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ABSTRACT 

 
 This thesis consists of the analytical study and the experimental investigation of 

larger diameter strands in AASHTO Type I girders. The main purpose of this study was 

to verify that the 2 inch minimum spacing recommended by ACI 318-08 and AASHTO 

(2008) can be used for 0.7 inch diameter strands by comparing various effects in girders 

using 0.7 and 0.6 inch diameter strands.  Based on the parametric analysis it was 

concluded that by using 0.7 inch strands there was a considerable saving in the material.  

For example, an AASHTO BT-72 with 0.6 inch strand could be replaced with AASHTO 

BT-54 with 0.7 inch strand for the same span capacity.  In order to fully realize the 

benefits and to verify the adequacy of 2 inch spacing, a three dimensional finite element 

analysis was performed with two full-scale AASHTO Type I girders with 0.6 inch and 

0.7 inch diameter strands.  Only the effects due to the prestressing force at transfer were 

studied in the two models.   The maximum principal stress and the axial stress in the 

concrete along the direction of the strands were determined.  Based on the analytical 

results from the FE model it was found that the girder with the 0.7 inch diameter strand 

was more vulnerable to cracking at the transition zone between the bottom flange and the 

web.  This defect could be overcome by placing the required amount of confinement 

reinforcement at the end zone of the girder. Based on the analytical study, two I-girder 

specimens, one with larger 0.7 in. strand and other with high strength 0.62 in. strand were 

cast. The transfer lengths of both the girders were measured and compared with the 

current AASHTO 2008 and ACI 318-08 equations. It was found that both strands 

exhibited a shorter transfer length than obtained in the equations. Based on these 

experimental results further studies are to be carried out for the implementation of these 

highly efficient strands.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 

Pretensioned, prestressed members such as I-girders are widely used in the 

construction of bridges. The strand diameters used in these members are predominantly 

0.5 in. and 0.6 in. at spacing of 2 inches in both horizontal and vertical directions. This 

research verifies whether this 2 inches spacing is suitable for the larger diameters such as 

0.7 in. and 0.62 in. strands. 

 

1.2 Need for larger diameter strands 

 

In sections like I-girders, the area in the bottom flange to accommodate the 

strands is limited. Using the 0.7 inch diameter strands can decrease the required number 

of strands in a given section for an equivalent span capacity. Alternatively, an equal 

number of the larger 0.7 inch diameter strands can be used to accommodate longer spans 

for a given section with higher concrete strength. Further, an increased roadway clearance 

can possibly be achieved by using shallower members. The research conducted on 0.7 

inch diameter strands is very limited. 

 

States like Tennessee use AASHTO Bulb-Tee (BT) sections which have very 

limited room in the bottom flange when compared to Nebraska University (NU) sections. 

Thus, using larger diameter strands helps in increasing the span capacity of the girders 

without increasing the number of strands in the bottom flange of the section. Thus, these 

states which are using the Bulb-Tee sections can obtain longer sections without switching 

over to NU sections or changing their form work. This prevents them having to make 

extensive changes to the design and fabrication procedures. 

 

1.3 Scope of the Research 

 

Experience with using 0.7 in. and 0.62 in. strands at 2 inches spacing is very 

limited.  Thus, the lack of research has limited its application in the real world. The main 

scope of this thesis is to provide design guidelines for 0.7 in. and 0.62 in. strands with 2 

inches spacing by analytical and experimental studies. 
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1.4 Research Objective  

 

The primary objectives of this research program were 

 

 To determine the transfer length for both 0.7 inch and 0.62 inch diameter 

strands. 

 To determine the prestress losses and observe the development of cracks 

on  full scale specimens. 

 To develop design criteria for larger diameter (0.7 in.) and high strength 

(0.62 in.) strands. 

 

1.5 Parametric study 

  

A parametric study was conducted to see the effects of higher diameter strand on 

the different cross sections such as NU sections and AASHTO Bulb-Tee sections. The 

design was based on the AASHTO LRFD 2008 design specification. 

 

1.5.1 Design Assumptions 

 

 An example composite bridge with a single span was designed for this study 

using AASHTO Bulb Tee or Nebraska University sections topped with concrete deck. 

The following assumptions were made for this study: 

 

 The superstructure consists of six beams spaced at 8 feet center to center.  

 The bridge was designed with an 8 inch cast-in-place concrete deck to resist   

all the superimposed dead, live, and impact loads.  

 A ½ inch wearing surface was considered as a part of the 8 inch thick deck.  

 An additional 2 inches of wearing surface was considered to be the future 

wearing surface.  

 Different concrete strengths were considered such as 10 ksi, 15 Ksi and 28 Ksi 

for the prestressed concrete girder. 

 The live load considered was HL-93, which consists of a load combination of 

design truck or design tandem with a dynamic allowance and a design lane 

load of 0.64 kip/ft without a dynamic allowance. 

 The concrete strength for the precast concrete deck was 4 ksi at service.  

 

 The design was accomplished in accordance with the AASHTO LRFD 2008 

bridge design specification. The concrete strength at transfer was taken as 80 percent of 

the strength at service.  
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1.5.2 Section shape Vs. Strand size 

 

1.5.2.1 ASSHTO Bulb -Tees 

   

The cross section area of a 0.7 inch (0.294 in
2
) diameter strand is about 35% more 

than the cross section area of a 0.6 inch (0.217 in
2
) diameter strand as shown in Table 1. 

In this example the design was done for three different strand diameters (0.5 inch, 0.6 

inch and 0.7 inch) with 2 in. spacing. The concrete strength considered in this design was 

8 ksi at transfer and 12 ksi at service.  A spread sheet was setup where the span was 

increased and the corresponding numbers of strands were noted. The capacity of the 

AASHTO Bulb-Tee (BT- 54) girder, with the maximum 40 strands which could be 

accommodated in the bottom flange, increased 16.7 percent as the diameter of the strands 

was increased from 0.6 in. to 0.7 in. as shown in the Table 2. A typical cross section of 

the AASHTO Bulb-Tee section is shown in the Figure 1 with 40 strands in the bottom 

flange. 

When an AASHTO Bulb-Tee 72 with 0.6 inch strands was compared with an 

AASHTO Bulb-Tee 54 with 0.7 inch strands it could be seen that both sections had 

essentially the same span capacity.  These comparisons showed a considerable reduction 

in the section size when 0.7 inch strands were used, as shown in Figure 2. 

 

Table 1 Properties of different diameters of strand 

 

Strand 

Diameter 

(in) 

Strand 

Area 

(in
2
) 

Ultimate 

Strength 

(ksi) 

Jacking 

Force (JF), 

(kips) 

Percentage 

increase, JF 

% 

0.5 0.153 270 31.0 
 

0.6 0.217 270 43.9 42.0 

0.62 0.2227 330 57.5 31.0 

0.7 0.294 270 59.5 35.5 

 

    

Table 2 Increase in the span capacity with the stand diameter 

 

Strands 

(No. – Type) 

Maximum 

Span Capacity 

(ft) 

Girder Depth 

(in) 

Span / 

Depth 

Percent 

Increase in 

Span 

40 # - 0.5” Diameter 100 54 22.2 - 

40 # - 0.6” Diameter 120 54 26.7 16.7 

40 # - 0.7” Diameter 140 54 31.1 16.7 

40 # - 0.6” Diameter 140 72 23.3 - 
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Figure 1 AASHTO Bulb-Tee 54 with 40 0.7-inch strands at 2” spacing 

 

 

 
 

 

Figure 2 Different span capacities for varying diameter of strand and section 
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1.5.2.2 AASHTO Bulb Tees and Nebraska University Sections 

 
 NU 1350(54”), NU 1800(72”), BT 54 and BT 72 were designed for three different 

concrete strengths at service, such as 10 ksi, 15 ksi and 28 ksi with their strength at 

release to be equal to 80 percent of the strength at service. The girders were designed 

with a girder spacing of 8 feet.  The NU sections could accommodate 58 strands in the 

bottom flange when compared to the BT sections which can only hold 40 numbers of 

strands in their bottom flange as shown in Figure 3. 

 

In this example two sections with the same depths were considered: the NU 1350 

(54”) which can accommodate 58 strands in the bottom flange having the same depth as 

BT 54 which can accommodate 40 strands in the bottom flange. Three different concrete 

strengths were considered such as 10 ksi, 15 ksi and 28 ksi.  

 

 

 

 

 

 
 

 

Figure 3 Nu 1350(54”) with 58 Nos. of strands at 2” spacing 
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When the concrete strength is 10 ksi, NU girders spanned up to 140 ft with 0.6 

inch strand and 135 ft with 0.7 inch strand. BT girders spanned up to 120 ft with 0.6 inch 

strand and 115 ft with 0.7 inch strand as shown in Figure 4. 

 
 When the concrete strength was increased from 10 ksi to 15 ksi, the span 

capacities of both the sections increased. NU girders spanned up to 165 ft with 0.7 inch 

strand and BT girders spanned up to 140 ft with 0.7 inch strand as shown in Figure 5. 

 

When the concrete strength was further increased to 28 ksi, the span capacities of 

both the sections remained the same compared to the span capacities at 15 ksi as shown 

in Figure 6. This shows that increasing the concrete strength beyond a certain limit had 

no significant effect on the span capacities for both the cross sections. This was due to the 

fact that the tensile stress limit in the top flange at transfer controlled. 

 

When sections with larger depth such as NU 1800 (72”) and BT 72 were 

considered for the analysis, it showed the same trend as the NU1350 (54”) and BT 54. 

The span capacity of NU 1800 (72”) with 0.7 inch strand increased by 8.5 % when the 

concrete strength was increased from 10 ksi to 15 ksi. There was a negligible increase in 

span when the concrete strength was increased from 15 ksi to 28 ksi. 

 

BT 54 sections had minimal effect from varying the concrete strength. The span 

capacities variations were trivial for both 0.6 inch and 0.7 inch strands as shown in Figure 

7, Figure 8 & Figure 9. 

 
As shown in  

 

 

Table 3, there is no increase in the span capacity as the strength of the concrete is 

increased for all the sections in case of the 0.6 inch diameter strands. In the case with 0.7 

inch strands there is a considerable increase in the span when the concrete strength is 

increased from 10 ksi to 28 ksi. This shows that using 0.7 inch strands helps in talking 

full advantage of high strength concrete. 

 

When BT sections were compared with NU sections, the impact of 0.7 inch 

strands was much higher on NU sections than BT sections. NU 1800 (72”) could reach a 

maximum of 190 ft whereas BT 72 could reach only 160 ft. But the maximum 

transportable length is 160 ft.  Thus, BT sections with 0.7 inch strand are more 

practicable than NU sections. 
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Figure 4 Section shape Vs. Strand Sizes (NU 1350 & BT 54) with f’c = 10 ksi 

 

  

 

 
 

 

Figure 5 Section shape Vs. Strand Sizes (NU 1350 & BT 54) with f’c = 15 ksi 
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Figure 6 Section shape Vs. Strand Sizes (NU 1350 & BT 54) with f’c = 28 ksi 

 

 

 

 
 

 

Figure 7 Section shape Vs. Strand Sizes (NU 1800 & BT 72) with f’c = 10 ksi 
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Figure 8 Section shape Vs. Strand Sizes (NU 1800 & BT 72) with f’c = 15 ksi 

 

 

 
 

 

Figure 9 Section shape Vs. Strand Sizes (NU 1800 & BT 72) with f’c = 28 ksi 
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1.5.3 Strand size Vs. Strand Strength 

 

1.5.3.1 AASHTO Bulb-Tees 

 
  The 0.7 inch (270 ksi) strand was compared with 0.62 inch (330 ksi) Ultra High Strength 

Strand (UHS). Both BT 54 and BT 72 were considered for the analysis. As shown in Figure 10, 0.7 

inch strand (270 ksi) had a greater span capacity than 0.62 inch (330 Ksi) in a BT 54 section. The 

same trend was seen with the BT 72 section as shown in Figure 11 and Figure 12.  

 

 

Table 3 shows the maximum spans with different strand sizes, sections and concrete 

strength.  

 

 

 

 

 
 

 

Figure 10 Strand size Vs. Strand Strength (BT 54) 
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Figure 11 Strand size Vs. Strand Strength (BT 72) 

 

 

 
 

 

Figure 12 Strand size Vs. Strand Strength (BT 54 & BT 72) 
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Table 3 Maximum Spans obtained with different strand sizes, sections and concrete 

strength 

 

Sections 
Strand 

Diameter 

Maximum Span, ft 

10 ksi 15 ksi 28 ksi 

BT 54 
0.6” 120 120 120 

0.7” 115 140 140 

NU1350 
0.6” 140 140 140 

0.7” 135 165 165 

BT72 
0.6” 140 140 140 

0.7” 155 160 160 

NU1800 
0.6” 160 160 165 

0.7” 175 190 190 

 

 

 

1.6 End Zone Reinforcement 

 

 Table 4 shows the depth of different sections and the maximum number of strands 

which could be accommodated in the bottom flange. The required amount of end zone 

reinforcement in each section is shown in Figure 13. It was designed based on AASHTO 

LRFD 2008 design specification. When AASHTO Type I section which has the same 

depth as that of NU 750 (29.5”) are compared, the amount of end zone  reinforcement 

provided is more in NU section than the AASHTO section. Which shows that the end 

zone reinforcement is distributed based on the amount of prestressing force. Since the NU 

750 can accommodate more strands than the AASHTO Type I section. Similarly when 

the grade and diameter of strands are increased for all the sections, it further increases the 

amount of vertical reinforcement to be provided at the end section of the girder. 

