
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2006

A Proposal for an Open Source System of Development and A Proposal for an Open Source System of Development and

Research for Music CAI Research for Music CAI

Daniel E. Clouse
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Music Commons

Recommended Citation Recommended Citation
Clouse, Daniel E., "A Proposal for an Open Source System of Development and Research for Music CAI. "
Master's Thesis, University of Tennessee, 2006.
https://trace.tennessee.edu/utk_gradthes/1530

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1530&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/518?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1530&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Daniel E. Clouse entitled "A Proposal for an Open

Source System of Development and Research for Music CAI." I have examined the final

electronic copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Master of Music, with a major in Music.

Barbara Murphy, Major Professor

We have read this thesis and recommend its acceptance:

Don Pederson, Gary Sousa

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Daniel E. Clouse entitled "A Proposal for an
Open Source System of Development and Research for Music CAI." I have examined the
final electronic copy of this thesis for form and content and recommend that it be
accepted in partial fulfillment of the requirements for the degree of Master of Music,
with a major in Music.

Barbara Murphy
Major Professor

We have read this thesis
and recommend its acceptance:

Don Pederson

Gary Sousa

Accepted for the Council:

 Anne Mayhew
Vice Chancellor and
Dean of Graduate Studies

(Original signatures on file with official student records.)

A Proposal for an Open Source System

of Development and Research for Music CAI

A Thesis

Presented for the

Master of Music

Degree

The University of Tennessee, Knoxville

Daniel Emerson Clouse

August 2006

 ii

Acknowledgments

 I wish to thank my many friends and family who supported me through my degree

program at the University of Tennessee. I would like to thank Dr. Barbara Murphy for

her patience, perspective, and guidance. I would also like to thank Dr. Les Gay for

introducing me to many important concepts, much important literature, and challenging

me at every turn to be a better scholar. I also offer thanks to Dr. Don Pederson and Dr.

Gary Sousa for offering advice and support, and serving on my committee.

 I thank my dearest friends Jamie Warren and TJ Ricer for numerous proof reading

sessions and pep talks. TJ picked up the slack in my performing schedule and made it

possible for me focus on being a theory major while Jamie kept me from taking myself

too seriously to enjoy making music. The two of them kept me grounded, focused, and

smiling over all the months.

 Finally, I would like to thank my family for their support and praise. Their

positive feedback and unending supply of love (and free food) made my journey possible.

 iii

Abstract

The purpose of this thesis is to examine the historical use of music Computer

Assisted Instruction (CAI) software to show that research on music CAI has decreased

and to propose using a new method of coding and distribution (open source) that might

increase research opportunities using music CAI. The reduction in research is due in part

to limitations in existing software, as well as the practices of the music community. An

open source CAI program called Mobius is described as an example of how open source

programming can offer new opportunities for music researchers.

CAI software has played a prominent role in the college music school, and has a

long history of research and innovation. Early CAI was used in numerous studies to

show how effective computers could be at delivering instruction, while reducing the

teacher workload at the same time. As computers became more widely adopted, CAI

became more commonplace in the music school, and many CAI software programmers

sold their programs to fill the growing demand. Modern CAI is now viewed more as a

commercial product, and less as a research tool.

CAI can still be used as a powerful research tool. This thesis recommends using

open source software development for music CAI since it allows programmers to share

the workload of developing software, and allows CAI researchers to use existing open

source as the basis for their new research programs. Included in this thesis are

storyboards for several key components of an open source CAI program on music

fundamentals, including an administrative portion, the actual CAI program, and a custom

report builder.

 iv

Table of Contents

CHAPTER 1: INTRODUCTION ...1

CHAPTER 2: LITERATURE REVIEW..4

INTRODUCTION...4

CAI IN RESEARCH: MAINFRAME AND MICRO SYSTEMS...5

THE PC AND NEW TECHNOLOGY ..13

CURRENT MUSIC CAI SOFTWARE...18

THE INTERNET AND NEW STANDARDS...19

CHAPTER 3: CAI AND SOCIETY ...23

INTRODUCTION...23

THE CULTURE OF CAI DEVELOPMENT ..25

SOFTWARE AS A PRODUCT ..29

OPEN SOURCE SOFTWARE...32

CHAPTER 4: PROPOSAL FOR A OPEN SOURCE CAI SYSTEM.......................36

INTRODUCTION...36

MOBIUS SOFTWARE GOALS ..36

MOBIUS: THE BASE SYSTEM...41

THE SOFTWARE TEAM ..63

USING MOBIUS...65

CHAPTER 5: CONCLUSION..68

 v

BIBLIOGRAPHY..70

APPENDICES ...74

APPENDIX A: DISSERTATION ABSTRACTS DATA..75

VITA ..88

 vi

List of Tables

Table A.1: Number of Dissertations per Year ..75

 vii

List of Figures

Figure 1: CAI research dissertations per year ...17

Figure 2: N-Tier Software Design..39

Figure 3: Class listing (instructor view) ...43

Figure 4: Class controls (instructor view)...44

Figure 5: Student listing by class ...45

Figure 6: Add new student dialog ..46

Figure 7: Existing homework and add new homework dialog boxes48

Figure 8: Configure a homework assignment dialog ..49

Figure 9: List of existing reports (Instructor View) ..51

Figure 10: Choose data set for reports..52

Figure 11: Select specific data sets for a report ..53

Figure 12: Choose the exercises reported...54

Figure 13: Select columns for the report ..56

Figure 14: Organize and aggregate data ...57

Figure 15: Report results..58

Figure 16: List of saved reports..59

Figure 17: List of modules installed ...61

Figure 18: List of modules available for download from the central repository62

 1

Chapter 1: Introduction

In the past 40 years computers and become permanent fixtures in music

education. Computers are used for email, writing papers, and transmitting course

materials. Programs and online courseware like BlackBoard make it easy for non-

programmers to incorporate computers into their instruction. Some music Computer

Aided Instruction (CAI) software claims to improve skills, impart knowledge, or just

make the learning process more fun. Some programs promise students faster or more

consistent results, while others offer a pre-packaged curriculum to lighten the workload

of music teachers. CAI promises to give music students personalized lessons and plenty

of practice on aspects of theory or other subjects that need extra drill, freeing the music

teacher to answer questions the computer cannot. Teachers can focus on helping troubled

students, creating innovative teaching methods, or researching pedagogical problems.

CAI can provide an ideal mix of private practice for the student and reduce the workload

for the teacher so he or she can focus on other concerns.

Research was one of the primary goals of early CAI. Researchers understood that

by using computers, they could accurately capture complex data that would be used to

build a body of knowledge on perception and effective teaching methods. They

incorporated this knowledge into the next generation of CAI, making it better. The hope

of the teachers was that the computer could take over most, if not all, of the repetitive

tasks of music fundamentals instruction.

Modern commercial software has not completely met this goal. While modern

CAI can deliver some kinds of instruction, it cannot deliver instruction on all subjects,

 2

and is not adopted by all schools in the same way. In some cases, CAI is only used a

kind of smart flash card system, and in others, computers are not used at all in music

instruction. Commercial CAI like MacGamut or Practica Musica comes with mature

curricula, but instructors cannot modify the format of the drills and exercises. Instructors

can add new course materials, but only so long as they fit into the format the software

uses, since the software cannot be modified. Commercial software does not allow

researchers the flexibility to conduct their own research because they cannot modify the

software.

In the early days of CAI, research lead to new understandings of how people

perceived music, and new innovations for delivering music instruction. The new

techniques of instruction inspired more research, creating a cycle of research and

innovation. The cycle of research and innovation created exciting opportunities for

researcher and teachers alike since there were new things to study, and new tools to

teach. Since most modern CAI does not allow researchers to capture data important to

research, the cycle of research and innovation is broken. CAI users are locked out of the

research process, so few new innovations appear based on CAI research. Ironically, even

the current leading CAI titles lack scientific research to support their claims of efficacy,

and are not designed to facilitate that research. Neither MacGamut or Practica Musica

have any published research reports to support their claims of efficacy, and neither have

been used in published research.

This goal of this thesis is twofold: to describe the downfall of CAI research and to

describe a method for developing and distributing music CAI software called �open

source� that might increase the amount of research that uses CAI. Open source is a

 3

software distribution method that allows public access to program source code. Open

source software distribution has become such a powerful idea in software production that

the term open source refers to the software that is created, the social movement that

supports open source software, and the mindset for developing the software. Most open

source programs are free to use, and can be modified by anyone who has motivation to do

so. By adopting open source software, CAI researchers can customize software for use in

their experiments. By allowing researchers to freely share ideas and program code,

research can be conducted that will lead to new innovations being introduced to CAI.

This thesis is organized as follows: in chapter 2, literature is reviewed to show

how software was conceived, created, distributed, and used over the last 50 years.

Chapter 3 provides an analysis of historical and current practices showing how patterns

of music CAI development, distribution, and use have created an environment that limits

research. Finally, an alternative method of software development and distribution is

proposed in chapter 4 that can allow music CAI researchers to actively participate in the

software development process. The use of open source music CAI will result in greater

teacher-control over how software is used in education, and new opportunities for

researchers to add to the body of knowledge.

 4

Chapter 2: Literature Review

Research is an integral part of effective music CAI. Extensive research must be
conducted prior to and during system development. The research areas of modeling the student�s
musical processes, instructional design, system configuration, and data saving and analysis are
all basic to CAI. Once a system is operational continued research is needed to evaluate the
system�s effectiveness and to plan future modification and expansion. Finally, music CAI
supports a variety of research applications to inquiries which have long engaged musicians.1

-Rosemary Killam

Introduction

Modern computers and software are tremendously powerful and can perform any

number of tasks, from allowing a college instructor to send messages to their classes via

email to providing musical accompaniment that follows the soloist. CAI like MacGamut

or Practica Musica can drill students in musical fundamentals, aural skills, and even

musical form. College music teachers and students certainly benefit from computers, but

there is little research data to backup claims of software efficacy. Because commercial

CAI software promises to deliver musical instruction that is equal to or superior to

traditional classroom methods, software makers should provide research to back up their

claims. Without data showing that CAI software is an effective method of teaching, the

software is merely supported by anecdotal evidence. Early music CAI developers

understood that research was fundamental to understanding how students would use and

learn from their software. They conducted studies to empirically establish what

techniques and tools were effective for delivering instruction via computer.

1 Rosemary N. Killam, Philip Baczewski and Antoinette Corbet, �Research Applications in CAI� College
Music Symposium, 21 no. 2 (1981): 43.

 5

CAI in Research: Mainframe and Micro Systems

In 1967 Wolfgang Kuhn and Reynold Allvin of Stanford University developed

software that could determine the pitch accuracy of sung melodic patterns.2 The software

used a pitch extraction device and a mainframe computer to determine how accurately a

subject could sing melodies.3 The computer reinforced correct answers by evaluating

pitch accuracy and rewarding students who sang the melodies well.4

Two years later, in 1969, Ned Deihl also developed ear-training software, though

his system targeted instrumentalists.5 He used modified tape recorders to judge the pitch

accuracy of intermediate level clarinet players.6 Although the system did not provide

real-time results for the players, Deihl�s work showed that computers could be

programmed to evaluate musical sounds.

Don Bitzer first applied computers in college education when he built the PLATO

(Programmed Logic for Automatic Teaching Operation) system at the University of

Illinois in 1959.7 His team of engineers and programmers received a grant from the

National Science Foundation that gave them enormous resources to meet two goals8: (1)

to investigate the potential role of computers in the classroom, or as Bitzer put it, �What

2 Peter Webster, �Historical Perspectives on Technology and Music� Music Educators Journal 89 no. 1
(2002): 38.
3 Ibid..
4 Wolfgang Kuhn, �Computer-Assisted Instruction in Music: Drill and Practice in Dictation� College Music
Symposium 14 (1974): 89.
5 Peter Webster, �Historical Perspectives on Technology and Music� Music Educators Journal 89 no. 1
(2002): 38.
6 Ned Deihl, �Computer-Assisted Instruction: Potential for Instrumental Music Education� Council for
Research in Music Education bulletin 15 (1969): 1.
7 Peter Webster, �Historical Perspectives on Technology and Music� Music Educators Journal 89 no. 1
(2002): 38.
8 D. Alpert and D. Bitzer, �Advances in Computer-Based Educaition� Science New Series, vol. 167, no.
3925 (1970): 1583.

 6

is educationally possible?�9 (2) to help develop what he calls �an economically and

educationally viable system incorporating the most valuable approaches to teaching and

learning.�10 Bitzer felt these two goals were closely related.11 By discovering what

computers could do to deliver effective instruction, and finding ways to make

computerized education affordable, PLATO could use the best pedagogical ideas and be

inexpensive enough for many people to use.

To meet the project goals, Bitzer and his team developed four successive CAI

systems, PLATO I through IV, to see how far he could push the technology in solving

educational goals.12 The lessons learned from each of the systems were put into

successive new systems. In 1972 PLATO IV was released and Bitzer declared that the

final incarnation of the PLATO series was a success. He claimed that PLATO IV was �a

large-scale system, which, even in a prototype version, would be justifiable in economic

terms.�13 Bitzer attempted to justify the expense of the PLATO system by measuring the

cost of traditional instruction in a unit he called a �student-contact hour.� A student-

contact hour is a measurement of time the a student receives instruction, so a teacher in

front of a class of fifteen students is delivering 15 concurrent contact hours.

CAI on systems like PLATO proved to be effective, but very expensive relative to

the education of one student.14 However, when the cost of the system was spread out

among many users, it could be compared to traditional instruction. Bitzer noted in 1970

that �presently available CAI systems � entail total costs which range between $2 and

9 Ibid..
10 Ibid..
11 Ibid..
12 Ibid..
13 Ibid..
14 D. Alpert and D. Bitzer, �Advances in Computer-Based Education� in Science New Series, vol. 167, no.
3925 (1970): 1583.

