
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

8-2007

Hardware Accelerated Scalable Parallel Random
Number Generation
Junkyu Lee
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Lee, Junkyu, "Hardware Accelerated Scalable Parallel Random Number Generation. " Master's Thesis, University of Tennessee, 2007.
https://trace.tennessee.edu/utk_gradthes/163

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268806495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Junkyu Lee entitled "Hardware Accelerated Scalable Parallel
Random Number Generation." I have examined the final electronic copy of this thesis for form and
content and recommend that it be accepted in partial fulfillment of the requirements for the degree of
Master of Science, with a major in Electrical Engineering.

Gregory D. Peterson, Major Professor

We have read this thesis and recommend its acceptance:

Itamar Elhanany, Robert J. Harrison

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by JunKyu Lee entitled “Hardware Accelerated Scalable
Parallel Random Number Generation.” I have examined the final electronic copy of this thesis for
form and content and recommend that it be accepted in partial fulfillment of the requirements for
the degree of Master of Science, with a major in Electrical Engineering.

 Gregory D. Peterson
 Major Professor

We have read this thesis
and recommend its acceptance:

 Itamar Elhanany

 Robert J. Harrison

 Accepted for the Council:

 Carolyn R. Hodges
 Vice Provost and Dean of the
 Graduate School

(Original signatures are on file with official student records.)

Hardware Accelerated Scalable Parallel Random Number Generation

A Thesis
Presented for the
Master of Science

Degree
The University of Tennessee, Knoxville

JunKyu Lee
August 2007

Copyright © 2007 By JunKyu Lee
All rights reserved

 ii

Acknowledgements

 First of all I would like to thank Dr. Gregory D. Peterson for his constant support during this

work and his hearty advice. Second, I would like to thank Dr. Robert J. Harrison for giving me

valuable suggestions for this work. I would like to thank Dr. Itamar Elhanany for serving on my

committee. I would like to thank Dr. Don Bouldin for teaching me FPGA design through his

courses. Finally, I would like to thank my research members, Akila Gothandaraman, Junquing

Sun, Depeng Yang, and Saumil Merchant for their help and encouragement.

 This work was partially supported by the University of Tennessee Computational Science

Initiative and the National Science Foundation grant CHE-0625598.

 This thesis is dedicated to my parents.

 iii

Abstract

 The Scalable Parallel Random Number Generators library (SPRNG) is widely used due to its

speed, quality, and scalability. Monte Carlo (MC) simulations often employ SPRNG to generate

large quantities of random numbers. Thanks to fast Field-Programmable Gate Array (FPGA)

technology development, this thesis presents Hardware Accelerated SPRNG (HASPRNG) for the

Virtex-II Pro XC2VP30 FPGAs. HASPRNG includes the full set of SPRNG generators and

provides programming interfaces which hide detailed internal behavior from users. HASPRNG

produces identical results with SPRNG, and it is verified with over 1 million consecutive random

numbers for each type of generator. The programming interface allows a developer to use

HASPRNG the same way as SPRNG. HASPRNG introduces 4-70 times faster execution than the

original SPRNG. This thesis describes the implementation of HASPRNG, the verification

platform, the programming interface, and its performance.

 iv

Table of Contents

Chapter Page

1. Introduction ……………………………………………………………………………….. 1

1.1. Random Number Generators …………………………………………………………….. 1

1.2. Why SPRNG? …………………………………………………………………………….. 2

1.3. High Performance Reconfigurable Computing …………………………………………... 3

1.4. Motivation ………………………………………………………………………………... 4

2. Related Work ……………………………………………………………………………… 6

2.1. Random number generator design in FPGA for simulation applications ………………… 6

2.2. Random number generator design in FPGA for different data size ……………………… 7

2.3. FPGA based random number generators …………………………………………………. 8

2.4. Summary …………………………………………………………………………………. 10

3. HASPRNG Implementations ……………………………………………………………. 11

3.1. Characteristics of Scalable Parallel Random Number Generators ……………………….. 11
 3.1.1. 48 bit Linear Congruential Generator with Prime Addend …………………………. 11
 3.1.2. 64 bit Linear Congruential Generator with Prime Addend …………………………. 12
 3.1.3. Combined Multiple Recursive Generator …………………………………………… 12
 3.1.4. Multiplicative Lagged Fibonacci Generator ………………………………………… 12
 3.1.5. Prime Modulus Linear Congruential Generator …………………………………….. 13

3.2. Implementations …………………………………………………………………………. 13

 3.2.1. Implementation Resources ………………………………………………………….. 14
 3.2.1.1. VHDL Designs ………………………………………………………………….. 14
 3.2.1.2. Synthesis ………………………………………………………………………... 14
 3.2.1.3. Place and Route …………………………………………………………………. 14
 3.2.1.4. Xilinx University Program (XUP) - XC2VP30 Board …………….……………… 15

 3.2.2. Implementation Approach …………………………………………………………… 15
 3.2.3. SPRNG Generator Algorithms ………………………………………………………. 17

 3.2.3.1. 48 bit Linear Congruential Generator with Prime Addend ……………………... 17
 3.2.3.2. 64 bit Linear Congruential Generator with Prime Addend ……………………... 18
 3.2.3.3. Combined Multiple Recursive Generator …..……………………….…………. 18

 v

 3.2.3.4. Multiplicative Lagged Fibonacci Generator …………………………………….. 19
 3.2.3.5. Prime Modulus Linear Congruential Generator ………………………………… 20

 3.2.4. Generator Implementations …………………………………………………….…….. 21
 3.2.4.1. Architectures …………………………………………………………………… 22
 3.2.4.1.1. 48 bit Linear Congruential Generator with Prime Addend ……………….. 22
 3.2.4.1.2. 64 bit Linear Congruential Generator with Prime Addend ……………….. 23
 3.2.4.1.3. Combined Multiple Recursive Generator …………………………………. 25
 3.2.4.1.4. Multiplicative Lagged Fibonacci Generator ………………………………. 27
 3.2.4.1.5. Prime Modulus Linear Congruential Generator ………………………….. 29

 3.2.4.2. VHDL Designs …………………………………………………………………. 31
 3.2.4.2.1. 48 bit Linear Congruential Generator with Prime Addend ……………….. 31
 3.2.4.2.2. 64 bit Linear Congruential Generator with Prime Addend ……………….. 32
 3.2.4.2.3. Combined Multiple Recursive Generator …………………………………. 32
 3.2.4.2.4. Multiplicative Lagged Fibonacci Generator ………………………………. 33
 3.2.4.2.5. Prime Modulus Linear Congruential Generator …………………………… 38

3.3. Summary ………………………………………………………………………………….. 39

4. Verification ………………………………………………………………………………… 40

4.1. Verification Flow …………………………………………………………………………. 40

4.2. Hardware Platform for Verification ………………………………………………………. 41
 4.2.1. Architecture ………………………………………………………………………….. 41
 4.2.2. Implementation ………………………………………………………………………. 42

4.3. Software Platform for Verification ……………………………………………………….. 46

 4.3.1. Architecture ………………………………………………………………………….. 47
 4.3.2. Implementation ………………………………………………………………………. 47

 4.3.2.1. Retargeting SPRNG on XC2VP30 platform ……………………………………. 47
 4.3.2.2. Source Code Implementation …………………………………………………… 49

4.4. Verification Results ………………………………………………………………………. 50

4.5. Summary ………………………………………………………………………………….. 50

5. Programming Interface …………………………………………………………………… 51

5.1. Overview ………………………………………………………………………………….. 51

5.2. Implementation ……………………………………………………………………………. 52

5.3. Summary ………………………………………………………………………………….. 56

 vi

6. Results ………………………………………………………………………………………. 57

6.1. Functionality Verification Results ………………………………………………………… 57

6.2. Performance Results ……………………………………………………………………….. 57
 6.2.1. SPRNG Performance …………………………………………………………………. 57
 6.2.2. HASPRNG Performance on XC2VP30 ………………………………………………. 58
 6.2.2.1. Hardware Usage …………………………………….………………………….. 59
 6.2.2.2. Maximum Clock Frequency .…………………………………………………… 59
 6.2.3. Comparison of Performances …………………………………………………………. 60

6.3. Expected Results on Virtex4………………… ……………………………………………. 61

6.4. Summary …………………………………………………………………………………… 62

7. Conclusions and Future Work …………………………………………………………….. 63

7.1. Discussions ………………………………………………………………………………… 63

7.2. Conclusions ………………………………………………………..……………………… 64

7.3. Future Work ..……………………………………………………………………………… 65

7.4. Contributions ……………………………………………………………………………… 65

List of References …………………………………………………………………………….. 66

Vita ... 70

 vii

List of Tables

Table Page

1. SPRNG 4.0 Generation Speed on PPC 405 Platform ………………………………………. 47

2. SPRNG Performance .………………………………………………………………………. 58

3. HASPRNG Hardware Usage on XC2VP30 ………………………………………………… 59

4. Maximum Allowable Clock Frequency after PAR …………………………………………. 59

5. Random Number Generation Speeds of HASPRNG ……………………………………….. 60

6. Performance Comparisons of HASPRNG with SPRNG …………………………………… 61

7. XC4VFX100 Maximum Clock Frequency after PAR ……………………………………… 62

 viii

List of Figures

Table Page

1. Interleaving Streams ……………………………….………………………………………… 3

2. HPRC Architecture ………………………………………………………………………….. 4

3. Modified LFG Architecture ………………………………………………………………… 10

4. Implementation Approach ………………………………..…………………………………. 16

5. 48/64 bit LCG Architecture ………………………………………………………………… 24

6. CMRG Architecture ………………………………………………………………………… 26

7. MLFG Architecture ………………………………………………………………………… 28

8. PMLCG Architecture ………………………………………………………………………. 30

9. 48 bit LCG Entity …………………………………………………………………………... 31

10. CMRG Entity ……………………………………………………………………………... 33

11. Architecture for Data Conversion ………………………………………………………… 34

12. The Controller Entity for Loading Initial Seeds ………………………………………….. 36

13. The Controller Entity for Reading Data ………………………………………………….. 36

14. The Controller Entity for Writing Back Data …………………………………………….. 37

15. Data Selection …………………………………………………………………………….. 37

16. PMLCG Entity ……………………………………………………………………………. 38

17. Verification Flow …………………………………………………………………………. 40

18. Hardware Platform for Verification ………………………………………………………. 42

19. Local Controller ……………………………………………………………………...…… 43

20. Dual Port RAM Entity …………………………………………………………………..... 44

21. Verification Signals Flow ………………………………………………………………… 45

22. Master Controller ………………………………………………………………………… 46

 ix

23. Added Functions to SPRNG ……………………………………………………………… 48

24. Source Code Implementation …………………………………………………………….. 49

25. Initialization Function of HASPRNG ……………………………………………………. 53

26. Generation Function of HASPRNG ……………………………………………………… 54

 x

1. Introduction

Random numbers are required in a wide variety of applications such as data encryption, circuit

testing, system simulation, and Monte Carlo (MC) simulations [11]. MC simulations are widely

used for solving mathematical problems by using random processes. Random number generators

play a critical role in MC simulations. The Scalable Parallel Random Number Generators library

(SPRNG) was designed to support parallel MC applications on scalable and distributed

architectures [1]. SPRNG includes several random number generators which are qualitatively

distinct, well-tested, and scalable. These random number generators provide random number

streams to parallel processes. One of the most important considerations for simulation

applications is random number generation speed. Hardware implementation of the generators is

able to improve their speed.

 This thesis presents a set of Hardware Accelerated Scalable Parallel Random Number

Generators (HASPRNG) implemented in FPGAs. This thesis starts with related work related to

the hardware implementation of random number generators in Chapter 2. It then describes the

HASPRNG implementation methodology in detail including VHDL descriptions in Chapter 3.

