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Abstract 

The purpose of this thesis is to examine the historical use of music Computer 

Assisted Instruction (CAI) software to show that research on music CAI has decreased 

and to propose using a new method of coding and distribution (open source) that might 

increase research opportunities using music CAI.  The reduction in research is due in part 

to limitations in existing software, as well as the practices of the music community.  An 

open source CAI program called Mobius is described as an example of how open source 

programming can offer new opportunities for music researchers. 

CAI software has played a prominent role in the college music school, and has a 

long history of research and innovation.  Early CAI was used in numerous studies to 

show how effective computers could be at delivering instruction, while reducing the 

teacher workload at the same time.  As computers became more widely adopted, CAI 

became more commonplace in the music school, and many CAI software programmers 

sold their programs to fill the growing demand.  Modern CAI is now viewed more as a 

commercial product, and less as a research tool. 

CAI can still be used as a powerful research tool.  This thesis recommends using 

open source software development for music CAI since it allows programmers to share 

the workload of developing software, and allows CAI researchers to use existing open 

source as the basis for their new research programs.  Included in this thesis are 

storyboards for several key components of an open source CAI program on music 

fundamentals, including an administrative portion, the actual CAI program, and a custom 

report builder.  
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Chapter 1: Introduction 

In the past 40 years computers and become permanent fixtures in music 

education.  Computers are used for email, writing papers, and transmitting course 

materials.  Programs and online courseware like BlackBoard make it easy for non-

programmers to incorporate computers into their instruction.  Some music Computer 

Aided Instruction (CAI) software claims to improve skills, impart knowledge, or just 

make the learning process more fun.  Some programs promise students faster or more 

consistent results, while others offer a pre-packaged curriculum to lighten the workload 

of music teachers.  CAI promises to give music students personalized lessons and plenty 

of practice on aspects of theory or other subjects that need extra drill, freeing the music 

teacher to answer questions the computer cannot.  Teachers can focus on helping troubled 

students, creating innovative teaching methods, or researching pedagogical problems.  

CAI can provide an ideal mix of private practice for the student and reduce the workload 

for the teacher so he or she can focus on other concerns.   

Research was one of the primary goals of early CAI.  Researchers understood that 

by using computers, they could accurately capture complex data that would be used to 

build a body of knowledge on perception and effective teaching methods.  They 

incorporated this knowledge into the next generation of CAI, making it better.  The hope 

of the teachers was that the computer could take over most, if not all, of the repetitive 

tasks of music fundamentals instruction.   

Modern commercial software has not completely met this goal.  While modern 

CAI can deliver some kinds of instruction, it cannot deliver instruction on all subjects, 
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and is not adopted by all schools in the same way.  In some cases, CAI is only used a 

kind of smart flash card system, and in others, computers are not used at all in music 

instruction.  Commercial CAI like MacGamut or Practica Musica comes with mature 

curricula, but instructors cannot modify the format of the drills and exercises.  Instructors 

can add new course materials, but only so long as they fit into the format the software 

uses, since the software cannot be modified.  Commercial software does not allow 

researchers the flexibility to conduct their own research because they cannot modify the 

software.   

In the early days of CAI, research lead to new understandings of how people 

perceived music, and new innovations for delivering music instruction.  The new 

techniques of instruction inspired more research, creating a cycle of research and 

innovation.  The cycle of research and innovation created exciting opportunities for 

researcher and teachers alike since there were new things to study, and new tools to 

teach.  Since most modern CAI does not allow researchers to capture data important to 

research, the cycle of research and innovation is broken.  CAI users are locked out of the 

research process, so few new innovations appear based on CAI research.  Ironically, even 

the current leading CAI titles lack scientific research to support their claims of efficacy, 

and are not designed to facilitate that research.  Neither MacGamut or Practica Musica 

have any published research reports to support their claims of efficacy, and neither have 

been used in published research. 

This goal of this thesis is twofold: to describe the downfall of CAI research and to 

describe a method for developing and distributing music CAI software called �open 

source�  that might increase the amount of research that uses CAI.  Open source is a 
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software distribution method that allows public access to program source code.  Open 

source software distribution has become such a powerful idea in software production that 

the term open source refers to the software that is created, the social movement that 

supports open source software, and the mindset for developing the software.  Most open 

source programs are free to use, and can be modified by anyone who has motivation to do 

so.  By adopting open source software, CAI researchers can customize software for use in 

their experiments.  By allowing researchers to freely share ideas and program code, 

research can be conducted that will lead to new innovations being introduced to CAI.   

This thesis is organized as follows: in chapter 2, literature is reviewed to show 

how software was conceived, created, distributed, and used over the last 50 years.  

Chapter 3 provides an analysis of historical and current practices showing how patterns 

of music CAI development, distribution, and use have created an environment that limits 

research.  Finally, an alternative method of software development and distribution is 

proposed in chapter 4 that can allow music CAI researchers to actively participate in the 

software development process.  The use of open source music CAI will result in greater 

teacher-control over how software is used in education, and new opportunities for 

researchers to add to the body of knowledge. 
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Chapter 2: Literature Review 

 

Research is an integral part of effective music CAI.  Extensive research must be 
conducted prior to and during system development.  The research areas of modeling the student�s 
musical processes, instructional design, system configuration, and data saving and analysis are 
all basic to CAI.  Once a system is operational continued research is needed to evaluate the 
system�s effectiveness and to plan future modification and expansion.  Finally, music CAI 
supports a variety of research applications to inquiries which have long engaged musicians.1   

-Rosemary Killam 
 

Introduction 

Modern computers and software are tremendously powerful and can perform any 

number of tasks, from allowing a college instructor to send messages to their classes via 

email to providing musical accompaniment that follows the soloist.  CAI like MacGamut 

or Practica Musica can drill students in musical fundamentals, aural skills, and even 

musical form.  College music teachers and students certainly benefit from computers, but 

there is little research data to backup claims of software efficacy.  Because commercial 

CAI software promises to deliver musical instruction that is equal to or superior to 

traditional classroom methods, software makers should provide research to back up their 

claims.  Without data showing that CAI software is an effective method of teaching, the 

software is merely supported by anecdotal evidence.  Early music CAI developers 

understood that research was fundamental to understanding how students would use and 

learn from their software.  They conducted studies to empirically establish what 

techniques and tools were effective for delivering instruction via computer.     

                                                
1 Rosemary N. Killam, Philip Baczewski and Antoinette Corbet, �Research Applications in CAI� College 
Music Symposium, 21 no. 2 (1981): 43. 
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CAI in Research: Mainframe and Micro Systems 

In 1967 Wolfgang Kuhn and Reynold Allvin of Stanford University developed 

software that could determine the pitch accuracy of sung melodic patterns.2  The software 

used a pitch extraction device and a mainframe computer to determine how accurately a 

subject could sing melodies.3  The computer reinforced correct answers by evaluating 

pitch accuracy and rewarding students who sang the melodies well.4   

Two years later, in 1969, Ned Deihl also developed ear-training software, though 

his system targeted instrumentalists.5  He used modified tape recorders to judge the pitch 

accuracy of intermediate level clarinet players.6  Although the system did not provide 

real-time results for the players, Deihl�s work showed that computers could be 

programmed to evaluate musical sounds. 

Don Bitzer first applied computers in college education when he built the PLATO 

(Programmed Logic for Automatic Teaching Operation) system at the University of 

Illinois in 1959.7  His team of engineers and programmers received a grant from the 

National Science Foundation that gave them enormous resources to meet two goals8: (1) 

to investigate the potential role of computers in the classroom, or as Bitzer put it, �What 

                                                
2 Peter Webster, �Historical Perspectives on Technology and Music� Music Educators Journal 89 no. 1 
(2002): 38. 
3 Ibid.. 
4 Wolfgang Kuhn, �Computer-Assisted Instruction in Music: Drill and Practice in Dictation� College Music 
Symposium 14 (1974): 89. 
5 Peter Webster, �Historical Perspectives on Technology and Music� Music Educators Journal 89 no. 1 
(2002): 38. 
6 Ned Deihl, �Computer-Assisted Instruction: Potential for Instrumental Music Education� Council for 
Research in Music Education bulletin 15 (1969): 1. 
7 Peter Webster, �Historical Perspectives on Technology and Music� Music Educators Journal 89 no. 1 
(2002): 38. 
8 D. Alpert and D. Bitzer, �Advances in Computer-Based Educaition� Science New Series, vol. 167, no. 
3925 (1970): 1583. 
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is educationally possible?�9  (2) to help develop what he calls �an economically and 

educationally viable system incorporating the most valuable approaches to teaching and 

learning.�10  Bitzer felt these two goals were closely related.11  By discovering what 

computers could do to deliver effective instruction, and finding ways to make 

computerized education affordable, PLATO could use the best pedagogical ideas and be 

inexpensive enough for many people to use.  

To meet the project goals, Bitzer and his team developed four successive CAI 

systems, PLATO I through IV, to see how far he could push the technology in solving 

educational goals.12  The lessons learned from each of the systems were put into 

successive new systems.  In 1972 PLATO IV was released and Bitzer declared that the 

final incarnation of the PLATO series was a success.   He claimed that PLATO IV was �a 

large-scale system, which, even in a prototype version, would be justifiable in economic 

terms.�13  Bitzer attempted to justify the expense of the PLATO system by measuring the 

cost of traditional instruction in a unit he called a �student-contact hour.�  A student-

contact hour is a measurement of time the a student receives instruction, so a teacher in 

front of a class of fifteen students is delivering 15 concurrent contact hours.   

