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Abstract 
 

The purpose of this research is to determine how long a micro-channel could be in 

the production of Non-Linear Optical Thin Film Wave-Guides. In determining this 

length, it is necessary to compute the monomer diffusion process between two solutions 

of monomers in a micro channel flow. Two models of this flow were created, the first 

with no flow in a one dimensional channel making diffusion a function of time and 

position and the second of flow in a two dimensional channel with an imposed velocity 

profile. Using these models it was determined that the micro channel could be the longest 

if there was an imposed velocity profile. This velocity caused the forced convection 

process to dominate over pure diffusion. The simple model can be easily computed and 

plotted. Unfortunately the complex model requires the solution of a partial differential 

equation that is not easily solvable using the technique of separation of variables. This 

technique requires the numerical solution of an eigenfunction problem through the 

method of Finite Elements and the determination of the coefficients in a Fourier series. 

The numerical solution is found using the computer programs Mathematica and MatLab. 

Using these techniques the concentration of monomers was determined throughout the 

micro channel for both models. 
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Nomenclature 
 

A = Fourier Constant 

C = Concentration of Monomer 

d = Ordinary Derivative 

D = Coefficient of Diffusion 

E = Eigenvector 

h = Height of Channel 

k = Constant of Integration 

L = Length of Channel 

m = integer 

Mij = Mass Matrix 

n = Integer 

N = Number of Nodes 

p = Pressure 

Sij = Stiffness Matrix 

t = Time 

u = x Component of Velocity  

v = y Component of Velocity 

V
r

= Velocity Vector 

w = Nodal Spacing 

x = x Coordinate Position 

X = Function of x alone from Separation of Variables 

y = y Coordinate Position 

Y = Function of y alone from Separation of Variables 

 

Greek 

∂ = Partial Derivative 

λ = Eigenvalue 

µ = Viscosity 
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ϕ = Trial Function 

ρ = Density 

 

Subscripts 

s = Scale Variable 

0 = Initial Value of Variable 

i = Integer, index of Variable 

j = Integer, index of Variable 

n = Integer, index of Variable 

 

Superscripts 

* = Non-Dimensional Variable 

′ = Shorthand for Ordinary Derivative
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Chapter 1: Introduction 
 

This research is motivated by the ever-growing importance of high-speed 

communication in modern society. Light can travel much faster than any other electronic 

transmission method currently in use and thus is the preferred method. The light must be 

carried by some medium so that it can reach its desired destination, since it always travels 

in a straight line. Currently fiber optic cabling is used for carrying signals over long 

distances. The computer industry would love to take advantage of the major speed 

advantages of optical data transmission, but as of yet has been unable to. The reason is 

that current fiber optic techniques are not small enough to be effective for computer 

applications.  

Computers and other electronic devices currently use printed circuit boards that 

have copper traces for carrying signals through the circuit. Current circuit boards are fast 

approaching a speed limit with their current design, but new technology is always 

emerging. If a method could be found to replace copper traces with optical ones then a 

revolution in computer speed would be upon us.  

Another big drawback to copper trace circuit boards is that large amounts of 

shielding or hardening must be done before a system can be used in space. In space the 

ambient radiation environment is such that an unprotected circuit board would either burn 

out or pick up so much interference and noise that it would be useless. An optical circuit 

board would not have this problem and as such is very promising to the space industry. 

An optical computer system could reduce costs and weights on future space components 

since the heavy shielding will no longer be necessary. 

The techniques for producing copper trace circuit boards are well known and lend 

themselves easily to mass production. This leads to low costs and along with the advent 

of surface mounting techniques very small and compact packages. Since optical tracing is 

a new concept the techniques for producing them are not yet available and research must 

be done. The optical traces must be able to be massed produced and be of the same size 

or smaller than their copper cousins. 
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The optical traces can be manufactured from thin film optical wave-guides. 

NASA is presently engaged in development of techniques for producing non-linear 

optical thin films which can be used for the purpose of manufacturing the wave-guides. 

NASA is currently producing thin films through the process of photo-deposition. 

At NASA Marshall Space Flight Center (MSFC) extensive research has been 

done into the photo-deposition process. The novel techniques for producing thin films 

through polymerization have been investigated and some examples of films produced are 

in Figures 1-1.  

These figures show good examples of what can be done with the polymerization 

techniques developed at NASA MSFC. They were produced in quiescent fluids using an 

apparatus like that sketched in Figure1- 2.  

 

 

 

 

 

 

Figure 1-1: Examples of Films Produced using NASA MFSC Photo-deposition 

Techniques 
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Figure 1-2:  Schematic of Apparatus used by NASA MSFC to Create Thin Films 

 

 

 

Through the research at NASA MSFC much has been learned about the photo-

deposition process; including the kinetics and mechanism of the process, as well as the 

effects of heat and mass transport.  From the research it has been found that the UV 

radiation becomes attenuated because of absorption by the growing film.  It was also 

found that the rate of film growth during the photo-deposition process varies linearly with 

light intensity and as the square root of monomer concentration. For this reason the 

monomer concentration throughout the micro-channel is important. 