 7

$5 per student-contact hour� which includes the costs of student consoles, the central

processing unit and management services related to the computer.15 These figures were

roughly ten times the cost of hiring a teacher to do the job.16 In order to bring the price

per student-contact hour down for the PLATO system, Bitzer tried to spread the cost of

the system across as many users as possible. PLATO�s developers designed the system

to support thousands of users, and allowed other mainframe computers to dial in to share

the software. The PLATO team even custom-built their own student stations to save

money instead of using commercially available products.17 PLATO was flexible enough

that it could be used for many different disciplines. In fact, by 1970, Bitzer commented

that it was used in twenty different disciplines.18

By 1975 Fred Hofstetter had developed an entire aural skills curriculum for

PLATO.19 GUIDO (Graded Units for Interactive Dictation Operations) presented the

student with an answer form, played a musical example, and then asked the student to

answer questions about a musical example.20 The software let the instructor print weekly

reports on student progress, and allowed the instructor to adjust the level of difficulty for

each individual student.21 The software delivered examples to the students that were at

the level the teacher had assigned.22

GUIDO not only helped drill music skills, it helped researchers study how

students learned. Hofstetter said in 1981, �When the GUIDO project began it had not yet

15 Ibid., 1586.
16 Ibid..
17 Ibid., 1587.
18 Ibid..
19 Fred Hofstetter, �Applications of the GUIDO System to Aural Skills Research 1975-80� College Music
Symposium, 21 no. 2 (1981): 46.
20 Ibid..
21 Ibid..
22 Ibid..

 8

been determined how effective computer-based delivery was, compared to other forms of

music instruction.�23 Because of this, Hofstetter needed to discover if his system was

effective or not. His first experiment with the GUIDO system compared student ear

training using GUIDO with student ear training using the traditional tape laboratory.24

Results showed that students learned better using GUIDO than from the tape lab, so the

University of Delaware replaced its tape lab with a computer lab.25 This initial study

legitimized GUIDO and showed how powerful a research tool CAI could be.

Hofstetter conducted more experiments using GUIDO. Three of these studies

were designed to determine patterns of errors in student dictation exercises.26 The first

study tested for confusion patterns in harmonic dictation.27 The students were presented

with harmonic dictation examples.28 They could move through the examples at their own

pace, listening to musical examples and choosing their answer on a touch sensitive

screen. When they answered incorrectly, the software saved their incorrect responses, as

well as the correct responses. Hofstetter used this data to determine that students have

seven confusion tendencies for harmonic dictation: bass line confusion, wrong inversion,

confusion of chord function, wrong quality, unperceived sevenths, unperceived roots, and

favorite responses.29 Hofstetter�s study allowed him to better understand student

problems in perceiving the harmonic exercises and adjust his curriculum to address the

confusion tendencies.

23 Ibid., 47.
24 Ibid..
25 Ibid..
26 Ibid., 48.
27 Ibid..
28 Ibid..
29 Ibid., 49.

 9

Hofstetter�s second study using GUIDO examined student confusion tendencies

in identifying chord qualities and inversions.30 This experiment showed that students

usually confused major chords with other major chord inversions, minor chords with

other minor chord inversions, and augmented and diminished chords with each other.31

Hofstetter used this particular study to dispel the commonly held belief that a major chord

in root position is easiest for students to identify.32 His data showed that students most

accurately identify a minor chord in root position.33 The results of this study are

significant because they show how a research tool like GUIDO can improve a teacher�s

understanding of how students learn.

Hofstetter�s third study looked for confusion patterns in rhythmic dictation.34 The

experiment showed that students confused simple note rhythms (quarter, half, and whole

notes) with other simple note rhythms, and eighth, syncopated, and triplet rhythms with

simple note rhythms.35

It is important to note the power that GUIDO gave Hofstetter as a researcher.

Since students using GUIDO could work through the material at their own pace and on

their own schedule, Hofstetter needed only to step back and allow them to do so. The

computer allowed Hofstetter to collect a large amount of data and analyze it easily. To

conduct the same experiment with manual methods, it would be necessary for a teacher to

administer many tests to his students using a piano and prepared answer sheet, and then

take hours to either enter the data into a computer or analyze the data by hand. GUIDO

30 Ibid.
31 Ibid..
32 Ibid..
33 Ibid..
34 Ibid..
35 Ibid..

 10

automatically saved the correct and incorrect answers to a database for easy statistical

analysis.36

GUIDO was not the only music curriculum written for PLATO. MUSFUND,

written by Dorothy Gross and Roger E. Foltz in 1979, also operated inside the PLATO

system. 37 MUSFUND was a collection of computer lessons that targeted music

fundamentals and theory rather than aural skills.38 MUSFUND consisted of �twenty

drills and two practice tests and [included] music notation, scales, intervals, chords and

terminology.�39 The MUSFUND project was designed to determine if music CAI could

effectively fill the need for good music fundamentals instruction.40

Gross and Foltz implemented the MUSFUND software at the University of

Nebraska and the University of Minnesota in two different ways. At Nebraska the

software was integrated into the regular curriculum, while at Minnesota the software was

optional coursework outside of the regular curriculum. Gross and Foltz prepared a pre-

test/post-test study and conducted exit interviews with the students.41 They compared

scores and interviews of CAI and non-CAI music fundamentals students and found that

students who used MUSFUND showed higher degrees of comprehension of music

fundamentals than those who did not.42 Further evaluation of the results revealed that the

rate of student attrition dropped when the software was used in the curriculum.

36 Ibid..
37 Dorothy Gross and Roger E. Foltz, �Ideas on Implementation and Evaluation of a Music CAI Project�
College Music Symposium, 21 no. 2 (1981): 22.
38 Ibid., 23.
39 Ibid.
40 Ibid., 24.
41 Ibid.
42 Ibid.

 11

Rosemary Killam conducted several significant studies using CAI on

microcomputers while at Stanford University. In one study, she used a PDP-10

timesharing computer system to study whether note length (the note durations were .1

and .2 seconds) had any effect on student performance in interval recognition.43 She

showed that note duration made little difference in the accuracy of interval recognition.44

In a similar study on triads, she found that duration of tone (.1 and .2 seconds) was a

factor in triad quality perception. Also, the mode of triad presentation, as chords,

ascending arpeggios, and descending arpeggios, impacted how students performed.45

In 1984 Rosemary Killam stated that the requirements of music CAI are �sound,

real-time interaction, individualization, student records and research.�46 Her

requirements for music CAI show a balance between the needs of the student (sound,

interactivity, individualization) and the needs of the teacher (student records, research).

Sound is an obvious requirement for music software, and sounds that are as close to

�real� as possible help the students transfer their skills and knowledge in the real world.

The software must also interact with the student in a manner that gives the user a sense of

control, while at the same time presenting appropriate information and responses to keep

the student progressing through the material. The software must be able to

�individualize� content based on the progress of the student; the software must allow the

teacher to assign tasks to certain students.

43 Ibid.
44 Ibid.
45 Rosemary Killam, Paul V. Lorton Jr, and Earl Schubert, �Perception of Triads� unpublished research
paper, Stanford University, 1975.
46 Rosemary Killam, �An Effective Computer-Assisted Learning Environment for Aural Skill
Development,� Music Theory Spectrum 6 (1984): 53.

 12

Record keeping is an important task for CAI software. By building software that

keeps records, teachers can not only evaluate how their students are progressing though

the software, but also evaluate where students have the most difficulty with the software.

Killam argues that this kind of ongoing research should be a part of good CAI.47

Research on how students use software should allow teachers to recommend or

implement changes to the software. For instance, if a significant number of students

consistently perform poorly on one exercise while performing well on others, the teacher

can examine the exercise that causes them difficulties to find ways to improve it. The

teacher can then change some aspect of the program and study whether those changes

make a difference in student performance.

Kuhn, Killam, and Lorton discussed how computers are necessary and effective

research tools for the largely unexplored realm of music education.48 They state:

Music, although a traditional and historical area of formal education, has
many areas awaiting systematic exploration. The amount and precision of data
required for research in these areas necessitates a computerized system. �

With the musical sound presentation under computer control and with the
system monitered [sic] and recorded in detail, precise research and flexible
instruction are made feasible.49

The computer allows music, a subjective medium, to be studied objectively. The data

collected by the computer can be used to understand how students learn music. Better

understanding of student perception helps teachers create more effective teaching

strategies.

47 Rosemary N. Killam and others, �Research Applications in CAI� College Music Symposium, 21 no. 2
(1981): 37.
48 Paul Lorton Jr., Rosemary Killam, and Wolfgang Kuhn, �A Computerized System for Research and
Instruction in Music� Computers in Education: Procedings of the IFIP 2nd World Conference, 1975.
49 Ibid.

 13

The PC and New Technology

During the 1970�s, as computers were becoming more common, researchers

started writing articles discussing how to build CAI systems.50 These �how-to� articles

were new to the community, and reflected a shift in scholarly publication away from

research. By sharing their thoughts on their own software development cycle, researchers

shared the knowledge they gained from building the software with new CAI

programmers.

Computers became much more commonplace in the music school with the

introduction of the personal computer (PC), and the audience for CAI grew because of it.

PCs allowed users to build and use software with relative ease. Researchers who had

used mainframe computers to conduct research could implement their software on PCs

for less money, and they had a potentially larger audience for their software, but they lost

the centralized data collection that mainframe computers used. For CAI researchers who

were used to the centralized data storage of mainframes, this was a serious impediment to

experimental design. Programmers had to deal with the data storage hurdle, or write

software that did not save data. Some programmers authored how-to articles, while

others started selling their software to the burgeoning PC market. Research was

becoming less of a focus for the CAI community.

50 Killam contributed several of such articles, including:
Paul Lorton Jr., Rosemary Killam, and Wolfgang Kuhn, �A Computerized System for Research and
Instruction in Music� Computers in Education: Procedings of the IFIP 2nd World Conference, 1975;
Rosemary Killam, Philip Baczewski and Antoinette Corbet, �Research Applications in Music CAI�
College Music Symposium 21 no. 2 (1981);
Rosemary Killam, �An Effective Computer-Assisted Learning Environment for Aural Skill Development,�
Music Theory Spectrum 6 (1984).

 14

PCs were of several different types, and many were not compatible with other

kinds of PCs. This meant that some programs could only run on certain kinds of

hardware. According to G. David Peters, �the perplexing question of what computer to

adopt became a major issue for the educational community.�51 The music community

was split into factions, each rallying around a particular type of computer and the

software that ran on it. Apple computers gained a following due to their graphics

capabilities and ease of use. The Macintosh computer, with built-in sound capabilities,

emerged to replace the Apple IIe in the mid 1980s.52 Most PCs, including the Apple IIe,

included everything the programmer needed to start developing software, including a

programming language, like BASIC or HyperCard.

BASIC (Beginner's All Purpose Symbolic Instruction Code) was a commonly

used programming language that came pre-installed on computers from Apple, IBM, and

Commodore. 53 It used an English-like syntax and was fairly easy to understand. BASIC

emerged in 1964 and was used commonly in micro- and mini-computer programs, so

much of the body of knowledge learned by programmers using BASIC on a mainframe

could be transferred to the PC. Since BASIC was in common use on many machines for

a long time, software written for PC in BASIC was fairly mature compared to the age of

PC technology.

HyperCard was another very prominent language in CAI development. Like

BASIC, it used an English-like syntax for source code, but it ran only on Macintosh

51 G. David Peters, �Music Software and Emerging Technology� Music Educators Journal 79 no. 3 (1992):
24.
52 Ibid..
53 Gary Wittlich, John Schaffer and Larry Babb, Microcomputers and Music (Englewood Cliffs, NJ:
Prentice Hall Professional Technical Reference, 1986), x.

 15

computers. Released in 1987, it gained rapid adoption because of its integrated media

capabilities and ease of use. Users could build HyperCard applications to display

information or manipulate data. HyperCard applications utilized the familiar Macintosh

graphical user interface, so they were visually appealing with only a little work.

In 1983, at about the same time that the PC was gaining momentum, digital

keyboard manufacturers agreed on a set of standards for describing musical events in a

digital format: Musical Instrument Digital Interface (MIDI).54 MIDI is designed to

enable a computer to communicate with electronic instruments. MIDI became very

successful since it effectively defines a musical language for electronic equipment,

allowing a computer to communicate a broad range of external devices. MIDI is

platform independent, and also allows for musical input to the computer from MIDI

devices.

Though MIDI�s original target was the music production industry, it found many

willing users in music CAI development. G. David Peters first used MIDI in conjunction

with computerized music instruction in 1984.55 Peters� software, called Keyboard Blues,

used a MIDI keyboard and worked with both IBM/DOS and Apple computers.56 Peters

reported that more than 50 programs using MIDI for music instruction were released in

the eight years (1984-1992) following the release of his software.57 The 1980s saw a

huge increase in the number of music CAI programs that were produced and distributed.

54 Peter Webster, �Historical Perspectives on Technology and Music� Music Educators Journal 89 no. 1
(2002): 38.
55 G. David Peters, �Music Software and Emerging Technology� Music Educators Journal 79 no. 3 (1992):
22.
56 Ibid..
57 Ibid..

 16

Despite the growing number of CAI programs since the advent of the PC, the use

of CAI for research purposes has become less frequent since the early to mid 1990s. It is

easiest to see the trend towards less research by examining the number of dissertations

published that use CAI for research. Another indicator of diminishing research is the

frequency of publication of research findings in scholarly journals.

