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Abstract 

Precision agriculture (PA) technologies allow producers to obtain information about their fields 

and use this knowledge to apply inputs and manage time more efficiently. PA technologies such 

as Automatic-Section Control (ASC) reduce inefficiencies such as overlapping application of 

inputs (e.g., seed, chemicals). Additionally, technologies such as Auto-Guidance (AG) systems 

complement ASC technologies and allow producers to work longer hours by reducing fatigue. 

Both ASC and AG technologies appear to be quickly adopted by producers because of their 

relatively low cost compared to other precision farming technologies. 

 The objective of this study is to determine the factors influencing the adoption of 

Automatic Section Control (ASC) technologies and GPS Auto-guidance (AG) systems among 

cotton producers. Using data from a survey of cotton producers in 14 states, this study evaluates 

the effect of age, education, farm size, use of information sources, and the use of specific 

production practices on the adoption decisions. Additionally, various field shape measures 

created using data from the NASS Crop Data Layer are included in the ASC equation to evaluate 

the influence of field shape on ASC adoption.  

 Results suggest that younger, more educated producers, managing larger farming 

operations, and consulting farm dealers for information about PA technologies are more likely to 

adopt ASC and AG technologies. The influence of field shape on the adoption of ASC 

technologies is inconclusive.  
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CHAPTER 1: PROBLEM IDENTIFICATION AND EXPLANATION 

Precision Agriculture uses information technologies to gather specific data from a field that could 

be used to improve input application efficiency, and potentially, reduce the environmental impacts 

of crop production (National Research Council, 1997). Increasing input costs in crop production, 

especially those costs associated with seed, fertilizers, and chemicals, influences farmer use of 

Precision Agricultural (PA) technologies.  

Application of inputs in areas of fields where inputs have already been applied (e.g., seed, 

chemicals) is one example of input application inefficiency (Larson et al., 2016). PA technologies 

that could reduce this type of inefficiency are Automatic Section Control (ASC) and auto-guidance 

(AG) systems. ASC reduces or eliminates input over-application by turning planter/sprayer 

sections or rows off in areas where inputs have been previously applied or on and off at headland 

turns, point rows, terraces, and/or waterways (Fulton et al., 2011). AG systems complement ASC 

technologies because they help producers maintain a desired path while navigating through fields 

thereby reducing application overlap and skips. Additionally, Auto-guidance systems provide 

producers the ability to work longer hours while reducing fatigue (Shockley et al., 2011). AG 

systems may also reduce machinery and operator hours because these systems allow producers to 

follow designated paths more efficiently and reduce operator error (McDonald, 2015). Previous 

studies evaluated the economics of ASC technologies and GPS guidance systems (Batte and 

Ehsani, 2006; Shockley et al., 2011; Shockley et al., 2012, Velandia et al., 2013, Larson et al., 

2016). In contrast, although few studies have evaluated the factors influencing the adoption of GPS 

auto-guidance systems (Banerjee et al., 2008; Martin et al., 2007), no research has evaluated 

adoption patterns and factors influencing ASC technology adoption. Furthermore, no studies have 
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evaluated the factors influencing the adoption of ASC and GPS auto-guidance systems 

simultaneously, a desirable approach given the complementary nature of these two technologies. 

Although ASC and AG systems appear to be readily adopted among producers because of 

their relatively low cost compared to other precision farming technologies, it remains unclear 

which factors influence the adoption of these technologies among cotton producers. Additionally, 

previous studies (Shockley et al., 2012) evaluated the economic benefits of jointly adopting ASC 

and GPS guidance systems, but no study has evaluated the factors influencing the adoption of these 

technologies. In this regard, this research addresses a gap in knowledge by applying a bivariate 

probit regression to model the joint adoption of these technologies.  

 A better understanding of the factors influencing the adoption of ASC technologies and 

GPS auto-guidance systems would be advantageous to several groups, including producers and 

machinery dealerships. This information along with information provided through decision aid 

tools and extension publications could help producers better evaluate potential benefits of adopting 

these technologies. For example, the Automatic Section Control for Planters Cost Calculator 

(ASCCC)1 suggests the impact of field geometry on savings associated with ASC adoption may 

decrease as farm size increases. This result may be confirmed or rejected by results obtained from 

this study.  On the other hand, machinery dealerships selling these technologies may be able to 

improve marketing strategies to better target clientele more likely to adopt ASC and GPS auto-

guidance systems.  

Research Objectives 

The objective of this research is to determine the factors influencing the adoption of ASC 

technologies and GPS auto-guidance systems (AG systems).   

                                            
1 http://economics.ag.utk.edu/asccc.html 
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CHAPTER 2: LITERATURE REVIEW 

Extensive literature exists in the field of precision farming technologies, both in factors 

influencing adoption decisions and economic evaluation of technologies. While some studies 

focused on the adoption of precision agriculture technologies as a whole (McBride and 

Daberkow, 2003; Napier and Tucker, 2000) others have looked at the factors influencing the 

adoption of specific technologies (Lambert et al., 2014; Larson et al., 2010; McBride and 

Daberkow, 2003; Napier et al., 2000; Roberts et al., 2004; Walton et al., 2008; Walton et al., 

2010). Few studies have evaluated factors influencing the adoption of GPS guidance systems 

(Banerjee et al., 2008; D’Antoni et al., 2012; Martin et al., 2007) while no studies have evaluated 

the adoption of ASC technologies. 

GPS Guidance Systems and Automatic Section Control Technologies 

In the context of AG systems and ASC technologies, factors influencing the adoption of GPS 

guidance systems have been studied without the consideration of potential correlation between 

unobserved factors influencing both the decisions to adopt ASC technologies and GPS guidance 

systems (Martin et al, 2007; Banerjee et al., 2008; and D’Antoni et al., 2012). On the other hand, 

studies evaluating ASC technologies have focused on the economic benefits of adopting ASC 

rather than the factors influencing adoption decisions (Batte and Ehsani, 2006; Shockley et al., 

2012; Velandia et al., 2013). 

Martin et al. (2007) evaluated the adoption of GPS guidance systems, characteristics of 

operators adopting these types of technologies, and the economic value operators attribute to and 

satisfaction they receive from using these technologies. Results from a survey of cotton 

producers from 11 states conducted in 2005 revealed that about 23% of cotton producers used 

GPS guidance systems (Martin et al., 2007). Martin et al. (2007) indicated that adopters of these 
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technologies were younger, with less years of farming experience, and more educated than non-

adopters. Adopters were more likely to use laptop computers they could carry to the field, more 

likely to use other precision farming technologies (e.g., yield monitors, grid and soils sampling, 

aerial photos, satellite images, and PDA handheld devices), have larger farming operations, 

larger cotton acreage, and higher yields than non-adopters. 

Banerjee et al. (2008) evaluated the factors influencing the decision to adopt GPS 

guidance systems. Banerjee et al. (2008) also found that farm size, yield, years of formal 

education, age, use of computers for farm management, household income, state where farm 

operation is located, and use of other precision farming technologies affect the decision to adopt 

GPS guidance technologies. Although both Martin et al. (2007) and Banerjee et al. (2008) 

evaluated the effect of other precision farming technologies on the decision to adopt GPS 

guidance systems, ASC was not included as one of those other technologies. 

   D’Antoni et al. (2012) used a multinomial logit regression to assess the factors 

affecting farmer decisions to adopt autosteer or lightbar GPS guidance systems. Results from this 

study suggest that producers who expect higher potential input cost savings from the use of 

precision farming technologies were more likely to adopt autosteer or lightbar technologies. 

