
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

5-2011

Software Verification for a Custom Instrument
using VectorCAST and CodeSonar
Christina Dawn Ward
wardc2@usec.com

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Ward, Christina Dawn, "Software Verification for a Custom Instrument using VectorCAST and CodeSonar. " Master's Thesis,
University of Tennessee, 2011.
https://trace.tennessee.edu/utk_gradthes/918

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268806409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Christina Dawn Ward entitled "Software Verification for a
Custom Instrument using VectorCAST and CodeSonar." I have examined the final electronic copy of this
thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements
for the degree of Master of Science, with a major in Electrical Engineering.

Gregory D. Peterson, Major Professor

We have read this thesis and recommend its acceptance:

Qing Cao, Xiaorui Wang

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Software Verification for a Custom Instrument using
VectorCAST and CodeSonar

A Thesis
Presented for The
Master of Science

Degree
The University of Tennessee, Knoxville

Christina Dawn Ward
May 2011

ii

Dedication

For my father – Richard, my mother – Brenda, my sister – Lindsay, and my good friend – Carl. I

could not have done this without you all. Thank you!

iii

Acknowledgements

I am so lucky to be surrounded with the most wonderful, patient and inspiring people. I would

like to thank my advisor, Dr. Peterson, for all of his advice and guidance during my time at UT.

I appreciate Dr. Wang and Dr. Cao for serving on my committee and for all their valuable input.

I would also like to thank my boss, Dwight Clayton, for encouraging me to obtain my Master’s

degree. Many thanks to all of my friends and coworkers for constantly checking in on my

progress. A heartfelt appreciation to Carl – I could not have accomplished this degree without

you. Thank you for being so supportive. Finally, my thanks and love to a family who means the

world to me. I would not be where I am today without your unconditional love and support. I

love you all!

iv

Abstract

The goal of this thesis is to apply a structured verification process to a software package using a

set of commercially available verification tools. The software package to be verified is adapted

from a project that was developed to monitor an industrial machine at the Oak Ridge National

Laboratory and includes two major subsystems. One subsystem, referred to as the Industrial

Machine Monitoring Instrument (IMMI), connects to a machine and monitors operating

parameters using common industrial sensors. A second subsystem, referred to as the Distributed

Control System (DCS), interfaces between the IMMI and a personal computer, which provides a

human machine interface using a hyperterminal. Both the IMMI and DCS are built around

Freescale’s MC9S12XDP microcontroller using CodeWarrior as the Integrated Development

Environment (IDE). The software package subjected to the structured verification process

includes the main C code with its header file and the code for its interrupt events for the IMMI as

well as the main C code for the DCS and its interrupt events. The software package is exposed

to the scrutiny of two verification tools, VectorCAST and CodeSonar. VectorCAST is used to

execute test cases and provide results for code coverage based on statement and branch coverage.

CodeSonar is used to identify issues with the code at compile time such as

allocation/deallocation issues, unsafe functions, and language use problems. The results from

both verification tools are evaluated and necessary changes made to the software package. The

modified software is then tested again with VectorCAST and CodeSonar. The final verification

step is downloading the modified code into the IMMI and DCS microcontrollers and testing the

overall system to ensure the expected results are achieved with hardware that is developed to

simulate realistic signals.

v

Table of Contents

Chapter 1: Introduction... 1
Motivation... 1
Scope... 5

Chapter 2: Background... 6
Industrial Applications.. 6
Overview of Requirements ... 10
Hardware Produced... 11
Software Developed for the IMMI ... 27
Software Developed for DCS ... 42

Chapter 3: Approach... 47
Methodology... 47
VectorCast... 49
CodeSonar... 50
Implementation ... 51

Chapter 4: Results... 55
DCS... 55
IMMI... 71
Hardware... 93

Chapter 5: Conclusions and Future Work .. 97
Summary ... 97
Future Work .. 99

References... 100
Appendix... 102

A. Design Requirements Document .. 103
B. DCS Test Cases... 108
C. IMMI Test Cases... 116
D. Final Source Code... 134

Vita.. 188

vi

List of Tables

Table 1: Industrial Application Features Potentially Monitored by the IMMI............................... 7
Table 2: Parameters Transmitted to DCS ... 39
Table 3: Communications.c Metrics Report ... 56
Table 4: Events.c Metrics Report.. 60
Table 5: CodeSonar's Analysis Report for DCS... 62
Table 6: Metrics Report for Communications.c with Changes... 64
Table 7: Metrics Report for Code Changes within Events.c .. 66
Table 8: Metrics Report using Branch Coverage for Communications.c..................................... 68
Table 9: Metrics Report using Branch Coverage for Events.c ... 68
Table 10: CodeSonar Warning Report for DCS Code with Changes... 70
Table 11: Metrics Report using Statement Coverage for IMMI’s MIP_LC3081709.c................ 72
Table 12: Metrics Report using Statement Coverage for IMMI's Events.c.................................. 74
Table 13: CodeSonar Warning Report for Original IMMI Code ... 76
Table 14: Variables Modified Based on Findings .. 81
Table 15: Source Code Removed, Modified or Added to MIP_LC3081709.c 82
Table 16: Metrics Report using Statement Coverage for Modified IMMI Code 86
Table 17: Metrics Report for Events.c.. 88
Table 18: Metrics Report using Branch Coverage for MIP_LC3081709.c 90
Table 19: Metrics Report using Branch Coverage for Events.c with Changes 92

vii

List of Figures

Figure 1: Overall Functional Block Diagram ... 4
Figure 2: Sensor1 Frequency and Sensor1/Sensor2 Phase Control Schematic 12
Figure 3: Motor Up and Down Timing Diagram.. 15
Figure 4: Motor UP and DOWN Simulator Schematic .. 17
Figure 5: Pushbutton Signal Conditioning Schematic .. 20
Figure 6: LED Indicators Schematic... 23
Figure 7: Sensor2 Magnitude Schematic .. 25
Figure 8: Decel Product and Rate of Change Calculations... 34
Figure 9: HyperTerminal Display... 43
Figure 10: Command Entered by User ... 45
Figure 11: Functional Verification Cycle used for HDL code ... 48
Figure 12: DCS Software Verification Implementation ... 53
Figure 13: IMMI Software Verification Implementation ... 54
Figure 14: Main Function Statement Coverage .. 58
Figure 15: Display Function Statements Not Covered ... 58

1

Chapter 1: Introduction
Motivation
Monitoring industrial machines is not a new concept. In fact, there are many instruments that

have been developed over the years to monitor and control parameters such as flow rates, valve

positions, temperatures, pressures, and vibration. For about three years, work has been done on a

custom instrument that monitors and controls a specialized industrial machine. Ultimately, the

instrument will be duplicated over a thousand times, placed on a local network and used to

communicate with a central computer in a control room.

As part of the development of the instrument, an embedded microcontroller was programmed

using CodeWarrior [11] as the integrated development environment (IDE). Naturally, problems

were found during the initial development phase and repaired as necessary until a fully

functional version of software was complete. The next step in the project was to build a

prototype instrument that included supporting hardware circuits, FPGA firmware, and power

supplies. Due to the complexity of the instrument, complete instrument testing required the

development of a computer-based tester. Using the computer-based tester, hundreds of tests

were performed on the new instrument and additional problems were discovered in the hardware

and the microcontroller software that were not revealed during the initial development phase.

Additional changes were made to the hardware and software until the instrument passed all the

tests generated by the computer-based tester. At that point, the design was frozen and a few

dozen prototype units were manufactured.

2

These prototypes or “beta” units were then deployed in the actual facility. During continuous

facility testing, additional minor anomalies were detected that were not seen during the

development phase or by the computer-based testing. Additional modifications were made as

necessary to the instrument until facility testing was successful. Ultimately, the instrument

operated as required and production of numerous units proceeded.

Looking back at the design process used during this project, it is evident that a formal method of

software verification may have been a more efficient method of debugging the microcontroller

code rather than the ad hoc method used. Also, some of the anomalies discovered during facility

testing were extremely rare and it is possible that other rare problems may still exist, only to be

discovered at a later date.

In an effort to assess the potential value of commercially available software verification tools, an

evaluation version of VectorCAST [9] and CodeSonar [10] was used on an instrument, similar to

that described above, specifically designed for this thesis. The instrument, referred to as an

Industrial Machine Monitoring Instrument (IMMI), performs all the major functions of the actual

instrument. A machine signal simulator was also developed and provides realistic signals for the

IMMI to measure while software is being verified. Lastly, a Distributed Control System (DCS)

was designed, fabricated, and programmed to provide an interface capability between the IMMI

and a computer-based Human Machine Interface (HMI). Software developed for the DCS was

3

also subjected to the scrutiny of the VectorCAST and CodeSonar verification tools. A block

diagram depicting the functional blocks of the project is shown in Figure 1.

4

IMMI DCS

Machine Signal
Simulator

Frequency

Phase

Magnitude

Motor Up

Motor Down

Indicator Lights

¤
¤
¤
¤
¤

Valve Control

◘Valve1

◘ Valve2

LOS1

LOS2

Valve1 Open

Valve1 Close

Valve2 Open

Valve2 Close

Alarm

RS485

RS232

Figure 1: Overall Functional Block Diagram

5

Scope
The goal of this thesis is to expose a software package, consisting of C source code for the IMMI

and DCS, to a set of verification tools in order to verify the software performs as expected.

Hardware is created to produce signals that the IMMI would encounter based on the design

requirements document, see Appendix A. These signals are used to help develop and verify the

software for the IMMI as well as software for the DCS. The DCS is included so a user could

observe the values reported by the IMMI and command the IMMI to perform certain tasks. The

hardware designs and the software functions are discussed in Chapter 2. In Chapter 3, the

methodology for verifying the software is discussed, which includes exposing the code to two

different verification tools (VectorCAST and CodeSonar). The results from VectorCAST and

CodeSonar are discussed in Chapter 4 as well as the changes made to both sets of software. The

final version of the software is then tested using the hardware signals previously produced. The

last chapter, Chapter 5, provides a summary of the work completed and areas where future work

exists.

6

Chapter 2: Background

This chapter will discuss industrial applications the Industrial Machine Monitoring Instrument

(IMMI) is targeting. It will also discuss hardware that was developed to simulate typical signals

of these applications and the software functions to process that data.

Industrial Applications

There are a vast number of machines used in industry that incorporate some sort of rotating

apparatus. Some machines may be based on old, well established designs and require little or no

monitoring. Other machines may involve high speeds, close tolerances, and complex peripheral

hardware. Examples of such machines include, but are not limited to, jet engines,

turbomolecular pumps, gyroscopes, and high speed grinders. Table 1 shows the features of the

industrial applications that can be monitored by the IMMI. For example, if the IMMI were

monitoring a high speed grinder, the rotational speed could be measured for the main arbor. The

rate of change in rotational speed and power consumption while coasting could indicate

excessive load or depth of cut. A power consumption while coasting could also be a direct

indication of bearing condition. A measurement of magnitude and phase of an accelerometer

attached to the high speed grinder could be used to monitor the balance of the grind wheel and

the measurements could be used to determine the level of wear. The valve control feature of the

IMMI could be used to control the coolant flow. Finally, the position of the work piece could be

tracked by monitoring the operation of the positioning motors.

7

Table 1: Industrial Application Features Potentially Monitored by the IMMI

Application Rotational
Speed

Rate of
Change in
Rotational

Speed

Coasting
Power

Consumption

Magnitude
& Phase Valves

Auxiliary
Motor

(Direction
and

Time)

Jet Engines Compressor
shaft

Compressor
drag; stall
detection

Bearing drag;
air flow

Turbine
balance;
compressor
balance

Fuel
flow

Turbo fan
blade
pitch
control

Turbomolecular
Pumps

Internal
blade speed

Drag or
blade failure

Excessive
pressure

Bearing
condition

Vacuum
isolation NA

Gyroscopes
Main
spinning
mass

Loss of
drive power

Bearing
condition

System
balance;
bearing
condition

Vacuum
isolation

Control
valve for
gas
operated
gyros

High Speed
Grinders Main arbor

Excessive
load; depth
of cut

Excessive
load; depth of
cut; bearing
condition

Grind wheel
condition or
wear

Coolant
flow

x-y-z table
position

8

Jet engines are conceptually simple. They include rotating compressor blades at the front of the

engine and rotating turbine blades at the rear of the engine [2]. Both sets of blades are mounted

on a common shaft, and the region between the compressor and turbine forms a combustion area.

As the compressor spins, it forces air into the combustion area where fuel is injected and the

mixture is burned. Hot combustion gases exit the combustion area through the turbine blades,

forcing the main engine shaft to turn, thus driving the compressor at the front of the engine. The

combustion gases leaving the engine are traveling much faster than the air entering the engine.

The acceleration of the air/exhaust times its mass results in force or thrust as per equation (1)

AMF ×= (1)

where F=force, M=mass of air, and A=acceleration.

While the engine is simple conceptually, the overall hardware is extremely sophisticated. Close

mechanical tolerances must be maintained between the spinning blades and stationary housing

while balance and temperature profiles are maintained. Engine subsystems like the fuel pumps

may be driven from the main engine shaft at a lower speed and may require phase angle

monitoring relative to the main shaft. Therefore, some of the capabilities of the IMMI presented

here may be directly useful in monitoring a jet engine, at least during its development phase.

Turbomolecular pumps are used in high-vacuum systems and are typically placed between a

vacuum vessel and a standard (backing/roughing) vacuum pump. They operate much like a high

speed fan and move gas molecules towards the outlet of the pump as the blades collide with the

residual gas molecules in the pump. Turbomolecular pump operation is based on the concept

9

that gas molecules can be moved in a preferred direction by striking them with a solid surface (in

this case, spinning blades within the pump) [4]. As gas molecules are hit by the spinning blades,

they gain momentum that carries them to the outlet of the pump, where they are captured with a

backing pump. The blades in the turbo pump are driven by an electric motor at speeds up to

90,000 revolutions per minute. If a keyphasor signal and an accelerometer were attached to the

turbomolecular pump, the IMMI could be used to measure speed, vibration, and shifts in the

angle of mechanical run out with respect to the keyphasor. In the event of an abrupt pump

failure, the IMMI could quickly detect the fault and close valves between the turbomolecular

pump and vacuum vessel. This would protect the vacuum vessel from contamination migrating

from the turbomolecular pump.

Classic gyroscopes are used in a wide variety of applications, including aircraft autopilots,

compasses, inertial guidance systems, and motion stabilizing platforms used for cameras. The

most common type of gyroscope contains a spinning wheel or mass, which possesses a

significant degree of angular momentum. Typically, mass is kept in motion by some manner of

motor and the speed is often high so a large amount of angular momentum can be realized using

a relatively small amount of mass.

Sophisticated gyroscopes used in critical applications could use some or all of the features

designed into the IMMI. Speed, vibration, and angle of run-out would all be direct indicators of

gyroscope health. If a gyroscope were driven by a gas turbine, gas flow might be adjusted with

10

motors, which the IMMI is designed to monitor. If the gyroscope were to fail, or simply operate

abnormally, the IMMI could issue the appropriate alarm and shut the unit down.

High speed industrial grinders are used to finish the surface of cast or machined metal parts and

are often used in automated applications. The main grinder motor typically turns the abrasive

grind wheel at a high rate of speed, resulting in a very smooth finished surface. This type of

industrial equipment could benefit from being monitored by the IMMI. The balance of the

grinding wheel is a critical parameter that could be measured by the IMMI. The relative phase of

the grind wheel imbalance could indicate the condition of the wheel. A motorized shuttle table

to maneuver the work piece under the grind wheel could be monitored by the IMMI as it

translates into various positions, right and left or up and down. In the event of grinder

malfunction or excessive grind wheel wear, the IMMI could report the condition to a central

production computer and place the grinder in a safe condition, which includes turning off the

coolant flow valves. Excessive grinder load resulting from a misplaced work-piece could also be

detected by the IMMI’s rate of change detector, and a protective response could be initiated.

Overview of Requirements
Systems like jet engines, turbomolecular pumps, gyroscopes, and high speed grinders all require

monitoring systems to assess the health of the equipment and to protect personnel involved.

Requirements for such monitoring systems would most likely include frequency, magnitude, and

phase, direction and operation time of a motor, control of valves using switches, and alarms

produced for abnormal conditions. The Industrial Machine Monitoring Instrument (IMMI) was

11

designed to meet similar requirements. The requirements the IMMI must meet are described in

the Design Requirements Document given in A.

Hardware Produced
Hardware was created to simulate the kind of signals one would expect to analyze from jet

engine, turbomolecular pump, gyroscope, or high speed grinder sensors. The schematics are

provided in each section with a description of how they function. There are six separate

hardware pieces that are needed to verify the functionality of the IMMI and DCS.

Sensor1 Frequency and Sensor1 to Sensor2 Phase Control
The IMMI is required to monitor the rotational frequency of a machine and the phase angle

between a keyphasor and an additional sensor such as an accelerometer. To test the IMMI,

signals are generated to simulate a selectable frequency and a phase shifted signal at a

controllable angle relative to the keyphasor signal.

The circuit selected to accomplish the above requirements, see Figure 2, is based on a simple

timer, U4A, (half of a NE556 dual timer) connected as an astable multivibrator. In that

configuration, a timing capacitor, C3, is allowed to charge up to 2/3 Vcc through R11, R12, and

R19. When the voltage on capacitor C3 reaches 2/3 Vcc, the NE556 timer switches to the

discharge mode and capacitor C3 is discharged through R12 and R19. When the voltage across

C3 gets down to 1/3 Vcc, the NE556 timer stops discharging and it is again allowed to charge up

to 2/3 Vcc. As capacitor C3 is charging, the output of the NE556 timer, pin 5, is high and while

capacitor C3 is discharging, the output of the NE556 timer is low.

12

Figure 2: Sensor1 Frequency and Sensor1/Sensor2 Phase Control Schematic

13

The high and low output of the NE556 timer simulates a keyphasor of known frequency for the

IMMI. The output frequency of the NE556 timer can easily be adjusted by varying the

resistance of R19 to produce a frequency per equation (2).

3))1912(211(
44.1Frequency

CRRR ++
= (2)

For the NE556 timing circuit used, the timing capacitor voltage ramps up to 2/3 Vcc and down to

1/3 Vcc synchronously with the output signal, no matter what the operating frequency. A stable

phase delay can, therefore, be generated by triggering a monostable multivibrator, U6A, based

on the analog voltage applied to the timing capacitor, C3. To do this, an LM311 comparator, U5,

is used to monitor the voltage of the NE556 timing capacitor, C3. When the timing capacitor

voltage reaches a level selected by the potentiometer, R18, the output of the LM311 comparator

drops low, which triggers a 14538 monostable multivibrator, U6A. Feedback around the LM311

comparator is provided by R13 and ensures oscillation free operation of the comparator. When

the NE556 timing capacitor discharges through the comparator set point, the output of the

comparator rises but does not retrigger U6A. The result is a positive pulse from U6A at a

selectable phase angle relative to the keyphasor. The pulse width is independent of phase angle

and determined by the components used with U6A as defined in equation (3).

515Time Pulse CR ×= (3)

14

The IMMI includes fault detection circuits that must be exercised during testing. To aid in this

process, switches SW3 and SW4, are incorporated in the output signals of the circuits described

above. They allow a convenient method of removing the signals from the IMMI as necessary. It

is noted that no switch debounce function is necessary on these signals because extra transitions

here will not cause an erroneous response.

Motor Up and Down Simulation
Another requirement of the IMMI is to monitor adjustments made by a motor on a machine as it

compensates for changing operating conditions. It is assumed the motor system includes an

electronic controller that provides two digital outputs. One output is active high when the motor

moves clockwise and a second output is active high when the motor moves counter-clockwise.

Clockwise and counter-clockwise motor rotation translates into physical movement (Up/Down or

Right/Left) depending upon the specific mechanism used. The IMMI is designed to measure the

length of time and direction the motor operates while continuously reporting this information to

the DCS.

A test circuit designed to simulate the motor system produces two alternating output signals

spaced approximately one second apart. The pulse width from each output slowly increases in

width over a 10 second period, and then slowly decreases in width for the next 10 seconds. The

minimum pulse width is approximately 200 milliseconds while the maximum pulse width is

approximately 500 milliseconds. A timing diagram of these two test signals is shown in Figure

3.

15

2 seconds

1 second

Drive UP

Drive DOWN

Note: Pulse width for drive UP and drive DOWN varies between 200 ms and 500 ms over a 20 second period.

Figure 3: Motor Up and Down Timing Diagram

16

Circuitry used to develop the test signals includes a time base, a ramp generator, UP and DOWN

pulse generators, and two pulse generator reset circuits. A schematic of the test signal generator

is shown in Figure 4.

The time base used to trigger the two system outputs is one half of a NE556 timer, U7A,

connected as an astable multivibrator. Timing resistors R20 and R21 and timing capacitor C7

were selected to produce a waveform with a 2 second period and a 50% duty cycle. This results

in fairly even spacing between the two output pulses and arises from the ratio between R20 and

R21. Combined, R20 and R21, form a 255K ohm path for capacitor C7 to charge up to 2/3 Vcc,

while R20 provides a 240K ohm path for C7 to discharge to 1/3 Vcc. The rising edge of the time

base output is used to initiate the UP motor pulse output and the falling edge of the time base is

used to initiate the DOWN motor pulse output.

Another NE556 dual timer, U8, is used to produce the two basic output pulses from this circuit.

One is triggered on the rising pulse from the time base, U8A, and the other is triggered from the

falling edge of the time base, U8B. To trigger U8A on the rising edge of the time base, Q1 is

used to invert the positive output edge from U7A. As that output rises, Q1 is biased on and pulls

one side of C8 low. This forces the trigger input of U8A to momentarily go low and a timing

cycle for the UP motor simulation is started. When the output from the time base U7A falls, a

trigger pulse is developed as C9 charges through R27, thus triggering U8B and starting a timing

cycle for the DOWN motor simulation. Clamp circuits are used at both trigger inputs of U8 to

prevent excessive voltage when the trigger pulses go back to a high level.

17

Figure 4: Motor UP and DOWN Simulator Schematic

18

The pulse widths from the UP and DOWN pulse generators must gradually change so that the

IMMI can demonstrate active pulse width measurement. The basis for the varying pulse width is

a ramp generator built around U7B. Connected as another astable multivibrator, U7B has a

relatively long period (20 seconds) developed by R33, R34, and C14. The ratio of resistance

between R33 and R34 yields a near 50% duty cycle at the output of U7B. The usable signal

from the ramp generator is the voltage developed across C14 as it slowly charges up to 2/3 Vcc

and discharges down to 1/3 Vcc. This varying voltage is used to determine the level of charge

allowed on the timing capacitors, C10 and C11, in the UP and DOWN pulse generators before

they are reset.

Using two voltage comparators, U9 and U10, the voltage on each pulse generator timing

capacitor is compared to the ramp generator voltage produced by U7B. When either pulse

generator timing capacitor voltage reaches a level equal to the ramp generator voltage, a reset

pulse is developed by the associated comparator and the timing pulse is terminated. In the

unlikely event of the ramp generator voltage being higher than 2/3 Vcc, the pulse will simply

reset itself when its timing capacitor reaches 2/3 Vcc. The effect of the ramp generator and

comparators is to prematurely terminate the output pulse of U8A or U8B based on the changing

voltage developed by the ramp generator, U7B.

Resistors R32 and R37 are used to provide hysteresis for the voltage comparators U9 and U10,

thus avoiding the possibility for oscillations at the comparator outputs.

19

Pushbutton Signal Conditioning
This instrument, like many others, requires some input from a user, which may take the form of a

switch or pushbutton where electrical contacts can be monitored with a circuit. When a set of

pushbutton contacts is monitored by a high-speed, high-input-impedance device such as a

microcontroller, a pull-up resistor is typically used to bias the input high and the pushbutton

contacts are used to pull the input low.

A mechanical contact bounce is usually experienced when pushbutton contacts open or close.

This causes the signal from the pushbutton to transition from high to low multiple times as the

switch is moved a single time. Often times the signal bounce from the pushbutton causes

undesirable circuit behavior. One such example is when the pushbutton output is used to

generate an interrupt signal to the microcontroller. If signal bounce is experienced there,

multiple interrupts will be generated, resulting in abnormal system response.

There are a couple of techniques available to solve the pushbutton bounce problem in high speed

electronic circuits. The simplest is to filter the pushbutton output with a resistor/capacitor (RC)

network with a time constant long enough to mask the bounce phenomenon from the pushbutton.

If this technique is used, the output of the RC network must have a relatively slow rise and fall

time and may have to be enhanced with a Schmitt trigger [12]. Another approach available to

debounce a pushbutton (the method used for this thesis) is to use two cross coupled NAND gates

configured as a set/reset (RS) flip-flop as shown in Figure 5.

20

Figure 5: Pushbutton Signal Conditioning Schematic

21

 In this circuit, two NAND gates are connected as a RS flip flop. The two active inputs at pin 1

of U3A and pin 6 of U3B are pulled up with 39K ohm resistors and connected to the normally

open (NO) and normally closed (NC) contacts of the pushbutton. The common contact of the

pushbutton is connected to ground. Before the pushbutton is pressed, the NC contact of the

pushbutton forces a low state at pin 6 of U3B, the lower NAND gate, forcing its output at pin 4

of U3B to go high. This high state is applied to pin 2 of U3A, the upper NAND gate. The other

input to the upper NAND gate, pin 1 of U3A, is pulled high by a 39K ohm resistor, forcing the

output at pin 3 of U3A to the low state. The output from pin 3 of U3A is also cross-coupled to

pin 5 of U3B, the lower NAND gate, which reinforces the high state seen on pin 4 of U3B.

When the Valve1 pushbutton is first pressed, the wiper within the pushbutton (common contact)

leaves the NC contact and the pull-up resistor on pin 6 of U3B pulls the line high. This allows

pin 6 of U3B, the lower NAND gate, to go high. If the wiper in the pushbutton does not break its

contact with the NC terminal cleanly, multiple high/low states will be seen on pin 6 of U3B, the

lower NAND gate. This will not cause any change in state of the overall RS flip flop because the

low level output line from the upper NAND gate is already forcing the output of the low level

NAND gate high. Therefore, any transitions at pin 6 of U3B are ignored while the wiper in the

pushbutton travels from the NC contact to the NO contact.

As the wiper in the pushbutton hits the NO contact, there is a very good chance of mechanical

bounce, which results in a series of high and low states to the input of the upper NAND gate at

pin 1 of U3A. However, the first time the wiper in the pushbutton touches the NO contact, a low

22

level is applied to pin 1 of U3A and the output at pin 3 of U3A is forced high. This output signal

is cross coupled to the input of the lower NAND gate at pin 5 of U3B. By then, the input at pin 6

of U3B is high and stable because the pushbutton wiper is all the way over at the NO position.