One technique for replacing copper traces on circuit boards with optical traces is 

to use non-linear optical thin film wave-guides. The creation of Non-linear Optical 

Wave-Guides is accomplished through the polymerization of diacetylene monomers 

(DAMNA) through exposure to an ultraviolet (UV) source. When exposed to UV the 

monomer undergoes the process of polymerization and the polymeric diacetylene 

(PDAMNA) film is deposited on a substrate thus producing the wave-guide. The optical 

wave-guides produced have a very large aspect ratio; see Figure 1-3. This means that the 

wave-guide is extremely long on the order of centimeters and the width is very narrow in 

relation, on the order of micrometers.  
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Figure 1-3: Schematic of Apparatus for Wave-Guide Production 

 

 

 

Scientists at NASA MSFC have pioneered techniques for the production of these 

wave-guides. To do this a narrow rectangular channel is etched onto one surface of a 

quartz substrate, a microscope slide, which is placed atop a silicone wafer; see Figure 1-

3. Next two different liquids, one a solution starting at one hundred percent concentration 

and the other a solvent at zero concentration, are forced to flow one atop the other with 

equal flow rates. This system of flowing liquids is then exposed to a UV source from the 

upper surface which causes the monomer to polymerize. As the fluids flow down the 

channel a monolayer of polymer is deposited on the silicone wafer creating the wave-

guide. A schematic of the device used by NASA is in Figure 1-4. 

One of the big questions for creating circuit boards is how long can an optical 

trace be before the quality of the polymer degrades to the point that it is no longer 

sufficient? Is there a limit to the type of tracings that can be created and if so what are 

they? The main parameter here is the length that a trace can be made and still be of high 

enough quality to be useful. As the monomer diffuses into the solvent eventually there is 

a high enough concentration that it will begin to polymerize. Once this begins the 

polymer starts to deposit on the upper surface as well. This deposit quickly grows and 
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Figure 1-4: Schematic of Apparatus for Producing Optical Wave-Guides 

 

 

blocks the UV from reaching the monomer near the bottom and the polymerization slows 

and stops on the bottom surface. This is the end of the useful length of the wave-guide 

and as such is the main interest of this research. This information will be useful to circuit 

designers especially when they are laying out the circuit boards. 

This research created a numerical model of the diffusion process that takes place 

within the micro channel flow. The model will be used in determining the length before 

polymerization of solution stops due to diffusion of solution into solvent and a reaction 

begins in the solvent. The determined length is then defined as the length before the 

concentration level reaches a specified value of fifty percent.  

This research lays the groundwork for ground based proof of concept testing, 

done at NASA Marshall Space Flight Center (MSFC). After Ground experiments are run, 

and results compared with numerical models, experiments will be run in microgravity to 

produce higher quality Optical Thin Films. Higher quality films can be produced in 

micro-gravity (µg) due to suppression of fluid flow convection, which can lead to 

imperfections that affect the quality of the wave-guide produced. The suppression of 

convection leads to slower diffusion and therefore longer lengths before the concentration 

drops to fifty percent. 
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Chapter 2: Mathematical Modeling 
 

In order to determine how long of a wave-guide we can create, the concentration 

of monomer within the micro channel must be found as a function of position. The 

determined length is the length at which the concentration decreases to fifty percent. The 

fluid flow within the micro-channel like all fluid dynamics problems is governed by the 

fluid flow equations representing conservation of mass, momentum and species. In this 

case we have incompressible flow so the mass and momentum equations reduce to the 

Navier-Stokes equations [5]. The concentration of monomers can be modeled using the 

concentration equation [1]. 

 

CDC
t
C

P
t

2

2

V

V1VVV

0V

∇=∇⋅+
∂
∂

∇+∇−=∇⋅+
∂
∂

=⋅∇

r

rvr
r

v
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µ
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    (2-1) 

 

Where V is the fluid velocity, P is the pressure, C is the concentration of monomers, D is 

the diffusion coefficient, 

r

µ is the viscosity of the fluid, and ρ is the density. 

These equations are three dimensional and time dependant. They must be solved 

subject to the initial conditions as well as the boundary conditions that are based upon the 

geometry of the micro channel. The channel under consideration is of rectangular cross 

section, four centimeters long by one hundred micrometers high by four hundred 

micrometers wide. The fluid flow within the channel starts with two layers. These layers 

are made of solutions with different concentrations of monomers. The bottom layer starts 

at one hundred percent concentration of monomer, i.e. the solvent is saturated with 

solute. The top layer begins with zero percent monomer, i.e. no solute in the solvent. The 

Geometry of the Micro-Fluidic Channel Flow can be seen in Figure 2-1. In order to solve 

the concentration equation, a series of assumptions must be made in order to simplify the 

equation and make it solvable. Two different sets of assumptions will be made in 
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modeling the problem. The first model will be for the simple case of diffusion in one 

dimension with no bulk fluid velocity. The second will be a more complex case for two-

dimensional diffusion with an assumed velocity profile. 