 

 The distributions of the splitting reinforcement in the end zone of the girder for 

the different diameters of strand are shown in Figure 14, Figure 15 & Figure 16. Three 

different details are compared such as AASHTO LRFD 2008 design specification, 

Nebraska University detailing (NU) and Tennessee department of transportation detailing. 

It could be seen that both AASHTO LRFD 2008 design specification and Tennessee 

department of transportation detailing were the same. In all these detailing the 

distribution of the splitting reinforcement is based on the overall height of the section.  

 

 

 

 

 

 



 

 

13 

 For the distance from the very end of the girder to H/8, the NU detailing follows 

the same detailing as AASHTO LRFD 2008 design specification. For the distance from 

H/8 to H/4 the NU detailing has a closer spacing than that of AASHTO LRFD 2008 

design specification. For the distance from H/4 to H/2 AASHTO LRFD 2008 design 

specification does not require any splitting reinforcement but NU detailing requires the 

same spacing provided in the zone H/8 to H/4. 

  

Since 0.7”, 270 ksi grade strands have the same tensioning force per strand as that 

of the 0.62”, 330 ksi grade strands, the splitting reinforcement details were the same in all 

the three details. 

 

1.7  Conclusion 

 

 Using 0.7 inch diameter strands improves span length in all sections; for states 

such as Tennessee using Bulb-Tee sections, 0.7 inch strand can efficiently utilize high 

strength concrete to increase the span length up to transportable limits. Using 0.7 inch 

strands in the structurally efficient NU cross section can increase spans to lengths that are 

yet to be able to be transported. 

 

 

 

 

 

Table 4 Sections with their depth and No. of strands 

 

Section 
Depth, 

inches 

No. of strands in the bottom 

flange 

AASHTO Type I 28.0 26 

AASHTO Type II 36.0 34 

AASHTO Type III 45.0 52 

AASHTO Type IV 54.0 66 

AASHTO Type V 63.0 78 

AASHTO BT-54 54.0 40 

AASHTO BT-63 63.0 44 

AASHTO BT-72 72.0 48 

NU 750 29.5 58 
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Figure 13  End zone reinforcement for sections with different strand 

 

No. of 
strand

20 30 50 66 78 38 38 38 58

Depth H, in. 28 36 45 54 63 54 63 72 29.5
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Type I
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BT-54

AASHTO 
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AASHTO 
BT-72

NU 750

0.6" - 270 ksi 6 9 15 19 23 11 11 11 17

0.62"- 330 ksi 7 11 18 23 28 14 14 14 21

0.7" - 270 ksi 8 12 20 26 30 15 15 15 23

0

5

10

15

20

25

30

35
N

u
m

b
e

r 
o

f 
#5

 b
ar

s 



 

 

15 

 
 

 

Figure 14 End zone reinforcement for different sections with 0.6” strand 

AASHTO 
LRFD 2008(0 

to H/8)

NU (0 to 
H/8)

TDOT (0 to 
H/8)

AASHTO 
LRFD 2008 ( 
H/8 to H/4)

NU (H/8 to 
H/4)

TDOT (H/8 
to H/4)

AASHTO 
LRFD 2008 ( 
H/4 to H/2)

NU (H/4 to 
H/2)

TDOT (H/4 
to H/2)

AASHTO Type I 1.00 1.00 1.00 1.10 2.30 1.10 0 2.30 0

AASHTO Type II 0.80 0.80 0.80 1.00 2.00 1.00 0 2.00 0

AASHTO Type III 0.60 0.60 0.60 0.70 1.50 0.70 0 1.50 0

AASHTO Type IV 0.60 0.60 0.60 0.70 1.40 0.70 0 1.40 0

AASHTO Type V 0.60 0.60 0.60 0.60 1.30 0.60 0 1.30 0

AASHTO BT-54 1.10 1.10 1.10 1.20 2.40 1.20 0 2.40 0

AASHTO BT-63 1.40 1.40 1.40 1.40 2.80 1.40 0 2.80 0

AASHTO BT-72 1.60 1.60 1.60 1.60 3.20 1.60 0 3.20 0

NU 750 0.20 0.20 0.20 0.40 0.80 0.40 0 0.80 0
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Figure 15 End zone reinforcement for different sections with 0.62” strand 

AASHTO 
LRFD 2008(0 

to H/8)

NU (0 to 
H/8)

TDOT (0 to 
H/8)

AASHTO 
LRFD 2008 ( 
H/8 to H/4)

NU (H/8 to 
H/4)

TDOT (H/8 
to H/4)

AASHTO 
LRFD 2008 ( 
H/4 to H/2)

NU (H/4 to 
H/2)

TDOT (H/4 
to H/2)

AASHTO Type I 0.80 0.80 0.80 1.00 2.00 1.00 0 2.00 0

AASHTO Type II 0.60 0.60 0.60 0.80 1.60 0.80 0 1.60 0

AASHTO Type III 0.50 0.50 0.50 0.60 1.20 0.60 0 1.20 0

AASHTO Type IV 0.50 0.50 0.50 0.50 1.10 0.50 0 1.10 0

AASHTO Type V 0.40 0.40 0.40 0.50 1.10 0.50 0 1.10 0

AASHTO BT-54 0.80 0.80 0.80 0.90 1.90 0.90 0 1.90 0

AASHTO BT-63 1.00 1.00 1.00 1.10 2.20 1.10 0 2.20 0

AASHTO BT-72 1.20 1.20 1.20 1.20 2.50 1.20 0 2.50 0

NU 750 0.20 0.20 0.20 0.30 0.70 0.30 0 0.70 0
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Figure 16 End zone reinforcement for different sections with 0.7” strand 

AASHTO 
LRFD 2008(0 

to H/8)

NU (0 to 
H/8)

TDOT (0 to 
H/8)

AASHTO 
LRFD 2008 ( 
H/8 to H/4)

NU (H/8 to 
H/4)

TDOT (H/8 
to H/4)

AASHTO 
LRFD 2008 ( 
H/4 to H/2)

NU (H/4 to 
H/2)

TDOT (H/4 
to H/2)

AASHTO Type I 0.60 0.60 0.60 0.80 1.70 0.80 0 1.70 0

AASHTO Type II 0.60 0.60 0.60 0.70 1.50 0.70 0 1.50 0

AASHTO Type III 0.40 0.40 0.40 0.50 1.10 0.50 0 1.10 0

AASHTO Type IV 0.40 0.40 0.40 0.50 1.00 0.50 0 1.00 0

AASHTO Type V 0.40 0.40 0.40 0.50 1.00 0.50 0 1.00 0

AASHTO BT-54 0.80 0.80 0.80 0.90 1.80 0.90 0 1.80 0

AASHTO BT-63 0.90 0.90 0.90 1.00 2.10 1.00 0 2.10 0

AASHTO BT-72 1.10 1.10 1.10 1.20 2.40 1.20 0 2.40 0

NU 750 0.20 0.20 0.20 0.30 0.60 0.30 0 0.60 0
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Definitions 

 

2.1.1 Transfer Length 

   

The distance from the end of a member over which the effective stress fse is fully 

transferred from the strand to the concrete is called transfer length. 

 

2.1.2 Flexural Bond length 

 

 Flexural bond length is the additional embedment length required to develop 

strand stress due to external load from the effective prestress fse to the stress fps at the 

nominal flexural strength of the member. 

 

2.1.3 Development Length 

 

 Development length is the length that is required to develop the strand stress, fps 

at the ultimate strength of the member under the application of the external loads. This 

length is equal to the sum of the transfer and flexural bond lengths. 

 

2.1.4 Embedment Length 

 

 Embedment length is the length that starts from the beginning of the bond and 

extends to the location of the critical section. The critical section is located at the section 

where the strand stress is maximum which occurs at the location of the maximum 

moment. To prevent bond failure, the embedment length should always be greater than 

the development length. 

 

The transfer length, flexural bond length and the development length are shown in 

Figure 17. 
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Figure 17 Variation of steel stress 

 

  

There are various factors affecting the transfer and development length. The lists 

of factors which are considered by different researchers are 

 

 Diameter of the strand 

 Surface condition of strand 

 Compressive strength of concrete at the time of release 

 Method of release 

 Amount of confining reinforcement 

 Level of prestressing 

 Strand spacing 

 Time-dependent effects 

 Concrete around the strand 

 Type of loading 

 Type of prestressing strand 
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2.2 Strand – Concrete bond 

 

2.2.1 Elements of bond 

 

 There are three distinct and different elements of bond which are, 

 

1. Hoyer  Effect 

2. Mechanical Interlocking 

3. Adhesion 

 

2.2.1.1 Hoyer Effect 

 

  The Hoyer effect is named after E. Hoyer who first investigated the mechanism, a 

consequence of the tensioning process of the strand. The Hoyer effect is the tendency of 

the prestressing strand to decrease in diameter by Poisson’s ratio as it is elongated in 

pretension. Then the concrete is cast around the strand. Once the concrete reaches its 

initial strength the strand is cut and the strand is unstressed at the extreme end of the 

member. Due to this the strand tends to expand laterally to regain its original position. 

Since it is enclosed in the concrete this lateral expansion is resisted, thus creating a 

normal force in the boundary between the steel and concrete. Thus, the stress varies from 

zero at the very end of the strand to a constant stress at a distance along the strand. This 

constant stress is known as the effective prestress fse. The varying degree of stress within 

the strand causes a variation in the strand diameter; the strand diameter at the member 

end is greater than the diameter of the strand further in the member. The variation of 

strand diameter creates a wedge effect. The concrete acts against this wedging effect, 

transferring the stress from the strand to the concrete. This mechanism is shown in Figure 

18. 

. 

 

 
 

 

Figure 18 Hoyer’s Effect (Russell and Burns, 1996) 
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2.2.1.2 Mechanical Interlocking 

 

 Mechanical interlock depends on the shape of the strand. When concrete hardens 

around the strand it takes the shape of the strand. This pattern provides a high resistance, 

thus increasing the amount of stress transferred to the concrete. This resistance is called 

mechanical interlocking. The strand is prevented from slipping as long as the strand does 

not twist. This effect is illustrated in Figure 19. 

 

2.2.1.3 Adhesion 

 

 Adhesion is one of the mechanisms which helps in the transfer of prestressing 

stress from the strand to the concrete. This is a chemical bond which occurs between the 

strand and the surrounding concrete. This mechanism as shown in Figure 20, contributes 

the least in developing bond stress in the concrete compared with Hoyer effect and 

mechanical interlocking. Once slip occurs, this chemical bond is lost. 

 

 

 
Figure 19 Mechanical Interlocking 
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Figure 20 Adhesion: Rigid – Brittle Behavior (Russell and Burns, 1996) 

 

2.3 Strand spacing 

 

Burdette and Deatherage (1994)
5
 conducted a research work initiated by the 

FHWA memorandum restricting the use of certain sizes of strand in prestressed concrete, 

girders and criteria were established for minimum strand spacing. In this study 20 full-

scale AASHTO Type I beams with various strand diameters were tested to failure. The 

transfer and development lengths of four different diameter of strand such as 0.5 in., 0.5 

in. (special), 9/16 in. and 0.6 in. were determined. Also, minimum strand spacing was 

investigated for 0.5 in. diameter strands. In addition to prestressing strands, mild steel 

shear and confinement reinforcement were placed in the girder ends. AASHTO Type I 

beams were used with a span of 31 ft. The initial prestress in all strands of the test beams 

was designed to be 203 Ksi.  

 

The test data illustrate that the average transfer lengths for the 0.5 in., 0.5 in. 

(special), and 9/16 in. strands were approximately proportional to the strand diameter, but 

this relationship does not hold for 0.6 in. strands. The 0.6 inch diameter strand had 

shorter transfer length when compared to the other three diameter strands; this may be 

due to the increase in mechanical bond between the strand and concrete.  

 

Based on the test results it was concluded that the use of 0.6 in. diameter strand 

should be accepted as strand practice and a center-to-center spacing of 1.75 in. should be 

allowed for 0.5 in. diameter strands. 

 

The equation for the Transfer length for 0.5 in., 0.5 in. (special), and 9/16 in. 

strand diameter was given as 

 

bsit dfL 3/    (2.1) 
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The equation for development length for all diameters of strands were given as 

 

                                bsepsbsid dffdfL 50.13/                (2.2) 

 

 

Where, 

 fsi = Stress in prestressed reinforcement at transfer (ksi) 

 fps = Stress in prestressed reinforcement at nominal strength (ksi) 

 fse = Effective stress in prestressed steel after losses (ksi) 

 db = Nominal diameter of the prestressed strand (in.) 

  

 It was recommended in the paper that future work should be done to develop an 

expression for transfer length of 0.6 in. diameter strand. The equation recommended for 

other sizes of strand was clearly conservative and may be used.  

 

The research work conducted by Thomas E. Cousins, J. Michael Stallings, and 

Michael B. Simmons., at Auburn University, (1994)
6 

have concluded after testing twelve 

specimens of T-shaped cross sections, six with 1.75-in spacing of 0.5-inch diameter 

strands and six with 2-in spacing of 0.5-in diameter strands, that decreasing the strand 

spacing in the pretensioned prestressed concrete members from 2 to 1.75 inch has no 

significant effect on the transfer length, development length, or nominal moment capacity. 

