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ABSTRACT 

 

Linoleic acid, with a DRI of 12-17g/d, is the most highly consumed polyunsaturated fatty 

acid in the Western diet and is found in virtually all commonly consumed foods.  The concern 

with dietary linoleic acid, being the metabolic precursor of arachidonic acid, is its consumption 

may enrich tissues with arachidonic acid and contribute to chronic and overproduction of 

bioactive eicosanoids. However, no systematic review of human trials regarding linoleic acid 

consumption and subsequent changes in tissue levels of arachidonic acid has been undertaken.  

In this study, we reviewed the human literature that reported changes in dietary linoleic acid and 

its subsequent impact on changing tissue arachidonic acid in erythrocytes and plasma/serum 

phospholipids. We identified, reviewed, and evaluated all peer-reviewed published literature 

presenting data outlining changes in dietary linoleic acid in adult human clinical trials that 

reported changes in phospholipid fatty acid composition (specifically arachidonic acid) in 

plasma/serum and erythrocytes within the parameters of our inclusion/exclusion criteria. 

Decreasing dietary linoleic acid up to 90% was not significantly correlated with changes in tissue 

arachidonic acid levels (p=0.39). Similarly, when dietary linoleic acid levels were increased six 

fold, no significant correlations with tissue arachidonic acid levels were observed (p=0.72). 

However, there was a positive relationship between dietary gamma-linolenic acid and 

arachidonic acid on changes in tissue arachidonic levels. Our results do not support the concept 

that modifying current intakes of dietary linoleic acid has an effect on changing tissue levels of 

arachidonic acid in adults consuming Western-type diets. 
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Introduction 

 

 

 

 

 

 

 

 



 
 
 

2 
 

 

1.1 Dietary Lipids: Digestion, Absorption and Transportation  

Triacylglycerols (TAG), followed by phospholipids (PL), are the major source of dietary 

lipids in the human diet.  Digestion of lipids begins in the mouth with partial hydrolysis of  sn-3 

fatty acids of TAG by lingual lipase (1), and subsequently by gastric lipase in the stomach. 

Along with gastric lipase, the stomach aids digestion with gastric grinding and the result is a 

mixture of  emulsified components containing lipids and the enzymatic products (2). The 

emulsion enters the small intestine where digestion of lipids continues.  Pancreatic lipase (in the 

presence of colipase) cleaves fatty acids from the sn-1 and sn-3 positions of TAG (2). 

Phospholipids are acted upon by pancreatic phospholipase A2 at the sn-2 position generating free 

fatty acids (typically a polyunsaturated fatty acid) and lysophospholipids. Cholesterol esters are 

acted upon by cholesteryl esterase forming free fatty acids and unesterified cholesterol.  

In order for these hydrophobic products of digestion to be absorbed by intestinal mucosal 

cells, they have to become sufficiently soluble within the aqueous environment to cross the 

unstirred water layer (3). For this to happen, aggregates of fatty acids, cholesterol, 

lysophospholipids and monoacylglycerides are combined with bile salts and acids to form 

micelles (10-12). 

 These small emulsified aggregates of lipid products transverse the unstirred water layer 

and are absorbed by enterocytes passively or by active transport. The active transporter for fatty 

acids, FATP4, is responsible for absorption when concentrations of fatty acids are low (4), but at 

high concentrations, diffusion is the predominant mechanism. After absorption, fatty acids are 

delivered to the endoplasmic reticulum (ER) of the enterocyte via fatty acid binding proteins (5)  

where they are re-esterified into TAG, cholesterol esters and phospholipids. Along with 
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cholesterol and apoproteins, these lipid components are incorporated into chylomicrons for 

transport in the general circulation (6).  

The fatty acids from the TAG of the chylomicrons are delivered to extrahepatic tissues 

via the action of lipoprotein lipase (through the generation of two free fatty acids and a 

monoacylglycerol). Loss of TAGs results in remodeling of the chylomicron where surface 

components containing phospholipids, cholesterol and cholesterol esters form the backbone of 

other lipoproteins (i.e., high density lipoproteins), resulting in a chylomicron remnant that is 

subsequently cleared by the liver. The liver either uses (metabolizes) these lipid components or 

repackages them with endogenously synthesized lipids from the endoplasmic reticulum into very 

low density lipoproteins (VLDL) for delivery to extrahepatic tissue. While in the plasma, the 

TAGs from the VLDL can follow a similar metabolic path as that of the chylomicron.  The 

resulting remnant can pick up cholesteryl esters from high density lipoproteins in its conversion 

to low density lipoproteins or be cleared by receptors in the liver. The re-circulated lipids 

associated with lipoproteins are the source of fatty acids for plasma phospholipids and represent 

those lipids derived from the endoplasmic reticulum of hepatocytes (7, 8).   

