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Abstract 

 In this article, we consider the vorticoacoustic flowfield arising in a right-

cylindrical porous chamber with uniform sidewall injection.  Such configuration is often 

used to simulate the internal gaseous environment of a solid rocket motor (SRM).  

Assuming closed-closed acoustic conditions at both fore and aft ends of the domain, the 

introduction of small disturbances in the mean flow give rise to an axially traveling 

vortico-acoustically dominated wave structure that our study attempts to elucidate.  

Although this problem has been formulated before, it is reconsidered here in the context 

of WKB perturbation expansions in the reciprocal of the crossflow Reynolds number.  

This enables us to uncover multiple distinguished limits along with new asymptotic 

solutions that are presented for the first time.  Among them are WKB approximations of 

type II and III that are systematically evaluated and discussed.  The WKB solutions are 

shown to exhibit a peculiar singularity that warrants the use of matched asymptotic 

expansions to produce uniformly valid representations.  Our solutions are obtained for 

any characteristic mean flow function satisfying Berman’s similarity condition for porous 

tubes.  They are also derived to an arbitrary level of precision using a recursive 

formulation that can reproduce each of the asymptotic solutions to any prescribed order.  

Finally, our solutions are verified numerically over a wide range of physical parameters 

and through limiting process approximations. 
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Chapter 1 Introduction 

 The study at hand involves describing the unsteady motion of a viscous fluid 

inside a porous tube.  This problem is quite essential and vital in rocketry as it helps to 

simulate the behavior inside a solid rocket motor represented here by a porous cylindrical 

tube.  As with most problems, this research line of inquiry has evolved over time.  It first 

started with Berman (1953) who transformed the Navier-Stokes equations to a single 

ordinary differential equation and solved it to obtain a complete description of the fluid 

flow in a rectangular channel having two equally porous walls.  The scope of his solution 

was limited to two-dimensional, incompressible, steady-state laminar flow with uniform 

injection or suction across the chamber’s sidewalls.  Several studies followed, and these 

focused on specific ranges of injection or suction. 

 For circular pipes and tubes, Yuan and Finkelstein (1956) provided, through the 

use of a regular perturbation technique, unique asymptotic solutions for large injection 

and suction as well as for the limiting case of small suction.  For the case of large 

injection, their analytical solution applied everywhere except near the centerline, where a 

viscous boundary layer existed.  A key parameter in their study was the crossflow 

Reynolds R  number which was based on the uniform injection speed V , the tube radius 
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a , and the kinematic viscosity n .  Their solution for large R  correctly reduced to the 

inviscid Taylor solution (Taylor, 1956) for infinite injection. 

 The circular tube problem was also examined by Terrill and Thomas (1969).  

Their numerical investigations showed that dual solutions existed for all ranges of suction 

and injection.  For the case of large injection, they obtained two solutions, one with a 

viscous boundary layer at the center of the tube and one without.  In an attempt to 

confirm their numerical solutions, they formulated analytical expressions for large 

injection and suction;  the method of inner and outer expansions was specifically used to 

validate the presence of the viscous layer for large injection.  The issue of the existence 

of multiple solutions was later examined by Skalak and Wang (1978) for the channel as 

well as the tube geometry.  For the channel case, they showed that the solution for 

injection is unique, but there existed three solutions for suction.  As for the cylindrical 

tube, they identified two types of solutions for injection and small suction, and up to four 

possible solutions for large suction.  Thus, for circular tubes, it was concluded that there 

existed two solutions for injection and at most four solutions for sufficiently large 

suction. 

 So far we have only discussed the work done on steady flows in porous channels 

or cylinders.  This problem becomes more interesting and rich with the superposition of 

small amplitude oscillatory waves to its steady mean flow.  The modeling of oscillatory 

flows in injection-driven tubes or channels is pertinent to several applications.  These 

include surface ablation, arterial blood flow modeling, and acoustic instability.  The 

oscillatory waves under consideration may be either induced internally through intrinsic 
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coupling with the chamber’s natural frequency, or externally, through the use of 

generators.  The latter has been used in several cold flow experiments. 

 Dunlap (1990) tried to experimentally characterize the steady and oscillatory 

flowfields developing along the length of a simulated port rocket chamber.  Their 

apparatus employed cylindrical porous tubes to supply uniform injection, and their 

experiments were conducted at injection Reynolds numbers of up to 41 2 10. ,´  which is 

typical of rocket motor values.  Flow simulation of the burning propellant was achieved 

by uniformly inserting ambient temperature nitrogen gas along the tube’s wall.  This 

simulation technique was primarily used in some of the first cylindrical port studies 

where a hot-wire anemometer was used to capture the velocity field (Dunlap et al., 1974).  

Multiple experiments were conducted with chamber /L D  ratios of 9 5.  and 14 3. ,  where 

the steady and oscillatory speeds and shear stresses were evaluated in the primary 

coordinate directions using three element hot-wire anemometers. 

 In an attempt to explore the velocity coupling phenomenon observed in 

acoustically unstable solid rocket motors, Ma (1991) developed an inventive simulation 

facility in which solid carbon dioxide was used as the simulated propellant.  As for the 

acoustic disturbances, these were introduced over the dry ice surface via a mechanically 

driven piston located at the end of the tube.  The mean flow rate and pressure amplitude 

measurements revealed a coupling mechanism between the velocity component of the 

acoustic disturbance and the sublimation process. 

 Numerical studies of the flowfield over a transpiring wall in a cylindrical port 

were consequently carried out by Beddini and Roberts (1992) and Griffond and Casalis 
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(2000).  Beddini’s work sought to identify and quantify the role of acoustically provoked 

turbulence in the combustion response of solid rocket motors.  As for Griffond and 

Casalis (2000), they explored the stability of an incompressible fluid flow inside circular 

cylindrical tubes with an injecting sidewall.  Griffond and Casalis (2000) employed a 

Local Nonparallel (LNP) hydrodynamic instability approach with special treatment near 

the centerline.  Their solution revealed a stable flowfield near the headwall and up to a 

critical axial position beyond which the flow became unstable.  Instability occurred over 

a range of frequencies that widened as the distance from the headwall increased.  When 

compared to experimental results by Dunlap (1990), their solution confirmed the 

existence of amplified instability waves. 

 Maybe one of the toughest branches of analysis of oscillatory waves in tubes and 

channels with transpiring walls is the analytical branch.  Culick (1966) and Flandro 

(1974) were among the first to develop theoretical models for oscillatory flows inside 

porous walls.  In one of his papers, Culick (1966) formulated an analytical solution for 

the steady, incompressible, and inviscid flowfield inside a cylindrical tube, subject to the 

boundary condition that the fluid was injected perpendicular to the burning propellant 

surface.  This flow has a remarkable and distinctive feature that while satisfying the 

inviscid equations of motion, it also enforces the no-slip boundary condition associated 

with a viscous fluid.  Culick’s mean flow solution was indeed a good representation of 

the practically viscous problem as it compared favorably with the experimental results of 

Dunlap (1990). 
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 Later, Flandro (1974) investigated the acoustic behavior of solid rocket 

propellants, where he examined the effects of the specific acoustic admittance for a 

burning propellant surface.  Flandro employed a mathematical perturbation approach in 

linearizing the equations of motion for viscous, Newtonian fluids.  He concluded that the 

propellant response to incident acoustic waves is influenced by the orientation of the 

propellant surface to the waves, and that the presence of a tangential component of 

acoustic velocity gives rise to traveling shear waves that alter the apparent propellant 

behavior. 

 Perturbation theory would later appear in several studies involving unsteady 

flows.  Majdalani and Van Moorhem (1997) employed a Multiple Scales solution in an 

attempt to identify the acoustic boundary layer developing in solid rocket motors.  

Majdalani (1995) examined the effect of several parameters on the development and size 

of the boundary layer.  It was concluded that the crossflow Reynolds number along with 

the Strouhal number dictated to a large extent the penetration depth of the wave, the 

region where rotational effects were present.  The aforementioned dimensionless 

numbers were combined to form a new similarity parameter termed the penetration 

number, 2/ ,
p
S R S=  where R  and S  represented the crossflow Reynolds number and 

the Strouhal number respectively.  This number was found to control the shape and size 

of the outer boundary layer envelope.  Additionally, Majdalani (1999b) extended his 

work to the Cartesian domain where he tackled the two dimensional channel problem.  

He would once again employ Multiple Scales as the primary perturbation technique.  The 

asymptotic solution found by Majdalani was practical in the sense that it was simple and 
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compact.  However, it depended on the size of the perturbation parameter ,e  the 

reciprocal of the kinetic Reynolds number.  To generalize, Majdalani (2001a) formulated 

an exact analytical solution that is independent of ,e  and thus applicable over a wider 

range of parameters.  The study also included a leading order WKB formulation, which 

coincided with the leading order term of the former Multiple Scales solution.  During the 

same year, Majdalani (2001b) used three perturbations schemes in solving for the laminar 

oscillatory flow in porous channels.  One formulation was obtained from the vorticity 

transport equation, while the other two were arrived at through the use of WKB and 

multiple scale expansions.  Despite the dissimilar expressions for the different 

perturbation methods, his solutions, when compared, agreed favorably with one another.  

However, an absolute error analysis showed that the Multiple Scale solution was the most 

accurate of the three. 

 The quest for finding the analytical technique that is most suitable for capturing 

the unsteady wave behavior continued.  Majdalani and Flandro (2002) surveyed six 

perturbation solutions for the axially traveling unsteady wave in porous tubes.  These 

were derived using (1) the composite scaling technique (Majdalani and Van Moorhem, 

1997), (2) the undetermined scaling technique (Majdalani, 2001b), (3) the generalized 

scaling technique (Majdalani and Rienstra, 2002), (4) the WKB type I technique 

(Majdalani and Rienstra, 2002), (5) the vorticity transport formulation (Majdalani, 2001c; 

Majdalani and Roh, 2001), all of the others were based on the momentum equation, and 

(6) Zhao’s ad hoc singular approach (Majdalani and Flandro, 2002).  Through a 
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maximum absolute error analysis, it was determined that the WKB solutions 

outperformed other models for the large injection case. 

 The purpose of this study is to derive an accurate, uniformly valid asymptotic 

solution to the axisymmetric oscillatory field in a tube with injecting sidewalls.  The 

work at hand constitutes a crucial extension to a previous study by Majdalani (2009).  

Majdalani was successful in obtaining multiple asymptotic solutions for two dimensional 

porous channels, whereas in our case the solution is developed for a cylindrical tube.  The 

present configuration is more pertinent to rocketry and other applications in which 

axisymmetric flows are induced.  Most of the work is realized through the use of the 

WKB and matched asymptotic expansions methods.  For readers unacquainted with 

perturbation theory, a brief introduction is furnished in chapter 2 with special emphasis 

on the WKB and matched asymptotic expansions. 