It does not result in splitting of members at transfer of prestressing force. 

 

Two concrete mixes, a normal strength mix design (5000 psi at transfer and 6000 

psi at service) and a high strength mix design (6000 psi at transfer and from 10000 to 

12000 psi at service) were used in this study, so that the effect of concrete strength on 

strand spacing could be investigated.  Thus it was found that an increase in the concrete 

strength from normal strength to high strength significantly reduced the transfer and the 

development lengths. 

 

In the study conducted by Russell and Burns (1996)
7
 at The University of Texas 

at Austin, AASHTO type girders and rectangular prisms were fabricated and tested for 

both transfer and development length. For all specimens with 0.5 inch diameter strands, a 

spacing of 2 inch was used which is the ACI minimum (four times the strand diameter) 

and for 0.6 inch diameter strands a spacing of 2 inch and 2.25 inches which is less than 

the ACI minimum spacing of 2.4 inches. The transfer lengths for both 0.5 inch and 0.6 

inch diameter strands were measured.  

 

AASHTO and ACI suggest the value of the transfer length and also recommend 

the assumption that the effective prestressing force varies from zero at the free end of the 

strand to the maximum over the transfer length. These suggestions are provided so that 

the designer can calculate the concrete contribution to the shear strength. One problem 

with this approach is that shear cracking has led to anchorage failure of the strands. 

Flexural tests demonstrate that when anchorage failure occurs, not only the concrete 

contribution in shear is lost, but the tension required from prestressing strand is also lost. 

Thus, transfer length is very important in accurately predicting strand development 



 

 

24 

failures.  In the ultimate limit state for highway girders, both the flexural capacity and 

shear capacity of pretensioned beams are affected by the transfer length.  

 

Their testing consistently demonstrated that if a crack propagated through or near 

the transfer zone, then the crack can be expected to generate general bond slip. Because 

either flexural cracking or shear cracking can occur in the transfer zone of a strand, it is 

important to predict and prevent both types of cracks within the transfer zone.  Therefore 

to prevent cracking in the transfer zone, a reliable transfer length is important to 

accurately predict cracking loads and location of cracking. 

 

In this paper transfer lengths were measured on a wide variety of research 

variables such as 

 

 Number of strands (1, 3, 4, 5, and 8) 

 Size of strand (0.5 inch and 0.6 inch) 

 Confining reinforcement (with or without) 

 Size and shape of the cross section 

 

Tests were conducted on 44 specimens to determine the transfer length. Of these 

specimens, 32 were constructed with concentric pre-prestressing in rectangular transfer 

length prisms and 12 specimens were built as scale model AASHTO type beams with 

four, five, or eight strands. 

 

The test results in this paper indicate that the transfer bond characteristics for 0.6 

inch strands are very similar to the bond behavior for 0.5 inch strands. The comparison of 

the transfer length data by strand size shows that 0.6 in. strands require longer transfer 

length than 0.5 in. strands. Furthermore, these data indicate that the relationship between 

transfer length may not vary linearly with strand diameter, db, but these data indicate that 

the expression, Lt = Kdb
α 

(α = 1.68), would be more accurate. However the authors do not 

suggest that these data alone provide sufficient evidence to recommend adoption of an 

exponential equation. Therefore, a rational and safe expression for transfer length is 

determined: 

2/bsit dfL
                                (2.3)

 

 

 The transfer length data collected from different cross section size illustrate that 

larger specimens with multiple strand tend to possess significantly shorter transfer length.  

 

 In order to investigate the possibility of using 0.6 inch strand with 2 inch spacing 

(ACI minimum spacing for 0.5 inch diameter strands), tests were performed by Cousins, 

Stallings, and Simmons (1994)
6
 to determine what effects strand spacing had on the 

transfer length. Tests showed that strands with 2.25 inch (40.9 inches) spacing had a 

longer transfer length than that of strands with 2 inch (44.2 inches) spacing. But the need 

for wider spacing of 0.6 inch strand was not demonstrated. Thus six specimens were 

fabricated, 5 inch wide and 13 inch deep with 5 strands (2 inch spacing) to check for 

splitting caused due to pretensioning release, because its larger size would cause larger 
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bursting stresses. It was found that no signs of splitting were detected. It was 

recommended that the 0.6 inch diameter strands had a similar profile of transfer length 

and strain profile as that of 0.5 inch diameter strands. It could be used with the same 

spacing of 2 inches as 0.5 diameter strands. 

 

 The test results in this paper demonstrate that confining reinforcement did not 

contribute significantly to prestress transfer; specimens containing confinement 

reinforcement possessed slightly longer transfer length than specimens without the 

confinement reinforcement. These results indicate that confining, or transverse, 

reinforcement is not activated until splitting cracks occur at prestress transfer. 

 

2.4 Transfer Length Research 

  

 There have been many studies conducted on the transfer length of  pretensioned 

members. Attempts have been made by several researchers to revise the transfer and 

development length equations. The Table 5 shows the proposed equations by different 

researchers. 

 

Table 5 Transfer Length of Prestressing Strands – Prediction 

 

 

Source 

 

Transfer Length Equations 

Martin and Scott                                (1976) bt dL 80  

Zia & Mostafa                                   (1977) 6.4'/5.1 bcisit dffL  

Cousins, Johnston and Zia                 (1990) 
citb

strandsecit

t
fUd

Af

B

fU
L

''

.

2

''
 

Russell & Burns                                 (1993) 2/bsit dfL  

Mitchell, Cook, Khan & Tham          (1993) 
ci

bsit
f

dfL
'

3
3/  

Buckner                                             (1994) b
si

bcsit d
f

dEfL .
3

/1250  

Deatherage, Burdette & Chew           (1994) bsit dfL 3/  

Lane                                                   (1998) 5'/4 bcptt dffL  
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2.5 Concrete Strength 

 

To investigate the maximum usable concrete strength in the application of bridge 

I-girders, Ma (2000)
15

 performed an analytical study.  In his study, the following 

assumptions were made: 

 

 Design was based on a typical interior girder which was simply supported. 

 Cross sectional shapes studied included AASHTO-PCI BTs and NUs. 

 Girder spacing was 8 ft and 16 ft. 

 Deck thickness was 7.5 in. for 8 ft girder spacing and 10 in. for 16 ft girder 

spacing. 

 Concrete deck was cast-in-place and acted compositely with the girder. 

 Concrete compressive strength of the deck was constant and equal to 4000 psi at 

28 days. 

 Live load consisted of HS-25 loading.  Superimposed composite dead load was 

40 psf.   

 Prestress losses were constant and equal to 10% of initial prestress at release and 

25% at service. 

 The following prestressing strand diameters were used: 0.6-in. diameter Grade 

270 ksi at 2-in. spacing and 0.7-in. diameter Grade 270 ksi at 2-in. spacing at 

midspan section. 

 

Take the example of a simple span with NU1100 I-girders.  The girder spacing 

was 8 ft.  The concrete strength of cast-in-place deck f’c, deck = 4000 psi with a depth of 

7.5 in.  Table 6 shows the impact of the 0.7-inch strand and girder concrete strength on 

the maximum span capacity of bridge I-girders.  When 0.7-inch strands at 2-inch spacing 

are used, the span capacity can be increased by 178%.  For the NU section shape, the 

bottom flange can accommodate a total of 54 strands, compared with 36 strands in the 

bottom flange of AASHTO-PCI BT shapes.  When 0.7-inch strands are used, however, 

the disadvantage of accommodating less number of strands in BT shapes can be avoided 

because the maximum shipping length of I-girders has an upper limit. 

 

Table 6 Impact of 0.7” strands and girder concrete strength 

 

Strands 

(No. – Type) 

Girder Concrete 

Strength 

(ksi) 

Maximum 

Span Capacity 

(ft) 

Span/Depth 

 

26 – 0.6” strands 6 85 20 

36 – 0.6” strands 8 100 24 

54 – 0.7” strands 16 150 36 
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2.6 End confinement reinforcement research 

 

  Marshall and Mattock
8
 in the early 1960s investigated the stresses which occur in 

the ends of pretensioned prestressed concrete girders at the time of transfer of prestress, 

which in turn result in the formation of horizontal cracks. A semi-empirical equation was 

recommended based on testing 14 specimens. The variables considered in the tests were 

size and the location of the prestressing strands and the magnitude of the prestressing 

force. The specimens had two basic cross sections (22.5 in and 25 in depth) and two sizes 

of vertical stirrup reinforcement. The area of reinforcement required for the splitting 

force, As is given by the following equation: 

 

                                         tss

t
l

h

f

T

f

S
A 021.0

)2/(
                                             (2.4)

 

 

Where, 

 T = Effective prestress force  

 fs = Allowable stress in the stirrups 

 h = Total girder depth  

 lt = Transfer length  

 

A transfer length of 50 times the strand diameter was recommended unless 

experimental evidence dictated otherwise.  This equation was justified experimentally 

only for values of (h/lt) ≤ 2, and for (h/lt) > 2 this equation becomes conservative and the 

degree of conservatism increases with the increase in the (h/lt) value.   

 

 It was also recommended that the amount of stirrup reinforcement be calculated 

using the equation should be distributed uniformly over a length equal to 1/5 of the girder 

depth, measured from the end face of the girder. For most efficient crack control the first 

stirrup is placed as close to the end face of the girder as possible. 

 

2.7 End Zone splitting Reinforcement 

 

Tuan, C.Y., Yehia, S.A., Jogpitaksseel, N., and Tadros, M.K. (2004)
12

 conducted 

a study to evaluate the applicability of various theories and methods for the design of end 

zone reinforcement. The analytical methods reviewed in this paper include finite element 

analysis, strut and tie modeling, and Gergely–Sozen equivalent beam method. 

Experiments were conducted to correlate between the various analytical and the 

experimental results. Based on the theoretical behavior and the experimental observation 

a general semi-empirical design was proposed.    

 

In the experimental program the authors considered two phases. In the first phase 

six NU I-girders and six inverted-tee I-girders were designed based on AASHTO LRFD 

specification, and in the second phase new end zone reinforcement was proposed based 

on the observations made with the data in the first phase. For example, the reinforcement 

located within the end h/8 of the member experienced significant stress. In the second 
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phase four members of NU1600, eight numbers of NU1100 and two numbers of Inverted 

Tee (IT) 400 were designed based on the new end zone reinforcement. 

 

New end zone reinforcement for the splitting force was proposed as follows; 

provide reinforcement equal to 4 percent of the total prestressing force and a uniform 

stress of 20 ksi. To allow for this high average stress to be used, at least 50% of that 

reinforcement should be placed at a distance h/8 from the end. The remainder should be 

placed between h/8 to h/2 from the end. Beyond h/2, splitting reinforcement should not 

be needed, and shear reinforcement, if needed, should be used. 

 

2.7.1 Detailing proposed by University of Nebraska-Lincoln  

 

 The full-scale testing conducted at the University of Nebraska-Lincoln provided 

the following end zone reinforcement as shown in the Table 7 as a part of their ongoing 

NCHRP project (Evaluation and Repair Procedure for Precast/prestressed Concrete 

Girders with Longitudinal Cracking in the Web). In the AASHTO Type III girders were 

used in their testing program, neither girder appeared to have experienced visible end 

zone cracking. The research team suggested that the lack of end zone cracking was due to 

the limited amount of prestressing (Thirty 0.5 inch diameter strands stressed to 33.8 kips), 

the presence of end zone reinforcement, and the size and shape of the girders. 

 

The proposed procedure states that the end zone reinforcement should be 

designed to resist 4 percent of the prestressing force at release with a uniform stress of 20 

ksi., and 50 percent of this reinforcement should be placed h/8 (one-eighth of the depth of 

the girder) from the end of the beam. The remainder should be placed between h/8 and 

h/2 from the end. 

 

 According to the proposed procedure, the remainder of the end reinforcement that 

is provided between h/8 and h/2 from the end is not in addition to the vertical shear 

reinforcement. In this particular distance, i.e. between h/8 and h/2 from the end, the 

design engineer should compare the vertical shear reinforcement that is required through 

this distance with the end zone reinforcement and use whichever is greater. 
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Table 7 Detailing proposed by University of Nebraska-Lincoln 

 

Tennessee Specimens  

(AASHTO Type III ) 
End Zone Reinforcement Detailing 

TN1(left end) 

AASHTO LRFD 2007 

Splitting Force = 4% of Prestressing Force 

Allowable steel stress = 20 ksi 

3 pairs of # 6 bars at 3” spacing placed 

within h/4 distance from the end of the 

girder 

TN2(Left end) 

Splitting Force = 4% of Prestressing Force 

Allowable steel stress = 20 ksi 

3 horizontal #5 bars projected 5’ into the 

web. 

6 pairs of #6 bars spaced at 3in c/c starting 

at 3” from the end of the girder. 

TN1 & TN2 (Right end) 

Splitting Force = 4% of Prestressing Force 

Allowable steel stress = 20 ksi 

2% of the splitting force placed within h/8 

of the distance from the end of the girder 

Remaining 2% placed from h/8 to 3h/8 of 

the distance from the girder 

 

 

2.8 Draping/Shielding of strands at the end of the girder 

 

The research Noppakunwijai, P., Ma, Z., Yehia, S.A., Jogpitaksseel, N., and 

Tadros, M.K. (2002)
16

  showed that the shear capacity of a pretensioned concrete simple 

span I-girder could be significantly increased by extending and bending strands that 

already exist in the bottom flange into the end diaphragms. In addition it could be a cost 

effective method of controlling creep and shrinkage effects in bridges. In this paper, the 

pullout capacity of 0.5 in. and 0.6 in. diameter strands were evaluated, and the authors 

gave recommendations for determining the required number and length of strands to be 

bent and embedded into the diaphragms. The number of strands and the bent length of the 

strand are determined by the equations developed based on the test results. 

