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Abstract

In 1893 Hadamard proved that for any n× n matrix A over the complex numbers, with all

of its entries of absolute value less than or equal to 1, it necessarily follows that

|det(A)| ≤ nn/2[n raised to the power n divided by two],

with equality if and only if the rows of A are mutually orthogonal and the absolute value

of each entry is equal to 1 (See [2], [3]). Such matrices are now appropriately identified as

Hadamard matrices, which provides an active area of research in both theoretical and applied

fields of the sciences. In pure mathematics, Hadamard matrices are of interest due to their

intrisic beauty as well as their applications to areas such as combinatorics, information

theory, optics, operator algebras and quantum mechanics.

In this text we will introduce some fundamental properties of Hadamard matrices as well

as provide a proofs of some classification results for real Hadamard matrices.
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Chapter 1

Introduction

Hadamard matrices form an important class of matrices, with applications ranging from

binary codes and information theory, to operator algebras and quantum mechanics. This

class of matrices has the orthogonal property and was introduced by Slyvester in 1867. In

1893 Hadamard determined that such matricesH ∈Mn(R) maximize |det(H)| forH = (hk,l),

with |h < k, l| ≤ 1 for all 1 ≤ k, l ≤ n. In this case |det(H)| = nn/2 (see [3]). There is an

intuitive geometric reason, which explains why this is true. The volume of an n-dimensional

paralleloid of sides less than or equal to
√
n is maximum if it is a box, i.e. the vectors that

determine its sides are orthogonal, which is to say that the n× n matrix formed from the n

vectors that determine the sides of the paralleloid is an orthogonal matrix.

1.1 Definition and Examples of Hadamard Matrices

Definition: Let H ∈Mn×n(C). H is said to be a Hadamard matrix of order n if:

1. Each entry hk,l of H is of norm 1, i.e. |hk,l| = 1 for 1 ≤ k, l ≤ n, and

2. H has mutually orthogonal rows.
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From the above definition, we can easily produce several examples of Hadamard matrices.

Example 1.1.4 Let n ≥ 1, and put ε = e
2πi
n . Then,

Fn =



1 1 1 · · · 1

1 ε ε2 · · · εn−1

1 ε2 (ε2)2 · · · (ε2)n−1

· · · · · · · · · · · · · · ·

1 εn−1 (εn−1)2 · · · (εn−1)n−1


= (εkl) 0 ≤ k, l ≤ n− 1

is commonly known as the Fourier matrix of order n. Since each of the entries of Fn are

roots of unity, it is clear that |(εkl)| = 1 for all 0 ≤ k, l ≤ n − 1. Let fk and fl be any two

rows of Fn. Then 〈fk, fl〉 = 1 + εk−l + · · ·+ ε(n−1)(k−l). If k = l then 〈fk, fl〉 = n. If k 6= l then

e(k−l) is an nth root of unity and so 〈fk, fl〉 = 0 as the sum of n nth roots of unity is 0. Thus

distinct rows of Fn are mutually orthogonal and so Fn is Hadamard. Fn is commonly known

as the Fourier matrix of order n.

Thus for every n ≥ 1 there exists at least one n × n complex Hadamard matrix, the

Fourier matrix. However, real Hadamard matrices do not exist for all dimensions n ≥ 1.

Theorem (Hadamard) Let A = (aij) be a real Hadamard matrix of order n > 2. Then n

is divisible by 4.

Proof. Since any two distinct columns i, j of A are orthogonal, we have that

0 =
n∑
k=1

(aijaik) = ±1± 1 · · · ± 1.

It thus follows that n must be even and any two distinct columns must also have identical

entries in exactly n/2 rows. Next consider three distinct columns i, j, k of A. We thus have

that

n∑
l=1

(aij +aik)(aij +ail) =
n∑
l=1

(a2
ik)+

n∑
l=1

(aijail)+
n∑
l=1

(aikaij)+
n∑
l=1

(aikail) = n+0+0+0 = n.
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When aij = aik = ail we have that (aij + aik)(aij + ail) = 4, with (aij + aik)(aij + ail) = 0

otherwise. Thus, n = 4p, where p is the number of rows such that aij = aik = ail. In

particular, we have that any 3 columns of A have the same entry in exactly n/4 rows. The

result follows.

The following is a famous conjecture that has remained unsolved for over 100 years:

Conjecture: (Hadamard). A real n × n Hadamard matrix exists for n = 1, n = 2, and

for all n ∈ N such that n ≡ 0 mod 4.