 

Model One 

For this case, a series of assumptions are made. To begin it is assumed that the 

fluid is quiescent, i.e. has no fluid velocity components, V 0=
v

. This means that any term 

that has velocity in Equation 2-1 may be neglected; this reduces the equations 

considerably to the following form: 

 

CD
t
C 2∇=

∂
∂      (2-2) 

 

 The second assumption is that of an infinite channel, i.e. x and z extend to 

infinity; in other words that the flow is one-dimensional. This means that in Cartesian 

coordinates all components with derivatives with respect to the x and z directions are 

zero. From these assumptions the concentration becomes only a function of time and y 

position. The concentration equation for this simple model along with its associated 

boundary and initial conditions is as follows: 
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Figure 2-1: Geometry of Micro-Fluidic Channel Flow 
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A common practice in engineering is to non-dimensionalize the variables. This 

has the advantage of making the equation and its solution independent of the unit system. 

It also rescales variables to go between zero and one; this makes it possible to change the 

scale of the geometry without necessitating the complete resolving of the equations. The 

variables in the equation will be non-dimensionalized in the following manner: 
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     (2-4) 

 

Applying these variables to the equation simplifies it to: 
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This non-dimensional equation is one that can easily be solved using the technique of 

separation of variables. To do this the concentration which is a function of y and t will be 

assumed to take the form, Y( )T( ). This is then substituted into Equation 

2-5, and divided by Y( )T( t ) yielding: 

=),( *** tyC
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*y *t
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    (2-6) 

 Since each term is only a function of one variable they can be solved 

independently of each other. The time equation is:  
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T
dt
dT 2

* λ−=      (2-7) 

 

which by direct integration the is: 

 
tgetT
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The second equation, y variable, is: 

 

02
2*

2
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Yd λ     (2-9) 

 

which can also be integrated and is of the form: 

 

Y(y*)= Bsin(λ y*)+Kcos(λ y*)  (2-10) 

 

subject to the following boundary conditions: 
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Upon applying the boundary condition at y*=0 it is found that the constant B is 

equal to zero. Applying the second condition, y*=1, it is found that the condition is only 

true for specific values of λ. These values are any integer multiple of pi, therefore the 

second term is: 
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 The concentration can then be found by multiplying together the two components, 

and since the y equation is dependant on n, must be summed over n. Combining the two 

constants into a single one, the equation becomes: 

 

∑
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 To solve for the final constant the initial condition is applied. This can be 

achieved by multiplying both sides of Equation 2-13 by an orthogonal eigenfunction and 

integrating as follows: 
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Pulling out the n=0 term gives K0 = ½. Then Integrating and solving for Kn yields: 
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 Putting everything together the final equation for the concentration in the 

quiescent fluid as a function of time and height, y, is: 

 

*22

)cos()
2

sin(2
2

1),( *

1

*** tn

n

eynn
n

tyC πππ
π

−
∞

=
∑+=     (2-16) 

 

 

Velocity Modeling 
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 The Navier-Stokes equations, Equation 2-1, are inherently difficult to solve when 

there is a nonzero fluid velocity. This difficulty is a result of the nonlinearity of the 

convection term within the momentum equation. In order to make the equations tractable 



 

an assumption must be made for the velocity profile within the flow. There are many 

ways to approximate the velocity profile within a duct. Transforming the momentum and 

mass conservation equations into Cartesian coordinates yields: 
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Beginning with the equations in Cartesian coordinates, see Figure 2-2, and 

assuming fully developed flow, another assumption can be made that the velocity 

components, v, w, are zero. Fully developed flow implies that there is no change in 

velocity in the axial direction, i.e. the partial derivative of any velocity component with 

respect to x is zero. This assumes that we neglect any entrance region. From this 

assumption it can be immediately shown that as a consequence of the continuity equation 

that the u component is independent of x, and only a function of y and z. From this all of 

the difficult convection terms become zero. Upon substituting this assumption into 

Equation 2-2, the momentum equations become: 
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Figure 2-2: Cartesian Coordinates in Duct Flow 
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If the above y or z momentum equations are integrated it can be seen that the 

pressure is only a function of x. Also since u is independent of x the pressure gradient 

must be a constant. This means that the y and z equations are no longer needed and the 

partial derivative of pressure with respect to x can be changed to an ordinary derivative. 

Rosenhead [6] gives the solution for this problem for a duct of rectangular cross section 

as the following series: 
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where 2h is the height of the duct measured from the bottom surface. The resulting 

profile is plotted in Figure 2-3. This profile is a paraboloid of revolution and as such has 

the same cross section throughout. It can be seen that this is an extremely complicated 

series and therefore further assumptions will be made to make the profile even simpler. 

If a further assumption is made that the flow is between two infinite flat plates, 

representing plane Poiseuille Flow, then the there is no change of velocity in the z 

direction and the derivative with z becomes zero. This further assumption reduces the 

momentum equations to: 
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If the pressure gradient is assumed to be a known function then the above 

equation can be integrated with respect to y. This integration yields an equation with two 

constants of integration, which must be evaluated from the boundary conditions. For our 

geometry, see Figure 2-2, the equation for the velocity profile needs only be solved for 

half of the channel since it will be symmetric about the 
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Figure 2-3: Cross Section of the Dimensionless Velocity Profile 
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centerline. Therefore the profile for the upper half channel is given by the following 

equation. 
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Since the pressure gradient is assumed known and the geometry is known the 

velocity profile can be plotted as a function of y alone, Figure 2-4. 