Also, it will inform a reader of how to implement a verification platform and the programming

interface in Chapter 4 and 5. Chapter 6 describes the HASPRNG performance results. Finally

Chapter 7 describes conclusions and future work.

1.1. Random number generators

 Random numbers are used for applications in many areas such as simulation, game-playing,

cryptography, statistical sampling, evaluation of multiple integrals, and computations in statistical

physics [11, 18]. Since each application has different criteria of good randomness, a variety of

random number generators have been developed.

 1

 Three types of number sequences are introduced for random number representations. One of

them is the random-number sequence generated by a truly random process. A more practical

sequence is the pseudo-random sequence generated by a deterministic process that is intended to

imitate a random sequence. The last one is the quasi-random sequence that is not random but has

useful properties similar to randomness in certain applications such as the quasi-Monte Carlo

method [21]. Random number generators are characterized by correlation properties. Random

number generators must be tested for their correlations in order to apply them to real applications

[16].

1.2. Why SPRNG?

 MC simulations consume huge quantities of random numbers [17, 22]. Many random number

generators currently used are defective in large-scale MC simulation applications [1]. The

SPRNG has passed rigorous tests to demonstrate the good statistical properties of its random

number generators [1, 2]. A high quality random number generator produces numbers according

to a distribution that is close to a uniform distribution. Various tests check a random number

stream for the uniformity of the stream and for correlations between numbers in the stream.

 Parallel random number generator tests of SPRNG include the additional restriction that there

should not be correlations between different random number streams. In order to test correlation

properties, the tests consider modifications of serial streams. The modifications of serial streams

are described in Figure 1 [2].

If we interleave two streams to make a new stream, this new stream should pass the tests if the

original streams (X, Y, Z) were not correlated. The results have passed tests based on

Kolmogorov-Smirnov and Chi-square tests which are used for check for a uniform distribution.

 2

http://en.wikipedia.org/wiki/Randomness
http://en.wikipedia.org/wiki/Quasi-Monte_Carlo_method
http://en.wikipedia.org/wiki/Quasi-Monte_Carlo_method

Figure 1. Interleaving Streams [2]

 Besides the fact that SPRNG has passed rigorous tests, NCSA (National Center for

Supercomputing Applications at the University of Illinois at Urbana-Champaign) has declared

SPRNG the best random number generators [6]. Now, SPRNG is widely used by many research

laboratories and universities around the world [2].

1.3. High Performance Reconfigurable Computing

 High performance reconfigurable computers (HPRCs) are parallel computing systems

containing multiple processors, and multiple FPGAs [23, 8]. HPRC offers high performance users

with the potential of increased performance and flexibility for a wide range of computationally

demanding problems [25]. A HPRC platform consists of a number of computing nodes connected

by interconnection networks (ICNs). Figure 2 shows the HPRC architecture [24]. The ICN can

be a switch, hypercube, mesh, systolic array or other architecture. A reconfigurable computing

(RC) element such as FPGAs is connected to computer nodes or other RC elements by ICNs.

 3

Figure 2. HPRC Architecture [24]

 Application designs in HPRCs employ the FPGAs to execute the portion of the application that

takes most of the execution time [23]. For example, microprocessors perform the operations that

are not efficient for reconfigurable logic such as loops, branches, and possible memory accesses,

while computational cores are performed in the reconfigurable hardware in order to improve

performance [25]. HPRCs have the potential to take advantage of coarse-grained functional

parallelism and fine-grained instruction-level parallelism through optimized execution on FPGAs

[23]. Reconfigurable hardware implementations have shown significant speedup over software-

only solutions [24]. Besides speedup, HPRC introduces a reduction in size, and improves

flexibility and upgradeability [15]. It also reduces energy and power consumption, since the

circuitry in HPRC is optimized for the applications [15, 23].

1.4. Motivation

 MC simulation techniques require fast and reliable random number sources [9]. Many of the

popular pseudo random number generators have been found to be defective for real applications

[1]. Random number generators requirements include good randomness properties, portability,

 4

reproducibility, performance speed, and a very long period [9]. SPRNG is fit for MC simulations,

and has been tested under rigorous conditions [2].

 In the past, most random number generators were done by software implementations [11].

According to Moore’s law, the hardware is getting denser and faster. It is desirable to improve the

generation speed by implementing the hardware random number generators for simulation

applications, since generating random numbers takes a considerable amount of the execution time

for applications which require huge quantities of random numbers. FPGAs have several

advantages in terms of speedup, energy, power, and flexibility.

 Based on the good quality of SPRNG and advantages from FPGAs, HASPRNG was developed

along with a convenient programming interface.

 5

Chapter 2. Related Work

 This chapter describes previous research into effective FPGA implementations of random

number generators.

2.1. Random number generator design in FPGA for simulation
applications

 Besides SPRNG, numerous random number generators have been investigated. One project

explored the design methods for hardware acceleration of pseudo-random number generation for

simulation applications [10]. In order to improve the performance of simulation applications

using substantial quantities of random numbers, it is effective to generate the random numbers in

FPGA hardware while the simulator is executing. When a random number is required for the

simulation application, the simulator reads a number from a buffer containing the random

numbers previously generated by the hardware. An optimized hardware and software interface

design will be required for high performance. The research recommends a designer design a

hardware-accelerated random number generator using the fixed point representation and then

convert the random numbers to floating point by using a lookup table and a linear interpolation

scheme. They estimated speedup for three different simulation applications when employing this

method. The estimated speedup is around 4 times for a Pi-estimator application, 5 times for a MC

integrator application, and 1.02 times for a stochastic simulation application. The estimated

speedup does not consider hardware overhead such as the time it takes for generating random

number numbers in the FPGA and reading data from the FPGA memory. The authors note

hardware overhead depends on the FPGA and the method of interfacing to the main system. The

research also illustrates the trade off between hardware size and the speed and accuracy of the

random numbers [10].

 6

2.2. Random number generator design in FPGA for different data size

 Another paper also introduces design techniques for FPGA based random number generators

[11]. The paper provides some methods that are appropriate for FPGA implementations, and

discusses their relative benefits. The paper describes design techniques to implement random

number generators according to a random number data size. They address two techniques to

implement one bit random number generator. One of the techniques is to employ thermal noise,

since the thermal noise of electronic components exhibits randomness. The noise is converted to a

voltage signal, then compared to a mean value of the voltage values, and encoded to a one-bit

number. Another technique for implementing one bit random number generator is to employ an

n-bit linear feedback shift register (LFSR), and then take a single bit out of n bits, but this method

does not provide good randomness. The paper also addresses three methods for implementing

multiple-bit random number generators, which are expressed by the accumulation method, leap-

forward LFSR, and lagged Fibonacci methods. The accumulation method is an extension of

previous one-bit implementation methods. The accumulation method can obtain an n-bit random

number by accumulating the one-bit value n times. This method can be realized by employing

several copies of the one bit random number generator hardware, or by repeating the one bit

generator several times. In the lagged Fibonacci method, random numbers are generated by the

following equation:

X(n) = X(n-k) Op. X(n-l)

In this equation, X(n) is a current random number, and l and k are time lags. Op. is an operator

which can be bit-wise XOR, addition, or multiplication. The equation shows that l previous

values have to be kept. The l previous values are stored in memory or a set of registers. The two

random number generators (Modified lagged Fibonacci generator and Multiplicative lagged

 7

Fibonacci generator) in HASPRNG are implemented by using this method. The dual port RAM is

employed to store the l previous values.

2.3. FPGA based random number generators

The Lehmer random number generator has been implemented by hardware as well [12]. The

property of the Lehmer random number generator is characterized by the following equation:

X(n+1) = a × X(n) mod M

 In this equation, the modulus M is 231-1, and the multiplier a is 75 (= 16807). A random number

is represented by a 31 bit number. The research for the Lehmer random number generator

implementation shows how to transform the above equation into another form for hardware

implementation. They unfold the n-bit data into a binary notation, and transform the

multiplication operation into add and subtract operations. The Lehmer random number generator

employs three carry-save adders, one carry-propagate subtracter, and one carry-propagate adder

[12]. This generator’s multiplier is fixed. The generators period at most is the modulus-1, 231-2

when the modulus number is a prime number [1, 2]. The characteristic is very similar to prime

modulus linear congruential generator (PMLCG) in SPRNG. PMLCG uses 261-1 as its modulus

number and its multiplier is chosen to maximize the period in SPRNG which means the PMLCG

has longer period than the Lehmer generator.

 The Linear Feedback Shift Register generator (LFSR) employs a shift register whose input bit

comes from a linear function of its previous state [31]. The initial state is decided by the initial

values in the register. A random number generated by the generator is deterministic. The Linear

Feedback Shift Register generator (LFSR) has the period related to its data size. If the data size is

m, the maximum period is 2m -1 [1, 31]. The main issue of the LFSR comes from linear

 8

dependencies [30]. The LFSR is inappropriate for scientific computing applications which

employ parallel generation [3].

 The True Random Number Generator (TRNG) relies on physical processes such as thermal

noise to produce a random number. So, the random number is unpredictable [28]. FPGA-based

TRNGs are available. Even though this generator is excellent for cryptographic purposes, it is not

generally useful for simulation applications because it is not reproducible without storing the

previous data which makes the generation speed low. If a simulation application consumes huge

quantities of random numbers, the generator need substantial amount of memories in order to

save the random numbers.

 The universal random number generator (URNG) can generate random numbers with uniform,

exponential, and Gaussian distribution [29]. It is suited for a communication, and signal

simulation applications. The generator is implemented in Xilinx FPGA XC2VP500. The

experimental results show the good performance and good statistical results. It is interesting that

the generator can provide several distributions, but the paper did not provide parallel generation

properties which will be useful in parallel MC simulation applications. Also, the paper did not

mention the specific period for the generator.

The modified lagged Fibonacci generator (Modified LFG) in SPRNG is characterized by XOR

bit operations of the two additive LFG (ALFG) products. The modified LFG can be expressed by

the following equation [1, 2, 3, 20]:

 Z(n) = X’(n) XOR Y’(n)

X(n) = X(n-k) + X(n-l) (Mod 232)

Y(n) = Y(n-k) + Y(n-l) (Mod 232)

 9

where l and k are called the lags of the generator, and the generator follows the convention of l >

k. X(n) and Y(n) are 32 bit random numbers from the two ALFG. X’(n) is obtained from X(n) by

setting the least significant bit to 0. Y’(n) is obtained from Y(n) by shifting right by one bit [2, 3,

4]. The period of the modified LFG is 231(2l-1) where l is the lag. Figure 3 describes the generator

architecture [4]. The two implementations are employed for the generator according to a lag

factor.

2.4. Summary

 Several FPGA based random number generators have been released. However, most of them

are not appropriate for the MC simulation applications, since they are not verified on parallel

generation test. Parallel generation test is one of the most important tests for science computing

applications employing HPRC. For the MC simulation applications, the FPGA based random

number generators should provide good randomness properties and reproducibility on the parallel

generation. Even though TRNG has good randomness properties, but lacks reproducibility.

 SPRNG has been verified on the parallel generation test. The good properties of the parallel

generation in HASPRNG are inherited by SPRNG. Also HASPRNG has reproducibility because

it consists of pseudo random number generators. The HASPRNG can be one of the best random

number generators for FPGA based MC simulation applications.

Figure 3. Modified LFG Architecture (Odd-Odd / Odd-Even) [4]

 10

3. HASPRNG Implementations

 The HASPRNG development is discussed in this chapter. This chapter describes SPRNG

characteristics, the design software and FPGA hardware resources, the implementations approach

methods, the implementation architectures, and VHDL descriptions.