1.2 Essential Fatty Acids. 

Evidence for the essentiality of certain types of fats emerged in the early 1900’s 

when a lipid-deficiency disease was reported in rodents. Rodents fed lipid-free diets 

developed clinical symptoms such as hindered growth, weight loss and dermatitis (9). 

Dermatitis is a skin condition that typically exhibits  red, scaly skin and dandruff, and can 

manifest itself with dermal lesions (9). Feeding a lipid source, i.e. lard, rescinded these 

symptoms and restored growth. From this experiment, it appeared that dietary fat, like 

vitamins, played a unique role in supporting basic physiological systems. However, lard 
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contains a variety of saturated, monounsaturated and polyunsaturated fatty acids and 

necessitated research with other oils and individual fatty acids to discern the curative effects. 

In subsequent studies, corn oil and linseed oil also alleviated the symptoms, while butter and 

coconut oil failed to do so (10). Further work found that feeding linoleic acid (LA) and 

arachidonic acid (AA), in isolation, cured these clinical symptoms, although a lower amount 

of AA was needed (11).  

The rodent observations of essential fatty acids resembled human observations. 

Confirmation of deficiency symptoms were seen in adult males given LA-deficient 

intravenous therapy, and LA-containing oils alleviated these symptoms (12). Similarly, 

evidence emerged when infants receiving intravenous therapy developed similar EFA-

deficiency symptoms and they also were cured with methyl-linoleate (13). These combined 

results suggested a common requirement of LA for rodents and humans.  

1.3 Polyunsaturated Fatty Acids 

            Essential fatty acids belong to a larger family, called polyunsaturated fatty acids (PUFA). 

PUFA are a group of fatty acids that have more than one double bond (14).  They are divided 

into several families, depending upon the location of the terminal double bond closest to the 

methyl end, i.e., double bonds located 3, 6, or 9 carbons from the terminal methyl carbon These 

families are non-interconvertible, since mammals lack the ability to introduce double bonds 

beyond the ninth carbon from the carboxylic acid end (15).  One of the families is the n-6 fatty 

acids. The designation for this family is due to the terminal double bond at the sixth carbon from 

the methyl end. Of all the dietary PUFAs, the n-6 family is consumed in the greatest amount in 

the Western diet (16). 
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1.4 Dietary n-6 PUFA and Tissue Arachidonic Acid 

The parent compound of n-6 PUFA family is LA (18:2n-6). LA is ubiquitous in nearly all 

commonly consumed foods in the Western diet and is also the predominant PUFA in foods 

(60%-100% of total PUFA content in virtually all commonly consumed foods). LA is found in 

the highest concentrations in vegetable oils, nuts and legumes, although significant amounts are 

also found meat, eggs and animal products. Once consumed, LA and other n-6 PUFAs can be 

delivered to tissues, as described previously, and in incorporated into the sn-2 position of 

phospholipids by a variety of acyltransferases (17). Following consumption, LA can also be 

converted to downstream n-6 fatty acids following the action of delta-6 desaturase (Figure 1). 

This enzyme is the rate-limiting step in the formation of more highly unsaturated fatty acids. LA 

is converted to gamma-linolenic acid (GLA, 18:3 n-6) via the delta-6 desaturase, which is 

immediately elongated to di-homo-gamma-linolenic acid (DGLA, 20:3 n-6) with the addition of 

two carbons by an elongase. AA (20:4n-6) is formed from DGLA via the action of delta-5 

desaturase, with the addition of a double-bond between the 5th and 6th carbons.  

Of these n-6 PUFA, LA and AA are preferentially incorporated into membrane 

phospholipids. Phospholipids are polar lipids that form the non-hydrophilic barrier of the cell 

membrane. Their unique properties are a result of a hydrophilic head, containing a phosphoester 

bond linked to a charge (choline, serine, inositol, ethanolamine) and two hydrophobic fatty acid 

tails, attached by ester bonds. The sn-1 position is reserved for saturated and monounsaturated 

fatty acids, and the sn-2 position is reserved for PUFA(18). The remodeling of fatty acid 

composition of phospholipids is carried out by a variety of  acyltransferases, which incorporate 

fatty acids into the sn-1 and sn-2 positions (19). With constant remodeling (incorporation, 
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release, re-incorporation), there appears to competition for  the sn-2 position among various 

PUFAs fatty acids, whereby LA and AA compete for incorporation (20).    