 

 

Model Two 

To begin the equations must be stated in our three-dimensional coordinate system 

based on the geometry of Figure 2-2. The conservation equations in Cartesian 

coordinates take the following form: 
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  (2-22) 

 

In this model the first assumption is that of a two-dimensional model; therefore all 

z dependent components are zero. This reduces the conservation equations to the 

following form. 
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Figure 2-4: Dimensionless Poiseuille Flow Profile for Upper half Channel 
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The second assumption is that of steady flow. Therefore, there is no time dependence. 

The third assumption is again that of no source term. It will also be assumed that the 

diffusion in the x direction will be negligible; this is because the forced convection in the 

x direction is the dominating term. Fourth, we will assume that we can solve the problem 

for the top half channel since the lower half should be anti-symmetric. With all of these 

assumption the governing equations reduces to: 
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The fifth assumption is that the velocity profile can be modeled as plane 

Poiseuille flow as previously derived. This gives the u component of velocity as a 

function of y alone and the v component as zero. Restating, the equation for the velocity 

profile of plane Poiseuille flow is: 
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As in model one, the variables in the concentration equation will be non-

dimensionalized; this will be done as follows: 
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Substituting these variables along with the velocity profile into Equation 2-24 gives the 

non-dimensional form of the concentration equation as: 
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subject to the following conditions: 
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From this point on in the derivation, all of the asterisk on the variables will be 

dropped, but all remain non-dimensional; this is done for ease of writing. Again, the 

technique of separation of variables (SOV) will be employed; unfortunately it is not as 

simple as in model one. For SOV, it will be assumed that the concentration can be written 

as C(x,y)=X(x)Y(y). Putting this into the concentration equation and dividing by C the 

equation becomes: 
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The only way in which a function of x alone can be equal to a function of y alone 

is if they are equal to a constant. That constant will be assumed to be –λ2. Since each of 

these equations is an ordinary differential equation and equal to a constant, they can be 

integrated. The X equation is given by: 

 

X
dx
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which can be easily solved and is given as: 
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The Y equation is:  
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The general solution of which is: 
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where E1 and E2 are linearly independent solutions. Unfortunately, these solutions are not 

easily computed. Therefore we will have to come up with another method for solving our 

eigenfunction problem. The eigenfunction problem problems definition is not complete 

unless it has both the differential equation and the boundary conditions. The differential 
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equation is one dimensional, second order and homogenous. The boundary conditions are 

mixed with one essential (Dirichlet) boundary condition and one natural (Neumann). 

 This differential equation has been solved with different boundary conditions by a 

number of different researchers. Sparrow et al [7] solved the equation for two cases, one 

with the Y(1) = 0 and dY/dy(0) = 0, and the other for dY/dy = 0 for y = 0,1. Although 

similar, neither of these conditions satisfies our equation. Therefore we will need to solve 

for the eigenvalues and eigenfunctions ourselves. This will be a major topic of chapter 3. 

Once the eigenfunction problem is solved the results can be used to find the 

solution for the concentration at any position within the micro-channel. The results are 

put into the following equation for the concentration, which was found through 

separation of variables, after the boundary conditions are satisfied.  
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Our problem is a “Regular Sturm-Liouville” problem [4], for which the standard 

form of the equation and boundary conditions are: 
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and as such has all of its properties, Haberman [4]. For our problem the coefficients in the 

standard equation are: 
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The most important property of the “Regular Sturm-Liouville” problem is that all of the 

eigenfunctions are orthogonal. The eigenfunctions are orthogonal if and only if: 
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Because of the orthogonality condition the standard method for finding the constant An 

can be employed. This involves multiplying the equation for C(0,y) by (1-y2)En(y) and 

integrating and applying the initial condition on x. The initial condition on x states that 

the concentration at x=0 is 1 and therefore solving for the Fourier constant, An, yields: 
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Chapter 3: Results and Discussion  
 

Having mathematical models of the physics of our problem it is now time to come 

up with methods of computing the value of the concentration within the micro-channel. 

The solution for each of the models requires employment of numerical techniques. 

 

Solution for Model One 

The derivation of the first model provided an analytic solution in the form of an 

infinite series, Equation 2-16.  
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From inspection of this equation it can easily be seen that the diffusion field is 

only a function of time and height within the channel, i.e. y position. This means that 

given values at y and t the concentration can be readily determined provided one can 

perform a summation over infinity.  

Since it is not possible to take an infinite number of terms in the Fourier series, a 

finite number had to be computed. For any time greater than zero the series can be cut off 

at a finite number of terms. This is due to the fact that the magnitude of an individual 

element approaches zero. This was determined by incrementally increasing the number of 

terms. The number of terms was steadily increased until one hundred terms were used. At 

one hundred terms the value of an individual element is on the order of 10-61 or smaller, 

which for all practical purposes is zero. 

