductivity as compared to 

Silicon. It means it is easier to remove heat from these materials in high 

temperature applications. 

• Forward and reverse characteristics vary slightly with temperature, therefore are 

more reliable. 

• High temperature operation capability as high as 10 times that of Silicon. 

However, wideband gap semiconductors also have disadvantages. 
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• The manufacturing processes are less efficient. Low yield is obtained because of 

defects such as micropipes. 

Micropipes are defects in the crystalline structure that cannot block 

voltage and leads eventually to short circuit. Defect density presently is in 

the range of 1 to 10/cm2. 

• Expensive because of low yield and limited availability. 

• High temperature packaging techniques are required to take advantage of high 

junction temperature rating. Such packaging techniques are not yet available. 

Table 1.1 shows the properties of different semiconductor materials potential for power 

devices.  

Table 1.1 Comparison of properties of different semiconductor materials 

Property Si GaAs 3C-SiC 6H-SiC Diamond 
Band gap at 300K (eV) 1.12 1.43 2.2 2.9 5.5 

Relative Dielectric 
constant 11.8 12.8 9.7 10 5.5 

Breakdown electric 
field(V/cm) 3×105 4×105 4×106 4×106 1×107

Thermal conductivity 
(W/cm-oC) 1.5 0.5 5.0 5.0 20 

Maximum operating 
temperature(K) 300 460 873 1240 1100 

Melting temperature(oC) 1415 1238 Sublime 
>1800 

Sublime 
>1800 

Phase 
change 
2200 

Electron mobility at 
300K(cm2/V-s) 1400 8500 1000 600 2200 

Specific drift resistance 
(ohm/cm2) 1 6.4×10-2 9.6×10-3 9.6×10-3 3.7×10-5

Drift region doping 
density for 1000V step 

junction 
1.3×1014 5.7×1014 1.1×1016 1.1×1016 1.5×1017
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1.3.2 Silicon Carbide 

Rapid advance in Silicon Carbide technology and better performance of SiC as 

compared to GaAs for power devices makes it more viable for power applications. SiC 

Schottky diodes, JFETs and MOSFETs are being experimentally tested for their superior 

characteristics. 

Silicon carbide is the most mature of wide band gap semiconductors. Its advantages 

over Silicon are listed below. 

• The specific drift region resistance of SiC based devices is 0.001 times that of 

Silicon. 

• For a 1000V step junction fabricated in Si and SiC materials, the drift region 

doping density of SiC is 100 times that of Silicon, the width of the drift region is 

reduced to 1/10 th that of Silicon. 

• SiC can operate at temperatures as high as 600oC while silicon devices can 

withstand temperatures as high as 150oC. 

• SiC devices have higher breakdown voltages of about 5 to 30 times that of 

Silicon. 

• They have higher thermal conductivity and thus lower junction to case thermal 

resistance. 

• SiC devices are thinner, have lower on-resistances. Higher concentration of 

doping results in lower series resistance. Unipolar SiC devices have on-resistances 

almost 100 times lower for low breakdown voltages and for high breakdown 
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voltages, on-resistance is around 300 times lower. With lower on-resistance, SiC 

unipolar devices have lower conduction losses and hence high overall efficiency. 

With these advantages of Silicon Carbide devices, the use of SiC devices in the ballast 

circuit is being considered for improved efficiency. 

This project explores the possible effect on efficiency by using Silicon Carbide 

devices in the electronic ballast system.  An electronic ballast circuit using special 

material components to reduce losses for HID lamps is proposed to achieve an “ultra” 

high efficiency of 96 %. The first stage of the ballast which is the power factor correction 

boost converter has demonstrated an efficiency of 98% using Si MOSFET as the switch. 

Efficiency of the ballast using SiC MOSFETs has been studied. The second stage of the 

ballast, a DC to high frequency inverter is being designed by Epic Systems Inc. to 

achieve 98% efficiency. Thus the overall efficiency of the ballast is expected to be 96%. 

1.4. Chapters’ Description 

Chapter 2 describes the basic topology of an electronic ballast. It presents the 

various types of ballasts and presents the literature review on the various methods 

proposed. 

Chapter 3 presents the overview of the project. It also describes the mathematical 

modeling of the loss system and describes the simulation methodology. The simulations 

in PSIM and MATLAB are discussed in detail. 

Chapter 4 presents the experimental setup. The simulation and experimental 

results are compared and analyzed.  
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Chapter 5 comprises the conclusion and the prospective future work in the design 

of the ballast system. 

1.5. Summary 

This chapter briefly introduces the various lighting systems. It discusses the basics 

of a ballast, different types of ballasts, and the advantages of electronic ballast. It also 

presents an overview of the various semiconductor materials and some advantages of 

Silicon Carbide over Silicon. Finally it presents a preliminary overview of the project. 

The overview of the chapters to follow is also presented. 
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Chapter 2 

Literature Review 

This chapter describes the main components of the ballast circuit in detail. Section 

2.1 is an introduction about the components of the electronic ballast. Section 2.2 

describes briefly the electromagnetic interference (EMI) filter, while section 2.3.describes 

the basic Power Factor Corrector (PFC) design and also the simulation modeling of PFC 

and the different types of power factor correction methods. Sections 2.4 and 2.5 briefly 

outline inverter and resonant filter functioning in the electronic ballast. Previous literature 

is summarized in section 2.6, and section 2.7 presents the SiC technology used in 

electronic ballasts. 