Example 1.1.2 Let H1 = [1], H2 =

H1 H1

H1 −H1

, and H4 =

H2 H2

H2 −H2

. It is

easily verified that H1, H2, and H4 are all real Hadamard matrices. In fact, for any Hadamard

matrix Hn or order n, we can construct a Hadamard matrix of order 2n as follows:

H2n =

Hn Hn

Hn −Hn

 .
We compute the product of H2n with its conjugate transpose to verify that H2n is in fact

Hadamard.

H2nH
∗
2n =

Hn Hn

Hn −Hn

H∗n H∗n

H∗n −H∗n


=

HnH
∗
n +HnH

∗
n HnH

∗
n −HnH

∗
n

HnH
∗
n −HnH

∗
n HnH

∗
n +HnH

∗
n


=

2nI2n 0

0 2nI2n


= 2nIn

This shows that the rows of H2n are mutually orthogonal. It is clear that every entry

of H2n is of modulus 1, and so it follows that H2n is Hadamard. The method by which we

constructed the previous matrices is known as the Sylvester construction, which produces

Hadamard matrices of order 2k for all k ∈ N.

Definition 1.1.3 If M and N are matrices, then their Kronecker Product M ⊗ N is the

matrix U , which is constructed by replacing each entry Mi,j of M with Mi,jN .

Example 1.1.4 Let Hm and Hn be Hadamard matrices of order m and n, respectively.

3



Then the Kronecker product Hm ⊗ Hn is a Hadamard matrix of order mn. Notice that in

example 1.1.2, the Hadamard matrix H2n = Hn⊗Hn. We now present a family of Hadamard

matrices using the Paley construction 1 [10]. Paley’s construction makes use of quadratic

residues over a field Fp (p prime), which we introduce below.

Definition 1.1.5 An element r ∈ Fp is said to be a quadratic residue if r = s2 has a solution

in Fp.

Example 1.1.6 When p = 7, we have that

0 ≡ 02 mod 7, 1 ≡ 12 mod 7, 2 ≡ 32 mod 7, 4 ≡ 22 mod 7,

1 ≡ 62 mod 7, 2 ≡ 42 mod 7, 4 ≡ 52 mod 7.

Thus, the only quadratic residues in F7 are 0, 1, 2, and 4.

Lemma 1.1.7 If q = pr, where p is an odd prime, then exactly half of the nonzero elements

of Fq are quadratic residues. Moreover, −1 is a quadratic residue if and only if q ≡ 1 mod 4.

Definition 1.1.8 Let p be prime. The Legendre symbol χ(x) is defined to be

χ(x) =


0, if x is a multiple of p

1, if x is a quadratic residue modulo p

−1, if x is not a quadratic residue modulo p

Consider the p× p matrix Q with entries qij = χ(j − i), indexed starting at 0. For example,

when p = 5. Since 1 and 4 are the only nonzero quadrati residues in F5, we obtain

Q =



0 1 −1 −1 1

1 0 1 −1 −1

−1 1 0 1 −1

−1 −1 1 −1 1

1 0 0 1 0


,

which is known as a Jacobsthal matrix. We now introduce Paley’s construction of Hadamard

matrices.
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Theorem 1.1.9 If q ≡ 3 mod 4 and Q is a Jacobsthal matrix for Fq, then

H =

 1 1n

(1n)T Q− I

 ,
is a Hadamard matrix of order q + 1.

Proof. See [1].

Definition 1.1.10 A complex n × n matrixM is said to be dephased when all of the

entries in the first row and first column are equal to one. In the case that M is a real n× n

matrix, M is said to be normalized.

Definition 1.1.11 The core of an n × n matrix is the lower right submatrix of size n − 1.

We note that the matrix H in theorem 1.1.9 is a normalized Hadamard matrix with core

Q− I. The following result is due to Williamson (See [10] [8]).

Theorem 1.1.12 Suppose there exists n×n matrices A,B,C and D satisfying the following

properties:

1. A,B,C and D are symmetric matrices having entries ±1;

2. A,B,C and D commute with each other;

3. A2 +B2 + C2 +D2 = 4nIn.

Then there is a Hadamard matrix of order 4n given by
A B C D

−B A D −C

−C −D A B

−D C −B A

 .

Definition 1.1.13 Matrices A,B,C and D satisfying conditions (1)− (3) are referred to as

Williamson matrices.
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1.2 Properties of Hadamard Matrices

Theorem 1.2.1 (Hadamard, 1893) Let A be an n × n complex matrix with linearly

independent columns z1, z2, · · · , zn. Then

|det(A)|2 = |det(A · A∗)| ≤
n∏
k=1

‖zk‖2,

with equality if and only if A · A∗ is a diagonal matrix.