Since the concentration can only be found for a point where we know its 

coordinates, the region is broken down into a series of points along the length of the 

channel. The concentration can then be computed for each of these points at series of 

time steps. Using Microsoft Excel the concentration was computed at each x and t point, 

which was then plotted, Figure 3-1. 
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Figure 3-1: Model 1 Dimensionless Concentration as a Function of Non-Dimensional 

Channel Height and Time 
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This plot allows for the visualization of the monomer concentration field within 

the quiescent micro-channel. From inspection it can easily be seen that as expected the 

concentration level tends toward equilibrium over long time. This plot also makes it 

possible to answer our primary question, of how long of wave-guide can be produced. 

Since our main criteria for judgment was the time before concentration became fifty 

percent, a contour plot of the concentration within the micro-channel was created, Figure 

3-2. The time before concentration dips to fifty percent can be seen to be 0.5.  

 

Solution for Model Two 

The concentration in this model is a function of the fluid velocity field. Since this 

velocity field was part of the differential equation, the only thing needed to find the 

concentration at a point is the coordinates of that point. Unfortunately the solution of the 

differential equation in this model is not as straightforward as in the previous one. Since 

the eigenfunction equation in y could not be solved, a numerical solution method had to 

be used.  

Restating the problem the non-dimensional partial differential equation for the 

concentration is: 
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The eigenfunction problem with its associated boundary conditions is: 
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The final solution will be a series of the form: 
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Figure 3-2: Contour Plot of Model 1 Dimensionless Concentration as a Function of Non-

Dimensional Position and Time 
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 There are many ways to go about solving an eigenfunction problem numerically. 

One method is the use of a numerical integrator like Mathematica’s ‘NDSOLVE’. 

Unfortunately the equation is exceptionally stiff and the boundary conditions could not be 

met with this technique. A second technique is the method of series solution, also known 

as the method of Frobenius [2], where the solution is represented by an infinite 

polynomial and the coefficients are found from a recursion relation. To produce this 

series solution it is assumed that the solution of the eigenfunction problem can be 

represented as a series: 
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By substituting these series into the differential equation for the eigenfunction 

problem, Equation 2-32, and applying the boundary conditions a solution of the 

eigenfunction problem can be found by summing up all the terms of the solution over 

position. To find each term in the series a recursion relation is needed. This relation is 

found by the making the power of x the same for each, collecting all the terms under one 

summation, and solving for an.  
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This relation shows that as long as the previous terms in the series are known the next 

term can be calculated. From the boundary conditions the first few terms can be found for 

the series and they are: 
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All the terms in the even series are identically zero and all of the terms in the odd series 

can be determined in terms of a1 and a3. These, in turn, can be solved strictly in terms of 

the eigenvalues, . 2λ

Unfortunately when implementing this technique with our conditions the 

computer power required was beyond any available. The computer was able to compute a 

large number of terms in the series before it ran out of memory; even when one hundred 

terms in the series are retained only the first two eigenvalues could be determined with 

any precision. Figure 3-3 shows the series solution as a function of λ using 100 terms in 

the series expansion. The eigenvalues are determined by locating the points where the 

graph of the series crosses the x-axis as in Figure 3-3. 

This technique of series approximation is a well-known brute force technique. It 

has been used by a number of researchers in solving similar problems. The problems are 

similar in that they have the same basic partial differential equation but they have 

different boundary conditions. Cess and Shaffer [3] used this technique in solving the 

second case of Sparrow et al [7]. Each of these researchers was able to find the first ten 

eigenvalues or so. The difference in boundary conditions will lead to radically different 

eigenvalues and eigenfunctions even though the governing equations are identical.  

The technique that worked well was the Finite Element Method (FEM) [8]. This 

method uses a trial function at a number of points in the region to approximate the actual 

function. The region is broken down into finite intervals,  
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Figure 3-3: Plot of Frobenius Method using 100 terms 

 

 

 

or elements. Two nodes or points define each element. Later these nodes will be used as 

the points where the concentration can be evaluated.  

The first thing that must be done is to assume an approximation for Y(y). The 

solution Y(y) will be approximated by a series with the coefficients being the 

eigenfunction coefficients multiplying the trial functions, jϕ . 
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In the above equation j is the number of discrete nodes in the interval [0,1]. The trial 

functions, jϕ , is chosen such that 011 == +− jj ϕϕ for all j. 

Upon applying the boundary conditions on Y, namely that Y(0)=0 it is found 

E0=0. Therefore the first term in the summation is zero and can be dropped so the 

summation now goes from 1 to N. 
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Next the differential equation is put into the weak form, see Strang and Fix [8], by 

taking the inner product of the equation with the chosen trial function. This means 

multiplying the equation by the trial function and integrating, the equation as follows: 
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This equation must be solved along with the boundary conditions and upon integrating by 

parts once becomes: 
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Upon applying the boundary conditions, the leading term in the above equation is 

zero. This is because for all j greater than zero the trial function is zero at y=0 and at y=1 

all of the trial functions except j=N are zero, and due to the boundary condition at y=1 

that product is also zero. Putting the approximation for Y(y) into the previous equation 

yields a matrix equation. 
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Sticking with the convention of the FEM, the matrix equation will be broken up 

into a stiffness and mass matrix. The stiffness matrix (Sij) is the second term of the 

equation and the mass matrix (Mij) is the third. 
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The matrix equation now looks relatively simple:  

 

(Sm,n +
2λ Mm,n)En=0.     (3-9)  

 

This represents a standard matrix eigenvalue problem and there exist many 

techniques for its solution. The solution of this matrix equation will then give us our 

eigenvalues, λ, and eigenfunctions, Yn. 