The frequency of CAI oriented dissertations is shown in Figure 1. The data for

Figure 1 was collected from the Dissertation Abstracts database OCLC FirstSearch. The

following search terms were used: �kw: computer and kw: music and kw: instruction.�

The search yielded 187 records that were filtered manually to make sure the data was

relevant to CAI research in music. It was discovered that 88 relevant dissertations were

left. These were grouped chronologically to develop the graph shown in Figure 1. The

data for this graph and the search results are shown in Appendix A. The graph in Figure

1 shows a bell curve, with the most research being published between 1989 and 1993.

The earliest dissertation shown on the graph is from 1969, and research increased in

frequency in the two decades following that point. In 1989 and in 1993 there were 6

dissertations published that used CAI for research. The frequency of dissertations on

music CAI diminishes after 1993 but does not completely disappear. The graph indicates

that as computers became more popular and widespread, research increased. However,

after 1993 there were fewer dissertations published per year that used CAI in music

research.

 17

N
um

be
r o

f A
bs

tra
ct

s
pe

r Y
ea

r

0

1

2

3

4

5

6

7

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

Figure 1: CAI research dissertations per year

Another indicator of how CAI research is diminishing is the amount of attention it

receives from music organizations. For example, in 1981, the College Music Society

(CMS) dedicated an entire issue of their journal to CAI and research. However, since

then the CMS has not repeated this act, nor have they focused on computers in research.

Likewise, The Journal of Music Theory published several articles on CAI in the 1960�s

and 1970�s, but none afterwards. Music Theory Spectrum printed a number of articles on

CAI in the mid to late 1980�s, and a fair number of software reviews. However, after that

the amount of CAI research to appear was limited. Music Theory Online, founded in

1993, has no articles on CAI or computer music instruction. The Association for

Technology in Music Instruction (ATMI) holds annual conferences, but the focus of the

 18

presentations is more geared towards how-to than presentation of research findings.58

Finally, the Special Interest Group for Computer Uses in Education, which published

many research and how-to articles on uses of technology in the classroom (not

specifically music related), was disbanded after 2001.

Many of the more recent articles about CAI are reviews of functionality and user

interfaces, and do not discuss CAI�s current research potential. For example, Deron

McGee�s 2000 survey of aural skills software notes how research in cognitive science

from the past two decades helps music teachers understand how students perceive

music,59 and he even states that the future of aural skills instruction relies on conducting

research and integrating it into music teaching materials.60 Yet, in his discussions of each

of his four reviewed software packages he never mentions how the software has been or

can be used for research. He focuses on how the software looks, how the teacher can use

it to assist instruction, and whether or not the software supports various technologies like

USB.

Current Music CAI Software

There are many CAI programs available today; two of the most widely distributed

and respected programs are MacGamut and Practica Musica.61 Practica Musica was

released in 1987 by Ars-Nova Software, LLC.62 It includes exercises in dictation as well

58 Conference schedules for 1999-2005 are available at http://atmionline.org/index_conf.html.
59 Deron McGee, �Aural Skill, Pedagogy, and Computer-Assisted Instruction: Past, Present, and Future,�
Journal of Music Theory Pedagogy 14 (2000): 115.
60 Ibid., 134.
61 Deron McGee, �Aural Skill, Pedagogy, and Computer-Assisted Instruction: Past, Present, and Future,�
Journal of Music Theory Pedagogy 14 (2000): 115.
62 Ibid.

 19

as theory, and employs a mastery model for drill and practice.63 Ann Blombach released

MacGAMUT only a year later, in 1988.64 MacGAMUT includes drills for aural skills

using the mastery model.65 Both packages were originally written for the Mac platform,

though both now run on both Macintosh and Windows.66 Each program offers built-in

sounds as well as MIDI for listening to musical examples.67 The most important feature

of both programs is that they save data to allow teachers to assign letter grades and make

sure that students are progressing through the computer curriculum.

However, even though MacGamut and Practica Musica save data on student

performance, no academic research has been performed using either program. The lack

of research is largely due to the way the software is setup and marketed. Researchers

cannot legally modify the software to trap new data, and the programs do not offer tools

to examine the existing data. The data saved by both programs are in a proprietary

format and standard data compilation tools cannot read their formats to access the stored

data.

The Internet and New Standards

In recent years there have been some important technological developments,

including the Internet, open source, and database solutions for data storage. The Internet

enables people to communicate instantly over distances, allowing new social groups to

form, and new ideas to be shared. Because of its popularity, the Internet has helped drive

63 Ibid.
64 Robert Skinner, �Music Software,� Notes, 2nd Ser., Vol. 45, No. 3. (1989): 537.
65 Deron McGee, �Aural Skill, Pedagogy, and Computer-Assisted Instruction: Past, Present, and Future,�
Journal of Music Theory Pedagogy 14 (2000): 115.
66 Ibid..
67 Ibid..

 20

the price of computer hardware down as well, allowing almost anyone to use computers.

The volume of traffic on the web created a demand for centralized data storage programs,

called databases, to keep track of web users� information. New technologies and

approaches have arisen to meet the needs of Internet users and providers., including open

source software and database technology.

Open source software is a number of things. It is a methodology for producing

software with public program source code. It is a label for the software produced by the

process. And finally, it is the name of the social movement that produces and distributes

the software. Open source software is free to download, use, modify, and distribute. The

source code is available so that other people can modify it or improve it, and give the

improvements back to the community. Open source software is usually released under a

license agreement like the General Public License (GPL), which effectively makes the

software source code public property. The conditions of the GPL allow anyone to view

and use the code under the condition that they do not sell it or claim it as their own

property.

Open source software development has flourished because of the communication

channels provided by the Internet. Programmers can email other programmers, post their

completed work to websites, and download other people�s software to see how it is built.

The open source movement has produced software that powers most of the Internet,

including the Linux operating system, the Apache web server software, languages like

PHP, and data storage programs like MySQL.

Data storage is important on the Internet, so powerful data storage mechanisms

have arisen to meet the need. Web applications track millions of pieces of data, including

 21

user logins, security codes, and content. Programs like MySQL, MS SQL Server, Oracle,

and PostGreSQL use a standards-compliant language called Structured Query Language

(SQL) to insert and retrieve data. SQL allows programmers to manipulate data the same

way in every database. Extensible Mark-up Language (XML) is another important data

storage and manipulation standard. It is a way of building a self-describing data storage

format using plain text files.

The Internet provides new tools and languages for running software on most kinds

of computers. Most modern computers support a web browser, and web browsers are

designed with standard capabilities, like rendering HTML into viewable pages. Web

browsers also support plug-ins like Java applets and Flash programs that can play

movies, mp3 files, and MIDI files. Cross-platform media capabilities and centralized

data storage offered by web applications help overcome some of the problems that PC

programmers and researchers encountered before the Internet.

The idea of taking advantage of both the power of distributed and centralized

computing has resulted in some interesting web applications for music education.

Websites such as MusicTheory.net deliver tutorials, drills, and utilities for learning music

fundamentals and music theory. MusicTheory.net does not track student performance or

activity over the long term, and is limited to tracking performance for each exercise.

eMusicTheory.com allows teachers to establish virtual classrooms for their students, give

out simple theory assignments, and have the computer grade the assignments. The

eMusicTheory.com software can be run from the website or downloaded to run offline,

giving the student a chance to practice at home without an Internet connection. The

software is cross platform, and integrates with the MIDI capabilities of modern

 22

computers. eMusicTheory.com collects student usage information automatically for the

teacher, including score, time required, and who has completed the exercises. When used

from the website, the software saves all the information to a database so that teachers can

view reports later on.

eMusicTheory.com presents and interesting possibility of delivering CAI over the

web, but it has some drawbacks. The program cannot be easily modified to trap different

data, and the raw data is not made available through the web interface, so it does not offer

any research opportunities to its users. eMusicTheory.com also has technical and

logistical flaws in its user interface, so people are not likely to adopt it. For instance, the

MIDI compatibility is not completely cross platform, and the administrative interface is

not intuitive or self-explanatory.

While CAI seems to have made steady inroads into the music school, it also has

lost its power as a research tool. Early CAI was tied to research, and the information

gained from early CAI research was important to the music community. Early CAI

pioneers proved the value of research for the music community, indicating CAI that does

not promote research does not serve the best interests of the music community. While the

current CAI market supports a number of commercially successful programs, there has

not been a lot of new growth or innovation in the past decade in CAI. To further

understand the problem faced by CAI users and researchers, we must understand how

people develop, distribute, and use CAI software.

 23

Chapter 3: CAI and Society

Electronic technologies and the industries that supply them, are not simply the
technical and economic context within which �music� is made, but rather, they are among
the very preconditions for contemporary musical culture.68

- Paul Theberge

Introduction

The use of computers in music instruction creates a complicated and rich social

framework for gathering and sharing information. The early adopters of computers in

music education shared new ideas through articles and conferences, and adapted existing

technologies to create new ways of teaching and learning. In examining the past, the

important issue is not the hardware, or the software itself, but how people chose to use

computers in music education, and how they shared that information with others.

Different groups of people adopted varying technologies to meet their needs, and in doing

so gave the technology meaning and life.

CAI was also important to music schools because the early adopters legitimized

its use through research. The lessons the early CAI programmers learned impacted what

features were built into new CAI, how that CAI should be used, and who should use it.

In the early days, the context of music CAI software was that of exploration, cutting edge

science, and improved pedagogy. The future was filled with promise. CAI developers

took advantage of many different kinds of technology like MIDI to improve and bring

new meaning to their software. With time and changes in computer culture, CAI became

a commercial product and research became less of a concern for CAI developers.

68 Paul Theberge, Any Sound You Can Imagine: Making Music/Consuming Technology (Hanover, NH:
Wesleyan University Press of New England, 1997), 151.

 24

Research was still an important aspect of academic music culture, but because of larger

societal pressures CAI was no longer viewed as a research tool.

This chapter addresses the social pressures that changed CAI into a commercial

product. Among the social forces at work are the changes in computer culture over the

decades, the fact that music CAI programmers are often music theory professors, and the

loss of knowledge due to technology obsolescence. People have come to use CAI in

specific ways because of changes in society, the demands placed on music teachers who

develop software, and the volatility of computer knowledge, hardware, and software.

Modern CAI software offers effective pedagogy based on the research conducted

decades ago, but it does not allow researchers to capture new data. For example,

MacGamut, a well-known and widely used CAI package, does not allow researchers to

save new data to see how students use the software, nor does it allow researchers to

examine the data captured in new ways. 69 Students and teachers can only use MacGamut

in specific ways, limiting opportunities for researchers to try new ideas.

Since modern CAI developers do not set out to limit research opportunities for

others, there must be other forces shaping the development of CAI over the years, outside

of the developers� desire to create software. Some of these cultural forces are rooted in

the way music teachers teach, the programming tools and languages that are available,

and the way musicians view computers.

69 According to Melba Leyshon of MacGamut Software, Inc. in an email to author (November 4, 2005),
MacGamut enjoyed distribution of 25,000 copies in 2005 alone.

 25

The Culture of CAI Development

Development of PLATO or other mainframe software in the 1960s practically

demanded a long-term structured approach, since the resources required to develop

mainframe CAI applications were so great. A single individual simply lacked the time,

knowledge, and money to put together the entire system alone, so formal processes

evolved to communicate system parameters and results of tests to other team members.

The PLATO project required a staff to install, configure, and maintain all of the hardware

and software the machine used, and Bitzer even had a staff of engineers to develop plans

and working models for the student workstations.70 To work with the varied groups of

engineers, support staff, programmers, and testers, Bitzer must have devised a process for

directing the project personnel and communicating his plan. Every project involving

more than one person has a communication and management structure. Bitzer did not

publish descriptions of the group dynamics of his project, but given the longevity and

success of the PLATO project, we can be assured that there was some successful

structure in place.

The advent of the PC in the late 1970s changed how software was developed.

Hobbyists could write PC software on their own computer. A single person could

embark on a software project with little planning, and a relatively modest budget. The

CAI production process became less of a group effort, and less structured. Many

programmers failed to give adequate attention to the planning process, and did not

70 D. Alpert and D. Bitzer, �Advances in Computer-Based Education� in Science New Series, vol. 167, no.
3925 (1970): 1583.

 26

manage their projects well.71 As a result, the increasing number of CAI programs

released to the public were of poorer quality. Many of the programs, written in BASIC or

HyperCard, were designed for personal use, not for research or publication.

Programmers who produce music CAI are often music teachers. There are three

inherent problems with the �music teacher as programmer� model. First, few music

teachers have a significant background in software development, having spent their

formative years practicing and studying music. Second, few music teachers have an

abundance of time on their hands to handle teaching and all of the tasks involved in

bringing a successful software product to completion, including software design, project

management, software development (coding), quality assurance, marketing, and support.

Finally, most schools of music do not provide an environment conducive to software

production.

Music teachers rarely have any formal training in software development. Many

are drawn into CAI programming to help their students, or out of personal interest.

Research by Steve McConnell shows that even highly trained computer programmers

often lack the knowledge and skill to successfully bring a project to completion.72

According to McConnell, successful software production takes experience more than the

ability to write program code: it takes good planning and management, and adherence to

software development processes that are proven to reliably bring software to

71 Steve McConnell, After the Gold Rush: Creating a True Profession of Software Engineering (Redmond,
WA: Microsoft Press, 1999), 4.
72 Ibid., 11.

 27

completion.73 Therefore, in order to successfully produce software, the CAI developer

needs experience, project management skills, discipline, as well as the ability to program.

Steve McConnell claims that 75% of software projects use something called code-

and-fix development because they lack discipline, planning, and good management.74

Code-and-fix development is a programming style in which a programmer undertakes a

software project with inadequate planning, resulting in frequent fixes and changes of

scope. Code-and-fix programming results in a high risk of project failure, longer

timelines, and poor program code.75 This approach to programming is widespread

because it provides a false sense of progress. The programmer can see working code

early on in the process, but the lack of planning involved in code-and-fix programming

ends up costing large amounts of time later in the project as portions of the program need

to be rewritten to accommodate changes. More experienced software companies like

Microsoft or IBM reduce their risk of failure by resisting the urge to produce code before

they have a clear plan. Music CAI developers, struggling to show progress in their CAI

project, often do not avoid this trap. By making this mistake, they cost themselves

valuable time and money.