2.1. Introduction to Electronic ballasts for HID lamps 

High starting voltage is required to strike a lamp, and it is necessary to regulate 

the arc currents during steady state operation. These functions are provided by a ballast. 

Electronic ballasts are widely used because of their light weight, small size, and higher 

efficiency. 

Electronic ballasts can be divided based on the output wave shape and frequency as: 

Direct current ballast:        These are used with lamps operating with direct current. 

Low frequency ballast:      These are used with lamps operating at square wave output 

with a frequency between 50 Hz and 400 Hz. 

High frequency ballast:    These are used for lamps operating at high frequencies of 

19 kHz to 100 kHz. 
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Very high frequency ballast: For frequencies above 100 kHz, these ballasts are used. 

The lamps are known to operate until 1000 kHz. 

The basic electronic ballast circuitry can be divided into sections based on the 

function each section does. Figure 2.1 demonstrates the block diagram that can be used to 

describe an electronic ballast system. The components of the ballast include: 

1) AC/DC converter 

2) EMI filter 

3) Power factor correction converter 

4) Inverter 

5) Passive filter. 

AC-DC power converters are used increasingly due to high efficiency and smaller 

size and weight. The diode bridge rectifier is the most popular AC/DC converter whereby 

the input sinusoidal voltage is converted to dc voltage. The ripple in the output voltage is  

 

Power 
Factor 

Correction 

Diode 
bridge 

rectifier 

DC high 
frequency 
inverter 

Resonant 
filter 

EMI 
filter 

Input 
Voltage 

Output  

 

Figure 2.1 Basic block diagram of an electronic ballast for lamps 
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reduced by a large filter capacitor at the rectifier output. Because of this large capacitor, 

the current drawn by the converter is rich with lower order harmonics. With proliferation 

of converters, pulsating input current is drawn from the input line. To limit low order 

harmonics and low power factor (current distortion), utilities enforce regulations to 

maintain power quality [3]. So, the design of the converter should be such that the power 

factor is closer to unity and the input current distortion is minimal. 

2.2. EMI filter 

Electromagnetic interference filter plays an important role in reducing the total 

harmonic distortion and hence improving the efficiency. This filter can prevent the radio 

frequency interference of the circuit with other adjacent circuits. 

It comprises of two small inductors of the order of milliHenry, a toroidal ferrite, 

capacitance of the order of 0.1 microFarads, and two capacitors of the order of 

nanoFarads, a huge resistance of the order of megaohms and a varistor to protect from 

over voltage. Figure 2.2 shows the basic structure of an EMI filter. 
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C 
C1

L1
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A 
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Figure 2.2 EMI filter 
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Input current 
without power 
factor correction 
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boost MOSFET 

Figure 2.3 Current and voltage waveforms without PFC gate control for boost MOSFET 

2.3. Power Factor Correction 

The simplest AC-DC converter is a diode bridge rectifier with a capacitor filter. 

Some of the single phase switch mode power supply units use this conversion unit. 

However, this is thwarted by limitations- 

(i)The output voltage cannot be controlled due to the output capacitor and changes 

with output current.  

(ii)The power factor is very low in the range of 0.6-0.8. High line current 

distortion is the main drawback of this scheme. 

To improve power quality, Power Factor Correction (PFC) schemes are proposed. 

As the name suggests the PFC circuit ensures that input current follows the input voltage 

thereby correcting the power factor, and maintaining unity power factor. Figure 2.3 

demonstrates the input waveforms in the absence of PFC control of gate to boost 

MOSFET. The operation of the PFC circuit is better explained based on the type of 

circuit it is made of. Based on the type of components used, PFC circuits can be classified 

as [3]: 
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a) Passive power factor correction technique   

b) Active power factor correction technique 

Passive power factor correction circuitry realizes power factor correction with the 

help of passive components, inductor and capacitor. It is usually an LC filter inserted 

between the AC input mains and the input of the diode bridge rectifier. Figure 2.4 shows 

the basic circuit design of a passive PFC circuit.  

Advantages: Passive PFC technique is simple, rugged and robust. 

Disadvantages: They are bulky and heavy. The power factor cannot be very high. 

In active power factor correction, at least a single switch i.e., switched mode power 

supply technique, is used to shape the input current in phase with the input voltage. It is 

usually a dc-dc converter inserted between the output of the diode bridge rectifier and the 

load. Figure 2.5 shows the basic circuit design of a passive PFC circuit.  

Advantages: It is smaller in size, light weight. Reduced harmonics and higher power 

factor are achieved as compared to passive PFC technique. 

Disadvantages: The switching losses reduce the overall efficiency. The switching 

control scheme is complex and also consumes significant amount of power. 

Relatively high cost is another drawback of this technique. 

The DC-DC converters are classified depending on the output as 

1) Buck 

2) Flyback 

3) Boost 

4) Cuk 
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         Figure 2.4 Passive Power factor correction circuit 

 
 

 

 

Figure 2.5 Active power factor correction circuit. 
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Buck converter is used when output voltage lower than the input is desired. 

Higher EMI is produced due to discontinuous input current. It is not efficient for power 

factor correction. Flyback topology is used in applications where the output voltage can 

be isolated and be higher or lower than input voltage. But higher switching voltage and 

discontinuous input current limit its use as PFC topology. 

The boost converter topology is the most commonly used topology for power 

factor correction. It is used when the output voltage is higher than the input voltage. 

Current mode control is easy and less EMI is generated. However, isolation of input and 

output is not achieved. 