With both inputs of the lower NAND gate high, the output at pin 4 of U4B must be low. This

output signal is cross coupled to the input at pin 2 of U3A and reinforces the low level seen at

pin 1 of U3A during the first contact between the wiper and the NO terminal. As the pushbutton

is released, the reverse process takes place. The circuit is duplicated for the Valve2 pushbutton.

LED Indicators
Light Emitting Diode (LED) indicators are used by the IMMI to show the state of various

outputs. Normally, output ports from electronic devices such as a microcontroller have a greater

ability to sink current than to source current. This is particularly the case if the output driver is

configured as an open collector or open drain device. To take advantage of this type drive

device, the LEDs (to be used for valve positions and an alarm indicator) were connected as

shown in Figure 6. The 470 ohm resistors (R1, R2, R3, R4, and R5) provide current limiting for

any given LED, which is illuminated as its cathode is pulled low by the output drive device.

23

Figure 6: LED Indicators Schematic

24

Sensor2 Magnitude
An analog voltage must be provided to the IMMI to simulate a variable output level from

Sensor2. This would emulate amplitude from a sensor such as an accelerometer. A simple

potentiometer, R6, is used as a voltage divider between 5Vdc and ground as in Figure 7.

Capacitor C1 provides some filtering of the analog voltage as the wiper in the potentiometer is

moved.

25

Figure 7: Sensor2 Magnitude Schematic

26

Microcontroller Boards
The microcontroller that is selected for use in the IMMI is Freescale’s MC9S12XDP512

microcontroller [7], due to previous experience with this particular component. Two prototype

microcontroller boards (Adapt9S12XD) were purchased from Technological Arts to demonstrate

a fully functional IMMI and DCS. The prototype boards consist of the microcontroller along

with a RS232 port and screw terminals for a RS485 communications interface [6]. The

schematic for Technological Arts’ Adapt9s12XD can be found online [6]. Another feature of the

prototype boards is the easy access to all the I/O from two 50 pin headers [6]. One prototype

board will represent the IMMI and the other board will represent the DCS.

27

Software Developed for the IMMI

CodeWarrior IDE
The integrated development environment (IDE) chosen to develop the software for the IMMI

and DCS was Freescale’s CodeWarrior IDE [11]. An extension that was added to CodeWarrior

was Processor Expert, which allows designers the ability to accelerate their design time by using

modular, reusable, and fully tested functions [13]. Processor Expert provides configurable

components they call Embedded Beans for a variety of functions the microcontroller is capable

of handling [13]. For instance, there is a bean for serial communications interface (SCI) that can

be setup to handle RS232 or RS485 communications. Other Embedded Beans that Processor

Expert provides are timers, external interrupts, general I/O, analog to digital converter

processing, and capture timer [13]. It is up to the user to configure the bean properly. Processor

Expert then generates all the initialization code needed for the Embedded Bean and the user must

provide code to handle the response to interrupts generated from the simulation signals.

MC9S12XDP512 Microcontroller
Freescale’s MC9S12XDP512 microcontroller used for this project is derived from Motorola’s

M68HC11. The S12X core is a “high speed, 16-bit processing unit that has a programming

model identical to that of the industry standard M68HC11 central processing unit (CPU)” [8].

The instruction set is also a “superset of M68HC11’s instruction set” [8]. The MC9S12XDP512

microcontroller features that will be utilized consist of “standard on-chip peripherals including

up to 512Kbytes of Flash EEPROM, 32Kbytes of RAM, six asynchronous serial

communications interfaces (SCI), three serial peripheral interfaces (SPI), an 8-channel Input

28

Capture (IC)/Output Capture (OC) enhanced capture timer, a 16-channel, 10-bit analog-to-digital

converter (ADC), and a periodic interrupt timer” [7].

The code written for the IMMI takes advantage of the periodic interrupt timer set at 1ms for all

timers within the code. Three enhanced capture timer channels are used to capture the count

value of the free running clock (216) to calculate frequency and to determine a phase between two

sensors. One SCI is used to communicate with the DCS. Six external interrupts, eight general

I/O, and one ADC channel are also used.

The code for the DCS takes advantage of the periodic timer also set at 1ms for use within the

code. Two SCIs are used: one for communications with the IMMI and one for communications

with the HMI. The only code left utilizes two general I/O pins.

Frequency Measurement
The frequency of sensor1 is calculated and used in the sensor1 rate of change measurement as

well as in the decel product alarm calculation. The sensor1 frequency measurement is made

using captured values from the microcontroller’s free running counter along with the number of

times the free running counter overflows. The free running counter is a 216 bit counter

(maximum value of 65535).

When a measurement is ready to be made all variables are reset except for the free running

counter. An interrupt then occurs for each rising edge of the sensor1 signal. The interrupt

routine captures the free running counter value at the first sensor1 signal (icapture1) and verifies

29

it is not close to an overflow (must be less than 65000). Being too close to an overflow can

produce a bad frequency measurement, especially since the MC9S12XDP512 microcontroller

does not have nested interrupts. If the value is accepted, the overflow variable is cleared and is

incremented each time the counter starts over (overflow). The interrupt handling routine looks

for six overflows of the counter. The reason for using six overflows is to ensure a measurement

can be finished within one second. Mathematically speaking, an overflow of the counter occurs

once every 128 milliseconds, which is based on the 512 KHz clock. Therefore, six overflows of

the counter takes 768 milliseconds. A variable for the number of periods (sensor pulses) is also

kept. After six overflows or at least two sensor1 periods, the final free running counter value is

captured (icapture2) as well as the total overflows (exactoverflows) and total number of periods

(exactperiods). A flag is then set to allow the frequency measurement to be calculated.

In the main program, the frequency measurement is calculated by first determining the count

value as shown in equation (4).

)12()2(Count 16 icaptureicapturelowsexactoverf −+×= (4)

The count value is then used in the final equation that produces the actual frequency value (see

equation (5).

Count
dsexactperioKHz)1(512Frequency −×

= (5)

30

The resulting frequency value is then reported to the DCS as parameter 3. A flag is also set for

use in the sensor1 rate of change and decel product alarm calculations, which is merely an

indication that a new frequency measurement has completed.

Phase Measurement
The phase angle between sensor1 and sensor2 needs to be measured and presented in polar form,

between 0° and 360°. In order to provide a stable reading, a numeric average of sixteen readings

is desirable. Normally this would be a simple task except for the case where individual

measurements straddle the boundary between 360° and 0°. At this boundary, a simple numeric

average may give an erroneous result. For example, if eight measurements of 359° were

averaged together with eight measurements of 1°, the resulting average would be an erroneous

180°. To avoid this anomaly, basic angular measurements are taken over 720°, thus eliminating

the discontinuity at 360°.

To perform a phase angle measurement, sensor1 and sensor2 are first fed into two enhanced

capture timer I/O inputs. Then the value of the free running counter is captured when a

measurement is ready to be made and an interrupt is detected from sensor1. The captured value

(icapture3) must be less than 65000 so that the final count of the free running counter does not

come close to overflowing at 65535. If icapture3 is greater than 65000 the measurement must

start over. If icapture3 is valid then the free running counter is captured a second time when an

interrupt occurs from sensor2 (icapture4). Finally, as the third sensor1 interrupt is detected, the

final free running counter value is captured (icapture5) representing 720°.

31

In the main program, the icapture values are used to calculate a Sensor1Count (icapture5-

icapture3) and a Sensor2Count (icapture4-icapture3). Sensor1Count represents a full 720°

period of sensor1 and Sensor2Count represents the fraction of a sensor1 period that passed

before sensor2 was detected. If sensor2 did not produce an interrupt between the two sensor1

interrupts then the Sensor2Count will be set equal to the Sensor1Count. A ratio (fraction)

between the counts is then obtained as shown in equation (6) and represents the angular

placement between sensor2 with respect to sensor1 relative to 720°.

CountSensor
CountSensor

1
2ionsor1_FractSensor2Sen = (6)

Each time a phase angle is measured between sensor1 and sensor2, the resulting fraction is

calculated and stored in one of five bins, determined by the magnitude of the fraction. Bin1

ranges from 0.0 to 0.125, Bin2 from 0.125 to 0.250, Bin3 from 0.250 to 0.375, Bin4 from 0.375

to 0.500 and Bin5 from 0.500 to 0.625. These bins represent the first five quadrants of the eight

possible quadrants contained in the 720° measurement period. If the signals from sensor1 and

sensor2 are reasonably stable, all sixteen fractional data points will be placed in a single bin or

adjacent bins. Any fractional data placed in Bin1 is copied to Bin5 after adding 0.500. This

allows the phase angle averaging algorithms to properly analyze data spanning Bin4 and Bin5.

32

The summation of samples in all sets of adjacent bins is then analyzed and the largest number of

samples in any two adjacent bins is then used to determine phase. Not all the samples may be in

two adjacent bins so only the actual number of samples in those bins are considered. This means

the total number of sample values may no longer be 16 but it must be at least 4.

The phase equation is shown in equation (7).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

terSampleCoun
ionTotalFract 0.720*eensor2_DegrSensor1_Se (7)

A traditional polar plot spans a range of 0° to 360° but does not include 0.00°. So if the whole

number of the measured angle is 0° and if the decimal value is less than 0.05° then the indicated

reading will be 360°. If the decimal value of the measured angle is greater than 0.05° then the

indicated reading will be 0.1°. If the sample value is less than 4, phase measurement data is

scattered between too many quadrants and a reliable phase measurement is not possible. In that

case, Sensor1_Sensor2_Degree is reported as 0°. Since 0° is not a normal value on a polar plot,

it is a perfect way to indicate a problem with the calculation. Otherwise, the reported value to

the DCS is equal to Sensor1_Sensor2_Degree. After the value has been assigned to the variable

sent to the DCS for the phase, the Bin Sum, Bin Counter, and Sensor2Sensor1_Fraction variables

are cleared. The sample_counter_fixed value is reassigned to sixteen.

33

The remaining section of code in the PhaseMeasure() function includes a timeout section. If a

measurement is not made within 8 seconds then all the pertinent variables to restart a calculation

are cleared.

Sensor1 Rate of Change
To implement the sensor1 rate of change and decel product alarm functions, the IMMI utilizes

one 60 element array of sensor1 frequencies taken at intervals slightly longer than 1 second. The

sensor1 rate of change is determined by subtracting the oldest machine speed stored in array

element 59 from the most recent machine speed stored in array element 1, see Figure 8.

The resulting difference in sensor1 frequencies has to be multiplied by 1.0060 to account for the

actual time the frequency values fill the array. The units for rate of change are RPS/minute. A

new sensor1 frequency is entered in array element 0 and all previous sensor1 frequencies are

shifted to the next higher array element.

34

60 Element Array

]1[
sec24.10

]1[]11[Product Decel ntArrayElementArrayElementArrayEleme
×

−
=

 .
 .
 .

0060.1])59[]0[(geRateofChan ×−= ntArrayElementArrayEleme

Figure 8: Decel Product and Rate of Change Calculations

0
1
2
3
4
5
6
7

53
54
55
56
57
58
59

35

Motor Movement Interval Time and Direction
The motor that will be monitored is expected to provide two signals. One signal will represent

the motor moving in an upward direction and the other signal will represent the motor moving in

a downward direction. The motor could also move in a direction from left to right, which case

the method being described still holds true. Both signals will indicate movement when they

transition from zero voltage to a positive voltage and positive voltage to zero voltage when

movement has ceased.

The method used to measure the amount of time the motor is operational will require both

signals to be duplicated. Therefore, two external interrupt pins will be used for the up motion

and two external interrupt pins will be used for the down motion. One external interrupt is

programmed to look for a rising edge signal and the other external interrupt is programmed to

look for a falling edge signal. When the motor moves in either direction, the rising edge triggered

interrupt occurs and a timer (uptimer or downtimer) is started. The timer continues to increment

until the falling edge interrupt occurs and stops the timer. A flag (up or down) is then set so the

main motor movement function can finish the calculation (divide the timer value by 1000 since

the timer value is in milliseconds and to make the value negative if the motor moved down) and

update the motor movement variable (parameter 9 – upSec or downSec) that is sent to the DCS.

The direction of the motor movement is then reported after the interval time is reported. The up

and down flags are cleared so old values are not reported again.

36

Alarms
The alarm LED will be illuminated anytime an alarm is present. If failure detection scenarios

(loss of Sensor1 and loss of Sensor2 OR loss of Sensor2 and Decel Product alarm) are present,

the alarm LED will flash at a rate of 200ms. The alarm LED will not be illuminated under

normal operation conditions.

Loss of Sensor1
Sensor1 is used to make a frequency measurement explained in section 2.4 under the heading

“Frequency Measurement”. Within the interrupt handling code of the frequency measurement, a

timer is set for 100 milliseconds (LOS1_Timer). Each time an interrupt occurs the timer will be

reset. The timer is decremented in the timer interrupt handling code and the loss of sensor1 is

evaluated. Sensor1 is determined to be missing if the timer equals zero and is not already

missing (this statement is to ensure the valves don’t continue to close after a manual de-isolation

of a singular alarm). The valves are then isolated based on the loss of sensor1 and the LOS1

alarm is sent to the DCS (parameter 6). Sensor1 is reported normal when the signal returns and

the LOS1_Timer is greater than zero.

Loss of Sensor2
Sensor2 is used in the phase measurement explained in an earlier section. Within the interrupt

handling code of the sensor2 phase measurement, a timer is set for 100 milliseconds

(LOS2_Timer). Each time an interrupt occurs the timer will be reset. The timer is decremented

in the timer interrupt handling code and the loss of sensor2 is evaluated. Sensor2 is determined

missing if the timer equals zero and is not already missing (this statement is to ensure the valves

don’t continue to close after a manual de-isolation of a singular alarm). The valves are then

37

isolated based on the loss of sensor2 and the LOS2 alarm is sent to the DCS (parameter 8).

Sensor2 is reported normal when the signal returns and the LOS2_Timer is greater than zero.

Decel Product
The decel product alarm is determined by using the rate of change frequency array elements 1

through 11. The frequency value in element1 is subtracted from the value in element 11 and the

value is divided by 10.24 to provide a deceleration rate over 10 seconds. However, each

frequency value is not placed in the rate of change array every second, thus 10.24 is used. This

calculation produces a value that is then multiplied by the current frequency, which results in the

decel product value. The decel product value is compared to a rate of 50 RPS2/second. If the

decel product value is ≥ 50 RPS2/second, the decel product alarm closes the valves and is

reported to the DCS as parameter 7 (Decelalarm). The alarm will continue to be asserted for 7.5

seconds. The remainder of the decel product alarm code deals with not allowing the valves to

continue closing after the first closure of the valves so that a manual de-isolation may occur.

Communications to DCS
Communications with the DCS is required to be a half-duplex RS485 communications network

with a custom protocol. The baud rate is set to 9600 baud with no parity, 8 bits, and 1 stop bit.

Receive
As a packet is transmitted to the IMMI from the DCS, characters are handled individually by the

interrupt handling code. The first two characters are the start characters, which should be a 2. If

the first character is a 2 then a flag is set (STX) and if the second character is a 2 then the

character counter is cleared and another flag is set (ACPT). If the start characters are not

received then the packet will not be analyzed. The other characters are interrogated to ensure

38

they are valid characters. Valid characters include numbers 0-9, a space, negative sign, and a

decimal point. Once determined to be valid, the character is then placed in the receive buffer. If

the character is not valid then the packet is no longer handled. The end of file (EOF) character is

a 3. When a 3 is received, the receive buffer counter is checked to make sure data was actually

received. If there is data present then the end of file character is replaced with zero and the

communications stream can be interrogated further by setting a flag (RS485infoReady).

The function (RS485Comm) in the main program calculates the length of the received packet.

The length must be greater than zero so that the received length value can be captured as well as

the checksum value. The received packet data is then added up so the checksum can be verified.

If the checksums are in agreement then the received length field is compared with the calculated

length. Assuming the length fields match, the data is then processed and placed into the

params[] array. The values are then assigned to the appropriate variables. If the calculated

checksum or data length field does not match the received values then the packet is no longer

processed and the receive buffer counter is cleared.

Transmit
Every second a packet composed of the 12 parameters, as shown in Table 2, is sent to the

DCS.

39

 Table 2: Parameters Transmitted to DCS

Name Parameter Number IMMI variable name
Valve1 Position 1 Valve1Position
Valve2 Position 2 Valve2Position
Sensor1 Frequency 3 sensor1Freq
Sensor1 Rate of Change 4 sensor1ROC
Sensor1 vs. Sensor2 Phase
Change

5 sensor1_sensor2_phase

Loss of Sensor1 Fault Status 6 LOS1
Sensor1 Deceleration Alarm 7 sensor1Decel
Loss of Sensor2 Fault Status 8 LOS2
Motor Run Time 9 motorRT
Motor Up Movement 10 motorUp
Motor Down Movement 11 motorDown
Sensor2 Magnitude 12 sensor2Mag

40

The parameters are put into an array and the total numbers of characters are captured. The

packet of data is then assembled according to Appendix A. The start characters (2) are placed in

the RS485_TxBuffer array element 0 and 1. The next two elements contain the number of

characters in the data. There must be less than 100 characters so the value can be placed in

RS485_TxBuffer array element 2 and 3. A data count less than 10 means a 0 will be placed in

element 2 and the data count will be placed in element 3. The data is then placed in

RS485_TxBuffer array starting at element 4 and ending when the all the data has been placed in

the array. The checksum is then calculated and placed in the two RS485_TxBuffer array

elements after the data. The final RS485_TxBuffer array element contains the end of frame

character (3). The RS485 transmitter is enabled and the entire RS485_TxBuffer is transmitted to

the DCS.

Pushbuttons/Valves/LEDs
There are two pushbutton switches to control valve positions (Valve1 and Valve2)

independently. For each valve, there is also a red LED indicating and open valve and a green

LED indicating a closed valve. The valves are not to be operated manually or by DCS command

when failure detection scenarios (loss of Sensor1 and loss of Sensor2 OR loss of Sensor2 and

Decel Product alarm) are present. Under normal operation, both pushbutton switches operate

their valve the same. After a momentary press of the pushbutton switch, the current position is

determined.

41

If the valve is in the open position then the valve will close immediately as indicated by the

green LED illuminated and the red LED not illuminated. The valve position is also reported to

the DCS as parameter 1 or 2 (depending on what valve pushbutton was pressed).

If the valve is in the closed position then a five second timer will begin counting down. The red

LED will begin flashing once per second as the green LED remains illuminated. A second press

of the pushbutton must occur after 3 seconds of the original pushbutton press to successfully

open the valve. The red LED will then be fully illuminated. The green LED will not be

illuminated. The valve position is then reported to the DCS as parameter 1 or 2 (depending on

what valve pushbutton was pressed). If a second pushbutton press occurs before 3 seconds has

elapsed then the opening process of the valve is terminated and the green LED will remain

illuminated while the red LED will stop flashing and not be illuminated. If a second pushbutton

does not occur within five seconds of the first pushbutton press then the opening process of the

valve is also terminated. The green LED will remain illuminated and the red LED will not be

illuminated.

The DCS can also control the position of the valves under normal operation. When a command

is sent to either close or open the valves, the request is completed immediately. The LEDs are

appropriately illuminated. A request to close valves means the green LED will be illuminated

and the red LED will not be illuminated. A request to open the valves means the red LED will

be illuminated and the green LED will not be illuminated.

42

Software Developed for DCS

Communications with IMMI
Communications with the IMMI is required to be a half-duplex RS485 communications network

with a custom protocol. The baud rate is set to 9600 baud with no parity, 8 bits, and 1 stop bit.

Receive
The DCS receives a packet from the IMMI once a second and is processed in the same manner as

the IMMI code described in section 2.4 under the heading “Communications with DCS”.

Transmit
The DCS communicates to the IMMI only when the user/operator requests a valve to be opened

or closed. If the operator requests valve1 to be opened or closed then the code under

sendpacket1 is executed. If the operator requests valve2 to be opened or closed then the code

under sendpacket2 is executed. Both packets are assembled as described in the transmit section

under Communications with DCS.

Communications with HMI
Communications with the Human Machine Interface (HMI) is required to be RS232

communications network. The baud rate is set to 9600 baud with no parity, 8 bits, and 1 stop bit.

Communications from the DCS to the HMI will occur once per second.

Receive
The HMI for this application is hyperterminal [14] or any comparable program. Once a

connection is established, the user/operator can enter commands on the line where the cursor is

present, as shown in Figure 9.

43

Figure 9: HyperTerminal Display

44

Each letter typed will be echoed back to the HMI. Only the following commands can be entered:

version (this will display the version number of the code running), valve1o (this commands

valve1 to open), valve1c (this commands valve1 to close), valve2o (this commands valve2 to

open), and valve2c (this commands valve2 to close). Once the command is typed on the

hyperterminal screen, the enter key must be pressed for the command to be executed. If a typo

occurred, the backspace key can be used to maneuver the cursor to the position in error so the

letter/word can be retyped.

Transmit
The DCS transmits all the data shown in Figure 9. The data is updated every second. When the

user/operator enters a command, a notice will appear on the screen making the user/operator

aware of what is taking place. For instance, if valve1o is typed on the screen and the enter key is

pressed then “Valve1 is Opening” will appear, as shown in Figure 10. Anything other than

commands listed in the receive section will result in an error message (invalid command).

45

Figure 10: Command Entered by User

46

The overall system described in Chapter 2 is focused on the operation of the IMMI, which is

designed to monitor common industrial machines. The system also includes a DCS to provide a

link between a HMI and the IMMI. Finally, realistic machine signals are generated by custom

peripheral hardware and applied to the IMMI for system level verification.

47

Chapter 3: Approach

This chapter describes the approach to the verification process used for this thesis.

Methodology
Although ad hoc verification does work, it is usually utilized after a problem is already

identified. The goal to be accomplished for this thesis is to verify the software package before

deploying the IMMI. Software verification is a huge task to undertake with many different kinds

of verification such as verifying worst case timing, verifying stack size, and performing logic

tests to ensure, for example, there are no memory leaks. Therefore, a more structured approach

to verification has been chosen but only a few methods of verification will be explored. The

verification approach is to find and apply off-the-shelf verification tools directly to the existing

software as well as using the hardware created to perform system level testing.

The verification process used for this thesis has similar characteristics to the Functional

Verification Cycle, see Figure 11, introduced by Wile, Goss, and Roesner [15]. The verification

plan for this thesis is to identify verification tools to assist in analyzing code coverage by placing

the two main modules (main code and interrupt code) under test and to identify bugs and

weaknesses within the code. The code will also be verified by using the hardware created as a

machine emulator.

48

Figure 11: Functional Verification Cycle used for HDL code

49

The main features of interest for the verification tool(s) are providing the ability to perform unit

testing for code coverage testing and identifying bugs and weaknesses within the software

package. The criteria used when selecting a verification tool consisted of the tool being geared

towards embedded systems, it had to be compatible with CodeWarrior (version 4.6) along with

the Processor Expert plug-in, and finally, the tool should be able to be used with Freescale’s

MC9S12XDP512 microcontroller. After numerous searches, two verification tools were

identified: VectorCAST by Vector Software and CodeSonar by GrammaTech. VectorCAST

assists in creating test cases that are applied to the software package to verify all lines of code

could be reached and functioned as intended [9]. CodeSonar identifies static issues with

software such as buffer overflows and divide by zero [10]. An evaluation version of both

verification tools is used to complete the verification process. Further details of VectorCAST and

CodeSonar are to follow.

VectorCast
“VectorCAST is a suite of tools for automating the entire process associated with conducting

unit and integration testing” [9]. VectorCAST builds an environment composed of source code

for C, C++, or Ada and generates a test harness for one or more units under test and for any

dependent units to be stubbed. Stubbing a unit allows for a function to be tested without having

to test another function that is called. This is useful when testing code that is not completed. An

advantage of using VectorCAST is the ability to modify source code and then rebuild the

environment, which will regenerate the test harness automatically. This allows for the

verification process to begin as soon as one function is complete instead of waiting until the

entire software package is finalized.

50

Once an environment is built, test cases can be added and executed. Depending on the type of

coverage (statement, branch, or Modified Condition/Decision Coverage) selected, VectorCAST

color-codes the source code to indicate the source code lines that were covered by the test case.

This information is also captured for the entire unit under test and provided as the Aggregate

Coverage Report. Several other reports are also generated that list the execution results of

expected versus actual results (listed under Execution Results), pass/fail status of all test cases

applied to a unit under test (Management Report), ranking of the function’s complexity which

indicates the number of unique paths through the function (listed under the Metrics section in

other reports), coverage percentage of each function within the source code (also listed under the

Metrics section), and a report that includes all the above reports to provide an entire verification

report (Full Report).

The test cases are set up to allow the user full control of the inputs and expected results to

different variables. A test case can be set up to perform one pass through the code or multiple

passes. VectorCAST uses the compiler indicated during setup to execute the tests and the results

are then displayed in the VectorCAST environment.

CodeSonar
CodeSonar locates bugs in C/C++ projects while the source code is being compiled. A full build

of the project is not necessary with CodeSonar since it can handle incremental builds [10]. The

results from CodeSonar are sent to a Hub (database) that is accessed via a Web GUI. The Web

GUI displays the analysis results and other information about the build. The analysis provides

51

all the warnings associated with the project. From there, each warning can be selected to obtain

further details (including the exact path through the code that produced the warning). CodeSonar

checks for warnings associated with many types of bugs and weaknesses including buffer

overrun and underrun, empty statements, integer overflow of allocation size, overlapping

memory regions, memory leaks, unreachable code, null pointer dereference division by zero,

among others.

Implementation
The strategy for verifying the software package is shown in the flow chart of Figure 12 and

Figure 13. The first verification process is to expose the DCS software and the IMMI software

to the simulated signals to obtain a system level baseline of the code operation. The code will

then be applied to VectorCAST, where an environment will be created to test code coverage

based on whether a statement was executed or not. The goal is to create test cases that will

achieve 100% coverage of the code. Each test case is to be created based on a requirement(s)

from Appendix A. This process for VectorCAST would be similar to the Develop Verification

Environment section of Figure 11. The next section of Figure 11, Debugging the HDL and

Environment, would consist of executing each test case and reviewing the results to determine if

the test case executed as intended and if any modification to the source code should occur. Once

the DCS and IMMI software have achieved their maximum coverage, the code is applied to

CodeSonar. The verification environment for CodeSonar is the software itself. The debugging

process occurs after the analysis report is published by CodeSonar and reviewed for potential

problems and fixes identified.