 This thesis is arranged into six chapters.  A brief introduction to perturbation 

theory is presented in chapter 2; this is followed in chapter 3 by the governing equations 

and boundary conditions.  In chapter 4, we lay out the formal procedural steps leading to 

a multi-order WKB expansion along with a matched asymptotic approximation.  These 

techniques are compared to a robust numerical solution.  The results are later discussed in 

chapter 5.  Finally, main conclusions are reviewed in chapter 6 along with 

recommendations for future analysis. 
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Chapter 2 Perturbation Theory 

2.1 Introduction 

 Perturbation theory is a compilation of schemes for the systematic analysis of the 

global behavior of solutions to differential and difference equations.  The theory first 

appeared in one of the oldest branches of applied mathematics: celestial mechanics, the 

study of the motions of the planets (Murdock, 1999).  Historically, scientists would 

attempt to describe the motion of planets with no concrete explanation of the factors at 

play.  Newton’s formulation of the law of gravity made it possible to link planetary 

motion to rigorous physical laws.  Theoretically, if only one planet was orbiting the sun, 

the motion would be elliptical with the sun at its focus.  However, since there are multiple 

planets circling the sun and because all of these planets interact with one another, the 

actually observed path became a modified or perturbed elliptical motion.  The way that 

perturbation theory works is by first assuming an unperturbed solution, usually called the 

leading order solution, which in our case would be to presume elliptical motion of all 

planets.  Then, we take into account the gravitational forces exerted by the planets on 

each other and modify our initial guess, the unperturbed solution.  After the solution is 

obtained, we would, once again, account for the inter-planetary forces and make the 
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proper corrections until our solution converges, or until the error falls within 

predetermined tolerance levels.  Perturbation theory becomes especially valuable in cases 

such as these when the final solution requires few corrections to the unperturbed or 

leading order solution. 

 Nowadays, perturbation theory is being applied to a variety of fields, but the main 

idea behind it remains the same.  The first step is to solve the simplified or unperturbed 

problem and then to use that solution as a first guess to the solution of the desired and 

more complicated problem, which generally differs from the simplified problem by a 

small number of terms.  The second step would be to add successive corrections to the 

unperturbed solution until one is satisfied with the end result, when the error falls below a 

certain value. 

 To get a better grasp of the theory, the solution to one of the simpler problems 

will now be carried out.  Finding roots of polynomials is one of the relatively 

straightforward problems that can be tackled by perturbation tools.  The problem is 

purely mathematical so there would be no need to address physical issues; moreover, the 

problem is differentially free so that the only difficulty arises from the perturbation 

method itself. 

 Consider the following quadratic equation 

 2 2 01 2 98 0. .x x+ - =  (2.1) 

Equation (2.1) can be rewritten in terms of a “small” perturbation parameter 0 01.e =  as 

 ( ) ( )2 2 3 2 0x xe e+ + - - =  (2.2) 

Perturbation theory suggests expressing the solution in terms of a power series in e  
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1

2
0 1 2

0

... ( )
n

i n
i

i

x x x x xe e e O e
-

=

= + + + = +å  (2.3) 

 The leading order solution in Eq. (2.3) is 
0
;x  it represents the solution to the 

quadratic equation, Eq. (2.1), with a zero perturbation parameter, 0.e =   The solution, 

Eq. (2.3), may be truncated at any order, depending on the desired level of accuracy.  If 

we were to discard all terms of order 3e  and higher, our solution would then be exact up 

to 3( )O e . 

 Replacing Eq. (2.3) back into Eq. (2.2) and collecting terms of the same order in 

e  up to 2( )O e , we obtain 

 ( )
( )

0 2
0 0

1
1 0 0

2 2
2 0 1 1

2 3 0

2 2 2 0

2 2 0

( ) :

( ) :

( ) :

x x

x x x

x x x x

O e

O e

O e

+ - =

+ + + =

+ + + =

 (2.4) 

The leading order solution 
0
x  is quadratic and admits two roots, let 

A
x  and 

B
x  represent 

the first and second roots, respectively.  We get 

 
( )
( )

2 3

2 3

3 3
1

4 64
1 3

3
4 64

A

B

x

x

e e O e

e e O e

= - + +

= - - - +
 (2.5) 

 Table 2.1 shows the absolute value of the error between the exact values of the 

roots of Eq. (2.1) and the values obtained using a perturbation approach.  The error 

between the exact and asymptotic values drops exponentially as our perturbation 

parameter is decreased.  An error below 2 %  is achieved for a relatively large 

perturbation parameter of 0 5. .e =  
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 In order for perturbation theory to work, the problem must have a small or large 

parameter, which would be used to form the power series solution.  The smaller (or 

larger) that parameter is, the less the terms that need to be retained for an accurate 

compact solution.  Moreover, by transforming the problem from Eq. (2.1) to Eq. (2.2), we 

have converted our specific problem to a more general family of problems that works 

with a whole range of values for the perturbation parameter; nonetheless, the accuracy of 

the solution remains strongly dependent on the size of e  and the order at which it is 

truncated. 

 Several theories emerged from perturbation theory, each aimed at solving specific 

problems with certain characteristics.  These theories include: WKB technique, matched 

asymptotic expansions, multiple scale analysis, generalized scaling technique and others.  

For the study at hand, both the WKB and the matched asymptotic expansion theories will 

be applied.  A brief introduction to these is given below. 

  

Table 2.1  Percent error at 2( )O e  versus e  

e  Absolute value of percent error 
 

A
x  

B
x  

0.50 1.95442 0.39709
0.10 0.05128 0.01569
0.05 0.01225 0.00391
0.01 0.00047 0.00016
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2.2 WKB theory 

 The WKB technique is widely used in obtaining estimates to solutions of linear 

differential equations where the highest derivative is multiplied by a small, perturbation 

parameter.  The WKB theory is well suited for describing phenomena of a dissipative or 

dispersive nature.  Moreover, for differential equations that display such behavior, it is 

natural to seek a solution with an exponential nature.  With this in mind, the WKB 

approximation of the solution to a differential equation bears the following structure 

 1

0

0( ) exp ( ) ,i
i

i

y x S xd d d
¥

-

=

é ù
ê ú= ê úê úë û

å  (2.6) 

where ( )y x  and x  are the dependent and independent variables for a given differential 

equation having d  as the perturbation parameter.  Equation (2.6) represents the initial 

expression from which all WKB solutions are developed.  Unlike regular perturbations, 

the leading order term for the WKB approximation incorporates not one, but two terms, 

0
( )S x  and 

1
( ).S x   The leading order solution 0( )( )y x  may be expressed as 

 0 1
0 1

( )( ) exp ( ) ( ) ( )y x S x S xd O d-é ù= + +ê úë û  (2.7) 

 The equation for 
0
S  is termed the eikonal equation, and that for 

1
S  is named the 

transport equation.  These equations as well as those for the higher order terms consist of 

elementary integrals of algebraic functions.  In summary, the WKB technique is a 

powerful method for obtaining approximate solutions for suitable linear differential 

equations of any order.  Nonetheless, its limitation lies in the fact that it cannot handle 

nonlinear equations. 
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2.3 Matched asymptotic expansions 

 Matched asymptotic expansions is a powerful tool for obtaining global 

approximations to the solution of problems involving more than one scale.  A good 

example would be the simple flow of a viscous fluid over a flat plate.  That flow has, in 

general, two distinguished regions, namely the viscous boundary layer and the outer 

section unaffected by the presence of the wall.  The latter is what we call a slow varying 

region where a function, say velocity, changes its value by 1( )O  over an interval of size 

1( ).O   On the other hand, the viscous sublayer is a rapidly varying region in which the 

velocity, for example, changes its value quickly by 1( )O  over an interval whose size is 

ever small approaching 0.  The matched asymptotic expansions technique splits the 

domain into several parts depending on the number of scales exhibited by the problem.  

By identifying one region for every scale, it then rescales the variables in their 

corresponding domains.  Each region would thus be solved for separately, and eventually, 

the solutions would be matched to arrive at the final matched asymptotic expansions 

solution. 

 The problems we confront in fluid mechanics as well as other disciplines 

comprise mostly nonlinear governing equations as well as nonlinear boundary conditions.  

Accordingly, numerical and analytical techniques are used separately or mutually, when 

possible, to obtain approximate or at times exact solutions.  If one is to acquire some 

insight into the behavior of the solution of nonlinear problems and their dependence on 

certain parameters, it might be necessary to repeat the calculations for different values of 

those parameters.  In contrast, analytical methods can often delineate general phenomena 
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leading to closed form approximations.  In the case of nonlinear partial differential 

equations with variable coefficients, the combination of both analytical and numerical 

methods may offer the best avenue for analysis. When the problem exhibits a condition 

where one or more parameters are either very small or very large, a straightforward 

numerical procedure becomes difficult to obtain.  In this situation, analytical methods 

offer a reliable alternative that is less costly and more universal. 
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Chapter 3 Problem Definition  

3.1 The finite channel 

 The flow under consideration is established inside a long porous cylindrical tube 

of radius a  and length L ; a schematic of the geometry is depicted in Figure 3.1.  A 

Newtonian fluid is injected with a uniform speed V  through the tube’s sidewall.  

Throughout this study, we will in fact, limit our attention to a perfect gas.  The spatial 

dimensional variables *x  and *r  will be normalized by the tube’s radius a .  Taking the 

tube’s axial symmetry into account, the scope of our study is reduced to 0 x l£ £  and 

Figure 3.1  Right-cylindrical tube with injecting sidewall in which vorticoacoustic 
oscillations are sustained. 
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0 1r£ £ , where x  and r  represent, in that order, the tube’s non-dimensional axial and 

radial coordinates, and l  denotes the tube’s non-dimensional length 70/l L a= < .  

With the tube being closed at the head end (zero inlet profile in Berman’s formulation) 

and choked at the downstream end, small fluctuations in the injection velocity give rise to 

a harmonic oscillatory pressure field of frequency w  and amplitude .A   It is this 

oscillatory field that we wish to analyze.  Following Majdalani and Roh (2000), we 

consider low crossflow Mach numbers 0 01( / . )M V c= < , c  being the speed of sound, 

and small pressure amplitudes A  relative to the mean stagnation pressure
s
p . 