Music teachers often lack the time in their schedules to spend huge amounts of

time on a software project. Producing software is time consuming, and college music

teachers are subject to the same duties as other faculty, including teaching, scholarship,

and research. During a software project, the initial phases of software production,

including gathering requirements, designing data structures, and planning the execution

73 Ibid., 20.
74 Steve McConnell, After the Gold Rush: Creating a True Profession of Software Engineering (Redmond,
WA: Microsoft Press, 1999), 11.
75 Ibid..

 28

of the project, takes many man-hours. The whole project, including planning, coding,

testing, quality assurance, and implementation takes substantially more time. Even after

a software project has been completed and is being used, it may have problems that

require support hours, which takes time away from improvements and upgrades. Few

teachers can provide the kind of time it takes to develop and support a successful

software project along with their other teaching duties. In order to complete the software

successfully, the CAI programmer must either be extremely knowledgeable and efficient,

must cut corners, or must have help.

Music departments rarely have more than one or two people who know how to

program computers. The music teacher/programmer might have a colleague who has

some technical ability, but it is rare for him to find a colleague who can help develop

software. Music schools also do not offer experienced project managers to support the

CAI project. So the entire workload lies on the shoulders of the teacher/programmer,

making it more likely for him to run over time and budget by a wide margin.

The final problem with the aural skills teacher as programmer model comes from

the duty of faculty members to �publish or perish.� College teachers are not only

required to teach, but to write for scholarly journals, publish books, and contribute their

knowledge to the college community. The teacher/programmer can publish his software,

or articles about his software in journals or in a book. These publication about CAI as a

teaching tool removes the focus from research. CAI becomes a product for teaching and

publication, but not for research.

 29

Software as a Product

When CAI software is finished, it can be sold to recoup some of the costs of

development. There are two avenues for selling CAI: publishing it through an

established publisher, or selling it on his own. While college tenure committees look

upon publication through a reputable publisher more favorably, both paths have

implications for the software and for the programmer.

Some CAI developers choose to distribute their software through traditional

textbook publishing companies. Publishing companies, especially textbook publishers,

actively try to find new ways to sell more books. One way they do this is to pair software

with an existing textbook. This pairing often makes sense in terms of pedagogy, since an

existing textbook can provide tested and proven materials, while the CAI can provide

drills and homework. Programs like Computer Assisted Software Project for Aural Skills

Reinforcement (CASPAR) and Music for Ear Training coordinate with established ear-

training textbooks.76 By pairing software with a textbook it has a double effect on the

legitimacy of the software. It strengthens the legitimacy since the software is paired with

a prominent textbook, but it also weakens the legitimacy since the software is seemingly

an add-on to the textbook. This arrangement can be positive for the programmer since

most of the work of distribution and marketing is taken care of by the publishing

company, but the publisher can discontinue the software if it does not improve book

sales.

If the CAI programmer decides to market the software on his own, he becomes

not only a programmer, but also an entrepreneur. With this arrangement he must manage

76 Leo Kraft, New Approach to Sight Singing, 2nd Edition (New York: W.W. Norton) and Benjamin,
Horvitt, and Nelson, Music for Sight Singing, 3rd Edition (Belmont, CA: Wadsworth)

 30

business aspects like advertising and budgeting, in addition to programming, support, and

academic duties. The software changes status from research project to business

development, and the software�s viability is tied to making money. Having two jobs at

once puts the teacher/programmer in an awkward position, since his or her academic

duties are not lessened. Even if the software successfully provides good instruction to the

students and eases the teaching workload, the instructor is still obligated to teach, conduct

research, and publish while running the software business.

Ann Blombach, who wrote MacGAMUT, was a college music teacher before she

retired. She created MacGamut Music Software International long before she retired to

help her sell her software. By forming her own company instead of using a traditional

publisher, she took on many of the challenges of distributing software. However, she

also was able to hire extra help and shift some of the pressure of software development,

marketing, and distribution off of her own shoulders. A software company can focus on

the business of producing software, and does not deal with teaching and scholarship like

college teachers. Software companies hire software specialists and project managers to

make the process of developing software more streamlined and stable. The software

company can even suffer the loss of a programmer and remain viable. Furthermore, the

software company is under no obligation, even implied, to share their technology with the

community at large. College professors must �publish or perish,� so much of the

research they perform is shared with the academic community, but a software company

can keep their methods and techniques secret.

When the teacher/programmer completes and distributes his software, there are

still some pitfalls to be dealt with. According to Michael Tiemann:

 31

The simplistic view of a software company is that once you've created some

software that people want to buy, the act of printing copies of that software and

distributing it is not unlike printing money: the cost of goods is negligible, and the margin

nearly perfect. � The concept of software support was seen as a degenerate by-product

of some flaw in the software product process, and that by minimizing software support

investment, one could maximize profits.

This not only frustrated users, but it was bad for the software as well. Features

that were easy to implement were often dismissed as "non-strategic." Without access to

source code, features that customers would otherwise be able to implement themselves

remained points of speculation and contention. And ultimately vendors (and their

marketing departments), not customers, defined the arena of competition with a myriad of

useless but easy-to-express features. Free market economics had been turned upside

down. 77

Tiemann�s experience showed that keeping source code hidden from the public actually

drove the market away from what the end users needed and wanted. This effect on the

software market can be seen in modern CAI: software reviews and articles focus on

features that have little to do with how CAI can be used to produce a better learning

environment, such as the attractiveness of the user interface.

Tiemann�s observations also are relevant in terms of technical support and

software upgrades. Software must be kept current so that it runs on current operating

systems, takes advantage of technical improvements in hardware, and adds features so

that users will pay for new versions. If these things do not happen, the software will

become obsolete. Software updates are an integral part of the software development

lifecycle, and are crucial to the adoption of software. According to McConnell, deciding

when to release software is not a matter of eliminating defects, but deciding how many

77 Michael Tiemann, �Future of Cygnus Solutions: An Entrepreneur's Account� in Open Sources: Voices
from the Open Source Revolution, ed. Chris DiBona, Sam Ockman, and Mark Stone (Sebastopol, CA,
1999), 77.

 32

critical, serious, or cosmetic defects are acceptable.78 Because of this, new software is

bound to have problems, and the programmer must release updates to fix the problems

and improve functionality.

The stress of producing and maintaining software can be enough to drive

programmers out of the software business. Without a programmer to support it, CAI

software becomes obsolete, and the ideas expressed in source code are lost to history.

Even commercial software programmers who specialize in writing software for software

producing organizations have a fairly high attrition rate due to stress, resulting in an

industry demographic dominated by the young, while older workers move on to less

high-pressure jobs in management or other fields.79

Open Source Software

The problems of programmer attrition and closed source programming create a

void of information for the CAI community, but open source programming offers a

solution. Open source software is released with all the source code, available for viewing

or changing, under the condition that no one can �own� the source code. People can

generally use open source software any way they decide to, modify it for their own

purposes, and distribute it so others can enjoy the improvements. Open source programs

can be shared among many different programmers, each working on a part of the

program that interests him. Sharing the workload not only relieves stress on

programmers, but it creates a more stable knowledge base. No longer does one person

78 Steve McConnell, Software Project Survival Guide: How to Be Sure Your First Important Project Isn�t
Your Last (Redmond, WA: Microsoft Press, 1998), 224.
79 Steve McConnell, After the Gold Rush: Creating a True Profession of Software Engineering (Redmond,
WA: Microsoft Press, 1999), 30.

 33

control all the knowledge of how a CAI program works. If a programmer does stop

working on the program, all of the source code that powers his section of the program is

available for someone else to pickup where he left off.

Many businesses, individuals, and even university computer science departments

have discovered that open source software allows them to maximize their investment in

software. Software like the open source Linux operating system has a tremendous

following from programmers who use it and contribute to it.80 Businesses adopt Linux

because they know that there are thousands of programmers improving it and supporting

it. Linux programmers add features that they themselves need and want, so the software

more accurately provides for users needs. Programmers benefit from open source

programs because they can study software code that is used in �production� business

systems to learn how it was built, and how to build their own.

The open source approach allows for the establishment of a freely available body

of knowledge for music CAI software developers. New programmers wishing to learn

how the program works need only examine the source code of existing applications.

Teachers wishing to study how students react to different instruction delivery methods

need only implement their new ideas on top of existing software.

One foreseeable difficulty in adopting open source practices in music CAI

development is the issue of ownership. Because many people see software as a tangible

good, they expect to pay a software company to use software. People expect the software

company to own the rights to the software, and to control access by locking down the

80 The name �Linux� is a reference to Linus Torvalds, the creator of the operating system kernel. Linux
stands for �Linus�s Unix.� Torvalds did not create the entire operating system. Independent contributors
built the rest of the operating system over the course of several years, which can more formally be called
GNU/Linux. GNU is a looping acronym meaning, �GNU�s Not Unix.�

 34

source code and charging users to use the software. However, there is a software-

licensing schema called the General Public License (GPL) that enables the public to own

software. The GPL outlines how any person can use and distribute the software and

source code. It is a legally binding licensing agreement that prevents businesses from

appropriating public code as their own, thereby protecting the integrity of open source

software. There are many software packages already available under the GPL, including

MySQL database server, Apache web server, and many varieties of the Linux operating

system.

Richard Stallman notes that since the 1980�s people expect software to cost

something, and as a result hesitate to adopt software that is free.81 This is not strictly true

on the Internet, where people routinely use web software like email without hesitation.

But for desktop software, Stallman�s statement is true. End users expect technical

support and updates from their software manufacturer to keep their software current, and

they have grown accustomed to paying for those things. They are uncomfortable

adopting software that is free because they expect to get what they pay for and are unsure

how long free software will be available or usable. In reality, open source software is

free, and some of it is very good, and is updated regularly to fix defects and improve

features.

The idea of ownership is also important because it is associated with the ability to

make money from the software. The software industry in general maintains fairly

stringent controls over their software source code. The theory is that if their source code

were to be put into the hands of the public, the software company could no longer charge

81 Richard Stallman, Free Software, Free Society (Boston, GNU Press, 2002), 35.

 35

money for the software. However, open source software can support profitable

businesses. Open source software businesses do not sell the open source software as their

own since it is public property, but they can offer value-added services like hosting,

distribution, custom programming, and support. They can even build and sell special

modules and features. For example, the Linux operating system is developed and

supported in part by companies that provide installation services, support, custom

modifications, and other services.

While existing CAI packages like MacGamut and Practica Musica limit research

opportunities in CAI, open source is an opportunity to change that. Open source can

provide researchers with free CAI tools to undertake studies. That research can be used

to improve the CAI and provide the best pedagogy possible. Open source software

distribution combined with the power of modern computers can give researchers

opportunities they do not have today. By developing a strategy to take advantage of the

exciting opportunities offered by open source, and by providing carefully developed tools

for researchers, it is possible to build CAI that both offers good pedagogy and research

opportunities.

 36

Chapter 4: Proposal for a Open Source CAI System

[The] greatest scarcity in the United States is not technical innovation, but rather
the willingness to work together for the public good. It makes no sense to encourage the
former at the expense of the latter.

�Richard Stallman82

Introduction

In this chapter a program called Mobius is proposed that is designed to deliver

music fundamentals drills and dictation exercises via a web interface, and distributed as

an open source program.83 Mobius will be made available under the GPL so that

researchers can download and modify the source code and contribute their ideas to the

music community as source code. This proposal discusses the goals of the software

project as well as who will build the software, what tools will be used, and how team

members will work together. Detailed storyboards displaying key elements of the

program will be shown. One of the key elements is a �data driller� that allows a

researcher to create custom reports from existing data saved in the software. By

providing researchers with powerful data extraction tools, the Mobius system can be used

for research purposes.

Mobius Software Goals

The Mobius software project has four goals. (1) to provide superior features and

functionality. (2) to be designed in such a way that researchers and new programmers

82 Richard Stallman, Free Software, Free Society (Boston, GNU Press, 2002), 124.
83 Mobius refers to a Mobius strip, a loop that has one continuous side. It was chosen because it symbolizes
a continuous loop of research and innovation in music CAI: research leads to innovation, and innovation
leads to research. There should be no boundary between the two.

 37

can quickly and easily modify and improve the program. (3) to be platform neutral, i.e.,

the software must be able to be delivered over the web. (4) to use centralized data

storage.

In order for Mobius to make a positive impact in research, it must have excellent

functionality so that people will want to use it. It should include a complete curriculum

for aural skills and music fundaments, including modules on written and aural intervals,

scales, chords, as well as melodic and harmonic dictation. The software should be

flexible enough to allow the instructor to configure and assign specific exercises to their

students.

The curriculum for Mobius should be modular. Each skill the program teaches

should be contained inside a program module that can be installed into the Mobius system

and configured the to behave the way the teacher wants. A module is a section of

program code that contains all of the instructions necessary to deliver drills or exercises

on a particular subject. For instance, an interval drill module would contain all of the

code necessary for the teacher to assign interval drills to students, the students to use the

drills, and the system to save their data. Each skill module should allow several input

methods. For instance, for intervals, scales, and chords students could either notate the

interval or identify the interval type from a list. Modules should also allow the instructor

to enter new examples to present different material.

The software source code should be well structured, well documented, and easy to

understand so that programmer can contribute new modules and new functionality to the

system. The source code should be divided into sections that make up components of the

software. For example, one segment of code controls the user interface, another

 38

communicates with the database, and a third segment that makes grading decisions.