3.1. Characteristics of Scalable Parallel Random Number Generators

 SPRNG provides two types of random numbers. The first type is integer random numbers,

which are represented by 31 bits. The second type is double precision random numbers, which are

represented in the range [0,1) [2]. The SPRNG source codes show that the two types of random

numbers come from a random number. The difference between the two is the way to express the

random number. For example, source codes for the 48 bit linear congruential generator shows that

a double precision random number is obtained by dividing the random number by 248.

HASPRNG is designed for integer type random numbers, and it returns a 31 bit random number.

3.1.1. 48 bit Linear Congruential Generator with Prime Addend

A linear congruential generator is commonly used for pseudo random number generation. The

linear congruential generator was first proposed for use by Lehmer in 1949 [1]. The characteristic

equation of a 48 bit Linear Congruential Generator with prime addend (48 bit LCG) is described

by the following equations:

Z(n) = a × Z(n-1) + p (Mod 248)

where Z(n) is the nth random number, p is a prime number, and a is a multiplier coefficient. The

prime number is chosen by a function in SPRNG [1, 2, 5]. The modulus m can determine the

period of an LCG. The period of the generator is 248.

 11

3.1.2. 64 bit Linear Congruential Generator with Prime Addend

The 64 bit Linear Congruential Generator with prime addend (64 bit LCG) has similar

characteristics to the 48 bit LCG. The generator chooses 264 for the modulus value. The multiplier

a and prime number p for this generator are different from those for the 48 bit LCG. The

generator is characterized by the following equation:

Z(n) = a × Z(n-1) + p (Mod 264)

where Z(n) is the nth random number, p is a prime number, and a is the multiplier coefficient.

The prime number is chosen by a function from the SPRNG. The period of the generator is 264.

3.1.3. Combined Multiple Recursive Generator

The Combined Multiple Recursive Generator (CMRG) is characterized by the following

equations:

Z(n) = X(n) + Y(n) ×232 (Mod 264)

Y(n) = 107374182 × Y(n-1) + 104480 × Y(n-5) (Mod 231-1)

where X(n) is generated by the 64 bit LCG and Z(n) is the resulting random number [2]. The

period of the generator is 2219.

3.1.4. Multiplicative Lagged Fibonacci Generator

 The multiplicative lagged Fibonacci generator (MLFG) satisfies the following equation:

Z(n) = Z(n-k) × Z(n-l) (Mod 264)

 12

where k and l are time lags and Z(n) is the resulting random number [1, 2, 5, 18]. The period of

the generator is 261 × (2l- 1) where l is the lag.

3.1.5. Prime Modulus Linear Congruential Generator

 The prime modulus linear congruential generator (PMLCG) is represented by the following

equation:

Z(n) = a × Z(n-1) × 232 (Mod 261-1)

where the a is a multiplier parameter and Z(n) is the resulting random number [2]. The period is

261-2 (Modulus number - 1) [1]. The multiplier coefficient is chosen from SPRNG to get the

maximum period.

3.2. Implementations

 All the implementations of HASPRNG consider portability, seamless data transfer, and

programming interface. HASPRNG implementations employ software interface registers so that

they can obtain all the initial parameters inputs. Obtaining all the input parameters through the

software interface registers makes it easy to port HASPRNG to other platforms since input

parameters do not affect internal behavior. The implementations also use one enable signal and

one control signal for all the generators. The enable and control signals play a role to activate and

stop the generator operation without changing internal values to make it possible to transfer data

seamlessly. The seamless data transfer is able to provide a programming interface in which a user

interfaces HASPRNG with the same way as SPRNG. The generators have only two outputs: a

 13

random number and the random number valid signal. Those two output data store a random

number to a block memory.

3.2.1. Implementation Resources

 This section describes the software design tools used for this work such as VHDL design,

synthesis, and place and route. Hardware resources also are described in this section.

3.2.1.1. VHDL Designs

 ModelSim is used for debugging the VHDL implementations of HASPRNG. ModelSim is able

to compile the VHDL source codes and show the results with a waveform window. ModelSim is

compatible with Xilinx hardware libraries, such as COREGEN modules. The signal transactions

were checked on the waveform window in the ModelSim.

3.2.1.2. Synthesis

 Once a design is verified through the ModelSim waveform window, the VHDL source code is

synthesized. In the synthesis process, RTL level descriptions are converted to gate level

descriptions. The first three generators (48 bit/64 bit LCG, and MLFG) are synthesized by Xilinx

Synthesis Tool (XST). The other two generators (CMRG, and PMLCG) are synthesized by the

Synplicity tool to improve allowable clock frequency using synthesis options.

3.2.1.3. Place and Route

 After the synthesis process, the modules go through the Place And Route (PAR) process. The

Xilinx PAR tool is employed for all the generator implementations. The PAR tool reports the

maximum allowable frequency for each generator.

 14

3.2.1.4. Xilinx University Program (XUP) - XC2VP30 Board

The XUP is designed for engineering education. The XUP features are described as follows [14]:

1. Virtex-II Pro XC2VP30 FPGA with 30,816 Logic Cells, 136 18-bit multipliers, 2,448Kb

of block RAM, and two PowerPC Processors

2. DDR SDRAM DIMM that can accept up to 2Gbytes of RAM

3. 10/100 Ethernet port

4. USB port

5. Compact Flash card slot

6. XSGA Video port

7. Audio Codec

8. SATA, and PS/2, RS-232 ports

9. High and Low Speed expansion connectors with a large collection of available expansion

boards

One of the two PowerPC processors is used to give input signals to the FPGA, and read data

from the FPGA. The SDRAM is used to load an executable file. The USB port is used to have a

communication between the host PC and the Power PC. For example, the Xilinx Microprocessor

Debug (XMD) tool is used to load the executable file to the SDRAM, and execute the file

through the USB port [13]. The RS-232 port is used to check the results through a

HyperTerminal.

3.2.2. Implementation Approach

 The approach for the implementation is divided into two parts in general. The first part is to get

the correct algorithms from SPRNG before hardware implementation for the generators. The

second part is to implement HASPRNG using VHDL for simulation, synthesis, and PAR. The

approach for the implementations is described as Figure 4.

 15

Figure 4. Implementation Approach

 The left half of Figure 4 represents the steps to get the correct algorithms from the SPRNG for

the implementations, and the right half represents the hardware implementation process. The

approach minimizes the time it takes to implement the algorithms for the random number

generation. The random number generators in SPRNG do not have complicated algorithms. Once

the algorithms for a generator are decoded, they are described as a hardware architecture to make

a VHDL description for a generator. The hardware architecture does not include timing

consideration. So, it does not take long to transform the architecture into a VHDL description.

Once the VHDL results are verified with the ModelSim waveform, the architecture is revised to

make a VHDL description including timing. When the VHDL description is complete, the results

are checked through the ModelSim waveform again. When the results are verified, the VHDL

description is synthesized and a bit stream is generated. The final results are checked by a

HyperTerminal window.

 16

3.2.3. SPRNG Generator Algorithms

 SPRNG provides the source codes for its generators. In order to produce identical results as

SPRNG, HASPRNG must obtain initial coefficients values. The function we need to explore first

for the implementation is the integer random number generation function in the SPRNG. The core

parts of the source code will be described in the following sections. All the random number

generators return 31 bit data while concatenating ‘0’ to the most significant bit. Hence, all the

random numbers they generate are positive 32bit integers.

3.2.3.1. 48 bit Linear Congruential Generator with Prime Addend

 The integer random number generation for the 48 bit LCG is characterized by three functions

as follows [2]:

/*** Source Code from SPRNG [2] ***/

int LCG::get_rn_int()

{multiply(); return ((unsigned LONG64) seed) >> 17;}

void LCG::multiply()

{ mult_48_64(&seed,&multiplier,&seed); seed += prime; seed &= LSB48;}

void mult_48_64(unsigned long int * a, unsigned long int * b, unsigned long int *c)

{ *c = (*a * *b);}

 The integer random number generation function (get_rn_int()) calls another function

(multiply()), which calls another function (mult_48_64()). The last function gets three pointer

arguments. The three arguments represent three addresses for a seed, a multiplier coefficient, and

an output. The last function multiplies a seed by a multiplier coefficient, and produces the output.

The output is modified by adding the prime, and then is masked by 48 bits in the second function.

Finally, the generation function returns 31 bits of the modified results.

 17

3.2.3.2. 64 bit Linear Congruential Generator with Prime Addend

 The following two functions are sufficient to characterize the 64 bit LCG implementation [2]:

/*** Source Code from SPRNG [2] ***/

int LCG64::get_rn_int()

{ advance_state(); return state>>33; }

void LCG64::advance_state()

{state = state*multiplier + prime;}

The second function performs one multiplication and one add operation to generate a random

number. The first function returns 31 bits of this result.

3.2.3.3. Combined Multiple Recursive Generator

 The CMRG returns a random number by using two sub-functions. The source codes for the

CMRG are described as follows [2]:

/*** Source Code from SPRNG [2] ***/

int CMRG::get_rn_int()

{advance_cmrg(); return ((state+(s0<<32))&MULT_MASK)>>33;}

void CMRG::advance_cmrg()

{ unsigned LONG64 p; advance_state(); p = a0*s0 + a4*s4; p = (p>>31) + (p&0x7fffffff);

 if(p&0x80000000) p = (p+1)&0x7fffffff; s4=s3; s3=s2; s2=s1; s1=s0; s0=p;}

void CMRG::advance_state()

{state = state*multiplier + prime;}

 18

The advance_state() function has the same functionality as with the 64 bit LCG. The

advance_cmrg() function calls the 64 bit LCG operation. Additionally, it performs two

multiplications and one add operation with 4 variables to produce an output. The output produces

two modified results. One is the value obtained by the shift-right operation, and the other one is

the value from the mask operation. Adding the two values produce a new output. If the 32nd bit of

the output is ‘1’, the output is modified by adding ‘1’ and a mask operation. In SPRNG the output

goes to a 5 deep FIFO register. For HASPRNG, the FIFO depth is ‘4’, since the implementation

employs forwarding. Finally, the get_rn_int() function returns a random number by one add, one

masking operation, and two shifting operations.

3.2.3.4. Multiplicative Lagged Fibonacci Generator

 The MLFG has three functions to generate integer random numbers. The three functions are

described as follows [2]:

/*** Source Code from SPRNG [2] ***/

int MLFG::get_rn_int()

{ advance_state(); return lags[hptr]>>33;}

void MLFG::advance_state()

{ int lv = lval, kv = kval; int lptr; hptr--; if(hptr < 0) hptr = lv-1; lptr = hptr + kv;

 if (lptr>=lv) lptr -= lv; multiply(lags[hptr],lags[lptr],lags[hptr]); }

#define multiply(a,b,c) {c = (a)*(b); c &= MASK64;}

The first function controls generation of a random number. The second function is used to

manipulate lag factors. The multiply function multiplies two 64 bit values, and keeps the lower 64

bits. The get_rn_int() function returns a 31 bit random number. The advance_state() function calls

 19

the multiply() function which multiplies the data at the higher pointer address by the data at the

lower pointer address. The 64 bit product is stored back at the higher pointer address. The

variables for the higher pointer (hptr), length (lval), lag (kval), and data (lags) are member

variables in the MLFG class. By changing the member variables in the functions, the functions

can access different data inside the MLFG class, since the functions are also member functions in

the MLFG class. When the get_rn_int() function calls the advance_state() function, the higher

pointer is reduced by ‘1’ to indicate the next data. The higher pointer is initialized when it goes a

negative value. The lower pointer value is determined by the higher pointer value and the lag

value, and is reset when it is greater or equal than the length value.