3.2 Mean flow solution 

 Our point of departure is the self-similar mean-flow solution in a circular cylinder 

with porous walls.  According to Berman (1953), if we allow the stream function Y  to 

vary linearly with the cylinder’s longitudinal axis (x -axis), ( )xF rY =  (Weissberg, 

1959; Brady and Acrivos, 1981), the Navier-Stokes equations reduce to a linear fourth 

order ordinary differential equation with variable coefficients.  We recover: 

 3 4 2 3 2 3 0 1( ) ( )( ) ( ) ( ) ; /r F r RF F R F rF rF F Re e eé ù¢ ¢¢ ¢+ - + - + - = ºê úë û  (3.1) 

with R  being the injection crossflow Reynolds number /R Va n= .  The mean flow 

velocity and vorticity vectors are normalized by V  and defined as 
0 0 0x r
u v= +u e e  and 

0 0
.qW= eW   Equation (3.1) requires four boundary conditions: (1) the no slip boundary 

0
1 0( , ) ,u x =  (2) axial symmetry 

0
0 0( , ) / ,u x r¶ ¶ =  (3) radial influx at the wall 
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0
1 1( , ) ,v x = -  and (4) boundedness at the centerline 

0
0 0( , ) .v x =   Recalling the 

definition for the stream function in cylindrical coordinates, one may write 

 
0 0 0

1 1 ( / )
; ;

xF F x F r F
u v

r r r r x r r

Y Y
W

¢ ¢ ¢¢¶ ¶ -
= = =- = - =

¶ ¶
 (3.2) 

Inserting the boundary conditions into Eq. (3.2), we obtain 

 
0

1 1 1 0 0 0
/

( ) ; ( ) ( ) ; lim
r

F F r
F F F

r

¢¢ ¢-¢= = = =  (3.3) 

 Depending on the size of the crossflow Reynolds number, different values for F  

are available (Terrill, 1983).  However, for a tube experiencing either large or small 

sidewall injection, Yuan and Finkelstein (1956) suggest two solutions for F , specifically 

 
2 2 2 2

2 11
2

2 10 10 100

100

( ) ( );
( )

sin( ) ( );   

r r Rr R
F r

r R R

O

p O

-

-

ìï - + < <ïï= íï + >ïïî
 (3.4) 

Replacing Eq. (3.4) back into Eq. (3.2) and ignoring terms of higher order, one can write 

 ( ) ( ) ( )
2 3

0 0 0

2 2 2 21 1 1 1
0 0 02 2 2

4 1 2 8 10 100

100

( ); ; ;

cos ; sin ; sin ;
r

u x r v r r rx R

u x r v r rx r R

W

p p p W p p

ìï = - = - = < <ïïíï = = - = >ïïî
(3.5) 

 Following Majdalani and Flandro (2002), the mean pressure associated with Eq. 

(3.2) is normalized by 
s
,pg  with g  being the ratio of specific heats, and integrated from 

the steady flow momentum equation, 2 2
0 0 0 0

.M p e-⋅ = -  + u u u   Keeping in mind 

that 
s s
/c pg r=  and that 

0
0 0 1( , ) / ,p g=  we get 

 
2 2 2 2 2 11

0 2

1 2 2

1
{ [ ( )( ) ] }

   ( )

p r M F x F r F F F rF rF

M x

e e e
g
g O

- -

-

ìïï ¢ ¢ ¢¢ ¢¢¢ ¢= - + + - - - +ïïíïï = +ïïî

 (3.6) 
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Equation (3.6) shows that the pressure is almost constant along the tube with low 

dependency on axial location. 

3.3 Linearized Navier-Stokes equations 

 In normalizing variables, we shall use the asterisks to denote dimensional 

quantities.  The spatial coordinates, pressure, velocity, density, and time are normalized 

as  

 
* * * * * *

s s

; ; ; ; ;
/

x r p t
x r p t

a a p c a c

r
r

g r
= = = = = =

u
u  (3.7) 

Working with these non-dimensional quantities, and assuming constant kinematic 

viscosity and negligible bulk viscosity, the mass and momentum conservation equations 

become 

 0( )
t

r
r

¶
+⋅ =

¶
u  (3.8) 

 4
3

( ) ( ) ( )p M
t

r e
é ù¶ é ùê ú+ ⋅ = - +  ⋅ -´ ´ê úë ûê ú¶ë û

u
u u u u  (3.9) 

With the inclusion of periodic fluctuations, an oscillatory time-dependent quantity must 

be added to the steady state component of each variable of interest, specifically 

 1
1 1 0 1 0 0 1

1; ; ;p p M Mg e r er e e-= + = + = + = +u u u W W W  (3.10) 

where 
s

/ ( )A pe g=  is the wave amplitude ratio.  If we insert Eq. (3.10) into the 

conservation equations, Eqs. (3.8) and (3.9), we obtain two sets of equations, namely the 

leading order equations, which by themselves describe the steady state problem, and the 

first order equations responsible for the oscillatory field inside the tube.  The steady state 
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equations have been previously expressed for both small and large injection in Eq. (3.5).  

For the first order set, we get 

 1
1 1 0

( ) ( ) ( )M
t

r
r O e

¶
+ ⋅ = -  ⋅ +

¶
u u  (3.11) 

 
1

0 1 1 0 0 1

4
1 1 13

( )

( ) ( )

M
t

p Me O e

ìï¶ï é ù= -  ⋅ - ´ - ´ïï ê úë ûí ¶ï é ùï - +  ⋅ -´ +ï ê úë ûïî

u
u u u u

u

W W

W
 (3.12) 

3.4 Velocity vector decomposition 

 The temporal fluctuations are separated into a rotational, solenoidal response and 

an irrotational component.  Using the circumflex and the tilde to represent the irrotational 

and solenoidal components, one may write 

 
1 1 1 1

ˆ ˆ ˆ; ;p p r r= + = = =u u u W W;  (3.13) 

Substituting Eq. (3.13) into the linearized governing equations, Eqs. (3.11) and (3.12), we 

obtain two distinct sets.  The first is the oscillatory vortical response.  It may be expressed 

at ( )O e  as 

 
0 0 0

0; ( )M M
t

e
¶ é ù ⋅ = = -  ⋅ - ´ - ´ - ´ê úë û¶
u

u u u u uW W W
      (3.14) 

The second is the irrotational pressure driven response, again at order ( )O e : 

2
2 2 24

0 0 0 32

ˆ ˆ
ˆ ˆ ˆˆ ( ) ( ) ( )

p p
p M M

tt
e

é ùæ ö¶ ¶ ÷çê ú÷- = - ⋅ - ⋅ +⋅ ´ -  ⋅ç ÷ê úç ÷ç ¶è ø¶ ê úë û
u u u u uW  (3.15) 
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3.4.1 Irrotational response 

 The last term in Eq. (3.15), represents damping due to viscosity, a quantity that is 

of order ( )MO e  where 1, .M Me e< " <   Then, if we ignore terms of ( )MO  and 

smaller in Eq. (3.15), the oscillatory pressure at ( )MO  reduces to 

 (̂ , ) cos( )exp( i )
m m

p x t x tw w= -  (3.16) 

where Euler’s notation is used.  The irrotational component at ( )MO  of the velocity is 

readily obtained by substituting Eq. (3.16) into Eq. (3.12) and ignoring higher order terms 

 (̂ , ) i sin( )exp( i )
m m

u x t x tw w= -  (3.17) 

where 
m

w  denotes the oscillation mode number for a cylindrical tube that is acoustically 

closed at both ends. 

 */ / ,
m

a c m l mw w p= = Î   (3.18) 

3.4.2 Rotational response 

 In a similar fashion, the oscillatory vortical response can be expressed as 

 ( , , ) ( , )exp( i ); ( , , ) ( , )exp( i )
m m

x r t x r t x r t x r tw w= - = -u u W W  (3.19) 

with 
x r

u vº +u e e  and qWº ´ =u eW .  In place of Eq. (3.14), we now write 

1
0 0 0

( ); i ( ) ( )S MO e e O e -é ù ⋅ = =  ⋅ - ´ - ´ + ´ê úë ûu u u u u uW W W+  (3.20) 

with /S a Vw=  being the Strouhal number. 

 In determining the relative sizes of e  and M , we adopt an ordering scheme used 

in combustion stability theory.  We thus put 
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 2

0
0

,
; lim

M
M M

Me

e
e


< < =  (3.21) 

If we then follow Majdalani and Roh (2000) by taking / ( )v u MO= , the axial 

component of the velocity in Eq. (3.20) may be expressed as 

 0
0

1( )
i

u u u u
Su v r

x r r r r
e

æ ö¶ ¶ ¶ ¶ ÷ç ÷= + - ç ÷ç ÷ç¶ ¶ ¶ ¶è ø
 (3.22) 

To obtain u  from Eq. (3.22), the latter must first be rearranged into 

 
2

2

1
1

iu rS F u r u u
x u
x F F r F r rr

e
æ öæ ö¶ ¶ ¶ ¶ ÷ç÷ç ÷÷ ç= - + + +ç ÷÷ çç ÷÷ç ¢ ¢ ¢ ÷ç¶ ¶ ¶è ø ¶è ø

 (3.23) 

 At this point, we may use the separated variable form, ( , ) ( ) ( )u x r X x R r= , in Eq. 

(3.23).  Then as shown by Majdalani and Flandro (2002), we may enforce the no slip 

condition at the sidewall, 1 0( , ) i sin( )
m

u x xw+ = , to obtain 

 
2 1

0

1
2 1

( )
( , ) i ( ) ( )

( )!

n
n m

n
n

x
u x r R r

n

w +¥

=

= - -
+å  (3.24) 

where the eigenfunction ( )
n
R r  is determined from 

 

2

2
2 1 0 0 1

1 1 0 0

d d( )
i ( ) ; ;

dd
( ) ; ( )

n n
n

n n

R RF F
S n R r

r r rr
R R

e
e

é ù¢+ ê ú+ + - + = £ £ê úë û
¢= =

 (3.25) 

where 1 1( )
n
R =  and 0 0( )

n
R¢ =  represent the no-slip and symmetry boundary conditions 

respectively. 

 The total axial velocity can now be retrieved by summing up its irrotational and 

solenoidal counterparts; one collects 
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2 1

1
0

1
2 1

( )
( , , ) sin( )sin( ) i ( ) ( )exp( i )

( )!

n
n m

m m n m
n

x
u x r t x t R r t

n

w
w w w

+¥

=

= - - -
+å  (3.26) 

 In what follows, several analytical methods will be used to solve Eq. (3.25) and 

overcome its inherent singularity at the core.  These will be confirmed numerically. 
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Chapter 4 Analytical and Numerical Solutions 

4.1 The WKB technique 

 Closed form representations of Eq. (3.25) are intractable due to the general 

coefficients in the second and third terms.  The inherently stiff nature of the problem also 

renders numerical solutions difficult to obtain for large Reynolds numbers.  In contrast, 

highly accurate asymptotic approximations can be arrived at using the Wentzel-Kramers-

Brillouin expansion method or WKB for short.  Generally, the WKB technique is often 

employed in solving linear differential equations exhibiting oscillatory behavior, in which 

the highest derivative is multiplied by a small parameter.  Formal WKB theory (Bender 

and Orszag, 1978) suggests setting 

 1 2 3
0 1 2 3 4

( ) exp( ...)
n
R r S S S S Sd d d d-= + + + + +  (4.1) 

where d  is a small parameter and ( )
j
S r  must be determined sequentially for 0j ³ .  