CAI on systems like PLATO proved to be effective, but very expensive relative to 

the education of one student.14  However, when the cost of the system was spread out 

among many users, it could be compared to traditional instruction.  Bitzer noted in 1970 

that �presently available CAI systems � entail total costs which range between $2 and 
                                                
9 Ibid.. 
10 Ibid.. 
11 Ibid.. 
12 Ibid.. 
13 Ibid.. 
14 D. Alpert and D. Bitzer, �Advances in Computer-Based Education� in Science New Series, vol. 167, no. 
3925 (1970): 1583. 
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$5 per student-contact hour� which includes the costs of student consoles, the central 

processing unit and management services related to the computer.15  These figures were 

roughly ten times the cost of hiring a teacher to do the job.16  In order to bring the price 

per student-contact hour down for the PLATO system, Bitzer tried to spread the cost of 

the system across as many users as possible.  PLATO�s developers designed the system 

to support thousands of users, and allowed other mainframe computers to dial in to share 

the software.  The PLATO team even custom-built their own student stations to save 

money instead of using commercially available products.17  PLATO was flexible enough 

that it could be used for many different disciplines.  In fact, by 1970, Bitzer commented 

that it was used in twenty different disciplines.18   

By 1975 Fred Hofstetter had developed an entire aural skills curriculum for 

PLATO.19  GUIDO (Graded Units for Interactive Dictation Operations) presented the 

student with an answer form, played a musical example, and then asked the student to 

answer questions about a musical example.20  The software let the instructor print weekly 

reports on student progress, and allowed the instructor to adjust the level of difficulty for 

each individual student.21  The software delivered examples to the students that were at 

the level the teacher had assigned.22 

GUIDO not only helped drill music skills, it helped researchers study how 

students learned.  Hofstetter said in 1981, �When the GUIDO project began it had not yet 

                                                
15 Ibid., 1586. 
16 Ibid.. 
17 Ibid., 1587. 
18 Ibid.. 
19 Fred Hofstetter, �Applications of the GUIDO System to Aural Skills Research 1975-80� College Music 
Symposium, 21 no. 2 (1981): 46. 
20 Ibid.. 
21 Ibid.. 
22 Ibid.. 
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been determined how effective computer-based delivery was, compared to other forms of 

music instruction.�23  Because of this, Hofstetter needed to discover if his system was 

effective or not.  His first experiment with the GUIDO system compared student ear 

training using GUIDO with student ear training using the traditional tape laboratory.24  

Results showed that students learned better using GUIDO than from the tape lab, so the 

University of Delaware replaced its tape lab with a computer lab.25  This initial study 

legitimized GUIDO and showed how powerful a research tool CAI could be. 

Hofstetter conducted more experiments using GUIDO.  Three of these studies 

were designed to determine patterns of errors in student dictation exercises.26  The first 

study tested for confusion patterns in harmonic dictation.27  The students were presented 

with harmonic dictation examples.28  They could move through the examples at their own 

pace, listening to musical examples and choosing their answer on a touch sensitive 

screen.  When they answered incorrectly, the software saved their incorrect responses, as 

well as the correct responses.  Hofstetter used this data to determine that students have 

seven confusion tendencies for harmonic dictation: bass line confusion, wrong inversion, 

confusion of chord function, wrong quality, unperceived sevenths, unperceived roots, and 

favorite responses.29  Hofstetter�s study allowed him to better understand student 

problems in perceiving the harmonic exercises and adjust his curriculum to address the 

confusion tendencies.   

                                                
23 Ibid., 47. 
24 Ibid.. 
25 Ibid.. 
26 Ibid., 48. 
27 Ibid.. 
28 Ibid.. 
29 Ibid., 49. 
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Hofstetter�s second study using GUIDO examined student confusion tendencies 

in identifying chord qualities and inversions.30  This experiment showed that students 

usually confused major chords with other major chord inversions, minor chords with 

other minor chord inversions, and augmented and diminished chords with each other.31  

Hofstetter used this particular study to dispel the commonly held belief that a major chord 

in root position is easiest for students to identify.32  His data showed that students most 

accurately identify a minor chord in root position.33  The results of this study are 

significant because they show how a research tool like GUIDO can improve a teacher�s 

understanding of how students learn. 

Hofstetter�s third study looked for confusion patterns in rhythmic dictation.34  The 

experiment showed that students confused simple note rhythms (quarter, half, and whole 

notes) with other simple note rhythms, and eighth, syncopated, and triplet rhythms with 

simple note rhythms.35   

It is important to note the power that GUIDO gave Hofstetter as a researcher.  

Since students using GUIDO could work through the material at their own pace and on 

their own schedule, Hofstetter needed only to step back and allow them to do so.  The 

computer allowed Hofstetter to collect a large amount of data and analyze it easily.  To 

conduct the same experiment with manual methods, it would be necessary for a teacher to 

administer many tests to his students using a piano and prepared answer sheet, and then 

take hours to either enter the data into a computer or analyze the data by hand.  GUIDO 

                                                
30 Ibid. 
31 Ibid.. 
32 Ibid.. 
33 Ibid.. 
34 Ibid.. 
35 Ibid.. 
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automatically saved the correct and incorrect answers to a database for easy statistical 

analysis.36   

GUIDO was not the only music curriculum written for PLATO.  MUSFUND, 

written by Dorothy Gross and Roger E. Foltz in 1979, also operated inside the PLATO 

system. 37  MUSFUND was a collection of computer lessons that targeted music 

fundamentals and theory rather than aural skills.38  MUSFUND consisted of �twenty 

drills and two practice tests and [included] music notation, scales, intervals, chords and 

terminology.�39  The MUSFUND project was designed to determine if music CAI could 

effectively fill the need for good music fundamentals instruction.40   

Gross and Foltz implemented the MUSFUND software at the University of 

Nebraska and the University of Minnesota in two different ways.  At Nebraska the 

software was integrated into the regular curriculum, while at Minnesota the software was 

optional coursework outside of the regular curriculum.  Gross and Foltz prepared a pre-

test/post-test study and conducted exit interviews with the students.41  They compared 

scores and interviews of CAI and non-CAI music fundamentals students and found that 

students who used MUSFUND showed higher degrees of comprehension of music 

fundamentals than those who did not.42  Further evaluation of the results revealed that the 

rate of student attrition dropped when the software was used in the curriculum.   

                                                
36 Ibid.. 
37 Dorothy Gross and Roger E. Foltz, �Ideas on Implementation and Evaluation of a Music CAI Project� 
College Music Symposium, 21 no. 2 (1981): 22. 
38 Ibid., 23. 
39 Ibid. 
40 Ibid., 24. 
41 Ibid. 
42 Ibid. 
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Rosemary Killam conducted several significant studies using CAI on 

microcomputers while at Stanford University.  In one study, she used a PDP-10 

timesharing computer system to study whether note length (the note durations were .1 

and .2 seconds) had any effect on student performance in interval recognition.43  She 

showed that note duration made little difference in the accuracy of interval recognition.44  

In a similar study on triads, she found that duration of tone (.1 and .2 seconds) was a 

factor in triad quality perception.  Also, the mode of triad presentation, as chords, 

ascending arpeggios, and descending arpeggios, impacted how students performed.45     

In 1984 Rosemary Killam stated that the requirements of music CAI are �sound, 

real-time interaction, individualization, student records and research.�46  Her 

requirements for music CAI show a balance between the needs of the student (sound, 

interactivity, individualization) and the needs of the teacher (student records, research).  

Sound is an obvious requirement for music software, and sounds that are as close to 

�real� as possible help the students transfer their skills and knowledge in the real world.  

The software must also interact with the student in a manner that gives the user a sense of 

control, while at the same time presenting appropriate information and responses to keep 

the student progressing through the material.  The software must be able to 

�individualize� content based on the progress of the student; the software must allow the 

teacher to assign tasks to certain students.  

                                                
43 Ibid. 
44 Ibid. 
45 Rosemary Killam, Paul V. Lorton Jr, and Earl Schubert, �Perception of Triads� unpublished research 
paper, Stanford University, 1975. 
46 Rosemary Killam, �An Effective Computer-Assisted Learning Environment for Aural Skill 
Development,� Music Theory Spectrum 6 (1984): 53. 
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Record keeping is an important task for CAI software.  By building software that 

keeps records, teachers can not only evaluate how their students are progressing though 

the software, but also evaluate where students have the most difficulty with the software.  

Killam argues that this kind of ongoing research should be a part of good CAI.47  

Research on how students use software should allow teachers to recommend or 

implement changes to the software.  For instance, if a significant number of students 

consistently perform poorly on one exercise while performing well on others, the teacher 

can examine the exercise that causes them difficulties to find ways to improve it.  The 

teacher can then change some aspect of the program and study whether those changes 

make a difference in student performance. 

Kuhn, Killam, and Lorton discussed how computers are necessary and effective 

research tools for the largely unexplored realm of music education.48  They state: 

Music, although a traditional and historical area of formal education, has 
many areas awaiting systematic exploration.  The amount and precision of data 
required for research in these areas necessitates a computerized system.  � 

With the musical sound presentation under computer control and with the 
system monitered [sic] and recorded in detail, precise research and flexible 
instruction are made feasible.49 

 
The computer allows music, a subjective medium, to be studied objectively.  The data 

collected by the computer can be used to understand how students learn music.  Better 

understanding of student perception helps teachers create more effective teaching 

strategies. 

                                                
47 Rosemary N. Killam and others, �Research Applications in CAI� College Music Symposium, 21 no. 2 
(1981): 37. 
48 Paul Lorton Jr., Rosemary Killam, and Wolfgang Kuhn, �A Computerized System for Research and 
Instruction in Music� Computers in Education: Procedings of the IFIP 2nd World Conference, 1975. 
49 Ibid. 
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The PC and New Technology 

During the 1970�s, as computers were becoming more common, researchers 

started writing articles discussing how to build CAI systems.50  These �how-to� articles 

were new to the community, and reflected a shift in scholarly publication away from 

research.  By sharing their thoughts on their own software development cycle, researchers 

shared the knowledge they gained from building the software with new CAI 

programmers.   