Older producers and those producers using older cotton pickers were less likely to adopt any of 

these guidance systems. On the other hand, producer expectation regarding the importance of 

precision farming technologies in the near future, type of the cotton picker (e.g., 4-row, 5-row, 

and 5-row) used, the use of computers for farm management, and farm size positively influenced 

the decision to adopt autosteer but not the decision to adopt GPS lightbar guidance systems.  

 Recent research on ASC technologies measured the economic benefits from using these 

technologies and the factors influencing the magnitude of these economic benefits (Batte and 
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Ehsani, 2006; Larson et al., 2016; Shockley et al., 2012; Smith et al., 2013; Velandia et al., 

2013). Velandia et al. (2013) suggested that adoption of ASC technology for planters may bring 

substantial monetary savings for those producers farming small and irregularly shaped fields. 

Larson et al. (2016) evaluated the effect of field geometry on the profitability of ASC, using 

perimeter to area ratio (P/A) as a measure of field irregularity to evaluate the profitability at 

different irregularity levels. Larson et al. (2016) analyzed 44 fields in middle and west Tennessee 

to estimate the reduction in chemical input application overlap with ASC as a percent of the total 

field size for three perimeter to area ratio (P/A) groups. This reduction in overlap was then used 

to evaluate the profitability of ASC for three field geometry categories. Results were consistent 

with previous research, indicating that more irregular fields result in the greatest savings. Larson 

et al. (2016) indicated that P/A is a good measure of field irregularity and a potential variable to 

be included when evaluating the profitability of ASC technologies.  

Shockley et al. (2012) suggested that savings associated with the adoption of ASC for 

sprayers may be higher when field shapes are irregular and small, with the effect of field 

irregularity decreasing as field size increases. Luck et al. (2010) used three different fields in 

Shelby County, Kentucky to evaluate the reduction in input application when using automatic 

boom section control. Luck et al. (2010) noted that benefits associated with the adoption of ASC 

for sprayers include the potential reduction of negative environmental impacts associated with 

agricultural chemical runoff. In an economic evaluation of ASC for sprayers, Batte and Ehsani 

(2006) acknowledged the potential environmental benefits of ASC for sprayers, but the 

evaluation of these benefits was not included in the technology assessment.  

Smith et al. (2013) evaluated the economic impact of adopting ASC and GPS guidance 

systems, including lightbar and AG systems using 533 fields in Colorado, Kansas, and Nebraska. 
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Field shape was approximated by calculating the average approach angle of headlands on a 

particular field, where this angle decreases as field shape “irregularity” increases (Smith et al., 

2013). Smith et al. (2013) found that the potential economic benefits from the adoption of GPS 

guidance systems were larger for more regularly shaped fields while the potential economic 

benefits from the adoption of ASC were larger for producers with more irregularly shaped fields. 

Similar to previous literature (Shockley et al., 2012), Smith et al. (2013) noted that the effect of 

field shape decreases as field shape increases.  
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CHAPTER 3: CONCEPTUAL FRAMEWORK 

Modeling the decision to adopt precision farming technologies begins with the assumption that 

farmers maximize the discounted expected benefits from production over a time horizon (Walton 

et al. 2008). Previous studies have used the random utility model framework to study adoption 

decisions (Jara-Rojas et al., 2012; Lambert et al., 2014; Larson et al., 2008; Rahm and Huffman, 

1984; Roberts et al., 2004; Walton et al., 2008), where a producer adopts a technology when the 

expected utility of profits is higher for the adoption scenario compared to the non-adoption 

scenario. Let )]([ AGUE   ( )]([ NAGUE  ) be the expected utility of adopting (non-adopting) AG 

systems for producer i. Defining )]([)]([*

NAGAGAG UEUEU   , the expected utility-

maximizing producer will choose to adopt GPS auto-guidance systems if 0* AGU . Likewise, let 

)]([ ASCUE   ( )]([ NASCUE  ) be the expected utility of profits of adopting (non-adopting) ASC 

technologies. Defining )]([)]([*

NASCASCASC UEUEU   , the utility maximizing producer will 

choose to adopt ASC when 0* ASCU .  

   As presented in Roberts et al. (2004) and Walton et al. (2008) and originally by 

McFadden (1974), the unobservable latent variables *

AGU  and *

ASCU  are hypothesized to be 

random functions of exogenous variables AGx  and ASCx , representing farmer and farm business 

characteristics, 

(1)                           
AGAGAGAG xU  * , 

(2)                        
ASCASCASCASC xU  * , 
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where AG  and ASC  are vectors of unknown parameters associated with the explanatory 

variables, and AG  and ASC  are random disturbance terms. While *

AGU   and *

ASCU  cannot be 

observed, a farmer’s decision to adopt any of these technologies can be observed such that  

 

(3)                    

AGASCjfor

otherwise

Uif
y j

j

, 

      0

0       1 *





 


. 

Empirical Model  

Factors Influencing Precision Agriculture Adoption Decisions 

Both studies regarding all precision farming technology adoption and the adoption of specific 

precision farming technologies guides the identification of variables that influence the adoption 

of AG systems and ASC technologies. Variables identified as factors influencing PA adoption 

decisions include age, computer use, education, information sources use, and farm size. Banerjee 

et al. (2008), D’Antoni et al. (2012), Larson et al. (2008), Martin et al. (2007), McBride and 

Daberkow (2003), Roberts et al. (2004), and Walton et al. (2008) included age in the empirical 

models identified to evaluate the adoption of various precision farming technologies. These 

studies found that older farmers with shorter planning horizon were less likely to adopt these 

technologies compared to younger farmers. Based on previous literature, this variable (i.e., AGE) 

is hypothesized to have a negative effect on the adoption of ASC technologies and AG systems.  

  Computer use has been considered as a variable influencing the adoption of precision 

farming technologies by previous studies including Banerjee et al. (2008), D’Antoni et al. 

(2012), Lambert et al. (2014), Larson et al. (2008), Martin et al. (2007), McBride and Daberkow 

(2003), Roberts et al. (2004), and Walton et al. (2010). These studies hypothesized that farmers 
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using computers are more likely to be interested in new farming technologies. For example, 

Larson et al. (2008) found that cotton producers who used a computer or handheld device for 

field management were more likely to adopt remotely sensed imagery.  

Education influences precision farming adoption decisions (Banerjee et al., 2008; 

Lambert et al., 2014; Larson et al., 2008; Martin et al., 2007; McBride and Daberkow, 2003; 

Napier et al., 2000; Roberts et al., 2004; Walton et al., 2010). Farmers with more education are 

hypothesized to have the skills to understand more complex technologies and their potential 

benefits. For example, Larson et al. (2008) found that those cotton producers with more years of 

formal education were more likely to adopt remotely sensed imagery.  

Farm size is hypothesized to influence ASC and AG adoption decisions (Banerjee et al., 

2008; D’Antoni et al., 2012; Lambert et al., 2014; Larson et al., 2008; Martin et al., 2007;  

McBride and Daberkow, 2003; Napier et al., 2000, Roberts et al., 2004; and Walton et al., 2010). 

A larger farm operation implies more acres over which to spread investment costs. McBride and 

Daberkow (2003) found that farm size positively influenced the likelihood of precision farming 

adoption. Farm size (AVACRES), rather than cotton acres farmed, is hypothesized to have a 

positive effect on the adoption of ASC and AG systems as cotton producers are able to benefit 

from the use of these technologies on other crops (e.g., corn, soybeans).  

Other factors considered to influence the adoption of PA technologies include sources 

used to obtain information about precision farming technologies (McBride and Daberkow, 2003; 

Velandia et al., 2010). For instance, McBride and Daberkow (2003) found the information from 

crop consultants and input suppliers had a more significant influence on precision agriculture 

technology adoption than other information sources such as mass media or extension services. 