Tissue phospholipids are responsive to dietary lipid intake following delivery of these 

lipids via the various circulating lipoproteins. Some tissue phospholipids respond more acutely to 

dietary PUFA (such as plasma phospholipids), while others exhibit more long term exposure, 

i.e., erythrocytes  (21, 22). Erythrocytes are formed in the bone marrow with a life span of 120 

days and the fatty acids found in these phospholipids represent a more stable pool of dietary 

PUFA compared to the plasma phospholipid pool (23, 24)  

 

 

LA

GLA
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Delta 6 Desaturase
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Delta 5 Desaturase
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Figure 1. N-6 metabolic pathway. A series of enzymatic steps converts linoleic acid to highly 

unsaturated n-6 derivatives.  
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Arachidonic Acid Cascade 

AA is a major PUFA associated with membrane phospholipids. When released from 

phospholipids via a variety of phospholipases, AA can be enzymatically oxidized to hundreds of 

bioactive derivatives called eicosanoids. The formation of these compounds are collectively 

referred to as the AA cascade and are mediated by a group of enzymes called cyclooxygenases 

(COXs) and lipoxygenases (LOXs), as well as enzymes associated with the cytochrome P450 

system (Figure 2).    

Eicosanoids 

Eicosanoids are bioactive lipid compounds (eicosa- means 20) derived from highly 

unsaturated fatty acids with a length of 20 carbons, i.e. AA. The first eicosanoids were 

discovered from the seminal fluid of the prostate gland with smooth cell muscle relaxing 

properties and were termed “prostaglandins” (25-28). Subsequent research demonstrated that 

there were many prostaglandin-like compounds (29-31).  In 1964, it was discovered that AA was 

the parent compound of these prostaglandins (32). 
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Figure 2. Arachidonic acid cascade. AA is converted to eicosanoids through lipoxygenase 

(LOX), cyclooxygenase (COX), and cytochrome P450 pathways. 

Cyclooxygenase pathway 

Prostaglandins are produced by the action of cyclooxygenase (COX) and are 

characterized by the addition of two molecules of oxygen forming a distinct endoperoxide ring. 

There are two isoforms, COX-1 and COX-2. COX-1 is constitutively expressed at relatively low 

levels in all tissues, and in some tissues is the only isoform, i.e., platelets. It has been identified 

to be important in a number of tissues. For example,  it is involved in maintaining the integrity of 

the gastric mucosa (33), modulation of renal blood flow (34), and regulation of platelet 

aggregation (35). In contrast, COX-2 is the inducible isoform. It is expressed following 

stimulation of growth factors and proinflammatory cytokines, and as such, is the target of a 

number of selective COX-2 inhibitors such as Celebrex® (36). COX-2 is involved in 
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inflammation, cancer and cardiovascular disease (CVD) and increases in response to injury. The 

COXs are the committed steps for the conversion of AA to prostaglandin (PG)H2, the parent 

compound to the 2-series prostaglandins (i.e., PGE2), thromboxane (TXA2) and prostacyclin 

(PGI2) (37).  

The LOXs are a family of lipid oxygenases that incorporate molecular oxygen on AA at 

specific sites forming lipid peroxide derivatives (38). If the oxygen is attached at carbon 5, it is 

referred to as a 5-LOX. If it incorporates oxygen at carbon 12, it is a 12-LOX, carbon 15, a 15-

LOX, and so. The LOX pathways produce a variety of proinflammatory eicosanoids (39). 5-

LOX is responsible for the formation of leukotrienes (LTs), such as LTB4, LTC4, LTD4, LTE4 

(40).  They are potent inflammatory mediators produced by a variety of tissues. LTB4 is a key LT 

produced by leukocytes that is involved in activation of neutrophils (41), while the cysteinyl 

leukotrienes (LTC4, LTD4, LTE4) are key mediators of asthma and anaphylaxis. Even vascular 

tissue, such as the aorta produces LOX products that along with leukocytes are believed to be 

critical for the progression of cardiovascular disease (42, 43) 

1.6 Inflammation 

Inflammation is a biological response to injury. Immune cells contribute to this response 

in a variety of ways, among them through the production of bioactive eicosanoids, such as PGs, 

LTs and TXA2 and are a target for anti-inflammatory therapies, such as non-steroidal anti-

inflammatory drugs (NSAIDs) (i.e., aspirin, Celebrex). Chronic and over-production of 

eicosanoids have been linked to arthritis, inflammatory bowel disease, atherosclerosis, chronic 

hepatitis, liver cirrhosis, asthma and psoriasis (44-48). Arachidonic acid is of interest because it 

is the precursor for the inflammatory eicosanoids and a number of recent reviews have outlined 

the role of dietary lipids and eicosanoids in inflammation and the immune response (47-51). 
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These reviews highlight the importance of antagonizing AA metabolism as a targeted 

intervention for treatment. Since tissue AA content influences inflammation, LA is thought to 

influence inflammatory biomarkers by enriching the AA pool (48), and therefore, contribute to  

inflammation in tissues (52).  However, the link between LA and inflammatory biomarkers has 

not been substantiated and increasing levels of LA may in fact reduce inflammation (53, 54)  

Therefore, there appears to be contradictory evidence regarding the link between LA and AA-

mediated inflammation.  