In order to continue the trial function, ϕn, must be defined. There are many 

options, piecewise linear, spline, polynomial etc. A piecewise linear trial function that 

involves three nodes was chosen. This trial function involves the node under 

consideration plus the one to the left and right of it, see Figure 3-4. The function is equal 

to one at the central node and zero at the left and right node and varies linearly between 

any two nodes. The equation for this trial function is as follows: 
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where k is the node number, w is the node spacing and y is the position. Also needed is 

the derivative of the trial function, which is given as: 
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Figure 3-4: Plot of Trial Function 

 
 

 

 

Using this trial function in Equation 3-8 the mass and stiffness matrices can be 

determined. Upon substituting the trial functions into the mass and stiffness equations, 

three basic cases result. These cases result from where the evaluation of the trial function 

occurs.  

For the first case of the mass matrix, if the point is left of the current node, i.e. 

m=n-1, then it is on the sub-diagonal and has the following equation: 
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If the point is to the right, m=n+1, the entry is on the super-diagonal and can be found 

from: 
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and if the point is at the node, m=n then the entry goes on the diagonal and the equation 

is: 
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All other terms in the matrix are zero. Therefore the mass matrix contains nonzero entries 

only on the diagonal, sub-diagonal, and super-diagonal. Because it is a boundary element 

and it is not possible to have a trial function to its right the last node is slightly different. 

The last node is at n=N, where N is the total number of nodes in the system. Since it is on 

the diagonal it should have an equation similar to Equation 3-14, but it does not have the 

second term. 
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The stiffness matrix is considerably easier to calculate. All diagonal elements are 

two times the number of nodes and all of the super and sub diagonal terms are negative 

one times the number of nodes. Again the last node is special and it is just the number of 

nodes.  

Since determining each of the matrices requires integration and there are a large 

number of nodes the computer program Mathematica was used. Using Mathematica each 

of the matrices could be created and stored in text files. See Equation A-1 for an example 

of how to calculate a ten node mass matrix. Equation A-2 is a similar example of a ten 

node stiffness matrix. Mathematica code is similar to C++ code except that standard 

mathematical notation can be used. The input code for the creation of matrices for a six-

node system is in Figure A-1.  
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With these matrices it is now possible to solve the matrix equation for the 

eigenvalues and eigenvectors. The computer program MATLAB, short for Matrix 

Laboratory, is ideally suited to do just that. With just a few commands MATLAB 

computes the eigenvalues and eigenvectors and stores them for later use. MATLAB has a 

built in function ‘eig’ whose input is two matrices, a mass matrix and a stiffness matrix, 

and whose output is the eigenvalues and eigenvectors. By loading the matrices that 

Mathematica calculated into MATLAB and calling ‘eig’ it has become possible to solve 

the eigenfunction problem. The commands for solving the eigenfunction problem are in 

Figure A-2. 

Next to be found is the Fourier constant. This constant, An, can be evaluated by 

putting the eigenvectors just found into Equation 2-37.  
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Again, we need to perform integration and therefore Mathematica was used. By 

importing the eigenvectors from MATLAB to Mathematica it becomes a simple task to 

perform this integration and find the Fourier constants. The code for doing this is in 

Figure A-3. 

We can then finish up with determining the concentration as a function of the x 

and y position by substituting into the series generated by separation of variables. 
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Now that all the necessary components of Equation 2-34 have been determined it 

can all be put together to find the concentration as a function of position. As with model 

one it is not possible to take an infinite number of terms so a finite number must be used. 

Because of the exponential in the x term only a few terms will need to be taken since the 
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eigenvalues get large quickly. Twenty terms were used; the value of the exponential of 

the twentieth term is on the order of 10-6000, which is essentially zero, and therefore 

contributes little to the summation. Since these operations are really matrix operations, 

MATLAB was again used, and the commands are in Figure A-4. The concentration was 

found for the upper half channel at each node in the y direction and at values of x ranging 

from 0.1 to 1. 

Since accuracy increases with the number of nodes used, one thousand nodes 

were used. A thousand nodes were chosen to obtain four place convergence of the 

eigenvalues. The number of nodes was increased and the eigenvalues calculated until the 

first twenty converged. In order to illustrate the convergence Table 3-1 contains the 

calculated eigenvalues for 10, 50, 100, 500, and 1000 nodes. From this table it can be 

seen that as the nodes increase the value of any eigenvalues remains essentially constant, 

i.e. it becomes converged. Therefore the mass and stiffness matrices are one thousand 

columns by one thousand rows each. This large number of calculations caused the typical 

time to find a solution to be on the order of six to eight hours. 