Grouping similar code together is called n-tier software design. Each �tier� or layer

performs a specific function. Figure 2 shows how the tiers communicate with each other.

Each layer only communicates with the layer directly above or below it. The top layer,

the presentation layer, is the user interface code, and can only access data by

communicating with the layer beneath it. N-tier design keeps program code well

structured. All the database calls are in the bottom layer, all the complicated decision-

making code is in the logic layer, and the code that controls the user interface is in the

presentation layer.

All code will be documented internally and externally. Internal documentation-

comments inside the source code- helps the programmer understand what the code does.

External documentation- information in print and digital format- should include

information on how to use the software, how it works, how it is designed, and even

specifics on what various sections of source code do.

 Mobius should be cross-platform, MIDI compatible, have centralized data

storage, and utilize the Internet. To meet these goals, Mobius will be written in PHP and

Flash, and use MySQL for data storage. There is a plug-in for Flash called flashMidi that

allows it to take advantage of MIDI capabilities, making it an ideal solution for

developing a front end for web-based music CAI software.84 FlashMidi is open source,

so it is free to download and use. Flash movies can include the flashMidi component by

84 Personal website of Alexis Isaac, http://www.alexisisaac.net/products/flashMidi/. Currently, there is only
a functional version of flashMidi for PC, but the Macintosh version is in development and should be
released by late Summer 2006.

 39

Figure 2: N-Tier Software Design

 40

referencing it so that each module can use MIDI without having to include all of the

flashMidi source code.

Using the Internet and careful programming, Mobius will be cross platform.

Every major operating system supports at least one web browser. All the major web

browsers follow a set of standards for presenting HTML, and support the Flash plug-in.

By following HTML standards and using Flash programs, Mobius can run on most major

operating systems. In order to guarantee that the software works the same on every

machine, Mobius will include a routine to check the version of the web browser to make

sure it offers the needed features. If the browser is obsolete, Mobius will notify the user

they need to upgrade, and not let the user log in until they use a browser with the required

features.

Integrated security is another positive aspect to using the Internet to deliver

Mobius. If needed, Mobius can take advantage of 128-bit data encryption now in use on

the web. Data encryption is a way to make the communication between the web browser

and the web server completely private, and encryption technology is built right into most

web browsers, including Internet Explorer, FireFox, and Safari. Encryption is a

necessary feature for Mobius since the students need to enter a username and password to

get into their account, and the system will store personal information like grades.

Cheating is an important logistical and security concern in using the web for CAI

delivery. The Mobius software on the web server will support many users

simultaneously, and keep track of their respective identities. The software will require a

login from the users so that it can pull up their account from a web browser at any

location. This will not prevent students from accessing each other�s accounts, so a

 41

mechanism should be built into Mobius that allows scores collected at certain computers,

such as a lab, to count for test or homework grades. The students can take tests in a

supervised area for grades, but work at home for practice and homework. The system

will save data from exercises performed both inside and outside the lab for research

purposes. This mechanism will assure that students can perform the exercises in a

controlled environment and do not cheat, while still allowing them the freedom to work

from home.

Mobius: The Base System

Mobius� base system must manage students, teachers, and administrators, as well

as classes, modules, and all data related to student interaction. It will allow

administrators to install new modules, and manage teachers and classes. Teachers will be

able to login to manage their classes, view grades, and assign homework and tests.

Students who log into the system will be presented with exercises that have been assigned

to them and will be able to see a report on their progress through the exercises. The

system will also include a report generation tool called a data driller that allows

researchers to look at different reports and views of how their students use the software.

The administrator account will be a special account that has special powers and

special limitations. This account can control any other account that it creates, so student

and teacher records in the database will be marked with the unique identification number

of the administrator who created them. Assigning users to an administrator allows the

system to support multiple schools, since each school or location is assigned an

administrator. The administrator account will be limited in that it cannot also be a

 42

teacher account. If the system administrator is also a teacher in real life, he must create a

teacher account and log in to the software as that teacher to access his teacher controls.

The administrator functions and teacher functions are kept separate on purpose. The

teacher controls will be designed to make managing students and homework easy, while

the administrator controls will be designed to make managing teachers and classes easy.

When a teacher logs into the system, he or she will be presented with a tool called

the class manager to manage classes, homework and view grades. The class manager

gives the instructor the ability to create new students, group students into classes, and

assign homework to those classes. The class manger allows the teacher to select any

module installed on the system and configure it for the class that will use it. Figure 3

shows how the system allows them to create and manage their classes for a semester.

Adding a new class is as simple as entering a name. Classes are merely a way of

grouping exercises and students into logical groups.

Figure 4 shows the options a teacher has for configuring a class. He or she can

view and add students in his/her class, and setup the modules used for the class, like

interval or chord spelling. The instructor can give and edit assignments and view reports

on how the class and individual students are progressing. The reports are provided by the

data driller tool, which is described more below.

Figures 5 and 6 show how students are entered into the system and managed.

Underneath the user intuitive user interface, new records are created that allow new

students to use the modules and also allow information to be recorded and associated

with each student. The data driller tool can be used to generate reports on the students�

activity. The system can be configured to collect demographic information like age,

 43

Figure 3: Class listing (instructor view)

 44

Figure 4: Class controls (instructor view)

 45

Figure 5: Student listing by class

 46

Figure 6: Add new student dialog

 47

gender, and instrument/voice. This information can be mined in conjunction with other

variables like test scores or time taken to complete exercises in order to create reports and

statistical findings for publication.

Figure 7 shows how the instructor can give assignments. A list of assignments

already given is shown in the center panel, followed by a panel that allows new

assignments to be created. The system allows the instructor to name the exercise, set

start dates and due dates, and choose which module to use. Figure 8 shows the second

screen of the assignment creation process. The instructor will configure the module so

that it meets his needs. In this example, the instructor can change the interval drill

module configuration so that it focuses on various intervals, accepts partial credit, uses

various clefs, etc.

Teachers will be able to access the system data, view reports, and generate new

reports using a tool called the data driller. The data driller tool is a significant component

in the Mobius software because it allows access to captured data. Teachers can use the

reports to assess how their students are performing, or conduct research. The data driller

will allow teachers to create new reports based on criteria he or she chooses, and then

save the criteria for that report so it can be run again later. Reports can be designed to

show data from a certain time period, such as the Fall 2005 semester, or the current

week�s worth of data. The data driller will provide teachers with a flexible research tool,

and will hopefully show them how they can use CAI to perform research.

The reports generated by the data driller will be useful to teachers and

administrators alike. From a teaching standpoint, reports can be run to see in which

subjects students are succeeding or having difficulty. The teacher will be able to easily

 48

Figure 7: Existing homework and add new homework dialog boxes

 49

Figure 8: Configure a homework assignment dialog

 50

recognize students who need personal attention, and can tell if there is a particular set of

exercises in which all the students have difficulty. The instructor can verify that the

student has put appropriate amounts of time into understanding the material and intercede

if no new progress is being made. The system administrator can use reports to detect

technical problems in the system by viewing how students access the system, how often,

and for how long. For instance, a report showing that a student logged into the system

frequently in a short period could indicate that the student is having technical difficulties

and needs assistance. Researchers can use the data driller to access the system data to

investigate how students learn using the system. The data driller can produce reports

comparing various variables, including age, gender, or voice/instrument versus test scores

or the amount of time required to complete an exercise.

To create a report, a teacher will be able to log in to the system and select the

�Reports� option from the menu. Figure 9 shows an example of how the start screen of

the data driller tool will look. The screen lists existing reports that were created earlier.

To create a new report, the teacher must click the �Create New Report� link. Figure 10

shows the first page of the new report generator. Teachers will be able to access records

for this semester, all semesters, or choose which semesters from which the data is pulled.

Figure 11 shows the screen displayed when the instructor chooses to select which

semesters are mined for data. When the instructor selects the set of data he or she wants

to view, clicking the �Next� button will allow them to select which exercises will be

included in the report. Figure 12 shows the list of exercises for the semesters chosen.

The instructor can choose to select any of the exercises, but should be aware that different

exercises may be configured differently. Researchers should be take into account the

 51

Figure 9: List of existing reports (Instructor View)

 52

Figure 10: Choose data set for reports

 53

Figure 11: Select specific data sets for a report

 54

Figure 12: Choose the exercises reported

 55

potential confounding effects of differently configured modules and only generate reports

based on like data.

Figure 13 shows the next step of the report generation process. The instructor can

choose which data to include in his or her report. They can select multiple fields by

holding the select key down as they click fields with the mouse. The fields available for

the report will vary based on the modules reported in the data. Figure 13 shows a sample

of some of the generic kinds of data available for the report.

The final step of the report generation process, shown in Figure 14, is to decide

how to treat the columns selected on the previous page. Numeric columns can be

averaged or summed, for aggregate data. Comparison operators such as �Like� or

�Equals� can be used for both text and number fields to filter data. A �Group By� filter

can be used to organize the data.

Figure 15 shows the report generated after the organization and refinement page.

Shown are the columns, �Class,� �Name,� and �Time Spent.� The report is grouped by

�Class,� it is ordered by �Name� alphabetically, and �Time Spent� is summed and

averaged. The report shown in Figure 15 allows the teacher to see how much time their

students have worked on the system, and the average amount of time per session.

If the report is to the teacher�s liking, he or she can save it to the existing reports

collection so they can view it again later with the same data. Figure 16 shows the �Save

Report� dialog. Once a report is saved, it can also be modified to view other data. The

process is similar to that of creating a new report.

 56

Figure 13: Select columns for the report

 57

Figure 14: Organize and aggregate data

 58

Figure 15: Report results

 59

Figure 16: List of saved reports

 60

The various modules that deliver course instruction, drills, and exercises will be

administered from a central control panel called the module manager. The module

manager will provide an easy-to-use interface for the administrator to install and manage

modules in the Mobius software, and teachers to configure and use those modules. Part

of the module management system is available through the class manager, which allows a

teacher to enter new students, group them into classes, give assignments, and build

reports on student progress. The other part of the module management system would

only be available to a system administrator. The administrator module manager can

perform system-wide changes, and any changes made here would impact anyone who

uses the system, not just the students in one particular class. Figure 17 shows an example

of how the system lists installed modules, offers options for configuration, deletion of

modules, and installation of new modules.

When the system administrator wants to install new instruction modules for

teachers to use in their classes he or she can click the �Install New Modules� button and

be taken to the screen shown in Figure 18. The screenshot shown in Figure 18 shows

modules that are available for installation, whether from files that already exist on the

server, or modules that exist in a central repository in another location. Modules that

exist on the server will be installed and the system administrator shown a configuration

screen for the new module. Configuration screens for each module will be different, and

may even allow configuration at an instructor level. After the module is installed and

configured, the teachers who use the system will have access to the new module for use

in their classes.

 61

Figure 17: List of modules installed

 62

Figure 18: List of modules available for download from the central repository

 63

The Software Team

The Mobius software team will be comprised of volunteer programmers,

designers, and content specialists. These volunteers will be recruited by posting

advertisements on bulletin boards for music technology and music software, and email

listservs like that run by ATMI. Volunteers who join the project team will be able to

download the source code and volunteer for pending tasks. The team�s purpose is not

only to build the software, but also to promote adoption of the software, and build a

stable body of knowledge for open source CAI.

The Mobius team consists of a project manager, a software design team, coders,

quality testers, and technical writers. Often, people will do several of these tasks, like a

programmer writing documentation on the code he wrote. The project manager�s role is

to coordinate all the other team members and to assure that the project progresses on

schedule. The project manager also has executive authority on any changes to the initial

design, since changes to the design after coding has started usually costs a lot time. It is

the responsibility of the project manager to resolve any conflicts within the team, and to

make sure that each portion of the project is completed.

The design team will receive a list of requirements from the project manager and

create a technical design for the software. The project manager uses the design to

assemble a list of tasks for the project. Some tasks cannot be completed until some other

portion of the project is completed, so the project manager must assemble the task list

based on the sequencing of events. Once the order of tasks is determined, the project

manager can communicate the project needs to the coding team.

 64

There are software packages and websites available to automate the project

management process, such as TUTOS, WebCollab, and dotProject, and Sourceforge.net.

Project management software lets a project manager run a project through a website. The

project manger can add people to a project, assign tasks to them, keep a library of files,

and track the completed tasks. The programs allow the manager to build a virtual project

plan and keep track of what tasks are completed and how the project is progressing.

Programmers can log in to see their assigned tasks, make comments about their progress.

Sourceforge.net provides these services for free, and allows the public to see that status of

a project and download files that the administrator decides are public.

Project management software allows people to communicate and store

information in a standard location, but there is a different tool for sharing and managing

program source code between different team members. Source code control software

(also known as version control) like CVS, CVSNT, and MS SourceSafe is specialized

software that saves all current and previous versions of a program�s source code in a

central location. This makes it practically impossible to lose work once it is saved to the

repository. If a programmer wants to make changes to existing code in the repository, he

must check it out; similar to how a library operates. Other users cannot checkout the

same chunk of code until it has been checked back in. The version control software notes

who checked out the code, and allows the programmer to save his or her work

periodically. Once all changes are finished and approved, the programmer checks the

software back in to the repository, and the source code control software will allow others

to check it out. Source code control software allows a programmer to get all the latest

approved versions of code to assure that every piece of code is functional and complete.

 65

There are many different coding styles, even for programmers who use the same

language, so it is important for the project manager to declare coding conventions before

the project begins. Coding conventions are a list of rules that the programmers must

follow as they develop code for the project. Rules include how to name variables, how to

structure code so that it is consistent with other code in the project, and how the code is

organized structurally. Mobius will use the Gforge.net PHP coding conventions.85

Using Mobius

Since Mobius is web based, it must be installed on a web server before people can

use it. For those who have access to a web server on which to install Mobius, installation

begins with downloading the software from the project web page. The project website

will provide installation instructions and tools. For those who do not have access to a

web server on which to install Mobius, there will be two options. The Mobius project

website will include a demonstration version of the software so people can log in and see

how it works as teachers and students. People who wish to use the drills can log in as a

student and practice for free. However, because the site is for demonstration, the default

settings and data will be restored on a regular basis so this option is not practical for

classroom use. The second option is to sign up to use someone else�s installation of the

software. Since Mobius is delivered through the web, another music department or

individual who has the software installed can grant access to people in other locations.