1.5 CVD 

 A variety of eicosanoids are implicated in the pathogenesis of CVD and involves 

platelets, endothelial cells, macrophages, erythrocytes, mast cells, neutrophils, granulocytes, 

lymphocytes and vascular smooth muscle cells (55, 56). Platelets are key initiators and 

promoters in this process (57) and tissue AA content is positively associated with TXA2 

production (a pro-aggregatory eicosanoid) and platelet aggregation (58, 59).  When activated, 

platelets produce TXA2 and in turn recruit and activate surrounding platelets, resulting in 

vasoconstriction, platelet vascular wall interaction, the release of cysteinyl leukotrienes, more 

TXA2 production and a plethora of a molecules (i.e., chemokines) that activate and recruit 

monocytes, leukocytes and lymphocytes, key mediators of vascular inflammation (57, 60, 61).  

Inhibition of platelet vascular wall interaction reduces atherosclerotic lesion formation (62), and 

inhibition of platelet COX activity is believe to be an underlying mechanism for the anti-

atherogenic effects of NSAIDs, such as aspirin (63).  

Following recruitment of monocytes to the subendothelium, activation/transformation of 

macrophages generate reactive oxygen species, tissue factor procoagulants, proinflammatory 

cytokines and a variety of eicosanoids via the 5-, 15-LOX and COX-2 pathways (56, 64). 
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Increased expression of 15-LOX is believed to be involved in oxidation of LDL (56, 65). 

Enrichment of macrophages with AA significantly increases the production of eicosanoids in 

general (14, 66), promoting the atherogenic process.  

These data linking AA metabolism and cardiovascular disease provides some concern as 

to the link between its precursor LA and risk. If dietary LA were to be converted to AA and 

further enrich tissues with AA, this could contribute to the disease process. However, a recent set 

of reviews suggest that LA may reduce risk of CVD (67, 68). 

1.7 Cancer 

Inflammation is an underlying mechanism linked to many cancers i.e. hepatitis, 

inflammatory diseases of the bowel (69-73), and bioactive lipids from the AA cascade are key 

mediators of inflammation. In particular, COX-2 and its downstream AA product, PGE2, has 

singled out as a key cancer promoter (74). Wang and Dubois elegantly describe how COX-2 and 

PGE2 in particular are involved in proliferation, immuno-suppression, angiogenesis, apoptosis 

and metastasis and invasion (75). Overexpression of COX-2 is a characteristic of many 

malignancies (76-78) and inhibition or down regulation of this enzyme attenuates tumorigenesis 

(79, 80). It is believed that PGE2 is the key mediator in this process (81). PGE2 induces intestinal 

epithelial cell proliferation and COX-2 expression in adenomas in mice with a defect in the Apc 

gene (mutation of an early gene involved in human colorectal cancer) (82). Similarly, expression 

of 15-prostaglandin dehydrogenase and the ability to degrade PGE2 is reduced in tumors 

compared to normal tissue (78). Coupled with over expression of COX-2, enriching tissues with 

AA would augment PGE2 levels and enhance its protumorigeneic activity. This was observed 

when Apc
Min/+ mice were treated with PGE2 (83). 
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In support of these results, inhibition of the conversion of LA to prostaglandins, through 

AA, attenuates tumorigenesis (79, 84-86). This is particularly important from a diet perspective. 

Antagonism of AA metabolism (either with NSAIDs or long chain omega-3 fats) inhibits 

tumorigenesis, and by-passing these inhibitions restores tumor load. For example, the omega-3 

fatty acid EPA may reduce tumor load by attenuating AA content, and therefore the AA cascade 

(85). Most importantly is that the AA cascade is restored with dietary AA, even when fed 

alongside EPA (87). Critically important to this discussion is the fact that selectively inhibiting 

delta-6 desaturase in mice fed a diet containing LA, reduced tumor number by 35%, while the 

concomitant addition of AA with the inhibitor had no effect as compared to controls (88). These 

data are consistent with the extensive literature outlining the protective effects of NSAIDs on 

colorectal cancer (89, 90). 

1.8 Dietary Linoleic Acid and Tissue Arachidonic Acid 

LA is the sole contributor to tissue AA in the absence of other dietary n-6 PUFA. This 

was first demonstrated in rodent studies. When rodents were fed lipid-deficient diets, a non-

linear, dose-dependent enrichment of tissue AA occurred with increasing levels of dietary LA.  