52

After a modified software package is ready, the code is once again applied to VectorCAST and

CodeSonar. This is where the “Run Regression Tests” of Figure 11 occurs. Also, additional test

cases within VectorCAST may be required to test any new code that is added. The verification

process used, Figure 12 and Figure 13, then calls for the verification of the code using branch

coverage. Branch coverage tests for whether each branching statement within the code has been

executed as TRUE and/or FALSE.

Finally, the software package is subjected to the same simulated input signals as before for a

final system level verification process. This step would compare to Figure 11’s section titled

“Debug Fabricated Hardware: System Test”. If the integration testing of the software and

hardware produce expected results then for the purpose of this thesis the verification process

would be considered complete. Otherwise, abnormal operation needs to be documented and

explained.

53

Figure 12: DCS Software Verification Implementation

54

Original IMMI
Software

VectorCAST IMMI STATEMENT
Environment CodeSonar

Evaluate Evaluate

More Test
Cases

Needed?

Modify IMMI
Software

Duplicate of VectorCAST IMMI
STATEMENT Environment CodeSonar

Evaluate Evaluate

More Test
Cases

Needed?

More IMMI
Source Code

Changes?

Duplicate of VectorCAST IMMI
Environment for BRANCH

Evaluate

More Test
Cases

Needed?

Verify new Source Code with
Hardware

Does new code
operate as
expected?

Determine why and document Verification Complete

No

No

No

No Yes

Yes

Yes

Yes

Yes

No

Verify Source Code
with Hardware

Figure 13: IMMI Software Verification Implementation

55

Chapter 4: Results

This chapter describes the results that were obtained using VectorCAST and CodeSonar as

verification tools. It also describes the software changes made due to the findings and the

observed operation of the IMMI and DCS when the set of simulated signals are applied.

DCS
All of the DCS test cases were created to not only test the code but to also ensure the code meets

the Design Requirements Document (DRD). Requirement 1 from the DRD is the only

requirement the DCS must meet. The test cases for Communications.c and Events.c, as a whole,

satisfy the communication requirement.

VectorCAST – Statement Coverage

Original Communications.c
Communications.c includes four functions: main, RS485Comm, parseCommand, and display. A

list of functions and the test cases with a description of what is being tested is in Appendix B.i.

The metrics report for Communications.c is shown in Table 3. All of the metric reports include

the name of the unit under test and the name of all the functions within the code. The table also

includes a column for the complexity, which indicates the number of unique paths through the

function, a column for the number of test cases created to verify the function, a number of

statements or branches covered versus the total number of statements or branches within the

function, and finally the percentage of statement or branch coverage reached. The test cases are

designed to achieve 100% statement coverage.

56

Table 3: Communications.c Metrics Report

Unit Function Complexity Test
Cases

Statement
Coverage

Coverage
Percentage

Communications Main 3 1 6/7 85%
 RS485Comm 17 12 48/48 100%
 parseCommand 6 6 33/33 100%
 display 26 12 92/109 84%
Total 4 52 31 179/197 90%

57

Two functions achieved 100% coverage (RS485Comm and parseCommand). There were 12 test

cases created to fully test RS485Comm and 6 test cases used to fully test parseCommand. The

test case created to test the main function had one statement that was not executed as shown in

Figure 14.

Statement 7 will never be reached by any test case created. As noted in the comments provided

by CodeWarrior/Processor Expert, the infinite for loop is not to be modified. Therefore, the

main code will never reach 100% coverage.

There were 12 test cases executed to test the display function but 17 statements were never

executed. Figure 15 shows only the statements not covered by the test cases. Statements 2-6 are

never tested because “escape” is not recognized as a function in the Events.c code. These

statements are marked for removal in the next version of Communications.c. The remaining

statements are never reached because the transmission to the IMMI is fixed. The charCount will

always be 3 and the checksum may change but will never be less than 100 or greater than 1000.

This is the case when sendpacket1 or sendpacket2 are true. These statements can be removed

but are not necessary. If they are removed there should still exist a statement that exits from the

transmission packet routine so the code doesn’t hang.

58

Figure 14: Main Function Statement Coverage

Figure 15: Display Function Statements Not Covered

59

Original Events.c
Events.c includes 12 functions: RS485_OnError, RS485_OnRxChar, Timer_OnInterrupt,

RS485_OnFullRxBuf, RS485_OnTxComplete, AS1_OnError, AS1_OnRxChar,

AS1_OnTxChar, AS1_OnFullRxBuf, AS1_OnFreeTxBuf, RS485_OnTxChar, and

RS485_OnFreeTxBuf. The test cases for each function are listed in Appendix A.i. The metrics

report for Events.c is shown in Table 4.

All of the functions that show 0% coverage are not being used. They all need to be removed in

the next version of the software. The very last test case in RS485_OnRxChar called

2STARTCHAR&VALIDCHAR failed during execution. This failure was caused because the

code continued to be executed even though it should have stopped after three passes. The

execution of the test case was stopped manually so the test case was recorded as a failure even

though the three passes that were of interest passed the test. Several emails were sent to Vector

Software regarding this issue but it could not be resolved. All of the tests cases for

AS1_OnRxChar failed because the test was stopped manually.

60

Table 4: Events.c Metrics Report

Unit Function Complexity Test
Cases

Statement
Coverage

Coverage
Percentage

Events RS485_OnError 1 1 4/4 100%
 RS485_OnRxChar 10 9 28/28 100%
 Timer_OnInterrupt 5 2 12/12 100%
 RS485_OnFullRxBuf 1 0 0/1 0%
 RS485_OnTxComplete 1 1 2/2 100%
 AS1_OnError 1 0 0/1 0%
 AS1_OnRxChar 5 3 11/11 100%
 AS1_OnTxChar 1 0 0/1 0%
 AS1_OnFullRxBuf 1 0 0/1 0%
 AS1_OnFreeTxBuf 1 0 0/1 0%
 RS485_OnTxChar 1 0 0/1 0%
 RS485_OnFreeTxBuf 1 0 0/1 0%
Totals 12 29 16 57/64 89%

61

CodeSonar
The entire DCS project, which included Communications.c and Events.c, was rebuilt as

CodeSonar eavesdropped. CodeSonar’s analysis identified four problems, see Table 5. Three of

the problems were located in RS485Comm function and the other problem was located in the

display function. Two of the problems were listed as Buffer Overrun and the other two were

listed as Redundant Conditions.

The Buffer Overrun in the display function was captured because of the following statement:

ntoMainboard=sprintf(checksum, “%d”, nCount);

It was noted that sprintf() is 12 bytes while checksum is 8 bytes. Therefore, the DCS source

code will be modified to increase checksum to 12 bytes.

The Buffer Overrun in the RS485Comm function was captured because of the following

statement:

for(j=0; j<pdulen; j++) check=check+RS485_RxBuffer[j+2];

The variable RS485_RxBuffer is 64 bytes and if j+2 is greater than 63 there poses a problem.

Therefore, a statement will be added to the modified DCS source code to verify pdulen is not

greater than 62 to ensure there can not be a buffer overrun.

62

Table 5: CodeSonar's Analysis Report for DCS

File Function Line Number Warning
Communications.c Display 474 Buffer Overrun
Communications.c RS485Comm 184 Buffer Overrun
Communications.c RS485Comm 178 Redundant Condition
Communications.c RS485Comm 176 Redundant Condition

63

The final two warnings are Redundant Conditions from the RS485Comm function. The first

statement is if(NULL !=strncpy(hold, RS485_RxBuffer, 2)) pdulen=strtol(hold, NULL, 10); and

the second statement is if(NULL !=strncpy(hold, RS485_RxBuffer+datalen+2, 2))

chksum=strtol(hold, NULL, 10);

Both conditions should always evaluate to TRUE but in the unlikely event they evaluate to

FALSE the assignment will not be executed. No change will be made due to these warnings

since the statements are protective in nature.

VectorCast – Statement Coverage

Communications.c with Changes
The source code that was modified was described in the Communications.c section under

Original Code. The final code can be found in Appendix D. i. The only changes that occurred

were in the display and RS485Comm functions. The metrics report for the new

Communications.c code is shown in Table 6.

No additional test cases were added to test the changes in the RS485Comm function since the

existing test cases verified the changes. However, one test case (NTOMAINBOARD) was

added to test the changes in the display function. The test case, NTOMAINBOARD, tests to

verify the checksum, when sendpacket1=TRUE, can not be greater than 3 digits by setting the

two variables that are being passed, valve1command and valve2, to their maximum value. The

expected result is ntomainboard should equal 3 and the test results show that is the case.

64

Table 6: Metrics Report for Communications.c with Changes

Unit Function Complexity Test Cases Statement
Coverage

Coverage
Percentage

Communications.c main 3 1 6/7 85%
 RS485Comm 18 12 51/51 100%
 parseCommand 6 6 33/33 100%
 display 23 13 89/91 97%
Total 4 50 32 179/182 98%

65

Events.c with Changes
The only changes that were to occur in Events.c were the removal of unused code. To do this,

the Processor Expert Embedded Beans had to be modified to have the code disabled. Once this

is completed and the code is complied, the unused interrupt events are removed from Events.c.

The metrics report, Table 7, shows Events.c was fully tested with 100% statement coverage. The

final code for Events.c can be found in Appendix D. iii.

66

Table 7: Metrics Report for Code Changes within Events.c

Unit Function Complexity Test Cases Statement
Coverage

Coverage
Percentage

Events.c RS485_OnError 1 1 4/4 100%
 RS485_OnRxChar 10 9 28/28 100%
 Timer_OnInterrupt 5 2 12/12 100%
 RS485_OnTxComplete 1 1 2/2 100%
 AS1_OnRxChar 5 3 11/11 100%
Total 5 22 16 57/57 100%

67

VectorCAST - Branch Coverage
The environment created under statement coverage for both units under test was duplicated but

rebuilt for branch coverage. Branch coverage tests for branch functions, such as if statements, to

be evaluated as TRUE, FALSE, or equal to a particular value, depending on the condition that is

being considered.

To satisfy the branch coverage for Communications.c, additional tests were created to achieve an

acceptable coverage percentage. These test cases are described in Appendix B.iii. The metrics

report is shown in Table 8.

The test cases that were added to provide additional coverage for the branch statements in

Events.c are in Appendix B.iv. The metrics report for Events.c is shown Table 9.

68

Table 8: Metrics Report using Branch Coverage for Communications.c

Unit Function Complexity Test Cases Branch
Coverage

Coverage
Percentage

Communications.c Main 3 1 2/3 66%
 RS485Comm 18 14 32/35 91%
 parseCommand 6 6 11/11 100%
 display 23 14 41/45 91%
Total 4 50 35 86/94 91%

Table 9: Metrics Report using Branch Coverage for Events.c

Unit Function Complexity Test Cases Branch
Coverage

Coverage
Percentage

Events.c RS485_OnError 1 1 1/1 100%
 RS485_OnRxChar 10 11 19/19 100%
 Timer_OnInterrupt 5 3 9/9 100%
 RS485_OnTxComplete 1 1 1/1 100%
 AS1_OnRxChar 5 4 9/9 100%
Total 5 22 20 39/39 100%

69

CodeSonar
When the modified DCS software was recompiled, CodeSonar was activated. The analysis

report identified 4 warnings. The warnings are listed in Table 10.

Three of the four conditions were previously identified by CodeSonar. There was no change to

the code to resolve the Redundant Conditions. Therefore, it is expected that they would remain

as a warning. The Buffer Overrun, however, was addressed but still remains as a warning. The

statement of concern is:

for(j=0; j<pdulen; j++) check=check+RS485_RxBuffer[j+2];

The variable RS485_RxBuffer is 64 bytes and if j+2 is greater than 63 there poses a problem.

The code that was added to correct this problem is:

if(pdulen> strlen(RS485_RxBuffer) && pdulen<62){

RS485_RxCount=0

Return;

}

This code ensures pdulen is less than 62 so when the statement that issued a warning is evaluated

for j + 2, where j is less than pdulen, it will not be larger than 63. The additional code should

have cleared the warning but since CodeSonar is strictly concerned with j+2, instead of a value

less than pdulen +2, the warning remains.

70

Table 10: CodeSonar Warning Report for DCS Code with Changes

File Function Line Number Warning
Communications.c RS485Comm 185 Buffer Overrun
Communications.c RS485Comm 179 Redundant Condition
Communications.c RS485Comm 173 Redundant Condition
Communications.c Main 153 Unreachable

Conditional

71

The Unreachable Conditional warning in the main section of the code was generated because an

infinite for loop exists after another infinite for loop. CodeWarrior indicates this section of the

code is to remain untouched for Processor Expert.

IMMI

VectorCast – Statement Coverage

Original MIP_LC3081709.c
The main C source code for IMMI is called MIP_LC3081709.c. This file is composed of eleven

functions. The functions are called main, RS485Comm, Switches, FrequencyMeasurement,

FrequencyActivation, RateofChange, PhaseMeasure, Alarms, isolate, MotorTimer, and

ADCMeasurements. A variety of test cases were applied to these functions in order to meet

design requirements as well as complete statement coverage. Appendix Chapter 5:C.i provides a

list of the test cases along with a description of what is being tested. The metrics report is shown

in Table 11.

72

Table 11: Metrics Report using Statement Coverage for IMMI’s MIP_LC3081709.c

Unit Function Complexity Test
Cases

Statement
Coverage

Coverage
Percentage

MIP_LC3081709.c main 3 1 40/41 97%
 RS485Comm 22 19 64/70 91%
 Switches 28 15 101/113 89%
 FrequencyMeasurement 1 2 3/3 100%
 FrequencyActivation 6 5 24/24 100%
 RateofChange 12 9 40/40 100%
 PhaseMeasure 23 18 89/89 100%
 Alarms 15 11 40/40 100%
 Isolate 1 1 8/8 100%
 MotorTimer 3 2 8/8 100%
 ADCMeasurements 6 5 11/11 100%
Total 11 120 88 428/447 95%

73

Original Events.c
There are fifteen interrupts used in IMMI to handle various signals. Appendix Chapter 5:C.ii

provides a description of the test cases. Table 12 shows the metrics report.

The functions that did not have 100% coverage were due to the way VectorCAST converts the

original source code into the test harness. Any code that directly changes or observes the value

of a port, such as changing the value of the signal that determines whether an LED is illuminated

or not, is modified in a way that made it impossible to alter the state of the signal for testing

purposes. Therefore, the four functions were not able to achieve 100% coverage but had it been

possible to alter the input value for the four interrupt functions the complete statement coverage

would have been achieved.

74

Table 12: Metrics Report using Statement Coverage for IMMI's Events.c

Unit Function Complexity Test
Cases

Statement
Coverage

Coverage
Percentage

Events.c Timer_OnInterrupt 15 5 32/32 100%
 AD1_OnEnd 1 1 2/2 100%
 Valve2_Switch_OnInterrupt 2 2 2/4 50%
 Valve1_Switch_OnInterrupt 2 1 2/4 50%
 down_falling_OnInterrupt 2 1 3/3 100%
 down_rising_OnInterrupt 2 1 1/2 50%
 up_falling_OnInterrupt 2 1 3/3 100%
 up_rising_OnInterrupt 2 1 1/2 50%
 Sensor1_OnCapture 4 4 15/15 100%
 Sensor2_OnCapture 2 2 7/7 100%
 Sensor1_Frequency_OnCapture 5 7 16/16 100%
 Sensor1_Frequency_OnOverflow 1 1 3/3 100%
 RS485_OnError 1 1 4/4 100%
 RS485_OnRxChar 10 7 27/27 100%
 RS485_OnTxComplete 1 1 2/2 100%
Total 15 52 36 120/126 95%

75

CodeSonar
The warnings uncovered with CodeSonar, while observing IMMI compile, consisted of

seventeen warnings, see Table 13, in which there were 14 Buffer Overruns, 1 Useless

Assignment, and 2 Redundant Conditions.

The two Buffer Overrun warnings in the RateofChange function are due to the following

statement:

for(i=60;i>-1;i--){

 array_shift[i+1]=Rate_of_Change_array[i];

 Rate_of_Change_array[i+1]= array_shift[i+1];

}

Where array_shift and Rate_of_Change_array are 60 element arrays.

The first warning indicates array_shift is too small and will overrun. The second warning

indicates Rate_of_Change_array is too small as well causing an overrun. Upon a second look,

CodeSonar is exactly correct. When i is equal to 60 (maximum value in the for loop), the first

assignment within the for loop places the value at Rate_of_Change_array element 60 in

array_shift at element 61. This will cause a buffer overrun since array_shift is a 60 element

array. When i is still equal to 60, the second assignment places the value in array_shift element

61 at Rate_of_Change_array element 61. Therefore, both arrays really need to be increased in

size to 63 element arrays.

76

Table 13: CodeSonar Warning Report for Original IMMI Code

File Function Line Number Warning
MIP_LC3081709.c RateofChange 630 Buffer Overrun
MIP_LC3081709.c RateofChange 631 Buffer Overrun
MIP_LC3081709.c RS485Comm 299 Buffer Overrun
MIP_LC3081709.c RS485Comm 344 Buffer Overrun
MIP_LC3081709.c RS485Comm 356 Buffer Overrun
MIP_LC3081709.c RS485Comm 358 Buffer Overrun
MIP_LC3081709.c RS485Comm 359 Buffer Overrun
MIP_LC3081709.c RS485Comm 361 Buffer Overrun
MIP_LC3081709.c RS485Comm 362 Buffer Overrun
MIP_LC3081709.c RS485Comm 364 Buffer Overrun
MIP_LC3081709.c RS485Comm 365 Buffer Overrun
MIP_LC3081709.c RS485Comm 367 Buffer Overrun
MIP_LC3081709.c RS485Comm 368 Buffer Overrun
MIP_LC3081709.c RS485Comm 371 Buffer Overrun
MIP_LC3081709.c Main 240 Useless Assignment
MIP_LC3081709.c RS485Comm 291 Redundant Condition
MIP_LC3081709.c RS485Comm 293 Redundant Condition

77

The remaining Buffer Overrun warnings were in the RS485Comm function. The first warning

comes from the following statement:

for(j=0;j<pdulen;j++) check=check+RS485_RxBuffer[j+2];

The warning stems from the possibility that pdulen could be greater than 62. If this is the case

then RS485_RxBuffer, which is a 64 element array, will overrun. To address this problem,

either pdulen needs to be limited in size or RS485_RxBuffer needs to be increased in size.

The second warning is due to the following statement:

toCommboard = sprintf(workBuffer, “%d %d %4.1f %1.4f %4.1f %d %d %d %2.3f %d %d

%3.2f”, Valve1Position, Valve2Position, sensor1Freq, sensor1ROC, sensor1_sensor2_phase,

LOS1, sensor1Decel, LOS2, motorRT, motorUp, motorDown, sensor2Mag);

The warning comes from the possibility that the array, workBuffer, is not large enough. It is

currently a 64 element array. The values that are to be placed in workBuffer vary from Boolean

values to floating values. The floating values are given a format for the number of significant

digits and the number of decimal places to be used. This format is a minimum for significant

digit representation. Therefore, the workBuffer array needs to be increased to handle the

maximum values. This also means there needs to be additional code that limits the size of the

parameters.

78

The third Buffer Overrun is due to the following statement:

for(j=4; j<toCommboard+4;j++) RS485_TxBuffer[j]=(RS485_TComData)workBuffer[j-4];

The warning suggests RS485_TxBuffer will overrun if, as a maximum value, toCommboard

equaled 93. This warning will be resolved once the size of workBuffer and RS485_TxBuffer are

modified.

The fourth warning is due to the following statement:

for(j=0;j<toCommboard;j++) nCount=nCount+workBuffer[j];

Since workBuffer is a 64 element array, it can not be accessed when toComboard is greater than

64. Therefore, this causes a Buffer Overrun warning. This warning will be resolved when

workBuffer is increased in size.

The fifth Buffer Overrun is due to the following statement:

ntoCommboard = sprintf(checkSum, “%d”, nCount);

Where checkSum is an 8 element array.

The warning indicates the number of bytes written to checkSum could potentially be more than

the number of allocated bytes. This would occur if nCount is larger than 8 digits, which occurs

when workBuffer is extremely large due to the floating values. With a size limit of the floating

value variables, an 8 element array for checkSum should be sufficient. However, to ensure

checkSum will not overrun the array should be increased to 12 elements.

79

The sixth through eleventh Buffer Overruns are due to the following statements:

If(nCount<100){

 RS485_TxBuffer[toCommboard+4]=checkSum[0];

 RS485_TxBuffer[toCommboard+5]=checkSum[1];

} elseif(nCount>=100 && nCount<1000){

 RS485_TxBuffer[toCommboard+4]=checkSum[1];

 RS485_TxBuffer[toCommboard+5]=checkSum[2];

} else{

 RS485_TxBuffer[toCommboard+4]=checkSum[2];

 RS485_TxBuffer[toCommboard+5]=checkSum[3];

}

Where RS485_TxBuffer is a 64 element array.

Following the same pattern as before, if toCommboard is equal to 93, then RS485_TxBuffer will

overrun. When toCommboard equals 93 and 4 is added, then the statements above would place

the values of checkSum[0], checkSum[1] and checkSum[2] at RS485_TxBuffer[97]. The values

of checkSum[1], checkSum[2] and checkSum[3] would be placed at RS485_TxBuffer[98] when

toCommboard is added to 5. The array elements of 97 and 98 are much greater than 64, thus the

reason for the Buffer Overrun warnings. The size of RS485_TxBuffer may need to be increased

but the value will depend on the new maximum size of workBuffer, which will be changed as a

result of warnings previously discussed.

80

The final Buffer Overrun is due to the following statement:

RS485_TxBuffer[toCommboard+6]=3;

Using toCommboard equal to 93, RS485_TxBuffer will overrun. Once again, this warning will

be resolved when maximum values are added for the transmitted data.

The Useless Assignment warning in the main function is due to two identical statements within

ten lines of each other. The assignment is TSCR2_TOI=1, which is used to enable the overflow

interrupt. One assignment just needs to be removed.

The final two warnings resulted from Redundant Conditions. The first statement is:

if(NULL !=strncpy(hold, RS485_RxBuffer, 2)) pdulen=strtol(hold, NULL, 10);

and the second statement is:

if(NULL !=strncpy(hold, RS485_RxBuffer+datalen+2, 2)) chksum=strtol(hold, NULL, 10);

These conditions were also present in the DCS software and will be handled the same way,

which was no change necessary.

VectorCast – Statement Coverage

MIP_LC3081709.c with Changes
Variable changes to MIP_LC3081709.c code are found in Table 14 and the code that was

removed, modified or added is in Table 15.

81

Table 14: Variables Modified Based on Findings

Variables Original New
checkSum[] 8 12
RS485_RxBuffer[] 64 20
RS485_TxBuffer[] 64 80
workBuffer[] 64 74
Rate_of_Change_array[] 60 63
array_shift[] 60 63

82

Table 15: Source Code Removed, Modified or Added to MIP_LC3081709.c
Function Action Code

main Removed TSCR2_TOI=1

Removed

If(nCount<2){
 RS485_TxBuffer[2]=(char)’0’;
 RS485_TxBuffer[3]=charCount[0];
}else{
 RS485_TxBuffer[2]=charCount[0];
 RS485_TxBuffer[3]=charCount[1];
} RS485Comm

Replaced with

If(nCount>=2){
 RS485_TxBuffer[2]=charCount[0];
 RS485_TxBuffer[3]=charCount[1];
}else{
 return;
}

Removed

If(nCount<100){
 RS485_TxBuffer[toCommboard+4]=checkSum[0];
 RS485_TxBuffer[toCommboard+5]=checkSum[1];
}elseif(nCount>=100 && nCount<1000){
 RS485_TxBuffer[toCommboard+4]=checkSum[1];
 RS485_TxBuffer[toCommboard+5]=checkSum[2];
}else{
 RS485_TxBuffer[toCommboard+4]=checkSum[2];
 RS485_TxBuffer[toCommboard+4]=checkSum[3];
}

RS485Comm

Replaced with

If(nCount>=1000){
 RS485_TxBuffer[toCommboard+4]=checkSum[2];
 RS485_TxBuffer[toCommboard+5]=checkSum[3];
}else{
 return;
}

RS485Comm Added

If(pdulen>(datalen+4) && pdulen<18){
 RS485_RxCount=0;
 return;
}
Before….
If((NULL!=strncpy(hold,RS485_RxBuffer+datalen+2,
2)){
 Chksum=strtol(hold, NULL, 10);
}

RS485Comm Added If(Valve1Position<0 || Valve1Position>1){
 Valve1Position=FALSE;

83

Function Action Code
 Close_Valve1_ClrVal();
 Open_Valve1_SetVal();
 Valve1Sw=FALSE;
 Valve1Count=0;
}
If(Valve2Position<0 || Valve2Position>1){
 Valve2Position=FALSE;
 Close_Valve2_ClrVal();
 Open_Valve2_SetVal();
 Valve2Sw=FALSE;
 Valve2Count=0;
}

Switches Removed

{elseif(Valve1Position==FALSE && Valve1Count>0
&& Valve1TimeOut==0){
 Valve1SW=FALSE;
 Valve1Position=FALSE;
 Open_Valve1_SetVal();
 Close_Valve1_ClrVal();
 Valve1Count=0;
 Valve1Valid=0;
}

Switches Removed

{elseif(Valve2Position==FALSE && Valve2Count>0
&& Valve2TimeOut==0){
 Valve2SW=FALSE;
 Valve2Position=FALSE;
 Open_Valve2_SetVal();
 Close_Valve2_ClrVal();
 Valve2Count=0;
 Valve2Valid=0;
}

FrequencyActivation Added

If(sensor1Freq>9999) sensor1Freq=9999;
If(sensor1Freq<0) sensor1Freq=0;

In the if(pDone==TRUE) statement

Removed

For(i=60;i>-1;i--){
 array_shift[i+1]=Rate_of_Change_array[i];
 Rate_of_Change_array[i+1]=array_shift[i+1];
}

RateofChange

Replaced with

For(i=61;i>-1;i--){
 array_shift[i+1]=Rate_of_Change_array[i];
 Rate_of_Change_array[i+1]=array_shift[i+1];
}

84

Function Action Code
Removed Decel_orig=(array_shift[11]-array_shift[1])/10.24;

RateofChange
Replaced with Decel_orig=(array_shift[11]-array_shift[1])/10;

Removed

If(rate_of_change_counter==59 || min_past==1){
 array_shift[0]=Rate_of_Change_array[0];
 min_past=1;
 Rate_of_Change_orig=((array_shift[0]-
array_shift[59])*1.0060);
 sensor1ROC=Rate_of_Change_orig;
}

RateofChange

Replaced with

If(rate_of_change_counter==61 || min_past==1){
 min_past=1;
 Rate_of_Change_orig=(array_shift[1]-
array_shift[61]);
 sensor1ROC=Rate_of_Change_orig;
 if(sensor1ROC>=10) sensor1ROC=9.9999;
 if(sensor1ROC<=-10) sensor1ROC=-9.9999;
 rate_of_change_counter=65;
}

Alarms Added

If(LOS1<0 || LOS1>1) LOS1=TRUE;
If(LOS2<0 || LOS2>1) LOS2=TRUE;
If(sensor1Decel<0 || sensor1Decel>1)
sensor1Decel=FALSE;

MotorTimer Added

Inside if(up==TRUE) statement:
If(motorRT>=100) motorRT=99.999;
If(motorRT<0) motorRT=0;

Inside if(down==TRUE) statement:
If(motorRT<=-100) motorRT=-99.999;
If(motorRT>0) motorRT=0;

ADCMeasurements Added
Inside case0:
If(sensor2Mag>=1000) sensor2Mag=999.99;
If(sensor2Mag<0) sensor2Mag=0;

85

The final code for MIP_LC3081709.c can be found in Appendix D. iv. The modified code was

then rebuilt with VectorCAST and the test cases were executed to determine the new coverage.