Cuk type of topology ensures that the input current is continuous even though it 

operates in discontinuous conduction mode. However, it is limited by increased voltage 

and current stress. 

Based on the switching technique for maintaining the power factor, the active 

power factor correction can be classified further into  

a) Pulse Width Modulation (PWM) PFC  

b) Resonant PFC and  

c) Soft switching PFC.  

In PWM PFC technique, the device is switched based on pulse width modulation. 

The switching frequency is constant, but the turn-on and turn-off times are variable. 

Advantages: simple, easy to control and low current and voltage stresses. 

Disadvantages: significant switching losses. 

 In a resonant converter, as the name suggests, the resonance of the inductor and 

capacitor determines the time of switching on and off. Gain-boosting characteristic 
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ensures power factor correction. Variable switching frequency can be obtained using 

resonant converter topology. However, they have higher voltage and current stresses as 

compared to PWM mode. 

Soft switching PFC is a combination of both resonant and PWM mode with 

additional resonant tank circuit and a switch. The converter operates in PWM mode for 

most of the time and in resonant mode during switching on and off intervals. It operates 

at constant frequency. Improved efficiency and power factor is obtained by this 

technique. Figure 2.6 demonstrates the various types of PFC design [4]. 

2.3.1. PFC Design for Simulation 

For 50-60Hz, passive and active techniques have been proposed. The active 

power factor correction technique wherein DC-DC converters between diode Bridge and 

capacitor is efficient. The input voltage and the average input current have same 

waveforms (sinusoidal). The ripple in the current can be removed by a filter. [22, 23] 

A diode rectifier converts AC to DC while the gate controller switches the 

MOSFET so as to maintain input power factor. For the control strategy, the two 

important considerations are 

 a) the output voltage should be constant and 

 b) the input current must follow the input voltage. 

Thus an output feedback loop to control and maintain constant output voltage is required. 

For maintaining power factor, either multiplier approach or voltage follower approach 

can be used. In the multiplier approach, the input current feedback loop is programmed 

from the input voltage so that DC-DC converter operates as a current sink. 
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Figure 2.6 General circuit topologies of a single phase PFC with (a) boost, (b) with ac 

power switch, (c) full bridge type, (d) Zeta type, (e) Sepic type, (f) Cuk type, (g) buck-

boost type, (h) semiconductor type, (i) half bridge type, (j) semiconverter type 1  
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Figure 2.6, continued 
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Figure 2.6, continued 
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Figure 2.6, continued 
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In the voltage follower mode, the DC-DC converter is operated in discontinuous 

conduction mode or in critical conduction mode. The average input current is 

proportional to the input voltage when operating in DCM (buck-Boost, SEPIC, Cuk and 

flyback). Both techniques require a low pass filter into voltage feedback so as to keep the 

output of the error amplifier constant during each line half-cycle [22, 23]. 

Multiplier approach can be divided into  

(a) Average current control 

(b) Peak current control 

(c) Variable hysteresis control 

Average current control: The inductor current is sensed. It is then filtered by a current 

error amplifier which drives the PWM. Thus, in the inner current loop, the average input 

current tends to approach the reference. The converter works in CCM (continuous 

conduction mode).  

Advantages:  a) Less sensitive to switching noise as there is current filtering. 

b) Better input current waveforms than peak current control 

method because near the zero voltage crossing the duty cycle is 

unity (no dead angle in the input current). 

Disadvantages: Current sensing complexity. 

Peak current control: In this method, the switch is turned on at constant frequency by a 

clock signal and turned off when the sum of the ramp of the inductor and external ramp 

equals the reference sine current. The converter operates in CCM. 
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Advantages:  The switch current is sensed. It can be accomplished by a current 

transformer.  

No current error amplifier 

Disadvantages: Sub-harmonic oscillations are present at duty cycle greater than 

0.5. Compensation ramp is required. 

Control is more sensitive to communication noises. 

Hysteresis control: In this method, two current references are produced: one for peak and 

the other for valley of the inductor current. Switch is turned on when the inductor current 

is below the valley reference and is turned off when the inductor current is above the 

peak reference. This also operates in CCM mode. 

Advantage: Low distorted input current waveform 

Disadvantage: Variable switching frequency 

Control sensitive to noises. 

These three control methods basically define the type of PFC controller being 

used for simulation. The average current control mode has been simulated using PSIM.  

2.4. Inverter 

The output of the PFC circuit is fed into an inverter to obtain high frequency 

pulses to the output. The topologies are implemented with one, two or four switches [6]. 

Most of the electronic ballasts use a half-bridge inverter.  
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2.5. Resonant filter 

The output of the inverter is passed through a passive filter to obtain more 

sinusoidal output. Types of resonant filters: 

(a) LC series resonant 

(b) LCC series resonant 

(c) LC parallel resonant  

Figure 2.7 demonstrates the various resonant inverter topologies for a lamp load. 

2.6. Previous work 

Different types of HID electronic ballasts have been proposed in the literature and 

their efficiencies modeled [1-15]. 

Typical electronic ballast with half wave inverter is described in [2]. The core coil 

type ballast and the electronic ballast with and with out PFC section and EMI section are 

compared for studying in Tables 1, 2, and 3 of  [2]. The newly developed topology in [2] 

with an igniter circuit ensures lower losses in the ballast and hence better system 

efficiency. However, the main disadvantage is that the total harmonic distortion is high.  