3.2.3.5. Prime Modulus Linear Congruential Generator

 The PMLCG employs two functions in order to generate and return a random number as

follows [2]:

/*** Source Code from SPRNG [2] ***/

int PMLCG::get_rn_int()

{ iterate(); return (int) (x>>30); }

void PMLCG::iterate()

{ unsigned LONG64 x0, x1, x3, ul, uh, vl, vh;

#define MULT_MASK1 0x7fffffffU

#define MULT_MASK2 0x3fffffffU

#define MULT_MASK3 0x1fffffffffffffffUL

#define MULT_MASK4 0x2000000000000000UL

ul = mult&MULT_MASK1; uh = (mult>>31)&MULT_MASK2;

 vl = x&MULT_MASK1; vh = (x>>31)&MULT_MASK2;

 20

 x0 = ul*vl;

x1 = ul*vh + uh*vl + (x0>>31);

 x0 &= MULT_MASK1;

x3 = ((uh*vh)<<1) + (x1>>30);

 x0 |= (x1&MULT_MASK2)<<31;

 x = (x0+x3);

if(x&MULT_MASK4)

{ x &= MULT_MASK3; x += 1; if(x == MULT_MASK4) x = 1; } }

 The variables for the multiplier (mult), and the seed (x) coefficients reside in the PMLCG class.

By the iterate() function, the variables can be accessed and changed. In the iterate() function, the

initial mult and seed values are divided into parts. The function performs the four multiply

operations and data manipulations using the mask operations. We can expect performance

improvement at this point since those four multiply operations can occur at once in FPGA. The if

statement in the function performs the prime modulus operation, composed of one mask operation

and add operation, and the data check operation to prevent the generator from producing ‘0’ as a

random number. The data after the data check operation is returned by the get_rn_int() function

as a random number.

3.2.4. Generator Implementations

 The random number generator implementations are described in terms of architectures and

VHDL descriptions in this section. The architectures section provides the dataflow of the

generators and the VHDL implementation section illustrates how to implement the architectures

with VHDL.

 21

3.2.4.1. Architectures

 In order to design hardware with VHDL, we have to devise appropriate and effective

architectures with consideration of performance and hardware usage. In the architecture designs,

the original SPRNG characteristic equations are transformed to different forms to improve

efficiency of the implementations as necessary.

3.2.4.1.1. 48 bit Linear Congruential Generator

The 48 bit LCG is characterized by the following equations [2]:

Z(n) = a × Z(n-1) + p (Mod 248)

where Z(n) is a random number on the generator, p is the prime number and a is the multiplier

coefficient. The equation does not allow us to use a pipelined multiplier for high performance.

Using a pipelined multiplier for the equation results in reduced performance, since the current

random number accesses the previous random number. The 48 bit inputs are too large for a fast,

non-pipelined multiplier resulting in slow clock speed due to circuit delays. To overcome these

disadvantages, the equation should be transformed into another form for the implementation.

When the equation is observed carefully, a recursive relation for random number generation is

revealed. The equation transformation is achieved from the following process:

Z(1) = a × Z(0) + p [Mod 248]

Z(2) = a × Z(1) + p [Mod 248] = a × (a× Z(0) + p) + p [Mod 248] = a2× Z(0) + p (a + 1) [Mod 248]

Z(3) = a×Z(2) + p[Mod 248] = a×(a2× Z(0)+p(a+1))+p[Mod 248] = a3×Z(0) + p (a2+a+1)[Mod 248]

 22

Likewise,

Z(8) = a8× Z(0) + p × (a7 + a6 + a5 + a4 + a3+ a2+ a1 + 1) [Mod 248]

Z(8) = α×Z(0)+ p×β[Mod 248]=α×Z(0)+γ[Mod 248](α= a8, β = a7+a6+a5+a4+a3+a2+a1+1, γ = p × β)

where Z(0) is an initial seed, which can be any positive value. α, and β are constants which are

obtained from a multiplier coefficient. The γ is also a constant obtained from the prime number

multiplied by β. The changed equation produces identical functional results to the previous

equation. The new equation allows us to use seven-stage pipelined multipliers for the LCG

design. The new equation is employed for the LCG implementation. The hardware architecture

for the LCG is designed to generate 8-ahead random numbers according to current inputs. Figure

5 describes the 48 bit LCG hardware architecture. In the LCG implementation, two multipliers

are employed. There are three parts of the LCG implementation. At first, the LCG module obtains

required coefficients (α, and β), and the first 7 random numbers. The α and β coefficients are

obtained from the left multiplier, and the γ and the first 7 random numbers are obtained from the

right one. They are displayed in the shaded regions of Figure 5. In the second part, once the LCG

obtains the initial coefficient values, it spawns the first 7 random numbers prior to the actual

operation. In the last part, the LCG generates a random number using the α and γ coefficients

which satisfy the new equation. The 48 bit LCG generates a random number every clock cycle.

3.2.4.1.2. 64 bit Linear Congruential Generator

 The 64 bit LCG hardware architecture is the same as the 48 bit LCG. Its implementation also

follows the equation of the 48 bit LCG, but with a larger Mod size. The Mod size should be

changed to 264. The multipliers are changed to 64 bit multipliers instead of 48 bit multipliers. The

64 bit LCG generates a random number every clock cycle.

 23

Figure 5. 48/64 bit LCG Architecture

 24

3.2.4.1.3. Combined Multiple Recursive Generator

 The CMRG in SPRNG is characterized by the following equations [2]:

Z(n) = X(n) + Y(n) ×232 (Mod 264)

Y(n) = 107374182 × Y(n-1) + 104480 × Y(n-5) (Mod 231-1)

where X(n) is generated by 64 bit LCG and Z(n) is the resulting random number. The Y(n)

multiplied by 232 represents a new 64 bit random number. The equation is modified slightly as

follows:

Z(n) = X’(n) + Y(n)

where X’(n) is the upper 32 bits of X(n). The new equation produces the identical results with the

ones from the previous equation, since Z(n) returns the higher 31 bits for a random number.

 Figure 6 shows the CMRG hardware architecture. The architecture has two parts, each

generating a partial result. The first part is a 64 bit LCG, and the second part is the generator

having two lag factors. The left part’s architecture is the same as the LCG hardware architecture

above. The right part is composed of two multipliers, four deep FIFO registers, and some

combinational logics. The FIFO registers have the initial values with ‘1’. The two-stage pipelined

multipliers generate results every other clock cycle. Hence, the CMRG random number

generation produces a result every two clock cycles. On the first operation, the value ‘1’ is given

to one of the inputs of the left multiplier. The output from the FIFO registers is given to one of

the inputs of the right multiplier. After the first operation, the multiplexer on the left multiplier

changes the input from the value ‘1’ to the result obtained from the operation.

 25

Figure 6. CMRG Architecture

 26

 The two multiplier output data are added and a modulus operation is applied. For the Mod

operator, the data is shifted right by 31 bits, and it is added to the lower 31 bits of the data before

the shifting. In the shift operation, the truncation of bits is employed. The data after the Mod

process fans out three ways. The first one goes to the left multiplier input port on the figure in

order to save clock cycle latency. The second one goes to the FIFO registers. According to this

forwarding scheme, the FIFO registers size is reduced from 5 to 4. The third one goes to the final

adder, which adds the data to the data generated by the 64 bit LCG module. There are some

conditions we have to consider on this final add operation. The 64 bit LCG described above

generates a random number every clock cycle. The right part generator generates a random

number every other clock cycle. The 64 bit LCG needs around 50 clock cycles for the

initialization. In order to synchronize these conditions, the CMRG employs an enable signal, and

a clock divider. The enable is used to enable the right part generator right after the LCG

initialization process is finished, and a clock divider is used to decrease the LCG generation speed

so that it matches the right part’s generation speed. The data after the final add and shift

operations represents a random number. The CMRG generates a random number every other

clock cycle.

3.2.4.1.4. Multiplicative Lagged Fibonacci Generator

 The MLFG satisfies the following equation [2]:

Z(n) = Z(n-k) × Z(n-l) (Mod 264)

where k and l are time lags and Z(n) is the resulting random number [2].

Figure 7 describes the MLFG hardware architecture. The MLFG uses 3 dual port RAMs. The

first one (Mem_load) is used for data loading from one of the PowerPCs on the board. The dual

 27

port RAM has 32 bit data input ports and 64 bit data output ports. The PowerPC gives 32 bit data

to the dual port RAM, and a controller (Controller 0) reads 64 bit data from the dual port RAM.

The other two dual port RAMs (Mem_bank) are used to hold the previous results (Z(n-l), and

Z(n-k)). After data loading is done in the first dual port RAM, an enable signal activates a

controller module (Controller 0), which loads 64 bit data to the two dual port RAMs. Once the

data loadings are complete, the controller (Controller 0) activates another controller (Controller

1), which reads data from the two dual port RAMs. The two values read by the controller

(Controller 1) from the dual port RAMs go to the multiplier. The multiplier output goes back to a

controller (Controller 2) in order to store the data to the two dual port RAMs. The data stored are

read again later by the controller (Controller 1). This multiplier output also represents the

resulting random number after truncating the higher 31 bits out of the 64 bit product. The MLFG

generator produces a random number every clock cycle.

Figure 7. MLFG architecture

 28

3.2.4.1.5. Prime Modulus Linear Congruential Generator

 The PMLCG satisfies the following equation [2]:

Z(n) = a × Z(n-1) × 232 (Mod 261-1)

where a is a multiplier parameter and Z(n) is the resulting random number [2]. Figure 8 shows the

PMLCG hardware architecture. In the PMLCG hardware architecture, four two-stage pipelined

32bit multipliers are employed. The four multipliers operate concurrently. Also, a multiplexer is

employed to save clock cycles. On the first operation, the initial seed and the initial multiplier

coefficient are divided by the lower 31 bits and higher 30 bits. The value of ‘0’ is attached to the

lower 31 bit data at the most significant bit position. Likewise, the value of “00” is attached to the

higher 30 bit data at the most significant bit positions. The last part of the generator hardware

implementation is described by the IF-condition black box in the figure. The IF-condition black

box performs the modulus and data check operations. When the 62nd bit of the data is ‘1’, the data

is modified by adding ‘1’ after the 62 bit mask operation. If the modified data is 261, the data is

changed to the value ‘1’ in order to prevent the generator from producing ‘0’ as a random number

[1]. The operation is represented by the following pseudo code [2]:

if (seed(61))

 { seed &= Mask61bits; seed += 1; if (seed = 261) seed = 1; }

 The final data through the IF-condition black box fans out in two directions. The first is fed

into one of the inputs of the multiplexer in order to generate the next random number. The second

represents the random number. After the first operation, the multiplexer always select the data

instead of the initial seed. The PMLCG generates a random number every other clock cycle.

 29

Figure 8. PMLCG Architecture

 30

3.2.4.2. VHDL Designs

The modularity concept is used for implementation. When a design is getting complicated, a

design considering modularity is one of the best approaches. We can fix bugs with less effort on a

design considered modularity. All the generators designs except the LCGs are designed with the

modularity concept. The LCGs are designed with a FSM (Finite State Machine), which has 6 bits

for the number of the states. A FSM is appropriate to manipulate signal transactions in a module.

LCGs use deeply pipelined multipliers in order to get high performance.

3.2.4.2.1. 48 bit Linear Congruential Generator with Prime Addend

 For the 48 bit LCG implementation, the 6 bit FSM is employed to handle the initialization

process efficiently. The two 48 bit multipliers are used for the implementation. Figure 9 shows

the entity declaration for the LCG. The 8 inputs and 2 outputs are declared for the entity with

consideration of the block memory data transfer. The block memory data transfer is essential for

the programming interface and verification implementation. We explore the block memory

transfer mechanism in Chapter 4 and Chapter 5. The RN_valid output is connected to a dual port

RAM to store the random number in the dual port RAM when the random number is valid.