There were 11 test cases added to verify the modified source code. The new test cases and

descriptions can be found in Appendix Chapter 5:C.iii. The metrics report is shown in Table 16.

86

Table 16: Metrics Report using Statement Coverage for Modified IMMI Code

Unit Function Complexity Test
Cases

Statement
Coverage

Coverage
Percentage

MIP_LC3081709.c Main 3 1 39/40 97%
 RS485Comm 24 22 78/80 97%
 Switches 26 15 99/99 100%
 FrequencyMeasurement 1 2 3/3 100%
 FrequencyActivation 8 7 28/28 100%
 RateofChange 14 11 43/43 100%
 PhaseMeasure 23 18 89/89 100%
 Alarms 18 14 46/46 100%
 Isolate 1 1 8/8 100%
 MotorTimer 7 2 12/16 75%
 ADCMeasurements 8 6 14/15 93%
Total 11 133 99 459/467 98%

87

Events.c with Changes
There were no changes to the Events.c code for IMMI since there was 100% coverage achieved

with the original code and no warnings from CodeSonar. However, the test cases were still

applied to Events.c just to verify nothing changed due to the modifications of the main source

code, see Table 17 for the metrics report. The final code for Events.c can be found in Appendix

D. vi. The only difference between Table 12 and Table 17 is the removal of a test case for

Valve2_Switch_OnInterrupt.

88

Table 17: Metrics Report for Events.c

Unit Function Complexity Test
Cases

Statement
Coverage

Coverage
Percentage

Events.c Timer_OnInterrupt 15 5 32/32 100%
 AD1_OnEnd 1 1 2/2 100%
 Valve2_Switch_OnInterrupt 2 1 2/4 50%
 Valve1_Switch_OnInterrupt 2 1 2/4 50%
 down_falling_OnInterrupt 2 1 3/3 100%
 down_rising_OnInterrupt 2 1 1/2 50%
 up_falling_OnInterrupt 2 1 3/3 100%
 up_rising_OnInterrupt 2 1 1/2 50%
 Sensor1_OnCapture 4 4 15/15 100%
 Sensor2_OnCapture 2 2 7/7 100%
 Sensor1_Frequency_OnCapture 5 7 16/16 100%
 Sensor1_Frequency_OnOverflow 1 1 3/3 100%
 RS485_OnError 1 1 4/4 100%
 RS485_OnRxChar 10 7 27/27 100%
 RS485_OnTxComplete 1 1 2/2 100%
Total 15 52 35 120/126 95%

89

VectorCAST- Branch Coverage
The IMMI VectorCAST environment was duplicated and rebuilt for Branch coverage. Appendix

 Chapter 5:C.iv and Appendix Chapter 5:C.v show the additional test cases need for Branch

coverage. All of the test cases were executed for both units under test and the metrics report for

MIP_LC3081709.c is in Table 18.

The one statement in the main function that was not covered was the same statement previously

mentioned (infinite for loop for Processor Expert). In the RS485Comm function, there were five

lines that were not fully tested. Three of those lines must evaluate to 0 within the if statement

and testing for a FALSE condition was not possible. Since the packet to the DCS is created

within the IMMI, the statement that places the data length in the packet (if nCountpacket >=2)

can not be evaluated for less than 2 so it doesn’t satisfy the FALSE condition. The same is true

for the checksum (if nCount>=1000).

In the PhaseMeasure function, only one statement wasn’t evaluated fully. After a phase sample

is taken, a fraction value greater than 0.625 is discarded. However, the statement that evaluates

that can not be tested for a value less than 0.625 since the statements above it already satisfied

that condition.

90

Table 18: Metrics Report using Branch Coverage for MIP_LC3081709.c

Unit Function Complexity Test
Cases

Branch
Coverage

Coverage
Percentage

MIP_LC3081709.c Main 3 1 2/3 66%
 RS485Comm 24 23 42/47 89%
 Switches 26 15 51/51 100%
 FrequencyMeasurement 1 2 1/1 100%
 FrequencyActivation 8 7 15/15 100%
 RateofChange 14 14 27/27 100%
 PhaseMeasure 23 18 44/45 97%
 Alarms 18 15 35/35 100%
 isolate 1 1 1/1 100%
 MotorTimer 7 2 9/13 69%
 ADCMeasurements 8 6 12/14 85%
Total 11 133 104 239/253 94%

91

The MotorTimer function did not evaluate four lines completely. The four lines were the

additional code that could not be tested for values greater than 100 and less than zero for an up

movement and less than -100 and greater than 0 for a down movement. The reason is due to the

assignment type of the timer. The timer is an unsigned integer and can only be as large as 65535

but once it is divided by 1000 the maximum value can only reach 65.535. Therefore it will never

reach 100 or -100. This code just becomes a safety net.

The final function that wasn’t tested fully is the ADCMeasurements function. The statement

testing for Sensor2 magnitude to be less than 0 was not testable. Also, the statement looking for

a value greater than 0 was unable to be tested for a value less than 0. Forcing variables defined

as positive numbers to negative numbers was not possible with VectorCAST.

The metrics report for Events.c is shown in Table 19. Four tests were added to provide

additional coverage for Events.c. The six functions that only achieved 66% coverage were due

to the fact that either the TRUE statement (in the case of Valve2_Switch_OnInterrupt,

Valve1_Switch_OnInterrupt, down_rising_OnInterrupt, and up_rising_OnInterrupt) or FALSE

statement (in the case of down_falling_OnInterrupt and up_falling_OnInterrupt) couldn’t be

executed because the variable being evaluated was unable to be modified through VectorCAST.

92

Table 19: Metrics Report using Branch Coverage for Events.c with Changes

Unit Function Complexity Test
Cases

Branch
Coverage

Coverage
Percentage

Events.c Timer_OnInterrupt 15 6 29/29 100%
 AD1_OnEnd 1 1 1/1 100%
 Valve2_Switch_OnInterrupt 2 1 2/3 66%
 Valve1_Switch_OnInterrupt 2 1 2/3 66%
 down_falling_OnInterrupt 2 1 2/3 66%
 down_rising_OnInterrupt 2 1 2/3 66%
 up_falling_OnInterrupt 2 1 2/3 66%
 up_rising_OnInterrupt 2 1 2/3 66%
 Sensor1_OnCapture 4 4 7/7 100%
 Sensor2_OnCapture 2 2 3/3 100%
 Sensor1_Frequency_OnCapture 5 8 9/9 100%
 Sensor1_Frequency_OnOverflow 1 1 1/1 100%
 RS485_OnError 1 1 1/1 100%
 RS485_OnRxChar 10 9 19/19 100%
 RS485_OnTxComplete 1 1 1/1 100%
Total 15 52 39 83/89 93%

93

CodeSonar
After making all the changes to the IMMI source code, the new code was compiled as

CodeSonar eavesdropped. This time CodeSonar only found three warnings. Two of those

warnings were the Redundant Conditions, which were expected to appear. The last warning was

a Buffer Overrun warning in the RS485Comm function. The Buffer Overrun warning was due to

the following statement:

for(j=0;j<pdulen;j++) check=check+RS485_RxBuffer[j+2];

Several statements before, new code was added to limit the size of pdulen to less than 18. This

should have eliminated the Buffer Overrun warning. Therefore, no changes will be made to

remove this warning since limiting the size of pdulen should be sufficient.

Hardware
Before the software package was verified using VectorCAST and CodeSonar, the IMMI

software was downloaded to the IMMI prototype board and likewise with the DCS. A serial

cable was connected between the DCS prototype board and a PC. On the PC, a hyperterminal

program was started and set to 9600 baud, no parity, 8 data bits, and 1 stop bit. The screen

immediately displayed all the variables and the data that the IMMI was transmitting. The first

line of data on the screen is labeled Alarms as shown in Figure 9. When the value next to

Sensor1, Sensor2 and Deceleration is 0 then there is no alarm and when it is 1 then there is an

alarm. An alarm status means the valves should have automatically closed. The LEDs will

indicate their status (green for closed and red for open). Sensor1 and Sensor2 can easily be

removed to demonstrate an alarm status by switching the appropriate hardware switches (SW3

and SW4 respectively). An alarm LED will also be illuminated when a sensor is lost. When

94

demonstrated, Sensor1 and Sensor2 behave as designed and will recover immediately when

returned to a normal state. The alarm LED will immediately extinguish when Sensor1 or

Sensor2 are returned to a normal state. To demonstrate a Deceleration alarm, the frequency has

to change very rapidly by quickly changing the pot value (R19). The alarm also performs as

expected. Once a deceleration alarm is triggered, the recovery time is about seven seconds, even

if the alarm should have returned to normal. The alarm LED will flash very rapidly when a

failure detection scenario has occurred (loss of Sensor1 and loss of Sensor2 or loss of Sensor2

and deceleration alarm). Both scenarios were tested to confirm the alarm LED behaves as

expected.

The second line of data shown in Figure 9 is labeled Sensor1. The Sensor1 data includes the

frequency and the rate of change. As R19 is changed in one direction the frequency increases

and as it is changed in the opposite direction the frequency decreases. If R19 is left at some

random position the frequency will be measured and will remain stable. While the frequency

value was changing due to the changing value of R19, the rate of change value was also being

updated. As the frequency values were increasing the rate of change value was positive and as

the frequency values started decreasing the rate of change values became negative.

The third line is labeled Sensor2 in Figure 9 and includes Magnitude and Phase. To change the

magnitude value, R6 is changed to either increase or decrease the value. The magnitude operates

as expected and reports a stable value when R6 is stationary. The phase value increases and

decreases as R18 is changed. However, when R18 is stationary the phase value is not exactly

95

stable. Since this is an observed flaw, the intent is to hopefully have VectorCAST and

CodeSonar assist in identifying the issue so it can be resolved.

The fourth line in Figure 9 is labeled Motor and contains the Up and Down status lines as well as

the run time value. As the motor moves, a value of 0 next to Up and Down represent no

movement and a value of 1 represents motor movement. When 1 is displayed for either Up or

Down, the run time will be displayed for that particular movement. The run time will also

display a negative number when the movement is Down and a positive number for an upward

movement. There is no potentiometer to change the rate at which the motor moves up or down.

The hardware was designed to continually ramp the movement up and down for increasing

lengths. The values displayed for Up, Down and Run Time appear to be correct.

The fifth line in Figure 9 is labeled Valves and includes the status for Valve1 and Valve2. A 0

represents a closed valve and a 1 represents an open valve. This status will change automatically

when an alarm occurs. The status will also change when the valve is manually opened or closed

using the pushbuttons or when a command is sent via the DCS. As a valve is changed manually

from a closed position to an open position, the red LED of the valve attempted to open will begin

to flash and the green LED will remain fully illuminated. After three seconds, the pushbutton

can be pressed again to complete the opening process. The red LED will remain fully

illuminated, the green LED will not be illuminated, and the status of the valve will change to 1.

If the opening process of a valve is not adhered to, the red LED will stop flashing, the green LED

will remain fully illuminated, and the valve status will be 0. To manually change a valve from

96

an open position to a closed position only one press of the pushbutton is required to complete the

closure of the valve. The red LED will not be illuminated, the green LED will be fully

illuminated, and the status of the valve will be 0. The opening and closing of both valves

manually work as expected.

The sixth line in Figure 9 is labeled Valve Command and includes the command status for both

valves. When a valve is closed and commanded open by a user, the command status is changed

from 0 (close valve) to a 1 (open valve). The red LED will immediately be fully illuminated, the

green LED will not be illuminated, and the valve status will be 1. The last commanded value

will remain until the user commands the valve to open or close. The command is only

transmitted by the DCS to the IMMI once. The IMMI performs as expected when commands are

sent to open or close the valves.

After the software package has been modified based on the findings from VectorCAST and

CodeSonar, the code for the IMMI and DCS are downloaded to their prototype boards for one

more verification process using the simulated signals. Following the same sequence of tests

using the simulated signals as before, the code produced identical results.

97

Chapter 5: Conclusions and Future Work
Summary
The goal of this thesis was to verify a software package consisting of C source code for an

industrial machine monitoring instrument (IMMI) and a distributed control system (DCS). The

software to be verified was first introduced to signals that were developed to simulate a typical

environment that the IMMI and DCS would encounter. The hardware prototype provided the

ability to perform live debugging and testing. Real performance between the IMMI and DCS

could be observed and it was during this verification process that a measurement issue was

uncovered with the phase between Sensor1 and Sensor2. No modification was made to the code

to correct the problem to allow the verification tools the opportunity to identify the error.

The verification tools selected were VectorCAST [9] and CodeSonar [10]. VectorCAST made it

possible to apply numerous kinds of test cases to the software and would then compare the

results against expected values. The test cases were created to achieve 100% coverage for

statement and branch coverage. By verifying the software with VectorCAST several lines of

code were found to be redundant or unreachable. If the code was redundant then it was removed.

The code that was determined unreachable actually provided a path for the code to continue if,

for instance, a corrupted variable occurred. However, the unreachable code could have been

written to just exit and restart the measurement. VectorCAST has many capabilities that were

not utilized for this thesis. One such capability is integration testing with the real hardware.

This type of testing definitely needs to be pursued as future work.

98

Once CodeSonar was activated, it eavesdropped on the compilation of the source code looking

for static issues that may cause serious problems if left unresolved. In fact, CodeSonar

uncovered about 15 or so potential places were a buffer could overrun, 2 redundant conditions,

and 1 useless assignment. The items were addressed by increasing array sizes and limiting the

size of transmitted variables.

The final software package was then downloaded to prototype boards and tested with the

hardware prototype (simulated signals). The new software successfully performed as expected.

Neither verification tool addressed the unstable phase reading. Although VectorCAST and

CodeSonar uncovered some items that needed to be addressed for creating a strong software

package, they do not complete the verification process. These tools are only a small part of the

verification process.

Each of the verification tools (hardware prototype, VectorCAST, and CodeSonar) addressed

different aspects of the verification process. Hardware prototyping can identify timing issues

between functions that can manifest its self into inaccurate measurements. Unit testing can be

used to fully verify a function but its interactions with other sections of code are lost unless

integration testing is fully tested as well. Finally, static testing can identify problems that may or

may not cause an issue that can be easily seen. It is up to the designer to determine if a static

issue needs to be addressed.

99

Future Work
Verifying software is by no means easy nor is there one tool that can do the job. It takes a

tremendous amount of time to verify existing software even with complete documentation. The

verification of this software package, as previously mentioned, is by no means complete. This

software package still needs more integration testing. There needs to be testing to ensure the

interrupt code and the main code function as intended when operating as a unit. For example,

what happens when an interrupt comes in and is being processed, while at the exact moment the

main code is stepping through a section of code that uses those interrupt variables? This type of

scenario may be exactly what is causing the unstable phase reading.

100

References

101

[1] Brain, Marshall. “How Gyroscopes Work.” Howstuffworks. Web. 12 Dec. 2010.
http://www.howstuffworks.com/gryoscope.htm/

[2] “How a Jet Engine Works.” Explain that Stuff. Web. 12 Dec. 2010.
http://www.explainthatstuff.com/jetengine.html/

[3] “Gyroscope.” Wikipedia. Web. 12 Dec. 2010. http://en.wikipedia.org/wiki/Gryoscope/
[4] Brain, Marshall. “How Gas Turbine Engines Work.” Howstuffworks. Web. 12 Dec. 2010.

http://science.howstuffworks.com/transport/flight/modern/turbine.htm/
[5] “Turbomolecular Pump.” Wikipedia. Web. 12 Dec. 2010.

http://en.wikipedia.org/wiki/Turbomolecular_pump/
[6] Wildermoth, Brett. Microprocessor Techniques. Griffith School of Engineering. Web. 12

Dec. 2010. http://maxwell.me.gu.edu.au/bw/2303eng/Lab-PDFs/OU-07-004.pdf/
[7] “MC9S12XDP512RMV2 Data Sheet.” Freescale Semiconductor. Rev 2.21. Oct. 2009.

Web. 21 Jan 2010.
http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12XDP512RMV2.p
df/

[8] “S12XCPUV1 Reference Manual.” Freescale Semiconductor. Rev 0.0101. Mar. 2005.
Web. 19 Jan. 2010.
 http://www.freescale.com/files/microcontrollers/doc/ref_manual/S12XCPUV1.pdf/

[9] “VectorCAST Getting Started.” Vector Software. Version 5.1. 19 Oct. 2010.
[10] “CodeSonar® User Guide and Technical Reference.” GrammaTech. Release 3.6. n.p.
[11] “CodeWarrior™ Development Studio 8/16-Bit IDE User’s Guide.” Freescale

Semiconductor. 27 Sep. 2005.
[12] “Schmitt Trigger.” Wikipedia. Web. 31 March 2011.

http://en.wikipedia.org/wiki/schmitt_trigger
[13] “Processor Expert: CodeWarrior Plug-in for Freescale HCS12/HCS12X User Manual.”

Freescale Semiconductor. Rev. 2.89. n.p.
[14] Shah, Amol. “Configuring HYPERTERMINAL for Serial Communications.” DNA

Technology. Nov. 2007. Web. 31 March 2011.
http://www.dnatechnindia.com/index.php/Tutorials/8051-
Tutorial/HYPERTERMINAL.html

[15] Wile, Bruce, John C. Goss, and Wolfgang Roesner. Comprehensive Functional
Verification: The Complete Industry Cycle. San Francisco: Morgan Kaufmann, 2005. Print.

102

Appendix

103

A. Design Requirements Document
The Industrial Machine Monitoring Instrument (IMMI) will monitor and measure the following
operating parameters of a machine: frequency, magnitude and phase, and motor operational time.
Valves are maintained in a throughput position during normal machine operation. Abnormal
conditions such as a loss of sensor1, loss of sensor2, or a rapid deceleration will automatically
initiate prompt machine isolation by the IMMI, which is indicated by the red (open) and green
(closed) LEDs.

1. Distributed Control System
a. The IMMI shall communicate with the Distributed Control System (DCS) using a

half-duplex RS485 communications set at a 9600 baud rate with a custom
protocol scheme.

i. Custom Protocol is similar to TCP protocol in that it consists of five
fields:

1. Start frame
2. Data length
3. Data
4. Checksum
5. End of frame

ii. Each word (one character) in the RS485 packet shall be a 16-bit integer (2
bytes).

Packet Fields

SF (start frame) 2 STX (binary 0x02) characters
PDU (protocol description unit) Length Number of characters in the PDU
PDU Contains the ASCII string of data

information
PDU Sum Sum of the individual PDU characters

(decimal values) and truncating so that
only the rightmost two digits remain. The
PDU sum that is given is the ASCII value
of the truncated checksum

EF (end of frame) 1 ETX (binary 0x03) character

104

b. The IMMI shall transmit parameters 1-12 once per second to the DCS.
Name Parameter Number

Valve1 Position 1
Valve2 Position 2
Sensor1 Frequency 3
Sensor1 Rate of Change 4
Sensor1 vs. Sensor2 Phase Change 5
Loss of Sensor1 Fault Status 6
Sensor1 Deceleration Alarm 7
Loss of Sensor2 Fault Status 8
Motor Run Time 9
Motor Up Movement 10
Motor Down Movement 11
Sensor2 Magnitude 12

 c. DCS shall transmit Valve1 and Valve2 commands to IMMI only upon a
command.

2. Sensor1
a. The IMMI shall measure the frequency of sensor1 signal and report the value as

parameter 3 to the DCS.
b. The change in the sensor1 frequency over the last 60 seconds shall be measured

every second and reported to the DCS as parameter 4.
3. Sensor2

a. The peak signal shall be measured and reported to the DCS as parameter 12.
b. The relative phase angle between the falling edge of sensor1 and the positive edge

of sensor2 shall be measured and reported to the DCS as parameter 5.
4. Motor

a. The motor run time shall be measured by the IMMI and reported to the DCS as
parameter 9.

b. The IMMI shall also report the “up” direction of motor movements as parameter
10 to the DCS and the “down” direction of motor movements as parameter 11.

5. Alarms
a. The IMMI shall automatically initiate prompt machine isolation by closing both

valves during abnormal conditions (loss of sensor1, loss of sensor2, and decel
product)

i. Loss of Sensor1 (LOS1)
1. The IMMI shall continuously detect the presence of the sensor1

signal and indicate a LOS1 status if the signal is absent for more
than 100ms.

2. The status of the sensor1 signal shall be reported to the DCS as
parameter 6.

ii. Loss of Sensor2 (LOS2)

105

1. The IMMI shall continuously detect the presence of sensor2 at all
frequencies and indicate a LOS2 status if the signal is absent for
more than 100ms.

2. The status of the sensor2 signal shall be reported to the DCS as
parameter 8.

iii. Decel Product
1. The IMMI shall measure the sensor1 frequency rate of change

value over 10 seconds and multiply it by the sensor1 frequency to
calculate the decel product.

2. The IMMI shall issue a decel product alarm and hold the alarm for
at least 7.5 seconds when the decel product exceeds 50.0
RPS2/second and the status shall be reported to the DCS as
parameter 7. The alarm status shall be held high at least 7 seconds.

b. The IMMI shall allow de-isolation of the machine from valves 1 and 2 as long as
failure detection scenarios are not present.

c. The IMMI shall NOT allow DCS commands or IMMI manual pushbutton
commands to open the valves in the event of either failure detection scenario:

i. Loss of Sensor1 and Loss of Sensor2, OR
ii. Loss of Sensor2 and Decel Product alarm

6. Valves and LEDs
a. The IMMI shall place the initial position of the valves in a closed state as

indicated by fully illuminating the green LEDs.
b. The IMMI shall control valve1 and valve2 independently.
c. The IMMI shall accept commands for valve1 and valve2 to open/close via the

DCS and IMMI manual pushbuttons.
d. The IMMI shall allow DCS commands and IMMI manual pushbutton control to

change valve1 and valve2 positions as long as the failure detection scenarios of
section 5.c do not exist.

e. The IMMI shall report the status of each valve position to the DCS. Parameter 1
shall represent the position of valve1 as parameter 2 shall represent the position of
valve2.

f. IMMI Manual Pushbutton Control Requirements
i. The IMMI shall contain one pushbutton for valve1 and another pushbutton

for valve2.
ii. Valve position change from closed to open:

1. The IMMI shall respond to a momentary press of the pushbutton,
for either valve, to activate the five second timer to begin the
opening process of a valve.

2. The IMMI shall respond to a second momentary press of the
pushbutton after three seconds but before five seconds has lapsed
by opening the valve.

3. The IMMI shall respond to a second momentary press of the
pushbutton occurring before three seconds has lapsed by

106

terminating the opening process of a valve, leaving the valve in the
closed position.

4. The IMMI shall respond to not receiving a second momentary
press of the pushbutton within five seconds by terminating the
opening process of a valve, leaving the valve in the closed
position.

iii. Valve position change from open to closed:
1. The IMMI shall respond immediately to a momentary press of the

pushbutton by closing the valve.
iv. Red LED labeled “Alarm”

1. The IMMI shall indicate all abnormal conditions by illuminating
the “Alarm” LED.

2. The IMMI shall indicate normal conditions by not illuminating the
“Alarm” LED.

3. The IMMI shall indicate a failure detection scenario (section 5.c) is
present by flashing the “Alarm” LED at a rate of 200ms.

v. Red LED labeled “OPEN”
1. The IMMI shall have two red LEDs to indicate an open valve for

both valve1 and valve2.
2. Valve position change from closed to open using IMMI manual

pushbuttons:
a. The IMMI shall flash the red LED at a rate of once per

second during the opening process of a valve via a manual
pushbutton.

b. The IMMI shall change the state of the red LED from
flashing to fully illuminated if the opening process of a
valve, initiated by a manual pushbutton, was successful.

3. Valve position change from open to closed using IMMI manual
pushbuttons:

a. The IMMI shall change the red LED to the OFF state (not
illuminated).

4. Valve position change from closed to open using DCS commands:
a. The IMMI shall change the red LED to the ON state

(illuminated).
5. Valve position change from open to closed using DCS commands:

a. The IMMI shall change the red LED to the OFF state (not
illuminated).

vi. Green LED labeled “CLOSE”
1. The IMMI shall have two green LEDs to indicate a closed valve

for valve 1 and vavle2.
2. Valve position change from closed to open using IMMI manual

pushbuttons:

107

a. The IMMI shall keep the green LED illuminated during the
opening process of a valve, initiated by a manual
pushbutton.

b. The IMMI shall change the green LED from the ON state
(illuminate) to the OFF state (not illuminated) if the
opening process of a valve, initiated by a manual
pushbutton, was successful.

3. Valve position change from open to closed using IMMI manual
pushbuttons:

a. The IMMI shall change the green LED to the ON state
(illuminated).

4. Valve position change from closed to open using DCS command:
a. The IMMI shall change the green LED to the OFF state

(not illuminated) upon successfully opening the valve.
5. Valve position change from open to closed using DCS command:

a. The IMMI shall change the green LED to the ON state
(illuminated).

108

B. DCS Test Cases

i. Statement Coverage for Original Main Code - Communications.c
Function Test Case Name Description

Main VCAST_MAIN.001
Verifies communication streams are properly
sent from DCS to HMI and from DCS to
IMMI.