The eigenfunction problem that was solved here is not completely unique to this 

application, and therefore some of the results might be useful for other applications. 

These include the values of the first twenty eigenvalues and constants along with the 

value of the eigenvector at y equal one. Table 3-2 contains these results. Also instructive 

is a plot of a few of the eigenvectors, it is important to have a good idea of their shape. 

Plots of the second, fifth, tenth, and twentieth eigenvectors are Figure 3-5, 3-6, 3-7, and 

3-8 respectively.  

Having the value of the concentration at many points listed in table format would 

not be very instructive, so in order to visualize things it will be plotted. Figure 3-9 gives 

the concentration as a function of x and y positions within the upper half of the micro-

channel. A contour plot, Figure 3-10, was created to better visualize the variation of the 

concentration at every point within the micro-channel. Using this figure we can now 

answer our driving question of wave-guide length. It can be seen that at even a small 

distance up from the centerline the concentration is above our threshold, of fifty percent, 

for most of the channel length and asymptotically approaches fifty percent as we get near 
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Table 3-1: Convergence of First Ten Eigenvalues 
 

 Number of Nodes 
Eigenvalue 10 50 100 500 1000 

1 2.279 2.264 2.263 2.263 2.263 
2 6.422 6.303 6.299 6.298 6.298 
3 10.742 10.325 10.312 10.308 10.308 
4 15.373 14.355 14.323 14.313 14.313 
5 20.400 18.400 18.337 18.317 18.316 
6 25.799 22.467 22.355 22.320 22.318 
7 31.231 26.560 26.380 26.322 26.320 
8 36.593 30.684 30.412 30.325 30.322 
9 47.783 34.845 34.452 34.327 34.323 
10 84.869 39.046 38.504 38.330 38.325 
11  43.294 42.566 42.333 42.326 
12  47.592 46.641 46.337 46.327 
13  51.944 50.730 50.341 50.329 
14  56.357 54.834 54.345 54.330 
15  60.832 58.954 58.350 58.332 
16  65.376 63.092 62.356 62.333 
17  69.991 67.248 66.363 66.335 
18  74.680 71.424 70.370 70.337 
19  79.447 75.621 74.378 74.339 
20  84.293 79.840 78.387 78.342 
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Table 3-2: Eigenvectors, Eigenvalues, and Constants for Solution of Eigenfunction 
Problem. 

 
n λn An En(1) 
1 2.26311 -0.7256 -1.8443 
2 6.2977 -0.2546 2.1424 
3 10.3078 -0.1551 -2.3137 
4 14.3129 0.11161 -2.4377 
5 18.3161 0.08718 2.5361 
6 22.3185 -0.0715 2.6184 
7 26.3203 -0.0607 -2.6893 
8 30.3218 -0.0526 2.7519 
9 34.3232 0.0465 2.8081 
10 38.3245 0.04164 -2.8592 
11 42.3258 0.03771 2.906 
12 46.3272 0.03445 -2.9493 
13 50.3285 -0.0317 -2.9897 
14 54.33 0.02937 -3.0275 
15 58.3316 0.02736 3.063 
16 62.3333 0.0256 -3.0967 
17 66.3352 0.02406 3.1286 
18 70.3372 0.02269 -3.1589 
19 74.3395 0.02147 3.1879 
20 78.3419 0.02037 -3.2156 
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Figure 3-5: Plot of Second Eigenvector 
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Figure 3-6: Plot of Fifth Eigenvector 
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Figure 3-7: Plot of Tenth Eigenvector 
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Figure 3-8: Plot of Twentieth Eigenvector 
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Figure 3-9: Model 2 Dimensionless Concentration as a Function of Non-Dimensional 

Position 
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Figure 3-10: Contour Plot of Model 2Concentration as a Function of Non-Dimensional 

Position 
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the end of the micro-channel. Therefore with the proper selection of parameters such as 

pressure differential and channel height it can be possible to make a wave-guide of any 

desired length. That is assuming this model is accurate. 
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Chapter 4: Conclusion and Future Work 
 

In modeling the diffusion within a micro channel flow problem two models were 

created. The first model was for the quiescent diffusion in a one-dimensional channel as a 

function of position and time. The second models the diffusion as two-dimensional flow 

within a channel with an assumed velocity profile. The diffusion in this model is a 

function of the velocity profile and the position within the micro channel. The velocity 

profile was taken to be that of plane Poiseuille flow for the upper half channel, with this 

profile the diffusion becomes only a function of position. 

The driving force behind this research was the determining the length a micro 

channel could be before the diffusion of monomers from two different concentration 

solutions made the concentration drop to fifty percent. Using each of the models a length 

was determined. From these models, it can be seen that in order to have the longest wave-

guide possible the fluid must flow through the micro channel with an imposed velocity; 

otherwise, the concentration within a stagnant flow drops below fifty percent halfway 

through the channel. 