Computers became much more commonplace in the music school with the 

introduction of the personal computer (PC), and the audience for CAI grew because of it.  

PCs allowed users to build and use software with relative ease.  Researchers who had 

used mainframe computers to conduct research could implement their software on PCs 

for less money, and they had a potentially larger audience for their software, but they lost 

the centralized data collection that mainframe computers used.  For CAI researchers who 

were used to the centralized data storage of mainframes, this was a serious impediment to 

experimental design.  Programmers had to deal with the data storage hurdle, or write 

software that did not save data.  Some programmers authored how-to articles, while 

others started selling their software to the burgeoning PC market.  Research was 

becoming less of a focus for the CAI community. 

                                                
50 Killam contributed several of such articles, including:  
Paul Lorton Jr., Rosemary Killam, and Wolfgang Kuhn, �A Computerized System for Research and 
Instruction in Music� Computers in Education: Procedings of the IFIP 2nd World Conference, 1975;  
Rosemary Killam, Philip Baczewski and Antoinette Corbet, �Research Applications in Music CAI� 
College Music Symposium 21 no. 2 (1981);  
Rosemary Killam, �An Effective Computer-Assisted Learning Environment for Aural Skill Development,� 
Music Theory Spectrum 6 (1984). 
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PCs were of several different types, and many were not compatible with other 

kinds of PCs.  This meant that some programs could only run on certain kinds of 

hardware.  According to G. David Peters, �the perplexing question of what computer to 

adopt became a major issue for the educational community.�51  The music community 

was split into factions, each rallying around a particular type of computer and the 

software that ran on it.  Apple computers gained a following due to their graphics 

capabilities and ease of use.  The Macintosh computer, with built-in sound capabilities, 

emerged to replace the Apple IIe in the mid 1980s.52  Most PCs, including the Apple IIe, 

included everything the programmer needed to start developing software, including a 

programming language, like BASIC or HyperCard. 

BASIC (Beginner's All Purpose Symbolic Instruction Code) was a commonly 

used programming language that came pre-installed on computers from Apple, IBM, and 

Commodore. 53  It used an English-like syntax and was fairly easy to understand.  BASIC 

emerged in 1964 and was used commonly in micro- and mini-computer programs, so 

much of the body of knowledge learned by programmers using BASIC on a mainframe 

could be transferred to the PC.  Since BASIC was in common use on many machines for 

a long time, software written for PC in BASIC was fairly mature compared to the age of 

PC technology.   

HyperCard was another very prominent language in CAI development.  Like 

BASIC, it used an English-like syntax for source code, but it ran only on Macintosh 

                                                
51 G. David Peters, �Music Software and Emerging Technology� Music Educators Journal 79 no. 3 (1992): 
24. 
52 Ibid.. 
53 Gary Wittlich, John Schaffer and Larry Babb, Microcomputers and Music (Englewood Cliffs, NJ: 
Prentice Hall Professional Technical Reference, 1986), x. 
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computers.  Released in 1987, it gained rapid adoption because of its integrated media 

capabilities and ease of use.  Users could build HyperCard applications to display 

information or manipulate data.  HyperCard applications utilized the familiar Macintosh 

graphical user interface, so they were visually appealing with only a little work. 

In 1983, at about the same time that the PC was gaining momentum, digital 

keyboard manufacturers agreed on a set of standards for describing musical events in a 

digital format: Musical Instrument Digital Interface (MIDI).54  MIDI is designed to 

enable a computer to communicate with electronic instruments.  MIDI became very 

successful since it effectively defines a musical language for electronic equipment, 

allowing a computer to communicate a broad range of external devices.  MIDI is 

platform independent, and also allows for musical input to the computer from MIDI 

devices.   

Though MIDI�s original target was the music production industry, it found many 

willing users in music CAI development.  G. David Peters first used MIDI in conjunction 

with computerized music instruction in 1984.55  Peters� software, called Keyboard Blues, 

used a MIDI keyboard and worked with both IBM/DOS and Apple computers.56  Peters 

reported that more than 50 programs using MIDI for music instruction were released in 

the eight years (1984-1992) following the release of his software.57  The 1980s saw a 

huge increase in the number of music CAI programs that were produced and distributed. 

                                                
54 Peter Webster, �Historical Perspectives on Technology and Music� Music Educators Journal 89 no. 1 
(2002): 38. 
55 G. David Peters, �Music Software and Emerging Technology� Music Educators Journal 79 no. 3 (1992): 
22. 
56 Ibid.. 
57 Ibid.. 
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Despite the growing number of CAI programs since the advent of the PC, the use 

of CAI for research purposes has become less frequent since the early to mid 1990s.  It is 

easiest to see the trend towards less research by examining the number of dissertations 

published that use CAI for research.  Another indicator of diminishing research is the 

frequency of publication of research findings in scholarly journals.   

The frequency of CAI oriented dissertations is shown in Figure 1.  The data for 

Figure 1 was collected from the Dissertation Abstracts database OCLC FirstSearch.  The 

following search terms were used: �kw: computer and kw: music and kw: instruction.�  

The search yielded 187 records that were filtered manually to make sure the data was 

relevant to CAI research in music.  It was discovered that 88 relevant dissertations were 

left.  These were grouped chronologically to develop the graph shown in Figure 1.  The 

data for this graph and the search results are shown in Appendix A.  The graph in Figure 

1 shows a bell curve, with the most research being published between 1989 and 1993.  

The earliest dissertation shown on the graph is from 1969, and research increased in 

frequency in the two decades following that point.  In 1989 and in 1993 there were 6 

dissertations published that used CAI for research.  The frequency of dissertations on 

music CAI diminishes after 1993 but does not completely disappear.  The graph indicates 

that as computers became more popular and widespread, research increased.  However, 

after 1993 there were fewer dissertations published per year that used CAI in music 

research. 
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Figure 1: CAI research dissertations per year 

 
Another indicator of how CAI research is diminishing is the amount of attention it 

receives from music organizations.  For example, in 1981, the College Music Society 

(CMS) dedicated an entire issue of their journal to CAI and research.  However, since 

then the CMS has not repeated this act, nor have they focused on computers in research.  

Likewise, The Journal of Music Theory published several articles on CAI in the 1960�s 

and 1970�s, but none afterwards.  Music Theory Spectrum printed a number of articles on 

CAI in the mid to late 1980�s, and a fair number of software reviews.  However, after that 

the amount of CAI research to appear was limited.  Music Theory Online, founded in 

1993, has no articles on CAI or computer music instruction.  The Association for 

Technology in Music Instruction (ATMI) holds annual conferences, but the focus of the 
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presentations is more geared towards how-to than presentation of research findings.58  

Finally, the Special Interest Group for Computer Uses in Education, which published 

many research and how-to articles on uses of technology in the classroom (not 

specifically music related), was disbanded after 2001.   

Many of the more recent articles about CAI are reviews of functionality and user 

interfaces, and do not discuss CAI�s current research potential.  For example, Deron 

McGee�s 2000 survey of aural skills software notes how research in cognitive science 

from the past two decades helps music teachers understand how students perceive 

music,59 and he even states that the future of aural skills instruction relies on conducting 

research and integrating it into music teaching materials.60  Yet, in his discussions of each 

of his four reviewed software packages he never mentions how the software has been or 

can be used for research.  He focuses on how the software looks, how the teacher can use 

it to assist instruction, and whether or not the software supports various technologies like 

USB.   

 

Current Music CAI Software 

There are many CAI programs available today; two of the most widely distributed 

and respected programs are MacGamut and Practica Musica.61  Practica Musica was 

released in 1987 by Ars-Nova Software, LLC.62  It includes exercises in dictation as well 

                                                
58 Conference schedules for 1999-2005 are available at http://atmionline.org/index_conf.html. 
59 Deron McGee, �Aural Skill, Pedagogy, and Computer-Assisted Instruction: Past, Present, and Future,� 
Journal of Music Theory Pedagogy 14 (2000): 115. 
60 Ibid., 134. 
61 Deron McGee, �Aural Skill, Pedagogy, and Computer-Assisted Instruction: Past, Present, and Future,� 
Journal of Music Theory Pedagogy 14 (2000): 115. 
62 Ibid. 
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as theory, and employs a mastery model for drill and practice.63  Ann Blombach released 

MacGAMUT only a year later, in 1988.64    MacGAMUT includes drills for aural skills 

using the mastery model.65  Both packages were originally written for the Mac platform, 

though both now run on both Macintosh and Windows.66   Each program offers built-in 

sounds as well as MIDI for listening to musical examples.67  The most important feature 

of both programs is that they save data to allow teachers to assign letter grades and make 

sure that students are progressing through the computer curriculum.   

However, even though MacGamut and Practica Musica save data on student 

performance, no academic research has been performed using either program.  The lack 

of research is largely due to the way the software is setup and marketed.  Researchers 

cannot legally modify the software to trap new data, and the programs do not offer tools 

to examine the existing data.  The data saved by both programs are in a proprietary 

format and standard data compilation tools cannot read their formats to access the stored 

data.  

 

The Internet and New Standards 

In recent years there have been some important technological developments, 

including the Internet, open source, and database solutions for data storage.  The Internet 

enables people to communicate instantly over distances, allowing new social groups to 

form, and new ideas to be shared.  Because of its popularity, the Internet has helped drive 

                                                
63 Ibid. 
64 Robert Skinner, �Music Software,� Notes, 2nd Ser., Vol. 45, No. 3. (1989): 537. 
65 Deron McGee, �Aural Skill, Pedagogy, and Computer-Assisted Instruction: Past, Present, and Future,� 
Journal of Music Theory Pedagogy 14 (2000): 115. 
66 Ibid.. 
67 Ibid.. 
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the price of computer hardware down as well, allowing almost anyone to use computers.  

The volume of traffic on the web created a demand for centralized data storage programs, 

called databases, to keep track of web users� information.  New technologies and 

approaches have arisen to meet the needs of Internet users and providers., including open 

source software and database technology.   