The single stage topology is best suited for low power applications. However, at 

light loads, there would be high voltage rise which is a limitation to this scheme. Direct 

transfer topology (DPT) was proposed in which a part of the power is processed once and 

directly connected to the output while the remaining power is processed twice, one by the 

PFC and the other by the DC-DC converter before being connected to the output.  Thus 

the system operates in two modes- as flyback transformer at low input voltages and as 

boost converter at high input voltages. DPT is an effective way of controlling high DC   
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Figure 2.7. (a) 

 

Figure 2.7 (b) 

Figure 2.7 The general resonant inverter topologies with lamp load (a) LCC type with 

full-bridge series resonant inverter, (b) half bridge inverter with LCC type resonance, (c) 

full bridge inverter with LC type series resonance parallel-loaded inverter (d) LC type 

with half-bridge parallel resonant inverter, (e) single-ended resonant typed inverter. 
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Figure 2.7, continued 
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link voltage by maintaining high power factor without compromising with high DC bus 

voltage [3]. 

A dimming control PFC scheme was achieved in [4] by using a phase shifted 

PWM for the full bridge inverter of ballast system, wherein variable duty cycle with 

constant frequency ensures dimming control.  

Two common ways to control dimming is to vary duty cycle or switching 

frequencies. A new method of control was proposed by varying the DC output voltage of 

the converter. However, the proposed design is for fluorescent lamps [7]. 

Variable frequency control was used in a new topology with shortened lamp start-

up time which resulted in improved efficiency [9]. 

A PFC ballast for xenon short arc lamps has been proposed wherein the two stage 

structure with flyback converter coupled to buck converter are used for power factor 

correction. However, the stress due to the flyback converter and transformer is high and 

hence a PWM technique for continuous mode operation is being explored [11].   

A microcontroller to control the various tasks in the ballast system simplifies 

circuitry and offers better control. Further, it reduces the warm-up and re-ignition time 

[12]. 

The unity power factor parallel resonant electronic ballast suggested in [14] 

demonstrates the following advantages for 175 Watt metal halide lamp. 

(a) Unity power factor and low harmonics  

(b) Minimum number of switches 

(c) High frequency operation 

(d) Low acoustic noise 
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(e) Improved luminous efficacy. 

For higher efficiency, the proposed circuit [14] adopts zero voltage switching. 

The predominant losses are due to transistor switching losses. 

A new type of ballast with a series resonant circuit is described in [13]. In this 

circuit, the series capacitor is switched into the circuit after the lamp has started. The 

circuit ensures a sinusoidal turn-on current waveform thereby reducing the switching 

losses. The lamp current is regulated by controlling the switching frequency of the 

inverter. 

2.7. Benefits of SiC Schottky Diodes 

Fast rectifiers allow higher switching frequencies, smaller sizes of the passives 

and switches, and also limit the need for cooling [15]. Schottky silicon rectifiers are not 

efficient above 150-200V [15] as they are temperature and high voltage sensitive. Recent 

advances in semiconductor materials have lead to the fabrication of high voltage Schottky 

rectifiers. 

Higher frequencies ensure reduced size of the passive components, inductor and 

capacitors; however, this results in higher switching losses. CCM limits peak current 

stress, and is easy to filter, but the diodes will have higher losses and larger EMI 

associated with the turn-off boost diode. 

The reverse recovery in the diode also shows up in the MOSFET drain current. 

The reverse recovery current increases with increase in temperature and may lead to 

thermal runaway.  Schottky Diodes have following benefits 

• Lack of reverse recovery currents.  
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• Small stored capacitive charge. 

 1 MHz switching frequency was chosen because the passive components size is 

significantly reduced at frequencies less than 150 kHz and the EMI is reduced at 150 

kHz.  The reverse recovery current in Schottky SiC diode is reduced and the losses in the 

MOSFET are reduced. Figure 5 of [15] illustrates the losses versus SiC dielectric area.  

Air core inductance would result in reduced losses as the core losses are absent, 

reduced cost, and reduced stray capacitances between cores and wires but it is limited by 

volume increase, low frequency operation, and oscillations during switching. Two air 

inductances have been evaluated- one layer and double layer inductances. Single layer 

inductance had losses, mainly copper losses (~2.48W theoretical) until 15 MHz. 

However, the volume was 120 cm3. With double layer, the volume is reduced and so also 

the losses due to reduction in the length of wires. Magnetic cores had a little higher loss 

but the size is significantly reduced, and the range of frequencies available is also very 

high. Experimental results demonstrated efficiencies of 88% to 92% for PFC with 3F3 

ferrite material for inductance and with input voltage varying from 90 to 260V for 300W 

power as shown in Figure 6 of [15]. 

 Two tests were conducted: one to compare ultra fast silicon rectifiers and SiC 

Schottky diodes, and the other test to evaluate the effect of higher switching frequency. 

The efficiency improvement for an 80 kHz converter at low line input voltage was about 

2% with SiC Schottky diodes. The energy losses in SiC diode is almost 8 times less than 

that of that of Si diode loss. With high switching frequency, the input EMI filter size is 

reduced. At low frequencies [50 to 400 Hz], an additional inductance is required to 
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attenuate below switching frequencies. Table 2 of [16] demonstrates the comparison of  

EMI filter sizes at 80 kHz and 200 kHz. 

The performance of a single phase PFC with SiC MOSFET and BJT in 

combination with SiC diode was tested in [24]. At 80 kHz, the efficiency for SiC 

MOSFET and SiC Schottky diode was found to be highest (96.7%) at 150W output 

power than SiC BJT and SiC Schottky diode combination, and Si CoolMOS and SiC 

Schottky diode combination. Better thermal capability of SiC power devices was 

observed as they were tested at frequency of 1MHz, 250W output. Hence the heat sink 

volume was reduced by 33% with the use of SiC devices. The efficiency of 91.5% for 

SiC MOSFET and SiC Schottky diode combination was obtained at frequency of 1MHz 

and 250 W output power.  