For example, a large regional university could install and configure the software to

provide memberships for students and teachers at smaller local colleges for free, or for a

85 Gforge, CDE. �PHP Coding Standards.� http://gforge.org/docman/view.php/1/2/file2.html.

 66

small fee. The fee would help to pay for the hosting costs incurred for the software, like

bandwidth, technical support, or paying a specialist to maintain the server. By sharing

the software, larger schools can help defray their own costs for hardware and manpower,

while letting smaller schools use the software. The regional university could use one

installation of Mobius as an outreach program to make sure that students at smaller

schools are receiving appropriate pedagogy.

Programmers who want to work on the software, or who are just curious how it

works, can download it for free from the Mobius project website. Once Mobius is

downloaded and installed, the next step is for the programmer to familiarize himself with

the software, code, and documentation. The programmer can use the configuration tools

like the module manager and class manager to see how the software works, set up

exercises to see how they behave, and use the data driller to see what information is

captured by the system. Once the new programmer has a good grasp on what the system

does, he can examine the source code to see how certain aspects of the program work.

The programmer can make modifications to the Mobius software code to experiment and

learn. If he or she makes a mistake and cause the software to stop working, they only

need to reinstall it.

Programmers who develop new modules for Mobius can submit them to the

project website to be added to the module repository. Others can download and use

modules from the repository for their own purposes, including modification and

redistribution. Teachers and users can add features and improvements that they want to

use, and can share them with others. By enabling researchers to modify modules and

store new data, research opportunities open up. Data collected through the Mobius

 67

system can be used to determine what methods work best for web-based CAI delivery,

and those methods can be implemented for all to use.

A typical research scenario might ask a question such as; is there a relationship

between the time it takes a student to identify an aural interval and how accurately choose

the correct answer? The hypothesis could be that students who choose their answers

quickly are likely to have higher score, since they clearly know the answer. To research

this hypothesis using Mobius, the research can download and modify the standard

interval recognition module. The module already presents and scores interval drills, so

the only modification the researcher needs to make is to have it store the time it takes the

student to answer each question. Once the modified module is tested, it can be uploaded

and activated into Mobius. The researcher then must create a �homework� assignment

for students to access. The assignment can be integrated into an existing class, or test

subjects can be added to the system and given the assignment. At the end of the research

cycle, the researcher can use the data-drill to extract the raw data he needs for analysis, or

generate a report from the system.

Mobius can enable long-term research projects that other software projects cannot

address. Mobius can track students for their entire time using the software. If the

students use Mobius over the course of several years, a module that records the time for

students to choose an interval could detect changes in student ability over weeks, months

and semesters. By collecting information over the long-term, Mobius can help

understand trends in student performance.

 68

Chapter 5: Conclusion

Music CAI�s roots in research have provided a wealth of knowledge and good

pedagogy for today�s students. Since the days of early mainframes, computers have been

used to deliver musical instruction and study how students learn. The data collected in

those studies provided important knowledge for teachers, and allowed programmers to

develop software to deliver better music instruction. PCs allowed programmers to

distribute their music CAI software to many more people than was possible on

mainframes, and MIDI allowed PCs to interface directly with instruments and banks of

sounds. CAI improved rapidly in quality and capability, but the emphasis on research

began to wane.

Research became less of a focus in CAI development in the early to mid 1990s for

several reasons. First, closed source software distribution practices contributed to the

lack of research by preventing programmers from creating experiments based on existing

software. Second, CAI software came to be seen as more of a commodity than a research

opportunity. Third, the culture of the music school does not support software

development as research, only as publication. Research became less of a focus as the

music community focused more on the CAI product and the results that is promised in

the classroom.

Open source software can help to solve some of the problems of conducting

research in music CAI. It can provide CAI programmers a way of sharing technical

information and source code. Since no one can own the rights to open source software,

researchers and teachers can use it any way they wish, and the focus can be on new ways

to deliver instruction. Open source software development practices allow for a whole

 69

team of programmers, designers, and contributors to work together, spreading the

workload among many people so that the limitations of one programmer will not limit the

future of the software.

By using open source ideas, Mobius can become a powerful research and learning

tool. Researchers will be able to use and modify the program so they do not have to write

their own system from scratch. Other researchers will be able to use a similarly

configured Mobius as the basis for their experiments, incorporating the lessons learned by

others. Mobius will also allow people to build their own modules and share them with

others. It will enable a new generation of researchers to conceive and execute their music

CAI experiments with effective and tested tools. CAI programmers can build a body of

knowledge for CAI software, including effective and ineffective teaching methods,

effective and ineffective programming methods, and a stable body of public source code

that grows and improves over time. The body of knowledge created in Mobius using

open source development techniques will spark further research and produce new

teaching methods and improved pedagogy.

 70

Bibliography

 71

�An Advisory for Music Faculty and Administrators: NASM Standards � Technology� in

NASM Handbook 2003 � 2004, 84.

Alpert, D. and D. Bitzer. �Advances in Computer-Based Education� in Science New

Series, vol. 167, no. 3925 (1970): 1582-1590.

Cheney, Lynne V.. Tyranical Machines: A Report on Educational Practices Gone Wrong

and Our Best Hopes for Setting Them Right. Washington D.C.: National

Endowment for the Humanities, 1990.

Deihl, Ned. �Computer-Assisted Instruction: Potential for Instrumental Music Education�

Council for Research in Music Education bulletin vol. 15 (1969): 1-7.

Tiemann, Michael. �Future of Cygnus Solutions: An Entrepreneur's Account� in Open

Sources: Voices from the Open Source Revolution, ed. Chris DiBona, Sam

Ockman, and Mark Stone. Sebastopol, CA: O�Reilly, 1999.

Gross, Dorothy, and Roger E. Foltz. �Ideas on Implementation and Evaluation of a Music

CAI Project� College Music Symposium, 21 no. 2 (1981): 22-26.

Hofstetter, Fred. �Applications of the GUIDO System to Aural Skills Research 1975-80�

College Music Symposium, 21 no. 2 (1981): 46-53.

Killam, Rosemary. �An Effective Computer-Assisted Learning Environment for Aural

Skill Development,� Music Theory Spectrum 6 (1984): 53.

Killam, Rosemary N., Philip Baczewski, Antoinette Corbet, Paul Edward Dworak, Jana

Kubitza, Michael Morgan and Lawrence Woodruff. �Research Applications in

CAI� College Music Symposium 21 no. 2 (1981): 43.

 72

Kuhn, Wolfgang. �Computer-Assisted Instruction in Music: Drill and Practice in

Dictation� College Music Symposium 14 (1974): 89- 101.

McConnell, Steve. After the Gold Rush: Creating a True Profession of Software

Engineering. Redmond, WA: Microsoft Press, 1999.

McConnell, Steve. Software Project Survival Guide: How to Be Sure Your First

Important Project Isn�t Your Last. Redmond, WA: Microsoft Press, 1998.

McGee, Deron. �Aural Skill, Pedagogy, and Computer-Assisted Instruction: Past,

Present, and Future,� Journal of Music Theory Pedagogy 14 (2000): 115-134.

Peters, G. David. �Music Software and Emerging Technology� Music Educators Journal

79 no. 3 (1992): 22-27.

Schaffer, John. �Intelligent Tutoring Systems: New Realms in CAI� in Music Theory

Spectrum 12 no. 2 (1990): 224-235.

Shrader, David L.. �Microcomputer-Based Teaching� in College Music Symposium 21

no. 2 (1981): 27-36.

Skinner, Robert. �Music Software.� Notes 45 no. 3. (1989): 537-541.

Stallman, Richard. Free Software, Free Society. Boston: GNU Press, 2002.

Taylor, Timothy. Strange Sounds: Music, Technology, and Culture. New York:

Routledge, 2001.

Theberge, Paul. Any Sound You Can Imagine: Making Music/Consuming Technology.

Hanover, NH: Wesleyan University Press of New England, 1997.

Webster, Peter. �Historical Perspectives on Technology and Music� Music Educators

Journal 89 no. 1 (2002): 38-45.

 73

Wittlich, Gary. �Computer Applications: Pedagogy.� Music Theory Spectrum 11 no. 1,

Special Issue: The Society for Music Theory: The First Decade (1989): 60-65.

Wittlich, Gary, John Schaffer and Larry Babb. Microcomputers and Music. Englewood

Cliffs, NJ: Prentice Hall Professional Technical Reference, 1986.

 74

Appendices

 75

Appendix A: Dissertation Abstracts Data

Table A.1: Number of dissertations per year

Year Number of Studies
1969 1
1970 0
1971 1
1972 0
1973 0
1974 1
1975 2
1976 0
1977 0
1978 1
1979 1
1980 2
1981 4
1982 2
1983 2
1984 4
1985 3
1986 4
1987 2
1988 6
1989 4
1990 3
1991 2
1992 6
1993 2
1994 5
1995 5
1996 2
1997 2
1998 3
1999 2
2000 3
2001 4
2002 3
2003 2
2004 2
2005 2

Total: 88

 76

Search results

Filtered Dissertation Abstracts Online results for:
 kw: computer and kw: music and kw: instruction.
Records found: 88

Missing numbers indicate results that were omitted from the original search. The list of
dissertations was filtered by reading the abstract to ascertain that the dissertation was
relevant to the topic. The results shown below are the computer output for the search,
including the capitalized sections.

1. Music tools: Rhythmic dictation educational software
Author: Hubbard, Bruce Degree: M.A. Institution: California State University,
Dominguez Hills 0582 Year: 2005

2. Computer-assisted instruction for music theory education: Rhythm in music
Author: Chew, Deborah Yvonne Degree: M.A. Institution: California State University,
Dominguez Hills 0582 Year: 2005

3. Computer-assisted music instruction as supplemental sight-singing instruction in the
high school choir
Author: Ewers, Marla Sue Degree: Ed.D. Institution: University of Illinois at Urbana-
Champaign 0090 Year: 2004

5. Quartal harmony for guitar: A CAI field test
Author: Spores, Craig Degree: M.A. Institution: California State University, Dominguez
Hills 0582 Year: 2004

9. Will a music and spatial-temporal math program enhance test scores? An analysis of
second-grade students' mathematics performance on the Stanford-9 Test and the
Capistrano Unified School District CORE Level Test
Author: Rafferty, Kevin Neal Degree: Ed.D. Institution: University of Southern
California 0208 Year: 2003

10. The comparative effects of computer-mediated interactive instruction and traditional
instruction on music achievement in guitar performance
Author: Green, Bryan Richard Degree: Ph.D. Institution: The University of British
Columbia (Canada) 2500 Year: 2003

16. The effects of computer-based instruction on achievement of four, five and six-year-
old children in the Yamaha Music Education System Primary One Course
Author: Bailey, Darrell Lee Degree: Ed.D. Institution: University of Illinois at Urbana-
Champaign 0090 Year: 1989

 77

19. The effectiveness of computer-assisted instruction on the development of rhythm
reading skills among middle school instrumental students
Author: Smith, Kenneth Harold Degree: Ph.D. Institution: University of Illinois at
Urbana-Champaign 0090 Year: 2002

20. The comparison of the effects of two computer-based music instructional programs in
teaching piano note reading to adults through two different delivery systems
Author: He, Hui-Chieh Judy Degree: Ph.D. Institution: University of Illinois at Urbana-
Champaign 0090 Year: 1995

21. Teaching styles and faculty attitudes towards computer technology in teaching and
learning at a college in Ontario
Author: Lloyd, David George Degree: Ph.D. Institution: University of Toronto (Canada)
0779 Year: 2002

22. Reinventing music theory pedagogy: The development and use of a CAI program to
guide students in the analysis of musical form
Author: Sterling, Jennifer Elizabeth Degree: Ph.D. Institution: University of Maryland
College Park 0117 Year: 2002

25. A comparative study of the effects of computer-based expository and discovery
methods of instruction for fostering the aural recognition of musical concepts
Author: Hopkins, Michael Thomas Degree: Ph.D. Institution: University of Michigan
0127 Year: 2001

26. The effects of computer-assisted instruction and cognitive style on sight playing
among university group piano students
Author: Hagen, Sara L. Degree: Ph.D. Institution: The Florida State University 0071
Year: 2001

27. The effect of time in computerized versus classroom instruction on the ability to
correctly pronounce English words phonetically transcribed into the International
Phonetic Alphabet
Author: Dekaney, Elisa Macedo Degree: Ph.D. Institution: The Florida State University
0071 Year: 2001

30. Comparative learning methods of cognitive computer-based training with and without
multimedia blending
Author: Salinas, Fidel Michael, Jr. Degree: Ed.D. Institution: University of the Pacific
0173 Year: 2001

31. Formative research on the refinement of Web-based instructional design and
development guidance systems for teaching music fundamentals at the pre-college level

 78

Author: Chuang, Wen-Hao Degree: Ph.D. Institution: Indiana University 0093 Year:
2000

32. Computer-assisted instruction and sequencing within the studio: A focus on Halsey
Stevens' "Sonata for Trumpet and Piano"
Author: Zifer, Timothy James Degree: D.M.A. Institution: The Louisiana State
University and Agricultural and Mechanical College 0107 Year: 2000

33. A new approach to computer-assisted instruction in music theory for elementary and
middle school children
Author: Bowyer, Donald William Degree: D.A. Institution: University of Northern
Colorado 0161 Year: 2000