Open source software is a number of things.  It is a methodology for producing 

software with public program source code.  It is a label for the software produced by the 

process.  And finally, it is the name of the social movement that produces and distributes 

the software.  Open source software is free to download, use, modify, and distribute.  The 

source code is available so that other people can modify it or improve it, and give the 

improvements back to the community.  Open source software is usually released under a 

license agreement like the General Public License (GPL), which effectively makes the 

software source code public property.  The conditions of the GPL allow anyone to view 

and use the code under the condition that they do not sell it or claim it as their own 

property. 

Open source software development has flourished because of the communication 

channels provided by the Internet.  Programmers can email other programmers, post their 

completed work to websites, and download other people�s software to see how it is built.  

The open source movement has produced software that powers most of the Internet, 

including the Linux operating system, the Apache web server software, languages like 

PHP, and data storage programs like MySQL. 

Data storage is important on the Internet, so powerful data storage mechanisms 

have arisen to meet the need.  Web applications track millions of pieces of data, including 
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user logins, security codes, and content.  Programs like MySQL, MS SQL Server, Oracle, 

and PostGreSQL use a standards-compliant language called Structured Query Language 

(SQL) to insert and retrieve data.  SQL allows programmers to manipulate data the same 

way in every database.  Extensible Mark-up Language (XML) is another important data 

storage and manipulation standard.  It is a way of building a self-describing data storage 

format using plain text files.   

The Internet provides new tools and languages for running software on most kinds 

of computers.  Most modern computers support a web browser, and web browsers are 

designed with standard capabilities, like rendering HTML into viewable pages.  Web 

browsers also support plug-ins like Java applets and Flash programs that can play 

movies, mp3 files, and MIDI files.  Cross-platform media capabilities and centralized 

data storage offered by web applications help overcome some of the problems that PC 

programmers and researchers encountered before the Internet.  

The idea of taking advantage of both the power of distributed and centralized 

computing has resulted in some interesting web applications for music education.  

Websites such as MusicTheory.net deliver tutorials, drills, and utilities for learning music 

fundamentals and music theory.  MusicTheory.net does not track student performance or 

activity over the long term, and is limited to tracking performance for each exercise.  

eMusicTheory.com allows teachers to establish virtual classrooms for their students, give 

out simple theory assignments, and have the computer grade the assignments.  The 

eMusicTheory.com software can be run from the website or downloaded to run offline, 

giving the student a chance to practice at home without an Internet connection.  The 

software is cross platform, and integrates with the MIDI capabilities of modern 
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computers.  eMusicTheory.com collects student usage information automatically for the 

teacher, including score, time required, and who has completed the exercises.  When used 

from the website, the software saves all the information to a database so that teachers can 

view reports later on.   

eMusicTheory.com presents and interesting possibility of delivering CAI over the 

web, but it has some drawbacks.  The program cannot be easily modified to trap different 

data, and the raw data is not made available through the web interface, so it does not offer 

any research opportunities to its users.  eMusicTheory.com also has technical and 

logistical flaws in its user interface, so people are not likely to adopt it.  For instance, the 

MIDI compatibility is not completely cross platform, and the administrative interface is 

not intuitive or self-explanatory. 

While CAI seems to have made steady inroads into the music school, it also has 

lost its power as a research tool.  Early CAI was tied to research, and the information 

gained from early CAI research was important to the music community.  Early CAI 

pioneers proved the value of research for the music community, indicating CAI that does 

not promote research does not serve the best interests of the music community.  While the 

current CAI market supports a number of commercially successful programs, there has 

not been a lot of new growth or innovation in the past decade in CAI.  To further 

understand the problem faced by CAI users and researchers, we must understand how 

people develop, distribute, and use CAI software. 
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Chapter 3: CAI and Society 

Electronic technologies and the industries that supply them, are not simply the 
technical and economic context within which �music� is made, but rather, they are among 
the very preconditions for contemporary musical culture.68   

- Paul Theberge 
 

Introduction 

The use of computers in music instruction creates a complicated and rich social 

framework for gathering and sharing information.  The early adopters of computers in 

music education shared new ideas through articles and conferences, and adapted existing 

technologies to create new ways of teaching and learning.  In examining the past, the 

important issue is not the hardware, or the software itself, but how people chose to use 

computers in music education, and how they shared that information with others.  

Different groups of people adopted varying technologies to meet their needs, and in doing 

so gave the technology meaning and life.   

CAI was also important to music schools because the early adopters legitimized 

its use through research.  The lessons the early CAI programmers learned impacted what 

features were built into new CAI, how that CAI should be used, and who should use it.  

In the early days, the context of music CAI software was that of exploration, cutting edge 

science, and improved pedagogy.  The future was filled with promise.  CAI developers 

took advantage of many different kinds of technology like MIDI to improve and bring 

new meaning to their software.  With time and changes in computer culture, CAI became 

a commercial product and research became less of a concern for CAI developers.  

                                                
68 Paul Theberge, Any Sound You Can Imagine: Making Music/Consuming Technology (Hanover, NH: 
Wesleyan University Press of New England, 1997), 151. 
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Research was still an important aspect of academic music culture, but because of larger 

societal pressures CAI was no longer viewed as a research tool. 

This chapter addresses the social pressures that changed CAI into a commercial 

product.  Among the social forces at work are the changes in computer culture over the 

decades, the fact that music CAI programmers are often music theory professors, and the 

loss of knowledge due to technology obsolescence.  People have come to use CAI in 

specific ways because of changes in society, the demands placed on music teachers who 

develop software, and the volatility of computer knowledge, hardware, and software. 

Modern CAI software offers effective pedagogy based on the research conducted 

decades ago, but it does not allow researchers to capture new data.  For example, 

MacGamut, a well-known and widely used CAI package, does not allow researchers to 

save new data to see how students use the software, nor does it allow researchers to 

examine the data captured in new ways. 69  Students and teachers can only use MacGamut 

in specific ways, limiting opportunities for researchers to try new ideas.  

Since modern CAI developers do not set out to limit research opportunities for 

others, there must be other forces shaping the development of CAI over the years, outside 

of the developers� desire to create software.  Some of these cultural forces are rooted in 

the way music teachers teach, the programming tools and languages that are available, 

and the way musicians view computers.   

 

                                                
69 According to Melba Leyshon of MacGamut Software, Inc. in an email to author (November 4, 2005), 
MacGamut enjoyed distribution of 25,000 copies in 2005 alone.   
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The Culture of CAI Development 

Development of PLATO or other mainframe software in the 1960s practically 

demanded a long-term structured approach, since the resources required to develop 

mainframe CAI applications were so great.  A single individual simply lacked the time, 

knowledge, and money to put together the entire system alone, so formal processes 

evolved to communicate system parameters and results of tests to other team members.  

The PLATO project required a staff to install, configure, and maintain all of the hardware 

and software the machine used, and Bitzer even had a staff of engineers to develop plans 

and working models for the student workstations.70  To work with the varied groups of 

engineers, support staff, programmers, and testers, Bitzer must have devised a process for 

directing the project personnel and communicating his plan.  Every project involving 

more than one person has a communication and management structure.  Bitzer did not 

publish descriptions of the group dynamics of his project, but given the longevity and 

success of the PLATO project, we can be assured that there was some successful 

structure in place.   

The advent of the PC in the late 1970s changed how software was developed. 

Hobbyists could write PC software on their own computer.  A single person could 

embark on a software project with little planning, and a relatively modest budget.  The 

CAI production process became less of a group effort, and less structured.  Many 

programmers failed to give adequate attention to the planning process, and did not 

                                                
70 D. Alpert and D. Bitzer, �Advances in Computer-Based Education� in Science New Series, vol. 167, no. 
3925 (1970): 1583. 
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manage their projects well.71  As a result, the increasing number of CAI programs 

released to the public were of poorer quality.  Many of the programs, written in BASIC or 

HyperCard, were designed for personal use, not for research or publication.     

Programmers who produce music CAI are often music teachers.  There are three 

inherent problems with the �music teacher as programmer� model.  First, few music 

teachers have a significant background in software development, having spent their 

formative years practicing and studying music.  Second, few music teachers have an 

abundance of time on their hands to handle teaching and all of the tasks involved in 

bringing a successful software product to completion, including software design, project 

management, software development (coding), quality assurance, marketing, and support.  

Finally, most schools of music do not provide an environment conducive to software 

production.   

Music teachers rarely have any formal training in software development.  Many 

are drawn into CAI programming to help their students, or out of personal interest.  

Research by Steve McConnell shows that even highly trained computer programmers 

often lack the knowledge and skill to successfully bring a project to completion.72  

According to McConnell, successful software production takes experience more than the 

ability to write program code: it takes good planning and management, and adherence to 

software development processes that are proven to reliably bring software to 

                                                
71 Steve McConnell, After the Gold Rush: Creating a True Profession of Software Engineering  (Redmond, 
WA: Microsoft Press, 1999), 4. 
72 Ibid., 11. 
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completion.73  Therefore, in order to successfully produce software, the CAI developer 

needs experience, project management skills, discipline, as well as the ability to program.   

Steve McConnell claims that 75% of software projects use something called code-

and-fix development because they lack discipline, planning, and good management.74  

Code-and-fix development is a programming style in which a programmer undertakes a 

software project with inadequate planning, resulting in frequent fixes and changes of 

scope.  Code-and-fix programming results in a high risk of project failure, longer 

timelines, and poor program code.75  This approach to programming is widespread 

because it provides a false sense of progress.  The programmer can see working code 

early on in the process, but the lack of planning involved in code-and-fix programming 

ends up costing large amounts of time later in the project as portions of the program need 

to be rewritten to accommodate changes.  More experienced software companies like 

Microsoft or IBM reduce their risk of failure by resisting the urge to produce code before 

they have a clear plan.  Music CAI developers, struggling to show progress in their CAI 

project, often do not avoid this trap.  By making this mistake, they cost themselves 

valuable time and money.   