2.8 Summary 

This chapter describes the various types of electronic ballasts. It describes the 

various sections in the ballast in detail and also presents the previous work done in the 

design of electronic ballasts. The relevance of this work to the present project will be 

discussed in the next chapter. 

With this background, a new design of the ballast has been proposed. The PFC 

stage consists of boost converter. Different devices for each section were tested to make 

sure an efficient system is obtained. Epic Systems Inc. has done several tests to optimize 

the system. The optimization developed shall be discussed in detail in the next chapter. 
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Chapter 3 

Simulation Model 

In this chapter the simulation models to evaluate losses in the electronic ballast 

are discussed. Two models are used for modeling losses in the ballast –the PSIM model 

and the mathematical model in Simulink. Section 3.1 briefly describes the model of the 

ballast that has been designed. Section 3.2 describes the PSIM model that generates the 

values of current and voltage used in the mathematical model in Simulink described in 

section 3.3. 

3.1. Introduction to PFC Design 

 The main objective of the project is to design and test an electronic ballast with 

efficiency as high as 96%. The ballast design has been accomplished in 2 stages. The first 

stage included the design of the front-end power factor correction (PFC) circuit while the 

second stage included the design of DC to high frequency (HF) output lamp driver. The 

PFC stage has been optimized with different design materials and also using SiC devices. 

The efficiency of the PFC system with Si MOSFET and SiC diode in the boost converter 

has achieved efficiency as high as 97.6% for different operating input voltages. The 

second stage DC to HF lamp driver is designed to obtain efficiency as high as 98%. Thus 

the overall efficiency is about 96%.   

Each element in PFC circuit has been optimized to reduce losses. As already 

discussed, the ballast system consists of an EMI filter, diode bridge rectifier, PFC boost  
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Resonant inverter unit Power factor correction unit 

Figure 3.1 Experimental design of the ballast  

converter, and inverter with resonant filter. Figure 3.1 demonstrates the design of the 

ballast assembled by EPIC Systems Inc. 

3.2. Simulation Model in PSIM 

 The input is sinusoidal voltage varying from 90 V to 265 V at line frequency of 

60 Hz. The input is fed into a diode bridge rectifier where the ac voltage is rectified to 

DC. This DC voltage is fed into the boost converter to get a higher output voltage of 385-

400V. The PFC control circuit is basically achieved by controlling the gate pulses and 

duty cycle. For this, the gate signal generating IC is modeled to vary duty cycle so as to 

maintain constant output voltage and also maintain input power factor. The frequency of 

operation of the PFC is maintained at 70 kHz. It was loaded with a 250 W resistive load. 
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The output voltage across the bulk capacitor is sensed and compared with the 

reference output voltage, and the resulting error voltage is multiplied with a multiplier 

and input voltage to give the reference input current. The error between the reference and 

the input current determines the switching of the MOSFET. The values of the divider and 

the multiplier constants vary with the input voltage. Figure 3.2 is the PSIM model of the 

power factor correction circuit. 

3.3. Mathematical Loss Modeling in Simulink 

The known parameters are input voltage, output voltage, output power, switching 

frequency. The loss model includes losses in various components of the PFC system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 PSIM model for power factor correction circuit 
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They can be classified as: a) Rectifier losses    b) Inductor losses c) Boost switch looses 

and d) Boost diode losses. 

Rectifier losses: The losses in the diode rectifier are due to forward diode drop when the 

diode is conducting and also the conduction losses due to on-resistance. 

22 2rec in on in onP I V I= × × + × ×R     (3.1) 

From the operation of a diode bridge rectifier, two diodes conduct during positive 

half cycle and the other two diodes conduct during negative half cycle. Hence the loss 

equation is twice that of the conduction losses in a single diode. The switching losses are 

very small compared to the conduction losses and therefore are neglected. 

Inductor losses: The inductor is basically an electrical wire wound over a magnetic core. 

The losses include the inductor core and copper losses. The magnetic intensity H is the 

product of number turns and current through the winding: 

LH n I= ×                                (3.2) 

where n is the number of turns, and IL is the inductor current. 

On obtaining the magnetic intensity using (3.2) for different values of current 

through the inductor, the magnetic field intensity B was obtained from the B-H curve of 

the inductor from the data sheets. Substituting B in (3.3), the core losses were calculated. 

2.24 1.41
coreP K B f= × ×      (3.3) 

where K is the core constant  with a value of 0.625 for the inductor core used, 

B is the magnetic field intensity obtained from B-H curve, 

f is the frequency of operation, 67 kHz. 

 40



 

 The copper losses in the inductor is dependent on the resistance of the inductor 

given by  

2
copper Lrms dcP I= ×R      (3.4) 

The copper losses are predominant as the inductor core chosen is operated in the region 

with minimum core losses. 