Use of farm equipment providers to obtain PA information may be the most appropriate variable 
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to be included in the adoption equations for both ASC technologies and AG systems due to the 

fact that equipment providers distributed these technologies and also provide support to 

producers who purchase the technology. In contrast, crop consultants handle other issues such as 

map development, using yield information to set recommendations for variable rate application 

(Buschermohle, 2015). Extension agents and specialists provide research based information 

regarding the economic benefits of adopting these technologies but may not be the first source 

producers consult when making PA technology purchasing decisions (Buschermohle, 2015). A 

farm dealer variable (FARMDEALER) is included in the ASC and AG systems adoption 

equations. This variable is hypothesized to have a positive effect on the likelihood to adopting 

both ASC and AG technologies.  

Previous literature suggests that producers with irregularly shaped fields would benefit 

the most from the adoption of ASC for sprayers or planters, including Velandia et al. (2013), 

Larson et al. (2016), and Shockley et al. (2012). Perimeter-to-area ratio has been used as a 

measure of field irregularity by two of these three studies. This measure had a positive effect on 

the potential savings (e.g., saved seed and saved chemicals associated with overlap reduction) 

from the adoption of ASC for sprayers or planters. The variations of perimeter-to-area ratio 

measures that were evaluated here include the average perimeter-to-area ratio of a county 

(AVGIRR), 

(4)                                       𝐴𝑉𝐺𝐼𝑅𝑅 =  
∑

𝑝𝑖
𝑎𝑖

𝑁𝑐
𝑖=1

𝑁𝑐
 , 

where pi and 𝑎𝑖 are perimeter and area of field i in county c, respectively, and 𝑁𝑐 is the number 

of fields in a specific county. The median perimeter-to-area ratio of a county (MEDIANIRR) was 

also considered, as well as the sum of perimeter-to-area ratios in a county (SUMOFIRR),  
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(5)                   𝑆𝑈𝑀𝐼𝑅𝑅 =
∑ 𝑝𝑖

𝑁𝐶
𝑖=1

∑ 𝑎𝑖
𝑁𝑐
𝑖=1

. 

It is expected that AVIRR, MEDIANIRR, and SUMOFIRR will be larger for counties with a 

greater percentage of irregular fields. A drawback of these measures is that all of them may be 

influenced by the number of fields identified within a county. 

We also considered alternative measures of irregularity borrowed from the land 

fragmentation literature. There are five dimensions used to describe the complexity of farm land 

fragmentation: 1) the number of plots farmed; 2) plot size; 3) plot shape; 4) plot distance to the 

farm buildings; and 5) plot scattering (Latruffe and Piet, 2013). In the current study, we focus 

specifically on the third dimension (i.e., plot shape).  

Measures used by previous studies to evaluate parcel irregularity in the context of land 

fragmentation include shape index (SI), weighted fractal dimension (FDWTED), and area 

weighted mean shape index (AWMSI) (Latruffe and Piet, 2013; Aslan et al., 2007). The SI index 

is defined as, 

(6)   𝑆𝐼 = ∑
𝑝𝑖

4√𝑎𝑖

𝑙𝑐𝑖
𝑐=1 𝑁𝑐  

A county with a larger SI suggests that parcels in that county are more irregular than a 

county with a smaller SI. Additionally, AWMSI is defined as, 

(7)           𝐴𝑊𝑀𝑆𝐼 =  
1

𝐴𝑐
∑ 𝑎𝑖

𝑝𝑖

4√𝑎𝑖

𝑖𝑐
𝑖=1  , 

where 𝐴𝑐 is the total area of county c. Counties with large values of AWMSI have more irregular 

fields than counties with lower AWMSI values. The final measure considered in this study to 

measure field irregularity is FDWTED. Fractal dimension measures the degree of shape 

complexity in a land parcel (Aslan et al., 2007) and is defined as,  
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 (8)     𝐹𝐷𝑊𝑇𝐸𝐷 =  
1

𝐴𝑐
∑ 𝑎𝑖

𝑖𝑐
𝑖=1

2ln (𝑝𝑖)

ln (𝑎𝑖)
. 

In this study we hypothesized the adoption of ASC to be positively correlated with these shape 

measures. All shape measures have been transformed using the natural log in order to have 

marginal effects that are easy to interpret. 

 Figure 1 is a map of AVGIRR for all counties in the United States. Red counties indicate 

those with higher values of AVGIRR and, thus, more irregularly shape fields. The map reveals 

patterns that are expected based on the PLSS systems. Counties located in the Midwest have 

generally lower values of AVGIRR while counties in states with the PLSS system and near the 

Appalachian Mountains have higher values of AVGIRR.  
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CHAPTER 4: METHODS AND PROCEDURES 

Data 

A survey was mailed in February of 2013 (i.e. the 2013 Southern Cotton Farm Survey) to 13,566 

cotton producers in Alabama, Arkansas, Florida, Georgia, Kansas, Louisiana, Mississippi, 

Missouri, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia. After 

eliminating those surveys from producers who were no longer growing cotton and those surveys 

returned undeliverable, 1,810 of the returned surveys were considered appropriate for analysis 

for a 14% response rate (Boyer et al., 2014). The survey was conducted using Dillman’s Tailored 

Design Method, which emphasizes the use of multiple contacts through reminder cards and 

second waves of surveys to non-respondents (Dillman, 2000).  

Survey 

The 2013 Southern Cotton Farm Survey asked questions regarding the use of precision farming 

technologies as well as farm and producer characteristics. The survey was divided into four 

sections: “You and Your Farm”, “General Questions about Precision Farming”, “Variable Rate 

Application on Cotton”, and “Information about Your Household”.  

 The first section of the survey collected information regarding producer characteristics 

(e.g., age of primary operator, highest education level attained) and farm characteristics (e.g., 

acreage on cotton and other crops).  

The “General Questions about Precision Farming” section, asked producers whether they 

have used precision farming in cotton production and what improvements they have noticed as a 

result of this adoption decision. This section also includes questions about the sources used to 

attain information about precision farming and the importance farmers place on profitability, 
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environmental benefits, and being at the forefront of technology in their decision to adopt 

precision farming technologies. Finally, this section asked questions regarding the use of various 

precision farming technologies, excluding Variable Rate Application (VRA) technologies, such 

as year a producer began using a technology, when and why he/she stopped using it. 

The “Variable Rate Application on Cotton” section contains questions about producer use 

of variable rate technology on their cotton acreage. Specifically this section contains questions 

about who puts together the information and maps used to implement VRA, what inputs are 

applied using this technology, producer perceptions of the effect of VRA on yield, and perceived 

changes in input use as a result of VRA use.  

The last section, “Information about Your Household”, asked producers questions 

regarding household income and percentage of income from farming.  

Secondary Data 

Field shape for individual farms was not available. Secondary data were used to create field 

shape measures. Perimeter (pi) and area (𝑎𝑖) field data used to estimate shape indexes presented 

in equations 4 to 8 were created using the NASS Crop Data Layer (CDL). The crop map was 

uploaded in ArcGIS, and various procedures were used to generate a coverage of field polygons 

that allowed for the shape assessment. We used the field boundaries typically formed along 

roads, hedge rows, trees, or waterways, all non-cropland pixels, to break down the CDL into 

small land parcels that resembled a field rather than several parcels of land put together. Finally, 

a raster-to-vector conversion was performed on the remaining cropland dataset. The end result 

was a set of vector field boundaries that aligned with actual field boundaries.  
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Post-Stratification Survey Weights 

A comparison of the survey data with data from the 2012 USDA Census of Agriculture indicates 

the distribution of survey respondents is skewed towards those farms with larger cotton acres 

planted (Figure 1). Using Lambert et al.’s (2014) approach, post-stratification survey weights 

were estimated to account for this difference in a way that the central tendency measures of the 

survey data approach the distribution of cotton farms from the 2012 Census of Agriculture.   