37. The evaluation of two self-instruction learning approaches assessing music
knowledge and simple music keyboard performance skills
Author: Tomczak, Larry Mark Degree: Ed.D. Institution: University of Cincinnati 0045
Year: 1999

39. COMPUTER-ASSISTED INSTRUCTION IN EAR-TRAINING AND ITS
INTEGRATION INTO UNDERGRADUATE MUSIC PROGRAMS DURING THE
1998-1999 ACADEMIC YEAR
Author: SPANGLER, DOUGLAS RAYMOND Degree: M.MUS. Institution:
MICHIGAN STATE UNIVERSITY 0128 Year: 1999

45. THE EFFECTIVENESS OF COMPUTER-ASSISTED INSTRUCTION IN
SELECTED SECONDARY SCHOOLS IN LOS ANGELES AND ORANGE
COUNTIES OF SOUTHERN CALIFORNIA
Author: YUNE, JOSEPH TAE-JUNG Degree: M.M. Institution: UNIVERSITY OF
SOUTHERN CALIFORNIA 0208 Year: 1998

49. ANALYSIS OF MUSICAL CREATIVITY IN MIDDLE SCHOOL STUDENTS
THROUGH COMPOSITION USING COMPUTER-ASSISTED INSTRUCTION: A
MULTIPLE CASE STUDY
Author: EMMONS, SCOTT EVERETT Degree: PH.D. Institution: THE UNIVERSITY
OF ROCHESTER, EASTMAN SCHOOL OF MUSIC 0891 Year: 1998

50. AN EVALUATION OF THE EFFECTIVENESS OF A GROUP PIANO
PROGRAM USING ELECTRONIC KEYBOARD AND COMPUTER TECHNOLOGY
Author: SHENDER, MARIE Degree: ED.D. Institution: COLUMBIA UNIVERSITY
TEACHERS COLLEGE 0055 Year: 1998

54. THE EFFECTS OF COMPUTER-ASSISTED KEYBOARD INSTRUCTION ON
METER DISCRIMINATION AND RHYTHM DISCRIMINATION OF GENERAL
MUSIC EDUCATION STUDENTS IN THE ELEMENTARY SCHOOL (CAI)

 79

Author: ARMS GILBERT, LINDA Degree: ED.D. Institution: TENNESSEE STATE
UNIVERSITY 0840 Year: 1997

58. AN EXAMINATION OF THE EFFECT OF WRITING MELODIES, USING A
COMPUTER-BASED SONG-WRITING PROGRAM, ON HIGH SCHOOL
STUDENTS' INDIVIDUAL LEARNING OF SIGHT-SINGING SKILLS
Author: PRASSO, NINA MARLENE Degree: ED.D. Institution: COLUMBIA
UNIVERSITY TEACHERS COLLEGE 0055 Year: 1997

62. THE DEVELOPMENT AND EVALUATION OF A COMPUTER-ASSISTED
MUSIC INSTRUCTION PROGRAM AS AN AID TO SCORE STUDY FOR THE
UNDERGRADUATE WIND BAND CONDUCTING STUDENT
Author: HUDSON, MARK EDWARD Degree: PH.D. Institution: UNIVERSITY OF
FLORIDA 0070 Year: 1996

67. THE COMPARISON OF THE EFFECTS OF TWO COMPUTER-BASED MUSIC
INSTRUCTIONAL PROGRAMS IN TEACHING PIANO NOTE READING TO
ADULTS THROUGH TWO DIFFERENT DELIVERY SYSTEMS
Author: HE, HUI-CHIEH JUDY Degree: PH.D. Institution: UNIVERSITY OF
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1995

70. An exploratory study to incorporate supplementary computer-assisted historical and
theoretical studies into applied music instruction
Author: Kim, Sara Junghwa Degree: Ed.D. Institution: Columbia University Teachers
College 0055 Year: 1996

72. The effectiveness of a computer-based courseware program for teaching jazz
improvisation
Author: Fern, James Lloyd, Jr. Degree: D.M.A. Institution: University of Southern
California 0208 Year: 1995

74. MUSIC-INSTRUCTIONAL STRATEGY-INTEGRATION: THE MODERATING
EFFECT OF MUSIC IN THE DESIGN OF COMPUTER-BASED INSTRUCTION
Author: HARDY, RODOLPH DONALD Degree: PH.D. Institution: GEORGIA STATE
UNIVERSITY 0079 Year: 1995

76. A META-ANALYSIS OF THE EFFECT OF COMPUTER-ASSISTED
INSTRUCTION ON THE ACADEMIC ACHIEVEMENT OF STUDENTS IN
GRADES 6 THROUGH 12: A COMPARISON OF URBAN, SUBURBAN, AND
RURAL EDUCATIONAL SETTINGS (SIXTH-GRADE, TWELFTH-GRADE,
URBAN EDUCATION, RURAL EDUCATION)
Author: CHRISTMANN, EDWIN PATRICK Degree: PH.D. Institution: OLD
DOMINION UNIVERSITY 0418 Year: 1995

 80

81. TEACHING YOUNG CHILDREN MUSIC FUNDAMENTALS IN A COMPUTER
LEARNING ENVIRONMENT
Author: LEE, YU-WEN Degree: ED.D. Institution: COLUMBIA UNIVERSITY
TEACHERS COLLEGE 0055 Year: 1994

83. THE DEVELOPMENT AND TESTING OF A COMPUTER-ASSISTED
INSTRUCTIONAL PROGRAM TO TEACH MUSIC FUNDAMENTALS TO ADULT
NONMUSICIANS
Author: PARRISH, REGENA TURNER Degree: ED.D. Institution: THE UNIVERSITY
OF ALABAMA 0004 Year: 1994

85. DICTATION TUTOR: THE EFFECTIVENESS OF A CURRICULUM-SPECIFIC
TUTORIAL IN THE ACQUISITION OF AURAL DISCRIMINATION SKILLS AT
THE COLLEGE LEVEL
Author: HESS, GEORGE J., JR. Degree: D.A. Institution: UNIVERSITY OF
NORTHERN COLORADO 0161 Year: 1994

86. INVESTIGATION OF THE EFFECT OF TEACHER-DEVELOPED COMPUTER-
BASED MUSIC INSTRUCTION ON ELEMENTARY EDUCATION MAJORS
Author: LIN, SHEAU-YUH Degree: PH.D. Institution: UNIVERSITY OF ILLINOIS AT
URBANA-CHAMPAIGN 0090 Year: 1994

91. TOOLS, GUIDELINES, AND STRATEGIES FOR THE DEVELOPMENT OF
COMPUTER-ASSISTED-INSTRUCTION LESSONS BY NON-PROGRAMMING
MUSIC TEACHERS (HYPERCARD)
Author: RICHMOND, CLARENCE FLOYD Degree: D.A. Institution: BALL STATE
UNIVERSITY 0013 Year: 1994

95. LEARNING STYLE AND MUSIC INSTRUCTION VIA AN INTERACTIVE
AUDIO CD-ROM: AN EXPLORATORY STUDY
Author: FORTNEY, PATRICK MICHAEL Degree: PH.D. Institution: UNIVERSITY
OF MIAMI 0125 Year: 1993

97. THE DESIGN AND EVALUATION OF A COMPUTER-ASSISTED ERROR
DETECTION SKILLS DEVELOPMENT PROGRAM FOR BEGINNING
CONDUCTORS UTILIZING SYNTHETIC SOUND SOURCES (CAI)
Author: GRUNER, GREG L. Degree: D.A. Institution: BALL STATE UNIVERSITY
0013 Year: 1993

98. THE EFFECTIVENESS OF CAI AND LECTURE AS INSTRUCTIONAL
STRATEGIES FOR TEACHING VOCAL ANATOMY AND FUNCTION TO
UNDERGRADUATE MUSIC STUDENTS WITH DIFFERENT LEARNING STYLES
Author: ESTER, DON PAUL Degree: PH.D. Institution: THE UNIVERSITY OF
NEBRASKA - LINCOLN 0138 Year: 1992

 81

100. INTELLIGENT MUSIC LISTENING: AN INTERACTIVE HYPERMEDIA
PROGRAM FOR BASIC MUSIC LISTENING SKILLS
Author: GOODSON, CAROL ANN Degree: PH.D. Institution: THE UNIVERSITY OF
UTAH 0240 Year: 1992

101. DEVELOPMENT AND TRIAL OF A COMPUTER-BASED INTERACTIVE
VIDEODISC PROGRAM IN A COURSE IN FUNDAMENTALS OF CONDUCTING
Author: FRY, RAYMOND JAY Degree: ED.D. Institution: UNIVERSITY OF
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1992

102. A COMPUTER-BASED EVALUATION OF PITCH MATCHING SKILLS OF
COLLEGE FRESHMAN STUDENTS IN MUSIC (MUSIC STUDENTS)
Author: ETMEKTSOGLOU, IOANNA E. Degree: PH.D. Institution: UNIVERSITY OF
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1992

103. EFFECTS OF COMPUTER-ASSISTED INSTRUCTION IN A MASTERY
LEARNING/COOPERATIVE LEARNING SETTING ON THE PLAYING ABILITIES
AND ATTITUDES OF BEGINNING BAND STUDENTS (COOPERATIVE
LEARNING)
Author: KASSNER, KIRK Degree: PH.D. Institution: UNIVERSITY OF OREGON
0171 Year: 1992

104. AURAL REINFORCEMENT AND KINESTHETIC REINFORCEMENT AS
VARIANTS OF THE RESPONSE MODE IN COMPUTER-ASSISTED HARMONIC
AURAL SKILLS TRAINING (REINFORCEMENT)
Author: POLOT, BARTON LEE Degree: PH.D. Institution: THE UNIVERSITY OF
MICHIGAN 0127 Year: 1992

106. A COMPUTER-ASSISTED PROGRAM FOR THE SELECTION OF BAND
MUSIC RELATIVE TO THE DIFFICULTY RATING OF INDIVIDUAL
INSTRUMENTS (MUSICAL INSTRUMENT RATING, PERFORMANCE
EVALUATION)
Author: SAVILLE, KIRT RAYMOND Degree: ED.D. Institution: UTAH STATE
UNIVERSITY 0241 Year: 1991

109. THE DEVELOPMENT AND TRIAL OF COMPUTER-BASED INTERACTIVE
VIDEODISC COURSEWARE FOR TEACHING SKILLS IN THE VISUAL
DIAGNOSIS OF SELECTED PROBLEMS IN TROMBONE PERFORMANCE
Author: ATWATER, DAVID FRANKLIN Degree: ED.D. Institution: UNIVERSITY OF
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1991

112. THE EFFECTIVENESS OF A COMPUTER-ASSISTED INSTRUCTION
PROGRAM IN RHYTHM FOR SECONDARY SCHOOL INSTRUMENTAL MUSIC
STUDENTS

 82

Author: ORTNER, JOHN MICHAEL Degree: PH.D. Institution: STATE UNIVERSITY
OF NEW YORK AT BUFFALO 0656 Year: 1990

113. DESIGN AND TRIAL OF A COMPUTER-ASSISTED SYSTEM SUPPLYING
PRACTICE IN ERROR DETECTION FOR PRESERVICE INSTRUMENTAL MUSIC
EDUCATORS
Author: JONES, DAVID LELAND Degree: D.M.A. Institution: UNIVERSITY OF
GEORGIA 0077 Year: 1990

114. THE DEVELOPMENT OF A BEGINNING VIOLIN CURRICULUM
INTEGRATING A COMPUTER MUSIC STATION WITH THE PRINCIPLES OF
COMPREHENSIVE MUSICIANSHIP
Author: STRANGE, CHERYL MAY Degree: ED.D. Institution: COLUMBIA
UNIVERSITY TEACHERS COLLEGE 0055 Year: 1990

118. THE EFFECTS OF COMPUTER-BASED INSTRUCTION ON ACHIEVEMENT
OF FOUR, FIVE AND SIX-YEAR-OLD CHILDREN IN THE YAMAHA MUSIC
EDUCATION SYSTEM PRIMARY ONE COURSE (MUSIC EDUCATION, FOUR-
YEAR-OLD, FIVE-YEAR-OLD)
Author: BAILEY, DARRELL LEE Degree: ED.D. Institution: UNIVERSITY OF
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1989

119. THE EFFECT OF INSTRUCTIONAL METHOD ON HANDICAPPED
STUDENTS' COMPREHENSION OF SPECIFIC MUSIC CONCEPTS: COMPUTER
VERSUS NONCOMPUTER INSTRUCTION (COMPUTER INSTRUCTION)
Author: ISLER-HAMILTON, ESTHER JANE Degree: PH.D. Institution: STATE
UNIVERSITY OF NEW YORK AT BUFFALO 0656 Year: 1989

120. THE DEVELOPMENT OF A COMPUTER-BASED INTERACTIVE
MULTIMEDIA PROGRAM FOR TEACHING INTERPRETIVE ASPECTS OF WIND
INSTRUMENT NOTATION (MULTIMEDIA PROGRAM, NOTATION)
Author: ADAMS, STEVEN M. Degree: D.M.A. Institution: UNIVERSITY OF
SOUTHERN CALIFORNIA 0208 Year: 1989

122. THE IMPLEMENTATION OF A MODEL PROGRAM OF COMPUTER-
ASSISTED INSTRUCTION FOR CHILDREN'S CHOIRS IN A CHURCH SETTING
Author: SKELTON, DENNIS LANE Degree: D.M.A. Institution: THE SOUTHERN
BAPTIST THEOLOGICAL SEMINARY 0207 Year: 1988

127. THE EFFECTS OF COMPUTER-ASSISTED MUSIC INSTRUCTION ON
ACHIEVEMENT OF SEVENTH-GRADE STUDENTS
Author: KING, RICHARD VERN Degree: PH.D. Institution: UNIVERSITY OF
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1988