Music teachers often lack the time in their schedules to spend huge amounts of 

time on a software project.  Producing software is time consuming, and college music 

teachers are subject to the same duties as other faculty, including teaching, scholarship, 

and research.  During a software project, the initial phases of software production, 

including gathering requirements, designing data structures, and planning the execution 

                                                
73 Ibid., 20. 
74 Steve McConnell, After the Gold Rush: Creating a True Profession of Software Engineering  (Redmond, 
WA: Microsoft Press, 1999), 11. 
75 Ibid.. 
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of the project, takes many man-hours.  The whole project, including planning, coding, 

testing, quality assurance, and implementation takes substantially more time.  Even after 

a software project has been completed and is being used, it may have problems that 

require support hours, which takes time away from improvements and upgrades.  Few 

teachers can provide the kind of time it takes to develop and support a successful 

software project along with their other teaching duties.  In order to complete the software 

successfully, the CAI programmer must either be extremely knowledgeable and efficient, 

must cut corners, or must have help. 

Music departments rarely have more than one or two people who know how to 

program computers.  The music teacher/programmer might have a colleague who has 

some technical ability, but it is rare for him to find a colleague who can help develop 

software.  Music schools also do not offer experienced project managers to support the 

CAI project.  So the entire workload lies on the shoulders of the teacher/programmer, 

making it more likely for him to run over time and budget by a wide margin. 

The final problem with the aural skills teacher as programmer model comes from 

the duty of faculty members to �publish or perish.�  College teachers are not only 

required to teach, but to write for scholarly journals, publish books, and contribute their 

knowledge to the college community.  The teacher/programmer can publish his software, 

or articles about his software in journals or in a book.  These publication about CAI as a 

teaching tool removes the focus from research.  CAI becomes a product for teaching and 

publication, but not for research. 
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Software as a Product 

When CAI software is finished, it can be sold to recoup some of the costs of 

development.  There are two avenues for selling CAI: publishing it through an 

established publisher, or selling it on his own.  While college tenure committees look 

upon publication through a reputable publisher more favorably, both paths have 

implications for the software and for the programmer.   

Some CAI developers choose to distribute their software through traditional 

textbook publishing companies.  Publishing companies, especially textbook publishers, 

actively try to find new ways to sell more books. One way they do this is to pair software 

with an existing textbook.  This pairing often makes sense in terms of pedagogy, since an 

existing textbook can provide tested and proven materials, while the CAI can provide 

drills and homework.  Programs like Computer Assisted Software Project for Aural Skills 

Reinforcement (CASPAR) and Music for Ear Training coordinate with established ear-

training textbooks.76  By pairing software with a textbook it has a double effect on the 

legitimacy of the software.  It strengthens the legitimacy since the software is paired with 

a prominent textbook, but it also weakens the legitimacy since the software is seemingly 

an add-on to the textbook.  This arrangement can be positive for the programmer since 

most of the work of distribution and marketing is taken care of by the publishing 

company, but the publisher can discontinue the software if it does not improve book 

sales. 

If the CAI programmer decides to market the software on his own, he becomes 

not only a programmer, but also an entrepreneur.  With this arrangement he must manage 
                                                
76 Leo Kraft, New Approach to Sight Singing, 2nd Edition (New York: W.W. Norton) and Benjamin, 
Horvitt, and Nelson, Music for Sight Singing, 3rd Edition (Belmont, CA: Wadsworth) 
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business aspects like advertising and budgeting, in addition to programming, support, and 

academic duties.  The software changes status from research project to business 

development, and the software�s viability is tied to making money.  Having two jobs at 

once puts the teacher/programmer in an awkward position, since his or her academic 

duties are not lessened.  Even if the software successfully provides good instruction to the 

students and eases the teaching workload, the instructor is still obligated to teach, conduct 

research, and publish while running the software business. 

Ann Blombach, who wrote MacGAMUT, was a college music teacher before she 

retired.  She created MacGamut Music Software International long before she retired to 

help her sell her software.  By forming her own company instead of using a traditional 

publisher, she took on many of the challenges of distributing software.  However, she 

also was able to hire extra help and shift some of the pressure of software development, 

marketing, and distribution off of her own shoulders.  A software company can focus on 

the business of producing software, and does not deal with teaching and scholarship like 

college teachers.  Software companies hire software specialists and project managers to 

make the process of developing software more streamlined and stable.  The software 

company can even suffer the loss of a programmer and remain viable.  Furthermore, the 

software company is under no obligation, even implied, to share their technology with the 

community at large.  College professors must �publish or perish,� so much of the 

research they perform is shared with the academic community, but a software company 

can keep their methods and techniques secret.   

When the teacher/programmer completes and distributes his software, there are 

still some pitfalls to be dealt with.  According to Michael Tiemann: 
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The simplistic view of a software company is that once you've created some 

software that people want to buy, the act of printing copies of that software and 

distributing it is not unlike printing money: the cost of goods is negligible, and the margin 

nearly perfect. � The concept of software support was seen as a degenerate by-product 

of some flaw in the software product process, and that by minimizing software support 

investment, one could maximize profits.  

This not only frustrated users, but it was bad for the software as well. Features 

that were easy to implement were often dismissed as "non-strategic." Without access to 

source code, features that customers would otherwise be able to implement themselves 

remained points of speculation and contention. And ultimately vendors (and their 

marketing departments), not customers, defined the arena of competition with a myriad of 

useless but easy-to-express features. Free market economics had been turned upside 

down. 77 

Tiemann�s experience showed that keeping source code hidden from the public actually 

drove the market away from what the end users needed and wanted.  This effect on the 

software market can be seen in modern CAI:  software reviews and articles focus on 

features that have little to do with how CAI can be used to produce a better learning 

environment, such as the attractiveness of the user interface.   

Tiemann�s observations also are relevant in terms of technical support and 

software upgrades.  Software must be kept current so that it runs on current operating 

systems, takes advantage of technical improvements in hardware, and adds features so 

that users will pay for new versions.  If these things do not happen, the software will 

become obsolete.  Software updates are an integral part of the software development 

lifecycle, and are crucial to the adoption of software.  According to McConnell, deciding 

when to release software is not a matter of eliminating defects, but deciding how many 

                                                
77 Michael Tiemann, �Future of Cygnus Solutions: An Entrepreneur's Account� in Open Sources: Voices 
from the Open Source Revolution, ed. Chris DiBona, Sam Ockman, and Mark Stone (Sebastopol, CA, 
1999), 77. 
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critical, serious, or cosmetic defects are acceptable.78  Because of this, new software is 

bound to have problems, and the programmer must release updates to fix the problems 

and improve functionality.   

The stress of producing and maintaining software can be enough to drive 

programmers out of the software business.  Without a programmer to support it, CAI 

software becomes obsolete, and the ideas expressed in source code are lost to history.  

Even commercial software programmers who specialize in writing software for software 

producing organizations have a fairly high attrition rate due to stress, resulting in an 

industry demographic dominated by the young, while older workers move on to less 

high-pressure jobs in management or other fields.79   

 

Open Source Software 

The problems of programmer attrition and closed source programming create a 

void of information for the CAI community, but open source programming offers a 

solution.  Open source software is released with all the source code, available for viewing 

or changing, under the condition that no one can �own� the source code.  People can 

generally use open source software any way they decide to, modify it for their own 

purposes, and distribute it so others can enjoy the improvements.  Open source programs 

can be shared among many different programmers, each working on a part of the 

program that interests him.  Sharing the workload not only relieves stress on 

programmers, but it creates a more stable knowledge base.  No longer does one person 

                                                
78 Steve McConnell, Software Project Survival Guide: How to Be Sure Your First Important Project Isn�t 
Your Last (Redmond, WA: Microsoft Press, 1998), 224. 
79 Steve McConnell, After the Gold Rush: Creating a True Profession of Software Engineering (Redmond, 
WA: Microsoft Press, 1999), 30. 
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control all the knowledge of how a CAI program works.  If a programmer does stop 

working on the program, all of the source code that powers his section of the program is 

available for someone else to pickup where he left off.   

Many businesses, individuals, and even university computer science departments 

have discovered that open source software allows them to maximize their investment in 

software.  Software like the open source Linux operating system has a tremendous 

following from programmers who use it and contribute to it.80  Businesses adopt Linux 

because they know that there are thousands of programmers improving it and supporting 

it.  Linux programmers add features that they themselves need and want, so the software 

more accurately provides for users needs.  Programmers benefit from open source 

programs because they can study software code that is used in �production� business 

systems to learn how it was built, and how to build their own.   

The open source approach allows for the establishment of a freely available body 

of knowledge for music CAI software developers.  New programmers wishing to learn 

how the program works need only examine the source code of existing applications.  

Teachers wishing to study how students react to different instruction delivery methods 

need only implement their new ideas on top of existing software.   

One foreseeable difficulty in adopting open source practices in music CAI 

development is the issue of ownership.  Because many people see software as a tangible 

good, they expect to pay a software company to use software.  People expect the software 

company to own the rights to the software, and to control access by locking down the 

                                                
80 The name �Linux� is a reference to Linus Torvalds, the creator of the operating system kernel.  Linux 
stands for �Linus�s Unix.�  Torvalds did not create the entire operating system.  Independent contributors 
built the rest of the operating system over the course of several years, which can more formally be called 
GNU/Linux.  GNU is a looping acronym meaning, �GNU�s Not Unix.� 
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source code and charging users to use the software.  However, there is a software-

licensing schema called the General Public License (GPL) that enables the public to own 

software.  The GPL outlines how any person can use and distribute the software and 

source code.  It is a legally binding licensing agreement that prevents businesses from 

appropriating public code as their own, thereby protecting the integrity of open source 

software.  There are many software packages already available under the GPL, including 

MySQL database server, Apache web server, and many varieties of the Linux operating 

system.   