Estimation Methods: Bivariate Probit Regression  

The decisions to adopt the two precision agriculture technologies evaluated in this study (i.e., 

ASC and AG) are considered to be not mutually exclusive (i.e., a farmer can adopt ASC and AG 

simultaneously), and it is hypothesized that unobserved factors influencing both adoption 

decisions may be correlated.  Additionally, it is important to notice that the adoption of ASC 

does not require for AG to be already adopted; thus, it is possible to adopt ASC without adopting 

AG. When running ASC without AG systems equipment providers recommend producers to use 

a higher accuracy GPS correction services such as OmniSTAR HP2 or OmniSTAR XP3 

(Buschermohle, 2015). Therefore, a bivariate probit regression was used to evaluate the factors 

influencing these decisions (Greene, 2003).   

The error terms in equations (1) and (2) are assumed to be normally distributed and 

correlated (  ),( ASCAGCorr ). For the likelihood function, let 12  iASCiASC yq  and

12  iAGiAG yq . Thus, 

                                            
2 For information about this correction service visit: http://www.omnistar.com/SubscriptionServices/OmniSTARHP.aspx  
3 For information about this correction service visit: http://www.omnistar.com/SubscriptionServices/OmniSTARXP.aspx  

http://www.omnistar.com/SubscriptionServices/OmniSTARHP.aspx
http://www.omnistar.com/SubscriptionServices/OmniSTARXP.aspx
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where   denotes the univariate standard normal density and   represents the univariate 

standard normal cumulative distribution function. Subscripts are reversed to obtain iAGg . The 

maximum likelihood estimates for 
ij  and    are obtained by setting (12) and (13) equal to 0. 

Note that if 0 , then 0* i and thus, 

(15)            iAGiASCiASC wwg  . 
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Replacing (15) in (12) reduces the expression in (12) to the first order condition of a probit 

regression. The null hypothesis to be tested associated with  assumes the model consists of 

independent probit regressions  0  and, therefore, the regressions associated with adoption of 

ASC technologies and AG systems can be estimated separately. If this null hypothesis is 

rejected, a bivariate probit regression is appropriate for evaluating the factors influencing the 

decisions to adopt ASC and AG systems. 

Descriptive Statistics  

For the analysis of the data, 4 groups of producers were of interest: 1) producers who adopted 

ASC, 2) producers who did not adopt ASC, 3) producers who adopted AG systems, and 4) 

producers who did not adopt AG systems. The producer and farm characteristics for ASC 

adopters and non-adopter and AG system adopters and non-adopters were compared using an 

independent sample t-test (Tables 2, 3). 

Multicollinearity Tests 

Multicollinearity can distort results by inflating the estimated variances (Greene, 2003). For the 

purpose of evaluating multicollinearity, the condition index was used to compare the models in 

this study (Belsley, Kuh, and Welsch, 1980). Condition indexes between 30 and 80 are 

considered to be an indication of moderate to strong collinearity among covariates (Belsley, 

1991).  

Considering Unobserved Individual Farm Characteristics Affecting the Adoption of ASC 

Technologies 

As suggested by previous literature, field geometry may affect the potential economic benefits 

from the adoption of ASC (Velandia et al., 2013; Larson et al., 2016). Field geometry may be 
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unique for each farm. If information regarding field geometry for each farm is available, then 

this information should be included in the ASC adoption decision equation. If this information is 

not available or a good proxy measuring field shape is not available for each farm, omitting this 

variable from the ASC adoption equation may result in inconsistent parameter estimates, as this 

omitted variable will be part of the error term and if correlated with the exogenous variables may 

results in the violation of strict exogeneity (Wooldridge, 2002).  A variable that could capture 

differences between farms influencing the adoption of ASC included in survey data could be 

location (i.e., state where farm operation is located). Nonetheless, the state where a farm is 

located may capture some differences (e.g. weather, landscape) that could affect adoption 

decisions but may not capture individual differences, such as field shape. An alternative 

approach is to create a variable that groups states based on the system used to establish property 

boundaries. The states that have non-rectangular fields (i.e., metes & bounds) would be the 

territory under the jurisdiction of the Thirteen Colonies at the time of independence that did not 

adopt the Public Land Survey System (PLSS), with the exception of the area that became the 

Northwest Territory and some of the Southern states. States not using the PLSS system, and 

therefore more likely to have farms with irregular shape type fields, include Georgia, 

Connecticut, Delaware, Kentucky, Maine, Maryland, Massachusetts, New Hampshire, New 

Jersey, New York, North Carolina, Pennsylvania, Rhode Island, South Carolina, Tennessee, 

Vermont, Virginia, and West Virginia. Nonetheless, similar to including state dummy variables, 

a variable representing PLSS adoption systems may capture general characteristics, such as farm 

size, that are not necessarily associated with field shape. 

In the case where a variable capturing specific individual characteristics affecting the 

adoption of ASC technologies is not available, a random-intercept probit regression as the one 

http://en.wikipedia.org/wiki/Thirteen_Colonies
http://en.wikipedia.org/wiki/Northwest_Territory
http://en.wikipedia.org/wiki/Georgia_(U.S._state)
http://en.wikipedia.org/wiki/Connecticut
http://en.wikipedia.org/wiki/Delaware
http://en.wikipedia.org/wiki/Kentucky
http://en.wikipedia.org/wiki/Maine
http://en.wikipedia.org/wiki/Maryland
http://en.wikipedia.org/wiki/Massachusetts
http://en.wikipedia.org/wiki/New_Hampshire
http://en.wikipedia.org/wiki/New_Jersey
http://en.wikipedia.org/wiki/New_Jersey
http://en.wikipedia.org/wiki/New_York
http://en.wikipedia.org/wiki/North_Carolina
http://en.wikipedia.org/wiki/Pennsylvania
http://en.wikipedia.org/wiki/Rhode_Island
http://en.wikipedia.org/wiki/South_Carolina
http://en.wikipedia.org/wiki/Tennessee
http://en.wikipedia.org/wiki/Vermont
http://en.wikipedia.org/wiki/Virginia
http://en.wikipedia.org/wiki/West_Virginia
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presented in Rabe-Hesketh and Skrondal (2012) where a producer-specific random intercept is 

included to capture unobserved heterogeneity may be appropriate to capture farm differences 

affecting the adoption of ASC technologies. Rabe-Hesketh and Skrondal, (2012) present this 

approach in the context of longitudinal data with two dimensions (e.g., panel data). This 

approach is adjusted for the case of cross section data. Using the latent-response formulation we 

can write the random-intercept model for ASC as,  

(16)                        
icASCcASCASCicASCicASC xU   '* , 

where *

icASCU  is the unobservable latent variable for farm i and group c, which is expected to be a 

function of the observable exogenous explanatory variables icASCx ; ASC  is the vector of 

unknown parameters associated with the explanatory variables. Finally, cASC represents the 

group specific random intercept that is assumed to be independent and identically distributed 

across group c and independent of covariates icASCx , and icASC (i.e., random disturbances vector 

assumed to have a normal standard distribution). The assumption of random disturbance 

independence between farms within a county is relaxed using the cluster-robust standard errors 

available in STATA (STATA, 2013) as we believe that the unobserved factors influencing farms 

decisions to adopt ASC in a specific county may be correlated. For the case of the GPS auto-

guidance adoption decision, 

(17)           
icAGAGicAGicAG xU   '* , 

where *

iAGU  is the unobservable latent variable for farm i, which is expected to be a function of 

the observable exogenous explanatory variables iAGx ; iAG  is the vector of unknown parameters 

associated with the explanatory variables. Finally, icAG  is the vector of random disturbances for 
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equation (17). The error terms icASC  and icAG  are assumed to have a bivariate normal 

distribution with a zero mean and a cross-equation correlation of 𝜌.  
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CHAPTER 5: RESULTS 

Sample Overview and Descriptive Statistics  

A total of 1,145 observations were included in this analysis after eliminating observations with 

missing values. Table 1 presents variable definitions and descriptive statistics. The average age 

of respondents was 57 years old and 41% had a bachelors or graduate degree. Reported average 

crop acres harvested between 2011 and 2012 were about 976, 36% of respondents indicated 

using cover crops, and about 58% of respondents indicated using farm dealers to obtain 

information about precision agriculture. Field shape measures were estimated at the county level. 