Figure 9. 48 bit LCG Entity

 31

The en input is used to enable, and stop the module for the block memory data transfer. The

clock input is used to activate the module, and the reset input is used to reset the module’s

operation. The rest of the inputs are used to get the coefficient values given by SPRNG. The

multiplier coefficient inputs and initial seed inputs are divided into parts to get the higher 16 bits,

and lower 32 bits out of 48 bit data. The multipliers are made by the Xilinx-COREGEN tool, and

have a seven-staged pipeline architecture with an enable bit. The multipliers preserve the internal

data when the multiplier operation is stopped.

3.2.4.2.2. 64 bit Linear Congruential Generator with Prime Addend

 The 64 bit LCG VHDL implementation is similar to the 48 bit LCG. Two 64 bit multipliers are

used for the implementation instead of the 48 bit multipliers. Only data size modifications are

necessary from the 48 bit LCG. For the 64 bit LCG implementation, 48 bit data are changed to 64

bit data, and 96 bit data from a multiplier output are changed to 128 bit data.

3.2.4.2.3. Combined Multiple Recursive Generator

 The CMRG consists of 5 sub modules. The 5 sub modules are represented by the 64 bit LCG,

the right generator having 2 sub modules, and a combine module. The CMRG top entity is

described by Figure 10. In the CMRG VHDL description, 4 multipliers are generated by the

CORGEN tool. The two multipliers have 64 bit data inputs, and the other two multipliers have 32

bit data inputs. The CMRG entity description is exactly same as the 64 bit LCG, since the

interface for the CMRG only depends on the 64 bit LCG. When you observe the CMRG

hardware architecture, the right generator coefficient values are decided by constant values. It is

not necessary to get any coefficient value from outside the module. The 64 bit LCG

implementation is the same as the one described above.

 32

Figure 10. CMRG Entity

 However, the 64 bit LCG module is activated by a slower clock from a clock divider output.

The clock divider is instantiated in the CMRG top module inside a process () statement. The

right generator has two sub modules, which are used for FIFO registers operation and the

modulus operation. The combine module is used to add the random numbers from the 64 bit LCG

and the right generator.

3.2.4.2.4. Multiplicative Lagged Fibonacci Generator

 The MLFG consists of 6 sub modules. 3 sub modules are used for memory, and 3 sub modules

are used for controlling address access to memory modules. All the memory modules are

implemented by dual port RAMs. One port is used for data read, and the other port is used to

write data into the memory. All three memory modules have a 14 bit address. One bit of the

address can indicate to one byte of data. The memory entity modules are characterized by port

enable bits, byte enable bits, and write enable bits. One of the memory modules is used for initial

seeds data loading. In this case, data conversion occurs. The 32 bit data read from the PowerPC

 33

are stored as 64 bit data. This transform is possible by implementing a multiplexer having an

output as port-enable bits and a select bit as the third bit of input address data. The mechanism is

explained by Figure 11. In the figure, the port a is used for reading data, and the port b is used for

writing data. For example, when the first 32 bit data is loaded and the third bit of the input

address is ‘0’, 4 bytes of the port enable bits are set to high. When the second 32 bit data is

loaded and the third bit of the input address is ‘1’, the other 4 bytes of the port enable bits are set

to high. The mechanism can let the entity have 32 bit input data, and 64 bit output data. The other

two memory modules are used to read and store back data from the multiplier output on the

MLFG execution. One port is used for read operation, and the other port is used for write back

operation. The three types of controller modules have different functionalities. All the controllers

have their own address generators inside, and two types of enable signals. One is used for

enabling a module locally, and the other is used for enabling a module globally. In the former

case, the enable signal comes from the module’s local operation, and in the later case, the enable

signal comes from PowerPC.

Figure 11. Architecture for Data Conversion

 34

 The first controller is used to load initial seed data from one of the memory modules to the

other memory modules. The controller entity is characterized by 6 inputs and 5 outputs shown in

Figure 12. When the initial seeds are loaded in one of the memory modules, and the select bit

from the second controller (Controller 1) is “LOW” (Figure 13). The controller transfers the

initial seed data from the memory module to the other two memory modules. According to the

length value, the controller generates appropriate addresses (Write data), Write enable signal,

Load done signal, and data in order to store the data to the other two memory modules. When this

process is complete, the controller sets the Load done signal to ‘1’ to enable another controller

module.

 The second controller is used to read data in order to give data to the multiplier. The controller

entity module is characterized by 6 inputs and 4 outputs as shown in Figure 13. Controller 1

accesses 64 bit data from two memory modules in order to feed the data to the multiplier. While it

gives the data to the multiplier, it generates two signal types. The first one is used to enable the

other controller module, and the other is used to select the data between the two sources. The data

from the first controller is initial seeds, and the data from the third controller is the multiplier

output (the random number). According to the select bit, the selected data are stored to the two

memory modules.

 The last controller module is used to write back the multiplier output data at appropriate

memory address. The controller entity module is characterized by 6 inputs and 4 outputs as

shown in Figure 14. The controller is used to load the multiplier output data to the two memory

modules for operations. The write enable bit goes to the two memory module write enable ports

through one multiplexer as in Figure 15. All the sub modules described above are connected in

the top module of the MLFG.

 35

Figure 12. The Controller Entity for Loading Initial Seeds

Figure 13. The Controller Entity for Reading Data

 36

Figure 14. The Controller Entity for Writing Back Data

Figure 15. Data Selection

 37

3.2.4.2.5. Prime Modulus Linear Congruential Generator

The PMLCG top entity is composed of 4 32bit multipliers, an instantiated random valid signal

generator circuit, and one data management module. The PMLCG top module is described by

Figure 16. The PMLCG top entity has 7 input ports, and two output ports. The clock input is used

to activate the module, and the reset signal is used to reset the module. The enable input port is

able to activate and stop the PMLCG operation. The initial seed input ports are used to give initial

seed values to one of the multipliers inputs. The multiplier coefficient input ports go to the other

port of the multiplier inputs. After the first operation, the data through the data management

module are given to the input ports of the multipliers. The shaded multiplexers select data

between the two by a control bit generated by the random valid signal circuit. The data

management module entity has 4 input ports for receiving data and 3 output ports for producing

data. The data management module employs combinational logic in order to save clock cycles.

The data management module takes three responsibilities. The data management module arranges

the data from the 4 data inputs, performs the Prime-Modulus (Mod 261-1) operation, and checks

the data. The data check operation is necessary because the data after the modulus operation is ‘0’

if the data before the modulus operation equals to “261-1”. The random number is represented by

the one of the output ports in the data management module.

Figure 16. PMLCG Entity

 38

3.3. Summary

 In prior work [3, 4, 20], the SPRNG Modified LFG generator was implemented. The remaining

five generators in SPRNG are implemented for FPGAs. The software source code of SPRNG was

described for the implementations. Some portions of characteristic equations in SPRNG have

been modified for effective hardware implementations. The LCGs and MLFG are designed to

generate a random number every clock cycle, and the CMRG and PMLCG are designed to

generate a random number every other clock cycle.

 39

Chapter 4. Verification

 This chapter illustrates the rigorous verification platform which performs bitwise checks on the

random numbers generated by HASPRNG. The verification is performed using an embedded

IBM PowerPC 405 processor in the XC2VP30 FPGA that compares results from HASPRNG

with the execution of SPRNG. The PowerPC includes data and instruction cache, embedded

memory management unit, execution unit, and on-chip memory interfaces [26]. The verification

flow section provides an overview of the verification process, and the hardware and software

verification platforms are described in this chapter.

4.1. Verification Flow

For HASPRNG verification, the SPRNG 4.0 library was ported to the PowerPC platform using

the powerpc-eabi-gcc compiler. That makes the PowerPC able to easily bitwise compare the

results from both SPRNG and HASPRNG. The verification flow is described by Figure 17. The

main C++ source code is compiled by the powerpc-eabi-gcc compiler with linking C++ libraries

(-stdc++, and –supc++), hardware library and the SPRNG library. When the compilation is

complete, the compiler generates an executable file. The executable file is too large to load the

file into the block memory, since the executable file accesses the SPRNG library.

Figure 17. Verification Flow

 40

 The XMD is used to load the executable file to SDRAM, and execute the file using the

PowerPC. The PowerPC checks the data validation to ensure each HASPRNG generator provides

equivalent behavior as with SPRNG and shows the verification results through the

HyperTerminal.

4.2. Hardware Platform for Verification

 Seamless data transfer is one of the most important considerations for the verification of

HASPRNG. We discuss architectural support to simplify data transfer so the PowerPC reads data

continuously and can verify HASPRNG using SPRNG. The implementation subsection describes

how we realize the architecture using VHDL.

4.2.1. Architecture

 The hardware architecture should provide the environment to let the PowerPC read each

random number from HASPRNG in order to compare the data to the corresponding one from

SPRNG. For the task, the hardware architecture employs a large dual port RAM (128KByte). The

data from HASPRNG resides in the dual port RAM, and is read by the PowerPC. When the dual

port RAM is full of data from the HASPRNG operation, the HASPRNG module operation pauses

while keeping the next random number. The architecture is designed for a HASPRNG test

module to be able to stop locally to simplify the control. A PowerPC command can activate the

module again, once the PowerPC completes the data verification. Figure 18 describes the

verification hardware architecture. The local controller (Controller 0) tells the master controller

(Controller 1) when the dual port RAM is full of data, and then the local controller initializes the

full flag for the next stop operation. The master controller stops and enables a random number

generator according to the signals from both the local controller and the PowerPC.

 41

Figure 18. Hardware Platform for Verification

When the master controller receives the full flag signal from the local controller, the master

controller stops the HASPRNG operation. The PowerPC reads data from both SPRNG and

HASPRNG, and verifies the HASPRNG data by employing a bitwise XOR function. When all

the 32K random numbers are checked, the PowerPC allows the master controller to resume

HASPRNG operations.

4.2.2. Implementation

 The hardware platform employs the SDRAM for storing and executing an executable file.

Some parameter sets of DCM should be modified in order to use the SDRAM [7]. The PowerPC

is set to 100 MHz for both PLB and OPB for the verification of all the generators except MLFG.

In the MLFG, the PLB is set to 200MHz, and the OPB is set to 66.7MHz, since the MLFG can

not run at 100MHz.

 The hardware verification platform employs one 4 x 32KByte block memory module and two

controllers. The block data transfer (128KByte) is performed by the three modules. All the

HASPRNG modules store the 32K random numbers into the 128KByte block memory. When

 42

HASPRNG stores the random numbers data in the dual port RAM, the data goes through the local

controller first.

 Two tasks are assigned to the local controller. The first task is to load the data at the correct

address in the dual port RAM. The other task is to tell the master controller that the memory is

full of data so that the master controller can stop HASPRNG operation. Figure 19 describes the

local controller implementation. The local controller has 5 input ports and 4 output ports. The two

types of enable signals make the data transfer from the controller to the dual port RAM effective.

The local enable signal comes from the HASPRNG module, and the global enable signal comes

from the PowerPC. The local enable signal is used to activate the controller module. An address

generator is instantiated in the controller. The address generator increments the address variable

value by ‘4’ at every clock until it reaches the last address in the dual port RAM. When it reaches

the last address, the address variable value does not change. In order to activate the address

generator again, the address variable value must be changed. The global enable signals initialize

the address variable which is the first address in the dual port RAM, and makes the address

generator active again. The global enable signal is also used to activate the HAPRNG module.