Proof. We begin by applying the Gram-Schmidt process to construct mutually orthogonal

vectors y1,y2, · · · ,yn such that yk = c1z1 + c2z2 + · · ·+ zk. Let

yk =
k−1∑
i=1

αkiyi, where αki =
〈z̄k,yi〉
〈ȳi,yi〉

.

Since z1, z2, · · · , zk are all linearly independent, it follows that yk 6= 0 for all k and

〈ȳk,yi〉 = 〈z̄k,yi〉 − αk1〈ȳ1,yi〉 − · · · − αki〈ȳi,yi〉 = 〈z̄k,yi〉 − αki〈ȳi,yi〉 = 0.

Let B = (y1,y2, · · · ,yn). Since all of the y′ks are mutually orthogonal, it follows that

B ·B∗ = D, where D = (dij) is a diagonal matrix with dii = ‖yi‖2 for all 1 ≤ i ≤ n. Let

T =


1 α12 · · · α1n

0 1 · · · α2n

...
... · · · ...

0 0 · · · 1


and notice that B = TA. Thus, we have that

det(B) = det(TA) = det(T )det(A) = det(A).
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It thus follows that|det(B)|2 = |det(A)|2. We also have that

|det(B)|2 = det(B ·B∗)| =
n∏
k=1

‖yk‖2

Recalling that zk =
∑k−1

i=1 αkiyi and using the orthogonality of the y′ks we obtain

〈z̄k, zk〉 = ‖zk‖2 = 〈ȳk,yk〉+
k−1∑
i=1

|αki|2〈ȳi, 〉yi = ‖yk‖2 +
k−1∑
i−1

|αki|2‖yi‖2.

We thus have that ‖yk‖2 ≤ ‖zk‖2 for all k, with equality if and only if yk = zk. Therefore,

it follows that

|det(A)|2 = |det(B)|2 =
n∏
k=1

‖yk‖2 ≤ Πn
k=1‖zk‖2,

with equality if and only if yk = zk for all k i.e. if and only if A ·A∗ is a diagonal matrix.

Corollary 1.2.2 Let A = (zij) be an n × n complex matrix with |zij| ≤ 1. Then

|det(A)| ≤ nn/2, with equality if and only if |zij| = 1 and AA∗ = nI.

Proof. Let zk denote the kth of A. If the columns of A are not linearly independent, then

det(AA∗) = 0 and the inequality holds. If the columns of A are linearly independent, then

‖zk‖2 = |z1k|2 + · · ·+ |znk|2 ≤ n

as |zik| ≤ 1 for all 1 ≤ i, k ≤ n. It follows that

|det(A)|2 ≤ Πn
k=1‖zk‖2 ≤ nn.

We thus have that

|det(A)| ≤ nn/2,

with equality if and only if |zij| = 1 and AA∗ = nI.

Proposition 1.2.3 Let H be an n× n complex Hadamard matrix. Then HH∗ = nI.

7



Proof. When H ∈Mn(C) is Hadamard, each of the rows of H are orthogonal vectors of norm
√
n. We can thus divide each entry of H by 1√

n
to obtain an n× n matrix whose conjugate

transpose is also its inverse, i.e. H =
√
nHn, where HnH

∗
n = I. Thus

HH∗ = (
√
nHn)(

√
nHn)∗ = nHnH

∗
n = nI,

as was to be shown.

Theorem 1.2.4 Let A ∈ Mn(D), where D̄ = {z : |z| ≤ 1}. Then A has maximum

determinant if and only if A is Hadamard.

Proof. Suppose A ∈ Mn(C) has maximum determinant, i.e. |det(A)| = nn/2. Then from

corollary 1.2.2 each of the entries of A have modulus equal to 1 and AA∗ = nI. Therefore,

all rows of A are mutually orthogonal and it follows that A is Hadamard.

Now suppose that A ∈ Mn(C) is Hadamard. Then each entry of A is of modulus 1 and

each row of A has norm
√
n Since every row of A is mutually orthogonal AA∗ = Dn, where

Dn = (dij) is a diagonal matrix. But every row of A has norm
√
n and so dij = n whenever

i = j, i.e. Dn = nIn. Hence it follows from theorem that det(A) = nn/2, i.e. A has maximum

determinant

Proposition 1.2.5 If a matrix H ′ is formed by interchanging two rows or columns of

the matrix H, then H ′ is Hadamard if and only if H is Hadamard.

Proposition 1.2.6 If H ∈Mn(C) is Hadamard, then H∗ is Hadamard.