About 31% of cotton producers had adopted ASC, and 59% had adopted AG systems.  

Table 2 and Table 3 present comparisons of operator characteristics, farm business 

characteristics, and the shape indexes for ASC and AG systems adopters and non-adopters. 

Results suggest that adopters of ASC technologies are younger and have achieved higher levels 

of education on average, with 48% having a bachelors or graduate degree compared to 39% of 

non-adopters indicated having this level of education (Table 2).   

Total crop acres harvested were 1,517 and 737 for ASC adopters and non-adopters, 

respectively. Results also indicate that 40% of ASC adopters used cover crops compared to 32% 

of non-adopters using this production practice. Additionally, results suggest that ASC adopters 

are more likely to use farm dealers as precision farming information sources than non-adopters. 

None of the mean shape measures were significantly different between ASC adopters and non-

adopters. This result may reflect that field shape measures used in this study may be imprecise 

rather than reflecting that there is no relationship between ASC and shape measures (Wasserstein 

and Lazar, 2016). Finally, 94% of cotton producers who adopted ASC technologies also adopted 

AG systems compared to 44% of producers who had not adopted ASC.  
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Similar to ASC adopters, AG adopters are younger and have a higher level of education 

than non-adopters. About 46% of adopters have a bachelors or graduate degree compared to 34% 

of non-adopters (Table 3). Adopters and non-adopters of AG systems reported about 1,254 and 

564 crop acres harvested, respectively. Similar to ASC adopters, this result suggest adopters of 

AG systems may harvest more acres than non-adopters. 

Results also indicate producers using AG systems are also more likely to use farm dealers 

for information about precision agriculture technologies (67%) compared to non-adopters (46%). 

Lastly, about 48% of GPS auto-guidance systems adopters also use ASC technologies, while 

only about 4% of the GPS auto-guidance systems non-adopters use ASC technologies.  

Multicollinearity Tests 

The condition indexes for the various covariates revealed some potential multicollinearity issues. 

For the shape measures, the condition indexes for covariates when including FDWTED or 

AVGIRR were above 30, being 50 and 42 respectively. In addition, the condition indexes when 

including SUMIRR and MEDIANIRR were very close to 30, indicating there could be some 

moderate multicollinearity. The shape measures, AWMSI and MEANSI did not have condition 

indexes above 20, indicating no considerable multicollinearity. 

The condition indexes also revealed a potential correlation between computer use and a 

producer education level. Although computer use and education have been used in past adoption 

models, the inclusion of both of these as covariates within the adoption equation led to an 

increased condition index and suspected ill-conditioning of the repressor matrix when evaluating 

the random intercept regression models. While previous studies incorporated both variables in 

the adoption equations (Banerjee et al.,2007; Lambert et al., 2014; Larson et al.,2008; McBride 

and Daberkow, 2003; Roberts et al., 2004; Walton et al. ,2010), we decided to include education 



23 

 

but not computer use in both ASC and AG adoption equations. Education was included as it 

yielded lower condition indexes compared to those condition indexes obtained when including 

computer use as a regressor.  

Results and Discussion from Bivariate Probit Regressions 

Bivariate probit regressions were used to evaluate the factors influencing the adoption of ASC 

and AG systems. This approach was considered to be appropriate for parameter estimation due to 

the potential correlation between unobserved variables influencing the adoption decisions of 

ASC technologies and AG systems. The bivariate probit regressions evaluated include: 1) a 

bivariate probit regression with a shape measure included as an independent variable and a 

random-intercept included in the ASC equation; 2) a bivariate probit regression with a shape 

measure but no random-intercept included in the ASC equation; and 3) a bivariate probit 

regression with a random-intercept but no shape measure included in the ASC equation. The 

random-intercept probit regression approach is only used for the ASC adoption equation because 

it is only in the case of the adoption of this particular technology that we believe there are farm-

specific unobserved characteristics influencing the adoption decision. The correlation 

coefficients between the residuals (ρ) were positive and statistically significant at the 1% level 

for all evaluated regressions, supporting the hypothesis that the error terms in the ASC and AG 

equations are correlated. The estimation of marginal effects on the probability of adoption of 

ASC and AG systems are presented in Tables 5 through 18. Marginal effects are presented for 

the marginal probabilities of ASC and AG4. 

                                            
4 Marginal effects are only available for the marginal probabilities after using cmp in STATA. The cmp command 

was used to allow for the random-intercept approach in the bivariate probit regression (Roodman, 2011). 
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Because there were 6 different shape measures being considered, there were a total of 14 

different models to evaluate and compare. We used the Akaike Information Criterion (AIC) 

(Akaike, 1974), the Bayesian Information Criterion (BIC) (Schwarz, 1978), and likelihood-ratio 

tests to evaluate goodness of fit of the different regression approaches, and to  select among 

those the regression approach that best represents the data used in this study. We used likelihood-

ratio tests to evaluate changes in model fit when using the random intercept approach for each of 

the shape measures considered in this study. Including random intercepts resulted in a 

statistically significant improvement in model fit for all shape measures. Table 4 contains the 

AIC, BIC, values of the log-likelihood function, and condition numbers (i.e., highest condition 

index) for all the regression approaches evaluated. The AIC and BIC statistics were used to 

compare random intercept regression models using different shape measures. Regression models 

with SUMIRR and AWMSI included as measures of field irregularity have the smallest AIC and 

BIC values, and both values are very close to one another for each shape measure. While 

SUMIRR has a BIC and AIC that is slightly smaller than those for the model with AWMSI, 

SUMOFIRR has a condition number of 26 which is close to the threshold of 30. Thus, the 

random intercept regression model with AWMSI seems to be the most appropriate model among 

those considered to evaluate the factors influencing the adoption of ASC and AG systems.   

Table 5 presents the parameter estimates and marginal effects on the probability of 

adopting ASC and AG systems from the bivariate probit regression that includes LOGAWMSI 

(i.e., natural log of AWMSI) and uses county level random-intercepts. Results suggest that the 

overall model is significant at the 1% level, and the bivariate probit regression is the appropriate 

estimation approach based on the result, suggesting that the null hypothesis of ρ=0 is rejected at 

the 1% level and that the unobserved factors influencing the adoption of these two technologies 
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may be correlated. The producer characteristics influencing the adoption of ASC and AG include 

age, education attainment, and use of farm dealers to obtain precision farming information. For 

example, a producer with a bachelors or graduate degree is 9% more likely to adopt AG and 

about 8% more likely to adopt ASC (Table 5). Gathering information about precision farming 

from farm dealers increases the probability of adopting AG by about 14% and the probability of 

adopting ASC by 18.8% (Table 5). 

Farm characteristics influencing the adoption of ASC and AG systems include crop acres 

harvested, and shape measure AWMSI.  For example, a producer with one additional acre of crop 

harvested is 0.01% more likely to adopt AG or ASC. Despite the hypothesized positive sign of 

LOGAWMSI, results suggest a 1% change in the shape index decreases the probability of 

adopting ASC by 9% (Table 5). With the exception of LOGAWMSI, the signs of the farm and 

producer characteristics were consistent with previous literature and the hypotheses proposed in 

this study. 