In solving the partial differential equations governing both of the models, the 

techniques of separation of variables and Fourier series were employed. In the first 

model, the equation was of a standard form that could be found in a mathematical 

textbook. The second model was not as easy; it required the solution of its eigenfunction 

problem through numerical techniques. Because the eigenfunction equation was so stiff 

many different techniques were tried until finally finding that the method of Finite 

Elements worked. The computer programs Mathematica and MatLab were used to 

perform the numerical computations involved in solving of the equation. 

The next step for this analysis is to create a more accurate model. This means 

making fewer assumptions. This more accurate model would be fully three-dimensional 

and would not assume a velocity profile. Instead, the Navier-Stokes equations for 

incompressible flow would be solved, yielding the velocity within the micro-channel. 

This could then be used in the concentration equation yielding a more accurate result. In 

this case the use of a three dimensional element would need to be used in the Finite 
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Element model. Another thing still to be done is to compare the results obtained 

numerically with those obtained experimentally at NASA Marshall. If further refinements 

are found to be necessary then the flow will need to be modeled as an unsteady or 

transient flow. 
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If |m-n| > 1 

Mn,m = 0 

 

 

 

 
Equatio
n A-1: 

Method 
for 

Produci
ng Mass Matrix with Example of Ten Node Matrix 

 0.0659 0.0163 0 0 0 0 0 0 0 0 
 0.0163 0.0639 0.0156 0 0 0 0 0 0 0 
 0 0.0156 0.0606 0.0146 0 0 0 0 0 0 
 0 0 0.0146 0.0559 0.0133 0 0 0 0 0 

Mn,m =  0 0 0 0.0133 0.0499 0.0116 0 0 0 0 
 0 0 0 0 0.0116 0.0426 0.0096 0 0 0 
 0 0 0 0 0 0.0096 0.0339 0.0073 0 0 
 0 0 0 0 0 0 0.0073 0.0239 0.0046 0 
 0 0 0 0 0 0 0 0.0046 0.0126 0 
 0 0 0 0 0 0 0 0 0 0.0016 
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For n, m = 1……N-1 

m = n-1, 

Sn,(n-1) = -N 

m = n+1, 

Sn,(n+1) = -N 

m = n 

Sn,n = 2*N 

For m = n = N 

SN,N = N 

If |m-n| > 1 

Sn,m = 0 

 
 

 20 -10 0 0 0 0 0 0 0 0 
 -10 20 -10 0 0 0 0 0 0 0 
 0 -10 20 -10 0 0 0 0 0 0 
 0 0 -10 20 -10 0 0 0 0 0 

Sn,m =  0 0 0 -10 20 -10 0 0 0 0 
 0 0 0 0 -10 20 -10 0 0 0 
 0 0 0 0 0 -10 20 -10 0 0 
 0 0 0 0 0 0 -10 20 -10 0 
 0 0 0 0 0 0 0 -10 20 -10 
 0 0 0 0 0 0 0 0 -10 10 

 
 

Equation A-2: Method for Producing Stiffness Matrix with Example of Ten Node Matrix 
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nodes=1000; 
k=nodes; 
n=1; While[n<nodes+1,m=0;While[m<nodes+1,M[n,m}=0;m++];n++]; 
w=1/k; 
n=m=1; 
While[n<nodes,m=0; 
 While[m<nodes, 
  If[m==n, 
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Mk=Array[M,{nodes,nodes},1]; 
Mkn=Matrixform[Mk]; 
Export[“Mkn.dat”,N[Mkn],”Table”]; 
n=1; While[n<nodes+1,m=0;While[m<nodes+1,S[n,m}=0;m++];n++]; 
n=m=1; 
While[n<nodes+1,m1; 
 While[m<nodes+1,If[m==n,S[n,m]=k*2]; 
  If[m==n+1,S[n,m]=k*-1];If[m=n-1,S[n,m]=k*-1];m++];n++]; 
S[k,k]=k*1; 
Sk=Array[S,{nodes,nodes},1]; 
Skn=MatrixForm[Sk]; 
Export[“Skn.dat”,N[Skn],”Table”]; 
 

 
Figure A-1: Mathematica Input Code for Creation of Mass and Stiffness Matrices 
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load Skn.dat 
load Mkn.dat 
b=eig(Skn,Mkn) 
save b.out b -ASCII 
[V,D]=eig(Skn,Mkn) 

 
Figure A-2: MatLab Input Code for Solving Matrix Equation for Eigenvalues and 

Eigenvectors. 
 
 
 
 
 
 
 
 
 

Import[“C:\\My Documents\\Rr. Antar\\FEA Solution\\try3\\1000 
nodes\\V1.out”,”Table”] 
Ev=Interpolation[%] 

∫ −=
1

0

2 )1(*]100*[ dyyyEvu  

N[u] 
 

Figure A-3: Mathematica input Code for Finding An 
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c=zeros(1000,10); 
n=zeros(1000,20); 
j=1; 
while j<=10 
 x=j/10; 
 i=1; 
 while i<=20 
  n(:,i)=an(i)*V(:,i)*exp(-b(i)*x) 
  i=i+1; 
 end 
 c(:,j)=sum(n')'; 
 j=j+1; 
end 

 
 
 

Figure A-4: MatLab Input Code for Finding Concentration within the Micro-Channel 
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