Proof. Since H is Hadamard, all of its entries are of absolute value 1. Thus, all of the entries

of H∗ are of absolute value 1 as well. Since H ·H∗ = nI, we have that 1
n
(H∗ ·H∗∗) = I, and

from corollary 1.2. and theorem 1.2.4 it follows that H∗ is Hadamard.

Corollary 1.2.7 If H is Hadamard, then the columns of H are orthogonal.

Proof. The proof is straightforward. The fact that H is Hadamard, provides that H∗ is also

Hadamard. Thus, the rows of H∗ are orthogonal, which are simply the conjugate of the

columns of H.

8



We have in general, that any permutation of rows or columns of a Hadamard matrix is

still a Hadamard matrix. Furthermore, multiplication of any row or column of a Hadamard

matrix by some a ∈ C with |a| = 1, produces another Hadamard matrix. This naturally

leads us to define when two Hadamard matrices are equivalent.

Definition 1.2.8 Let H and K be Hadamard matrices. We say that H and K are equivalent

if and only if there exist permutation matrices P1 and P2, and unitary diagonal matrices D1

and D2 such that H = P1D1KD2P2. In this case, we write H ∼ K.

Proposition 1.2.9 ∼ is an equivalence relation on Mn(C).

Proof. We begin by noting that any n×n permutation matrix P is nonsingular with P−1 =

P ∗, which is also a permutation matrix. Furthermore, for any n × n matrix D, PD gives

the rows of D interchanged according to the permutation vectors of P and DP gives the

columns of D interchanged according to the permutation vectors of P . In the case that D is

diagonal, there exists a permutation matrix P ′ such that P ′D = DP . We proceed with our

proof:

1. H ∼ H is clear.

2. Suppose H ∼ K. We show that K ∼ H. Let P1, P2 be permutation matrices and

D1D2 diagonal matrices such that H = P1D1KD2P2. Then

K = D−1
1 P−1

1 HP−1
2 D−1

2

= D−1
1 P ∗1HP

∗
2D
−1
2

= P ′D−1
1 HD−1

2 P ′2

Therefore, K ∼ H.

3. If H ∼ K and K ∼ M , then there exists permutation matrices P1, P2, P3, P4 and

diagonal matrices D1, D2, D3, D4 such that H = P1D1KD2P2 and K = P3D3MD4P4. Thus

H = P1D1P3D3MD4P4D2P2

= P1P
′
3D1D3MD4D2P

′
4P2,

9



where P ′3 and P ′4 are permutation matrices such that D1P3 = P ′3D1 and P4D2 = D2P
′
4. But

the product of two permutation matrices is a permutation matrix as is the product of two

diagonal matrices a diagonal matrix. Hence we have that H ∼ M , and ∼ is a bona fide

equivalence relation.

Note that any Hadamard matrix is equivalent to a normalized Hadamard matrix (See [9]).

An area of current interest involves the determination of equivalence classes of Hadamard

matrices and the intrinsic properties that these classes posses. One such example being

Haagerup’s Invariant, which is defined for a Hadamard matrix H = (hi,j) as the set

Λ(H) = {hi,jhk,lhk,jhi,l|1 ≤ i, j, k, l ≤ n}.

Lemma 1.2.10 If H and K are Hadamard matricies such that H ∼ K, then Λ(H) = Λ(K).

See [7]).

Using Mathematica we computed Λ(F2) = {±1}, Λ(F2⊗F2) = {±1} and F4 = {±1,±i}.

A priori to computing the Hageerup invariant for F2 and F2 ⊗ F2 we know due to difference

in dimension that these two matrices cannot be equivalent, irrespective of the fact that

Λ(F2) = Λ(F2⊗F2). However, F2⊗F2 and F4 are of the same dimension but ΛF2⊗F2 6= ΛF4

demonstrates that these two matrices are not equivalent.

Theorem 1.2.11 (Haagerup). The only Hadamard matrices up to equivalence of order

1, 2, 3, and 5 are F1, F2, F3 and F5, respectively. See [7] for proof. We provide as an example

a Hadamard matrix of dimension 5, which is thus equivalent to F5:

H =



1 a a4 a4 a

a 1 a a4 a4

a4 a 1 a a4

a4 a4 a 1 a

a a4 a4 a 1


.

One of the few remaining classical results of Hadamard matrices is for Hadamard matrices

of dimension 4. The space of Hadamard matrices of this dimension passes through F4 and

consist of an affine one parameter family. They are characterized by the following theorem.