Tables 6 and 7 present the results from two regressions, one without county-level random 

intercepts and one with county-level random intercepts but no shape measure included, 

respectively. While some parameter estimates change slightly, the overall regression model and 

significance of the explanatory variables remains largely the same. For these models, producer 

characteristics such as age, education attainment, and use of farm dealers to obtain precision 

farming information seem to significantly influencing the adoption of ASC and AG. Similarly, 

the farm characteristics that significantly affect the adoption of ASC and AG included crop acres 

harvested, and the use of cover crops. Farm dealers have a positive and significant impact on the 

adoption of ASC. Results presented in Table 6 suggest the use of farm dealers to obtain precision 

farming information increases the likelihood of adopting ASC by about 19%. Similarly, results 
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presented in Table 7 suggest the use of farm dealers will increase the probability of adopting 

ASC by about 19%.  

 All the alternative models estimated are presented in the Appendix. When using different 

measures of field shape, regression results suggest contradicting conclusions regarding the 

influence of field shape on ASC adoption.  

When using measures that aggregate perimeter to area ratios by county such as AVGIRR, 

SUMIRR, and MEDIANIRR results suggest that field shape has a positive impact on the adoption 

of ASC. In contrast, when using alternative measures such as AWMSI and FDWTED, we found 

that these measure suggest a potential negative impact of field shape on the likelihood of 

adopting ASC. These results may only suggest that that field shape measures used in this study 

may be imprecise as suggested above (Wasserstein and Lazar, 2016).   

In general, all regressions suggest adopters of ASC and AG are likely to be younger, 

more educated, with larger farms, and more likely to use farm dealers as a source of precision 

farming information than non-adopters. Finally, the results from the models indicate the effect of 

the shape index on the adoption of ASC is inconclusive when using the shape measures 

suggested in this study.  
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CHAPTER 6: CONCLUSIONS 

Precision agriculture technologies such as ASC and AG will continue to be adopted by producers 

in the United States as the size of the average farm and fertilizers and seed costs increase. 

Technologies like the ones evaluated in this study that result in both monetary and time savings 

may have a particular advantage, specifically for larger farms. A bivariate probit approach was 

used to evaluate the adoption of ASC and AG, and a county-level random intercept was included 

to take into account unobserved farm-level heterogeneity. Findings from this study may not only 

help better understand the factors influencing the adoption of these technologies but they may 

also contribute to the discussion about measurements of field irregularity at a county-level when 

field shape measures are not available at the farm-level.  

 Both farm and producer characteristics influence producer’s decision to adopt ASC and 

AG. These characteristics have been examined in previous studies and include age of the 

producer, educational attainment, farm size, and the use of information sources to obtain 

precision farming information. Producers who are older are less likely to adopt ASC or AG, 

which follows the hypothesis that these producers have shorter planning horizon than younger 

producers and, therefore, are less likely to make drastic changes in their production systems. 

Additionally, consistent with previous literature, producers with larger farms are more likely to 

adopt ASC and AG due to their ability to spread the cost of the technology across more acres.  

There are several limitations of this study associated with field shape measures. Farm-level field 

shape information is not available; therefore, field shapes are create based on NASS CDL data. 

We have not validated the procedures used to identify fields at the county level with actual field 

data. Additionally, the aggregation of perimeter to area ratios on a county basis may be affected 

by the number of fields in a county, and it is not clear whether aggregation is a valid approach 
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when trying to measure field irregularity. Alternatively, assuming field shape measures used in 

this study are accurate measures of actual field irregularity, a producer’s decision to adopt ASC 

may not be affected by the potential cost savings in the way previous studies have hypothesized 

(Velandia et al., 2013, Larson et al., 2016, and Shockley et al., 2012). There are benefits 

associated with ASC such as the ability to increase turn speed or work longer hours that are not 

exclusive to farms with a large percentage of highly irregular fields (Beary 2016). This explains 

popularity of ASC technologies in the Midwest, where fields tend to be very regular, or 

perimeter to area ratios tend to be low (Beary 2016). Additionally, as suggested by decision aid 

tools created to evaluate profitability of adopting ASC such as the Automatic Section Control for 

Planters Cost Calculator (ASCCC)5, the effect of field geometry on farm savings associated with 

ASC adoption may decrease as farm size increases. Therefore, a farmer decision to adopt ASC 

technologies may be driven by farm size rather than field geometry.  

                                            
5 http://economics.ag.utk.edu/asccc.html 
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Figure 1. Cotton Acres Harvested from Agricultural Census vs. Survey Data  
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Figure 2. Map of AVGIRR by County 
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Table 1. Summary Statistics of Variables with Shape Index (n=1445) 

Variables Description Mean 
Standard 

Deviation 
Min Max 

A. Dependent 

variables:      

ASC 

= 1 if producer has 

adopted ASC for 

planters or sprayers 0.31  0 1 

AG 

= 1 if producer has 

adopted AG auto-

guidance systems 0.59  0 1 

B. Independent 

variables:      

AVACRES 

Average cotton acres 

harvested in 2011 and 

2012. 975.51 1323.74 2 17500 

BGDEDUCATION 

= 1 if the producer’s 

highest level of 

education is a 

bachelors or graduate 

degree 0.41  0 1 

AGE 

Age of primary 

decision maker as of 

2014 56.85 13.32 20 100 

FARMDEALER 

= 1 if the producer 

has used a farm 

dealer as a source of 

information about 

precision farming 0.58  0 1 

COVER 

= 1 if producers uses 

cover crops, 0 

otherwise 0.35  0 1 

AWMSI 

Area Weighted Mean 

Shape Index of the 

county a producer 

operates within 2.72 1.98 1.15 15.14 

SI 

Shape Index of the 

county a producer 

operates within 1.33 0.35 0.97 4.00 
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Table 1 Continued.  

 

Variables Description Mean 
Standard 

Deviation 
Min Max 

FDWTED 

Fractal Dimension 

Weighted of the county a 

producer operates within. 1.31 0.02 1.24 1.41 

AVGIRR 

The average perimeter to 

area ratio of the county a 

producer operates within. 0.04 0.01 0.01 0.06 

SUMIRR 

The sum of the perimeter to 

area ratio of the county a 

producer operates within. 50.51 31.84 0.32 173.77 

MEDIANIRR 

The median of the perimeter 

to area ratio of the county a 

producer operates within 0.03 0.01 0.01 0.06 
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Table 2. Summary Statistics of Variables by ASC Adoption 

Variable ASC=1 ASC=0 

AVACRES***  1516.56 737.08 

BGDEDUCATION*** 0.48 0.39 

AGE*** 52.39 58.82 

COVER*** 0.40 0.32 

FARMDEALER*** 0.78 0.50 

AWMSI 2.70 2.74 

SI 1.34 1.32 

FWTED 1.31 1.31 

AVGIRR 0.04 0.04 

SUMIRR 52.08 49.82 

MEDIANIRR 0.03 0.03 

AG*** 0.94 0.44 

 

*, **, and *** represent statistical significance at 10%, 5%, and 1% levels, 

respectively 
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Table 3. Summary Statistics of Variables by AG Adoption 

 

Variables AG=1 AG=0 

AVACRES*** 1254.05 563.67 

BGDEDUCATION***       0.46 0.34 

AGE***       54.95 59.36 

FARMDEALER*** 0.67 0.45 

ASC(%)*** 0.48 0.04 

 

*, **, and *** represent statistical significance at 10%, 5%, and 1% levels, 

respectively 
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Table 4. Goodness of Fit Measures for All Models 

 

Shape 

Variable 

Random 

Effect Sign AIC BIC 

Log-

Likelihood 

Condition 

Index 

       