VALIDPACKET

A valid packet was sent to the DCS and this
test case verifies the packet is handled
correctly; the data length and checksum are
calculated correctly and are the same as the
received data length and checksum.

INCORRECTDATALENGTH

A packet is sent with the incorrect data
length. The DCS should accept the packet
and once the received data length is
compared to the calculated data length, the
packet should be discarded.

INCORRECTCHECKSUM

A packet is sent with the incorrect checksum.
The DCS should accept the packet and once
the received checksum is compared to the
calculated checksum, the packet should be
discarded.

DATALENGTHZERO

A packet is sent with a data length of zero.
The DCS should accept the packet but not
proceed further once the received data length
is compared with the calculated data length.
The packet should then be discarded.

MOREDATA

A packet is sent with too many data fields.
The DCS should accept the packet and once
it is determined there are more parameters
than expected, the packet should be
discarded.

DATANOTREADY
A packet was sent but the ready flag was not
set to TRUE. In this case the packet is not
processed and the function is exited.

RS485Comm

PARAM3HIGH

A valid packet is sent and the data for
sensor1Freq is set to 4000.0. The displayed
data for sensor1Freq should be 3276.7 since
the transmitted value is greater than 3276.7.
This new value is the maximum value for the
displayed parameter.

109

Function Test Case Name Description

PARAM4HIGH

A valid packet is sent and the data for
sensor1ROC is set to 4.2767. The displayed
data for sensor1ROC should be 3.2767 since
the transmitted value is greater than 3.2767.
This new value is the maximum value for the
displayed parameter.

PARAM4LOW

A valid packet is sent and the data for
sensor1ROC is set to -4.2767. The displayed
data for sensor1ROC should be -3.2767 since
the transmitted value is more negative than -
3.2767. This new value is the maximum
value for the displayed parameter.

PARAM5HIGH

A valid packet is sent and the data for
sensor2Phase is set to 380.0. The displayed
data for sensor2Phase should be 0.0 since the
transmitted value is greater than 360.0. This
new value is the maximum value for the
displayed parameter.

PARAM9HIGH

A valid packet is sent and the data for
motorRT is set to 35.767. The displayed data
for motorRT should be 32.767 since the
transmitted value is greater than 32.767.
This new value is the maximum value for the
displayed parameter.

RS485Comm

PARAM9LOW

A valid packet is sent and the data for
motorRT is set to -35.767. The displayed
data for motorRT should be -32.767 since the
transmitted value is more negative than -
32.767. This new value is the maximum
value for the displayed parameter.

VALVE1OPENING

The command “valve1o” is entered, which is
a valid command. The appropriate flags
should be set so a packet with the
information can be transmitted.

VERSION

The command “version” is entered, which is
a valid command. The version number
should be transmitted to the hyperterminal
for display on the screen.

parseCommand

VALVE1CLOSING

The command “valve1c” is entered, which is
a valid command. The appropriate flags
should be set so a packet with the
information can be transmitted.

110

Function Test Case Name Description

VALVE2OPENING

The command “valve2o” is entered, which is
a valid command. The appropriate flags
should be set so a packet with the
information can be transmitted.

VALVE2CLOSING

The command “valve2c” is entered, which is
a valid command. The appropriate flags
should be set so a packet with the
information can be transmitted.

parseCommand

INCCORECTCOMMAND

The command “valve20” is entered, which is
an invalid command. The string “invalid
command” is sent to the hyperterminal for
display on the screen.

VALVE1CLOSE
A command is entered to close valve1. The
packet transmitted to the IMMI is verified
that the valve1 parameter is set to 0.

VERSION

A command is entered for the version
number. It is verified that nothing is
transmitted to the IMMI, only to the
hyperterminal.

HYPERTERMINAL

When nothing is commanded from the
hyperterminal, the variables used for holding
the messages on the screen are verified to be
0.

INVALIDCOMMAND

An invalid command is sent. It is verified
that nothing is transmitted to the IMMI, only
a message that there is an invalid command
is transmitted to the hyperterminal.

BACKSPACE

While entering a command using the
hyperterminal, a mistake was made and the
backspace key was used. The backspace
character should be recognized and the
character counter should be decremented so
the old value is written over.

VALVE2CLOSE
A command is entered to close valve2. The
packet transmitted to the IMMI is verified
that the valve2 parameter is set to 0.

VALVE2OPEN
A command is entered to open valve2. The
packet transmitted to the IMMI is verified
that the valve2 parameter is set to 1.

display

VALVE1OPEN
A command is entered to open valve1. The
packet transmitted to the IMMI is verified
that the valve1 parameter is set to 1.

111

Function Test Case Name Description

SENDPACKET1
Once a command to open or close valve1 is
validated, the packet for transmission to the
IMMI is verified for its accuracy.

STATUSTIMER The status timer is set to 1000 and verified it
was reset to 1000.

TRANSMITTERFULL.001

The RS485_sendblock is set to have an
output value that is representative of a full
transmit buffer as the packet trying to be sent
is for opening valve1.

display

TRANSMITTERFULL.002

The RS485_sendblock is set to have an
output value that is representative of a full
transmit buffer as the packet trying to be sent
is for opening valve2.

112

ii. Statement Coverage for Original Interrupt Code – Events.c
Function Test Case Name Description

RS485_OnError RS485_ONERROR.001

Once an RS485_OnError
interrupt occurs, it is
verified a few parameters
are reset to zero.

2STARTCHARACTERS

Two start characters (2) are
sent to verify the interrupt
processes but doesn’t place
them in the receive buffer.

1STARTCHARACTER
Only one start character is
sent to be sure the interrupt
code is executed properly.

1ENDCHARACTER.001

An end character is sent to
verify the interrupt code can
still be accessed after 2 start
characters. A null character
is entered into the receive
buffer.

1ENDCHARACTER.002

An end character is sent
after other data has been
processed and sitting in the
receive buffer to verify the
data is not overwritten.

NOSTARTCHARACTER

As a new packet is started, a
value other than the
expected start character (s)
of 2 is sent to verify the
character is not accepted.

2INCORRECTSTARTCHARACTERS

A new packet is started by
sending a start character of 2
but instead of receiving
another 2, a different
character is sent, which
should restart the process of
accepting a packet.

RS485_OnRxChar

CHARACTERGREATERTHAN57

A character greater than 57
in decimal (9 in ASCII)
should stop the process of
accepting new characters
and instead restart the
process.

113

Function Test Case Name Description

CHARACTERLESSTHAN48

Characters less than 48 in
decimal but are not a minus
sign (45) or space (32)
should stop the process of
accepting new characters
and instead restart the
process.

RS485_OnRxChar

2STARTCHAR&VALIDCHAR

A packet that includes two
start characters and one
valid character should be
accepted.

TIMER_ONINTERRUPT.001
The counters are set to
various values and each
time they should increment.

Timer_OnInterrupt

TIMER_ONINTERRUPT.002

The counters are set to a
different set of values and
one is shown to reset once
its value is above 1000.

RS485_OnFullRxBuf NA

RS485_OnTxComplete RS485_ONTXCOMPLETE.001

When this interrupt occurs,
the disable and enable lines
for the RS485 transmitter
and receiver are set to 0.

AS1_OnError NA

BACKSPACE
As a backspace character
enters the interrupt code, the
backspace flag is set TRUE.

VALIDCHARACTER
A single valid character
enters the interrupt code and
should be accepted. AS1_OnRxChar

CARRIAGERETURN

A carriage return enters the
interrupt code; it is
processed and completes the
packet process.

AS1_OnTxChar NA
AS1_OnFullRxBuf NA
AS1_OnFreeTxBuf NA
RS485_OnTxChar NA

RS485_OnFreeTxBuf NA

114

iii. Additional Test Cases for Branch Coverage – Communications.c
Function Test Case Name Description

DATALENGTHQUALZERO

A packet is sent with a data length of zero.
The DCS should accept the packet but not
proceed further once the calculated data
length is evaluated to be equal to zero. The
packet should then be discarded. RS485Comm

DATALENNOTEQUALPDULEN

A packet is sent with a data length slightly
different from the calculated data length.
The packet should not be evaluated any
further since they don’t match.

display BACKSPACEECHO
When a backspace is entered, the value
should be echoed back to the
hyperterminal.

115

iv. Additional Test Cases for Branch Coverage – Events.c
Function Test Case Name Description

NOCHARACTER
No character was sent to ensure the
interrupt code would exit without
evaluating anything. RS485_OnRxChar

SMALLRXCOUNT
A counter was set to be greater than the
received buffer so it should not increment
since a value somehow got missed.

Timer_OnInterrupt TIMER_ONINTERRUPT.003 The timers were set to zero to make sure
they could not go below 0.

AS1_OnRxChar NOCHARACTER
No character was sent to ensure the
interrupt code would exit without
evaluating anything.

116

C. IMMI Test Cases

i. Statement Coverage for Original Main Code – MIP_LC3081709.c
Function Test Case Name Requirement Description

Main VCAST_MAIN.001
No
Requirement

Tests to ensure all the
functions are called and
the correct assignments
are made.

VALIDPACKET.001

6.b-d; f.vi.1;
f.vi.5.a

A valid packet from
DCS commanding both
valves closed is received
and should be processed
correctly.

VALIDPACKET.002

6.b-d; f.vi.1;
f.v.4.a;
f.vi.4.a

A valid packet from
DCS commanding both
valves open is received
and should be processed
correctly.

INCORRECTDATALENGHTH

1.a; 1.c; 6.b-d; A packet from DCS is
sent with an incorrect
data length. The packet
should stop being
evaluated when the
received data length is
compared to the
calculated data length.

DATALENGTHZERO

1.a; 1.c; 6.b-d; A packet from DCS is
sent with no data just a
data length value of 0.
The packet should not be
processed once the
calculated data length is
determined to be 0.

MOREDATA

1.a; 1.c; 6.b-d; A packet from DCS is
sent with an extra
parameter. Once the
extra parameter is
recognized, the packet
should be discarded.

DATANOTREADY

1.a; 1.c; 6.b-d; A packet from DCS is
sent but the flag
indicating the packet is
ready is not set so the
packet should not be
evaluated.

RS485Comm

PARAM1.001
1.a; 1.c; 6.b-d;
f.v.5.a;
f.vi.5.a

A packet from DCS that
commands valve1 to
close and valve2 to close
while valve1 is open.

117

Function Test Case Name Requirement Description
Verify the correct
variables are updated.

PARAM1.002

1.a; 1.c; 6.b-d; A packet from DCS that
commands valve1 to
open and valve2 to close
while valve1 is open.
Verify the correct
variables are updated.

PARAM1.003

1.a; 1.c; 6.b-d;
f.v.4.a;
f.vi.4.a

A packet from DCS that
commands valve1 to
open and valve2 to close
while valve1 is closed.
Verify the correct
variables are updated.

PARAM2.001

1.a; 1.c; 6.b-d;
f.v.5.a;
f.vi.5.a

A packet from DCS that
commands valve1 to
close and valve2 to close
while valve2 is open.
Verify the correct
variables are updated.

PARAM2.002

1.a; 1.c; 6.b-d; A packet from DCS that
commands valve1 to
close and valve2 to open
while valve2 is open.
Verify the correct
variables are updated.

PARAM2.003

1.a; 1.c; 6.b-d;
f.v.4.a;
f.vi.4.a

A packet from DCS that
commands valve1 to
close and valve2 to open
while valve2 is closed.
Verify the correct
variables are updated.

MOTORRTEQUALZERO

1.a-c; 4.a-b;
5.e; 6.b-d;

A packet from DCS is
sent to close both valves
and all the variables to
be transmitted to DCS
are set with reasonable
values except MotorRT
is set to 0. Ensure the
packet is assembled
correctly and motor up
and down are set to 0.

RS485Comm

MOTORRTBIG

1.a-c; 4.a-b;
5.e; 6.b-d;

A packet from DCS is
sent to close both valves
and all the variables to
be transmitted to DCS
are set with reasonable
values and MotorRT is
set to 0.525. Ensure the
packet is assembled
correctly and motor up is

118

Function Test Case Name Requirement Description
1 while motor down is 0.

MOTORRTSMALL

1.a-c; 4.a-b;
5.e; 6.b-d;

A packet from DCS is
sent to close both valves
and all the variables to
be transmitted to DCS
are set with reasonable
values and MotorRT is
set to -0.3124. Ensure
the packet is assembled
correctly and motor up is
0 while motor down is 1.

TRANSMITTERFULL.001

No
Requirement

The RS485_sendblock is
set to have an output
value that is
representative of a full
transmit buffer as a
packet trying to be sent
is for opening valve1
while a packet is
reviewed for opening
valve1.

TRANSMITTERFULL.002

No
Requirement

The RS485_sendblock is
set to have an output
value that is
representative of a full
transmit buffer as a
packet trying to be sent
is for opening valve2
while a packet is
reviewed for opening
valve2.

MINDATA

1.a-b All the data to be
transmitted to DCS are
set to zeros. There
should be no problem
creating the packet. It
also provides info on
how small the packet
would potentially be.

RS485Comm

MAXDATA

1.a-b All the data to be
transmitted to DCS are
set to very large
numbers. The packet
should limit the size of
the data.

Switches SWITCHESDONTWORK

5.c Set the flag to disable
valve operation both
manually and via
command while
attempting to open a
valve. Valve should not

119

Function Test Case Name Requirement Description
open.

MANUALVALVE1OPENTOCLOSE

5.b; 6.b-d;
6.f.v.1;
6.f.v.3.a;
6.f.vi.3.a;
6.f.iii.1

Close valve1 from an
open position manually.

MANUALVALVE2OPENTOCLOSE

5.b; 6.b-d;
6.f.v.1;
6.f.v.3.a;
6.f.vi.3.a;
6.f.iii.1

Close valve2 from an
open position manually.

MANUALVALVE1CLOSETOOPEN.001

5.b; 6.b-d;
6.f.v.1;
6.f.v.2.a;
6.f.vi.2.a;
6.f.ii.1

Open valve1 from a
closed position
manually. Verify
opening process begins
and red LED is told to
flash.

MANUALVALVE1CLOSETOOPEN.002

5.b; 6.b-d;
6.f.v.1;
6.f.v.2.a;
6.f.vi.2.a;
6.f.ii.3

Opening process of
valve1 has begun and a
second press of the
pushbutton occurs 1
second after the first
press. Verify opening
process is terminated.

MANUALVALVE1CLOSETOOPEN.003

5.b; 6.b-d;
6.f.v.1;
6.f.v.2.b;
6.f.vi.2.b;
6.f.ii.2

Opening process of
valve1 has begun and a
second press of the
pushbutton occurs after 3
seconds of the first press.
Verify opening process
is completed.

MANUALVALVE1CLOSETOOPEN.004

5.b; 6.b-d;
6.f.v.1;
6.f.v.2.a;
6.f.vi.2.a;
6.f.ii.4

Opening process of
valve1 has begun and a
second press of the
pushbutton never occurs.
Verify opening process
is terminated.

MANUALVALVE2CLOSETOOPEN.001

5.b; 6.b-d;
6.f.v.1;
6.f.v.2.a;
6.f.vi.2.a;
6.f.ii.1

Open valve2 from a
closed position
manually. Verify
opening process begins
and red LED is told to
flash.

Switches

MANUALVALVE2CLOSETOOPEN.002

5.b; 6.b-d;
6.f.v.1;
6.f.v.2.a;
6.f.vi.2.a;
6.f.ii.3

Opening process of
valve2 has begun and a
second press of the
pushbutton occurs 1
second after the first
press. Verify opening
process is terminated.

120

Function Test Case Name Requirement Description

MANUALVALVE2CLOSETOOPEN.003

5.b; 6.b-d;
6.f.v.1;
6.f.v.2.b;
6.f.vi.2.b;
6.f.ii.2

Opening process of
valve2 has begun and a
second press of the
pushbutton occurs after 3
seconds of the first press.
Verify opening process
is completed.

MANUALVALVE2CLOSETOOPEN.004

5.b; 6.b-d;
6.f.v.1;
6.f.v.2.a;
6.f.vi.2.a;
6.f.ii.4

Opening process of
valve2 has begun and a
second press of the
pushbutton never occurs.
Verify opening process
is terminated.

DCSCOMMANDVALVE1CLOSE

1.a; 1.c; 5.b;
6.b-d;
6.f.v.5.a;
f.vi.5.a

DCS commands valve1
to close while valve1 is
open.

DCSCOMMANDVALVE1OPEN
1.a; 1.c; 5.b;
6.b-d; f.v.4.a;
f.vi.4.a

DCS commands valve1
to open while valve1 is
closed.

DCSCOMMANDVALVE2CLOSE
1.a; 1.c; 5.b;
6.b-d; f.v.5.a;
f.vi.5.a

DCS commands valve2
to close while valve2 is
open.

Switches

DCSCOMMANDVALVE2OPEN
1.a; 1.c; 5.b;
6.b-d; f.v.4.a;
f.vi.4.a

DCS commands valve2
to open while valve2 is
closed.

GOODMEASUREMENT
2.a Values are provided such

that a value should be
calculated for the
frequency.

FrequencyMeasurement

DIVIDEBYZERO

No
Requirement

Values are provided that
would result in a division
by zero. The resulting
frequency value should
be set to 0.

STARTACTIVATION.001

2.a A frequency
measurement is to begin
and the variables should
be cleared depending on
the values for the period
(1, 2 and 3) and the
overflow set to 0.

STARTACTIVATION.002

2.a A frequency
measurement is to begin
and the variables should
be cleared depending on
the values for the period
(1, 2 and 3) and the
overflow is set to 8.

FrequencyActivation

MAKEMEASUREMENT 2.a All the variables are

121

Function Test Case Name Requirement Description
obtained and the ready
flag is set for a frequency
measurement to be
calculated.

LOSTSENSOR1

5.a.i.1-2 A frequency
measurement was set to
be made when sensor1
was removed. The
frequency value reported
should be 0.

FrequencyActivation

TIMEREQUALZERO

No
Requirement

A frequency
measurement could have
been made but the ready
flag was not set and the 8
second timer expired.
The variables should be
cleared and a new
measurement should
begin.

NOTREADY

No
Requirement

The flag indicating a
frequency measurement
has completed is set to
FALSE. The rate of
change code should not
be executed.

SENSOR1MISSING.001

5.a.i.1 The frequency
measurement has been
completed but sensor1 is
missing and the rate of
change timer is greater
than 0. The rate of
change function should
be exited.

SENSORMISSINGLESSTHAN10SEC

5.a.i.1 Sensor1 is missing. It has
been less than 10
seconds so the frequency
should be placed in the
array and will be 0.0. No
calculations will be
performed since it’s been
less than 10 seconds.

RateofChange

SENSORMISSINGMORETHAN10SEC

5.a.iii.1-2 Sensor1 is missing. It has
been more than 10
seconds but less than 60
seconds. The frequency
should be placed in the
array and will be 0.0.
Since the entire 10
second array is filled
with 0.0 then the decel
product should evaluate

122

Function Test Case Name Requirement Description
to 0 and no alarm will be
initiated.

SENSORMISSINGMORETHAN60SEC

2.b; 5.a.i.1;
5.a.iii1-2

Sensor1 is missing. It has
been more than 60
seconds. The frequency
should be placed in the
array and will be 0.0.
Since the entire 60
second array is filled
with 0.0 then the decel
product should evaluate
to 0 as well as the Rate
of Change value. No
deceleration alarm will
be initiated.

DECELDATA.001

5.a.iii.1-2 The rate of change array
is filled with the same
value. A new smaller
value is entered and the
decel is less than the trip
value.

ROCDATA.002

2.b The rate of change array
is filled with the same
value. A new smaller
value is entered and the
rate of change will be a
negative number.

DECELDATA.002

5.a.iii.1-2 The rate of change array
is filled with the same
value. A new smaller
value is entered and the
decel is greater than the
trip value so the decel
alarm is activated and
isolation occurs.

RateofChange

DECELDATA.003
5.a.iii.1-2 Same test as above but

no isolation since the
alarm is already active.

STARTMEASUREMENT

3.b A phase measurement is
ready to begin so all the
variables are to be
cleared and the timeout
timer is to be reset.

SAMPLE.001
3.b Values are provided to

place a sample in Bin1
and Bin5.

SAMPLE.002 3.b Values are provided to
place a sample in Bin2.

SAMPLE.003 3.b Values are provided to
place a sample in Bin3.

PhaseMeasure

SAMPLE.004 3.b Values are provided to

123

Function Test Case Name Requirement Description
place a sample in Bin4.

SAMPLE.005 3.b Values are provided to
place a sample in Bin5.

SAMPLE.006
3.b Values are provided to

place a sample out-of-
range.

SAMPLE.007

3.b Values are provided such
that the
sensor2_sensor1_fraction
is equal to 0, which is
not used as a sample.

16SAMPLES.001
3.b 16 sample values are

provided landing in bin1,
bin2 and bin5 to produce
90 degrees.

16SAMPLES.002 3.b Same as above.

16SAMPLES.003
3.b 16 sample values are

provided landing in bin3
to produce 250 degrees.

16SAMPLES.004
3.b 16 sample values are

provided landing in bin5
to produce 55 degrees.

16SAMPLES.005
3.b 16 sample values are

provided landing in bin5
to produce 0 degrees.

16SAMPLES.006

3.b 16 sample values are
provided landing in bin1
and bin5 to produce 0.40
which is then evaluated
to be 0 degrees.

16SAMPLES.007
3.b 16 sample values are

provided landing in bin1
and bin5 to produce 360
degrees.

16SAMPLES.008
3.b 16 sample values are

provided landing in bin5
to produce 360 degrees.

16SAMPLES.009

3.b 16 sample values are
provided landing in bin1
and bin5 to produce
0.074 which is between
0.05 and 0.1 and is
evaluated to be 0.1
degrees.

PhaseMeasure

TIMEOUT

No
Requirement

The eight second timer
expires because a new
measurement has not
been made so variables
need to be reset.

Alarms FAILUREDETECTION.001 5.c.i; 6.d;
6.f.iv.3

Sensor1 and Sensor2 are
missing. Valves should

124

Function Test Case Name Requirement Description
not be operated manually
or via a command.
Alarm LED should flash
quickly and is checked to
be off for 100ms.

FAILUREDETECTION.002

5.c.ii; 6.d;
6.f.iv.3

Sensor2 is missing and
Deceleration alarm is
active. Valves should not
be operated manually or
via a command. Alarm
LED should flash
quickly and is checked to
be off for 100ms.

LOS1ALARM
5.a; 6.f.iv.1 Sensor1 has been

removed. Isolation
should occur and alarm
LED should be on.

LOS1NORMAL
6.f.iv.2 Sensor1 has been

restored. The alarm LED
should be off.

LOS2ALARM
5.a; 5.a.ii.1-2;
6.f.iv.1

Sensor2 has been
removed. Isolation
should occur and alarm
LED should be on.

LOS2NORMAL
5.a.ii.1-2;
6.f.iv.2

Sensor2 has been
restored. The alarm LED
should be off.

FAILUREDETECTION.003

5.c.i; 6.d;
6.f.iv.3

Sensor1 and Sensor2 are
missing. Valves should
not be operated manually
or via a command.
Alarm LED should flash
quickly and is checked to
be on for 100ms.

FAILUREDETECTION.004

5.c.ii; 6.d;
6.f.iv.3

Sensor2 is missing and
Deceleration alarm is
active. Valves should not
be operated manually or
via a command. Alarm
LED should flash
quickly and is checked to
be on for 100ms.

DECELALARM.001

5.a.iii.2 Deceleration alarm has
occurred and the hold up
timer has not expired.
Decel alarm is calculated
to still be active but no
isolation occurs.

Alarms

DECELALARM.002
5.a.iii.2 Deceleration alarm is

active, the timer has
expired and another

125

Function Test Case Name Requirement Description
deceleration alarm comes
in. The timer is not
restarted and no isolation
occurs.

Alarms DECELALARMTONORMAL
6.f.iv.2 Deceleration has been in

alarm and is returned to
normal. Alarm LED
should be off.

Isolate ISOLATIONACTIVATED
5.a Isolation is to occur.

Verify valve positions
are closed.

UP
4.a-b An up movement has

been made and
measured. MotorTimer

DOWN
4.a-b A down movement has

been made and
measured.

SENSOR2MAG.001 3.a A magnitude value was
obtained and reported.

SENSOR2MAG.002
3.a A magnitude value was

not captured so the code
doesn’t execute.

SENSOR2MAG.003

3.a A value was captured on
another channel. Verify
the value doesn’t get
reported as the
magnitude.

SENSOR2MAG.004
3.a The channel number is

greater than 0. Ensure
the channel number is
reset to 0.

ADCMeasurements

SENSOR2MAG.005

3.a A magnitude value is
captured but if the phase
value can not be
measured then don’t
measure the magnitude.

126

ii. Statement Coverage for Original Interrupt Code – Events.c
Function Test Case Name Requirement Description

TIMERS.001

No
Requirement

TimerCounter, which
is a blink timer to
indicate the
microcontroller is
alive, is set to 0 and
will increment to 1.
Other timers set at
different values yet
valid values. Some
will increment and
others will decrement.

TIMERS.002

5.a.i.1 All timers are set as
Timers.001 with the
exception of LOS1
timer, which is set to 0
to cause a loss of
Sensor1 alarm.

TIMERS.003

5.a.ii.1 All timers are set as
Timers.001 with the
exception of LOS2
timer, which is set to 0
to cause a loss of
Sensor2 alarm.

TIMERS.004

No
Requirement

TimerCounter is set to
499 and should
increment to 500 while
the others are set at
various values.

Timer_OnInterrupt

TIMERS.005

No
Requirement

TimerCounter is set to
999 and should
increment to 1000 and
then reset to 0 while
the others are set at
various values.

AD1_OnEnd AD1CHANNEL

3.a Channel1 is set to 0 so
the value that would be
captured is for Sensor2
magnitude.

VALVE2PUSHBUTTON.001

6.b-c; 6.f.i Valve2 is placed in an
open position. When
an interrupt occurs the
valve switch flag is set
to close the valve. Valve2_Switch_OnInterrupt

VALVE2PUSHBUTTON.002

6.b-c; 6.f.i Valve2 is placed in a
closed position. When
an interrupt occurs the
valve switch flag is set
to open the valve.

127

Function Test Case Name Requirement Description

Valve1_Switch_OnInterrupt VALVE1PUSHBUTTON.001

6.b-c; 6.f.i Valve1 is placed in an
open position. When
an interrupt occurs the
valve switch flag is set
to close the valve.

down_falling_OnInterrupt FALLINGEDGEDOWN

4.a-b A falling edge is
received, which should
stop the down timer
and let the main code
know the run time
calculation can be
completed.

down_rising_OnInterrupt RISINGEDGEDOWN
4.a-b A rising edge is

received, which should
start the down timer.