10



Theorem 1.2.12 Every 4× Hadamard matrix is of the form
1 1 1 1

1 z −1 −z

1 −1 1 −1

1 −z −1 z


for some z = e2πit with t ∈ [0, 2π). To prove this theorem, we need the following lemma.

Lemma 1.2.13 If a, b, c and d ∈ C with |a| = |b| = |c| = |d| = 1 and a+ b+ c+ d = 0, then

a = −b, a = −c, or a = −d.

Proof. We note that a = −b, a = −c, or a = −d is equivalent to (a + b)(a + c)(a + d) = 0.

Thus, we aim to show that

(a+ b)(a+ c)(a+ d) = 0.

We begin by expanding the LHS of our equation to obtain

a3 + a2(b+ c+ d) + a(bc+ bd+ cd) + bcd = abcd(1/a+ 1/b+ 1/c+ 1/d)

= abcd((a+ b+ c+ d).

The result follows as (a+ b+ c+ d) = 0.

The proof of the theorem 1.2.12 follows from lemma 1.2.13 since we can put any Hadamard

matrix in the form 
1 1 1 1

1 −1 b −b

1 c d e

1 f g h

 .

Recall that distinct rows (columns) are orthogonal, and consider the cases when c, d or e

are equal to −1. The orthogonality allows us in each case to determine the value of the

remaining variables.
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Chapter 2

Circulant Hadamard Matrices

2.1 Circulant Hadamard Matrices

In this chapter, we discuss an important class of Hadamard matrices, known as circulant

Hadamard matrices.

Definition 2.1.1 A matrix M ∈ Mn(C) is said to be circulant if Mi,j = Mi′,j′ whenever

i− j ≡ i′ − j′ mod n. We could equivalently define the matrix M to be circulant if the ith

row of M is the first row of M shifted right i− 1 positions. Thus, the matrix

A =


a b c d

d a b c

c d a b

b c d a


is circulant. Notice that for an n × n circulant matrix A = (ai−j), with ζ = e2πi/n a nth

root of unity, we see that for 0 ≤ j < n the column vector [1, ζj, ζ2j, · · · , ζ(n−1)j]T is an

eigenvector of A with eigenvalue a0 + ζja1 + ζ2ja2 + · · ·+ ζ(n−1)jan−1. Thus we have that

det(A) =
n−1∏
j=0

(a0 + ζja1 + ζ2ja2 + · · ·+ ζ(n−1)jan−1).

12



Example 2.1.2 The matrix M =


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 is both a circulant matrix and

Hadamard.

The following is a foamous open problem in the theory of real Hadamad matrices.

Conjecture: There does not exist a real circulant Hadamard matrix for n 6= 1, 4.

Richard Turyn (See [8] showed using modern algebraic number theory, that there is no

circulant Hadamard matrix of order 8m. He also eliminated for certain m, orders of the

form 4(2m + 1). We provide proof of the special case n = 2k, which can also be found in

Stanley’s book. For the remainder of this section, we will assume that n is an integer that

can be written as a power of 2. In this section, we will show that no circulant Hadamard

matrix exist for such an n when n > 4.

Recall that n = 2k and write ζ = e2πi/2k . Let Q(ζ) denote the quotient field of Z[ζ].

Notice that in Q(ζ), the polynomial pk(x) = x2k−1
+ 1 is zero at ζ as ζ2k − 1 = 0 →

(ζ2k−1 + 1)(ζ2k−1 − 1) = 0→ ζ2k−1 + 1 = 0.

The proof of theorem 2.1.11 is due to Stanley (see [5]) and will make use of the fact

that for any Hadamard matrix H, det(H) = ±nn/2 and that any circulant matrix A has the

property det(A) =
∏n−1

j=0 (a0 + ζja1 + ζ2ja2, · · · , ζ(n−1)jan−1), which together give us that

det(A) = ±nn/2 = ±(2k)2k−1

. (1)

i.e. there is such a factorization of (2k)2k−1
in Z[ζ]. Using the properties of algebraic number

fields, we will show that no such factorization is possible with each aj = ±1 and n = 2k. We

proceed by providing the necessary background to complete the proof.

Lemma 2.2.3 The polynomial pk(x) is irreducible over Q.

Proof. Suppose in order to reach a contradiction, that px(x) is reducible over Q. Then

pk(x+1) is reducible over Q as well. By Gauss’ lemma, we know that an integral polynomial

that factors over Q also factors over Z. For p(x), q(x) ∈ Z[x], let p(x) ≡ q(x) mod 2 mean
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that the coefficients of p(x)− q(x) are divisible by 2. But,

pk(x+ 1) ≡ (x+ 1)2k−1

+ 1 ≡ x2k−1

mod 2.