 

                                     (2.5) 

 

 

fps = developed strand stress, ksi 

Lv = Vertical embedment length of non-prestressing bent strand, in. 

fpu = specified tensile strength of prestressing tendons 

db = Nominal diameter of strand, in. 

 

 

 

0.017 / 0.8ps pu v b puf f L d f
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                                          (2.6) 

 

 

T = Tension force in longitudinal reinforcement, kips 

Ф = Capacity reduction factor for shear 

Vu = Factored shear force at critical section, kips 

Vs = Shear resistance provided by shear reinforcement at given section, kips 

Vu = Components of effective prestressing force in the direction of applied shear,        

kips 

Ө = Angle of inclination of diagonal compressive stress. 

 

                                                  (2.7) 

 

 

n = Number of bent strands 

Aps1 = Cross-sectional area of one strand, sq. in. 

fps = Development stress in strands, ksi 

 

 A minimum embedment length of 16 in. was recommended for crack control due 

to time dependent restraint positive moments at piers. 

 

2.9 Current code specifications 

 

2.9.1 Spacing of strands 

 

The requirements for the spacing of strands and transfer and development length 

in a prestressed girder by both ACI 318-08 and AASHTO LRFD 2007 are given in the 

Table 8 and Table 9. 

 

Table 8 Strand Spacing 

 

Codes Strand Spacing, in 

ACI 318-2008 

Not less than 4db, Minimum  strand spacing 

2 inch for 0.5 inch 

2.4 inch for 0.6 inch 

 

AASHTO LRFD 

2007 

Not less than 1.33 times the maximum size of the 

aggregate nor less than the center-to-center 

distance specified as follows 

1.75 inch for 0.5 inch  

2 inch for 0.6 inch 
 

 

 

0.5 cotu
s p

V
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1ps psT nA f



 

 

31 

 

2.9.2 Transfer and Development Length 

 

Table 9 Transfer and Development Length 

 

 Transfer length 

Equation 

Development Length  

Equation 

ACI 318-

2008 

 

bset dfL 3000/

 
 

 

bsepsbsed dffdfL 1000/)(3000/

 
 

AASHTO 

LRFD 2008 

 

bt dL 60  

 

 

bpspsd dffkL )3/2(  

 

 

2.9.3 Pretensioned anchorage zone reinforcement 

 

The provision in article 9.22.1 of the AASHTO Standard specification appears to 

be a simplified form of the recommendations of Marshall and Mattock. The following 

statement regarding the end reinforcement requirements for pretensioned concrete girders 

first appeared in 1961 AASHTO interim specification: 

 

“In pretensioned beams, vertical stirrups acting at a unit stress of 20,000 

psi to resist at least 4 percent of the total prestressing force shall be 

placed within the distance of d/4 of the end of the beam, the end stirrup to 

be as close to the end of the beam as practicable”  

 

This provision is nearly identical to Marshall and Mattock’s recommendation if 

h/lt is taken as a constant of 2. For 0.5 in. diameter strands, this ratio represented a girder 

depth of 50 in. at the time of their introductions in the 1960’s the provisions 

conservatively covered most of the girder sizes used at the time, and the constant ratio of 

2 was believed to be conservative. Article 9.22.1 in the AASHTO standard specification 

remains unchanged to this day. Article 5.10.10.1 in the AASHTO LRFD Specification 

contains essentially the same provisions as those in the AASHTO Standard Specifications 

except that the reinforcement is placed within a distance equal to 25 percent of the 

member total depth (h), rather than 25% of the effective depth (d)
12

. 
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5.10.10.1 Factored Bursting Resistance 

 

 The bursting resistance of pretensioned anchorage zone provided 

by vertical reinforcement in the ends of pretensioned beams at the service 

limit state shall be taken as: 

 

Pr = fs As 

 

Where: 

 

fs = stress in steel not exceeding 20 ksi 

   As = total area of vertical reinforcement located within the distance 

h/4 from the end of the beam (in.
2
) 

          h = overall depth of precast member (in.) 

 

 The resistance shall not be less than 4 percent of the prestressing 

force at transfer. 

 

          The end vertical reinforcement shall be as close to the end of the 

beam as practicable. 

 

5.10.10.2 Confinement Reinforcement 

 

   For the distance of 1.5d from the end of the beams 

other than box beams, reinforcement shall be placed to confine the 

prestressing steel in the bottom flange. The reinforcement shall not be less 

than No. 3 deformed bars, with spacing not exceeding 6.0 in. and shaped 

to enclose the strands. 

 

 For box beams, transverse reinforcement shall be provided and 

anchored by extending the leg of stirrup into the web of the girder. 
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CHAPTER 3 

FINITE ELEMENT ANALYSIS 

 
3.1 Introduction 

 

A finite element analysis was carried out in ABAQUS CAE to evaluate the effects 

of 0.7 inch strands at 2 inch spacing and to compare it with 0.6 inch strands with the same 

2 inch of spacing.  The maximum principal stress in the concrete along the transfer length 

of the girder and the axial stress at selected sections of the girder end zone were obtained 

for the applied prestressing force. 

 

 A 3D model of the AASHTO Type I beam was considered for the analysis. Two 

girders were modeled, one with 0.7 inch and another with 0.6 inch strands. Prestressing 

force was the only external force considered for the analysis, and was introduced by 

applying an initial compressive stress to the tendon elements.  

 

 The modeling process consists of various stages in ABAQUS CAE such as: 

 

1. Geometric Modeling 

2. Material Modeling 

3. Defining Section 

4. Loading & Boundary Condition 

5. Meshing 

6. Analysis 

7. Visualization & Results 

 

3.2 Geometric modeling 

 

 There are several steps in the process of defining geometry. 

 

3.2.1 Part Definition 

 

The Part module is used to create each part of a structure, and the Assembly 

module is used to assemble each instance of the parts. Parts of different shape features 

can be created such as solid, shell, wire, cuts and blends. The I-girder was created using 

the solid part in three dimension as shown in Figure 21 and the prestressing strands were 

created using the wire part in two dimension. The cross section of the I-girder was first 

drawn in two dimensions and then extruded along its length to three dimensions. 
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Figure 21  3D model of the AASHTO Type I girder in ABAQUS CAE 

 

3.3 Material Properties 

 

 A linear material model was assumed for both the tendon and the concrete.  The 

Poisson’s ratio of the tendon was 0.27 and the modulus of elasticity was 28500 ksi.  The 

Poisson’s ratio of the concrete was 0.18.  At release the concrete strength was 8000 psi 

and the modulus of elasticity was calculated using the equation, 

 

                                               Ec = 33,000 wc
1.5

√f’c                                                       (3.1) 

 

Where,  

wc = unit weight of concrete (kcf) 

 

3.4 Loading 

 

 Prestressing force was applied as a stress using the technique called the “Initial 

Condition”.  Initial conditions are specified for particular nodes or elements, as 

appropriate. The initial conditions can be set in the keywords editor or in some cases 

using a subroutine. In this analysis the stresses are applied using the keywords editor.  An 

effective stress of 182 ksi was applied as the initial stress to the truss elements 

(tendon).The effective stress was obtained after considering the initial loss due to the 

elastic shortening of the beam.   The time dependent losses such as creep and shrinkage 

were not considered since the stress at transfer of the prestressing force was only 

considered.  This initial stress was applied to the elements of the tendon within the 

transfer length of the girder.  The value of the effective stress was varied linearly from 0 

ksi at the end face of the girder to 182 ksi at the transfer point of the girder. 

 

3.5 Boundary condition 

 

 The boundary condition was assumed as pinned at one end and rollers at the other 

end resembling a simply supported beam.  The whole model was restrained along the 

lateral direction of the girder. 
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3.6 Constraint between tendon and concrete 

 

 The contact between the concrete and the tendons were applied using a technique 

called the “embedded element technique”.  The embedded element technique is used to 

specify an element or a group of elements that lie embedded in a group of host elements 

whose response will be used to constrain the translational degree of freedom of the 

embedded nodes (i.e., nodes of the embedded elements).  All the host elements can have 

only translational degrees of freedom, and the number of translational degrees of freedom 

at a node on the embedded element must be identical to the number of translational 

degrees of freedom at a node on the host element.  ABAQUS searches for the geometric 

relationship between nodes of the embedded elements (Tendons) and the host elements 

(Concrete).  If a node of an embedded element lies within the host element, the 

translational degree of freedom at the node is eliminated and the nodes become an 

embedded node.  This model used a set of truss elements (tendon) that were embedded in 

a set of solid elements (concrete) [ABAQUS/Standard User’s manual (Version 6.7-5)]. 

 

3.7 Meshing 

 

The girder concrete was meshed with 20-noded quadratic brick elements and the 

tendons were modeled with 3-node quadratic 3D truss elements as shown in Figure 22 & 

Figure 23 

 
 

   

Figure 22  20-noded quadratic brick element with the integration points 

 
Figure 23  3-node quadratic 3D truss elements [ABAQUS/Standard User’s manual  

(Version 6.7-5)] 
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3.8 Results and Discussion 

 

 Two AASHTO Type I girders were designed, one with 0.6 inch diameter strand 

and the other one with 0.7 inch diameter strand, with the same overall span capacity of 56 

feet.  The maximum principal and axial stresses in the concrete of the two 3D models are 

discussed in detail.   

 

 The deflection due to prestressing force at transfer was calculated based on the 

modulus of elasticity of concrete and the moment of inertia of the non-composite precast 

beam.  A deflection of 2.42” (↑) and 2.32” (↑) was calculated for the girder with the 0.7” 

diameter strands and 0.6” diameter strands respectively.  The maximum deflection values 

obtained from the FE model were 2.091” (↑) and 2.103” (↑) for the girder with the 0.7” 

diameter strands and 0.6” diameter strands respectively.  The deflection due to the self 

weight of the beam was 0.515” (↓).  Thus the expected camber values are 1.905” (↑) and 

1.805” (↑) for the girder with 0.7” diameter strands and 0.6” diameter strands respectively. 

 

As shown in the Table 10, the girder with the 0.7 inch strand reaches a maximum 

tensile stress of 1.74 ksi. The Figure 24 shows the maximum tensile stress occurs in the 

number 2 strand at a distance of 2 inches from the end face of the girder.   A tensile stress 

of 1.43 ksi is reached at the transition zone between the bottom flange and the web, 

which results in a high probability of cracking. 

  

The girder with the 0.6 inch diameter strand reaches a maximum tensile stress of 

1.53 ksi as shown in Table 10. The Figure 25 shows the maximum tensile stress occurs in 

the number 7 strand at a distance of 2 inches from the end face of the girder.  A tensile 

stress of  0.35 ksi is reached at the transition zone between the bottom flange and the web, 

which is less than the maximum tensile strength limit of concrete as specified in 

AASHTO LRFD (5.9.4.1.2), 0.68 ksi ( 0.24√f’ci ), which has  the less probability of 

cracking.  

  

The maximum principal stress contours at the end sections of the girder for 0.7 

inch and 0.6 inch strands are shown in the Figure 26 & Figure 27 respectively.  The same 

stress contoured along the central vertical plane for 0.7 inch and 0.6 inch strands are 

shown in Figure 28 & Figure 29 respectively.  These figures show the cracking potential 

in the end zone of the girder. 
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Table 10 Values of maximum principal stress for the two diameters of strands 

 

 Maximum Principal Stress, ksi 

0.7’’ strands 

 

0.6’’ strands 

Maximum Value at a section 1.74
T
 1.53

T
 

Value at the transition  zone 

(Bottom Flange and Web) 

1.43
T
 0.35

T
 < 0.68

T
 

     T = Tensile Stress 

 

 
 

Figure 24 Maximum principal stress along the length of the girder from the end face 

at different locations of 0.7 in. strand 

 

 
 

Figure 25  Maximum principal stress along the length of the girder from the end 

face at different locations of 0.6 in. strand 
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Figure 26 Maximum principal stress for the end zone of a girder with 0.7 in. strand. 

 

 

 
 

Figure 27 Maximum principal stress for the end zone of a girder with 0.6 in. 

strand. 
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Figure 28 Maximum principal stress distribution near the end zone with 0.7 in. 

strand. 

 

 

 

 
 

 

Figure 29 Maximum principal stress distribution near the end zone with 0.6 in. 

strand. 
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The axial stress variation along the depth of the girder at the selected sections 

shown in Figure 30 for 0.7 and 0.6 inch strands are shown in Figure 31 and Figure 32 

respectively.  The prestress force is transferred to the concrete and the axial stress 

variation becomes linear from the end face of the girder to the transfer points, which are 

32 inches for 0.6 inch strands and 42 inches for 0.7 inch strands.  The transfer point is 

calculated by the equation in AASHTO LRFD 2008. 