Up_falling_OnInterrupt FALLINGENDGEUP

4.a-b A falling edge is
received, which should
stop the up timer and
let the main code know
the run time
calculation can be
completed.

Up_rising_OnInterrupt RISINGEDGEUP
4.a-b A rising edge is

received, which should
start the up timer.

SENSOR1PHASEVALVETOBIG

3.b The value of icapture3
is greater than 65000,
which should set the
restart flag for use by
the main code.

SENSOR1PHASEVALID

3.b A valid icapture3 value
is received during the
first period so the
overflow flags are
reset and sensor2 has
the ability to capture a
value.

SENSOR1PULSE1

3.b A value for icapture3
was captured and on
the second period only
a counter is
incremented.

Sensor1_OnCapture

SENSOR2PULSE2

3.b A value is provided for
icapture3 and the
period is set to 2,
which means icapture5
is captured and a
measurement is ready
to be made.

Sensor2_OnCapture SENSOR2ACTIVATED 3.b The flag that arms
sensor2 is active so a

128

Function Test Case Name Requirement Description
value should be
captured. The overflow
value is also captured
and other flags are
reset.

Sensor2_OnCapture SENSOR2NOTACTIVATED

3.b The arm flag for
sensor2 is not set.
Nothing should be
executed.

PERIODSEQUALZEROBIG

2.a The value for icapture1
is 65510, which forces
a restart of the
measurement. Since
the interrupt occurred
the LOS1 counter
reset.

PERIODSEQUALZEROVALID

2.a During the first period,
icapture1 is valid
(17352), which will
reset the overflow
counter. Since the
interrupt occurred the
LOS1 counter reset.

LARGEPERIODS

2.a The number of periods
is set large with an
overflow that is set to
4. This means more
periods is needed
before all the values
for the measurement
can be captured.

SIXOVERLFOWS.001

2.a The number of periods
is set large but the
overflow is set to 6.
The active flag is set to
TRUE so icapture2 is
captured and the
number of overflows
and periods are
reassigned.

SIXOVERFLOWS.002

2.a The number of periods
is set to 2 and overflow
is set to 6. The active
flag is set to TRUE so
icapture2 is captured
and the number of
overflows and periods
are reassigned.

Sensor1_Frequency_OnCapture

SIXOVERFLOWS.003
2.a Period is set to 0 so a

valid icapture1 can be
obtained. A period of

129

Function Test Case Name Requirement Description
1, an overflow of 6,
and active flag are then
set. A value for
icapture2 is obtained
and a measurement is
ready to be calculated.

Sensor1_Frequency_OnCapture OVERFLOWSBIGGER

2.a Overflow is set to 7
with a large period and
active set to TRUE.
The value for icapture2
should be obtained.

Sensor1_Frequency_OnOverflow OVERFLOWOCCURRED

2.a; 3.b The interrupt for an
overflow occurred and
the previous count
number was set to 4 so
it should be
incremented.

RS485_OnError RS485_ONERROR.001

1.a A communication
error occurred so this
interrupt resets
variables used to form
the packet.

2STARTCHAR

1.a Two start characters
are received and it’s
verified they are
handled correctly.

1STARTCHAR

1.a Only one start
character is received.
Therefore the code
should be waiting on
another start character
otherwise the process
must begin.

INVALIDNUMBER.001

1.a Two start characters
received and then an
invalid character (57).
The whole process
should be reset.

INVALIDNUMBER.002

1.a Two start characters
are received and then
an invalid character
(47). The process
should be reset.

NOSTARTCHAR

1.a No start characters are
received, just a valid
character. The valid
character should be
ignored.

RS485_OnRxChar

2START1ENDCHAR
1.a Two start characters

are received and then
an end character. This

130

Function Test Case Name Requirement Description
is allowed even though
nothing is transmitted.

RS485_OnRxChar VALIDCASE
1.a A valid packet is

received and should be
handled correctly.

RS485_OnTxComplete TXCOMPLETE

No
Requirement

Once a transmission is
completed the
transmitter should be
disabled and the
receiver should be
enabled.

131

iii. Statement Coverage for Modified Main Code – MIP_LC3081709.c
Function Test Case Name Requirement Description

PDULEN

1.a The received data length is larger than
the calculated data length. The packet
should not be processed after received
data length is compared to calculated
data length.

VALVE1POSITIONBIG No Requirement If Valve1 position is corrupted (not 1 or
0), the valve should be closed.

RS485Comm

VALVE2POSITIONBIG No Requirement If Valve2 position is corrupted (not 1 or
0), the valve should be closed.

LARGEFREQUENCY No Requirement A frequency above 9999 is calculated.
The value should be set to 9999.0. FrequencyActivation

SMALLFREQUENCY No Requirement A frequency below 0 is calculated. The
value should be set to 0.

ROCDATABIG

No Requirement The same values are placed in the rate of
change array. The next value that comes
in is larger. The calculation is above 10
RPS/minute. Therefore, it should be set
to 9.9999. RateofChange

ROCDATASMALL

No Requirement The same values are placed in the rate of
change array. The next value is smaller
and the rate of change is calculated to be
more negative than -9.9999. The
resulting value should be set to -9.9999.

BADLOS1
No Requirement The loss of Sensor1 value is corrupted

and is not 0 or 1. The value should be
reset to 1.

BADLOS2
No Requirement The loss of Sensor2 value is corrupted

and is not 0 or 1. The value should be
reset to 1.

BADDECEL
No Requirement A deceleration alarm has occurred but

the value reported is corrupted. The
value should then be reset to 0.

Alarms

ISOLATIONACTIVATED
5.a All the valves are open. When isolation

occurs verify all the valves close and the
positions are reported as closed.

132

iv. Additional Test Cases for Branch Coverage – MIP_LC3081709.c
Function Test Case Name Requirement Description

RS485Comm INCORRECTCHECKSUM
1.a The received checksum is not correct. Once

the calculated checksum is compared with
the received, the packet should be discarded.

DECELDATACOUNTER.001

5.a.iii.1 The rate of change array is filled with values
and the decel counter is set to 1. The decel
will trip based off the array element values.
The counter should increment and isolation
should occur.

DECELDATACOUNTER.002

5.a.iii.2 The same values as
DECELDATACOUNTER.001 are used.
However, a decel alarm has already occurred.
The counter should still increment but no
isolation.

RateofChange

DECELDATABIG

No Requirement The value for a parameter used in the
decision making within the deceleration
alarm was corrupted. The deceleration alarm
will be set as normal.

Alarms FAILUREDETECTION.005
5.c.ii; 6.f.iv.3 Loss of Sensor2 is in alarm and so is the

deceleration alarm. The Alarm LED is
verified to be on for 100ms.

133

v. Additional Test Cases for Branch Coverage – Events.c
Function Test Case Name Requirement Description

Timer_OnInterrupt TIMERS.006

No
Requirement

All the timers are set to
zero. Those that
increment should
increase and the others
should remain as zero.

Sensor1_Frequency_OnCapture SIXOVERFLOWS.004

2.a Overflow is set to 6
but periods are set to 0.
Active is also set to 0.
No icapture2 value
should be obtained.

2START1ENDCHARNORXCOUNT

1.a Two start characters
and an end character is
received. The Rxcount
is set to 0 and should
not increment unless
data is received. RS485_OnRxChar

NODATAPRESENT

1.a After the second start
character is received
no data is received.
Therefore, nothing can
be processed.

134

D. Final Source Code

i. DCS Main Code (Communications.c)
/** ###
** Filename : Communications.C
** Project : Communications
** Processor : MC9S12XDP512BCPV
** Version : Driver 01.12
** Compiler : CodeWarrior HCS12X C Compiler
** Date/Time : 8/12/2010, 9:49 AM
** Abstract :
** Main module.
** Here is to be placed user's code.
** Settings :
** Contents :
** No public methods
**
** (c) Copyright UNIS, spol. s r.o. 1997-2006
** UNIS, spol. s r.o.
** Jundrovska 33
** 624 00 Brno
** Czech Republic
** http : www.processorexpert.com
** mail : info@processorexpert.com
** ###*/
/* MODULE Communications */

/* Including used modules for compiling procedure */
#include "Cpu.h"
#include "Events.h"
#include "RS485.h"
#include "RS485_DE.h"
#include "RS485_RE.h"
#include "LED1.h"
#include "Timer.h"
#include "AS1.h"
#include "Bit1.h"
/* Include shared modules, which are used for whole project */
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"

135

#include "string.h"
#include "stdlib.h"
#include "stdio.h"
#include "math.h"
#include "MBdefs.h"
#include "Communications.h"

const char codeVersion[]="Communications v0.2";
int TimerCounter;
word RS485_RxCount;
RS485_TComData RS485_RxBuffer[64];

int GettingChars=0;
int GettingErrors;
RS485_TComData RS485chr;
RS485_TError RS485err;

bool RS485infoReady;
int retValue;
bool STX;
bool ACPT;
word statusTimer=0;
RS485_TComData RS485_TxBuffer[64];
word RS485_nSent;
word RS485_count;
bool send_to_Commboard=FALSE;
word RS485countholder=0;
char RS485singlecmdBuffer[20];
bool RS485continue=FALSE;
word RS485commMeasureTimer=0;
bool RS485_Present=FALSE;
word MDUstartover=0;
int RS485State=0;
int RS485Count=0;
int comm_error=0;
char *packet;
int pducount;
int pdulen;
int chksum;
char hold[4];
int datalen;
double params[12];
int RS485Tx=0;
char workBuffer[64];

136

int j, len, i;
int toMainboard, ntoMainboard;
int nCount;
int firstCount;
char checkSum[12];
int check;
int nCount;
int nCountpacket;
char charCount[8];
int a=0;
bool sendpacket1=FALSE;
bool sendpacket2=FALSE;

float sensor1Freq;
float sensor1ROC;
float sensor2Mag;
float sensor2Phase;
float motorRT;
bool motorUp;
bool motorDown;
bool valve1;
bool valve2;
bool valve1command;
bool valve2command;
bool valve1commandtemp;
bool valve2commandtemp;
bool sensor1LO;
bool sensor2LO;
bool sensor1Decel;
char motorUpdir[3];
char motorDowndir[3];
char valve1dir[5];
char valve2dir[5];
char sensor1LOalarm[3];
char sensor2LOalarm[3];
char sensor1Decelalarm[3];

word screenDelay=0;
AS1_TComData AS1_TxBuffer[80];
AS1_TComData AS1_RxBuffer[80];
word AS1_nSent;
word AS1_count;
word AS1_RxCount=0;
bool escape=FALSE;

137

bool backspace=FALSE;
word echo=0;
bool commandReady=FALSE;
bool commandActive=FALSE;
char cmdBuffer[80];
char cmdArgument[20];
bool secondPart=FALSE;

void main(void)
{

 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/

 RS485_DE_ClrVal();
 RS485_RE_ClrVal();

 for(;;) {

 RS485Comm();
 display();
 }
 /*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!!! ***/
 for(;;){}
 /*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!!! ***/
} /*** End of main routine. DO NOT MODIFY THIS TEXT!!! ***/

//******************* function to RS485 Communications **************************
void RS485Comm(void) {

 char checkSum[8];
 int a=0;

//***Received Packet Handling***

if(RS485infoReady==TRUE){
 RS485infoReady=FALSE;

//Obtain the length value by calculating the length from the packet received
 datalen=strlen(RS485_RxBuffer)-4;

138

 if(datalen>0){ //if length of data is not correct then don't process the data
//Copy the received length fields into the pdulen variable
 if(NULL!=strncpy(hold, RS485_RxBuffer, 2)) pdulen=strtol(hold, NULL, 10);

//Need to ensure pdulen is not bigger than the RxBuffer and is less than 62 (RS485_RxBuffer is
//an array of size 64)
 if(pdulen> strlen(RS485_RxBuffer)&& pdulen<62){
 RS485_RxCount=0; //The RxCount is reset because pdulen is not correct
 return;
 }

//Copy the received checksum fields into the chksum variable
 if(NULL!=strncpy(hold, RS485_RxBuffer+datalen+2, 2)) chksum=strtol(hold,NULL,10);

//Place a 0 in the first checksums position so that the string-to-token function will parse the data
//correctly
 RS485_RxBuffer[datalen+2]=0;

 check=0;
//Add up all the decimal values of the data to verify the checksum
 for(j=0;j<pdulen;j++) check=check+RS485_RxBuffer[j+2];
 check=check%100; //mod 100 truncates the total checksum value to keep the last two digits

 if(check==chksum){ //Does the received checksum match the calculated checksum
 if(datalen==pdulen){ //Does the received length match the calculated length
 pducount=0; //clear the counter so we are looking for the correct number of data fields

//As long as there is a space in the RxBuffer then proceed
 if(NULL!= (packet=strtok(RS485_RxBuffer+2, " "))){

//Uses string-to-double function to convert the first ascii field to a double
 params[pducount]=strtod(packet, NULL);
 pducount++; //increment the counter
 }

 while(NULL!=(packet=strtok(NULL, " "))){
 params[pducount]=strtod(packet, NULL); //converts the remaining fields to double
 pducount++; //increments the counter
 }

//When the counter reaches 12 (the number of data fields that should be present), the packet will
//be evaluated and ready to be sent to the Hyperterminal
 if(pducount==12){

139

//Assigns the eight parameter which is a double and casts it to an boolean variable
 valve1=params[0];
 valve2=params[1];
 sensor1Freq=params[2];

//The floating point variable is checked to ensure it is not too large
 if(sensor1Freq>3276.7) sensor1Freq=3276.7;

//Assigns the second parameter sent to a floating point variable
 sensor1ROC=params[3];

//The floating point variable is checked to ensure it is not too large
 if(sensor1ROC>3.2767) sensor1ROC=3.2767;

//the floating point variable is checked to ensure it is not too small
 if(sensor1ROC<-3.2767) sensor1ROC=-3.2767;

//Assigns the forth parameter sent to a floating point variable
 sensor2Phase=params[4];

//The floating point variable is checked to ensure it is not too large
 if(sensor2Phase>360.0) sensor2Phase=0;
 sensor1LO=(bool)params[5];
 sensor1Decel=(bool)params[6];
 sensor2LO=(bool)params[7];
 motorRT=params[8];

//The floating point variable is checked to ensure it is not too large
 if(motorRT>32.767) motorRT=32.767;
 if(motorRT<-32.767) motorRT=-32.767;
 motorUp=(bool)params[9];
 motorDown=(bool)params[10];
 sensor2Mag=params[11];
 }
 }
 }
}

//The RxCount is reset in case the packet doesn't pass some of the integrity tests
RS485_RxCount=0;
}

 //***END of received packet handling***

140

}//*** end RS485Comm function ***

//**************** provide a parse function to execute commands ******************
int parseCommand(char *command) {

 if(strcmp(command,"version")==0) {
 retValue=printf("\x1B[16;16f\x1B[K%s",codeVersion);
 screenDelay=3000;//3 seconds
 return(0);
 }

 if(strcmp(command,"valve1o")==0){
 valve1commandtemp=valve1command;
 valve1command=TRUE;
 sendpacket1=TRUE;
 retValue=printf("\x1B[16;16f\x1B[KValve1 is Opening");
 screenDelay=3000;
 return(0);
 }

 if(strcmp(command,"valve1c")==0){
 valve1commandtemp=valve1command;
 valve1command=FALSE;
 sendpacket1=TRUE;
 retValue=printf("\x1B[16;16f\x1B[KValve1 is Closing");
 screenDelay=3000;
 return(0);
 }

 if(strcmp(command,"valve2o")==0){
 valve2commandtemp=valve2command;
 valve2command=TRUE;
 sendpacket2=TRUE;
 retValue=printf("\x1B[16;16f\x1B[KValve2 is Opening");
 screenDelay=3000;
 return(0);
 }

 if(strcmp(command,"valve2c")==0){
 valve2commandtemp=valve2command;
 valve2command=FALSE;
 sendpacket2=TRUE;
 retValue=printf("\x1B[16;16f\x1B[KValve2 is Closing");

141

 screenDelay=3000;
 return(0);
 }

return(1);
}
//*** end of parse function ***

//******************* function to display to serial port **************************
void display(void) {
int a=0;

 if(backspace){
 backspace=FALSE;
 AS1_RxCount-=1;
 if(echo>0) echo-=1;
 retValue=printf("\x1B[1D");
 }

 while(echo!=AS1_RxCount) {
 retValue=AS1_SendChar(AS1_RxBuffer[echo]);
 echo+=1;
 }

 if(commandReady==TRUE){
 commandReady=FALSE;
 commandActive=FALSE;
 secondPart=FALSE;
 echo=0;
 firstCount=0;
 for(j=0; j<AS1_RxCount; j++) {
 if(!secondPart){
 cmdBuffer[j]=(char)AS1_RxBuffer[j];
 firstCount+=1;
 if(cmdBuffer[j]==0x20){
 cmdBuffer[j]='\0';
 secondPart=TRUE;
 }
 }else cmdArgument[(j-firstCount)]=(char)AS1_RxBuffer[j];
 }
 retValue=parseCommand(cmdBuffer);
 AS1_RxCount=0;
 if(retValue) printf("\x1B[16;7f\x1B[Kinvalid command");

142

 }

 if (sendpacket1==TRUE){
 sendpacket1=FALSE;
 toMainboard = sprintf(workBuffer,"%d %d",valve1command, valve2);
 RS485_TxBuffer[0]=2;
 RS485_TxBuffer[1]=2;
 nCountpacket=sprintf(charCount,"%d",toMainboard);
 if(nCountpacket<2) {
 RS485_TxBuffer[2]=(char)'0';
 RS485_TxBuffer[3]=charCount[0];
 }

 for(j=4; j<(toMainboard+4); j++) RS485_TxBuffer[j]=(RS485_TComData)workBuffer[j-4];
 nCount=0;
 for(j=0; j<toMainboard; j++) nCount=nCount+workBuffer[j];
 ntoMainboard=sprintf(checkSum,"%d",nCount);

 if(nCount>=100 && nCount<1000){
 RS485_TxBuffer[toMainboard+4]=checkSum[1];
 RS485_TxBuffer[toMainboard+5]=checkSum[2];
 }

 RS485_TxBuffer[toMainboard+6]=3;
 RS485_count=(word)toMainboard+7;
 RS485_DE_SetVal();//enable RS485 transmitter
 RS485_RE_SetVal();//disable RS485 receiver
 RS485infoReady=FALSE;
 RS485Tx=RS485_SendBlock(RS485_TxBuffer,RS485_count, &RS485_nSent);

 if(RS485Tx==ERR_TXFULL){
 RS485_count=0;
 RS485_ClearTxBuf();
 }
 }

 if (sendpacket2==TRUE){
 sendpacket2=FALSE;
 toMainboard = sprintf(workBuffer,"%d %d",valve1, valve2command);
 RS485_TxBuffer[0]=2;
 RS485_TxBuffer[1]=2;
 nCountpacket=sprintf(charCount,"%d",toMainboard);
 if(nCountpacket<2) {
 RS485_TxBuffer[2]=(char)'0';

143

 RS485_TxBuffer[3]=charCount[0];
 } else return;

 for(j=4; j<(toMainboard+4); j++) RS485_TxBuffer[j]=(RS485_TComData)workBuffer[j-4];
 nCount=0;
 for(j=0; j<toMainboard; j++) nCount=nCount+workBuffer[j];
 ntoMainboard=sprintf(checkSum,"%d",nCount);

 if(nCount>=100 && nCount<1000){
 RS485_TxBuffer[toMainboard+4]=checkSum[1];
 RS485_TxBuffer[toMainboard+5]=checkSum[2];
 } else return;

 RS485_TxBuffer[toMainboard+6]=3;
 RS485_count=(word)toMainboard+7;
 RS485_DE_SetVal();//enable RS485 transmitter
 RS485_RE_SetVal();//disable RS485 receiver
 RS485infoReady=FALSE;
 RS485Tx=RS485_SendBlock(RS485_TxBuffer,RS485_count, &RS485_nSent);

 if(RS485Tx==ERR_TXFULL){
 RS485_count=0;
 RS485_ClearTxBuf();
 }

 }

 if(statusTimer!=0) return;
 else statusTimer=1000;

 if(commandActive==TRUE || screenDelay) return;

 retValue=printf("\x1B[1;1f\x1B[KAlarms: Sensor1 %d Sensor2 %d Deceleration %d\
 \x1B[3;1f\x1B[KSensor1: Freq %4.1f Rate of Change %1.4f\
 \x1B[5;1f\x1B[KSensor2: Magnitude %3.2f Phase %3.1f"\
 ,sensor1LO, sensor2LO, sensor1Decel, sensor1Freq, sensor1ROC, sensor2Mag,
sensor2Phase);

 retValue=printf("\x1B[7;1f\x1B[KMotor: Up %d Down %d Run Time %2.3f\
 \x1B[9;1f\x1B[KValves: Valve1 %d Valve2 %d\
 \x1B[11;1f\x1B[KValve Command: Valve1 %d Valve2 %d"
 ,motorUp,motorDown, motorRT, valve1, valve2, valve1command,
valve2command);

144

 retValue=printf("\x1B[16;1f\x1B[KCmd-> ");//set initial cursor position
}//*** end display function ***

/* END Communications */
/*
** ###
**
** This file was created by UNIS Processor Expert 2.97 [03.83]
** for the Freescale HCS12X series of microcontrollers.
**
** ###
*/

145

ii. DCS Main Code Header File (Communications.h)
/** ###
** Filename : Communications.h
** Project : Communications
** Processor : MC9S12XDP512BCPV
** Beantype : none
** Version :
** Compiler : CodeWarrior HCS12X C Compiler
** Date/Time : 8/12/2010, 9:49 AM
** Abstract :
** :General delclarations
**
** Settings :
** Contents :
**
**
** ###*/

#ifndef __Communications_H
#define __Communications_H
/* MODULE main */

//*** function declaratons ***
void RS485Comm(void);
int parseCommand(char *command);
void display(void);

/*definitions*/
#define RxBufferSize 64
#define TxBufferSize 64

/* END */
#endif /* __Communications_H*/

/*
** ###
**
** This file was created by UNIS Processor Expert 2.96 [03.76]
** for the Freescale HCS12X series of microcontrollers.
**
** ###
*/

146

iii. DCS Interrupt Code (Events.c)
/** ###
** Filename : Events.C
** Project : Communications
** Processor : MC9S12XDP512BCPV
** Beantype : Events
** Version : Driver 01.04
** Compiler : CodeWarrior HCS12X C Compiler
** Date/Time : 8/12/2010, 9:49 AM
** Abstract :
** This is user's event module.
** Put your event handler code here.
** Settings :
** Contents :
** RS485_OnError - void RS485_OnError(void);
** RS485_OnRxChar - void RS485_OnRxChar(void);
** RS485_OnTxChar - void RS485_OnTxChar(void);
**
** (c) Copyright UNIS, spol. s r.o. 1997-2006
** UNIS, spol. s r.o.
** Jundrovska 33
** 624 00 Brno
** Czech Republic
** http : www.processorexpert.com
** mail : info@processorexpert.com
** ###*/
/* MODULE Events */

#include "Cpu.h"
#include "Events.h"
#include "Communications.h"

#pragma CODE_SEG DEFAULT

extern int TimerCounter;
extern word RS485_RxCount;
extern RS485_TComData RS485_RxBuffer[64];
extern RS485_TComData RS485chr;
extern bool RS485infoReady;
extern RS485_TError RS485err;
extern int retValue;

147

extern bool STX;
extern bool ACPT;
extern word statusTimer;
extern unsigned int screenDelay;
extern word AS1_RxCount;
AS1_TComData chr;
extern AS1_TComData AS1_RxBuffer[80];
extern bool escape;
extern bool backspace;
extern bool commandReady;
extern bool commandActive;
extern int GettingChars;
extern int GettingErrors;

/*
**
===
** Event : RS485_OnError (module Events)
**
** From bean : RS485 [AsynchroSerial]
** Description :
** This event is called when a channel error (not the error
** returned by a given method) occurs. The errors can be
** read using <GetError> method.
** The event is available only when the <Interrupt
** service/event> property is enabled.
** Parameters : None
** Returns : Nothing
**
===
*/
void RS485_OnError(void){
 RS485_RxCount=0;
 STX=FALSE;
 ACPT=FALSE;
 retValue=RS485_GetError(&RS485err);
}
/*
**
===
** Event : RS485_OnRxChar (module Events)
**
** From bean : RS485 [AsynchroSerial]

148

** Description :
** This event is called after a correct character is
** received.
** The event is available only when the <Interrupt
** service/event> property is enabled and either the
** <Receiver> property is enabled or the <SCI output mode>
** property (if supported) is set to Single-wire mode.
** Parameters : None
** Returns : Nothing
**
===
*/
void RS485_OnRxChar(void){
//Get characters in the receive buffer if there is something there
 while(RS485_GetCharsInRxBuf()!=0){
 retValue=RS485_RecvChar(&RS485chr);
 if(RS485chr==2){ //if the STX character (2) is received set the STX flag and exit
 if(STX){
 RS485_RxCount=0; //if the second STX character is received clear the RxCount and exit
 ACPT=TRUE;
 } else{
 STX=TRUE;
 ACPT=FALSE;
 }
 return;
 }else STX=FALSE; //if there is no STX character then the STX flag should be cleared

 if(ACPT==FALSE) return;

 if(RS485chr==3) {

//If the EOF character (3) is received and the RxCount has indicated that data has been received
then the DCS has established communications and the EOF character is replaced by a 0 in the
RxBuffer
 if(RS485_RxCount>1){
 RS485infoReady=TRUE;
 GettingChars++;
 RS485_RxBuffer[RS485_RxCount]='\0';
 ACPT=FALSE;
 }
 return; //if the EOF character is received without a packet body; then just exit
 }

//Validating the remaining packet for valid characters (0-9, spaces, and a decimal)

149

//If the character received is greater than an ASCII 9 (a value of 57 in decimal) then clear the
//RxCounter and exit
 if(RS485chr>'9'){
 RS485_RxCount=0;
 return;
 }

//If the character received is less than an ASCII 0 (a value of 48 in decimal) and it's not a space
//(a value of 32 in decimal) and it's not a decimal (a value of 46 in decimal) and it's not a minus
//sign (a value of 45 in decimal) then clear the RxCounter and exit
 if(RS485chr<48 && RS485chr!=32 && RS485chr!=46 && RS485chr!=45){
 RS485_RxCount=0;
 return;
 }