None No  3003.924 3072.51 -1488.9619  

       

AWMSI No (-) 44101.41 44170 -22132.93 14.5735 

AWMSI Yes (-) 2998.518 3072.38 -1485.2591 14.5735 

       

FDWTED No (-) 44220.73 44289.32  50.106 

FDWTED Yes (-) 3005.129 3078.991 -22097.37 50.106 

       

MEANSI No (-) 44163.85 44232.44 -22068.93 17.944 

MEANSI Yes (-) 3001.549 3075.411 -1486.7747 17.944 

       

SUMIRR No (+) 44132.27 44200.86 -22053.14 26.4532 

SUMIRR Yes (+) 2997.293 3071.155 -1484.6466 26.4532 

       

AVGIRR No (+) 44259.52 44328.11 -22116.76 42.329 

AVGIRR Yes (+) 3002.476 3076.338 -1487.2378 42.329 

       

MEDIANIRR No (+) 44257.32 44325.9 -22115.65 25.5774 

MEDIANIRR Yes (+) 3002.113 3075.975 -1487.0563 25.5774 
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Table 5. Parameter Estimates and Effects of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit with County-level Random Intercepts and 

LOGAWMSI with Cluster Robust Standard Errors (n=1445) 

 Adoption Equation Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent 

Variables 
Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0003*** 0.0003*** 0.0001*** 0.0001*** 

 (0.0001) (0.0001)   

BGDEDUCATION      0.2411*** 0.2333**       0.0913*** 0.0789*** 

 (0.0791) (0.1108)   

AGE       -0.0150*** -0.0217***       -0.0057*** -0.0072*** 

 (0.0026) (0.0042)   

FARMDEALER 0.3586*** 0.5817*** 0.1372*** 0.1875*** 

 (0.0739) (0.1161)   

COVER  0.1577  0.0528 

  (0.1097)   

LOGAWMSI  -0.2701***  -0.0904** 

  (0.0241)   

_CONS 0.5108*** -0.0508   

Likelihood value -1485.33    

𝜒2(10) 259.70***    

Correlation 

coefficient 0.80***  

  

 

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

  Numbers in parentheses are standard errors. 
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Table 6. Parameter Estimates and Effects of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit with LOGAWMSI and without County-level 

Random Intercepts with Cluster Robust Standard Errors (n=1445) 

 Adoption Equation Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent 

Variables 
Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0004*** 0.0003*** 0.0002*** 0.0001*** 

 (0.0001) (0.0000)   

BGDEDUCATION       0.2570*** 0.2324***       0.0995*** 0.0704*** 

 (0.0856) (0.0810)   

AGE       -0.0144*** -0.0185***       -0.0056*** -0.0055*** 

 (0.0028) (0.0030)   

FARMDEALER 0.3404*** 0.6167*** 0.1323*** 0.1806*** 

 (0.0809) (0.0841)   

COVER  0.1278  0.0383 

  (0.0814)   

LOGAWMSI  -0.2622**  -0.0785** 

  (0.0890)   

_CONS 0.4746** -0.12443   

Likelihood value -22037.71    

𝜒2(10) 262.89***    

Correlation 

coefficient 0.75***  

  

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively. 

 Numbers in parentheses are standard errors. 
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Table 7. Parameter Estimates and Effects of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit with County-level Random Intercepts and 

Cluster Robust Standard Errors and without Shape Measure (n=1445) 

 Dependent Variables Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent 

Variables 
Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0003*** 0.0003*** 0.0001*** 0.0001*** 

 (0.0001) (0.0000)   

BGDEDUCATION       0.2403*** 0.2211*       0.0908*** 0.0746** 

 (0.0792) (0.1163)   

AGE       -0.0150*** -0.0221***       -0.0057*** -0.0074*** 

 (0.0026) (0.0044)   

FARMDEALER 0.3581*** 0.5864*** 0.1370*** 0.1885*** 

 (0.0739) (0.1222)   

COVER  0.2013*  0.0673* 

  (0.1143)   

_CONS 0.5103*** -0.1175   

Likelihood value -1488.96    

𝜒2(9) 306.70***    

Correlation 

coefficient 0.79*** 

   

 
 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 
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Table 8. Parameter Estimates and Effect of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit Estimation without Shape Measure or 

Random Effect with Cluster Robust Standard Errors (n=1445) 

 

 Adoption Equations Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent 

Variables 
Coefficient Coefficient AG=1 ASC=0 

AVACRES 0.0004*** 0.0003*** 0.0001*** -0.0001*** 

 (0.0000) (0.0000) (0.0000) (0.0000) 

BGDEDUCATION       0.2556*** 0.2141***       0.0989*** -0.0643 

 (0.0790) (0.0829) (0.0303) (0.0252) 

AGE       -0.0144*** -0.0189***       -0.0056*** -0.0056 

 (0.0029) (0.0031) (0.0012) (0.0009) 

FARMDEALER 0.3390*** 0.6141*** 0.1318*** -0.1784 

 (0.0800) (0.0878) (0.0310) (0.0244) 

COVER  0.1676**  -0.0498** 

  (0.0779)  (0.0231) 

Constant 0.47211** -0.3487**   

Likelihood value -22132.93    

𝜒2(9) 221.73***    

Correlation 

coefficient 0.73***  

  

 

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 



48 

 

Table 9. Parameter Estimates and Effect of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit Estimation with LOGFDWTED and Cluster 

Robust Standard Errors (n=1445) 

 Adoption Equations Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent 

Variables 
Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0004*** 0.0003*** 0.0001*** -0.0001*** 

 (0.0000) (0.0000)   

BGDEDUCATION       0.2571*** 0.2208***       0.0672*** -0.0664*** 

 (0.0856) (0.0805)   

AGE       -0.0144*** -0.0188***       -0.0053*** -0.0056*** 

 (0.0028) (0.0030)   

FARMDEALER 0.3391*** 0.6130*** 0.1662*** -0.1783*** 

 (0.0809) (0.0844)   

COVER  0.1557*  -0.0462* 

  (0.0840)   

LOGFDWTED  -4.2743*  -1.2703* 

  (2.3174)   

Constant 0.4731* 0.8055   

Likelihood value -22097.37    

𝜒2(10) 255.43***    

Correlation 

coefficient 0.73***  

  

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 
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Table 10. Parameter Estimates and Effect of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit Estimation with LOGFDWTED, Random 

Effects, and Cluster Robust Standard Errors (n=1445) 

 Adoption Equations Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent 

Variables 
Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0003*** 0.0003*** 0.0001*** 0.0001*** 

 (0.0001) (0.0001)   

BGDEDUCATION       0.2406*** 0.2238*       0.0910*** 0.0755** 

 (0.0778) (0.1120)   

AGE       -0.0150*** -0.0221***       -0.0057*** -0.0074*** 

 (0.0024) (0.0041)   

FARMDEALER 0.3578*** 0.5846*** 0.1369*** 0.1879*** 

 (0.0691) (0.1130)   

COVER  0.1938*  0.0647* 

  (0.1152)   

LOGFDWTED  -2.4794  -0.8281 

  (2.8377)   

Constant 0.5106*** 0.5473   

Likelihood value -1488.56    

𝜒2(10) 373.61***    

Correlation 

coefficient 0.79***  

  

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 
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Table 11. Parameter Estimates and Effect of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit Estimation with LOGSI and Cluster Robust 

Standard Errors (n=1445) 

 Adoption Equations Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent 

Variables 
Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0004*** 0.0003*** 0.0002*** -0.0001*** 

 (0.0000) (0.0000)   

BGDEDUCATION       0.2551*** 0.2285***       0.0987*** -0.0693*** 

 (0.0858) (0.0827)   