Straightforward differentiation and substitution into Eq. (3.25) yields 

 
( )( )

1 2 2 2 1
0 1 2 0 1 0 1 0 2 1 2

1
0 1 2

2 2 2

1 1
2 1 0( )

S S S S S S S S S S S

F S S S iS n F
r r

e d d d d d

e d d

- - -

-

ì é ùï ¢¢ ¢¢ ¢¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢+ + + + + + +ï ê úë ûïï é ùíï ê ú¢ ¢ ¢ ¢+ + + + + - + =ï ê úïï ë ûî

 (4.2) 
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Depending on the relative sizes of e  and d , Eq. (4.2) gives rise to two distinguished 

limits, namely d e=  and d e= . 

4.1.1 The WKB solution of type I: d e=  and ( )S RO=  

 Starting with Eq. (4.2) and replacing d  by e , we are left with 

 

2
0 0 1

0 2
0 0 1

1 1
2 1

2 0

( )

...

F F
S iS S S n F
r r r

S FS
S S S

r r

e
e

e

ì æ ö æ öï ÷ ÷ï ç ç¢ ¢ ¢ ¢÷ ÷+ + + - +ï ç ç÷ ÷ç çï ÷ ÷ç çè ø è øïïí æ ö¢ ¢ï ÷çï ÷¢¢ ¢ ¢ç+ + + + + =ï ÷çï ÷÷çï è øïî

 (4.3) 

where the quantities outside the parentheses dictate the order of the term that they 

multiply.  In order to satisfy Eq. (4.3), quantities at every order must vanish.  Therefore at 

( )1 2/ ,O e-  the leading order equation is immediately realized in the form of a first order 

linear differential equation 

 
0 0

1 0( ) ; ( )
( )

riS
S r S

F r

e¢ = - =  (4.4) 

 It should be borne in mind that Eq. (4.4) does not constitute an Eikonal equation 

in the strict sense of the term.  Typical Eikonal equations comprise a first derivative that 

is squared, thus leading to dual solutions.  Here, only one solution is precipitated by the 

type I distinguished limit.  As we turn our attention to the so-called transport equation, 

the same departure from classic behavior is realized.  In fact, the higher order corrective 

functions, 
1
S  and 

2
S  become single valued and expressible by 
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2

0
1 1

2 1
1 0

( ) ( ) ( )
( ) ; ( )

( )

rS r n F r
S r S

F r

¢ ¢- +
¢ = - =  (4.5) 

 0 0 1 0
2 2

2
1 0

( ) ( ) ( ) ( )
( ) ; ( )

( )

rS r rS r S r S r
S r S

F r

¢¢ ¢ ¢ ¢+ +
¢ = - =  (4.6) 

After carrying the solution to much higher orders, a simple recursive relation is obtained, 

namely, 

 
1

2 1 2
0

1
1 0( ) , ( ) ;

k

k k k i k i k
i

S r S rS r S S S k
F

+

+ + - +
=

æ ö÷ç ÷¢ ¢ ¢¢ ¢ ¢= - + + = Îç ÷ç ÷÷çè ø
å   (4.7) 

The type I solution may be constructed by integrating Eqs. (4.4), (4.5), and (4.6).  

Carrying out the integration, one obtains, 

 0 1
( ) d

( )

r x
S r iS x

F x
e= - ò  (4.8) 

 
2 23

2
1 31 1

( )
( ) d ln ;

( )( )

n
r x F r

S r x S
FF x

x x e
+é ù

ê ú= + =ê úë û
ò  (4.9) 

 

2 23
2

2 2 5 5

1 1

2 1

4 5 2

( ) ( )
( ) i

( ) / ( ) d / ( ) d
r r

n r F r
S r S

n x F x x x F x x
e

x

-ì üé ùï ï+ -ï ïê úë ûï ï= í ýé ù é ùï ï+ + +ï ïê ú ê úï ïë û ë ûî þò ò
 (4.10) 

 Note that 2Sx e=  was first discovered by Majdalani (1995) and shown to control 

the amplitude of a decaying rotational wave.  By substituting Eqs. (4.8), (4.9), and (4.10) 

back into Eq. (4.1), while realizing from Eq. (3.4) that 1 1( ) ,F =  one obtains the leading 

order type I WKB solution 

 ( )2 2
0 0 1

( ) exp i i ( )I n n
n
R r F z F F O e+= - - +  (4.11) 
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with 

 

3
2

0 031 1

2 23
2

1 2 5 5

1 1

2 1

4 5 2

d ; ; d ;
( )( )

( ) ( )

( ) / ( ) d / ( ) d

r r

n
r r

x x
x S S x

F xF x

n r F r
S

n x F x x x F x x

z x x e F

F e
x

-

ìïï = = =ïïïïï ì üé ùí ï ï+ -ï ïï ê úë ûï ïï = -ï í ýï é ù é ùï ïï + + +ï ïê ú ê úï ï ïë û ë ûî þïî

ò ò

ò ò

 (4.12) 

4.1.2 The WKB solution of type II: d e=  and ( )S RO=  

 Again, we start with Eq. (4.2) and replace d  by e  then collect terms at different 

orders.  We get 

 

2
0 0 0 0 1 0 1

2 1 2
1 1 0 2

1 1 1
2 2 1

2 0

( )

...

F F
S S i S S S S S S n F

r r r r

S FS
S S S S

r r

e
e

e

ì æ ö é ùï ÷ï ç ê ú¢ ¢ ¢¢ ¢ ¢ ¢ ¢ ¢÷+ + + + + + - +ï ç ÷çï ê ú÷çè øï ë ûïí æ ö¢ ¢ï ÷çï ÷¢¢ ¢ ¢ ¢ç+ + + + + + =ï ÷çï ÷÷çï è øïî

 (4.13) 

 The quantities inside the parentheses must sequentially vanish, starting with the 

lowest order.  Resolution of the e  multipliers may hence be continued until a desired 

order is reached.  For the type II case, a conventional Eikonal equation is returned, 

namely, 

 2
0 0

0
F

S S i S
r

e¢ ¢+ + =  (4.14) 

Its dual roots are given by 

 

2 2
01 1

2 2
02 1

1
4

2
1

4
2

( ) ( ) d

( ) ( ) d

r

r

S F x F x iS x x
x

S F x F x iS x x
x

e

e

ìï é ùï = - + -ê úïïï ë ûíï é ùï = - - -ê úïï ë ûïî

ò

ò
 (4.15) 
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 Due to the quadratic nature of the Eikonal equation and the duality of its roots, 

01
S  and 

02
,S  two conjugate solutions will be obtained for each of the higher order 

corrections 
1
,S  

2
,S  

3
S  and so on. Each of these will correspond to either 

01
S  or 

02
.S  

At 1( )O , the transport equation may be solved for 
1
S  with the outcome, 

 0 0
1 1

0

2 1

2

( ) ( ) ( ) ( )
d

( ) ( )

r xS x S x n F x
S x

xS x F x

¢¢ ¢ ¢+ - +
= -

¢ +ò  (4.16) 

At ( )O e , 
2
S  begets 

 
2

1 1 1
2 1

0
2

( ) ( ) ( )
d

( ) ( )

r xS x xS x S x
S x

xS x F x

¢ ¢ ¢+ +
= -

¢ +ò  (4.17) 

Higher orders may be similarly achieved. After some effort, a recursive relation is 

developed to help reproduce the successive corrections for * .k Î    We have 

 ( ) 1

3 0 2 2 1 2 1 21
1

2 2 d
kr

k k k k i k i
i

S F rS S xS xS S x S S x
-

+ + + + + + -
=

æ ö÷ç ÷¢ ¢ ¢¢ ¢ ¢ ¢ ¢= - + + + +ç ÷ç ÷÷çè ø
åò  (4.18) 

 This recursive formula is valid for any order.  In most practical applications, 

however, no more than three terms are needed to accurately describe the wave behavior.  

By substituting Eqs. (4.15), (4.16), and (4.17) into Eq. (4.1), the type II solution II
n
R  may 

be arrived at.  The linearity of Eq. (3.25) warrants the inclusion of both conjugates in Eq. 

(4.15) and higher order terms.  We hence retrieve, 

 ( ) ( )1 1
1 01 11 21 2 02 12 22
exp expII

n
R C S S S C S S Sd d d d- -= + + + + +  (4.19) 
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( ) ( )01 01

11 1
01

02 02
12 1

02

2 1

2
2 1

2

( ) ( )
d

( ) ( )
( ) ( ) ( ) ( )

d
( ) ( )

r

r

xS x S x n F x
S x

xS x F x
xS x S x n F x

S x
xS x F x

ìï ¢¢ ¢ ¢+ - +ïï = -ïï ¢ +ïíï ¢¢ ¢ ¢+ - +ïï = -ï ¢ +ïïî

ò

ò
 (4.20) 

 

2
11 11 11

21 1
01

2
12 12 12

22 1
02

2

2

( ) ( ) ( )
d

( ) ( )

( ) ( ) ( )
d

( ) ( )

r

r

xS x xS x S x
S x

xS x F x

xS x xS x S x
S x

xS x F x

ìï ¢¢ ¢ ¢+ +ïï = -ï ¢ +ïïíï ¢¢ ¢ ¢+ +ïï = -ï ¢ +ïïî

ò

ò
 (4.21) 

 At this juncture, the problem’s boundary conditions must be applied to determine 

the constants of integration.  By taking 
1

0C =  and 
2

1,C =  the boundary conditions in 

Eq. (3.25)  may be secured while ensuring boundedness throughout the domain.  The type 

II approximation reduces to 

 ( ) ( ) ( )1 2
02 12 22

expII
n
R r S S Sd d d-= + + +  (4.22) 

 For the WKB type I solution, in both the rectangular channel and the cylindrical 

tube, the value of I
n
R  at the core alternates between zero and infinity, depending on the 

order at which the solution is truncated.  The solution suddenly becomes unbounded at 

even orders in ,e  I
n
R  ¥  as 0;r   however, for odd orders in ,e  the solution is well 

behaved, 0I
n
R   as 0.r    In reality, the numerical solution suggests that neither 

outcome is correct, rather the function 
n
R  possesses an asymptotically small value at 

0r =  that may be explicitly estimated.  As for the type II solution, the cylindrical case 

exhibits a singular behavior at the centerline with a pattern that again alternates between 

zero and infinity every four orders in .e   This pattern will be discussed in detail in section 
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4.2.2.  Contrary to the cylindrical case, the type II channel solution remains uniformly 

valid and singularity free throughout the entire domain. 