 83

128. DEVELOPMENT OF COMPUTER ASSISTED-INSTRUCTION FOR USE IN
TEACHING ARABIC MUSIC THEORY
Author: SAIF, YASIN RAMADAN Degree: PH.D. Institution: UNIVERSITY OF
SOUTHERN CALIFORNIA 0208 Year: 1988

129. THE DEVELOPMENT OF A MIDDLE SCHOOL GENERAL MUSIC
CURRICULUM: A SYNTHESIS OF COMPUTER-ASSISTED INSTRUCTION AND
MUSIC LEARNING THEORY (CAI)
Author: NELSON, BETH JOHANNA PEARCE Degree: D.M.A. Institution: THE
UNIVERSITY OF ROCHESTER, EASTMAN SCHOOL OF MUSIC 0891 Year: 1988

130. THE INTEGRATION AND EVALUATION OF "MUSICLAND" IN A MUSIC
LISTENING COURSE AND ACOUSTICS COURSE FOR TENTH GRADE
STUDENTS (CAI)
Author: MEE, ROBERT ARTHUR Degree: PH.D. Institution: THE UNIVERSITY OF
ROCHESTER, EASTMAN SCHOOL OF MUSIC 0891 Year: 1988

132. EFFECTIVENESS OF COMPUTER-ASSISTED INSTRUCTION IN
DEVELOPING MUSIC READING SKILLS AT THE ELEMENTARY LEVEL
Author: HESSER, LOIS ANNETTE Degree: ED.D. Institution: STATE UNIVERSITY
OF NEW YORK AT ALBANY 0668 Year: 1988

136. THE EFFECTIVENESS OF USING COMPUTER-ASSISTED INSTRUCTION
WITH BEGINNING TRUMPET STUDENTS
Author: WEEKS, DOUGLAS GILMAN Degree: ED.D. Institution: BOSTON
UNIVERSITY 0017 Year: 1987

137. THE EFFECT OF COMPUTER INSTRUCTION ON THE
VERTICAL/HORIZONTAL MUSIC READING SKILLS OF THE GRAND STAFF
FOR STUDENTS ENROLLED IN SENIOR HIGH SCHOOL BEGINNING
KEYBOARD CLASSES
Author: HOLLAND, MARIANNE Degree: PH.D. Institution: UNIVERSITY OF
SOUTH CAROLINA 0202 Year: 1987

138. A COMPARISON OF TWO SEQUENCES OF AURAL INTERVAL
IDENTIFICATION DRILL ADMINISTERED TO COLLEGE STUDENTS THROUGH
COMPUTER-ASSISTED INSTRUCTION (EAR TRAINING)
Author: KONECKY, LAWRENCE WAYNE Degree: MUS.ED.D. Institution: THE
UNIVERSITY OF SOUTHERN MISSISSIPPI 0211 Year: 1986

140. THE DEVELOPMENT OF MELODIC CONCEPTS IN ELEMENTARY SCHOOL
AGE CHILDREN USING COMPUTER-ASSISTED INSTRUCTION AS A
SUPPLEMENTAL TOOL
Author: WHISTON, SANDRA KRISTINE Degree: PH.D. Institution: THE OHIO
STATE UNIVERSITY 0168 Year: 1986

 84

142. EFFECTIVENESS OF A COMPUTER-ASSISTED INSTRUCTION PROGRAM
IN MUSIC FUNDAMENTALS APPLIED TO INSTRUCTION FOR ELEMENTARY
EDUCATION MAJORS
Author: JACOBSEN, JEFFREY RICHARD Degree: D.M.E. Institution: UNIVERSITY
OF NORTHERN COLORADO 0161 Year: 1986

144. THE EFFECTS OF A MICROCOMPUTER-ASSISTED TUNING PROGRAM ON
JUNIOR HIGH SCHOOL STUDENTS' PITCH DISCRIMINATION AND PITCH-
MATCHING ABILITIES (INTONATION, COMPUTER-ASSISTED)
Author: GLASS, JACQUALINE SHERRIE Degree: PH.D. Institution: UNIVERSITY
OF MIAMI 0125 Year: 1986

147. DEVELOPMENT AND VALIDATION OF A COMPUTER-ASSISTED
INSTRUCTIONAL LESSON FOR TEACHING INTONATION DISCRIMINATION
SKILLS TO VIOLIN AND VIOLA STUDENTS
Author: EISELE, MARK JOSEPH Degree: D.MUS.ED. Institution: INDIANA
UNIVERSITY 0093 Year: 1985

148. THE EFFECT OF DIFFERENTIAL FEEDBACK ON BEGINNING GUITAR
STUDENTS' INTONATIONAL PERFORMANCE IN TUNING STRINGS
(COMPUTER-ASSISTED INSTRUCTION (CAI))
Author: CODDING, PEGGY ANN Degree: PH.D. Institution: THE FLORIDA STATE
UNIVERSITY 0071 Year: 1985

151. THE DEVELOPMENT OF INDIVIDUALIZED MUSIC LEARNING
SEQUENCES FOR NON-HANDICAPPED, HANDICAPPED AND GIFTED
LEARNERS USING THE LOGO MUSIC VERSION COMPUTER LANGUAGE
Author: MECKLEY, WILLIAM ALLEN Degree: PH.D. Institution: THE UNIVERSITY
OF ROCHESTER, EASTMAN SCHOOL OF MUSIC 0891 Year: 1985

153. A COMPUTER-BASED TRAINER FOR MUSIC CONDUCTING: THE EFFECTS
OF FOUR FEEDBACK MODES (CAI, PSYCHOMOTOR)
Author: SCHWAEGLER, DAVID GARY Degree: PH.D. Institution: THE
UNIVERSITY OF IOWA 0096 Year: 1984

154. THE DEVELOPMENT AND IMPLEMENTATION OF A COMPUTERIZED
PRESCHOOL MEASURE OF MUSICAL AUDIATION (APTITUDE, ABILITY,
TESTING)
Author: FORSYTHE, ROSEMARY Degree: PH.D. Institution: CASE WESTERN
RESERVE UNIVERSITY 0042 Year: 1984

155. DEVELOPMENT OF THE MUSIC LISTENING STRATEGY - TEMPO:
COMPUTER ASSISTED INSTRUCTION IN MUSIC LISTENING

 85

Author: TURK, GAYLA CLAIRE Degree: PH.D. Institution: UNIVERSITY OF
KANSAS 0099 Year: 1984

157. THE DEVELOPMENT AND EVALUATION OF A MICROCOMPUTER-
ASSISTED MUSIC INSTRUCTION PROGRAM FOR THE IMPROVEMENT OF
TONAL MEMORY (CAI)
Author: ROBINSON, RUSSELL LOWELL Degree: PH.D. Institution: UNIVERSITY
OF MIAMI 0125 Year: 1984

158. A SET OF MICROCOMPUTER PROGRAMS TO AID IN THE ANALYSIS OF
ATONAL MUSIC
Author: RUSSELL, ROBERTA CRAM Degree: D.M.A. Institution: UNIVERSITY OF
OREGON 0171 Year: 1983

159. COMPUTER-ASSISTED PROGRAMED INSTRUCTION TO TEACH PITCH
AND RHYTHM ERROR-DETECTION SKILL TO COLLEGE MUSIC EDUCATION
STUDENTS
Author: DEAL, JOHN JEFFREY Degree: PH.D. Institution: THE UNIVERSITY OF
IOWA 0096 Year: 1983

162. A STUDY OF THE TACHISTOSCOPE IN TEACHING RHYTHMIC SIGHT-
READING
Author: WRIGHT, TERRY OLEAN Degree: PH.D. Institution: THE LOUISIANA
STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL COL. 0107
Year: 1982

164. AURAL-VISUAL INTERVAL RECOGNITION IN MUSIC INSTRUCTION: A
COMPARISON OF A COMPUTER-ASSISTED APPROACH AND A TRADITIONAL
IN-CLASS APPROACH
Author: SHANNON, DON WAYNE Degree: D.M.A. Institution: UNIVERSITY OF
SOUTHERN CALIFORNIA 0208 Year: 1982

165. MISTI: A COMPUTER-ASSISTED INSTRUCTION SYSTEM IN MUSIC
THEORY AND FUNDAMENTALS
Author: KUYPER, JON QUENTIN Degree: PH.D. Institution: THE UNIVERSITY OF
IOWA 0096 Year: 1981

166. THE EFFICACY OF COMPUTER-BASED AND TAPE-RECORDED
ASSISTANCE IN SECOND-SEMESTER FRESHMAN EAR-TRAINING
INSTRUCTION
Author: GARTON, JANET CLAIRE Degree: PH.D. Institution: THE LOUISIANA
STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL COL. 0107
Year: 1981

 86

168. COMPUTER-ASSISTED MUSIC INSTRUCTION UTILIZING COMPATIBLE
AUDIO HARDWARE IN COMPUTER-ASSISTED AURAL DRILL
Author: WATANABE, NAN TEIKO Degree: PH.D. Institution: UNIVERSITY OF
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1981

170. THE DEVELOPMENT OF CAI PROGRAMS FOR TEACHING MUSIC
FUNDAMENTALS TO UNDERGRADUATE ELEMENTARY EDUCATION MUSIC
METHODS CLASSES
Author: WILSON, MARY LOUISE PRICE Degree: PH.D. Institution: THE
LOUISIANA STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL
COL. 0107 Year: 1981

174. THE DEVELOPMENT OF AN OBJECTIVE SIGHT SINGING ACHIEVEMENT
TEST EMPLOYING ELECTRONIC MEASUREMENT APPARATUS
Author: GRAVES, DAVID LEE Degree: ED.D. Institution: UNIVERSITY OF
GEORGIA 0077 Year: 1980

175. THE EFFECT OF COMPUTER-BASED INSTRUCTIONAL MATERIALS IN A
PROGRAM FOR VISUAL DIAGNOSTIC SKILLS TRAINING OF INSTRUMENTAL
MUSIC EDUCATION STUDENTS
Author: SANDERS, WILLIAM HUSTON Degree: PH.D. Institution: UNIVERSITY OF
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1980

180. COMPUTER-ASSISTED INSTRUCTION IN MUSIC: A PROGRAM IN
RHYTHM FOR PRESERVICE ELEMENTARY TEACHERS.
Author: LINDEMAN, CAROLYNN ANDERSON Degree: D.M.A. Institution:
STANFORD UNIVERSITY 0212 Year: 1979

181. A STUDY OF THE CONTRAST BETWEEN COMPUTER-ASSISTED
INSTRUCTION AND THE TRADITIONAL TEACHER/LEARNER METHOD OF
INSTRUCTION IN BASIC MUSICIANSHIP.
Author: VAUGHN, ARTHUR CLARENCE, JR. Degree: PH.D. Institution: OREGON
STATE UNIVERSITY 0172 Year: 1978

183. COMPUTER-ASSISTED INSTRUCTION IN MUSIC: A SURVEY WITH
ATTENDANT RECOMMENDATIONS.
Author: JONES, MORGAN JOHN Degree: PH.D. Institution: NORTHWESTERN
UNIVERSITY 0163 Year: 1975

184. THE EFFICACY OF COMPUTER ASSISTED INSTRUCTION COMPARED
WITH TRADITIONAL TEACHER-TAUGHT AND SELF-TAUGHT METHODS OF
TEACHING BEGINNING MUSIC THEORY.
Author: COOPER, ROSE MARIE Degree: PH.D. Institution: THE UNIVERSITY OF
NORTH CAROLINA AT GREENSBORO 0154 Year: 1975

 87

185. FEASIBILITY OF COMPUTER-ASSISTED INSTRUCTION FOR
INSTRUMENTAL MUSIC EDUCATION.
Author: PETERS, GEORGE DAVID Degree: ED.D. Institution: UNIVERSITY OF
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1974

186. COMPUTER-ASSISTED INSTRUCTION IN THE PUBLIC SCHOOL GENERAL
MUSIC CLASS: A COMPARATIVE STUDY
Author: VON FELDT, JAMES RONALD Degree: D.M.A. Institution: UNIVERSITY
OF MISSOURI - KANSAS CITY 0134 Year: 1971

187. A COMPARISON OF RESPONSE-SENSITIVE AND RESPONSE-INSENSITIVE
DECISION RULES IN PRESENTING LEARNING MATERIALS IN MUSIC
THEORY BY COMPUTER-ASSISTED INSTRUCTION
Author: HULLFISH, WILLIAM ROUSE, JR. Degree: ED.D. Institution: STATE
UNIVERSITY OF NEW YORK AT BUFFALO 0656 Year: 1969

 88

Vita

Daniel Emerson Clouse was born in Reed City, MI on April 16, 1976. He went to

Central Michigan University and graduated in May, 2000 with a B.S. in Music

Performance with a major in Tuba Performance and a minor in Management Information

Systems. Mr. Clouse will graduate from the University of Tennessee, Knoxville, in

August 2006 with an M.M. in Music Theory and Technology.

Mr. Clouse worked in Cincinnati, OH as a computer programmer, web developer,

database administrator, and network engineer while freelancing as a professional

musician. He has written software or websites for organizations such as Fannie Mae,

Wells-Fargo Bank, Chiquita, Proctor and Gamble, and the state of Florida.

He has studied and played tuba with many renowned teachers and performers,

including Don Harry, Sam Pilafian, Brian Bowman, and Deanna Swoboda. He has

played with many prestigious ensembles, including the Cincinnati Brassband and the

Tennessee Brass. Daniel won the Tubonium Tuba Solo Competition held at Gustavus

Adolphus College in St Peter, MN in March 2006.

	A Proposal for an Open Source System of Development and Research for Music CAI
	Recommended Citation

	Microsoft Word - 44C62173-5086-08E5DB.doc