Boost switch losses: A MOSFET is used as a switch in the boost converter circuit. The 

losses in the diodes and MOSFETs are divided into conduction and switching losses. The 

switching losses are dependent on the switching frequency; switching losses in the 

MOSFET and the diode have to account for removal of the stored charge in the junction 

capacitances also. The conduction losses are the losses in the drift region, channel, and 

contacts when the device is conducting. It is dependent on the resistance and the square 

of the current through it. The equations for calculating these losses are given in [15]. The 

switching losses in the MOSFET are given by 

21 10.9
2 2sw o Lrms sw oss oP V I t f C V⎛ ⎞ ⎛= × × × × × + × × ×⎜ ⎟ ⎜

⎝ ⎠ ⎝
f ⎞⎟
⎠

          (3.5) 

where Vo is the output voltage,  

ILrms is the rms inductor current,  

tsw is the switching time,  

f is frequency of operation, 

Coss is the output MOSFET capacitance.  

 The first part of the switching loss is obtained by averaging the area under the 

transition waves of voltage and current during turn-on and turn-off switching times. The 

switching time tsw is the sum of rise and fall times of the current. The second part of the 
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switching loss in the MOSFET is due to the output capacitance Coss measured between 

the drain and source with the gate- source voltage, Vgs, zero for AC voltages. Coss is given 

by the drain to source capacitance Cds in parallel with the gate to drain capacitance Cgd. 

The output capacitance decreases with voltage hyperbolically. For high voltages across 

the MOSFET and high switching frequency, this loss becomes significant. The output 

capacitance of the SiC MOSFET is 21pF and that of Si MOSFET is 48 pF at 400V. 

 The conduction loss when the MOSFET is conducting is mainly an I2 R loss due 

to the on-state resistance of the MOSFET. Equation 3.6 gives the conduction losses in the 

MOSFET. 

( )2
MOS_con P MOSrms dsI R= ×            (3.6) 

where Rds is the on-resistance of MOSFET,  and  

IMOSrms is the rms current through the MOSFET.  

 The values of Rds for Si and SiC are 0.19 and 0.25 at 250 C from Fig. 4.4. This 

implies there is an higher conduction loss in SiC MOSFET than that of Si MOSFET at 

room temperature. 

Boost diode losses: The boost diode losses are similar to that of the MOSFET losses i.e., 

they attribute most of the losses to conduction and switching losses. The conduction 

losses in the diode are given by  

( )2
_D con Drms on on DrmsP I R V I= × + ×       (3.7) 

where Ron is the on resistance of the diode, 

Von is the on-state forward voltage drop of the diode,  

IDrms is the rms current through the diode.  
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The conduction loss in the Schottky diode is due to the on-state resistance and the 

diode forward voltage drop Von. The equation for calculating the switching losses in the 

diode is given by  

_D sw c oP Q V f= × ×         (3.8) 

where Vo is the output current of the PFC converter, and  

Qc is the reverse recovery charge of the diode.  

The switching loss in the diode is mainly due to the reverse recovery charge that 

has to be removed before the diode is to be turned on. The reverse recovery charge for a 

SiC diode is only 1/5th that of a Si diode which results in significant efficiency 

improvement with the use of SiC Schottky diode.  

The mathematical model had been developed in MATLAB with the parameter 

values obtained from PSIM as shown in Figure 3.3. SIMCoupler was used to couple 

PSIM with MATLAB. The rms values of the voltages and currents obtained from PSIM 

are used in the mathematical model in Simulink which generate the losses. For varying 

input, the losses are calculated to plot the efficiency versus input graphs for both Si and 

SiC MOSFET based systems. 

3.4 Summary 

This chapter outlines the simulation models used to evaluate losses in the ballast. 

The simulation model in PSIM is described and the values thus obtained from PSIM are 

coupled to the loss model in Simulink through SIMCOUPLER. The results thus obtained 

are used to plot efficiency plots which are demonstrated in the next chapter. 

 43



 

 

 
 
 
 
 

 

Figure 3.3 MATLAB Simulink model of the losses in the PFC circuit. 
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Chapter 4 

Simulation and Experimental Results 

This chapter presents the simulation results obtained from the simulation models 

in PSIM and Simulink which were described in chapter 3. The experimental results 

obtained from the PFC unit are used to compare with the results obtained from the 

simulation model. The simulation models of the ballast for Si and SiC MOSFETs are 

compared. 

4.1 Si and SiC characteristics 

Static and switching tests required to characterize the MOSFET devices have 

been conducted. The I-V curves indicate the temperature variation of the on-resistance 

for an 800 V, 10 A SiC MOSFET from Cree as shown in Figure 4.1. The resistance of the 

SiC MOSFET decreases with increase in temperature from 25o C to 150o C 

The I-V characteristics for a Si MOSFET rated at 600 V, 10 A indicate an 

increase in resistance with temperature as shown in Figure 4.2. The threshold voltage 

decreases with temperature in both Si and SiC as shown in Figure 4.3. 

To determine switching characteristics, a double-pulse gate signal was used to 

drive the MOSFET, and the applied voltage was 200 Vdc. An inductive load of 8mH was 

used, and the current was varied from 2 to 10 A. The temperature of the device was 

varied from 25 to 150 °C for the testing. The switching energy losses for the device 

during turn-on and turn-off as a function of temperature are plotted.  
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Figure 4.1 Forward and transfer characteristics of SiC from experimental tests. 
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Figure 4.2.  Variation of on-resistance with temperature for Si and SiC MOSFETs. 
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Figure 4.4 shows that for the SiC MOSFET the energy losses increase with 

increase in current and decrease with temperature. At lower currents, the change in 

temperature has no significant effect on the losses; however, for higher currents the 

decrease in losses with temperature is more significant in turn-on losses than in turn-off 

losses. 