In these studies, the diets were devoid of other PUFA, essential and non/conditionally-essential, 

that could contribute to the maintenance of physical properties required for normal cell function 

(i.e., membrane fluidity). In compensation, this could potentially exacerbate the rate and extent 

of this conversion. However, in the presence of other PUFA with similar properties, such as long 

chain n-3 PUFA, this relationship becomes more complicated in that they can be a suitable 

replacement for AA in tissues. Therefore, providing rodents with diets containing only LA may 

demonstrate that LA can and is metabolized to AA, eventually reaching a threshold (11), but the 

ability to quantitatively extrapolate these results to humans is uncertain. 
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In humans, LA is the major dietary PUFA in the Western diet at 12-17 grams per day for 

women and men, respectively (91), or approximately 6% of energy. The consumption of  LA 

coincides with the commercialization and availability of vegetable oils (92). This intake is 

complemented by consumption of other PUFA where each PUFA family competes for 

metabolism and incorporation into membrane phospholipids. If n-6 PUFA is the predominant 

family, then the fatty acids from this family should theoretically dominate membrane 

phospholipids.  

The minimum requirement for dietary LA has been estimated to be less than 2% of 

energy in humans (13, 93), and the levels of LA in the diet to achieve essentiality in infants could 

be as low as 0.5% of energy (13, 94). In adults, it has been reported that tissue levels of AA no 

longer change in response to increasing dietary amounts of LA above 2% energy (95). However, 

others report changes at higher intakes of LA (96). As a result, these n-6 rich diets conjure up 

unwanted scenarios of dose-dependent enrichment of tissues with AA and subsequent chronic 

and over-production of bioactive eicosanoids (97, 98). Proponents of this view recommend 

reducing LA levels (97, 99); however, there is little clarity as to what those levels should be. 

Some recommend consumption of LA be limited to less than 2% of energy (100), while other 

suggest any reductions can be beneficial (97, 98, 101).  

The recommendation of limiting LA to less than 2% was most likely based on the 

evidence that AA content in neutrophils was correlated with LA only when those intakes were 

below 2% of energy, where higher intakes had no effect (95). Similar evidence was shown in 

plasma cholesterol esters where AA content was unaffected by increasing intakes of LA at levels 

greater than 2% (102). Furthermore, a number of studies reported inverse relationships with 
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dietary LA and changes in tissue AA content (103, 104).With these discrepancies, controversy 

exists as to whether dietary LA does influence tissue AA content. 

In summary, there is little dispute in the literature that when LA intake is consumed at 

levels less than 2% energy there may be a positive relationship between dietary intake and 

changes in tissue AA content. However, will this relationship be observed when those levels are 

above 2% energy? Furthermore, since the current levels of dietary LA has been estimated to be 

approximately 6% of energy, and this essential fatty acid is typically consumed within a matrix 

of other PUFA, should the general public be concerned? 

With the conflicting evidence, compounded by pundits who proclaim an unmistakable 

link between dietary LA and tissue AA levels, the controversy regarding this issue continues. 

Recent review articles state that “the higher concentrations of LA typically found in the Western 

diet results in a greater conversion of LA to arachidonic acid” (105). Therefore as a result, 

“excessive n-6 precursors promotes formation of AA...high  intakes of n-6 PUFA may contribute 

to development of neuroinflammation” (106).  Even more pronounced statements describe the 

potential consequences of increased LA in the Western diet: 

Because of the increased amounts of omega-6 fatty acids in the Western diet, the 
eicosanoid metabolic products from AA, specifically prostaglandins, thromboxanes, 
leukotrienes, hydroxy fatty acids, and lipoxins, are formed in larger quantities… Thus, a 
diet rich in omega-6 fatty acids shifts the physiological state to one that is prothrombotic 
and proaggregatory, with increases in blood viscosity, vasospasm, and vasoconstriction 
and decreases in bleeding time..; (101).  
 

In summary, pundits proclaim the detrimental impact of increase dietary LA on tissue 

AA, and therefore chronic diseases.  Interestingly, no one has systematically reviewed the 

relationship between dietary LA and changes in tissue AA content, particularly within the 

context of a Western diet.  
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1.9  Research Objective 

The objective of this study was to explore the relationship between dietary LA and 

changes in tissue AA content within the context of a Western-type diet. This objective will be 

accomplished via the following specific aims: 

 

1. To determine if changes in LA consumption are correlated with changes in AA content of 

phospholipids in plasma/serum and erythrocytes in studies where subjects are consuming, for the 

most part, diets reflective of those in the general population.   