The 32bit output data is a random number which is stored to the dual port RAM as shown Figure

20.

Figure 19. Local Controller

 43

Figure 20. Dual Port RAM Entity

 44

The master controller activates and stops HASPRNG operation. This task is relevant to not

merely the verification platform but also the programming interface environment. The

programming interface environment will be discussed in chapter 5. The internal master controller

states are characterized by 4 states in Figure 21. The master controller produces the enable

modification signal. In the initial state, the modification signal is set to “0” which does not affect

the module operation. The actual operation starts after getting the full flag signal from the local

controller. Once the master controller takes the memory full flag signal from the local controller,

the master controller sends the enable modification signal having a value “FFFFFFFF” through

the output port. The global enable signal is modified by a XOR operation with the signal

“FFFFFFFF”. The modified global enable signal stops HASPRNG operation. While the

HASPRNG module pauses, the PowerPC starts to read the data from the dual port RAM and

checks the data with the one from SPRNG. When it completes the check for the 32K random

numbers, the PowerPC gives a signal to generate a latch signal. The latch signal prevents the

master controller from going to the next state without a latch signal acknowledgement. The last

state is the enable state. Once the master controller generates a latch signal, the master controller

activates the HASPRNG module again. The 2, 3, and 4 states are performed iteratively. Figure 22

describes the master controller implementation.

Figure 21. Verification Signals Flow

 45

Figure 22. Master Controller

 The master controller has 4 input ports and 1 output port. When the controller receives the

memory full flag signal from the local controller, it generates the enable modification signal value

“FFFFFFFF”. A HASPRNG enable signal is modified by XOR operation with the enable

modification signal. When the enable modification signal is not ‘0’, the HASPRNG module’s

operation pauses. When the random numbers check in the dual port RAM is done through the

PowerPC, the PowerPC gives the signal to the controller through the control input port. When the

controller takes the signal, the controller enables the HASPRNG module again by assigning the

value ‘0’ to the enable modification output.

4.3. Software Platform for Verification

 The HASPRNG verification platform is written in C++. The architecture subsection describes

how we compare HASPRNG data with SPRNG data. In order to compare HASPRNG data to

SPRNG data, SPRNG was ported to the PowerPC platform. The implementation subsection

discusses the porting of SPRNG to the PowerPC platform.

 46

4.3.1. Architecture

 The software platform employs C++ for the interface between HASPRNG and SPRNG. The

source code uses the SPRNG library. Inside the code, the PowerPC reads the data by using a

function from the SPRNG library and compares the data to the HASPRNG data in the dual port

RAM. The 32bit data are checked using an XOR operation. If a data check fails, the source code

gives an error message and the PowerPC terminates the verification process.

4.3.2. Implementation

 SPRNG is ported to the PowerPC platform to allow faster verification. This section describes

how we port SPRNG to the PowerPC platform for verification.

4.3.2.1. Retargeting SPRNG on XC2VP30 platform

 SPRNG 4.0 was targeted to the PowerPC platform using two Makefiles which SPRNG

provides. The first Makefile is used to choose a platform. For the retargeting, GENERIC was

chosen for the PowerPC platform. The second Makefile performs compilation of the codes and

generates a library file. Table 1 shows the generation rate from the SPRNG using the PowerPC

platform in the XC2VP30.

TABLE 1. SPRNG 4.0 Generation Speed on PPC 405 Platform

 LFG LCG LCG64 CMRG MLFG PMLCG

Duration for 1MRNs 9 sec 18 sec 1300 sec 1600 sec 240 sec 20 sec

MRNs 0.1111 0.0555 0.0008 0.0006 0.0042 0.05

RNs/sec(Hz) 111 K 55 K 0.8 K 0.6 K 4 K 50 K

 47

In the Makefile, some modifications were necessary. The archive (ar) command was changed

to powerpc-eabi-ar, the ranlib command was changed to powerpc-eabi-ranlib, and the compiler

(g++) was changed to powerpc-eabi-g++. SPRNG includes FORTRAN wrapper files. All the

FORTRAN wrapper files were removed. The sprng.cpp file includes several functions related to

timing which were disregarded since they were not necessary for the verification. Once the

library file is obtained, the library file is accessed from the main source code. When a user tries to

compile the main source code using the SPRNG library, the powerpc-eabi-gcc compiler should be

linked with the option (-stdc++, -supc++) in order to access the C++ library. When the main

source code is run, the random numbers from SPRNG are compared to HASPRNG. In order to

get coefficient values from SPRNG, several functions are implemented additionally for SPRNG.

For example, in order to get the seed and the prime values from the 48 bit LCG, the

get_seed_48_0() and get_seed_48_1(), and get_prime_48() functions are instantiated inside

SPRNG. Figure 23 shows the functions additions to SPRNG for the verification and

programming interface for HASPRNG. These added functions are used for obtaining the initial

coefficients from SPRNG directly. These coefficients are fed into the HASPRNG during

initialization.

Figure 23. Added Functions to SPRNG

 48

4.3.2.2. Source Code Implementation

 The Xilinx Platform Studio (XPS) provides the interface environment between software and

hardware so that the PowerPC can access data from the FPGA directly. XPS supports software

interface registers and a memory address range option in order to access data in the FPGA.

 In the verification code, the random numbers are checked one by one. The source code

implementation is described as shown in Figure 24. When the dual port RAM is full of data, the

HASPRNG module operation pauses. The verification code then compares the results from

HASPRNG and SPRNG. The for-statement is used to read and compare 32K random numbers.

The verification code reads a random number data from SPRNG using a function call, and

compares the data with the HASPRNG one. The verification code increases the address variable

by 4 to read the next random number of HASPRNG. The compare operation is done by XOR bit

operation. When an XOR operation result has any value except ‘0’, the verification is terminated,

escaping the while loop and showing an error message.

Figure 24. Source Code Implementation

 49

 Once the current 32K random numbers in the dual port RAM are checked, the verification code

activates the hardware again, and the next 32K random numbers are inserted in the dual port

RAM.

4.4. Verification Results

 All the HASPRNG generators are verified using the verification platform above. The

verification speed depends on the SPRNG generation speed, because HASPRNG is much faster

than the SPRNG generation on the PowerPC platform. All the modules are verified with over 1

million numbers, with most parameter sets given by SPRNG and several seeds.

4.5. Summary

 The verification platform employs a bitwise check for a random number verification of

HASPRNG. SPRNG is ported to the PowerPC in the XC2VP30 FPGA in order to verify

HASPRNG effectively. Two controllers are employed to support seamless data transfer from

HASPRNG for the verification platform. On the verification platform, all the generators in

HAPRNG are verified with over 1 million consecutive numbers.

 50

Chapter 5. Programming Interface

 Fortunately, the verification platform provides a user-friendly programming interface. SPRNG

generates a random number on demand with a function call. In consequence, HASPRNG can

provide a software implementation function which generates a random number. By providing a

similar programming interface, integration with applications becomes much easier. The

programming interface is primarily a software implementation since the hardware platform for

verification already allows the PowerPC to read random number data. This chapter illustrates how

to implement the user-friendly programming interface.

 Many applications developers may wish to employ the faster random number generation

offered by HASPRNG, but they may not have the training or the inclination to do low-level

VHDL programming to interface to HASPRNG. A design goal for HASPRNG is to provide a

similar programming interface as with SPRNG in order to hide details of logic design and FPGA

interfacing. In doing so, a much broader community of users can employ HASPRNG and

hardware acceleration, but with virtually no additional development challenges.

5.1. Overview

 The programming interface allows a user to link with HASPRNG exactly the same way as with

SPRNG. SPRNG uses several functions to perform random number generation. For example,

SPRNG provides the init_sprng() function to initialize a random number generator, isprng() to

generate a random number, and print_sprng() to show the random number generator status. The

random number generator status is characterized by the generator type, the initial seed value, and

the parameter set. In order to provide a user with the same environment as SPRNG, some of the

SPRNG functions are employed directly. For example, in the programming interface, the

init_sprng() function from SPRNG is used in HASPRNG directly to extract the initial coefficient

values, such as the initial seeds, and the prime numbers. It is advantageous to obtain the initial

 51

coefficient values directly from the SPRNG initialization function, since the initialization

function performs its operation just one time to get the desirable coefficient values. All the initial

coefficient values are determined when the initialization process in the function is complete.

Since SPRNG is ported to the PowerPC platform, it is possible to use the SPRNG functions

directly in the source code.

 The programming interface provides faster access to a random number than SPRNG. SPRNG

waits until the generation execution is complete and reads the data. In the programming interface

for HASPRNG, the 32K generation execution is done by the FPGA at once, since the dual port

RAM size in the FPGA can accommodate 32K random numbers. Once 32K random numbers are

stored in the dual port RAM, the data is read by a function. Hence, we can expect performance

improvement for the random number generation.

5.2 Implementation

 Consider the programming interface as applied to the 48 bit LCG. HAPRNG stores data to the

dual port RAM in the FPGA, and the PowerPC reads the data one by one from the dual port

RAM. The functions needed to be considered are the initialization function (init_sprng()), and the

generation function (isprng()). For the implementation for the programming interface, the

additional class named HASPRNG is declared. The following description shows the class for the

HASPRNG.

class Hasprng

{ public: int addr; int init_addr; int ihasprng(); int init_hasprng(); };

 Two member variables and two member functions are necessary for the user-interface

environment. The member variables are accessed by the member functions. The addr member

 52

variable changes value over the course of the member function operations. The init_addr member

variable value does not change. It keeps the first address of the dual port RAM.

 The initialization function in the HASPRNG class performs two tasks. The first one is to give

the initial coefficient values, such as the initial seed, the prime number, and multiplier coefficient

values for the 48 bit LCG, to HASPRNG for its operation. The other task is to perform the

HASPRNG operation one time so that it can store the data into the dual port RAM. The

initialization function is described as shown in Figure 25. The HASPRNG initialization function

(init_hasprng()) accesses the member variables related to address (addr, and init_addr). The

source code for the initialization function starts with the declaration. The initialization function is

one of the member functions in the HASPRNG class. The declaration has to use “::” notation to

indicate the function is one of the member functions of the class. The function takes three

arguments, which allows a user to access it the same way as the SPRNG initialization function.

For example, the init_sprng() function in SPRNG takes three arguments for the initialization.

Figure 25. Initialization Function of HASPRNG

 53

Once the HASPRNG initialization function obtains three arguments, those values are

transferred to the SPRNG initialization function. The SPRNG initialization function is called

inside the HASPRNG initialization function. The SPRNG initialization function produces the

initial coefficient values, such as the initial seed, the prime number, and the multiplier coefficient

value. Several functions, described in Chapter 4, are able to take the initial coefficient values.

Those values are fed into a HASPRNG module’s inputs by some functions calls. When the

HASPRNG module gets its initial variables, the controller gives an enable signal to the module to

fill up the 128K Byte dual port RAM with random numbers. The address member variables are

also initialized to the first address in the dual port RAM. Once the initialization function process

is complete, the generation function reads the data from the dual port RAM.

 The main task of the generation function is to read data from the dual port RAM in order to

return a random number by a function call. Figure 26 describes the generation function. When the

generation function accesses the last data of the dual port RAM, it activates a HASPRNG module

so that the dual port RAM can contains the next 128K Byte data.

Figure 26. Generation Function of HASPRNG

 54

The next function call reads the new data from the dual port RAM. The address increments by

4 in order to indicate the next word size (4 Bytes) data, since a random number size is 4 Byte.

 Those two functions can provide a programming interface so that the user can use HASPRNG

library the same way as SPRNG. The executable file for the programming interface code is stored

at some portions of the SDRAM, and the XMD tool executes the file.