 Moreover, the type II solution for the cylindrical configuration leads to a 

generally quasi-analytical form that precludes the explicit integration of Eqs. (4.15), 

(4.16), and (4.17).  For ( )21
2

( ) sin ,F r rp=  these have to integrated numerically.  This is 

atypical of the WKB type I formulation which has led to a fully analytical solution for 

this study as well as for the porous channel flow analog (Majdalani, 2009). 

4.1.3 Other possible limits: 1 3/d e=  and ( )3S RO=  

 A type III expansion is possible granted 1 3/ .d e=   Following the same procedure 

as before, the leading order equation returns a first order ODE 

 
1 3

0

/iS r
S

F

e¢ = -  (4.23) 

Higher orders are obtained sequentially at fractional increments of 1 3/( )O e ; these give 

 ( )1
2 1 /S n F F¢ ¢= +  (4.24) 

 2
2 0

/S rS F¢ ¢= -  (4.25) 

A recurrence formula is identified for 0k ³ , namely 

 
1

3 1
0

1
;

k

k k k i k i
i

S S rS r S S k
F

+

+ + -
=

æ ö÷ç ÷¢ ¢ ¢¢ ¢ ¢= - + + Îç ÷ç ÷÷çè ø
å   (4.26) 

 If we compare Eq. (4.26) to the recurrence formula for the type I solution in Eq. 

(4.7), we find that, beyond 
3
,S  the type III solution begins to replicate the type I 
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approximation, albeit at a previous order.  That is, 
3
,S  

4
,S  and 

5
S  for type III reproduce 

2
,S  

3
,S  and 

4
S  for type I.  Therefore, for 3,j ³  one may write 

1
.III I

j j
S S -=   For this 

reason, only the type I expansion will be considered in the remainder of this study. 

 Furthermore, through a dual parametric trade analysis, we find the type II 

solution, as presented in Tables 4.1 and 4.2, to remain valid over a wide range of the 

Strouhal number S  and the crossflow Reynolds number .R   Moreover, II
n
R  matches the 

numerical solution quite persistently for the different values of ,F  especially those 

obtained for medium and large injection.  In contrast to the small injection case, the type I 

solution, as depicted in Table 4.2, shows better agreement with numerical data over a 

wider portion of the domain, albeit unable to capture the small oscillations about the 

Table 4.1.  Numerical and asymptotic solutions using 10S = , 100R = , 0n = , and 
2 22( )F r r= -  

 WKB I WKB II Numerical 

r  ( )O e  2( )O e  3( )O e  ( )O e  2( )O e  3( )O e   

0.00 0 ¥  0 ¥  ¥  ¥  -0.000095 
0.05 0 ¥  0 -0.000232 -0.000189 -0.000245 -0.000248 
0.10 0 ¥  0 -0.000464 -0.000681 -0.000794 -0.000756 
0.15 -0.000077 -351.5493 0 -0.000407 -0.001307 -0.001312 -0.001261 
0.20 0.000793 0.081356 -0.000001 0.001258 -0.000258 0.000071 0.000050 
0.25 0.003737 -0.010881 0.001476 0.006808 0.005950 0.006450 0.006354 
…        

0.75 -0.314489 -0.324418 -0.323904 -0.329651 -0.322887 -0.323929 -0.323878 
0.80 -0.132432 -0.136933 -0.136969 -0.140714 -0.136146 -0.136945 -0.136903 
0.85 0.163223 0.162151 0.161967 0.162109 0.162368 0.161980 0.162009 
0.90 0.517807 0.517666 0.517644 0.521459 0.517614 0.517611 0.517631 
0.95 0.835726 0.835242 0.835397 0.839798 0.835182 0.835339 0.835352 
1.00 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
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centerline.  Nonetheless, these oscillations are so small that they fall within the truncation 

error at the first order, thus making the type I solution a uniformly valid representation at 

that order.  This cannot be said for the higher order solutions where the discrepancy 

around the centerline becomes larger than the truncation error itself.  Under these 

conditions, one must insist on an inner correction, and such a correction might become 

useful only in applications demanding high accuracy in the core region. 

 In Tables 4.1 and 4.2, we inspect the accuracy of both WKB approximations by 

comparing them to a highly accurate numerical solution.  We consider asymptotic 

solutions at three orders in ,e  namely 1 2, , and 3.e =   The alternating pattern discussed 

earlier in section 4.1.2 is readily observed.  When 0,r   0I
n
R   at odd orders in ,e  

and I
n
R  ¥  at even orders.  As for the type II, II

n
R  ¥  for all three truncation orders 

Table 4.2.  Numerical and asymptotic solutions using 50S = , 10000R = , 0n = , and 

( )21
2

sinF rp=  

 WKB I WKB II Numerical 

r  ( )O e  2( )O e  3( )O e  ( )O e  2( )O e  3( )O e   

0.00 0 ¥  0 ¥  ¥  ¥  17-8.8 10-´  
0.05 0 -0.002275 0 92.6 10-´  93.6 10-´  93.6 10-´  93.6 10-´  
0.10 0.000009 0.000014 0.000012 0.000013 0.000013 0.000013 0.000013 
0.15 0.000178 0.000189 0.000189 0.000186 0.000189 0.000189 0.000189 
0.20 -0.000250 -0.000251 -0.000252 -0.000252 -0.000252 -0.000252 -0.000252 
0.25 -0.004322 -0.004376 -0.004376 -0.004350 -0.004376 -0.004376 -0.004377 
… … … … … … … … 

0.75 0.448374 0.448333 0.448333 0.448414 0.448333 0.448333 0.448128 
0.80 -0.679822 -0.679732 -0.679732 -0.679866 -0.679732 -0.679732 -0.679706 
0.85 0.505482 0.505412 0.505412 0.505504 0.505412 0.505412 0.505667 
0.90 0.096224 0.096212 0.096212 0.096228 0.096211 0.096212 0.095773 
0.95 -0.741260 -0.741205 -0.741205 -0.741270 -0.741205 -0.741205 -0.740844 
1.00 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.999917 
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as 0.r    In Table 4.1 we use relatively small values for the Strouhal and Reynolds 

numbers, viz 10 100 and .S R= =   At these values, Yuan and Finkelstein (1956) 

suggest a polynomial representation for the base solution, 2 22( ).F r r= -   The 

singularity pattern observed in Table 4.1 remains identical to that in Table 4.2 even with 

the use of a different base solution, ( )21
2

sin ,F rp=  that is appropriate for relatively 

large Strouhal and Reynolds numbers. 

 Examining Tables 4.1 and 4.2, we note an alternating pattern of singularity 

associated with the type I solution near 0r =  that changes from zero to infinity with 

each successive order.  On the other hand, it seems that the type II solution remains 

singular as 0,r   irrespective of the order at which the solution is truncated. 

 In reality, we find that the type II solution is not always singular at the core.  To 

capture its uniformly valid behavior, at least 5 terms are needed, namely 

0 1 2 3 4
, , , ,  and .S S S S S   In this vein, a detailed near core analysis will be required. 

4.1.4 The total velocity field 

 The total axial velocity field is obtained by replacing the type I eigenfunction 

solution, Eq. (4.11), back into Eq. (3.26), and recalling that the Taylor series expansion of 

the sine function about x b=  is 
2 1

0

1
2 1

( )
sin( ) ( )

( )!

n
n

n

x
x

n

b
b

+¥

=

-
- = -

+å .  At the outset, one 

can put 

 ( )1 0 0 1
( , , ) i exp( i ) sin( ) sin( )exp i i n

m m m
u x r t t x F xFw w w z F Fé ù= - - - -ê úë û

 (4.27) 
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 Equation (4.27) comprises both a compressible and an incompressible 

disturbance.  As such, before seeking its radial component, we will first proceed to split 

1
u  into û  and ,u  the irrotational compressible and the rotational incompressible 

components, respectively.  Then from ,u  the radial component of the velocity v  may be 

formulated through the following ansatz, namely, 

 ( )1
0 0 1

i exp( i ) ( )cos( )exp i i n
m m

v r t G r xFw w z F F-= - - -  (4.28) 

where ( )G r  must be determined by satisfying the continuity equation 
( )

.
u rv

r
x r

¶ ¶
= -

¶ ¶


 

( )
( )

( )
( ) ( )

2
0 0 1

0 0 1

0 0 1

0 0 1 0 0 1

i exp( i ) cos( )exp i i

( )cos( )exp i i

exp( i ) sin( ) ( )exp i i

i i ( )cos( )exp i i

( )

n
m m m

n
m

n
m m m

n n
m

u
r r t F xF
x

G r xF

t xF xF G r

G r xF

rv

r

w w w z F F

w z F F

w w w z F F

z F F w z F F

ìï ¶ï = - - -ï
¶

é ùé ù¢- - -ê úê úë ûê ú
ê ú¢= - + - -í ê ú
ê ú

¢ê ú¢ ¢- - - - -ê úë û
¶

= -
¶





ïïïïïïïïï
ïïïïïïïïïïïïî

 (4.29) 

In the process we find the fundamental theorem of calculus, presented below, 

 ( ) ( )
x

a

d
f t dt f x

dx
=ò  (4.30) 

to be essential for calculating the derivatives of 
0
,z  

0
,F  and 

1
nF  with respect to .r   

Accordingly, we have 
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æ ö÷ç ÷¢ ç= =÷ç ÷÷çè ø
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 (4.31) 

We can simplify matters by recalling the WKB type I distinguished limit 1( ),S e O=  

which enables us to neglect higher order terms.  ( )G r  is readily calculated to be 

 3( )G r MF=  (4.32) 

 Returning to Eq. (4.28) and replacing G  by its proper value, we extract the radial 

component of the velocity.  Then by following Majdalani and Flandro (2002), we neglect 

the higher order acoustic radial component to obtain 
1

:v v=   

 ( )3
1 0 0 1

1
exp( i ) cos( )exp i i n

m m
v t MF xF

r
w w z F F

é ù
ê ú= - - -ê úë û

 (4.33) 

By retaining the dominant terms when differentiating Eqs. (4.27) and (4.33), the temporal 

vorticity is also obtained.  We get 

 ( )1 0 0 1
exp( i ) sin( )exp i i n

m m
t Sr xFW w w z F Fé ù= - - - -ê úë û

 (4.34) 

In the final assessment, the imaginary parts of Eqs. (4.27), (4.33), and (4.34) may be 

disregarded as only real components need to be retained for a meaningful expression.  In 

summary, we retrieve 
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1 0 0 1

3
1 0 0 1

1 0 0 1

1

sin( )sin( ) sin( )exp( )sin( )

cos( )exp( )cos( )

sin( )exp( )cos( )

n
m m m m

n
m m

n
m m

u x t F xF t

v MF xF t
r
Sr xF t

w w w z w F F

w z w F F

W w z w F F

ìï = - + +ïïïïï = + +íïïï = + +ïïïî

 (4.35) 

 Figure 4.1 has more to offer than just validating the favorable agreement between 

the type I axial velocity and its numerical counterpart.  Not only does it display the role 

of the Strouhal and the injection Reynolds numbers in controlling the intensity of 

oscillations, it also exemplifies the importance of the viscous parameter 2Se .  