 

2. If dietary LA does not modify tissue AA levels, determine if that effect is the result of tissue 

saturation of AA or inhibition of conversion of LA to AA.
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Chapter 2 

 
 
 
 

Increasing Dietary Linoleic Acid Does Not Increase Tissue Arachidonic Acid Content in 

Adults Consuming Western-Type Diets 
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ABSTRACT 

 

Background: Linoleic acid, with a DRI of 12-17g/d, is the most highly consumed 

polyunsaturated fatty acid in the Western diet and is found in virtually all commonly consumed 

foods.  The concern with dietary linoleic acid, being the metabolic precursor of arachidonic acid, 

is its consumption may enrich tissues with arachidonic acid and contribute to chronic and 

overproduction of bioactive eicosanoids. However, no systematic review of human trials 

regarding linoleic acid consumption and subsequent changes in tissue levels of arachidonic acid 

has been undertaken. Objective: In this study, we reviewed the human literature that reported 

changes in dietary linoleic acid and its subsequent impact on changing tissue arachidonic acid in 

erythrocytes and plasma/serum phospholipids. Design: We identified, reviewed, and evaluated 

all peer-reviewed published literature presenting data outlining changes in dietary linoleic acid in 

adult human clinical trials that reported changes in phospholipid fatty acid composition 

(specifically arachidonic acid) in plasma/serum and erythrocytes within the parameters of our 

inclusion/exclusion criteria. Results: Decreasing dietary linoleic acid up to 90% was not 

significantly correlated with changes in tissue arachidonic acid levels (p=0.39). Similarly, when 

dietary linoleic acid levels were increased six fold, no significant correlations with tissue 

arachidonic acid levels were observed (p=0.72). However, there was a positive relationship 

between dietary gamma-linolenic acid and arachidonic acid on changes in tissue arachidonic 

levels. Conclusions: Our results do not support the concept that modifying current intakes of 

dietary linoleic acid has an effect on changing tissue levels of arachidonic acid in adults 

consuming Western-type diets. 
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Introduction 

Arachidonic acid (AA) is a potent bioactive molecule. When released from membrane 

phospholipids, it is converted to a variety of bioactive compounds, called eicosanoids.  These 

oxidized lipid molecules are related to a number of chronic diseases including cardiovascular 

disease, cancer and inflammation (48, 75, 107, 108). Enrichment of AA in tissues is positively 

correlated with the production of eicosanoids. Linoleic acid (LA) is the major dietary 

polyunsaturated fatty acid (PUFA) in the Western diet and is a metabolic precursor to AA, linked 

biochemically via two desaturases and an elongase. Typical intakes of LA are 12-17 grams per 

day for women and men, respectively (91), or approximately 6% of energy. In the absence of 

other n-6 PUFA (including dietary AA), dietary LA is the sole contributor to tissue AA. This 

relationship had been established in experimental rodent models where dietary LA was 

correlated with tissue AA content in a non-linear relationship in rats provided fat-free 

background diets (109) and lipid-rich diets (110). 

Recent reviews suggest this relationship may exist in adult humans consuming a typical 

Western-type diet (105, 106) and some have recommended limiting LA intake as a way to help 

reduce tissue AA levels (97, 101). Certainly, this relationship had been reported in subjects 

consuming diets containing LA at levels less than 2% of energy (95). There are, however, a 

number of recent papers suggesting that increasing dietary LA does not increase tissue AA 

levels, but in fact may have an inverse relationship (111, 112). To compound the complexity of 

this relationship, the family of n-6 PUFA are, in general, synonymously identified to dietary LA, 

while seemingly ignoring other members who can contribute to tissue AA, i.e., dietary gamma-

linolenic acid (GLA) and AA. 
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This study was designed to explore the relationship of dietary LA and tissue AA. This is 

the first study to review the literature as to whether increasing dietary LA is positively correlated 

with increasing tissue AA content, and whether reducing dietary LA has the opposite effect in 

adults consuming Western-type diets. We further investigated what potential contributions other 

dietary n-6 PUFA may have on tissue AA content. This study was limited in scope and did not 

address other controversial issues related to dietary PUFA or their health effects.  