 

 As shown in Table 11, an axial stress of 1.09 ksi (Tension) is obtained in the 

girder with 0.7 inch diameter strands were as a stress of 0.43 Ksi (Tension) is obtained in 

the girder with 0.6 inch diameter strands.  Thus the girder with 0.7 inch strand exceeds 

the maximum concrete tensile strength limit of 0.68 ksi. 

 

At the transfer length, the girder with 0.7 inch diameter strands reached a 

compressive stress of 3.90 ksi at the bottom fiber and a tensile stress of 0.24 ksi at the top 

fiber which is below the maximum tensile strength limit of concrete.  The girder with 0.6 

inch diameter strand reached a compressive stress of 3.60 ksi at the bottom fiber and a 

tensile stress of 0.17 ksi at the top fiber which is also within the maximum tensile 

strength limit of concrete. 

 

The axial stress contoured along the central vertical plane for 0.7 inch and 0.6 

inch strands are shown in Figure 33 & Figure 34 respectively.  It can be seen how the 

effective stress is reached from the end face to the transfer point of the girder. 

 

 

 

 

Table 11 Values maximum axial stress for the two diameters of strands at different 

sections of the girder at the end zone 

 

 

Distance from the End 

Face of Girder, inch 

Maximum Axial Stress, Ksi 

0.7’’ strands 

(Top Fiber /Bottom fiber) 
0.6’’ strands 

(Top Fiber /Bottom fiber) 

 

X= 0 

 

0.07
T
/1.09

T
 

 

0.027
T
/0.43

T
 

Transfer Length 

(X=42’’ for 0.7’’ strands) 

(X=32’’ for 0.6’’ strands) 

 

0.24
T
/3.40

C
 

 

0.17
T
/3.61

C
 

T = Tensile Stress, C= Compressive Stress 
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Figure 30  Finite element model of a prestressed concrete I-girder 
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Figure 31  Axial stress distribution at different sections at the end zone with 0.7 in. 

strand. 
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Figure 32  Axial stress distribution at different sections at the end zone with 0.6 in. 

strand. 
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Figure 33  Axial stress distribution in the direction parallel to the direction of the 0.7 

in. strand. 

 

 

 

 
 

Figure 34  Axial stress distribution in the direction parallel to the direction of the 0.6 

in. strand. 

  



 

 

45 

CHAPTER 4 

STRUT AND TIE MODELLING 

4.1 Introduction  

 
Strut-and-Tie model of a structure is an idealized hypothesis truss that fits into the 

envelope of a structure and transmits forces from loading points to supports. The shape 

and geometry of the truss provide a visual representation of the flow of forces in the 

structure. Strut-and-Tie models are particularly useful in regions of the structure where 

stresses cannot be computed based on elastic bending theory
7,8,9

.  In prestressed concrete 

girders the stresses acts non-linear in the anchorage zone. Thus using the strut and tie 

modeling these non-linear stresses can be determined and reinforcements are provided 

accordingly. In these members the prestressed force is considered as external load acting 

on the member. 

 

 The trusses in a strut and tie model consist of purely tension members (tie) and 

compression members (strut). The joints in the truss are pin joined which are defined as 

nodal zones. The two main criteria considered in a strut-and-Tie model are the strength of 

the elements and equilibrium of forces. Both ACI 318
10

 and AASHTO LRFD Bridge 

Design Specifications
6
 give provisions for the use of Strut-and-Tie modeling as a general 

design approach. 

 

4.2 Assumptions 

 

 The basic assumptions used in the strut and tie modeling are 

 

 Equilibrium of forces. 

 External forces are applied at nodes. 

 Forces in the strut and tie are uniaxial. 

 Prestress force is considered as an external force. 

 Struts must not cross or overlap each other. 

 The angle between a strut and tie should not be less than 25
◦
. 

 Ties are permitted to cross struts or other ties. 
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4.3 Vertical splitting resistance reinforcement  

 

 Web splitting is developed at the end of the member due to the high prestressing 

force. This force is distributed in this region in a non-linear manner. This region of non- 

linear behavior where stresses cannot be computed based on beam theory is referred to as 

the D-region or disturbed zone. ACI defines a D-region as the portion of the member 

within a distance equal to the member height (h) from the force discontinuity or the 

geometric discontinuity. The bending theory and traditional design approach for shear 

and end zone reinforcement does not apply to D-region, because a major portion of the 

load is transferred directly to the supports by compressive concrete struts. Thus D-regions 

where shear and torsional forces can be controlling are more appropriately modeled by 

hypothetical trusses called the Strut-and-Tie models.  

 

 The stress distribution along the section at the boundary of the D-region caused 

due to the prestressing force and the self weight of the girder at transfer of prestressing 

force is determined based on the elastic analysis. The locations of the stress resultants are 

determined considering the triangular stress distribution and the girder cross section. The 

element forces and the stress distribution along the cross section are shown in Table 12 

and Figure 35. The uniform self weight of the girder is resolved into equivalent 

concentrated loads applied at the joints of the truss in the strut and tie model. The stress 

diagram obtained using the bending theory is triangle with tensile stress at the top fiber 

and compressive stress in the bottom fiber of the girder. The equivalent tensile and 

compressive forces are determined based on the stress distribution and cross section of 

the girder, where Pt = Pc. The locations of both the compression and tension members in 

the D-region are determined, thus forming the truss. These members are analyzed for 

their respective forces using the method of joints. The required amount of reinforcement 

is provided based on the analyzed member forces. 

 

4.4 Confinement reinforcement 

 
 The confinement reinforcement help in controlling the splitting cracks at the end 

section of the girder. A strut and tie model is developed in the transfer length portion of 

the girder in order to detail the splitting force due to the 12 prestressed straight strands in 

the bottom flange. The transfer length is assumed to be 42 inches (60db). The width of the 

model is taken as 3.5 inch based on the available width in both vertical and the horizontal 

directions in the bottom flange. The initial prestressing force is gradually introduced at 

different points in the truss model assuming a linear distribution along the transfer length 

as shown in Figure 36.  Thus the required amount of splitting reinforcement is provided 

based on the tie forces determined after the analysis of the truss model.  
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Table 12 Element forces for Strut-and-Tie model in Figure 35 

 

Member Type Force, kips 

T1 Vertical Tie 106 

T2 Horizontal Tie 157 

S1 Inclined Strut 653 

S2 Inclined Strut 189 

S3 Vertical Strut 113 

 

 
Figure 35 Strut-and-Tie for web splitting in the pretensioned girder 

 

 

 

 

 
 

 

Figure 36  Strut-and-Tie model for the splitting force in the bottom flange  
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4.5 Shear Design Based on Strut-and-Tie Model 

 

4.5.1 Vertical tie reinforcement 

 

The shear reinforcement is provided based on the resultant force (due to the 

prestressing force as well as the factored dead and live load) in the vertical tie members 

obtained from the Strut-and-Tie model is as shown in Figure 37.  The width of the 

horizontal tie in the bottom is 7 inch based on the centriod of the strands and 3.5 inch on 

top based on the horizontal reinforcement. The width of the bearing plate considered in 

the model is 12 inch. Using U-stirrups made with No. 4 bars, the total area of the vertical 

reinforcement for each tie is 0.4 in
2
. Thus the spacing is determined based on the required 

area of steel obtained based on the equation below and the total design zone for a single 

vertical tie. As per the specifications of  ACI code (section 11.5.5.1), a minimum spacing 

(s ≤ 0.75h ≤ 24 in) is provided for the vertical ties T6, T7 and T8, which is 20 inches. The 

values of the vertical tie forces are given in Table 13. 

 

                                                                                                                     (4.1) 

 

 
Figure 37 Truss Model for one half of the girder using Strut-and-Tie model 

 

 

 

Table 13 Vertical tie forces for the Strut-and-Tie model in Figure 35 

 

Vertical 

Tie 

Force, 

kips 

Design Zone 

Length, inches 

Ast , in
2
 Spacing,  

inches 

T1 106.13 19.5 2.36 3 

T2 99.68 37 2.21 6 

T3 81.69 49 1.81 10 

T4 63.91 49 1.42 10 

T5 46.12 49 1.02 12 

T6 28.30 49 0.63 20 

T7 11.54 47.5 0.26 20 

T8 3.06 46 0.068 20 

 

 

 

 

22.75''

58° 42° 25°P

R

F1 F2 F3 F4 F5 F6 F7 F8

CL
14.00'' 25.00'' 49.00'' 49.00'' 49.00'' 49.00'' 49.00'' 46.00''
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4.5.2 Check for the capacity of inclined strut 

 

 The nominal compressive strength of a strut is determined using the effective 

compressive strength given by Eq. A-2 of the ACI-318(08). 

 

                                                         Fns = fce .Acs                                                                         (4.2) 

 

 The effective compressive strength, fce is given by Eq. A-3 of the ACI-318(08), 

which is taken as smaller of the concrete strength in the strut and the nodal zone. 

 

                                                           fce = 0.85 βs  fc’                                                (4.3) 

  

The strength reduction factor, βs for the node (C-C-T) is given as 0.8 and for the 

strut based on ACI 318 section A.3.2.1 is 0.6 which is considered since it is less than the 

factor for the node. The concrete strength of the girder at service is 12 ksi. Therefore the 

effective concrete strength for the inclined strut is 

 

                                                           fce = 0.85 βs  fc’                                                    (4.4) 

 

fce = 0.85 x 0.6 x 12 = 6.12 ksi 

 

 

The width of the strut is calculated in order to determine the cross section area of 

the strut.  

 

                                           (4.5) 

 

 Where Wt is the height of the horizontal tie which is 7 inch in the bottom flange 

and Wb is the bearing plate width which is 12 inch. Thus width of the strut S1 at the 

bottom as shown in Figure 38 is, 

 

Ws1b = 7 cos 58 + 12 sin 58 = 13.89” 

 

In order to determine the width of strut S1 at the top, the width of the vertical tie 

T1 is required and it is determined based on section RA.4.2 of the ACI code. Thus 

maximum tie width can be taken as the width corresponding to the width in a hydrostatic 

nodal zone, calculated as, 

                                          (4.6) 

 

 

 

Ws1t = 3.5 cos 39.55 + 2.89 sin 39.55 = 4.54” 
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Thus the capacity of the strut S1 is calculated at the section with the smallest 

width, which is at the top of the strut and is given as 

 

 
 

The capacity of the strut (250.1 kips) is greater than the force in the strut (143.67 

kips). Thus the strength of the strut is adequate. The strut forces for the Strut-and Tie 

model shown in Figure 38 are shown in Table 14. 

 

 

  

 

Figure 38 Strut-and-Tie model for the end region with horizontal strand pattern 

 

 

 

Table 14 Strut forces for the truss in Figure 38. 

 

Inclined 

Strut 

Force, Kips 

S1 143.67 

S2 166.80 

S3 235.91 

S4 194.92 

S5 153.17 

S6 111.49 

S7 69.48 

S8 32.61 
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4.5.3 Check for bearing capacity 

 

 The bearing stress at the support location of the girder is given as 

 

 

 

The bearing strength limit based on ACI code for a C-C-T node is given as 

 

 
  

Thus the node at the support has adequate bearing capacity. 
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CHAPTER 5 

MATERIALS AND TESTING 

5.1 Introduction 

  

 This chapter gives the details of two specimens which were fabricated in this 

experimental investigation with two different types of strands.  It includes the physical 

properties of both 0.7 in. and 0.62 in. strands used in this experimental investigation. It 

also includes the strength and mix of the high strength concrete used for the specimens.   

 

5.2 Prestressing strands 

 

Two different types of prestressing strand were used in this experimental 

investigation: 0.62 inch diameter (330 ksi) and 0.7 inch diameter (270 ksi). The 0.7 inch 

diameter strands were provided by MMI Strand Co. and 0.62 inch diameter strands were 

provided by Sumiden Wire Products Corporation. These strands were manufactured to 

meet ASTM A-416-05 specifications. The surface conditions of both types of strand were 

similar and were without any rust. 

 

5.2.1 0.7 in. diameter strand 

  

  The strands were uncoated seven wire low- relaxation strands. All strands were 

grade 270 ksi. The physical properties of the strand provided in Table 15 are as reported 

by the strand manufacturer. Figure 39 shows a coil of 0.7 inch strand as provided by the 

manufacturer. They were wound similar to 0.5 inch and 0.6 inch diameter strands. 

 

 

 

Table 15 Properties of 0.7 inch diameter, 270 grade strand 

  

Grade 270 ksi 

Nominal diameter 0.7” 

Diameter tolerance +0.026”, -0.006” 

Nominal cross sectional area 0.294 in
2
 

Elastic modulus 28800 ksi 

Minimum breaking strength 79400 lbs. 

Minimum load at 1% extension 71500 lbs. 

Minimum ultimate elongation in 24” 

gauge length 
3.5% 

 

 

 

 

 

 

 



 

 

53 

 

 
 

 

Figure 39  0.7 inch, seven wire low-relaxation strands 

 

 

5.2.2 0.62 in. diameter strand 

 

 The 0.62 inch diameter strands are made of high strength steel (330 Grade), 

uncoated, low-relaxation strand. The physical properties of the strand provided in Table 

16 are as reported by the strand manufacturer. 

 

 Tension test was conducted on samples of strand in the structures lab at the 

University of Tennessee, Knoxville. The test did not show the values provided by the 

manufacturer, since in all the strand samples one of the seven wires failed at the 

anchorage location, where the strands were clamped by the jaws of the chuck as shown in 

Figure 40. This might be due to the stress concentration at the anchor points of the strand. 