 The programming interface was tested with over 1 million random numbers by comparing the

results with those from SPRNG on each generation function call. The random number generation

rate for the 48 bit LCG is much slower than the FPGA generation rate. The 48 bit LCG generates

100 million random numbers per second in the FPGA with no consideration of hardware

overhead. With the programming interface, it takes 5 seconds to generate 1 million random

numbers. When you see the 48 bit LCG generation speed results in Chapter 4, it indicates that 18

seconds are required for generating 1 million random numbers for the 48 bit LCG. That means it

introduces 3.6 times performance improvement on the PowerPC platform. Even though I do not

get desirable results for the performance for the programming interface code on the XC2VP30

platform, we can expect the better performance results on a real application platform, since most

time it takes on the interface is caused by the read and write operations, and the function calls

from the PowerPC.

 The XUP development board does not provide a high-speed interface to the FPGA. The high-

speed interface is provided in several systems such as the Cray XD1, SGI RASC, or SRC MAP

station. For example, the 32K random numbers from HASPRNG are stored in the dual port RAM

in FPGA, and the random numbers are read by the PowerPC on the XUP board. In a real

application system, the 32K random numbers in the FPGA will be transferred to the main

memory near the microprocessor. After transferring the data, the microprocessor reads the data in

stead of generating random numbers. Assuming the transferring cost is small because of the

support of the high-speed interface, the time it takes for generating a random number is

 55

considerably faster because the microprocessor does not need to generate a random number and it

reads the data quickly. We seek to port HASPRNG to such systems to provide high performance

random number generation to users of such systems.

5.3. Summary

 The programming interface allows a user to use HASPRNG the same way as SPRNG. The

performance using the programming interface is not desirable on the XUP board. The XUP is a

development board, so it does not provide the high-speed interface. However, if it is applied to a

real application system providing the high-speed interface, we can expect much better performance.

 56

Chapter 6. Results

 HASPRNG shows identical results to SPRNG. Also, HASPRNG introduces significant

performance improvements compared to SPRNG. This chapter shows the results in detail in terms

of functionality, hardware usage, and performance.

6.1. Functionality Verification Results

 The functionality verification is the most basic and important task for the project. Even though

we get a high performance result, it is meaningless unless a HASPRNG module produces

identical results with SPRNG, otherwise a user cannot use the HASPRNG module for their

SPRNG application.

All HASPRNG generators and parameters produce identical data to SPRNG. Every generator

in the HAPRNG is verified with over 1 million random numbers using a bitwise XOR operation.

6.2. Performance Results

 Performance motivates all of this research. Next, we compare SPRNG and HASPRNG

performance.

6.2.1. SPRNG Performance

 The SPRNG website provides performance reports for several older machines [2]. However, it

does not show the results for a modern Pentium class machine. The SPRNG library performance

was evaluated on a 2.8GHz Pentium 4 processor for updated performance comparisons. The

SPRNG performance was tested with two different versions (SPRNG 2.0b, and SPRNG 4.0).

Table 2 shows the SPRNG performance summary according to different machine architectures.

 57

Table 2. SPRNG Performance

MRNs Modified
LFG

48 bit
LCG

64 bit
LCG CMRG MLFG PMLCG

Cray T3E 5.5 14.5 16.6 8.6 5.6 7.5

HP/Convex 6.7 7.7 10.0 5.6 5.3 0.7

IBM SP 2 4.0 4.4 5.6 1.9 4.2 2.2

SGI Cray Origin 2000 6.1 10.3 11.5 4.6 8.3 2.5

SGI Power Challenge 5.8 10.2 11.5 4.7 8.3 2.4

Pentium IV 2.8GHz
SPRNG Ver 2.0b 18.3 17.9 5.1 2.9 10.0 7.3

Pentium IV 2.8GHz
SPRNG Ver 4.0 19.3 20.3 6.6 3.2 10.4 7.3

PowerPC in XC2VP30
[XUP] –SPRNG 4.0

0.1111 0.0555 0.0008 0.0006 0.0042 0.05

 The numbers in the table represent millions of random numbers generated per second. When

you observe the table, the Pentium 4 processor represents the best performance in most cases. In

the 64 bit LCG, the Cray machine represents the best result in the table. The Cray machine also

represents the best result in the CMRG, since the CMRG employs the 64 bit LCG as a part of the

generator. The PMLCG performance is similar between the Pentium 4 and the Cray machine. The

generation speed for the PowerPC on the XUP board is considerably slower compared to other

real application systems, because the PowerPC is an embedded processor with low clock speed

and minimal memory. The table shows that the SPRNG 4.0 design is slightly better optimized for

performance than the previous version.

6.2.2. HASPRNG Performance on XC2VP30

 For HASPRNG performance, hardware usage and maximum clock frequency are described

separately. Maximum frequencies after place and route and the generation speeds for each of the

generators are described.

 58

6.2.2.1. Hardware Usage

 The hardware usage is an interesting area for the results, since FPGA hardware resources are

limited. Even though performance is considerably faster, it is meaningless unless it fits into a

FPGA. Table 3 shows hardware resource usage. This usage is for HASPRNG without the

verification platform and with the verification platform having a large buffer.

 Under the verification platform, all the generators’ hardware resources include the dual port

RAM whose size is 128KByte. The slices and the BRAM size can be changed according to the

dual port RAM size. The number in a parenthesis represents the usage percentage of the resources

in the XC2VP30 FPGA. All the multipliers in the generators are the built in 18 x 18 multipliers.

6.2.2.2. Maximum Clock Frequency

 XPS reports the maximum allowable clock cycle for a module after the place and route process.

Table 4 shows maximum allowable clock rates according to the generators.

Table3. HASPRNG Hardware Usage on XC2VP30

Table 4. Maximum Allowable Clock Frequency after PAR

 48 bit
LCG

64 bit
LCG

CMRG PMLCG MLFG Modified
LFG (O/ O)

Modified
LFG (O/E)

XV2VP30 103 MHz 101 MHz 101
MHz

78 MHz 68 MHz 101 MHz 105 MHz

 59

Most of the generators meet the timing constraints when the On-chip Peripheral Bus (OPB) is

set to 100 MHz. The MLFG and PMLCG do not meet the timing constraint of 100 MHz. Because

of that, the OPB clock for the MLFG is set to 66.7MHz. Even though the PMLCG does not meet

the timing constraint of 100MHz, it is ported to the 100MHz OPB environment. The CMRG and

PMLCG use the Synplicity synthesis tool to get netlists in order to improve the allowable

maximum frequency. The rest of the generators use the XST tool to get netlists.

The Modified LFG, MLFG, and 48 bit and 64 bit LCGs generate a random number every clock

cycle. The CMRG and PMLCG generate a random number every other clock cycle. The

maximum generation rate can be obtained according to the OPB setting. All the generators except

the MLFG work on a 100MHz OPB, and the MLFG works on 66.7 MHz OPB. In the case of the

CMRG and PMLCG, the maximum generation rate is divided by 2 from their OPB clock

frequency. Table 5 shows the maximum generation rate according to the generator types. The

MRNs represents 1 million random number generation per second.

6.2.3. Comparison of Performances

Once the functionality verification is complete, the next step is to evaluate the performance for

the generators. Table 6 shows comparison results. HASPRNG should represent a considerable

performance improvement compared to the SPRNG in order to attract a user to the HASPRNG

library. Fortunately, the HASPRNG introduces 4-70 times performance improvement compared

to SPRNG.

Table 5. Random Number Generation Speeds of HASPRNG

 48 bit
LCG

64 bit
LCG

CMRG PMLCG MLFG Modified
LFG(O/ E)

Modified
LFG(O/E)

XV2VP3
0

100
MRNs

100
MRNs

50
MRNs

50
MRNs

66.7
MRNs

100
MRNs

100
MRNs

 60

Table 6. Performance Comparisons of HASPRNG with SPRNG

 (MRNs: million numbers per a second)

 Modfied
LFG

48 bit
LCG

64 bit
LCG CMRG MLFG PMLCG

Cray T3E 5.5 14.5 16.6 8.6 5.6 7.5
HP/Convex 6.7 7.7 10.0 5.6 5.3 0.7

IBM SP 2 4.0 4.4 5.6 1.9 4.2 2.2

SGI Cray Origin 2000 6.1 10.3 11.5 4.6 8.3 2.5

SGI Power Challenge 5.8 10.2 11.5 4.7 8.3 2.4
Pentium IV 2.8GHz

SPRNG Ver 2.0b 18.3 17.9 5.1 2.9 10.0 7.3

Pentium IV 2.8GHz
SPRNG Ver 4.0 19.3 20.3 6.6 3.2 10.4 7.3

XC2VP30 FPGA(XUP) 100 100 100 50 66.7 50

XUP FPGA Speed Up (Min) 5.2X 4.9X 6.0X 5.8X 6.4X 6.7X

XUP FPGA Speed Up (Max) 25.0X 22.7X 19.6X 26.3X 11.9X 71.4X
XUP FPGA Speedup vs. P 4 5.2X 4.9X 15.2X 15.6X 6.4X 6.8X

HASPRNG shows 4-15 times performance improvement over the Pentium 4 per copy of the

random number generators. In general, the HASPRNG shows a 5 times performance

improvement compared to the SPRNG with no hardware overhead consideration. Even though

these improvement factors do not consider hardware overhead, sufficient performance

improvement is expected when HASPRNG is ported to a real application system supporting high

speed interface.

6.3. Expected Results on Virtex 4

 The Synplicity synthesis tool generates the netlists for all the generators for the XC4VFX100

platform. The multipliers for the netlists are changed to the LUT multipliers, since the

XC4VFX100 FPGA does not have an 18×18 multiplier. Even though the FPGA has DSP

multipliers, their pipelined stage is different than the 18×18 multipliers. The Xilinx ISE 8.2 is

employed to get the allowable maximum frequency results for the generators. Table 7 describes

the maximum delay, and the maximum frequency results for the XC4VFX100 platform.

 61

Table 7. XC4VFX100 Maximum Clock Frequency after PAR

 48 bit LCG 64 bit LCG CMRG PMLCG MLFG

XC4VFX100 4.168ns 4.556ns 10.743ns 12.682ns 12.496ns

XC4VFX100 239.923MHz 219.491MHz 93.084MHz 78.852MHz 80.026MHz

In the case of the 48 bit LCG, it reports 240 MHz for the maximum allowable frequency. When

you observe the 48 bit LCG architecture, the 48 bit LCG uses deeply pipelined multipliers, and

does not have long combinational logic delays between registers. However, the PMLCG reports

the worst result out of the generators, since it employs heavy combinational logic between

registers to save clock cycles as discussed in Chapter 3.

6.4. Summary

 HAPRNG produces identical results with SPRNG. HASPRNG represents 4-15 performance

improvement over SPRNG in 2.8 GHz Pentium 4. Each HASPRNG generator consumes 12-40%

of slices, 6-30% of BRAMs, and 7-14% of multipliers in the XC2VP30 FPGA. Considering the

verification platform, the percentage increases slightly for slices and multipliers, and considerably

for BRAMs.

 62

`Chapter 7. Conclusions and Future Work

 Discussions subsection describes the challenges for the implementation, and debugging process

with HASPRNG. The conclusions, future work and contributions are discussed in this chapter as

well.

7.1. Discussions

The five generators in HASPRNG are designed to maximize the performance. The main issues

from the five generator implementations come from data hazards. The two LCGs, CMRG, and

PMLCG use the previous random number to generate a random number. The MLFG also uses a

previous random number represented by a lag factor. All the five random number generators

perform multiplications to generate a random number. The data sizes are large for the five

generators. If the input data for a multiplier is large, the multiplier cannot perform its operation

within one clock cycle, which causes a data hazard.