Methods 

The aim of this paper was to identify, review, and evaluate all peer-reviewed published 

literature presenting data outlining changes in dietary LA in adult human clinical trials which 

report changes in phospholipid fatty acid composition (specifically AA) in plasma/serum and 

erythrocytes. Further refinements to the search strategy included reported changes in tissue AA 

levels following changes in dietary intake of AA and its various n-6 PUFA precursors, i.e., LA 

and GLA. Published articles meeting eligibility criteria from 1970 to present were reviewed, of 

which 4336 articles were retrieved from May 2009 - November 2009. The primary search engine 

used was PubMed.gov (The National Library of Medicine, National Institutes of Health), along 

with several prominent nutrition-based clinical journals, i.e., American Journal of Clinical 

Nutrition, British Journal of Nutrition, and any additional citations in articles reviewed. The 

search terms included linoleic acid, γ-linolenic acid, gamma-linolenic acid, arachidonic acid, 

omega-6, n-6, olive oil, soybean oil, sunflower oil, safflower oil, corn oil, omega-3, n-3, plasma, 

erythrocyte, red blood cell and phospholipid. After an initial review of the papers, 4043 were 

excluded because of insufficient data or studies that did not investigate our parameters. Of the 

293 papers that passed the initial review process, each was reviewed by two independent 

investigators (BR and JW) and thirty-six were acceptable by both reviewers. Those papers that 
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were not accepted (n=249) were rejected because baseline data was not sufficiently reported, 

data for target tissues was not presented, insufficient data was present and did not allow for 

appropriate calculations, background diets were not sufficiently described, or they included 

supplementation of restricted food items (i.e., long chain n-3 PUFA). 

The following eligibility criteria applied to all accepted articles. Subjects had to be 18 

years or older with no known metabolic disorder that would influence tissue AA content. 

Sufficient data on LA, GLA and/or AA consumption (pre- and post-intervention) was required. 

The nature of the intervention (i.e., capsules, oils or dietary modifications) had to be presented. 

The fatty acid data (plasma/serum and/or erythrocyte) had to be determined from fasting patients, 

pre- and post-supplementation.  Baseline and post-treatment tissue phospholipid fatty acid 

composition had to be provided. On occasion, percent changes in tissue fatty acid composition 

were provided and this data was used. Only those papers published after 1970 due to improved 

gas chromatographic methods were accepted.  Articles were automatically excluded if subjects 

were less than 18 years old, pregnant or nursing, consuming supplements containing long chain 

n-3 fatty acids or supplemented fish intake above and beyond their typical dietary regimen, or 

using known inhibitors of AA metabolism, such as non-steroidal anti-inflammatory drugs 

(NSAIDs). Thirty-six articles were found to meet all of the inclusion-exclusion criteria. 
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Articles accepted (36) 

Review of papers by two 

reviewers for relevance and 

inclusion (293) 

Articles that included baseline 

diet and/or supplementation 

amount and phospholipid data 

(293)

Articles retrieved from 

electronic sources (ex. 

PUBMED, AJCN, BJN etc..) 

and references  (4336) Articles not accepted due 

to insufficient or missing 

data;  or otherwise not 

suitable for our research 

objective (4043)

Articles not accepted by both 

reviewers because of design 

flaws, lack of sufficient data 

(dietary PUFA or tissue) or 

failing inclusion/exclusion 

criteria. (Supplementation of 

long-chain n-3 PUFA or fish/fish 

oil; data for target tissues not 

presented i.e. CE changes but not 

PL; PL species but not total PL) 

(249)

 

Figure 3. Schematic outlining the systematic review 
 

Once accepted, data on dietary n-6 fatty acid intake (% of calories or g/d) and tissue AA 

content were extracted. Study design, number and gender of subjects, method of supplementation 

(i.e., type of oil, capsules or food component used) were recorded. Those studies involving 

dietary LA as percentage of calories or g/d and its effects on changes in tissue AA content are 

summarized in Tables 1-3.  Similarly, those studies involving dietary GLA (mg/d) and AA 

(mg/d) are summarized in Tables 4 and 5. If a study met the eligibility criteria and contained 

more than one comparison, each comparison was reported as a separate data point. 

Baseline tissue AA levels were defined as relative abundance of AA in tissue 

phospholipids prior to dietary supplementation (or reduction) of the corresponding dietary n-6 

PUFA of interest (i.e., LA, GLA or AA). In the case of cross-over designs, baseline fatty acid 

composition was established following a washout period or after supplementation of a control 

diet if there were no or only minor changes in the dietary  n-6 PUFA content. For example, a 
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supplement rich in oleic acid (a monounsaturated fatty acid typically used as a control and 

known to have a neutral effect on tissue AA content) could be used as a control lipid (or oil) 

prior to supplementation of an equal amount of a lipid (or oil) rich in LA. Percent change for 

each dietary n-6 fatty acid of interest was used to standardize the relative differences between 

baseline intakes and intervention intakes following the experimental period using the following 

formula:  

intervention intake  -  baseline intake  x 100 

                     baseline intake 

The levels of intake were based on the relative caloric amount (% of calories), and when this data 

was not available absolute intake levels (mg/g or g/d) were used. Percent change for tissue AA 

content was used to standardize the relative differences between baseline levels and intervention 

levels following the experimental period using the following formula:  

post-intervention content  -  baseline content  x 100 

                     baseline content 

Statistical Analysis 

The overall linear correlation between percent change of dietary n-6 fatty acids and 

percent change of tissue AA was computed using the Proc Corr procedure in SAS 9.2 (SAS 