The forward voltage drop across the diode is higher for the SiC diode than that for 

Si. The reverse recovery time is reduced in Si; it is considered to have near-zero reverse 

recovery charge because it is a Schottky device and hence results in a significant 

reduction in recovery time compared to the Si pn diode. 

4.2 Simulation and Experimental results of PFC 

 The PFC section of the ballast was loaded with a 250 W resistive load for testing. 

The output voltage varies between 370V to 385V. Typical wave shapes obtained from the 

PFC (power factor correction) unit with Si and SiC MOSFET are demonstrated in 

Figures 4.5 and 4.6 at input voltage of 120V for a 250 W load.   

The power factor is maintained around 0.998 and decreases to as low as 0.985 as 

input voltage increases implying the power factor correction decreases slightly as input 

voltage increases. The power factor correction is almost the same for the Si and SiC 

based PFC unit. 
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Figure 4.4 Variation of turn-on and turn-off losses in SiC MOSFET with temperature. 
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Figure 4.5 Input and output waveforms of current and voltage of the Si MOSFET based 

PFC circuit at input voltage of 264V and output power of 250 W. 
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Figure 4.6 Input and output waveforms of current and voltage of the SiC MOSFET based 

PFC circuit at input voltage of 120V and output power of 250 W. 
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 The PFC was subjected to testing for efficiency calculations at a constant load of 

250 W. The PFC boost converter in literature has at most reached an efficiency of 96% 

[1-3, 16, 17, 19, 20]. The simulation and experimental results of efficiency of the PFC 

unit with Si MOSFET with varying input voltage is shown in Figure 4.7. Using the 

design by Epic Systems, Inc. the efficiency of the PFC circuit varies from 93.5 to 97.4 % 

for input voltage range of 90V to 264V. Thus at high input voltage, the efficiency 

obtained experimentally is high with a maximum of 97.4%. The simulation results show 

a maximum efficiency of 97.8% at 264 V input voltage. 

  The simulation and experimental results of efficiency of PFC unit with SiC 

MOSFET with varying input voltage is shown in Figure 4.8.  It can be observed that the 

simulation result is close to the experimental result verifying the accuracy of simulation 

model. Figure 4.9 compares the experimental results of the PFC circuit with Si and SiC 

MOSFETs. It can be observed that the efficiency of the PFC circuit decreases as Si is 

replaced with a SiC MOSFET. The reason for decrease in efficiency and hence the 

increase in losses is mainly due to increase in the switching times of SiC MOSFET with 

the same gate drive. This indicates that a faster gate drive is needed with SiC MOSFET. 

Figure 4.10 compares the simulation results of the ballast with Si and SiC 

MOSFETs. The ballast circuit includes PFC unit and the resonant inverter unit. In both 

units, the Si MOSFETs are replaced with SiC MOSFETs in the simulation model. The 

results are as shown in Figure 4.10. The efficiency of the ballast with SiC MOSFETs is 

less than that with Si MOSFETs owing to increased switching times in SiC MOSFETs 

with the same gate drive circuit. 
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Figure 4.7 Efficiency versus input voltage obtained by plotting experimental and 

simulation results of 250W Si based PFC.  
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Figure 4.8 Efficiency versus input voltage obtained by plotting experimental and 

simulation results of 250 W SiC based PFC. 
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Fig. 4.11 Comparison of experimental results of Si and SiC based PFC. 
 
 
 
 
 
 
 
 
 

Figure 4.9 Comparison of experimental results of 250 W Si and SiC based PFC units. 
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Figure 4.10 Comparison of simulation results of 250 W Si and SiC based ballast. 
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Table 2. Simulation results of various losses for varying input in Si MOSFET based PFC 

Vin Ilrms Id_rms Imos_rms P_dcon P_moscon P_MOSsw Pcoss Prect PL Ptot efficiency

90 2.54 1.21 2.22 1.6 1.1 5.206 0.336 4.15 1.87 14.32 94.58 
120 1.97 1.1 1.645 1.426 0.62 3.91 0.336 2.94 1.39 10.75 95.87 
136 1.78 1.05 1.435 1.375 0.45 3.43 0.336 2.57 1.27 9.62 96.294 
198 1.276 0.928 0.876 1.2 0.19 2.12 0.336 1.68 1.03 6.73 97.37 
220 1.165 0.9 0.736 1.16 0.12 1.8 0.336 1.51 0.98 6.2 97.58 
264 0.974 0.857 0.463 1.1 0.05 1.1 0.336 1.21 0.92 4.92 98.06 
 
 

Table 3 Simulation results of various losses for varying input in SiC based PFC 

Vin Ilrms Id_rms Imos_rms P_dcon P_moscon P_MOSsw Pcoss Prect PL Ptot efficiency

90 2.54 1.21 2.22 1.6 1.1 11.25 0.159 4.15 1.87 20.4 92.45 
120 1.97 1.1 1.645 1.426 0.62 8.5 0.159 2.94 1.39 15.3 94.2 
136 1.78 1.05 1.435 1.375 0.45 7.4 0.159 2.57 1.27 13.6 94.84 
198 1.27 0.928 0.876 1.2 0.19 4.6 0.159 1.68 1.03 9.15 96.469 
220 1.16 0.9 0.736 1.16 0.12 3.87 0.159 1.51 0.98 8.18 96.83 
264 0.97 0.857 0.463 1.1 0.05 2.38 0.159 1.21 0.92 6.48 97.47 

 

Tables 2 and 3 show the simulation results of the various losses calculated in Si and SiC 

based PFCs. As the input voltage increases, the input current decreases as the power is 

constant. Most of the losses are dependent on current through the device and output 

voltage. The output voltage being constant, the losses vary with the current through the 

device. The losses due to output capacitance of the MOSFET is constant for any input 

voltage as it is a function of output voltage and the material of the MOSFET.   