Maintaining a constant penetration number ( ) 1
2 2/

p
S S R Se

-
= =  results in a constant 

penetration depth irrespective of the operating parameters.  The presence of the no-slip 

condition is observed with the irrotational and solenoidal components of the wave 

canceling each other out at the wall’s surface.  On the other hand these components 

augment each other very close to the surface in what is known as the annular effect, first 

observed by Richardson and Tyler (1929).  This phenomenon appears in porous tubes and 

channels in which fluid motion is rapidly alternating (Majdalani, 2009). 

4.2 Near core approximations 

 Near the core, one can express the mean flow characteristic function as 
2,F ra=  

where ( )1
2

2,a p=  can mimic, in that order, the small and large injection profiles as 

0r  . 
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4.2.1 WKB type I 

 The WKB type I solution, as 0,r   alternates between zero, for odd orders of ,e

and ¥  for even orders.  This irregular behavior can be captured by carrying out the type 

I solution to higher orders while using the near core approximating function 2( ) .F r ra=   

This form will be appropriate, being representative of ( )F r  in the region of non-

uniformity.  The procedure is identical to that followed in section 4.1.1, except that, only 

the real part of the dominant terms as 0r   will be considered.  These alone dictate 

whether I
n
R  approaches zero or infinity.  The dominant terms for 

0
,S  

1
,S  

2
,S  …

7
S  as 

0r   may be determined asymptotically.  They are given by 

0 0.2 0.4 0.6 0.8 1
0

1

2

  penetration depth

                  
 analytical
 numerical

  S = 50

a)

u
1

 r

 

 
0 0.2 0.4 0.6 0.8 1

  S = 100

b)  r

 

 
                  

Figure 4.1.  Numerical and analytical WKB type II solutions of the axially traveling wave

for ( )21
2

sin ,F rp=  2 5,Se =  2/ ,m
tw p=  0 5/ . ,x L =  and a Strouhal number of a)

50S =  and b) 100.S =   Fixing the penetration number 2 0 2/ .
p
S R S= =  results in a 

constant boundary layer thickness. 
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 (4.36) 

A recurrence relation for the thj  term may hence be obtained, following Majdalani 

(2009): 

 
1

2
1

2

(i )
C( ) ;

( )

j

j j

S
S j j

j r

e
a a

+

= ³  (4.37) 

where the coefficients given by 1 2C( ), , ,...j j =  denote the Catalan numbers.  These are 

defined by Abramowitz and Stegun (1964) in terms of a binomial ratio, specifically, 

 
2

1

( )!
C( )

!( )!

j
j

j j
=

+
 (4.38) 

Note that these numbers were also discovered independently by Segner (Larcombe and 

French, 2000) and Majdalani (2009), the latter expressed them as 

1 1
2 2

0 2 1 2 2 2 1
0 0

1 2 0 2 1, , ; ,
j j

j k j k j j k j k j
k k

a a a a a j a a a a j
- -

+ - - -
= =

= = + ³ = + ³å å  (4.39) 

4.2.2 WKB type II 

 For the WKB type II solution, the dominant terms at the core may be similarly 

obtained; however, the pattern at first glance is not as obvious as that in Eq. (4.36). To 

that end, more terms are retained to formulate a recursive formula.  Furthermore, since 

the type II solution has two roots at every order, due to the quadratic nature of the 

Eikonal equation, only the terms retained in the regular type II analysis will be 

considered here. The Eikonal equation becomes 
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( ) ( )2 2 2

0

4 4 2 4 4

4

i i ln i i ln iS S S S S
S

a a a e e e e a a e

a

- - - - + + -
=  (4.40) 

As for the higher order equations, we may put 
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 (4.41) 

with the above data, a recursive relation is formulated 

 

1

2
i i

;

j

j j
S a j

r Se

-æ ö- ÷ç ÷ç= ³÷ç ÷ç ÷çè ø
 (4.42) 

 We find 
j
a  to be a strictly positive constant.  At the outset, Eq. (4.42) leads to a 

singularity pattern that may be expressed as 

 
1

0

, ; whenever j/4  is even

, ; whenever j/4  is odd
j

j

S j

S j

ì ê úï  +¥ ³ï ê úï ë ûí ê úï  -¥ ³ï ê úë ûïî
 (4.43) 

Table 4.3.  Singularity pattern for the WKB type I and type II solutions 

Truncation Order 

    
… 

2j/4 ;t tê ú = Îê úë û   2 1j/4 tê ú = +ê úë û  

Type ( )O e  2( )O e  3( )O e  2( )jO e  2 1( )jO e +  2( )jO e  2 1( )jO e +  
I 0 ¥  0 … ¥  0 ¥  0 
II ¥  ¥  ¥  … ¥  ¥  0 0 
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where ê úê úë û  denotes the Floor function.  Furthermore, if we substitute the values for 
j
S  

into Eq. (4.22), we find that when 
j
S  ¥  so will ,II

n
R  ¥  and when 

j
S -¥  we 

recover 0.II
n
R    Table 4.3 summarizes the singularity pattern for both WKB solutions.  

For the type I solution near 0,r =  the pattern is relatively simple: I
n
R  alternates between 

0  and ¥  with each successive order.  Therefore, to obtain a uniformly valid behavior, 

the type I solutions should be truncated at odd orders in .e   This irregular behavior is also 

present in the type II solution.  We find that as 0,r   II
n
R  switches from 0  to ¥  every 

four orders.  This can be mathematically represented by taking the floor function ê úê úë û  of 

the ratio 4/ .j   When this function is even, ,II
n
R  ¥  and when it is odd, 0.II

n
R    On 

this basis, the first uniformly valid behavior is realized at 4( ).O e   This is achieved by 

taking the first 5 terms in ,II
n
R  namely 

0 1 2 3 4
, , , ,  and .S S S S S  

4.3 Matched asymptotic expansions 

 In order to overcome the core singularity associated with both type I and type II 

WKB solutions, the method of matched asymptotic expansions is pursued.  This 

technique enables us to split the domain into an inner layer corresponding to the region of 

non-uniformity, and an outer region where the solution is well behaved.  A suitable 

approximation is then constructed for each of these regions, and these local expansions 

are subsequently matched over their overlap segments before being combined into a 

composite solution that remains uniformly valid over the entire domain of interest. 
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4.3.1 Outer approximation 

 By suppressing all terms that involve the primary perturbation parameter e  in Eq. 

(3.25), our leading order inviscid outer solution may be obtained.  This basic cancellation 

leaves us with 

 
1

2 1 0 1 1
d

( ) ; ( )
d

o
o on
n n

F
iS n F

r r r

R
R R

é ù
ê ú¢+ - + = =ê úë û

 (4.44) 

where o
n
R  refers to an outer expansion.  As we suppress the term multiplying e , the 

second order eigenfunction, Eq. (3.25), becomes a first order ODE, requiring only one of 

the two boundary conditions.  The choice is straightforward, we disregard the boundary 

condition at the core, 0 0( ) ,
n
R¢ =  and retain the meaningful condition at the wall, 

1 1( ) .
n
R =   Being left with a well posed problem, Eq. (4.44) may be readily solved to 

obtain 

 ( ) ( )2 2
2 21 1

2 4

i /
tan( ) sin

n
o
n

S
R r r r

p
p p

+ -
=  (4.45) 

To segregate the contribution of the outer solution in the core region, we take the limit as 

0.r    This operation renders the inner expansion of the outer solution, otherwise 

known as ( ) :o i
n
R  

 ( )2 2
21

2
2

i /
i /( )

n S
So i

n
R r

p
p p

+ -
=  (4.46) 

The determination of a compact outer solution will prove to be instrumental in retrieving 

an expression for the inner expansion.  This aspect will be illustrated next. 
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4.3.2 Inner core approximation 

 Near the core, one can express the mean flow characteristic function as 2,F ra=  

where 1
2

a p=  mimics the large injection profile, ( )21
2

sin ,F rp=  used for the outer 

solution as 0.r    Equation (3.25) can then be subjected to a double variable 

transformation of the type 

 
( ) ( ) ( )21

4
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ï
ïïïî

 (4.47) 

At the outset, the rescaled Eq. (3.25) becomes 
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 (4.48) 

 Note that only the boundary condition in the core region is transformed.  The 

second boundary condition must be evaluated in the far field to the extent of reproducing 

the inner expansion of the outer solution, ( ) .o i
n
R   Equation (4.48) may be readily 

manipulated to produce 

 ( ) ( ) ( )2 21 1
0 4 2

2 2 2 /exp ; if c SL nhc c c ph= - = + -  (4.49) 

where 
0
c  is a constant that must be determined through a matching operation that ensures 

the seamless blending of the inner and outer solutions in their overlap regions.  In the 

above, the special function ( )
y
L x  represents the Laguerre polynomial.  It is defined in 

terms of ( ), , ,a b xF  the Kummer function of the first kind (Abramowitz and Stegun, 

1964).  These functions are given by 
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 1 1( ) exp( ) ( , , )
y
L x x y xF= + -  (4.50) 

and 

 
0
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!

k
k
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a z
a b x

b k
F

¥

=

= å  (4.51) 

 At this stage, Prandtl’s matching principle may be implemented.  Accordingly, the 

inner limit of the outer solution ( )o i
n
R  must be equated to the outer limit of the inner 

solution ( ) .i o
n
R   Finding the latter requires the use of the large x  approximation of the 

Kummer function ,F  

 11
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( , , ) exp( ) ( ) ;
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a b x x x x x

a

G
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G
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This expression enables us to convert Eq. (4.49) into 
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 (4.53) 

whence, based on Eq. (4.47), 

 ( )21
4

lim

( ) ( ) expi o
n
R f

c
c c
¥

= -  (4.54) 

which in terms of ,r  becomes 
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 (4.55) 

Solving for 
0
c  by equating ( )i o

n
R  to ( )o i

n
R  gives 
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 (4.56) 

Equation (4.56) may be further simplified to yield 

 ( ) 1 2 2 2
0

2 3 2 2 i /i / n n Sc n S peG p + + -= + -  (4.57) 

Switching back to Eq. (4.49), the inner solution at order e  returns 

 ( ) ( ) ( )2 2 22 2 3 2 4
i /i /( ) i / /

ni SS
n
R r n S L r

pp
he G p p e

+ -
= + - -  (4.58) 

The net inner correction, ( ) ,ni i o
nn
i

n
RR R= -  is thus at hand.  ni

n
R  denotes the correction 

that must be added to the outer solution to overcome its irregular behavior near 0.r =   

The net inner correction reads 

( ) ( ) ( )2 2
2 2 2 2 2 21 1

4 2
3 2 2 2

i /
i / i /( ) i /

n S
ni n n S S
n
R r n S L Rr r

p
p p

hG ep p p
+ -

+ + -= + - - -  (4.59) 

 The net inner correction adjusts the value of the outer domain solution near the 

core, and should asymptote to zero as it approaches the outer boundary.  However, 

because in the process of obtaining an inner solution, an approximate test function 

21
2

( )F r rp=  had to be used to arrive at a closed form analytic solution, the net inner 

correction carries with it a small asymptotic residue away from the centerline.  This 

residue is strongly dependent on how e  and S  scale. 