The anchors used were similar to those used for post tensioning. The strands did not take 

any further load after the wire failed.  
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Table 16 Properties of 0.62 inch diameter, 330 grade strand 

 

Grade 330 ksi 

Nominal diameter 0.62” 

Nominal cross sectional area 0.2227 in
2
 

Elastic modulus 28500 ksi 

Breaking strength 76418 lbs. 

Yield point 72576 lbs. 

Minimum ultimate elongation  5.2% 

 

 

 

 

 
 

Figure 40 Failure of the wire in the tension test 
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5.3 Concrete  

 

High strength concrete was used for both the girders with the two different strand 

diameters. The prestressed girders were designed for a concrete strength of 10 ksi at 

transfer and 12 ksi at service. About 39 cylinders were cast for each specimen to check 

the strength at transfer, 1 day, 3 days, 7 days, 14 days, 28 days and 58 days from 

detension and also to check the concrete strength to find the long term prestress losses, as 

shown in Figure 41. 

 

5.3.1 Mix design 

  

The concrete for the two specimens were mixed at the batching plant in Ross 

Prestress plant at Bristol, TN. The following mix design as listed in Table 17 was used 

for both girders. The slump of the concrete was 7 inches and the temperature was 75 ° F 

at the time of pour. 

 

 

 
 

Figure 41 Concrete cylinders 

 

 

Table 17 High strength concrete mix design 
 

Materials Quantity 

Cement Type I 800 lbs. 

Coarse aggregate (Lime Stone) 8P , ½” 1814 lbs 

Fine aggregate (Sand) 1390 lbs 

Silica fume 56 lbs 

Water 28 Gallons 

HRWR 125 oz 

Water reducer 25 oz 

w/c 0.292 
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5.3.2 Method of curing 

 

 Two methods of curing were done for the girders. The girder with 0.7 inch strand 

was cured using water as shown in the Figure 42. And the girder with 0.62 inch diameter 

strand was cured with steam. In order to obtain concrete strength of 10 ksi for the transfer 

of prestressing force as soon as possible the second specimen was steam cured. 

 

 

  

 
 

Figure 42 Water curing of girder with 0.7 inch strand 
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5.3.3 Concrete strength 

 

 The concrete strength was tested every time before the concrete surface strain 

reading was taken on both the girders. The concrete cylinder test were performed at 

transfer of prestress force and 24 hrs, 3 days, 7 days, 14 days, 28 days  from transfer. 

These tests were performed on 4x8 inch cylinders at Ross prestress plant. The test results 

of the cylinders are shown in Table 18. The typical failure of a cylinder in compression is 

shown in Figure 43.  

 

Table 18 Average concrete strength at different days 

 

Test Days 
Cylinder Strength, psi 

Specimen 1 (0.7”) Specimen 2 (0.62”) 

24 hrs from concrete pour 7,586 - 

3 days from concrete pour 9,072 11,048 

At Detension of prestress 10,252 11,592 

24 hrs from Detension 10,929 11,618 

3 day from Detension 10,438 11,724 

7 day from Detension 11,791 11,877 

14 day from Detension 12,374 12,255 

28 day from Detension 14,191 12,295 

 

 

 
 

Figure 43 Concrete compression test on 4x8 inch cylinder 
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5.4 Chucks 

  

The chucks used in this experimental investigation had three components: the 

spring, the jaws and the barrel. The barrel dimensions were similar to those used for 0.5 

in. and 0.6 in. diameter strands, 2 in. diameter and 4 in. long. The dimensions of the jaws 

varied for the different diameters of strand. 0.7 in. diameter strand had a larger jaw when 

compared to 0.6 in. strand as shown in Figure 44 and Figure 45. The jaws for both 0.6 in. 

and 0.62 in. strands were more or less similar. 

 

 

 
 Figure 44  Chuck used for 0.7 inch diameter strand 

 

 

 

 
 
 

Figure 45 Jaws for 0.6”, 0.62” and 0.7” diameter strands 
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CHAPTER 6 

GIRDER DESIGN AND CONSTRUCTION 

 
6.1 Girder design: Design Parameters 

 

  AASHTO Type I girders were constructed for this experimental program. Two 

different methods of design were considered, AASHTO LRFD 2008 design specification 

and Strut-and-Tie modeling. The first specimen was designed using the 0.7 inch diameter, 

seven-wire, low-relaxation strand with the ultimate strength of 270 ksi and the second 

specimen was designed using the 0.62 inch diameter, seven-wire, low-relaxation strand 

with the ultimate strength of 330 ksi. In both the specimens, the left half was designed 

based on the AASHTO LRFD 2008 design specification and the right half was designed 

based on the Strut-and-Tie modeling. 

 

 The girders spanned 56 feet, determined based on the maximum span which could 

be tested at The University of Tennessee structures lab, with 12 numbers of strands 

provided in the bottom flange of the cross section. All 12 strands were straight and 

spaced at 2inch on both horizontal and vertical directions. The shear reinforcement, top 

flange reinforcement and the anchorage zone reinforcements are designed based on both 

AASHTO LRFD Design specification and Strut-and-Tie Modeling. The concrete strength 

was 10 Ksi at transfer and 12 Ksi at service. The design was consistent with the current 

TDOT practice. Error! Reference source not found. shows the cross-sectional 

roperties and dimensions of the AASHTO Type I I-girder. 

 

 

 

 
 

Figure 46 AASHTO Type I Girder with 12 Nos. of 0.7 in. or 0.62 in. strands 
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6.1.1 Specimen 1 

 

The details of the reinforcement are show in Figure 47 and Figure 48 for 

specimen 1. 

 

 AASHTO Type I Girder 

 Design Live load is HL-93 

 Span = 56 ft (Maximum span can be tested at UTK) 

 Girder Concrete: 

o f’ci (At Transfer) = 10 ksi  

o f’c  (At Service)  = 12 ksi  

 

 Number of Strand =12  

 Diameter of the Strand = 0.7 inch  

 Cross sectional area of the strand = 0.294 in
2
 

 Ultimate strength of strand, fpu = 270 ksi  

 Spacing of strands = 2” x 2”   

 Force per strand = (1.0)(0.294)(0.75)(270) = 59.53 kips 

 

6.1.1.2 Right Half of the Specimen (AASHTO LRFD 2008):  

(Assumption: Details for 0.6” strands can be used here.) 

 

Shear reinforcement: 

 

o 15 Double legged #4 bar @ 8” spacing for 120” 

o 14 Double legged #4 bar @ 10” spacing for 132” 

o  6 Double legged #4 bar @ 12” spacing for 84” 

 

Top flange reinforcement  - 4 #6 bars for the entire length of the 

girder 

 

 Since the strands are not debonded or harped the tension in the top flange 

at the transfer length section of the girder exceeds the maximum allowable stress 

limit of 0.24√f’ci . 

 Temporary tensile stress limit in prestressed concrete before losses, fully 

prestressed components is 0.24√f’ci with bonded reinforcement sufficient to resist 

the tensile force in the concrete computed assuming an uncracked section, where 

reinforcement is proportioned using a stress of 0.5fy not to exceed 30 ksi 

(AASHTO LRFD 2008). 

 

Anchorage Zone Reinforcement: 

 

Confinement reinforcement  -7 #3 bars @ 6” spacing for a distance 

of 38”. 
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Splitting resistance reinforcement - #4 double legged bars @ 1.5” spacing 

starting    at 2”, for a   distance of 7” 

from the end of the girder 

 

Requirements in AASHTO LRFD 2008 

 

5.10.10 Pretensioned Anchorage Zones 

  

5.10.10.1 Splitting Resistance 

 

The splitting resistance of pretensioned anchorage zones 

provided by reinforcement in the ends of pretensioned 

beams shall be taken as: 

 

Pr = fs As 

Where: 

  fs = stress in steel not exceed 20 ksi 

As = total area of vertical reinforcement located within the 

distance h/4 from the end of the beam (in.
2
) 

h =Overall dimension of precast member in the direction in 

which splitting resistance is being evaluated (in.) 

 

For pretensioned I-girders or bulb tees, As shall be taken 

as the total area of the vertical reinforcement located 

within a distance of h/4 from the end of the member, where 

h is the overall height of the member (in.) 

The resistance shall not be less than 4 percent of the total 

prestressing force at transfer. 

The reinforcement shall be as close to the end of the beam 

as practicable. 

 

For example, Pr = (20) (4*2*0.2) = 32 kips > 0.04{12*0.294[(0.75*270)-

20.25]} = 25.72 kips 

  

5.10.10.2 Confinement Reinforcement 

 

For the distance of 1.5d from the end of the beams other 

than box beams, reinforcement shall be placed to confine 

the prestressing steel in the bottom flange. The 

reinforcement shall not be less than No. 3 deformed bars, 

with spacing not exceeding 6.0 in. and shaped to enclose the 

strands. 

 

Where 

d = distance from compression face to centriod of tension 

reinforcement (in.) 
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For example, 1.5(d) = 1.5(25) = 37.5 inches. 

 

PCI Bridge Design Manual takes d as the overall depth of the girder (in.).For example, 

1.5(d) = 1.5(28) = 42 inches. 

 

The details of the reinforcement are shown in Figure 47.An example detail of the 

reinforcement used by the TDOT is shown in Appendix A. 

 

6.1.1.3 Left Half of the Specimen: (Strut and Tie Modeling)  

 

Shear reinforcement:  

 

o   8Double legged #4 bar @ 3” spacing for 24” 

o   6 Double legged #4 bar @ 6” spacing for 36” 

o 10 Double legged #4 bar @ 10” spacing for 96” 

o 14 Double legged #4 bar @ 12” spacing for 168” 

 

Top flange reinforcement 4 #6 bars for the entire length of the girder 

 

Anchorage Zone Reinforcement: 

 

Confinement reinforcement  -11 #4 bars @ 4” spacing for a distance 

of 42”  

 

 

Splitting resistance reinforcement - #4 double legged bars @ 1.5” spacing 

starting at 2”, for a distance of 9” from 

the end of the girder 
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Figure 47 AASHTO Type I girder strand arrangement and shear reinforcement details 

CL

AASHTO Type I Beam  12 numbers of 0.7 inch diameter strands

All Dimensions are in inches
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Figure 48 AASHTO Type I girder strand arrangement and shear reinforcement details 

 

 

AASHTO Type I

(12 Nos of 0.7 inch strands)

A401 A402 A303

A401

A402

 Section A - A

Mid span Section
End Section 

4 #6 Bars 
A403
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6.1.2 Specimen 2 

 

The details of the reinforcement are show in Figure 47 specimen 2. 

 

 AASHTO Type I Girder 

 Design Live load is HL-93 

 Span = 56 ft  

 Girder Concrete: 

o f’ci = 10 ksi  

o f’c  = 12 ksi  

 

 Number of Strand =12 (Designed based on the maximum testable span) 

 Diameter of the Strand = 0.62 inch  

 Cross sectional area of the strand = 0.2227 in
2
 

 Ultimate strength of strand, fpu = 330 ksi  

 Spacing of strands = 2” x 2”   

 Force per strand = (1.0)(0.2227)(0.75)(330) = 55.12 kips 

 

6.1.2.1 Right Half of the Specimen :( AASHTO LRFD 2008)  

 

Shear reinforcement: 

 

o 15 Double legged #4 bar @ 8” spacing for 120” 

o 14 Double legged #4 bar @ 10” spacing for 132” 

o 6 Double legged #4 bar @ 12” spacing for 84” 

 

Top flange reinforcement  - 4 #6 bars for the entire length of the 

girder 

 

Anchorage Zone Reinforcement: 

 

Confinement reinforcement  - 7 #3 bars (A303) @ 6” spacing for a 

distance of 38” and 7 #3 (A304) bars 

@ 6” spacing for a distance of 38” as 

shown in Figure 50. 

 

Splitting resistance reinforcement  - #4 double legged bars @ 1.5” spacing 

starting at 2”, for a distance of 7” from 

the end of the girder 

 

 

 

 

 

 

 



 

 

66 

6.1.2.2 Left Half of the Specimen: (Strut and Tie Modeling)  

 

Shear reinforcement:  

o   8Double legged #4 bar @ 3” spacing for 24” 

o   6 Double legged #4 bar @ 6” spacing for 36” 

o 10 Double legged #4 bar @ 10” spacing for 96” 

o 14 Double legged #4 bar @ 12” spacing for 168” 

 

Top flange reinforcement  - 4 #6 bars for the entire length of the 

girder 

 

Anchorage Zone Reinforcement: 

 

Confinement reinforcement                        -10 #4 bars @ 4” spacing for a distance 

of 38”  

 

Splitting resistance reinforcement  - #4 double legged bars @ 1.5” 

spacing starting at 2”, for a distance of 

9” from the end of the girder 

 

 

6.2 Girder Fabrication 

 

 All the specimens were fabricated by a local producer at Bristol, TN. In the initial 

process of casting the girders, the span (56’) was set in the prestressing bed and they were 

lubricated in order to prevent the concrete from sticking to the bed. Then the strands were 

laid by passing them through the dead end and to the live end. The diameter of the holes 

on the very end walls of the bed was increased to accommodate the larger diameter 

strands as shown in Figure 51. The chucks were placed in the dead end to anchor the 

strands and tensioned in the live end. The Figure 52 and Figure 53 show the personnel’s 

at Ross prestress plant laying the 0.7” strands by passing them through the dead end of 

the bed. The two ends of the girder were marked as L (Design based on Strut and Tie 

modeling) and R (Design based on AASHTO LRFD 2008 specification). The two sides 

of the girder were marked as side 1 and side 2. Thus each end of the girder was marked as 

L1, R1, L2 and R2. The Figure 54 and Figure 55 shows the 12 strands before tensioning 

and the chucks placed at 2 in. spacing in the dead end of the bed. 
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Figure 49 AASHTO Type I girder strand arrangement and shear reinforcement details 

6 A401 sets @ 12 inch Spacing 14 A401 sets @ 10 inch Spacing  15 A401 sets @ 8 inch Spacing

7 A303 @ 6 inch Spacing

3 A402 @ 1.5 inch Spacing
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4 A402 & 4 A401 sets @ 3 inch Spacing
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Figure 50 AASHTO Type I girder strand arrangement and shear reinforcement details 
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6.2.1 Strand Tensioning 

 

 In the strand tensioning process a 120 kip Hydraulic jack was used. Two chucks 

were placed, one at the dead end of the prestressing bed and other at the live end of the 

bed. The jack has a stroke length of 10.5 inches. Since the elongation was around 13 

inches the strand was tensioned first to half of the load and then the pressure in the jack 

was released and the remaining half was reloaded. A 112 kip load cell was placed 

between the chuck and the piston to measure the amount of force applied to the strand. 