Richard Stallman notes that since the 1980�s people expect software to cost 

something, and as a result hesitate to adopt software that is free.81  This is not strictly true 

on the Internet, where people routinely use web software like email without hesitation.  

But for desktop software, Stallman�s statement is true.  End users expect technical 

support and updates from their software manufacturer to keep their software current, and 

they have grown accustomed to paying for those things.  They are uncomfortable 

adopting software that is free because they expect to get what they pay for and are unsure 

how long free software will be available or usable.  In reality, open source software is 

free, and some of it is very good, and is updated regularly to fix defects and improve 

features.   

The idea of ownership is also important because it is associated with the ability to 

make money from the software.  The software industry in general maintains fairly 

stringent controls over their software source code.  The theory is that if their source code 

were to be put into the hands of the public, the software company could no longer charge 

                                                
81 Richard Stallman, Free Software, Free Society (Boston, GNU Press, 2002), 35. 
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money for the software.  However, open source software can support profitable 

businesses.  Open source software businesses do not sell the open source software as their 

own since it is public property, but they can offer value-added services like hosting, 

distribution, custom programming, and support.  They can even build and sell special 

modules and features.  For example, the Linux operating system is developed and 

supported in part by companies that provide installation services, support, custom 

modifications, and other services.   

While existing CAI packages like MacGamut and Practica Musica limit research 

opportunities in CAI, open source is an opportunity to change that.  Open source can 

provide researchers with free CAI tools to undertake studies.  That research can be used 

to improve the CAI and provide the best pedagogy possible.  Open source software 

distribution combined with the power of modern computers can give researchers 

opportunities they do not have today.  By developing a strategy to take advantage of the 

exciting opportunities offered by open source, and by providing carefully developed tools 

for researchers, it is possible to build CAI that both offers good pedagogy and research 

opportunities. 
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Chapter 4: Proposal for a Open Source CAI System 

 

[The] greatest scarcity in the United States is not technical innovation, but rather 
the willingness to work together for the public good.  It makes no sense to encourage the 
former at the expense of the latter.  

�Richard Stallman82 
 

Introduction 

In this chapter a program called Mobius is proposed that is designed to deliver 

music fundamentals drills and dictation exercises via a web interface, and distributed as 

an open source program.83  Mobius will be made available under the GPL so that 

researchers can download and modify the source code and contribute their ideas to the 

music community as source code.  This proposal discusses the goals of the software 

project as well as who will build the software, what tools will be used, and how team 

members will work together.  Detailed storyboards displaying key elements of the 

program will be shown.  One of the key elements is a �data driller� that allows a 

researcher to create custom reports from existing data saved in the software.  By 

providing researchers with powerful data extraction tools, the Mobius system can be used 

for research purposes. 

 

Mobius Software Goals 

The Mobius software project has four goals. (1) to provide superior features and 

functionality.  (2) to be designed in such a way that researchers and new programmers 

                                                
82 Richard Stallman, Free Software, Free Society (Boston, GNU Press, 2002), 124. 
83 Mobius refers to a Mobius strip, a loop that has one continuous side.  It was chosen because it symbolizes 
a continuous loop of research and innovation in music CAI: research leads to innovation, and innovation 
leads to research.  There should be no boundary between the two. 
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can quickly and easily modify and improve the program.  (3) to be platform neutral, i.e., 

the software must be able to be delivered over the web.  (4) to use centralized data 

storage. 

In order for Mobius to make a positive impact in research, it must have excellent 

functionality so that people will want to use it.  It should include a complete curriculum 

for aural skills and music fundaments, including modules on written and aural intervals, 

scales, chords, as well as melodic and harmonic dictation.  The software should be 

flexible enough to allow the instructor to configure and assign specific exercises to their 

students.   

The curriculum for Mobius should be modular.  Each skill the program teaches 

should be contained inside a program module that can be installed into the Mobius system 

and configured the to behave the way the teacher wants.  A module is a section of 

program code that contains all of the instructions necessary to deliver drills or exercises 

on a particular subject.  For instance, an interval drill module would contain all of the 

code necessary for the teacher to assign interval drills to students, the students to use the 

drills, and the system to save their data.  Each skill module should allow several input 

methods.  For instance, for intervals, scales, and chords students could either notate the 

interval or identify the interval type from a list.  Modules should also allow the instructor 

to enter new examples to present different material.   

The software source code should be well structured, well documented, and easy to 

understand so that programmer can contribute new modules and new functionality to the 

system.  The source code should be divided into sections that make up components of the 

software.  For example, one segment of code controls the user interface, another 
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communicates with the database, and a third segment that makes grading decisions.  

Grouping similar code together is called n-tier software design.  Each �tier� or layer 

performs a specific function.  Figure 2 shows how the tiers communicate with each other.  

Each layer only communicates with the layer directly above or below it.  The top layer, 

the presentation layer, is the user interface code, and can only access data by 

communicating with the layer beneath it.  N-tier design keeps program code well 

structured.  All the database calls are in the bottom layer, all the complicated decision-

making code is in the logic layer, and the code that controls the user interface is in the 

presentation layer. 

All code will be documented internally and externally.  Internal documentation- 

comments inside the source code- helps the programmer understand what the code does.  

External documentation- information in print and digital format- should include 

information on how to use the software, how it works, how it is designed, and even 

specifics on what various sections of source code do. 

  Mobius should be cross-platform, MIDI compatible, have centralized data 

storage, and utilize the Internet.  To meet these goals, Mobius will be written in PHP and 

Flash, and use MySQL for data storage.  There is a plug-in for Flash called flashMidi that 

allows it to take advantage of MIDI capabilities, making it an ideal solution for 

developing a front end for web-based music CAI software.84  FlashMidi is open source, 

so it is free to download and use.  Flash movies can include the flashMidi component by  

                                                
84 Personal website of Alexis Isaac, http://www.alexisisaac.net/products/flashMidi/.  Currently, there is only 
a functional version of flashMidi for PC, but the Macintosh version is in development and should be 
released by late Summer 2006. 
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Figure 2: N-Tier Software Design 
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referencing it so that each module can use MIDI without having to include all of the 

flashMidi source code.   

Using the Internet and careful programming, Mobius will be cross platform.  

Every major operating system supports at least one web browser.  All the major web 

browsers follow a set of standards for presenting HTML, and support the Flash plug-in.  

By following HTML standards and using Flash programs, Mobius can run on most major 

operating systems.  In order to guarantee that the software works the same on every 

machine, Mobius will include a routine to check the version of the web browser to make 

sure it offers the needed features.  If the browser is obsolete, Mobius will notify the user 

they need to upgrade, and not let the user log in until they use a browser with the required 

features. 

Integrated security is another positive aspect to using the Internet to deliver 

Mobius.  If needed, Mobius can take advantage of 128-bit data encryption now in use on 

the web.  Data encryption is a way to make the communication between the web browser 

and the web server completely private, and encryption technology is built right into most 

web browsers, including Internet Explorer, FireFox, and Safari.  Encryption is a 

necessary feature for Mobius since the students need to enter a username and password to 

get into their account, and the system will store personal information like grades.   

Cheating is an important logistical and security concern in using the web for CAI 

delivery.  The Mobius software on the web server will support many users 

simultaneously, and keep track of their respective identities.  The software will require a 

login from the users so that it can pull up their account from a web browser at any 

location.  This will not prevent students from accessing each other�s accounts, so a 
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mechanism should be built into Mobius that allows scores collected at certain computers, 

such as a lab, to count for test or homework grades.  The students can take tests in a 

supervised area for grades, but work at home for practice and homework.  The system 

will save data from exercises performed both inside and outside the lab for research 

purposes.  This mechanism will assure that students can perform the exercises in a 

controlled environment and do not cheat, while still allowing them the freedom to work 

from home.  

 

Mobius: The Base System  

Mobius� base system must manage students, teachers, and administrators, as well 

as classes, modules, and all data related to student interaction.  It will allow 

administrators to install new modules, and manage teachers and classes.  Teachers will be 

able to login to manage their classes, view grades, and assign homework and tests.  

Students who log into the system will be presented with exercises that have been assigned 

to them and will be able to see a report on their progress through the exercises.  The 

system will also include a report generation tool called a data driller that allows 

researchers to look at different reports and views of how their students use the software. 

The administrator account will be a special account that has special powers and 

special limitations.  This account can control any other account that it creates, so student 

and teacher records in the database will be marked with the unique identification number 

of the administrator who created them.  Assigning users to an administrator allows the 

system to support multiple schools, since each school or location is assigned an 

administrator.  The administrator account will be limited in that it cannot also be a 
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teacher account.  If the system administrator is also a teacher in real life, he must create a 

teacher account and log in to the software as that teacher to access his teacher controls.  

The administrator functions and teacher functions are kept separate on purpose.  The 

teacher controls will be designed to make managing students and homework easy, while 

the administrator controls will be designed to make managing teachers and classes easy. 

When a teacher logs into the system, he or she will be presented with a tool called 

the class manager to manage classes, homework and view grades.  The class manager 

gives the instructor the ability to create new students, group students into classes, and 

assign homework to those classes.  The class manger allows the teacher to select any 

module installed on the system and configure it for the class that will use it.  Figure 3 

shows how the system allows them to create and manage their classes for a semester.  

Adding a new class is as simple as entering a name.  Classes are merely a way of 

grouping exercises and students into logical groups. 

Figure 4 shows the options a teacher has for configuring a class.  He or she can 

view and add students in his/her class, and setup the modules used for the class, like 

interval or chord spelling.  The instructor can give and edit assignments and view reports 

on how the class and individual students are progressing.  The reports are provided by the 

data driller tool, which is described more below. 

Figures 5 and 6 show how students are entered into the system and managed.  