It follows that pk(x+ 1) = (xr + 2a)(xs+ 2b) is the only factorization of pk(x+ 1) over Z into

two factors of degree greater than or equal to one. Here we require that r + s = 2k−1 with

a, b polynomials of degree less than r and s, respectively. We thus have that the constant

term of pk(x+ 1) is a multiple of 4, which is clearly false.

Let H = (ai−j) be an n× n circulant Hadamard matrix and denote the eigenvalues of H

as

γj = a0 + a1zeta
j + a2ζ

2j + · · ·+ an−1ζ
(n−1)j.

We provide the following lemma:

Lemma 2.2.4 For H = (ai−j) an n × n circulant Hadamard matrix with eigenvalues γj,

1 ≤ j ≤ n, we have that |γj| =
√
n.

Proof. Consider the matrix 1√
n
H, which is a real orthogonal matrix. So its eigenvalues have

absolute value 1 and it follows that |γj| =
√
n for 1 ≤ j ≤ n

Lemma 2.2.5 There exists a unit u in Z[ζ] such that 2 = (1− ζ)n/2u. (2)

Proof. Write

xn/2 + 1 =
n−1∏

j=0 j odd

(x− ζj).

Letting x = 1, we have that

2 =
∏
j odd

(1− ζj).

But 1− ζj = (1− ζ)(1 + ζ + · · ·+ ζj−1), and so if we can show that (1 + ζ + · · ·+ ζj−1) is a

unit in Z[ζ] when j is odd, we are done. Letting jj̄ ≡ 1( mod n), then ζjj̄ = ζ1 and so we

have that

(1 + ζ + · · ·+ ζj−1)−1 = 1−ζ
1−ζj

= 1−(ζj)j̄

1−ζj ∈ Z[ζ],

as was to be shown.
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Lemma 2.2.6 We have that Z[ζ]/(1− ζ) ∼= F2.

Proof. Write R = Z[ζ]/(1 − ζ). We first note that 2 is not a unit in Z[ζ] since 1/2 is not

an algebraic integer as the only rationals which are algebraic integers are the integers. It

follows from lemma 2.2.4 that (1− ζ) is also not a unit in Z[ζ]. Indeed, if (1− ζ) were a unit

then 2 = (1 − ζ)n/2u would be a unit, which is a contradiction.Thus, we have that r 6= 0.

But ζj − 1 = (ζ − 1)(ζj−1 + · · · + 1) for all j,and so ζj = 1. From the previous lemma we

have that 0 = 2 in R and since all elements of R can be exprssed as some m ∈ Z, it follows

that R has only two elements, namely 0 and 1. Thus, R ∼= F2 as was to be shown.

Lemma 2.2.7 For all 0 ≤ j ≤ n− 1 there is an integer hj such that

a0 + a1ζ
j + a2ζ

2j + · · ·+ an−1ζ
(n−1)j = vj(1− ζ)hj ,

where vj is a unit in Z[ζ].

Proof. From Lemma 2.2.5, we have that 2 is a multiple of 1− ζ. This together with (1) tells

us that ∏
j odd

= 0n−1(a0 + a1ζ
j + a2ζ

2j + · · ·+ an−1ζ
(n−1)j = 0

in Z[ζ]. We showed in Lemma 2.2.6 that Z[ζ]/(1−γ) is isomorphic to F2, which is an integral

domain, and so it follows that 1−γ divides some factor of (a0+a1ζ
j+a2ζ

2j+· · ·+an−1ζ
(n−1)j.

We can thus divide this factors well as the right-hand side of (2) by 1− ζ. We can continue

this process until the right-hand side becomes the unit u. We have thus demonstrated that

each factor of the original product has the form v(1 − ζ)h, with v a unit, as was to be

shown.

Recalling that for 0 ≤ j ≤ n− 1, γj denotes the eigenvalues of H, we have the following

corollary.

Corollary 2.2.8 For γ0 and γ1, we have that γ0/γ1 ∈ Z[ζ] or γ1/γ2 ∈ Z[ζ].

Proof. We first note that Lemma 2.2.7 guarantees that each γj is of the form vj(1 − ζ)hj .

When h0 ≥ h1, we have that γ0/γ1 ∈ Z[ζ]; If h0 < h1, we have that γ1/γ0 ∈ Z[ζ].
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Lemma 2.2.9 If α is an algebraic integer such that α and all of its conjugates have

absolute value 1, then α is a root of unity.