In the case of the two LCGs, the original equation is transformed to another one which is fit for

hardware implementation. The new transformed equation allows the LCGs to use deeply pipelined

multipliers to overcome the data hazard. The two LCGs generate a random number every clock

cycle. The CMRG and PMLCG could not overcome the data hazard, since it is tremendously hard

to predict a future random number. In other words, it is extremely hard to find out the recursion

relations inside their characteristic equations. By using a forwarding scheme for CMRG and

PMLCG, we save a clock cycle to generate each random number. The generators generate a

random number every other clock cycle. The MLFG uses a 2 staged pipelined multiplier, and

generates a random number every clock cycle. The MLFG is limited to 66.7 MHz because of a 2

staged pipelined multiplier. We need to investigate the mathematical expressions since a slight

tweak to the mathematical expressions can make the hardware implementation much better in terms

of hardware resources and performance.

 63

Many unexpected events occurred during the development. For example, the PMLCG design

employs 4 multipliers, which have different input data size. For example, one port of two inputs

has 30 bit data size, and the other port has 31 bit data size. When we employed a multiplier having

different input data size, the output data was not correct. After fixing all 4 multipliers to the

multipliers having 32bit × 32bit inputs, the bug was fixed. The 48 bit LCG design uses a big state

machine. When I used several state machines inside a state machine, the module did not work

properly, even though it worked in pre-synthesis simulation. After unfolding those state machines

to one state machine, the bug was fixed. It is desirable to make synthesizable VHDL designs so

that a synthesis tool can understand what a designer intends to do.

I recommend using a verified IP core to design a VHDL module. In the PMLCG implementation,

I employed a clock divider to activate the local controller to transfer data. The clock divider was

described by some VHDL codes. The controller did not transfer a correct data. The bug was fixed

after removing the clock divider and employing the original clock with an extra signal inside the

local controller module.

7.2. Conclusions

 HASPRNG includes the full set of SPRNG. All the generators in HASPRNG produce identical

results to SPRNG, and are verified with substantial quantity of random numbers. Also, HASPRNG

provides a user-friendly programming interface by employing one local controller and one master

controller. HASPRNG generation in FPGA shows considerable performance improvement

compared to SPRNG. Applying the programming interface on XUP does not produce desirable

performance results due to heavy hardware overhead caused by function calls and reading data

from the dual port RAM. When HASPRNG is ported to a system such as the Cray XD-1, not a

development system (XUP), we can expect much better performance due to more efficient

 64

communications. We believe that the performance improvement by HASPRNG will contribute to

computational science.

7.3. Future Work

 The most important future work is to port HASPRNG to the Cray XD-1 machine. In order to

complete the future work, getting information on the Cray XD-1 interface for the FPGA is

necessary. Even though a programming interface environment is realized on XUP, a better

approach should be investigated in order to reduce hardware overhead costs.

7.4. Contributions

 HASPRNG has realized a full set of SPRNG. HASPRNG produces identical results to SPRNG,

and provides the programming interface. Even though a user may not have hardware knowledge,

the user can use HASPRNG the same as SPRNG. In other words, HASPRNG provides a user the

same results and usage as SPRNG for integer random number generation. HASPRNG will be

ported to Cray XD-1 machine soon. After porting to the real application platform, a HASPRNG

will provide not merely the good quality of random number generators of SPRNG but also a

performance improvement over SPRNG. Many research areas employ MC simulations which use

huge quantities of random numbers. In consequence, MC simulations require random number

generators having good quality and high performance. Based on HASPRNG characteristic having

good quality, high performance, and the same usage as SPRNG, we expect that HASPRNG will

be widely used for MC simulations applications in the future.

 65

LIST OF REFERENCES

 66

LIST OF REFERENCES

[1] M. Mascagni, D. Ceperley, and A. Srinivasan, “Algorithm 806: SPRNG: A scalable library for

pseudorandom number generation,” ACM Transactions on Mathematical Software, vol. 26, no. 3,

pp. 436-461, September 2000.

[2] Scalable Parallel pseudo Random Number Generators library, SPRNG. [Online]. Available:

http://sprng.fsu.edu.

[3] Y. Bi, G. D. Peterson, G. L. Warren, and R. J. Harrison, “Hardware acceleration of parallel lagged

Fibonacci pseudo random number generation,” in Proc. International Conference on Engineering of

Reconfigurable Systems and Algorithms, CSREA, 2006.

[4] Y. Bi, “A reconfigurable supercomputing library for accelerated parallel lagged-Fibonacci

pseudorandom number generation”, Master of Science Thesis, Department of Electrical and Computer

Engineering, University of Tennessee, December 2006.

[5] J. Lee, G. D. Peterson, and R. J. Harrison, “Hardware accelerated scalable parallel random number

generators”, in Proc. Reconfigurable Systems Summer Institute. RSSI, 2007

[6] National Center for Supercomputing Applications, NCSA. [Online]. Available:

http://access.ncsa.uiuc.edu/CoverStories/RandomNumbers.

[7] C. Khor, “XUP-V2P Tutorial”, Master of Science Project Report, Department of Electrical and

Computer Engineering, University of Tennessee, November 2005.

 [8] J. L. Tripp, A. A. Hanson, M. Gokhale, and H. Mortveit, “Partitioning hardware and software for

reconfigurable supercomputing applications: A case study”, in Proc. Supercomputing, SC, 2005.

[9] I. Vattulainen, K. Kankaala, J. Saarinen, and T. Ala-nissila, “A comparative study of some

pseudorandom number generators”, Computer Physics Communications, vol. 86, no. 3, pp. 209-226, May

1995.

[10] J. M. McCoolum, J. M. Lancaster, D. W. Bouldin, and G. D. Peterson, “Hardware acceleration of

pseudo-random number generation for simulation applications”, in Proc. 35th IEEE Southeastern

Symposium on System Theory, SSST, 2003.

 67

http://rssi.ncsa.uiuc.edu/agenda.html

[11] P.P. Chu and R.E. Jones, “Design techniques of FPGA based random number generator (extended

abstract)”, in Proc. Military and Aerospace Applications of Programming Devices and Techniques,

MAPLD, 1999.

[12] A. P. Paplinski and N. Bhattacharjee, "Hardware implementation of the Lehmer random number

generator", IEE Proc.-Computer and Digital Techniques, vol. 143, no. 1, pp. 93-95, January 1996.

[13] Embedded Systems Tools Reference Manual, EDK 8.2, June 2006 [Online]. Available:

http://www.xilinx.com/ise/embedded/edk_docs.htm.

[14] Xilinx University Program Virtex-II Pro Development System, March 2005 [Online]. Available:

http://www.digilentinc.com/Data/Products/XUPV2P/XUPV2P_User_Guide.pdf.

[15] T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W.Luk and P. Cheung “Reconfigurable

computing: architectures and design methods”, IEE Proc.-Computer and Digital Techniques, vol. 152,

no. 2, pp. 193-205, March 2005.

[16] A. Srinivasan, M. Mascagni, and D. Ceperley, “Testing parallel random number generators”, vol. 29,

no. 1, pp. 69-94, January 2003.

[17] G. Cenacchi and A. De Matteis, “Pseudo-random numbers for comparative Monte Carlo calculations”,

Numerische Mathematik, vol. 16, no. 1, pp. 11-15, February 1970.

[18] M. Mascagni and A. Srinivasan, “Parameterizing parallel multiplicative lagged-Fibonacci generators”,

Parallel Computing, vol. 30, no. 7, pp. 899-916, July 2004.

[19] T. Warnock, “Random-number generators”, Los Alamos Science Special Issue, 1987.

[20] Y. Bi, G. D. Peterson, G. L. Warren, and R. J. Harrison, “A reconfigurable supercomputing library for

accelerated parallel lagged-Fibonacci pseudorandom number generation”, Supercomputing Conference, SC,

2006.

[21] Quasi random number, July 2007, [Online]. Available:

http://en.wikipedia.org/wiki/Quasi_random_number.

[22] P. D. Coddington and S. Ko, “Techniques for empirical testing of parallel random number generators”,

in Proc. Supercomputing, SC, 1998.

[23] D. Buell, T. El-Ghazawi, K. Gaj, and V. Kindratenko, “High-performance reconfigurable computing”,

IEEE-Computer magazine, vol. 40, no. 3, March 2007.

 68

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Srinivasan:Ashok.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Ceperley:David.html
http://www.springerlink.com/content/100497/
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Srinivasan:Ashok.html
http://www.informatik.uni-trier.de/~ley/db/journals/pc/pc30.html#MascagniS04
http://www.sigmod.org/dblp/db/indices/a-tree/b/Bi:Yu.html
http://www.sigmod.org/dblp/db/indices/a-tree/w/Warren:G=_Lee.html
http://www.sigmod.org/dblp/db/indices/a-tree/h/Harrison:Robert_J=.html
http://www.sigmod.org/dblp/db/conf/sc/sc2006.html#BiPWH06
http://www.sigmod.org/dblp/db/conf/sc/sc2006.html#BiPWH06
http://en.wikipedia.org/wiki/Quasi_random_number
http://www.sigmod.org/dblp/db/indices/a-tree/k/Ko:Sung_Hoon.html
http://www.sigmod.org/dblp/db/conf/sc/sc2006.html#BiPWH06

 [24] M. C. Smith, S. L. Drager, Lt. L. Pochet, and G. D. Peterson, “High performance reconfigurable

computing systems.” in Proc. IEEE Midwest Symposium on Circuits and Systems, MWSCAS, August

2001.

[25] M. C. Smith and G. D. Peterson, “Parallel application performance on shared high performance

reconfigurable computing resources”, Performance Evaluation, vol. 60, no. 1-4, pp. 107-125, May 2005.

[26] Xilinx University Program, March 2006 [Online]. Available:

http://www.eece.unm.edu/xup/microblazeppc.htm.

[28] D. B. Thomas and W. Luk, “High quality uniform random number generation through LUT optimised

linear recurrences”, in Proc. IEEE International Conference on Field-Programmable Technology, ICFPT,

2005.

[29] W. Cui, C. Li, and X. Sun, “FPGA implementation of universal random number generator”, in Proc,

the 7th IEEE International Conference on Signal Processing, ICSP, 2004.

[30] D. Kagaris and S. Tragoudas, “A Design for testability techniques for test pattern generation with

LFSRs”, in Proc. IEEE VLSI Test Symposium, VTS, 1994.

[31] Linear Feedback Shift Register, LFSR, July 2007 [Online]. Available :

 http://en.wikipedia.org/wiki/Linear_feedback_shift_register.

 69

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235663%232005%23999399998%23579670%23FLA%23&_cdi=5663&_pubType=J&view=c&_auth=y&_acct=C000019958&_version=1&_urlVersion=0&_userid=422010&md5=65bea8f69b5c660dfef9a7264d911dd1
http://www.eece.unm.edu/xup/microblazeppc.htm
http://en.wikipedia.org/wiki/Linear_feedback_shift_register

Vita

 JunKyu Lee was born in Seoul, South Korea on March 9, 1974. He attended to HanYang

University and received a B.S. in Physics and a B.S. in Electrical and Computer Engineering in

2002. From 1995 to 1998, he served for the Korean Air Force. He worked for the LG electronics

Inc. in 2002 and for the NARA Controls Inc. in 2003 and 2004. He joined the Electrical and

Computer Engineering department in the University of Tennessee, Knoxville in August 2005.

 JunKyu Lee is currently pursuing his doctorate degree in Electrical Engineering at the

University of Tennessee, Knoxville.

 70

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2007

	Hardware Accelerated Scalable Parallel Random Number Generation
	Junkyu Lee
	Recommended Citation

	