The entire process for tensioning a single strand took about 15 minutes and at the end the 

elongations were checked to the calculated values. 

 

 

 

 
 

Figure 51 Increasing the diameter of the holes in the bed 
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Figure 52 Laying of 0.7 in. strand through the dead end of the prestressing bed 

 

 

 

 

 
 

 

Figure 53 Ross prestress personals laying down the 0.7” strands 
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Figure 54 12 Nos. of 0.7 in. strands before tensioning 

 

 

 

 
 

 

Figure 55 2”x 2” spaced chucks at the dead end of the girder bed 
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6.2.2 Measurement of tensioning force and elongation of the strands 

  
A 112.4 kips ( 500 KN) load cell is attached to the end of the strand tensioning set up in order to 

determine the amount of force applied to each strand as shown in  
 

Figure 56 and Figure 57. The load cell is attached to a data acquisition system to 

record the load applied to each strand. The load was monitored and the jack was stopped 

when the load reached the required value.  

 

The elongation of the strand was measured by marking the strand at the end of the 

chuck after applying the initial force. An initial force of 7 kip was applied before marking 

the strand in order to account for the slag in the strand and the chuck slippage. Once the 7 

kip was applied, the strand was marked as shown in  

 

Figure 58 and the remaining load was applied. Once the strand was prestressed to its 

required load the jack was removed and the elongation of the strand was measured and 

checked with the calculated values. A tolerance of ±5 % was accepted for both the 

prestressing force and the elongation. 

 

 

 

 
 

 

Figure 56 Setup for tensioning the strand 
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Figure 57 Strand Tensioning 

 

 

 

 
 

 

Figure 58 Initial marking and the final measurement of elongation of the strand 
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6.2.3 Pre-Pour setup 

  

 Once the strands were tensioned, the positions for tying the rebar were marked on 

the strand and double checked. The rebar was tied firmly to the strands. Once all the rebar 

were tied and checked the side forms were placed. The vertical and horizontal levels were 

checked to make sure the forms were not inclined and bolted firmly to the prestressing 

bed. The Figure 59 and Figure 60 show the tying of rebar and placing of forms by Ross 

prestress personals. 

 

 

 
 

Figure 59 Tying of mild steel reinforcement for the girder 

 

 
 

Figure 60 Placing of the side forms for the girder with 0.7 in. strand 
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6.2.4 Placing the concrete 

 

 High strength concrete was used for the girders (0.7 in. and 0.62 in.), 10 ksi at 

transfer and 12 ksi at service. The concrete was mixed and placed at Ross Prestress Plant 

in Bristol, TN. The concrete was placed and consolidated with two electric vibrators 

moving side by side as shown in Figure 61.  The slump was 7 in. and the temperature was 

75°F for the concrete mix used for both the girders. The concrete for the two specimens 

were poured on two different days. The concrete for girder with 0.7 in. diameter strand 

was water cured and for 0.62 in. diameter strand was steam cured. 

 

 

6.2.5 DEMEC gauge set up 

 

 After the forms were removed, DEMEC gauge points were affixed to both the 

sides of the girder using the appropriate adhesive. The instrumentation for the 

measurement of the camber for the girder was also set up by running a thin wire at the 

centroid location of the girder with one end tied and the other end going over a pulley and 

attached to weights. Hose clamps were setup at both ends of the girder to measure the 

strand drawn-in.  

 

 

 
 

Figure 61 Placement of concrete 
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6.2.6 At Transfer of Prestress 

 

 The required concrete strength at detension was 10 ksi. Three cylinders were 

tested to check the concrete strength before detensioning the strands of the specimen. The 

detension was done in a symmetrical pattern as shown in the Figure 62.The concrete 

surface strain readings were taken after every step of the detensioning. The strands were 

cut using flaming cutting at the same time on both sides of the girder as shown in Figure 

63. It was observed that the wires in the strands unwound as soon as the strands were 

flame cut. Once the strands were detensioned the concrete surface strain readings were 

taken and the girder was moved to a different location  as shown in Figure 64 and the 

preparation for the second specimen was started. During the detensioning process the 

girder was displaced about 3 inches on the bed due to the large prestressing force. 

 

 

 
 

 

Figure 62 Detensioning steps 
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Figure 63 Release of prestress by flame cutting and unwinding of strand ends 

 

 

 

 

 
 

 

Figure 64 Moving the girder from the prestressing bed 

 

 

 

 

 

 

 

 

 



 

 

78 

CHAPTER 7 

TRANSFER LENGTH, GIRDER END CRACKING & PRESTRESS 

LOSSES 

 
7.1 Introduction 

 

 An accurate estimate of the transfer length is important for several reasons: 

calculation of the concrete stresses at transfer and service loads, design of anchorage zone 

reinforcement for strut and tie models, and design of shear reinforcement which requires 

knowledge of the level of precompression in the concrete. 

 Two different types of instrumentation were used to determine the transfer length. 

One method was using the DEMEC strain measurement system, which involved the 

measurement of the surface strain of concrete. The other method for calculating transfer 

length was strand drawn-in, in which the distance slipped by the strand into the concrete 

is measured 
27

.  

 

7.2 Transfer Length – Measurement, Data Reduction  

  

 The Transfer length measurements were made on both the AASHTO Type I I-

girders, one with 0.7 in. diameter strands and other with 0.62 in. diameter strands. 

  

7.2.1 Measurement 

 

 The two most commonly used techniques for the measurement of the transfer 

length are DEMEC concrete surface strain and Strand drawn-in measurement. 

 

7.2.1.1 Concrete surface strain measurement 

 

 Transfer length is the distance required to transfer the effective prestressing force 

from the strand to the concrete. To determine the transfer length for the girders, a series 

of DEtachable MEChanical (DEMEC) strain measurement system is used to measure the 

concrete surface strain. DEMEC strain measurement system consists of a series of points 

placed on the surface of the concrete. These points have small metallic discs of 1/4
th

 inch 

in diameter, which are placed at the centroid of the prestressing strands in the ends of the 

girder, on all four sides of the bottom flange. For our specimens the DEMEC points are 

placed at a spacing of 4 inches starting at 2 inch from the end of the girder for a distance 

of 20 inches, at a spacing of 2 inches for a distance of 26 inches and then at a spacing of 4 

inches for a distance of 12 inches. These spacings were determined based on the gauge 

length (3.937 inches) of the DEMEC gauge and to increase the number of DEMEC points 

where it was required. Thus there are 22 points proving 20 readings on each side of the 

girder. Therefore each girder has four lines of DEMEC points on both sides and both 
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ends of the girder.  The set up of the DEMEC points are shown in Figure 65, Figure 66 

and Figure 67. 

 

 DEMEC points were also set at the midspan section of the girder on both sides in 

order to determine the short term and long term losses of prestress in the girders. DEMEC 

points were also set on the web of the I-section at the end zones to determine the concrete 

strain in the vertical direction of the girder. 

 

 

 
 

 

Figure 65 DEMEC points on both ends of the girder 

 

Mid section with 11 nos of DEMEC points, 6 spaced at 8" and 4 spaced at 4".

Left end with 22 nos of DEMEC points, 8 spaced at 4 in and 13 spaced at 2".
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Figure 66 DEMEC points along the centroid of the strands and web of the girder 

 

 

 

 
 

 

Figure 67 DEMEC points at the live end of the girder 
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7.2.1.2 Strand Drawn-in Measurement 

 

 Strand drawn-in is a measurement of how far the strand at the face of the concrete 

is pulled into the beam after the prestress is released. Strand drawn-in helps in 

determining the effectiveness of the bond between the concrete and prestressing strand 

after the prestress is released. To measure the drawn-in, 2” x 2” x 0.5” angle sections 

were attached at a distance of 3 ft from the end face of the girder.  A typical set up is 

shown in Figure 68 and Figure 69. Two sets of reading of the distance between the end of 

the angle and the face of the beam end were taken to measure the drawn-in. The first 

reading was taken before the pretensioning was released and the second reading was 

taken after the release. These readings were measured using a digital caliper.  

 

 

 

 

 

 
 

 

Figure 68 Strand drawn-in measurement setup 
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Figure 69 Strand drawn-in measurement setup 

 

 

7.2.1.3 Camber Measurement 

   

In order to determine the camber in the girder, a wire was anchored at one end 

and on the other end a pulley was set up. A set of weights was attached to the wire in 

order to ensure a constant tension. A ruler was affixed at the midspan of the girder 

directly behind the wire to read the camber. In order to prevent the parallax error during 

the reading process a mirror was attached directly behind the wire as shown in Figure 70 

and Figure 71.The values of the camber measurements are shown in Table 19. 
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Figure 70 Deflection measurement setup at mid span 

 

 

 
 

Figure 71 Deflection measurement setup at mid span 

 

 

Table 19 Camber Measurements 

 

 Camber, inches 

0.7”(270 ksi)  

strand 

0.62”(330 ksi) 

strand 

Detension step 1 0.1 0.1 

Detension step 2 0.5 0.6 

Detension step 2 0.9 0.8 

Detension step 2 1.1 1.0 

At Transfer 1.6 1.5 

24 Hrs from detension 2.4 1.9 

3 Days from detension 2.8 2.2 

7 Days from detension 2.8 2.2 

14 Days from detension 2.8 2.2 

28 Days from detension 2.8 2.2 

Ruler at the Mid Span   

Wire   

Pulley and weight   

 

Fixed End of the wire  
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7.2.2 Data reduction and determining transfer length 

 

 The measurements obtained using the DEMEC gauge were the actual distance 

between the insert points and not the strain. To convert these measurements into transfer 

length the following procedure is followed.  

 

First, the strain values are obtained by subtracting the reading taken before 

detensioning from the reading taken after the prestress transfer and divided by the gauge 

length of the DEMEC gauge. Then the strains for corresponding sets of inserts on each 

side of a girder were averaged. 

 

In the second step smoothed strain profile is obtained by using a floating 3-point 

average strain values for each girder ends as shown in Figure 72. The smoothing 

technique will lessen the scatter and reduce the effect of data points that have values 

higher or lower than the average value. By smoothing the data it is easier to define the 

plateau at which the constant strain in the girder is established.  The floating 3-point 

average is obtained using the Eqn. given below, 

 

 

   

 

 
 

Figure 72 Raw and smoothed concrete surface strain data 
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In the third step the actual transfer length is determined based on different 

measurements such as the 95% Average maximum method, Slope Intercept, Strand 

Drawn-In, Final Average Method – Cousins, et al. (1993). In this experimental program 

95% Average maximum method was used to determine the transfer length. 

 

7.2.2.1 95% Average Maximum Strain Method – Russell and Burns (1993) 

 

 In this method to determine the transfer length, the point at which the strain is 

constant is determined. This is a subjective determination based on the strain profile. 

Once the initial point is determined the average maximum strain (AMS) is determined by 

taking the average of all the data points following the initial point. Then the 95% of the 

AMS value is taken and a horizontal line is plotted along with the strain profile graph. 

Thus the first intersection point of the horizontal line and the strain profile give the 

transfer length for the end of the girder as shown in Figure 73. The 95% AMS plot 

consists of separate regions, the initial linearly varying portion and the constant strain 

plateau and the resulting 95% AMS line. 

 

 
 

 

Figure 73 95% Average maximum strain method 
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7.2.2.2 Strand Drawn-In 

 

The transfer length can be determined using the Drawn-in measurements from the 

strand. A theoretical relationship that relates the transfer length as a function of strand 

drawn-in was used.
 
The equation was derived from a mechanistic relationship integrating 

steel strain over the transfer length and subtracting the concrete strains over that same 

length. Assuming linear variation of steel and concrete strains within the transfer zone 

yields the expression:
 7

 

 

  

 
In this equation Lt is the transfer length, Eps is the elastic modulus of the steel 

strand, fsi is the strand stress immediately before transfer, and  is the measured strand 

drawn-in or end slip. 