Proof. Since α is an algebraic integer, it is a root of some monic polynomial over Z, say Z

is
∏d

i=1(x − αi). Thus, αn is a root to the polynomial
∏d

i=1(x − αni ) over Z, which is also

of degree d, with all of its roots having absolute value equal to 1. Since there can only be

finitely many such polynomials, we have that αn = σ(α) = αj for some j and for some Galois

conjugation of σ. Therefore, αn is a root of
∏d

i=1(x − αi), for any n. Whence, σm(α) = α

implies that αn
m

= α and so αmj = α, from which it follows that αn
m−1 = 1.

Lemma 2.2.10 (Kronecker) Let ζ be a root of unity and α ∈ Q[ζ] with |α| = 1. Then

α is a root of unity.

Proof. Recall that the Galois group of the field extension Q(τ)/Q is abelian. Take β to be

a conjugate of α, so that β = ω(α), where ω is some automorphism of Q(ζ). Consider the

equation αᾱ = 1. Complex conjugation is an automorphism of Q(ζ), and so it commutes

with ω. Thus applying ω to both sides of αᾱ = 1 yields the equation ββ̄ = 1. We have thus

established that all of the conjugates of α are of absolute value one. It follows from Lemma

2.2.9 that α is a root of unity as well.

We know proceed to the main theorem of this chapter.

Theorem 2.2.11 There does not exist a (real) circulant Hadamard matrix H of order 2k,

k ≥ 3.

Proof. We first note that from Lemma 2.2.4 we have that

γ1/γ0| = |γ0/γ1| = 1

Thus, Corollary 2.2.8 and Lemma 2.2.10 provide that γ0 = ζ−rγ1 for some r ∈ Z. We can

thus expand γ0 and ζ−rγ1 as integer combinations of 1, ζ, ζ2, · · · , ζn/2−1 uniquely as follows:

γ0 = a0 + a1 + a1 + · · ·+ an−1 = ±n/2
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ζ−rγ1 = ζ−r((a0 − an/2) + (a1 − an/2−1)ζ + · · · )

= (ar−a − an/2+r) + (ar+1 − an/2+r+1)ζ + · · ·

We can thus equate the coefficients of ζ0 to get ±n/2 = ar−an/2+r. But each ai has absolute

value equal to one, and so it follows that n must be less than or equal to 4.
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Chapter 3

Butson Type Matrices

3.1 Butson type Hadamard matrices

Definition 3.1.1 Let n, k ∈ Z+. Then, BH(n, k) is defined to be the set of all Hadamard

matrices of dimension n with entries, k-th roots of unity, i.e., if H ∈ BH(n, k), then

H = (ai,j) where 0 ≤ i, j ≤ n− 1 and aki,j = 1 for all i, j; in such instances, H is said to be

a Butson type Hadamard matrix. We immediately note that Fn ∈ BH(n, n) and in our

next theorem provide as an example due to Petrescu, which is also a Butson Type matrix.

Theorem 3.1.2 (Petrescu) The matrix

P7 =



1 1 1 1 1 1 1

1 ε ε4 ε5 ε3 ε3 ε

1 ε4 ε1 ε3 ε5 ε3 ε

1 ε5 ε3 ε ε4 ε ε3

1 ε3 ε5 ε4 ε ε ε3

1 ε3 ε3 ε ε ε4 ε5

1 ε ε ε3 ε3 ε5 ε4


is Hadamard where ε = e2πi/6. Petrescu’s matrix has had considerable impact on the theory

of Hadamard matrices. His method for discovering this matrix involved the use of a computer

to minimize a set of equations, which governed a six dimensional Hadamard matrix. This
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method has been successfully employed by several other researchers in the field in search for

additional Hadamard matrices. We can also extend Petrescu’s matrix to a one dimensional

affine family of Hadamard matrices given by

P7(a) =



1 1 1 1 1 1 1

1 a a ε5 ε3 ε3 ε

1 a a ε3 ε5 ε3 ε

1 ε5 ε3 a a ε ε3

1 ε3 ε5 a a ε ε3

1 ε3 ε3 ε ε ε4 ε5

1 ε ε ε3 ε3 ε5 ε4


where |a| = 1.

Petrescu’s research has also been generalized to create infinite parametric families of

Hadamard matrices for dimensions p = 13, 19 and 31. The interested reader is referred to

[6]. Notice that Petrescu’s example has also provided a non-trivial example of an Butson

type Hadamard matrices, as P7 ∈ BH(7, 6).