AGE       -0.0144*** -0.0186***       -0.0056*** 0.0056*** 

 (0.0028) (0.0030)   

FARMDEALER 0.3408*** 0.6119*** 0.1325*** -0.1794*** 

 (0.0809) (0.0841)   

COVER  0.1425**  -0.0427* 

  (0.0813)   

LOGSI  -1.5763**  -0.4723** 

  (0.6630)   

Constant 0.4741** 0.1434   

Likelihood value -22068.93    

𝜒2(10) 256.35***    

Correlation 

coefficient 0.73***  

  

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 
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Table 12. Parameter Estimates and Effect of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit Estimation with LOGSI, Random Effects, 

and Cluster Robust Standard Errors (n=1445) 

 Adoption Equations Marginal Effect Marginal 

Effect  AG ASC 

Independent 

Variables 
Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0003*** 0.0003*** 0.0001*** 0.0001*** 

 (0.0001)    (0.0001)   

BGDEDUCATION       0.2401*** 0.2300*       0.0908*** 0.0777* 

 (0.0761) (0.1076)   

AGE       -0.0150*** -0.0218***       -0.0057*** -0.0073*** 

 (0.0024) (0.0039)   

FARMDEALER 0.3590*** 0.5830*** 0.1370*** 0.1877*** 

 (0.0689) (0.1086)   

COVER  0.1738*  0.0581* 

  (0.1101)   

LOGSI  -1.4773**  -0.4940** 

  (0.7494)   

Constant 0.5105*** 0.3289   

Likelihood value -1486.77    

𝜒2(10) 335.63***    

Correlation 

coefficient 0.79***  

  

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 

 



52 

 

Table 13. Parameter Estimates and Effect of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit Estimation with LOGSUMIRR and Cluster 

Robust Standard Errors (n=1445) 

 Adoption Equations Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent 

Variables 
Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0004*** 0.0003*** 0.0002*** 0.0001*** 

 (0.0000) (0.0000)   

BGDEDUCATION       0.2548*** 0.2303***       0.0986*** 0.0700*** 

 (0.0857) (0.0829)   

AGE       -0.0144*** -0.0182***       -0.0056*** -0.0054*** 

 (0.0028) (0.0030)   

FARMDEALER 0.3413*** 0.6226*** 0.1327*** 0.1830*** 

 (0.0809) (0.0839)   

COVER  0.1231  0.0370 

  (0.0810)   

LOGSUMIRR  0.2139***  0.0642*** 

  (0.0809)   

Constant 0.4740*** 0.6205   

Likelihood value -22053.14    

𝜒2(10) 245.50***    

Correlation coefficient 0.74***    

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 
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Table 14. Parameter Estimates and Effect of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit Estimation with LOGSUMIRR, Random 

Effects, and Cluster Robust Standard Errors (n=1445) 

 Adoption Equations Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent Variables Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0003*** 0.0003*** 0.0001*** 0.0001*** 

 (0.0001) (0.0001)   

BGDEDUCATION       0.2399*** 0.2320**       0.0906*** 0.0786** 

 (0.0758) (0.1040)   

AGE       -0.0150*** -0.0213***       -0.0057*** -0.0072*** 

 (0.0024) (0.0038)   

FARMDEALER 0.3597*** 0.5864*** 0.1369*** 0.1893*** 

 (0.0686) (0.1046)   

COVER  0.1523  0.0511 

  (0.1060)   

LOGSUMIRR  0.2382**  0.0799*** 

  (0.0784)   

Constant 0.5106*** 0.9449**   

Likelihood value -1484.65    

𝜒2(10) 343.87***    

Correlation coefficient 0.79***    

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 
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Table 15. Parameter Estimates and Effect of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit Estimation with LOGAVGIRR and Cluster 

Robust Standard Errors (n=1435) 

 Adoption Equations Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent Variables Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0004*** 0.0003*** 0.0001*** 0.0001*** 

 (0.0000) (0.0000)   

BGDEDUCATION       0.2545*** 0.2171***       0.0985*** 0.0655*** 

 (0.0857) (0.0825)   

AGE       -0.0144*** -0.0186***       -0.0056*** -0.0055*** 

 (0.0028) (0.0030)   

FARMDEALER 0.3397*** 0.6131*** 0.1320*** 0.1789*** 

 (0.0810) (0.0843)   

COVER  0.1679**  0.0501** 

  (0.0828)   

LOGAVGIRR  0.2224  0.0663 

  (0.1712)   

Constant 0.4732** 0.3705   

Likelihood value -22116.76    

𝜒2(10) 238.09***    

Correlation coefficient 0.74***    

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 
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Table 16. Parameter Estimates and Effect of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit Estimation with LOGAVGIRR, Random 

Effects, and Cluster Robust Standard Errors (n=1445) 

 Adoption Equations Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent Variables Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0003*** 0.0003*** 0.0001*** 0.0001*** 

 (0.0001) (0.0001)   

BGDEDUCATION       0.2391*** 0.2209**       0.0905*** 0.0749** 

 (0.0762) (0.1077)   

AGE       -0.0150*** -0.0218***       -0.0057*** -0.0073*** 

 (0.0024) (0.0040)   

FARMDEALER 0.3588*** 0.5858*** 0.1373*** 0.1882*** 

 (0.0692) (0.1095)   

COVER  0.1966*  0.0656* 

  (0.1093)   

LOGAVGIRR  0.3594*  0.1200* 

  (0.1864)   

Constant 0.5106*** 1.0377*   

Likelihood value -1487.23    

𝜒2(10) 321.17***    

Correlation coefficient 0.79***    

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 
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Table 17. Parameter Estimates and Effect of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit Estimation with LOGMEDIANIRR and 

Cluster Robust Standard Errors (n=1445) 

 Adoption Equations Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent Variables Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0004*** 0.0003*** 0.0001*** 0.0001*** 

 (0.0000) (0.0000)   

BGDEDUCATION       0.2544*** 0.2174***       0.0984*** 0.0655*** 

 (0.0857) (0.0830)   

AGE       -0.0144*** -0.0186***       -0.0056*** 0.0056*** 

 (0.0028) (0.0030)   

FARMDEALER 0.3398*** 0.6094*** 0.1321*** 0.1778*** 

 (0.0810) (0.0840)   

COVER  0.1692**  0.0505** 

  (0.0827)   

LOGMEDIANIRR  0.1094  0.0326 

  (0.0906)   

Constant 0.4735** 0.0641   

Likelihood value -22115.65    

𝜒2(10) 236.13***    

Correlation coefficient 0.74***    

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 
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Table 18. Parameter Estimates and Effect of Independent Variables on the Probability of 

ASC and AG Adoption from Bivariate Probit Estimation with LOGMEDIANIRR, 

Random Effects, and Cluster Robust Standard Errors (n=1445) 

 Adoption Equations Marginal 

Effect 

Marginal 

Effect  AG ASC 

Independent Variables Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0003*** 0.0003*** 0.0001*** 0.0001*** 

 (0.0001) (0.0001)   

BGDEDUCATION       0.2391*** 0.2220**       0.0906*** 0.0749** 

 (0.0773) (0.1083)   

AGE       -0.0150*** -0.0218***       -0.0057*** -0.0073*** 

 (0.0024) (0.0039)   

FARMDEALER 0.3592*** 0.5827*** 0.1374*** 0.1874*** 

 (0.0691) (0.1089)   

COVER  0.1962*  0.0656* 

  (0.1091)   

LOGMEDIANIRR  0.1883**  0.0629** 

  (.0944)   

Constant 0.5109*** 0.5776   

Likelihood value -1487.05    

𝜒2(10) 385.01***    

Correlation coefficient 0.79***    

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively 

 Numbers in parentheses are standard errors. 
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