Underneath the user intuitive user interface, new records are created that allow new 

students to use the modules and also allow information to be recorded and associated 

with each student.  The data driller tool can be used to generate reports on the students� 

activity.  The system can be configured to collect demographic information like age, 
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Figure 3: Class listing (instructor view) 
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Figure 4: Class controls (instructor view) 
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Figure 5: Student listing by class 
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Figure 6: Add new student dialog 
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gender, and instrument/voice.  This information can be mined in conjunction with other 

variables like test scores or time taken to complete exercises in order to create reports and 

statistical findings for publication. 

Figure 7 shows how the instructor can give assignments.  A list of assignments 

already given is shown in the center panel, followed by a panel that allows new 

assignments to be created.  The system allows the instructor to name the exercise, set 

start dates and due dates, and choose which module to use.  Figure 8 shows the second 

screen of the assignment creation process.  The instructor will configure the module so 

that it meets his needs.  In this example, the instructor can change the interval drill 

module configuration so that it focuses on various intervals, accepts partial credit, uses 

various clefs, etc. 

Teachers will be able to access the system data, view reports, and generate new 

reports using a tool called the data driller.  The data driller tool is a significant component 

in the Mobius software because it allows access to captured data.  Teachers can use the 

reports to assess how their students are performing, or conduct research.  The data driller 

will allow teachers to create new reports based on criteria he or she chooses, and then 

save the criteria for that report so it can be run again later.  Reports can be designed to 

show data from a certain time period, such as the Fall 2005 semester, or the current 

week�s worth of data.  The data driller will provide teachers with a flexible research tool, 

and will hopefully show them how they can use CAI to perform research. 

The reports generated by the data driller will be useful to teachers and 

administrators alike.  From a teaching standpoint, reports can be run to see in which 

subjects students are succeeding or having difficulty.  The teacher will be able to easily  
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Figure 7: Existing homework and add new homework dialog boxes 
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Figure 8: Configure a homework assignment dialog 
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recognize students who need personal attention, and can tell if there is a particular set of 

exercises in which all the students have difficulty.  The instructor can verify that the 

student has put appropriate amounts of time into understanding the material and intercede 

if no new progress is being made.  The system administrator can use reports to detect 

technical problems in the system by viewing how students access the system, how often, 

and for how long.  For instance, a report showing that a student logged into the system 

frequently in a short period could indicate that the student is having technical difficulties 

and needs assistance.  Researchers can use the data driller to access the system data to 

investigate how students learn using the system.  The data driller can produce reports 

comparing various variables, including age, gender, or voice/instrument versus test scores 

or the amount of time required to complete an exercise. 

To create a report, a teacher will be able to log in to the system and select the 

�Reports� option from the menu.  Figure 9 shows an example of how the start screen of 

the data driller tool will look.  The screen lists existing reports that were created earlier.  

To create a new report, the teacher must click the �Create New Report� link.  Figure 10 

shows the first page of the new report generator.  Teachers will be able to access records 

for this semester, all semesters, or choose which semesters from which the data is pulled.  

Figure 11 shows the screen displayed when the instructor chooses to select which 

semesters are mined for data.  When the instructor selects the set of data he or she wants 

to view, clicking the �Next� button will allow them to select which exercises will be 

included in the report.  Figure 12 shows the list of exercises for the semesters chosen.  

The instructor can choose to select any of the exercises, but should be aware that different 

exercises may be configured differently.  Researchers should be take into account the  
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Figure 9: List of existing reports (Instructor View) 
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Figure 10: Choose data set for reports 
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Figure 11: Select specific data sets for a report 
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Figure 12: Choose the exercises reported 
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potential confounding effects of differently configured modules and only generate reports 

based on like data.   

Figure 13 shows the next step of the report generation process.  The instructor can 

choose which data to include in his or her report.  They can select multiple fields by 

holding the select key down as they click fields with the mouse.  The fields available for 

the report will vary based on the modules reported in the data.  Figure 13 shows a sample 

of some of the generic kinds of data available for the report. 

The final step of the report generation process, shown in Figure 14, is to decide 

how to treat the columns selected on the previous page.  Numeric columns can be 

averaged or summed, for aggregate data.  Comparison operators such as �Like� or 

�Equals� can be used for both text and number fields to filter data.  A �Group By� filter 

can be used to organize the data.   

Figure 15 shows the report generated after the organization and refinement page.  

Shown are the columns, �Class,� �Name,� and �Time Spent.�  The report is grouped by 

�Class,� it is ordered by �Name� alphabetically, and �Time Spent� is summed and 

averaged.  The report shown in Figure 15 allows the teacher to see how much time their 

students have worked on the system, and the average amount of time per session. 

If the report is to the teacher�s liking, he or she can save it to the existing reports 

collection so they can view it again later with the same data.  Figure 16 shows the �Save 

Report� dialog.  Once a report is saved, it can also be modified to view other data.  The 

process is similar to that of creating a new report. 
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Figure 13: Select columns for the report 
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Figure 14: Organize and aggregate data 
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Figure 15: Report results 
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Figure 16: List of saved reports 
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The various modules that deliver course instruction, drills, and exercises will be 

administered from a central control panel called the module manager.  The module 

manager will provide an easy-to-use interface for the administrator to install and manage 

modules in the Mobius software, and teachers to configure and use those modules.  Part 

of the module management system is available through the class manager, which allows a 

teacher to enter new students, group them into classes, give assignments, and build 

reports on student progress.  The other part of the module management system would 

only be available to a system administrator.  The administrator module manager can 

perform system-wide changes, and any changes made here would impact anyone who 

uses the system, not just the students in one particular class.  Figure 17 shows an example 

of how the system lists installed modules, offers options for configuration, deletion of 

modules, and installation of new modules. 

When the system administrator wants to install new instruction modules for 

teachers to use in their classes he or she can click the �Install New Modules� button and 

be taken to the screen shown in Figure 18.  The screenshot shown in Figure 18 shows 

modules that are available for installation, whether from files that already exist on the 

server, or modules that exist in a central repository in another location.  Modules that 

exist on the server will be installed and the system administrator shown a configuration 

screen for the new module.  Configuration screens for each module will be different, and 

may even allow configuration at an instructor level.  After the module is installed and 

configured, the teachers who use the system will have access to the new module for use 

in their classes.   
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Figure 17: List of modules installed 
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Figure 18: List of modules available for download from the central repository 
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The Software Team 

The Mobius software team will be comprised of volunteer programmers, 

designers, and content specialists.  These volunteers will be recruited by posting 

advertisements on bulletin boards for music technology and music software, and email 

listservs like that run by ATMI.  Volunteers who join the project team will be able to 

download the source code and volunteer for pending tasks.  The team�s purpose is not 

only to build the software, but also to promote adoption of the software, and build a 

stable body of knowledge for open source CAI.     

The Mobius team consists of a project manager, a software design team, coders, 

quality testers, and technical writers.  Often, people will do several of these tasks, like a 

programmer writing documentation on the code he wrote.  The project manager�s role is 

to coordinate all the other team members and to assure that the project progresses on 

schedule.  The project manager also has executive authority on any changes to the initial 

design, since changes to the design after coding has started usually costs a lot time.  It is 

the responsibility of the project manager to resolve any conflicts within the team, and to 

make sure that each portion of the project is completed.   

The design team will receive a list of requirements from the project manager and 

create a technical design for the software.  The project manager uses the design to 

assemble a list of tasks for the project.  Some tasks cannot be completed until some other 

portion of the project is completed, so the project manager must assemble the task list 

based on the sequencing of events.  Once the order of tasks is determined, the project 

manager can communicate the project needs to the coding team. 
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There are software packages and websites available to automate the project 

management process, such as TUTOS, WebCollab, and dotProject, and Sourceforge.net.   

Project management software lets a project manager run a project through a website.  The 

project manger can add people to a project, assign tasks to them, keep a library of files, 

and track the completed tasks.  The programs allow the manager to build a virtual project 

plan and keep track of what tasks are completed and how the project is progressing.  

Programmers can log in to see their assigned tasks, make comments about their progress.  

Sourceforge.net provides these services for free, and allows the public to see that status of 

a project and download files that the administrator decides are public. 

Project management software allows people to communicate and store 

information in a standard location, but there is a different tool for sharing and managing 

program source code between different team members.  Source code control software 

(also known as version control) like CVS, CVSNT, and MS SourceSafe is specialized 

software that saves all current and previous versions of a program�s source code in a 

central location.  This makes it practically impossible to lose work once it is saved to the 

repository.  If a programmer wants to make changes to existing code in the repository, he 

must check it out; similar to how a library operates.  Other users cannot checkout the 

same chunk of code until it has been checked back in.  The version control software notes 

who checked out the code, and allows the programmer to save his or her work 

periodically.  Once all changes are finished and approved, the programmer checks the 

software back in to the repository, and the source code control software will allow others 

to check it out.  Source code control software allows a programmer to get all the latest 

approved versions of code to assure that every piece of code is functional and complete. 
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There are many different coding styles, even for programmers who use the same 

language, so it is important for the project manager to declare coding conventions before 

the project begins.  Coding conventions are a list of rules that the programmers must 

follow as they develop code for the project.  Rules include how to name variables, how to 

structure code so that it is consistent with other code in the project, and how the code is 

organized structurally.  Mobius will use the Gforge.net PHP coding conventions.85 

 

Using Mobius 

Since Mobius is web based, it must be installed on a web server before people can 

use it.  For those who have access to a web server on which to install Mobius, installation 

begins with downloading the software from the project web page.  The project website 

will provide installation instructions and tools.  For those who do not have access to a 

web server on which to install Mobius, there will be two options.  The Mobius project 

website will include a demonstration version of the software so people can log in and see 

how it works as teachers and students.  People who wish to use the drills can log in as a 

student and practice for free.  However, because the site is for demonstration, the default 

settings and data will be restored on a regular basis so this option is not practical for 

classroom use.  The second option is to sign up to use someone else�s installation of the 

software.  Since Mobius is delivered through the web, another music department or 

individual who has the software installed can grant access to people in other locations.  