Finding Hadamard matrices with arbitrary unimodular entries can be extremely difficult,

which is why Butson type Hadamard matrices are so important. The further restrictions

imposed on the entries of a Butson type matrix make the task of discovering new Hadamard

matrices less daunting, as one can restrict the search to matrices that are of Butson type.

Several questions arise concerning Butson type matrices, BH(n, k). For example, when is

BH(n, k) = ∅? We know that both BH(n, n) and BH(7, 6) are non-empty. We are naturally

prompted to consider for which n, k ∈ Z is BH(n, k) = ∅.

Below we present two theorems concerning obstructions on the existence of Butson type

matrices.

Theorem 3.2.2 Let p, q be distinct primes and 0 < l,m ∈ Z Then we have BH(pl, qm) = ∅.

Proof. In order to reach a contradiction, suppose that there exists a H = (ai,j) ∈ BH(pl, qm).

We may assume that H is dephased. By letting ε = e2πi/qm , we have k1, k2, · · · , kpl−1 such

that (a1,j) = εkj , for 1 ≤ j ≤ pl − 1. We thus have that 1 + εk1 + · · · + εkpl−1 = 0. Set
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g(x) = 1 + xk1 + · · · + xkpl−1 . But then g(ε) = 0 and so it follows that Φqm(x) divides g(x),

i.e. g(x) = Φqm(x) · α(x). We can evaluate g at x = 1 to obtain that pl = q · α(1). Thus we

have shown that q divides pl, which is clearly false.

The next result is due to Winterhof.

Theorem 3.2.3 Winterhof Let n be odd. If the square free part of n is divisible by a

prime of the form 6k + 5, then BH(n, 6) = ∅. Note that the square of the determinant of a

matrix H ∈ BH(n, 6) must be of the form A2 + 3B2 since for H ∈ BH(n, 6) we have entries

based on ε = −1+i
√

3
2

and so det(H) = a+ i
√

3b (entries in the ring Z implies the determinant

will also be in the same ring). Thus it follows that |det(H)|2 = a2 + b2. We will use this fact

as well as the following lemma in our proof of theorem 3.2.3.

Lemma 3.2.4 Let A and B be integral numbers such that A2 + 3B2 = n. Then every prime

divisor p of the square free part of n is of the form 6k + 3 or 6k + 1.

Proof. That every prime number p of the form 6k+1 also has the form x2 +3y2 is well known

and the reader is referred to [6]. We also note that 3 = 02 + 3 · 12 and q2 = q2 + 3 · 02, for any

integer q. Furthermore, if two integers, say n1 and n2 have this form, then so to does there

product, as n1n2 = (x1 + 3y2
1)(x2 + 3y2

2) = (x1x2 + 3y1y2)2 + 3(x1y2 − x2y1)2. We continue

by demonstrating that numbers other than perfect square, primes of the form 6k + 1, and

3, cannot have the form x2 + 3y2.

In order to reach a contradiction, suppose that

A2 + 3B2 = p2r, (3)

where r is square free. Without loss of generality, we may assume A,B and r are all pairwise

relatively prime, as we can always divide A,B and r by their greatest common divisor.

Notice that if r is even, then A and B must both be odd, and so the left hand side of (3)

must be divisible by 4 but not 8. But this is a contradiction, as the right hand side of (3) is

divisible by 8.

If p > 3 and p divided r, then we have that A2 ≡ −3B2( mod p). But A and B are

nonzero modulo p and so −3 is a quadratic residue modulo p. Since p is also of the form

6k + 5, we notice that
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(
−3

p

)
= (−1)

p−1
2

(
3

p

)
= (−1)p−1

(p
3

)
=

(
2

3

)
= −1,

which shows −3 is not a quadratic residue modulo p.

We now complete the proof of theorem 3.3.

Proof. For any H ∈ BH(n, 6), we have that

|det(H)| = |A+Bζ| = nn/2,

which in turn gives us that (2A − B)2 + 3B2 = 4nn. We now are in a position to apply

Lemma 3.4. Since n is odd, the square free part of 4nn is simply the square free part of n.

But the square free part of n cannot have a prime divisor of the form 6k + 5. The result

follows.
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Chapter 4

Conclusions

Hadamard matrices have a simple but elagant structure. They have been studied for over

150 years, yet there is still much to learn about there characterization, existence, as well as

their interplay with other modern areas of mathematics and fields of science at large. In 1983

Popa [4] noticed the connection between Hadamard matrices and von Neumann algebras,

which characterized under what conditions a unitarty matrix U is of the form 1√
n
H, where

H is Hadamard. In this sense, Hadamard matrices appear in the study of subfactor theorty

and statistical mechanics.
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