//If the character passes all the tests for a valid character then place it in the RxBuffer
 RS485_RxBuffer[RS485_RxCount]=RS485chr;

//Increment the RxCounter as long as it is less than the size of the RxBuffer
 if(RS485_RxCount<sizeof(RS485_RxBuffer)) RS485_RxCount+=1;
 }//end of while
}
/*
**
===
** Event : Timer_OnInterrupt (module Events)
**
** From bean : Timer [TimerInt]
** Description :
** When a timer interrupt occurs this event is called (only
** when the bean is enabled - "Enable" and the events are
** enabled - "EnableEvent").
** Parameters : None
** Returns : Nothing
**
===
*/
void Timer_OnInterrupt(void){
 TimerCounter += 1;

 if(TimerCounter == 500) {//500 = 1/2 sec
 LED1_PutVal(TRUE);
 Bit1_PutVal(TRUE);
 }

150

 if(TimerCounter == 1000) {//1000 = 1 sec
 LED1_PutVal(FALSE);
 Bit1_PutVal(FALSE);
 TimerCounter = 0;
 }

 if(screenDelay) screenDelay-=1;
 if(statusTimer) statusTimer -=1;

}
/*
**
===
** Event : RS485_OnTxComplete (module Events)
**
** From bean : RS485 [AsynchroSerial]
** Description :
** This event indicates that the transmitter is finished
** transmitting all data, preamble, and break characters and
** is idle. It can be used to determine when it is safe to
** switch a line driver (e.g. in RS-485 applications).
** The event is available only when both <Interrupt
** service/event> and <Transmitter> properties are enabled.
** Parameters : None
** Returns : Nothing
**
===
*/
void RS485_OnTxComplete(void){
 RS485_DE_ClrVal();//disable MB_RS485 transmitter
 RS485_RE_ClrVal();//enable MB_RS485 receiver
}
/*
**
===
** Event : AS1_OnRxChar (module Events)
**
** From bean : AS1 [AsynchroSerial]
** Description :
** This event is called after a correct character is
** received.
** The event is available only when the <Interrupt
** service/event> property is enabled and either the

151

** <Receiver> property is enabled or the <SCI output mode>
** property (if supported) is set to Single-wire mode.
** Parameters : None
** Returns : Nothing
**
===
*/
void AS1_OnRxChar(void){
 commandActive=TRUE;

 while(AS1_GetCharsInRxBuf()!=0){
 retValue=AS1_RecvChar(&chr);

 if(chr==0x08 && AS1_RxCount>0) { //handle backspace
 backspace=TRUE;
 }

 AS1_RxBuffer[AS1_RxCount]=chr;

 if(chr=='\r') {
 commandReady=TRUE;
 AS1_RxBuffer[AS1_RxCount]='\0';
 }

 if(AS1_RxCount<sizeof(AS1_RxBuffer) && chr!=0x08) AS1_RxCount+=1;

 }//end of while
}
/* END Events */
/*
** ###
**
** This file was created by UNIS Processor Expert 2.97 [03.83]
** for the Freescale HCS12X series of microcontrollers.
**
** ###
*/

152

iv. IMMI Main Code (MIP_LC3081709.c)
/** ###
** Filename : MIP_LC3081709.C
** Project : IMMI
** Processor : MC9S12XDP512BCPV
** Version : Driver 01.1
** Compiler : CodeWarrior HCS12X C Compiler
** Date/Time : 9/25/2010, 10:41 AM
** Abstract :
** Main module.
** Here is to be placed user's code.
** Settings :
** Contents :
** No public methods
**
** (c) Copyright UNIS, spol. s r.o. 1997-2005
** UNIS, spol. s r.o.
** Jundrovska 33
** 624 00 Brno
** Czech Republic
** http : www.processorexpert.com
** mail : info@processorexpert.com
** ###*/
/* MODULE MIP_LC3081709 */

/* Including used modules for compiling procedure */
#include "Cpu.h"
#include "Events.h"
#include "LED1.h"
#include "Timer.h"
#include "RS485.h"
#include "RS485_RE.h"
#include "RS485_DE.h"
#include "AD1.h"
#include "Sensor1_Frequency.h"
#include "Sensor2.h"
#include "Sensor1.h"
#include "Open_Valve1.h"
#include "Close_Valve1.h"
#include "Open_Valve2.h"
#include "Close_Valve2.h"
#include "Valve1_Switch.h"

153

#include "Valve2_Switch.h"
#include "up_rising.h"
#include "up_falling.h"
#include "down_rising.h"
#include "Alarm_LED.h"
#include "down_falling.h"

/* Include shared modules, which are used for whole project */
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"
#include "stdlib.h"
#include "stdio.h"
#include "math.h"
#include "MBdefs.h"
#include "MIP_LC3081709.h"
#include "string.h"

/*declarations*/
int TimerCounter;
word RS485_RxCount;
RS485_TComData RS485_RxBuffer[20];
bool RS485infoReady;
int retValue;
bool STX;
bool ACPT;
int statusTimer=0;
RS485_TComData RS485_TxBuffer[80];
word RS485_nSent;
word RS485_count;
bool send_to_Commboard=FALSE;
int RS485State=0;
int RS485Count=0;
char *packet;
int pducount;
int pdulen;
int chksum;
char hold[4];
int datalen;
double params[4];
int RS485Tx=0;
char workBuffer[74];
int j, i;

154

char checkSum[12];
int check;
int nCount;
int nCountpacket;
char charCount[8];
int toCommboard, ntoCommboard;

//Valve operation
bool Valve1Sw=FALSE;
bool Valve2Sw=FALSE;
int Valve1Count=0;
int Valve2Count=0;
bool Valve1Position=FALSE;
bool Valve2Position=FALSE;
bool switcheswork=TRUE;
bool Valve1Command=FALSE;
bool Valve2Command=FALSE;
bool Valve1commandedposition;
bool Valve2commandedposition;
word Valve1Timer=0;
word Valve1TimeOut=0;
int Valve1State=0;
int Valve1Valid=0;
word Valve2Timer=0;
word Valve2TimeOut=0;
int Valve2State=0;
int Valve2Valid=0;

//Motor interval time
word uptimer=0;
word downtimer=0;
word upTimerCalc=0;
word downTimerCalc=0;
float upSec=0;
float downSec=0;
bool up=FALSE;
bool down=FALSE;
float motorRT=0;
int motorUp=0;
int motorDown=0;

//Sensor1 vs. Sensor2 Phase measurement variables
word sample_counter_fixed=16;

155

bool phaseStart=TRUE;
word phaseMeasureTimer=0;
word sensor1pulse=0;
word sensor1OverFlows=0;
word period=0;
word sensor1ExactOverFlows=0;
word icapture3;
word icapture4;
word icapture5;
bool sensor2armed=FALSE;
bool sensor1=FALSE;
bool sensor2=FALSE;
word sensor2ExactOverFlows=0;
word phase_sample_counter=0;
float sensor2count;
float sensor1count;
float sensor1_sensor2_Fraction;
float Bin_1_Sum;
float Bin_2_Sum;
float Bin_3_Sum;
float Bin_4_Sum;
float Bin_5_Sum;
float Bin_1_Counter;
float Bin_2_Counter;
float Bin_3_Counter;
float Bin_4_Counter;
float Bin_5_Counter;
float Total_Fraction;
float sensor1_sensor2_Degree;
float Degree1;
float whole_number;
float sensor1_sensor2_phase;
bool phase_value=FALSE;

//ADC
bool adValueReady1=FALSE;
word adValue1;
byte channel1=0;
float sensor2Mag=0;

//Frequency measurement variables
word nPeriods=0;
word nOverFlows=0;
word icapture1;

156

word icapture2;
bool pDone=FALSE;
bool firstPeriod=TRUE;
word freqMeasureTimer=0;
float count;
float f1=0;
word realoverflow=0;
word realperiod=0;
bool active=TRUE;
float sensor1Freq;

//Rate of Change variables
float Rate_of_Change_array[63];
float array_shift[63];
float Rate_of_Change_orig;
bool min_past=FALSE;
int rate_of_change_counter=0;
word ROCtimer=1000;//start at 1 second
bool freqready=FALSE;
float sensor1ROC;

//Decel variables
float Decel_orig;
float Decel_product;
bool sec_past=FALSE;
int decel_counter=0;
word DecelTimer=0;//start at 0
bool decelactivated=FALSE;
bool decelhappened=FALSE;
bool sensor1Decel=FALSE;

//Alarms
bool LOS1=FALSE;
bool LOS2=FALSE;
bool Decelalarm=FALSE;
int isocount=0;
word LOS1_Timer=100;
word LOS2_Timer=100;
word AlarmTimer=0;
int AlarmState=0;
bool iso=FALSE;

void main(void)

157

{
/*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
/*** End of Processor Expert internal initialization. ***/
 RS485_DE_SetVal();
 RS485_RE_SetVal();
 retValue=AD1_MeasureChan(TRUE, channel1);
 retValue=AD1_GetChanValue(channel1, &adValue1);
 TSCR1_TEN=1;
 TSCR1_TFFCA=0;//normal interrupt clearing
 TIE_C3I=1;//enable capture 3 interrupt
 TIE_C1I=1;//enable capture 1 interrupt
 TIE_C2I=1;//enable capture 2 interrupt
 TSCR2_TOI=1;//enable timer overflow interrupt
 TCTL4_EDG3A=1;//capture on rising edges only using register 3
 TCTL4_EDG3B=0;; //Disable and set to 0xFFFF
 TCTL4_EDG1A=1;//capture on rising edges only using register 1
 TCTL4_EDG1B=0;; //Disable and set to 0xFFFF
 TCTL4_EDG2A=1;//capture on rising edges only using register 2
 TCTL4_EDG2B=0;; //Disable and set to 0xFFFF
 TFLG2_TOF = 1; /* Reset overflow interrupt request flag */
 freqMeasureTimer=FREQ_TIME_OUT;//set maximum time for measurement
 rate_of_change_counter=0;
 min_past=FALSE;
 sec_past=FALSE;
 switcheswork=TRUE;
 Valve1Position=FALSE;
 Valve2Position=FALSE;
 Close_Valve1_ClrVal();
 Close_Valve2_ClrVal();

 for(;;) {
 RS485Comm();
 Switches();
 FrequencyActivation();
 RateofChange();
 PhaseMeasure();
 Alarms();
 MotorTimer();
 ADCMeasurements();
 }

/*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!!! ***/
 for(;;){}

158

/*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!!! ***/
} /*** End of main routine. DO NOT MODIFY THIS TEXT!!! ***/

//***********************Functions start here************************************

//******************* function to RS485 Communications **************************
void RS485Comm(void) {

//***Received Packet Handling***

 if(RS485infoReady==TRUE){
 RS485infoReady=FALSE;

//Obtain the length value by calculating the length from the packet received
 datalen=strlen(RS485_RxBuffer)-4;
 if(datalen>0){ //if length of data is not correct then don't process the data

//Copy the received length fields into the pdulen variable
 if(NULL!=strncpy(hold, RS485_RxBuffer, 2)) pdulen=strtol(hold, NULL, 10);

//Need to ensure pdulen is not bigger than the RxBuffer and it is less than 62 (RS485_RxBuffer
//is an array of size 64)
 if(pdulen> (datalen+4) && pdulen<18){
 RS485_RxCount=0; //The RxCount is reset because pdulen is not correct
 return;
 }

//Copy the received checksum fields into the chksum variable
 if(NULL!=strncpy(hold, RS485_RxBuffer+datalen+2, 2))chksum=strtol(hold,NULL,10);

//Place a 0 in the first checksums position so the string-to-token function will parse the data
//correctly
 RS485_RxBuffer[datalen+2]=0;
 check=0;

//Adding up all the decimal values of the data to be able to verify the checksum
 for(j=0;j<pdulen;j++) check=check+RS485_RxBuffer[j+2];

//Mod 100 truncates the total checksum value to just keep the last two digits
 check=check%100;
 if(check==chksum){ //Does the received checksum match the calculated checksum
 if(datalen==pdulen){ //Does the received length match the calculated length

//Clear the counter so that we are looking for the correct number of data fields

159

 pducount=0;

//As long as there is a space in the RxBuffer then proceed
 if(NULL!= (packet=strtok(RS485_RxBuffer+2, " "))){

//Use string-to-double function to convert the first ascii field to a double
 params[pducount]=strtod(packet, NULL);
 pducount++; //increment the counter
 }

 while(NULL!=(packet=strtok(NULL, " "))){

//Convert the remaining fields to double
 params[pducount]=strtod(packet, NULL);
 pducount++; //increments the counter
 }

//When the counter reaches 2 (the number of data fields that should be present), the packet will
//be evaluated and ready to be sent to the DCS
 if(pducount==2){

//Assign the first parameter sent to a floating point variable
 Valve1commandedposition=(bool)params[0];

//The floating point variable should be checked to ensure it is not too large
 if(Valve1commandedposition!= Valve1Position) Valve1Command=TRUE;

//Assign the second parameter sent to a floating point variable
 Valve2commandedposition=(bool)params[1];

//The floating point variable should be checked to ensure it is not too large
 if(Valve2commandedposition!=Valve2Position) Valve2Command=TRUE;

 }
 }
 }
 }

//The RxCount should be reset in case the packet doesn't pass some of the integrity tests
 RS485_RxCount=0;
 }

//***END of received packet handling***

160

 if(statusTimer!=0) return;
 else statusTimer=1000;

 if(motorRT>0) motorUp=1;
 else motorUp=0;
 if(motorRT<0) motorDown=1;
 else motorDown=0;
 if(Valve1Position<0 ||Valve1Position>1){
 Valve1Position=FALSE; //Change position of valve1 to CLOSE
 Close_Valve1_ClrVal();
 Open_Valve1_SetVal(); //Turn off Open LED
 Valve1Sw=FALSE; //Switch activity is complete
 Valve1Count=0;
 }
 if(Valve2Position<0 ||Valve2Position>1){
 Valve2Position=FALSE; //Change position of valve2 to CLOSE
 Close_Valve2_ClrVal();
 Open_Valve2_SetVal(); //Turn off Open LED
 Valve2Sw=FALSE; //Switch activity is complete
 Valve2Count=0;
 }
 toCommboard = sprintf(workBuffer,"%d %d %4.1f %1.4f %4.1f %d %d %d %2.3f %d %d
%3.2f",Valve1Position, Valve2Position, sensor1Freq, sensor1ROC, sensor1_sensor2_phase,
LOS1, sensor1Decel, LOS2, motorRT, motorUp, motorDown, sensor2Mag);
 RS485_TxBuffer[0]=2;
 RS485_TxBuffer[1]=2;
 nCountpacket=sprintf(charCount,"%d",toCommboard);
 if(nCountpacket>=2) {
 RS485_TxBuffer[2]=charCount[0];
 RS485_TxBuffer[3]=charCount[1];
 } else return;

 for(j=4; j<(toCommboard+4); j++) RS485_TxBuffer[j]=(RS485_TComData)workBuffer[j-4];
 nCount=0;
 for(j=0; j<toCommboard; j++) nCount=nCount+workBuffer[j];
 ntoCommboard=sprintf(checkSum,"%d",nCount);

 if(nCount>=1000){
 RS485_TxBuffer[toCommboard+4]=checkSum[2];
 RS485_TxBuffer[toCommboard+5]=checkSum[3];
 } else return;

 RS485_TxBuffer[toCommboard+6]=3;
 RS485_count=(word)toCommboard+7;

161

 RS485_DE_SetVal();//enable RS485 transmitter
 RS485_RE_SetVal();//disable RS485 receiver
 RS485Tx=RS485_SendBlock(RS485_TxBuffer,RS485_count, &RS485_nSent);

 if(RS485Tx==ERR_TXFULL){
 RS485_count=0;
 RS485_ClearTxBuf();
 }
}//*** end RS485Comm function ***

//**************** function for switches *******************
void Switches(void){

 if(switcheswork==TRUE){
 if(Valve1Sw==TRUE){
 if(Valve1Position==TRUE){ //position of valve1 (OPEN)
 Valve1Position=FALSE; //Change position of valve1 to CLOSE
 Close_Valve1_ClrVal();
 Open_Valve1_SetVal(); //Turn off Open LED
 Valve1Sw=FALSE; //Switch activity is complete
 Valve1Count=0;
 } else{
 if(Valve1Count==1) Valve1TimeOut=5000; //If button is pressed once then set timer

//If the valve is in the CLOSED position and you waited 3 seconds but 5 seconds has not elapsed
//and it is your second press
 if(Valve1Position==FALSE && Valve1TimeOut<2000 && Valve1TimeOut!=0 &&
Valve1Count==2){
 Valve1Valid=1;

//If the valve is in the CLOSED position and didn't wait 3 seconds and it is your second press
 } else if(Valve1Position==FALSE && Valve1TimeOut>2000 && Valve1Count==2){
 Valve1Valid=2;

//If the valve is in the CLOSED position and 5 seconds has elapsed
 } else if(Valve1Position==FALSE && Valve1TimeOut==0){
 Valve1Valid=2;

//Otherwise, wait for another press of the button
 } else{
 Valve1Valid=0;
 Valve1Sw=FALSE;
 }

162

//If buttons were operated successfully then do the following
 if(Valve1Valid==1){
 Valve1Sw=FALSE;
 Valve1Position=TRUE; //position of the valve is now OPEN
 Open_Valve1_ClrVal(); //Open LED is turned on
 Close_Valve1_SetVal(); //Closed LED is turned off
 Valve1Count=0;
 Valve1Valid=0;
 } else if(Valve1Valid==2) {
 Valve1Sw=FALSE;
 Valve1Position=FALSE; //position of the valve is now CLOSED
 Open_Valve1_SetVal(); //Open LED is turned off
 Close_Valve1_ClrVal(); //Closed LED is turned on
 Valve1Count=0;
 Valve1Valid=0;
 }
 }
 }

 if(Valve2Sw==TRUE){
 if(Valve2Position==TRUE){ //position of valve2 (OPEN)
 Valve2Position=FALSE; //Change position of valve2 to CLOSE
 Close_Valve2_ClrVal(); //Turn on Purge Closed LED
 Open_Valve2_SetVal(); //Turn off Purge Open LED
 Valve2Sw=FALSE; //Switch activity is complete
 Valve2Count=0;
 } else{
 if(Valve2Count==1) Valve2TimeOut=5000; //If button is pressed once then set timer

//If the valve is in the CLOSED position and waited 3 seconds but 5 seconds has not elapsed and
//it is your second press
 if(Valve2Position==FALSE && Valve2TimeOut<2000 && Valve2TimeOut!=0 &&
Valve2Count==2){
 Valve2Valid=1;

//If the valve is in the CLOSED position and didn't wait 3 seconds and it is your second press
 } else if(Valve2Position==FALSE && Valve2TimeOut>2000 && Valve2Count==2){
 Valve2Valid=2;

//If the valve is in the CLOSED position and 5 seconds has elapsed
 } else if(Valve2Position==FALSE && Valve2TimeOut==0){
 Valve2Valid=2;

//Otherwise, wait for another press of the button

163

 } else{
 Valve2Valid=0;
 Valve2Sw=FALSE;
 }

//If buttons were operated successfully then do the following
 if(Valve2Valid==1){
 Valve2Sw=FALSE;
 Valve2Position=TRUE; //position of the valve is now OPEN
 Open_Valve2_ClrVal(); //Open LED is turned on
 Close_Valve2_SetVal(); //Closed LED is turned off
 Valve2Count=0;
 Valve2Valid=0;
 } else if(Valve2Valid==2) {
 Valve2Sw=FALSE;
 Valve2Position=FALSE; //position of the valve is now CLOSED
 Open_Valve2_SetVal(); //Open LED is turned off
 Close_Valve2_ClrVal(); //Closed LED is turned on
 Valve2Count=0;
 Valve2Valid=0;
 }
 }
 }

//If the valve is in the CLOSED position and the button has been pressed to move the valve
//OPEN and the blink timer has expired, do the following:
 if(Valve1Position==FALSE && Valve1Count>0 && Valve1Timer==0){
 Valve1Timer=500; //set the blink timer
 Valve1State=~Valve1State; //toggle the state
 if(Valve1State) Open_Valve1_ClrVal(); //if the state is 1 then turn off the Open LED
 else Open_Valve1_SetVal(); //if the state is 0 then turn on the Open LED
 }

//If the valve is in the CLOSED position and the button has been pressed to move the valve
//OPEN and the blink timer has expired do the following:
 if(Valve2Position==FALSE && Valve2Count>0 && Valve2Timer==0){
 Valve2Timer=500;
 Valve2State=~Valve2State;
 if(Valve2State) Open_Valve2_ClrVal();
 else Open_Valve2_SetVal();
 }

//If a DCS command is sent to CLOSE the valve and IMMI has granted permission for that to
//occur then do the following:

164

 if(Valve1Command==TRUE && Valve1commandedposition==FALSE){
 Valve1Position=FALSE; //position of the valve is now CLOSED
 Open_Valve1_SetVal(); //Open LED is turned off
 Close_Valve1_ClrVal(); //Closed LED is turned on
 Valve1Command=FALSE;

//If a DCS command is sent to OPEN the valve and IMMI has granted permission for that to
//occur then do the following:
 } else if(Valve1Command==TRUE && Valve1commandedposition==TRUE){
 Valve1Position=TRUE; //position of the valve is now OPEN
 Open_Valve1_ClrVal(); //Open LED is turned on
 Close_Valve1_SetVal(); //Closed LED is turned off
 Valve1Command=FALSE;
 }

//If a DCS command is sent to CLOSE the valve and IMMI has granted permission for that to
//occur then do the following:
 if(Valve2Command==TRUE && Valve2commandedposition==FALSE){
 Valve2Position=FALSE; //position of the valve is now CLOSED
 Open_Valve2_SetVal(); //Open LED is turned off
 Close_Valve2_ClrVal(); //Closed LED is turned on
 Valve2Command=FALSE;

//If a DCS command is sent to OPEN the valve and IMMI has granted permission for that to
//occur then do the following:
 } else if(Valve2Command==TRUE && Valve2commandedposition==TRUE){
 Valve2Position=TRUE; //position of the valve is now OPEN
 Open_Valve2_ClrVal(); //Open LED is turned on
 Close_Valve2_SetVal(); //Closed LED is turned off
 Valve2Command=FALSE;
 }
 } else {
 Valve1Sw=FALSE;
 Valve2Sw=FALSE;
 Valve1Count=0;
 Valve2Count=0;
 }
} //*** end of function for switches ***

//****************** update frequency measurement function ************************
float FrequencyMeasurement(void) {

 count=(realoverflow*65535)+icapture2-icapture1;
 f1=((BUSCLOCK/PRESCALE)*(realperiod-1))/count;

165

 return(f1);

}//*** end of update frequency measurement function ***

//********** frequency measurement function *************************
void FrequencyActivation(void) {

 if(firstPeriod==TRUE || nOverFlows==8){
 if(pDone==FALSE && nPeriods>=2){
 nPeriods=0;
 nOverFlows=0;
 firstPeriod=FALSE;
 active=TRUE;
 freqMeasureTimer=FREQ_TIME_OUT;//set maximum time for measurement
 return;
 }
 }

 if(pDone==TRUE){
 sensor1Freq=FrequencyMeasurement();
 if(sensor1Freq>9999) sensor1Freq=9999;
 if(sensor1Freq<0) sensor1Freq=0;
 pDone=FALSE;
 freqready=TRUE;
 firstPeriod=TRUE;
 return;
 }

 if(LOS1==TRUE){
 sensor1Freq=0.0;
 freqready=TRUE;
 return;
 }

 if(freqMeasureTimer==0){
 firstPeriod=TRUE;//force restart
 pDone=FALSE;
 sensor1Freq=0.0;
 freqready=TRUE;
 return;
 }
}//*** end of frequency measurement function ***

//********************* Rate of Change function *************************

166

void RateofChange(void) {

 if(freqready){//wait for Rate of Change Timer to expire
 if(sensor1Freq==0) {
 if(ROCtimer!=0) return;
 }

 Rate_of_Change_array[0]=sensor1Freq;
 for(i=61;i>-1;i--){
 array_shift[i+1]=Rate_of_Change_array[i];
 Rate_of_Change_array[i+1]=array_shift[i+1];
 }

 ++rate_of_change_counter;
 if(rate_of_change_counter==11||sec_past==TRUE){
 sec_past=TRUE;
 Decel_orig=(array_shift[11]- array_shift[1])/10;
 Decel_product=sensor1Freq*Decel_orig;
 if(Decel_product>=DECELTRIP && decelhappened==FALSE){
 decel_counter++;
 Decelalarm=TRUE;
 sensor1Decel=TRUE;
 iso=TRUE;
 decelhappened=TRUE;
 if(decel_counter==1) DecelTimer=7500; //at least 7 second hold up timer for alarm
 Alarms();
 } else if(Decel_product>=DECELTRIP && decelhappened==TRUE){
 decel_counter++;
 Decelalarm=TRUE;
 if(decel_counter==1) DecelTimer=7500; //at least 7 second hold up timer for alarm
 Alarms();
 } else if(Decel_product<DECELTRIP){
 Decelalarm=FALSE;
 decelhappened=FALSE;
 }
 }

 if(rate_of_change_counter==61||min_past==TRUE){
 min_past=TRUE;

//Don’t need to divide by 60 since each element represents 1 second
 Rate_of_Change_orig=(array_shift[1]- array_shift[61]);
 sensor1ROC=Rate_of_Change_orig;
 if(sensor1ROC>=10) sensor1ROC=9.9999;

167

 if(sensor1ROC<=-10) sensor1ROC=-9.9999;
 rate_of_change_counter=65;
 }
 freqready=FALSE;
 ROCtimer=1000;
 return;
 }
}

//********** DRO Phase measurement function *************************
void PhaseMeasure(void) {

 if(phaseStart==TRUE){
 phaseMeasureTimer=PHASE_TIME_OUT;
 sensor1pulse=0;
 sensor1OverFlows=0;
 sensor1=FALSE;
 sensor2armed=FALSE;
 sensor2=FALSE;
 phaseStart=FALSE;
 return;
 }

//If sample is less than 16 samples the capture for sensor1 and sensor2 are enabled
 if(phase_sample_counter<sample_counter_fixed){
 if(sensor1==TRUE){ //If we have received 3 sensor1 signals then calculation begins
 sensor1=FALSE;
 phase_sample_counter+=1; //increase sample number