 Figure 4.2 delineates the behavior of ni
n
R  as we fix the Strouhal number and allow 

the crossflow Reynolds number to vary.  It is clear that for a fixed Strouhal number, the 

wiggles observed in ni
n
R  away from the core diminish  as R  increases.  On the other 
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hand, referring to Figure 4.3, it is evident that an increase in the Strouhal number reflects 

negatively on 
max

,niE  the maximum absolute error of .ni
n
R   Here 

max
niE  represents the 

maximum amplitude of the residue depicted in Figure 4.2, it is given by: 

 0 1
max

max ;ni ni
n

E R r= £ £  (4.60) 

For the Strouhal and Reynolds number values used in Figure 4.2a, 0 3
max

. .niE »  
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Figure 4.2.  Residue error in the net inner correction away from the centerline.  The value

of the Strouhal number is kept constant as we allow the crossflow Reynolds number to

vary.  Four cases are considered: a) 410 ,R =  b) 45 10 ,´  c) 510 ,  and d) 610 .   Evidently, the 

larger the crossflow Reynolds number, the smaller the residue. 
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 At this point, a composite solution may be constructed by adding ni
n
R  to the outer 

inviscid solution .o
n
R   Despite the inability to incorporate viscous corrections into the 

outer expansion, the composite solution is seen to capture some viscous effects by virtue 

of the net inner correction. 

 Figure 4.3 shows two curves that portray a) the inherent error in the net inner 

correction resulting from the use of a near core approximating function 2,F ra=  and b) 

the error,
max

,oE  associated with the inviscid outer solution.  The latter is a measure of the 

maximum difference between o
n
R  and the leading order WKB type I solution ,I

n
R  in 

which viscous effects are accounted for; it may be expressed as: 

 ( ) ( ) ( )2 2
2 21 1

2 4

2 2
0 0 1ma

i

x

/
max tans n e i ii xp

n S
o n nr rE F

p
z Fp p F+

+ -
= - - -  (4.61) 
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Figure 4.3  Asymptotic behavior of a) 
max

,niE and b) 
max
oE .  Four values of the Strouhal 

number are considered: 10,S =  20,  50,  and 100.  
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Moreover, as depicted in Figure 4.3, the relatively small error 
max
oE  associated with 

neglecting viscosity in o
n
R  is always less than the inbuilt error related to the net inner 

correction, thus justifying the use of o
n
R  in the composite solution. 

4.3.3 The composite solution 

 Our composite solution is formed by superimposing the net inner correction and 

the outer solution.  One obtains 

 c ni o
n n n
R R R= +  (4.62) 

 A comparison between the second-order asymptotic approximations and highly 

accurate numerical predictions is presented in Table 4.4.  By looking at the domain’s 

Table 4.4.  Numerical and asymptotic solutions using 10S = , 310R = , 0n = , and 

( )21
2

sinF rp=  

r  WKB I WKB II Numerical Composite 

0.00 ¥  ¥  61 37 10. -´  61 39 10. -´  
0.05 ¥  -0.000014 -0.000014 -0.000014 
0.10 -0.000259 0.000018 0.000017 0.000020 
0.15 0.000998 0.000907 0.000908 0.000924 
0.20 -0.001189 -0.001189 -0.001188 -0.001264 
0.25 -0.008467 -0.008424 -0.008425 -0.008614 
…     

0.75 -0.418811 -0.418824 -0.418824 -0.413059 
0.80 -0.223137 -0.223143 -0.223143 -0.205649 
0.85 0.115410 0.115411 0.115411 0.143387 
0.90 0.517774 0.517780 0.517780 0.550385 
0.95 0.857983 0.857989 0.857989 0.885910 
1.00 1.000000 1.000000 1.000000 1.013719 
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endpoints, it is interesting to see how well the composite approximation matches the 

numerical value at the origin.  Meanwhile, both types of WKB expansions fail to a 

certain degree by providing either a vanishingly small or an infinitely large magnitude as 

0.r    Nonetheless, as we move away from the origin, the WKB approximations begin 

to outperform, as they should, the composite expansion from which the outer solution 

may be recovered only asymptotically in .e   Thus unless e  is exceedingly small, the 

ability of the composite solution to outperform the outer solution in the outer region will 

remain limited.  This explains the small discrepancy in the composite approximation near 

1,r =  a weakness to which the WKB solutions are immune.  

4.4 Special case of an exact solution 

 We have seen so far that the case of 2,F ra=  where ( )1
2

2, ,a p=  can 

asymptotically reproduce, when expanded near the core, the small and large injection 

solutions, respectively.  In addition to the role that it serves in constructing a near-core 

approximation, the characteristic function itself leads to an exact solution across the 

entire solution interval.  This can be readily achieved using the dual variable 

transformations, 

 
( ) ( ) ( )21

4

/

exp

r

R f

c a e

c c c

ìï =ïïíï = -ïïî

 (4.63) 

Equation (3.25) and its two boundary conditions simplify into 
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 (4.64) 

This enables us to extract an exact solution to this set, namely, 
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Reverting back to the original variables, we get 
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where the superscript ‘E’ denotes an exact outcome.  For the two cases at hand, Eq. 

(4.66) leads to 

 

( )
( )
( )
( )

21
4 1

21
4

2

2 2

2 2 2 4

L
; , i /

L
( )

L
; , i /

L

E
n

Rr
n S

R
R r

Rr
n S

R

h

h

m

m

p
a p h p

p

a m

ìï -ïï = = + -ïï -ïï= íï -ïï = = + -ïï -ïïî

 (4.67) 

 In Table 4.5, ( )E
n
R r  is compared to the numerical and WKB approximations for 

21
2

F rp=  and a typical set of physical parameters.  Based on the data entries, it may be 

surmised that the exact and numerical solutions agree perfectly well, as they should, over 

the entire domain.  As for the asymptotic expressions, they agree with the true values 

everywhere except at the centerline where they either vanish (type I), thus missing the 

small asymptotic value at 1,r   or grow unbounded (type II), thus requiring a local 

matched asymptotic treatment. 
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4.5 Numerical Solution 

 Despite the unsuspecting, deceptively simple form of Eq. (3.25), its numerical 

solution presents its own challenges.  First, the role of e  multiplying the highest 

derivative leads to numerical instability that is aggravated by successive increases in .R   

Thus for a given ,e  a maximum step size cannot be exceeded lest spurious results are 

obtained.  Second, the 1r-  factors that affect several members of the integrands pose 

additional singularities in the vicinity of 0.r =   Third, extracting the real component of 

the total wave after summation needs to be carefully performed.  To illustrate how the 

solution may be entirely carried out in the real domain, we introduce the inverse 

transformation 

Table 4.5.  Numerical, exact, and asymptotic solutions at ( )O e  for 20S = , 
310 ,R =  0n = , and 21

2
F rp=  

r  WKB I WKB II Numerical Exact 

0.00 0 ¥  81 21 10. -- ´  81 21 10. -- ´  
0.05 0 71 47 10. -- ´  81 53 10. -- ´  81 53 10. -- ´  
0.10 76 03 10. -- ´  69 52 10. -´  69 27 10. -´  69 27 10. -´  
0.15 -0.000054 -0.000106 -0.000114 -0.000114 
0.20 0.000382 0.000458 0.000483 0.000483 
0.25 -0.000395 -0.000384 -0.000365 -0.000365 
…     

0.75 -0.267450 -0.267661 -0.268683 -0.268683 
0.80 -0.377773 -0.377978 -0.379073 -0.379073 
0.85 -0.238870 -0.238956 -0.239463 -0.239463 
0.90 0.152272 0.152298 0.152445 0.152445 
0.95 0.645061 0.645114 0.645456 0.645456 
1.00 1.000000 1.000000 1.000000 1.000000 
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 i( , ) ( ) ,T
n m

g r t R r e T tw-= =  (4.68) 

with 
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i i i( ) , ( ) , i ( )T T T
n n n

g g g
R r e R r e R r e

r Tr
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¶ ¶¶
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These expressions may be substituted into Eq. (3.25) and simplified through 

multiplication by i .Te-   An equivalent PDE emerges, namely, 
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1 2
1( ) ( )

g g g
F n F g S

r r r Tr
e e
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¶ ¶¶
 (4.70) 

The boundary conditions in Eq. (3.25) may be similarly converted via Eq. (4.68).  One 

gets 

 
1

0 0

i( , )

( , )

Tg t e

g
t

r

-ìï =ïïïí¶ï =ïï¶ïî

 (4.71) 

Given harmonic oscillations in time, our PDE in Eq. (4.70) may be conveniently reduced 

to a coupled set of ODEs by setting 

 
1 2

( , ) ( )sin ( )cosg r t g r T g r T= -  (4.72) 

Consequently, the linear, second-order set in 
1 2

( , )g g  is arrived at: 
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 (4.73) 

This system can be numerically integrated given the following assortment of auxiliary 

conditions 
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Once a solution is achieved, the wave motion can be reproduced using 
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where only the real part is meaningful.  The axially traveling wave can be extracted from 

 ( )
2 1

1 1 2
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1
2 1
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sin( )sin( ) ( ) i sin cos
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n
n m

m m m m
n

x
u x t g t g t
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é ù= - - Â -ê úë û+å  (4.76) 

or, equivalently, letting 
1 1 2 2
( ) i ( ) , ( ) i ( ) ,f r g r f r g ré ù é ù= Â = Âê ú ê úë û ë û  one gets the equivalent 

problem cast in the real domain 

 ( )
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1 1 2
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x
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such that 
1
f  and 

2
f  may be retrieved directly from the real ODEs 
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 (4.78) 

In summary, it is sufficient to solve Eq. (4.78) and substitute the results into Eq. (4.77) to 

deduce the wave form at any instant of time. 
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Chapter 5 Results and Discussion 

 Inasmuch as this problem resembles its porous channel flow analog, 

mathematically it is quite different.  For the cylindrical geometry, the 1r-  term 

multiplying the 
n
R¢  in (3.25) changes the character of the differential equation, thus 

making it more difficult to produce a near core approximation.  Furthermore, it is 

interesting to note that in the channel case, the singularity at the core is associated with 

the WKB type I solution while the type II solution remains uniformly valid throughout 

the entire domain.  This situation becomes more complex in a cylindrical geometry.  On 

the one hand, the type I approximation exhibits the expected singularity at every other 

order in e  with a pattern that is identical to its Cartesian counterpart.  On the other hand, 

the type II solution, once uniformly valid for the channel case, now exhibits a singularity 

pattern that is highly dependent on the truncation order. 