 In Si and SiC based PFCs, SiC Schottky diode was used. Hence the diode losses 

are same in both the units. The losses due to MOSFETs vary with the material. The 

switching times of the SiC MOSFET is higher than that of Si MOSFET for the same gate 
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drive circuit. Hence the MOSFET losses especially the switching losses of SiC MOSFET 

are higher than that of Si MOSFET. 

  A considerable fraction of losses is due to diode bridge rectifier and the 

MOSFET switching losses. To improve the efficiency of the ballast further, designs to 

reduce these losses would be beneficial. 

4.3 Summary 

This chapter demonstrated the experimental results obtained when testing the PFC 

unit. The simulation results are also presented and compared with the experimental 

results. It has been observed that with the same gate driver circuit used, the efficiency of 

SiC MOSFET based PFC unit was less than that of Si MOSFET based PFC unit. The 

overall performance of the ballast according to the simulation model showed a decrease 

in efficiency by around 2%. The next chapter presents the future work of this project to 

enhance the performance of the ballast so as to exploit SiC advantages. 
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Chapter 5 

Conclusion and Future work 

This chapter presents the conclusions drawn from the project and the possible 

future work that would enhance the performance of the ballast are presented in section 

5.2. 

5.1 Conclusions 

Lighting forms 22% of all the electrical energy in USA. High intensity discharge 

lamps are used in applications where high intensity and efficiency, lighting over large 

areas are desired. High voltage is required to establish an arc between the electrodes 

during starting of the lamp. Once the arc is established, the voltage should be reduced and 

current should be regulated to produce steady light output. HID lamps require ballasts to 

control the starting and operating voltages. 

Of the different types of ballasts, electromagnetic ballasts and electronic ballasts 

are popular. Electronic ballasts have higher efficiencies, higher frequency operation, and 

ensure cooler operation. They offer less weight, less noise and no flicker when compared 

to electromagnetic ballasts. Because of these advantages, electronic ballast is being used 

in wide range of applications. 

Better performance and higher efficiencies of ballasts have always been under 

research. Innovative power electronics and optimum circuit design are considered to 

improve efficiency of the ballast in the power range of HID wattage. SiC devices because 
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of their better performance characteristics as compared to Si devices are used to obtain 

higher efficiencies. 

Different ballast topologies have been studied and discussed in chapter 2. The 

basic topology consists of a power factor correction unit and a resonant converter unit. 

The considered power factor unit consists of diode bridge rectifier, and dc-dc converter 

with gate drive controlled to ensure power factor correction. The input ac voltage is 

rectified by the diode bridge rectifier and the dc-dc converter is used to regulate the 

voltage at the desired level. Boost converter is the typical dc-dc converter topology used 

for power factor correction. The boost switch, in this project a Si MOSFET, has been 

replaced by a SiC MOSFET to test the compatibility of SiC devices for a one to one 

replacement. Further, other components like the boost inductor, and the boost diode 

which is a SiC Schottky diode have been optimized to minimize losses and improve 

efficiency. 

The 250 W-PFC circuit is designed to operate at a frequency of 70 kHz, with 

input voltage varying from 90 V to 264 V. A resistive load of 250 W was applied. The 

circuit was tested experimentally with Si CoolMOS and SiC MOSFET as the boost 

MOSFET. The gate drive IC is a current mode operating chip in average current control 

mode for power factor correction. 

The simulation model for the PFC was modeled in PSIM and coupled to the 

mathematical model in Simulink. The average current control gate drive was simulated in 

PSIM to obtain power factor correction. The rms values of the currents and voltages are 

obtained by simulating the PSIM model and are coupled to the mathematical model in 

Simulink using these values through the SIMCOUPLER. 
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The resonant converter consists of inverter with resonance filter at the output. The 

output of the PFC unit which is a DC voltage and current is fed into an inverter and a 

high frequency ac output is obtained. In this application, a half-bridge inverter with 

parallel resonance LC filter was used. The simulation model was developed and 

simulated for Si and SiC devices.  

 Using the design by Epic Systems, Inc. the efficiency of the PFC circuit varies 

from 93.5 to 97.4 % for input voltage range of 90V to 264V. Thus at high input voltage, 

the efficiency obtained experimentally is high (as compared to previous available PFC 

models) with a maximum of 97.4%. The simulation results show a maximum efficiency 

of 97.8% at 264 V input voltage. 

 Efficiency as high as 95% can be achieved from Si MOSFET based ballast from 

the simulation model. An optimum design for Si MOSFET based PFC has been modeled. 

The simulation and experimental results show that with a one-to-one replacement of Si 

and SiC devices, the performance of the SiC MOSFET based system declines from 

efficiency point of view.  

5.2 Future work 

To exploit the advantages of SiC devices, the gate control of the SiC MOSFET 

should be redesigned to ensure faster turn-on and turn-off. An optimum design to 

maximize efficiency can be designed with considerations on lowering losses in the 

component devices. The operation of the electronic ballast is usually at high 

temperatures. High temperature operation of the ballast should be considered and a 

simulation model should be developed. 
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5.3 Summary 

This chapter presents the overview of the project and the conclusions drawn from 

the experimental and simulation work. Future work that can be done to enhance the 

performance of the model has been suggested in section 5.2. 
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