//Determines the sensor1 count
 sensor1count=(icapture5-icapture3)+(sensor1ExactOverFlows*65535);
 sensor2count=(icapture4-icapture3)+(sensor2ExactOverFlows*65535);

 if(sensor2!=TRUE){
 sensor2count=sensor1count;
 }
 sensor2=FALSE;
 sensor1_sensor2_Fraction=sensor2count/sensor1count;
 if(sensor1_sensor2_Fraction>=0 && sensor1_sensor2_Fraction<=0.125){
 Bin_1_Sum=Bin_1_Sum+sensor1_sensor2_Fraction;
 Bin_5_Sum=Bin_5_Sum+sensor1_sensor2_Fraction+0.500;
 Bin_1_Counter=Bin_1_Counter+1;
 Bin_5_Counter=Bin_5_Counter+1;
 } else if(sensor1_sensor2_Fraction>0.125 && sensor1_sensor2_Fraction<=0.250){

168

 Bin_2_Sum=Bin_2_Sum+sensor1_sensor2_Fraction;
 Bin_2_Counter=Bin_2_Counter+1;
 } else if(sensor1_sensor2_Fraction>0.250 && sensor1_sensor2_Fraction<=0.375){
 Bin_3_Sum=Bin_3_Sum+sensor1_sensor2_Fraction;
 Bin_3_Counter=Bin_3_Counter+1;
 } else if(sensor1_sensor2_Fraction>0.375 && sensor1_sensor2_Fraction<=0.500){
 Bin_4_Sum=Bin_4_Sum+sensor1_sensor2_Fraction;
 Bin_4_Counter=Bin_4_Counter+1;
 } else if(sensor1_sensor2_Fraction>0.500 && sensor1_sensor2_Fraction<=0.625){
 Bin_5_Sum=Bin_5_Sum+sensor1_sensor2_Fraction;
 Bin_5_Counter=Bin_5_Counter+1;
 } else if(sensor1_sensor2_Fraction>0.625){
 sample_counter_fixed=sample_counter_fixed-1;
 phase_sample_counter=phase_sample_counter-1;
 }

 phaseStart=TRUE;
 }
 phaseMeasureTimer=PHASE_TIME_OUT; //start time-out counter over
 }

 if(phase_sample_counter==sample_counter_fixed){
 phase_sample_counter=0;
 if((Bin_1_Counter+Bin_2_Counter)>0){
 Total_Fraction=Bin_1_Sum+Bin_2_Sum;
 sample_counter_fixed=(word)(Bin_1_Counter+Bin_2_Counter);
 }
 if((Bin_2_Counter+Bin_3_Counter)>(Bin_1_Counter+Bin_2_Counter)){
 Total_Fraction=Bin_2_Sum+Bin_3_Sum;
 sample_counter_fixed=(word)(Bin_2_Counter+Bin_3_Counter);
 }
 if(((Bin_3_Counter+Bin_4_Counter)>(Bin_2_Counter+Bin_3_Counter)) &&
((Bin_3_Counter+Bin_4_Counter)>(Bin_1_Counter+Bin_2_Counter))){
 Total_Fraction=Bin_3_Sum+Bin_4_Sum;
 sample_counter_fixed=(word)(Bin_3_Counter+Bin_4_Counter);
 }
 if(((Bin_4_Counter+Bin_5_Counter)>(Bin_3_Counter+Bin_4_Counter)) &&
((Bin_4_Counter+Bin_5_Counter)>(Bin_2_Counter+Bin_3_Counter)) &&
((Bin_4_Counter+Bin_5_Counter)>(Bin_1_Counter+Bin_2_Counter))){
 Total_Fraction=Bin_4_Sum+Bin_5_Sum;
 sample_counter_fixed=(word)(Bin_4_Counter+Bin_5_Counter);
 }
 if(sample_counter_fixed<4) phase_value=FALSE;
 sensor1_sensor2_Degree=Total_Fraction*(720.00/sample_counter_fixed);

169

 if(sensor1_sensor2_Degree>360.00) sensor1_sensor2_Degree=sensor1_sensor2_Degree-
360.00;
 Degree1=modff(sensor1_sensor2_Degree,&whole_number);
 if(whole_number==0){
 if(Degree1<0.050){
 sensor1_sensor2_Degree=360.0;
 } else if(Degree1>0.050 && Degree1<0.1) sensor1_sensor2_Degree=0.1;
 }

 if(phase_value==FALSE){
 phase_value=TRUE;
 sensor1_sensor2_phase=0;
 } else{
 sensor1_sensor2_phase=sensor1_sensor2_Degree;
 }

 Bin_1_Sum=0;
 Bin_2_Sum=0;
 Bin_3_Sum=0;
 Bin_4_Sum=0;
 Bin_5_Sum=0;
 Bin_1_Counter=0;
 Bin_2_Counter=0;
 Bin_3_Counter=0;
 Bin_4_Counter=0;
 Bin_5_Counter=0;
 sensor1_sensor2_Fraction=0;
 sample_counter_fixed=16;
 }

 if(phaseMeasureTimer==0){
 phaseStart=TRUE;//force restart
 sensor1=FALSE;
 sensor2=FALSE;
 sensor1_sensor2_phase=0;
 return;
 }
 return;

}//*** end of DRO Phase measurement function ***

//**************** function for Alarms *******************
void Alarms(void){

170

 if((LOS1==TRUE && LOS2==TRUE) || (LOS2==TRUE && Decelalarm==TRUE)) {
 switcheswork=FALSE;

//Clear command from DCS in case process valve is commanded to open
 Valve1Command=FALSE;

//Clear command from DCS in case purge valve is commanded to open
 Valve2Command=FALSE;
 isolate();
 } else switcheswork=TRUE;

 if(iso==TRUE){
 iso=FALSE;
 isolate();
 isocount++;
 }

 if(LOS1==TRUE){
 if(LOS1_Timer!=0){
 LOS1=FALSE;
 }
 }

 if(LOS2==TRUE){
 if(LOS2_Timer !=0){
 LOS2=FALSE;
 }
 }

 if(Decelalarm && DecelTimer!=0){
 sensor1Decel=TRUE;
 decelactivated=TRUE;
 } else if(decelactivated && Decelalarm==FALSE){
 Decelalarm=FALSE;
 sensor1Decel=FALSE;
 decel_counter=0;
 decelactivated=FALSE;
 } else if(Decelalarm && decelactivated){
 sensor1Decel=TRUE;
 } else if(Decelalarm==FALSE) {
 Decelalarm=FALSE;
 sensor1Decel=FALSE;
 decel_counter=0;
 }

171

 if((LOS1==TRUE && LOS2==TRUE) || (LOS2==TRUE && Decelalarm==TRUE)){
 if(AlarmTimer==0){
 AlarmTimer=100;
 AlarmState=~AlarmState;
 if(AlarmState) Alarm_LED_ClrVal();
 else Alarm_LED_SetVal();
 }
 } else if(LOS1 || LOS2 || sensor1Decel==TRUE) Alarm_LED_ClrVal();
 else Alarm_LED_SetVal();

 if(LOS1<0 || LOS1>1) LOS1=TRUE;
 if(LOS2<0 || LOS2>1) LOS2=TRUE;
 if(sensor1Decel<0 || sensor1Decel>1) sensor1Decel=FALSE;

} //*** end of function for alarms ***

//**************** function for Isolation *******************
void isolate(void){

 Valve1Position=FALSE; //position of the valve is now CLOSED
 Open_Valve1_SetVal(); //Open LED is turned off
 Close_Valve1_ClrVal(); //Closed LED is turned on
 Valve1Command=FALSE;
 Valve2Position=FALSE; //position of the valve is now CLOSED
 Open_Valve2_SetVal(); //Open LED is turned off
 Close_Valve2_ClrVal(); //Closed LED is turned on
 Valve2Command=FALSE;

} //*** end of function for isolation ***

//**************** function measuring time a motor is operational *******************
void MotorTimer(void){

 if(up==TRUE){
 upSec=(float)(upTimerCalc/1000.00);
 motorRT=upSec;
 if(motorRT>=100) motorRT=99.999;
 if(motorRT<0) motorRT=0;
 up=FALSE;
 }

 if(down==TRUE){
 downSec=(float)(downTimerCalc/1000.00);

172

 motorRT=downSec*(-1);
 if(motorRT<=-100) motorRT=-99.999;
 if(motorRT>0) motorRT=0;
 down=FALSE;
 }

} //*** end of function measuring time a motor is operational ***

//******************* function to obtain ADC Values **************************
void ADCMeasurements(void){

 if (adValueReady1==TRUE){
 if(AD1_GetChanValue(channel1, &adValue1)==ERR_OK){
 switch(channel1){
 case 0:
 if(phase_value==TRUE){
 sensor2Mag=(adValue1);
 if(sensor2Mag>=1000) sensor2Mag=999.99;
 if(sensor2Mag<0) sensor2Mag=0;
 }
 break;
 }

 adValueReady1=FALSE;
 channel1++;
 if (channel1>0) channel1=0;
 retValue=AD1_MeasureChan(FALSE, channel1);
 }
 }

}//*** end of function to obtain ADC values ***

/* END MIP_LC3081709 */
/*
** ###
**
** This file was created by UNIS Processor Expert 2.96 [03.76]
** for the Freescale HCS12X series of microcontrollers.
**
** ###
*/

173

v. IMMI Main Code Header File (MIP_LC3081709.h)
/** ###
** Filename : MIP_LC3081709.h
** Project : IMMI
** Processor : MC9S12XDP512BCPV
** Beantype : none
** Version :
** Compiler : CodeWarrior HCS12X C Compiler
** Date/Time : 9/25/2010, 10:41 AM
** Abstract :
** :General delclarations
**
** Settings :
** Contents :
**
**
** ###*/

#ifndef __Slave_H
#define __Slave_H
/* MODULE main */

//*** function declaratons ***
void Switches(void);
void RS485Comm(void);
float FrequencyMeasurement(void);
void FrequencyActivation(void);
void RateofChange(void);
void PhaseMeasure(void);
void Alarms(void);
void isolate(void);
void MotorTimer(void);
void ADCMeasurements(void);

/*definitions*/
#define RxBufferSize 64
#define TxBufferSize 64
#define HOLDUP 100
#define PHASE_TIME_OUT 8000 //1000=1 second
#define SENSOR2SCALED 5.859 //DRO scaling

174

#define BUSCLOCK 8000000 //oscillator/2
#define PRESCALE 16
#define FREQ_TIME_OUT 8000 //1000=1 second
#define DECELTRIP 50.00 //Decel trip point

/* END */
#endif /* __Slave_H*/

/*
** ###
**
** This file was created by UNIS Processor Expert 2.96 [03.76]
** for the Freescale HCS12X series of microcontrollers.
**
** ###
*/

175

vi. IMMI Interrupt Code (Events.c)
/** ###
** Filename : Events.C
** Project : IMMI
** Processor : MC9S12XDP512BCPV
** Beantype : Events
** Version : Driver 01.04
** Compiler : CodeWarrior HCS12X C Compiler
** Date/Time : 9/25/2010, 10:41 AM
** Abstract :
** This is user's event module. Put your event handler code here.
** Settings :
** Contents :
** MB_RS485_OnError - void MB_RS485_OnError(void);
** MB_RS485_OnRxChar - void MB_RS485_OnRxChar(void);
** MB_RS485_OnTxChar - void MB_RS485_OnTxChar(void);
** MB_RS485_OnFullRxBuf - void MB_RS485_OnFullRxBuf(void);
** MB_RS485_OnFreeTxBuf - void MB_RS485_OnFreeTxBuf(void);
** Timer_OnInterrupt - void Timer_OnInterrupt(void);
** AS1_OnError - void AS1_OnError(void);
** AS1_OnRxChar - void AS1_OnRxChar(void);
** AS1_OnTxChar - void AS1_OnTxChar(void);
** AS1_OnFullRxBuf - void AS1_OnFullRxBuf(void);
** AS1_OnFreeTxBuf - void AS1_OnFreeTxBuf(void);
**
** (c) Copyright UNIS, spol. s r.o. 1997-2005
** UNIS, spol. s r.o.
** Jundrovska 33
** 624 00 Brno
** Czech Republic
** http : www.processorexpert.com
** mail : info@processorexpert.com
** ###*/
/* MODULE Events */

#include "Cpu.h"
#include "Events.h"
#include "MIP_LC3081709.h"
#pragma CODE_SEG DEFAULT

extern int TimerCounter;
extern word RS485_RxCount;

176

extern RS485_TComData RS485_RxBuffer[64];
RS485_TComData RS485chr;
extern bool RS485infoReady;
RS485_TError RS485err;
extern int retValue;
extern bool STX;
extern bool ACPT;
extern int statusTimer;

//Motor Run Time
extern word uptimer;
extern word downtimer;
extern word upTimerCalc;
extern word downTimerCalc;
extern bool up;
extern bool down;

//Sensor1 vs. Sensor2 Phase measurement variables
extern bool phaseStart;
extern word sensor1pulse;
extern word sensor1OverFlows;
extern word period;
extern word sensor1ExactOverFlows;
extern word icapture3;
extern word icapture4;
extern word icapture5;
extern bool sensor2armed;
extern bool sensor1;
extern bool sensor2;
extern word sensor2ExactOverFlows;
int CaptureValueSensor1;
int *pCaptureValueSensor1=&CaptureValueSensor1;
int CaptureValueSensor2;
int *pCaptureValueSensor2=&CaptureValueSensor2;

//ADC
extern bool adValueReady1;
extern word adValue1;
extern byte channel1;

//Sensor1 frequency measurement
extern unsigned int freqMeasureTimer;
int CaptureValue;
int *pCaptureValue=&CaptureValue;

177

bool firstPass=TRUE;
extern word nOverFlows;
extern word icapture1;
extern word icapture2;
extern bool pDone;
extern bool firstPeriod;
extern word nPeriods;
extern word ROCtimer;
extern bool active;
extern word realoverflow;
extern word realperiod;
extern bool Valve1Sw;
extern bool Valve2Sw;
extern int Valve1Count;
extern int Valve2Count;
extern word Valve1Timer;
extern word Valve1TimeOut;
extern word Valve2Timer;
extern word Valve2TimeOut;
extern word LOS1_Timer;
extern bool LOS1;
extern word LOS2_Timer;
extern bool LOS2;
extern bool Valve1Position;
extern bool Valve2Position;
extern bool Valve1Command;
extern bool Valve2Command;
extern word AlarmTimer;
extern bool iso;

/*
**
===
** Event : Timer_OnInterrupt (module Events)
**
** From bean : Timer [TimerInt]
** Description :
** When a timer interrupt occurs this event is called (only
** when the bean is enabled - "Enable" and the events are
** enabled - "EnableEvent").
** Parameters : None
** Returns : Nothing
**
===

178

*/
void Timer_OnInterrupt(void){
 TimerCounter += 1;
 if(TimerCounter == 500) {//500 = 1/2 sec
 LED1_PutVal(TRUE);
 }
 if(TimerCounter == 1000) {//1000 = 1 sec
 LED1_PutVal(FALSE);
 TimerCounter = 0;
 }

 if(statusTimer) statusTimer -=1;
 if(uptimer) uptimer +=1;
 if(downtimer) downtimer +=1;
 if(Valve1Timer) Valve1Timer -=1;
 if(Valve1TimeOut) Valve1TimeOut -=1;
 if(Valve2Timer) Valve2Timer -=1;
 if(Valve2TimeOut) Valve2TimeOut -=1;
 if(LOS1_Timer) LOS1_Timer -=1;
 if(LOS2_Timer) LOS2_Timer -=1;
 if(AlarmTimer) AlarmTimer -=1;

 if(LOS1_Timer==0 && LOS1==FALSE){
 LOS1=TRUE;
 iso=TRUE;
 }

 if(LOS2_Timer==0 && LOS2==FALSE){
 LOS2=TRUE;
 iso=TRUE;
 }

}

/*
**
===
** Event : AD1_OnEnd (module Events)
**
** From bean : AD1 [ADC]
** Description :
** This event is called after the measurement (which
** consists of <1 or more conversions>) is/are finished.
** The event is available only when the <Interrupt

179

** service/event> property is enabled.
** Parameters : None
** Returns : Nothing
**
===
*/
void AD1_OnEnd(void){
 retValue=AD1_GetChanValue(channel1, &adValue1);
 adValueReady1=TRUE;
}

/*
**
===
** Event : Valve2_Switch_OnInterrupt (module Events)
**
** From bean : Valve2_Switch [ExtInt]
** Description :
** This event is called when an active signal edge/level has
** occurred.
** Parameters : None
** Returns : Nothing
**
===
*/
void Valve2_Switch_OnInterrupt(void){
 if(Valve2_Switch_GetVal()){
 Valve2Sw=TRUE;
 Valve2Count++;
 } else{
 Valve2Sw=FALSE;
 }
}

/*
**
===
** Event : Valve1_Switch_OnInterrupt (module Events)
**
** From bean : Valve1_Switch [ExtInt]
** Description :
** This event is called when an active signal edge/level has
** occurred.
** Parameters : None

180

** Returns : Nothing
**
===
*/
void Valve1_Switch_OnInterrupt(void){
 if(Valve1_Switch_GetVal()){
 Valve1Sw=TRUE;
 Valve1Count++;
 } else{
 Valve1Sw=FALSE;
 }
}

/*
**
===
** Event : down_falling_OnInterrupt (module Events)
**
** From bean : down_falling [ExtInt]
** Description :
** This event is called when an active signal edge/level has
** occurred.
** Parameters : None
** Returns : Nothing
**
===
*/
void down_falling_OnInterrupt(void){
 if(down_falling_GetVal()==FALSE){
 downTimerCalc=downtimer;
 down=TRUE;
 }

}

/*
**
===
** Event : down_rising_OnInterrupt (module Events)
**
** From bean : down_rising [ExtInt]
** Description :
** This event is called when an active signal edge/level has
** occurred.

181

** Parameters : None
** Returns : Nothing
**
===
*/
void down_rising_OnInterrupt(void){
 if(down_rising_GetVal()){
 downtimer=1;
 }
}

/*
**
===
** Event : up_falling_OnInterrupt (module Events)
**
** From bean : up_falling [ExtInt]
** Description :
** This event is called when an active signal edge/level has
** occurred.
** Parameters : None
** Returns : Nothing
**
===
*/
void up_falling_OnInterrupt(void){
 if(up_falling_GetVal()==FALSE){
 upTimerCalc=uptimer;
 up=TRUE;
 }
}

/*
**
===
** Event : up_rising_OnInterrupt (module Events)
**
** From bean : up_rising [ExtInt]
** Description :
** This event is called when an active signal edge/level has
** occurred.
** Parameters : None
** Returns : Nothing

182

**
===
*/
void up_rising_OnInterrupt(void){
 if(up_rising_GetVal()){
 uptimer=1;
 }
}

/*
**
===
** Event : Sensor1_OnCapture (module Events)
**
** From bean : Sensor1 [Capture]
** Description :
** This event is called on capturing of Timer/Counter actual
** value (only when the bean is enabled - <"Enable"> and the
** events are enabled - <"EnableEvent">.
** Parameters : None
** Returns : Nothing
**
===
*/
void Sensor1_OnCapture(void){
 Sensor1_GetCaptureValue(pCaptureValueSensor1);
 if(sensor1pulse==0){ //if first capture store it in icapture3
 icapture3=*pCaptureValueSensor1;
 if(icapture3>65000){ //are we to close to an overflow?
 phaseStart=TRUE;//force to start again
 return;
 } else{
 sensor1OverFlows=0;
 sensor2ExactOverFlows=0;
 sensor2armed=TRUE;
 }
 } else {
 if(sensor1pulse==2){
 icapture5=*pCaptureValueSensor1;
 sensor1=TRUE;
 sensor1ExactOverFlows=sensor1OverFlows;
 period=sensor1pulse;
 }
 }

183

 sensor1pulse +=1;
}

/*
**
===
** Event : Sensor2_OnCapture (module Events)
**
** From bean : Sensor2 [Capture]
** Description :
** This event is called on capturing of Timer/Counter actual
** value (only when the bean is enabled - <"Enable"> and the
** events are enabled - <"EnableEvent">.
** Parameters : None
** Returns : Nothing
**
===
*/
void Sensor2_OnCapture(void){
 Sensor2_GetCaptureValue(pCaptureValueSensor2);
 LOS2_Timer=100;
 if(sensor2armed==TRUE){
 icapture4=*pCaptureValueSensor2;
 sensor2=TRUE;
 sensor2ExactOverFlows=sensor1OverFlows;
 sensor2armed=FALSE;
 }
}

/*
**
===
** Event : Sensor1_Frequency_OnCapture (module Events)
**
** From bean : Sensor1_Frequency [Capture]
** Description :
** This event is called on capturing of Timer/Counter actual
** value (only when the bean is enabled - <"Enable"> and the
** events are enabled - <"EnableEvent">.
** Parameters : None
** Returns : Nothing
**
===
*/

184

void Sensor1_Frequency_OnCapture(void){
 Sensor1_Frequency_GetCaptureValue(pCaptureValue);
 LOS1_Timer=100;
 if(nPeriods==0){ //if first capture store it in icapture1
 icapture1=*pCaptureValue;
 if(icapture1>65000){ //are we to close to an overflow?
 firstPeriod=TRUE;//force to start again
 return;
 } else {
 nOverFlows=0;
 }
 }

 nPeriods +=1;

 if(nOverFlows>=6){
 if(active==TRUE && nPeriods>=2){
 icapture2=*pCaptureValue;
 realoverflow=nOverFlows;
 realperiod=nPeriods;
 pDone=TRUE;//set period done flag
 active=FALSE;
 }
 }
}

/*
**
===
** Event : Sensor1_Frequency_OnOverflow (module Events)
**
** From bean : Sensor1_Frequency [Capture]
** Description :
** This event is called if counter overflows (only when the
** bean is enabled - <"Enable"> and the events are enabled -
** <"EnableEvent">.
** Parameters : None
** Returns : Nothing
**
===
*/
void Sensor1_Frequency_OnOverflow(void){
 TFLG2_TOF=1; //Reset overflow interrupt request flag
 nOverFlows +=1;

185

 sensor1OverFlows +=1;
}

/*
**
===
** Event : RS485_OnError (module Events)
**
** From bean : RS485 [AsynchroSerial]
** Description :
** This event is called when a channel error (not the error
** returned by a given method) occurs. The errors can be
** read using <GetError> method.
** The event is available only when the <Interrupt
** service/event> property is enabled.
** Parameters : None
** Returns : Nothing
**
===
*/
void RS485_OnError(void){
 RS485_RxCount=0;
 STX=FALSE;
 ACPT=FALSE;
 retValue=RS485_GetError(&RS485err);
}

/*
**
===
** Event : RS485_OnRxChar (module Events)
**
** From bean : RS485 [AsynchroSerial]
** Description :
** This event is called after a correct character is
** received.
** The event is available only when the <Interrupt
** service/event> property is enabled and either the
** <Receiver> property is enabled or the <SCI output mode>
** property (if supported) is set to Single-wire mode.
** Parameters : None
** Returns : Nothing
**
===

186

*/
void RS485_OnRxChar(void){

//Get characters in the receive buffer if there is something there
 while(RS485_GetCharsInRxBuf()!=0){
 retValue=RS485_RecvChar(&RS485chr);
 if(RS485chr==2){ //if the STX character (2) is received set the STX flag and exit
 if(STX){

//If the second STX character is received clear the RxCount and exit
 RS485_RxCount=0;
 ACPT=TRUE;
 } else{
 STX=TRUE;
 ACPT=FALSE;
 }
 return;
 }else STX=FALSE; //if there is no STX character then the STX flag should be cleared

 if(ACPT==FALSE) return;
 if(RS485chr==3) {

//If the EOF character (3) is received and the RxCount has indicated that data has been received
//then the DCS has established communications and the EOF character is replaced by a 0 in the
//RxBuffer
 if(RS485_RxCount>1){
 RS485infoReady=TRUE;
 RS485_RxBuffer[RS485_RxCount]='\0';
 ACPT=FALSE;
 }
 return; //if the EOF character is received without a packet body; then just exit
 }

//Validating the remaining packet for valid characters (0-9, spaces, and a decimal)
//If the character received is greater than an ASCII 9 (a value of 57 in decimal) then clear the
//RxCounter and exit

 if(RS485chr>'9'){
 RS485_RxCount=0;
 return;
 }

187

//If the character received is less than an ASCII 0 (a value of 48 in decimal) and it's not a space
//(a value of 32 in decimal) and it's not a decimal (a value of 46 in decimal) then clear the
//RxCounter and exit
 if(RS485chr<48 && RS485chr!=32 && RS485chr!=46){
 RS485_RxCount=0;
 return;
 }

//If the character passes all the tests for a valid character then place it in the RxBuffer
 RS485_RxBuffer[RS485_RxCount]=RS485chr;

//Increment the RxCounter as long as it is less than the size of the RxBuffer
 if(RS485_RxCount<sizeof(RS485_RxBuffer)) RS485_RxCount+=1;
 }//end of while
}

/*
**
===
** Event : RS485_OnTxComplete (module Events)
**
** From bean : RS485 [AsynchroSerial]
** Description :
** This event indicates that the transmitter is finished
** transmitting all data, preamble, and break characters and
** is idle. It can be used to determine when it is safe to
** switch a line driver (e.g. in RS-485 applications).
** The event is available only when both <Interrupt
** service/event> and <Transmitter> properties are enabled.
** Parameters : None
** Returns : Nothing
**
===
*/
void RS485_OnTxComplete(void){
 RS485_DE_ClrVal();//disable RS485 transmitter
 RS485_RE_ClrVal();//enable RS485 receiver
}

/* END Events */
/** ###
** This file was created by UNIS Processor Expert 2.96 [03.76]
** for the Freescale HCS12X series of microcontrollers.
** ##*/

188

Vita

Christina Ward was born in Gainesville, FL on September 10th 1980. She graduated from

Fernandina Beach High School in 1999 and continued her education while on an athletic

scholarship at Hillsborough Community College. After graduating in May 2001 with an

Associate of Arts in Engineering, she transferred to the Electrical and Computer Engineering

department at the University of Florida. Christina graduated from UF in December 2003 with a

BSEE degree. She has been working for Oak Ridge National Laboratory since January 2005 in

the Electronic and Embedded Systems group (formally the Analog and Digital Systems group).

She was awarded her MSEE degree in May 2011 from the Electrical Engineering and Computer

Science department from the University of Tennessee, Knoxville.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2011

	Software Verification for a Custom Instrument using VectorCAST and CodeSonar
	Christina Dawn Ward
	Recommended Citation

	Microsoft Word - CDWThesis_v17.doc