For example, a large regional university could install and configure the software to 

provide memberships for students and teachers at smaller local colleges for free, or for a 

                                                
85 Gforge, CDE.  �PHP Coding Standards.�  http://gforge.org/docman/view.php/1/2/file2.html.  
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small fee.  The fee would help to pay for the hosting costs incurred for the software, like 

bandwidth, technical support, or paying a specialist to maintain the server.  By sharing 

the software, larger schools can help defray their own costs for hardware and manpower, 

while letting smaller schools use the software.  The regional university could use one 

installation of Mobius as an outreach program to make sure that students at smaller 

schools are receiving appropriate pedagogy. 

Programmers who want to work on the software, or who are just curious how it 

works, can download it for free from the Mobius project website.  Once Mobius is 

downloaded and installed, the next step is for the programmer to familiarize himself with 

the software, code, and documentation.  The programmer can use the configuration tools 

like the module manager and class manager to see how the software works, set up 

exercises to see how they behave, and use the data driller to see what information is 

captured by the system.  Once the new programmer has a good grasp on what the system 

does, he can examine the source code to see how certain aspects of the program work.  

The programmer can make modifications to the Mobius software code to experiment and 

learn.  If he or she makes a mistake and cause the software to stop working, they only 

need to reinstall it. 

Programmers who develop new modules for Mobius can submit them to the 

project website to be added to the module repository.  Others can download and use 

modules from the repository for their own purposes, including modification and 

redistribution.  Teachers and users can add features and improvements that they want to 

use, and can share them with others.  By enabling researchers to modify modules and 

store new data, research opportunities open up.  Data collected through the Mobius 
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system can be used to determine what methods work best for web-based CAI delivery, 

and those methods can be implemented for all to use. 

A typical research scenario might ask a question such as; is there a relationship 

between the time it takes a student to identify an aural interval and how accurately choose 

the correct answer?  The hypothesis could be that students who choose their answers 

quickly are likely to have higher score, since they clearly know the answer.  To research 

this hypothesis using Mobius, the research can download and modify the standard 

interval recognition module.  The module already presents and scores interval drills, so 

the only modification the researcher needs to make is to have it store the time it takes the 

student to answer each question.  Once the modified module is tested, it can be uploaded 

and activated into Mobius.  The researcher then must create a �homework� assignment 

for students to access.  The assignment can be integrated into an existing class, or test 

subjects can be added to the system and given the assignment.  At the end of the research 

cycle, the researcher can use the data-drill to extract the raw data he needs for analysis, or 

generate a report from the system. 

Mobius can enable long-term research projects that other software projects cannot 

address.  Mobius can track students for their entire time using the software.  If the 

students use Mobius over the course of several years, a module that records the time for 

students to choose an interval could detect changes in student ability over weeks, months 

and semesters.  By collecting information over the long-term, Mobius can help 

understand trends in student performance. 
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Chapter 5: Conclusion 

Music CAI�s roots in research have provided a wealth of knowledge and good 

pedagogy for today�s students.  Since the days of early mainframes, computers have been 

used to deliver musical instruction and study how students learn.  The data collected in 

those studies provided important knowledge for teachers, and allowed programmers to 

develop software to deliver better music instruction.  PCs allowed programmers to 

distribute their music CAI software to many more people than was possible on 

mainframes, and MIDI allowed PCs to interface directly with instruments and banks of 

sounds.  CAI improved rapidly in quality and capability, but the emphasis on research 

began to wane. 

Research became less of a focus in CAI development in the early to mid 1990s for 

several reasons.  First, closed source software distribution practices contributed to the 

lack of research by preventing programmers from creating experiments based on existing 

software.  Second, CAI software came to be seen as more of a commodity than a research 

opportunity.  Third, the culture of the music school does not support software 

development as research, only as publication.  Research became less of a focus as the 

music community focused more on the CAI product and the results that is promised in 

the classroom. 

Open source software can help to solve some of the problems of conducting 

research in music CAI.  It can provide CAI programmers a way of sharing technical 

information and source code.  Since no one can own the rights to open source software, 

researchers and teachers can use it any way they wish, and the focus can be on new ways 

to deliver instruction.  Open source software development practices allow for a whole 
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team of programmers, designers, and contributors to work together, spreading the 

workload among many people so that the limitations of one programmer will not limit the 

future of the software. 

By using open source ideas, Mobius can become a powerful research and learning 

tool.  Researchers will be able to use and modify the program so they do not have to write 

their own system from scratch.  Other researchers will be able to use a similarly 

configured Mobius as the basis for their experiments, incorporating the lessons learned by 

others.  Mobius will also allow people to build their own modules and share them with 

others.  It will enable a new generation of researchers to conceive and execute their music 

CAI experiments with effective and tested tools.  CAI programmers can build a body of 

knowledge for CAI software, including effective and ineffective teaching methods, 

effective and ineffective programming methods, and a stable body of public source code 

that grows and improves over time.  The body of knowledge created in Mobius using 

open source development techniques will spark further research and produce new 

teaching methods and improved pedagogy.   
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Appendix A: Dissertation Abstracts Data 

 
Table A.1: Number of dissertations per year 
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1988 6
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1990 3
1991 2
1992 6
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1994 5
1995 5
1996 2
1997 2
1998 3
1999 2
2000 3
2001 4
2002 3
2003 2
2004 2
2005 2

Total: 88
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Author: GARTON, JANET CLAIRE Degree: PH.D. Institution: THE LOUISIANA 
STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL COL. 0107 
Year: 1981       
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168. COMPUTER-ASSISTED MUSIC INSTRUCTION UTILIZING COMPATIBLE 
AUDIO HARDWARE IN COMPUTER-ASSISTED AURAL DRILL  
Author: WATANABE, NAN TEIKO Degree: PH.D. Institution: UNIVERSITY OF 
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1981       
 
170. THE DEVELOPMENT OF CAI PROGRAMS FOR TEACHING MUSIC 
FUNDAMENTALS TO UNDERGRADUATE ELEMENTARY EDUCATION MUSIC 
METHODS CLASSES  
Author: WILSON, MARY LOUISE PRICE Degree: PH.D. Institution: THE 
LOUISIANA STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL 
COL. 0107 Year: 1981       
 
174. THE DEVELOPMENT OF AN OBJECTIVE SIGHT SINGING ACHIEVEMENT 
TEST EMPLOYING ELECTRONIC MEASUREMENT APPARATUS  
Author: GRAVES, DAVID LEE Degree: ED.D. Institution: UNIVERSITY OF 
GEORGIA 0077 Year: 1980       
 
175. THE EFFECT OF COMPUTER-BASED INSTRUCTIONAL MATERIALS IN A 
PROGRAM FOR VISUAL DIAGNOSTIC SKILLS TRAINING OF INSTRUMENTAL 
MUSIC EDUCATION STUDENTS  
Author: SANDERS, WILLIAM HUSTON Degree: PH.D. Institution: UNIVERSITY OF 
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1980       
 
180. COMPUTER-ASSISTED INSTRUCTION IN MUSIC: A PROGRAM IN 
RHYTHM FOR PRESERVICE ELEMENTARY TEACHERS.  
Author: LINDEMAN, CAROLYNN ANDERSON Degree: D.M.A. Institution: 
STANFORD UNIVERSITY 0212 Year: 1979     
 
181. A STUDY OF THE CONTRAST BETWEEN COMPUTER-ASSISTED 
INSTRUCTION AND THE TRADITIONAL TEACHER/LEARNER METHOD OF 
INSTRUCTION IN BASIC MUSICIANSHIP.  
Author: VAUGHN, ARTHUR CLARENCE, JR. Degree: PH.D. Institution: OREGON 
STATE UNIVERSITY 0172 Year: 1978       
 
183. COMPUTER-ASSISTED INSTRUCTION IN MUSIC: A SURVEY WITH 
ATTENDANT RECOMMENDATIONS.  
Author: JONES, MORGAN JOHN Degree: PH.D. Institution: NORTHWESTERN 
UNIVERSITY 0163 Year: 1975       
 
184. THE EFFICACY OF COMPUTER ASSISTED INSTRUCTION COMPARED 
WITH TRADITIONAL TEACHER-TAUGHT AND SELF-TAUGHT METHODS OF 
TEACHING BEGINNING MUSIC THEORY.  
Author: COOPER, ROSE MARIE Degree: PH.D. Institution: THE UNIVERSITY OF 
NORTH CAROLINA AT GREENSBORO 0154 Year: 1975       
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185. FEASIBILITY OF COMPUTER-ASSISTED INSTRUCTION FOR 
INSTRUMENTAL MUSIC EDUCATION.  
Author: PETERS, GEORGE DAVID Degree: ED.D. Institution: UNIVERSITY OF 
ILLINOIS AT URBANA-CHAMPAIGN 0090 Year: 1974       
 
186. COMPUTER-ASSISTED INSTRUCTION IN THE PUBLIC SCHOOL GENERAL 
MUSIC CLASS: A COMPARATIVE STUDY  
Author: VON FELDT, JAMES RONALD Degree: D.M.A. Institution: UNIVERSITY 
OF MISSOURI - KANSAS CITY 0134 Year: 1971       
 
187. A COMPARISON OF RESPONSE-SENSITIVE AND RESPONSE-INSENSITIVE 
DECISION RULES IN PRESENTING LEARNING MATERIALS IN MUSIC 
THEORY BY COMPUTER-ASSISTED INSTRUCTION  
Author: HULLFISH, WILLIAM ROUSE, JR. Degree: ED.D. Institution: STATE 
UNIVERSITY OF NEW YORK AT BUFFALO 0656 Year: 1969       
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