 

Due to the high prestressing force, the strands unwound during the detensioning 

process. Thus the readings obtained from some strands were distorted and could not be 

used for the calculation of the transfer length in both the specimens. In case of 0.7 in. 

strands due to the variation of the strand drawn in values the obtained transfer length was 

shorter than the value obtained using the concrete surface strain values. In case of 0.62 in. 

strands the values were very close to the values obtained using the concrete surface strain. 

The values of the transfer length based on the strand drawn-in measurement are shown in 

Table 20.   

 

 

 

Table 20 Transfer Length based on strand Drawn-in 

 

Specimen 

Transfer Length, in. 

Maximum Average Minimum 

L End R End L End R End L End R End 

0.7 in.
* 

15.50  21.90  12.87  15.66  10.24  9.81  

0.62 in. 34.39  34.71  31.87  29.42  28.21  21.32 

 

*Certain strand readings were destroyed 
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7.3 Results and Discussions 

 

7.3.1 Transfer Length – 0.7” strand 
  

 The measured and calculated values of transfer length for each end of the 

specimen 1 at various days after release are shown in Table 21. Curves of individual 

girder end transfer lengths for different steps of detension are shown in Figure 74 and 

Figure 77.  
 

 The average value of transfer length obtained for the 0.7” diameter strand is about 

half the length obtained using the equations provided by AASHTO LRFD 2008 and ACI 

318-08.The transfer lengths obtained from both the ends of the girder show very limited 

difference as shown in Figure 75and Figure 78. This shows that the two different designs 

had very minimum affect on the transfer length. Plots of individual girder end transfer 

lengths for different days after release are shown in Figure 76 and Figure 79.   

 

 Since there is very limited research on 0.7 in. diameter strand in the past the 

values obtained from this research program could not be compared with any other 

researcher’s values. 

 

 

 

Table 21 Transfer length for Specimen 1 

 

 
Transfer Length, inches 

Specimen 1 (0.7”) 

Side L Side R 

At Transfer  21.04 21.50 

AASHTO LRFD 2008  42   

ACI 318-08  38 
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Figure 74 Development of prestressing force during detension in Specimen 1-End L 

 

 
 

Figure 75 Strain distribution for specimen 1 – End L at transfer
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Figure 76 Strain distribution for specimen 1 – End L

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

C
o
n

cr
et

e 
S

tr
a
in

, 
 M

ic
ro

st
ra

in
s

Distance from the end of the girder, in.

At Transfer 3 Days from Detension 7 Days from Detension

24 Hrs from Detension 14 Days from Detension 28 Days from Detension



 

 

90 

 
 

 

Figure 77 Development of prestressing force during detension in Specimen 1–End R 

 

 

 
 

 

Figure 78 Strain distribution for specimen 1 – End R at transfer
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Figure 79 Strain distribution for specimen 1 – End R 
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7.3.2 Transfer Length – 0.62” strand 

 

The measured and calculated values of transfer length for each end of the specimen 2 at 

various days after release are shown in Table 22. Curves of individual girder end transfer 

lengths for different steps of detension are shown in Figure 80 and Figure 83.  

 

 In case of 0.62 in. diameter strands the value of transfer length obtained using the 

ACI and AASHTO equations are conservative when compared to the experimental values. 

The average transfer length for 0.6 in. strand is 40.0 in. (Russell & Burns, 1996) where as 

the average value obtained in this research program is 29.14 in. Since the strand which 

was used had a grade of 330 ksi, as per Russell & Burns the average 40.0 in. is good for 

0.6 in. strand with a grade of 270 ksi. The transfer lengths obtained from both the ends of 

the girder show very limited difference as shown in Figure 81and Figure 84. Plots of 

individual girder end transfer lengths for different days after release are shown in Figure 

82 and Figure 85.    

 

 

 

 

 

 

Table 22 Transfer Length for Specimen 2 

 

 
Transfer Length, inches 

Specimen 1 (0.62”) 

Side L Side R 

At Transfer  28.10 28.19 

AASHTO LRFD 2008  37.2   

ACI 318-08  41 
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Figure 80 Development of prestressing force during detension in Specimen 2-End L 

 

 
 

 

Figure 81 Strain distribution for specimen 2 – End L at transfer
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Figure 82 Strain distribution for specimen 2 – End L
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Figure 83 Development of prestressing force during detension in Specimen 2-End L 

 

 
 

Figure 84 Strain distribution for specimen 2 – End R at transfer
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Figure 85 Strain distribution for specimen 2 – End R
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7.3.3 Prestress Losses 
 

DEMEC gauge points were placed at the mid span of the girder to measure the 

prestress loss due to the elastic shortening of the member and long term losses. The loss 

due to relaxation of the steel is not taken into account in this experimental investigation. 

The stress in the concrete at the various DEMEC point locations is obtained based on the 

measured concrete surface strain and the concrete strength at the time of measurement of 

this strain. Thus the following equation is used in the calculation of the elastic shortening 

loss of the girder: 

 

 

 

Where  loss due to elastic shortening,  is the modulus of elasticity of 

prestressing strand,  is the modulus of elasticity of concrete and  concrete stress at 

the centroid of the strand. 

 

 Table 23  and Table 24 show the development of prestress loss over time for both 

the girders. Table 25 shows the values of calculated prestress losses for both the 

specimens. The prestress loss was calculated by the AASHTO LRFD 2008 design 

specification for both the girders.  

 

 

Table 23 Measured prestress loss at mid section for the specimen with 0.7” strand 

 

 

At transfer 

– Elastic 

loss  

24 hrs 3 day 7 day 14 day 28 day 

Concrete 

Strength, ksi 
10.25  10.93  10.44  11.79  12.37  14.19  

Elastic 

Modulus, ksi 
6138  6338  6194  6583  6744  7222  

Stress at mid 

span section, Ksi 
5.44 6.64 7.30 8.59 9.12 10.41 

Prestress loss, 

Ksi 
25.51 30.18 33.92 37.58 38.95 41.51 

Prestress loss, 

% 
12.60 14.90 16.75 18.56 19.24 20.50 
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Table 24 Measured prestress loss at mid section for the specimen with 0.62” strand 

 

 

At 

transfer – 

Elastic loss 

24 hrs 3 day 7 day 14 day 28 day 

Concrete 

Strength, ksi 
11.59 11.62 11.72 11.88 12.25 12.29 

Elastic Modulus, 

ksi 
6527  6535  6564  6607  6711  6722  

Stress at mid 

span section, Ksi 
5.04 5.50 5.79 5.89 6.16 6.66 

Prestress loss, Ksi 21.99 23.98 25.16 25.43 26.15 28.23 

Prestress loss, % 8.88 9.69 10.16 10.27 10.57 11.41 

  

Table 25 Calculated prestress loss 

 

Specimen 1 -  0.7”(270 ksi) Specimen 2 - 0.62” (330 ksi) 

Elastic 

shortening 

loss 

Total 

prestress loss 

Elastic 

shortening 

loss 

Total 

prestress loss 

ksi % ksi % ksi % ksi % 

19.59 10 39.19 19.35 21.99 8.88 36.73 14.84 

 

 

The time-dependent prestress losses exhibit the same trend as elastic losses, with 

increase in losses from increased concrete stress. The measured elastic loss is 

underestimated over the predicted value in both specimens. The long-term losses are 

monitored in the future.  
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7.3.4 Cracking 

 

The cracking in the concrete showed that end designed based on AASHTO 

requirements experienced more cracking than the end which was designed based on strut-

and-tie modeling. The observed cracks were found within a distance of 2 in. from the 

very end of the girder. 

 

7.3.4.1 Girder with 0.7 in. (270 ksi) diameter strand 

 

There was significantly no cracking due to the splitting force at the transfer zone 

of the girder. The cracking which was observed was in the very bottom portion of the 

section which is influenced by the amount of confinement reinforcement close to the very 

end of the girder. The cracking of both the ends of the girder are shown in Figure 86 and 

Figure 87. 

 

 
 

 

Figure 86  End R of specimen 1 designed based on AASHTO LRFD 2008 
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Figure 87 End L of specimen 1 designed based on Strut-and-Tie Modeling 

 

7.3.4.2 Girder with 0.62 in. (330 ksi) diameter strand 

 

The R end of specimen 2 had additional confinement reinforcement to enclose all the 

12 strands as shown in Figure 88. There was a variation in the cracking pattern on both 

sides of the girder in the same end as shown in Figure 89 and Figure 90. This might be 

due to unsymmetrical detensioning of the strands, which was done to see the effect on the 

transfer length. 

 

 
 

Figure 88 Reinforcement detailing for End R of specimen 2 
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Figure 89 Both sides of End R of specimen 2 designed based on AASHTO LRFD 

2008 

 

As per results of the finite element analysis it was concluded that there was a 

stress concentration at the transition zone between the web and the bottom flange of the I-

girder. After the specimens were detensioned a hairline crack was observed in both the 

specimens where the stress concentration was found. This could be due to the high 

prestressing force and the larger eccentricity of the force.    

    

 
 

 

Figure 90 End L of specimen 2 designed based on Strut-and-Tie Modeling 
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CHAPTER 8 

Conclusion 

 

Based on the analysis of the experimental results, the following conclusions for 

specimens prestressed with 0.7” and 0.62” diameter strand can be drawn: 

 

8.1 Transfer length 

 

The only variables which were considered in this research program were the 

diameter of the strands and the grade of the strand steel. All other variables such as 

spacing of the strands, concrete strength, confinement reinforcement, splitting 

reinforcement and surface condition of the strand were kept constant for both the 

specimens. 

 

The current ACI and AASHTO equations overestimate the value of transfer 

length in case of 0.7 in. strands and cannot be used in case of larger diameter strands. In 

case of 0.62 in. strands the values obtained are less conservative than the values obtained 

using ACI and AASHTO equations. 

 

8.2 Strand Spacing 

 

There was no cracking of the girders due to the insufficient spacing of the strands 

found at transfer.  It can also be said that due to the shorter transfer length obtained for 

the 0.7 in. strand, a lager splitting stress would be introduced at the transfer zone and 

cause a higher probability of cracking at transfer. Thus using 2 in. spacing in both 

directions for 0.7 in. and 0.62 in. strands did not show any signs of splitting of the 

members at the end zones. 

 

8.3 Strand Diameter  

 

The perimeter of seven-wire prestressing strand is approximately equal to 4/3πdb. 

Adhesion force, which is directly proportional to the amount of adhered surface, is 

therefore directly proportional to the strand diameter. Friction may be affected by the 

strand diameter due to the difference in the nominal force from different wire sizes. 

Because the grooves between the outer wires get larger with increasing strand diameter, 

mechanical bond strength would tend to increase with strand diameter
5
.  As the diameter 

of the strand increases the value of transfer length tends to decrease. Thus for both 0.7 in. 

strand and 0.62 in. strand the obtained transfer length values, 21.6 in. and 29.8 in., are 

shorter than 40 in. for 0.6 in. strand as given by Russell & Burns. 
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8.4 Confinement reinforcement 

 

Due to the high prestressing force in both cases, the confinement reinforcement   

design plays a vital role. It was observed that the ends which had the detailing of 

AASHTO required confinement had more cracks than the end designed based on the 

Strut-and-Tie modeling.  

 

The cracks which were observed in both specimens occurred within a distance of 

2 in. from the end of the girder. This shows a need to provide a large area of confinement 

reinforcement as close to the member end as possible. The ends with the details based on 

the Strut-and-Tie modeling were more efficient than the ends with the details based on 

the AASHTO recommendations. 
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Future Research 

 

• The analytical study showed that there is a high probability of cracking at the 

transition zone between the bottom flange and the web for the 0.7 inch diameter 

strands when compared with the 0.6 inch diameter strands. 

• Further analytical study should be performed in order to determine the effects of 

the confinement steel for both 0.7 inch diameter strands and 0.62 inch diameter 

strands.  

• Development length should be determined for both 0.7 in. and 0.62 in. strands by 

applying transverse load. 
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Tennessee Department of Transportation Detailing  

(Based on drawings provided by Ross Prestressed Concrete, Inc.) 

 

 AASHTO Type II Girder 

 Span = 60 ft  

 Girder Concrete: 

o f’ci (At Transfer) = 8 ksi  

o f’c  (At Service)  = 8.5 ksi  

 

 Number of Strand = 33 

 Diameter of the Strand = 0.5 inch  

 Cross sectional area of the strand = 0.153 in
2
 

 Ultimate strength of strand, fpu = 270 ksi  

 Spacing of strands = 2” x 2”   

 Force per strand = (1.0)(0.153)(0.75)(270) = 30.98 kips 

 

Shear Reinforcement 

 

o 12 Double legged #5 bar @ 6” spacing for 66” 

o 13 Double legged #5 bar @ 9” spacing for 108” 

o 14 Double legged #5 bar @ 12” spacing for 156” 

 

Horizontal Reinforcement 

3 Nos. of #5 bars provides for a distance of 60 inches from the end of the girder. 

 

Top flange reinforcement         

2 Nos. of #7 bars provided for the entire length of the girder. 

 

Anchorage Zone Reinforcement 

 

Splitting resistance reinforcement 

The splitting reinforcement consists of 6 pairs of #5 bars spaced at 3”, 

provided for a distance of 18 inches from the end of the girder. Two bars are 

projected above the top flange of the girder and the four bars bent in the top 

flange of the girder.  

 

Confinement reinforcement 

The confinement reinforcement provided in the TDOT details consists of 5 

#3 bars spaced at 6 inches starting at 4.5” from the end of the girder. 
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