 Away from the core, the WKB solutions are well behaved and accurate.  

However, their inherent singularity at the centerline must be carefully treated.  In this 

study, matched asymptotic expansions are used to arrive at a uniformly valid composite 

solution capable of capturing the small amplitude wave velocity at the centerline.  

Nevertheless, the increased accuracy associated with the composite solution at the core 

comes at the expense of a small residual error plaguing the outer expansion.  In the 
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process of formulating a composite solution, an inner core test function 21
2

F rp=  had to 

be used to arrive at a closed form analytical solution.  Even though the test function is an 

excellent approximation near the core, it becomes the source of discrepancy in the outer 

domain.  At the outset, we now have a choice between two methods of analytical 

solutions, one that is highly accurate away from the center (WKB solutions) but fails to 

capture the behavior of the wave around the core, and another  (composite solution), 

which excels where the WKB fails, but falls short where the WKB approximation 

performs superbly well, away from the centerline.  Depending on what region of the 

domain is of interest, near core or outer domain, one may decide on one method over the 

other, or ultimately both, each in their respective region. 

 Examining Figures 5.1 and 5.2, the physical significance of the WKB type I and 

type II distinguished limits may be inferred.  When the variables are such that 

2 const,Se =  (for the type I distinguished limit, 2 ( )S RO= ) and S  is larger than some 

critical, relatively small value, a fixed penetration depth is achieved irrespective of the 

amplitude of each variable taken separately.  Moreover, for an increase or decrease in the 

size of ,RS  the frequency of the wave is either elevated or reduced, respectively.  On the 

other hand, when e  and S  scale according to const,Se =  (for the type II distinguished 

limit, ( )S RO= ) the pattern observed projects an increase in the wave intensity 

accompanied by a decrease in the penetration depth when RS  increases. The exact 

opposite behavior is observed for a reduction in .RS  
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Figure 5.1.  Analytical (WKB type II) and numerical solutions of the axially traveling

wave for ( )21
2

sin ,F rp=  5,
p
S =  1,m =  2/ ,

m
tw p=  0 5/ . ,x l =  and a Strouhal 

number of: a) 50,S =  100,  200,  and 400.   With a fixed penetration number, the 

penetration depth 
p
y  remains constant regardless of the wall injection velocity or 

frequency of oscillations.  Despite the wave’s increased spatial frequency, the agreement

between numerics and asymptotics seems excellent. 
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Figure 5.2  Analytical (WKB type II) and numerical solutions of the axially traveling

wave for ( )21
2

sin ,F rp=  0 1. ,Se =  1,m =  2/ ,
m
tw p=  0 5/ . ,x l =  and a Strouhal 

number of: a) 20,S =  50,  100,  and 200.   When e  and S  scale according to 

const,Se =  the pattern observed is an increase in the wave intensity accompanied by a

decrease in the penetration depth when the value of SR  increases. Here, the analytical 

solution is a mirror image of its numerical counterpart. 
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 Figure 5.3a shows how the penetration depth of the wave varies as the crossflow 

Reynolds number and the Strouhal number change.  When R  is held fixed, the 

penetration depth is decreased as S  is increased.  Moreover, as the Strouhal number gets 

larger, the sensitivity of the penetration depth to R  is amplified.  Conversely, Figure 5.3b 

depicts the variation in the penetration depth for different values of .x   A constant 

penetration depth 
p
y  is achieved when x  is held constant; however, S  must be above 

some minimum value dictated by the magnitude of the penetration number 2/ .
p
S R S=   

The reason for the penetration depth being always larger at somewhat lower Strouhal 

numbers is that the wave would have relatively lower frequencies in those situations, a 

condition that allows it to spatially delay its asymptotic approach to zero, thus leading to 

a larger penetration depth.  On the contrary, when Se  is held constant in Figure 5.3c, 
p
y  

diminishes as S  increases.  Furthermore, Figure 5.3d illustrates the dependency and 

sensitivity of 
p
y  on .

p
S   When 

p
S  falls in the range 0 02 1. ,

p
S£ £  the changes in 

p
y  

are most significant when compared to variations outside that domain.  In fact, when 
p
S  

jumps from 0 02.  to 1,  the penetration depth expands by as much as 56%  covering15%  

of the tube’s radius at 0 02.
p
S =  to about 71%  at  1.

p
S =   Beyond 1,

p
S =  namely 

1 100,
p
S£ £  

p
y  spreads out an additional 9%  reaching a maximum value of 80%  at 

100.
p
S =   In fact, the penetration depth begins to plateau for penetration numbers 
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Figure 5.3  a) Penetration depth 
p
y  vs S  for multiple values of .R   When R  is held 

constant, 
p
y  decreases with higher frequencies.  Also the sensitivity of 

p
y  on S  is 

amplified at large Strouhal numbers; b) 
p
y  vs S  for multiple values of .x   Note that p

y

remains constant when x  is fixed and S  is increased above a critical, relatively small, 

value.  c) p
y  vs S  for multiple values of .Se   Unlike case b, 

p
y  diminishes as Se  is 

increased.  d) 
p
y  vs ,

p
S

p
y  is most susceptible to change when 0 02 1. .

p
S£ £  
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beyond 1.
p
S =   A more detailed study on the penetration depth is carried out by 

Majdalanin (1999a). 

 Figure 5.4 depicts the penetration depth as the velocity wave progresses through 

the tube.  Close to the headwall, the wave is still developing which results in a small 

penetration depth.  The wave quickly develops as it propagates away from the headwall; 

in fact, before reaching 10%  of the tube’s length, the penetration depth becomes more 

than 90%  of its maximum; that maximum is located at the tube’s end.  When x  is held 

constant, the depth of the wave is shown to be slightly widened throughout the tube as the 

mode number is increased.  Moreover, 
p
y  slightly increases as the wave propagates 

towards the downstream end because of the boundary layer being convected by the mean 

flow towards the tube’s end.  If we take the special case of 1m =  midway through the 
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y
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  x 
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Figure 5.4  Penetration depth vs x  for 100,S =  1 2 3, ,m =  with 0 1 3.  and .x =   

Only the mode number is allowed to change, while x  is kept constant. 
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tube, we find that 0 6.
p
y »  for 3,x =  and 0 8.

p
y »  for 0 1. .x =   These values are in 

excellent agreement with the results obtained in Figure 5.3. 

 So far we have only sketched the velocity wave at a single location in the tube, 

midway between both ends, and for one oscillation mode number 1.m =   Figure 5.5 

illustrates the behavior of the wave throughout the entire tube for multiple mode 

numbers.  When the oscillation mode number is increased, the magnitude of 
1
( , , )u x r t  

appears to follow the spatial mode shape of the irrotational component of the wave 

 0 0.2L 0.4L 0.6L 0.8L L

 

 

r
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½

1
 

 

 

 

 

Figure 5.5  WKB type II modulus of the time-dependent velocity 
1
( , , )u x r t  for the first 

three oscillation modes.  Results are shown at equal intervals along the tube.  Here

410R =  and 100S m=  with 1 2 3, , .m =  



60 
 

embodied in the first part of Eq. (3.26).  For the first mode, the magnitude of the wave 

grows from a minimum at the tube’s head end to a maximum midway along the cylinder 

where the modulus of the sinusoidal wave is largest.  The penetration depth of the wave, 

for any mode, continues to increase along the tube as a result of the convection of the 

unsteady vorticity.  When higher mode numbers are considered, 2,m ³  we notice the 

presence of velocity nodes, points where the velocity magnitude vanishes.  The number 

and location of these nodes depends on the mode number and are described in a technical 

note by Majdalani (1999a). 
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Chapter 6 Conclusions and Recommendations 

 This study investigates the behavior of a uniform Newtonian flow subjected to 

small pressure oscillations in a cylindrical tube with injecting sidewall.  Particular to this 

investigation, two forms of WKB approximations are derived and presented to arbitrary 

order.  These analytical solutions are in good agreement with numerical data especially in 

the outer domain, but fail to capture the small wave amplitude at the centerline.  Both 

types display a pattern of singularity at the core, obtained through a near core 

approximation study, that alternates between zero and infinity, depending on the order of 

truncation.  However, through a series of transformations, matched asymptotic 

expansions are used to develop a composite, singularity free approximation valid over the 

entire domain.  The composite solution achieved three goals: (a) it overcame the inherent 

singularity associated with the WKB solutions near 0;r =  (b) it confirmed, to several 

decimal places, the calculated numerical value at the centerline; (c) it demonstrated 

Prandtl’s principle of matching with supplementary expansions.  Nonetheless, the 

accuracy of the composite solution comes at the expense of reduced precision in the outer 

field.  Both WKB II and matched asymptotic expansions of this problem represent novel 

and essential solutions of the long standing problem involving axially traveling waves in 

porous cylinders. 
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 Future investigators should examine other methods for deriving the composite 

solution.  While c
n
R  matches the numerical solution persistently to several decimal places 

at the centerline, it loses accuracy as it approaches the tube’s wall.  The flowfield in the 

porous chamber arises solely from injection at the sidewall; no headwall injection is 

considered.  Moreover, an oscillatory pressure wave sweeping the cylinder along its 

longitudinal axis is superimposed on the mean flow.  A similar study for interested 

researchers might be to examine the flowfield with, for example, a Berman injection 

profile at the headwall while excluding sidewall injection.  For that case, one could 

consider a transverse pressure wave that travels both radially and tangentially along the 

tube’s circumference. 
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