Institute Inc. SAS Campus Drive, Cary, North Carolina). The correlation matrix and the T 

statistic tested for correlation and statistical significance, respectively. For the linear correlations, 

the equation of the line was computed, and represented in y=mx+b for those that exhibited 

linearity. Data not resembling a linear relationship (i.e. dietary GLA and AA) utilized a 

polynomial growth curve from SAS General Linear Model and t-tests for model parameters 

tested for significance.  P-values less than or equal to 0.05 were considered significant. The Y 
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values represent changes of AA (% from baseline) and the X values represent the changes of the 

various dietary n-6 PUFA (% from baseline or mg/g supplemented).  In addition to the overall 

correlation test, the statistical significance for each individual data point (for changes in tissue 

AA), as reported by the authors in their respective manuscripts, was identified in each graph. If 

the changes from baseline were significantly different the data was represented by triangle. If the 

changes from baseline were not statistically different, they were represented by a diamond. 

Results 

Twelve comparisons reported decreases in LA intakes (-12% to -90%) and no significant 

correlations were associated with changes in plasma/serum phospholipid AA content (r2=0.05, 

p=0.44, y= (-0.090*x)-6.56) (Figure. 4 and Table 1). Only one study of the twelve reported a 

significant change, a 4.1% increase in AA content, following a 29% reduction in LA intake 

(113).  

Increases in dietary LA, ranging from 12%-550%, were not significantly correlated with 

changes in plasma/serum phospholipid AA content (r2=0.03, p =0.45, y= (-0.002*x)-0.09) 

(Figure. 5 and Table 1). Of the seventeen comparisons, only four studies reported significant 

changes in AA levels when dietary LA levels were increased; three studies reported 3-20% 

reductions following 12%-110% increases in LA consumption (103, 113, 114) and only one 

study reported a significant increase in AA content (10%) following an 86% increase in LA 

intake (114). Sub-dividing the studies by design (crossover versus non-crossover) had no effect 

on the results (data not shown). Similarly, in those studies that only reported absolute levels of 

LA supplementation (g/d), increasing LA supplementation was not significantly correlated with 

changes in plasma/serum phospholipid AA content (r2=0.06, p=0.64, y=( 0.793*x)+1.17) 

(Figure. 6 and Table 2). Of the fourteen comparisons, only two were significantly different, one 
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resulted in an increase in AA content by 3% following supplementation of 2.24 g/d of LA (115) 

and the other resulted in a reduction of AA content by 7% following supplementation of 0.86 g/d 

(116).  

 Similar comparisons were made in erythrocytes with increasing and decreasing intakes of 

LA, although the number of studies were more limited. Increases in dietary LA, ranging from 

12%-100%, were not significantly correlated with changes in tissue AA content (r2=0.06, 

p=0.75, y = (- 0.133*x)-1.24) (Figure. 7). Reducing dietary LA intake (-12% to -70%) was not 

significantly correlated with changes in tissue AA content (r2=0.02, p=0.77, y = (-

0.014*x)+0.17) (Figure. 8). In addition, out of the seven studies, only one study reported a 

significant change where decreasing dietary LA intake by 29% resulted in a 4% increase in AA 

content (113).  

 Seven studies met our criteria for the effects of GLA supplementation on changes in 

plasma/serum phospholipid AA content (Figure. 9). There appeared to be a dose dependent 

increase in AA content with increasing intakes of GLA (ranging from 360-6000 mg/day). This 

positive correlation (r²=0.75, p=0.03, y= (0.004*x)+7.36) was significant with a linear regression 

model, but not with a non-linear (polynomial) regression model (p=0.19). Of the six AA data 

points, four of them reported statistically significant increases.   

 Similiarly, increasing dietary AA (0.5 g/d to 6 g/day) was positively correlated with 

increases in plasma/serum phospholipid AA content using a linear regression model (r²=0.83, 

p=0.02, y= (0.018*x)+38.60) (Figure. 10), but not with a non-linear (polynomial) regression 

model (p=0.16). All data points were reported as significantly different (Table 4).
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Table 1.  Studies outlining the effects of decreasing dietary linoleic acid levels (% energy) from baseline on changes in plasma/serum phospholipid arachidonic acid content
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Author, 

(reference)    
Study design Subjects               Diet length Diet comparison LA (% change)  

Baseline to 

intervention                                     

∆AA (%) 

change 

  Comments           

Lichtenstein (117) Randomized 
double-blind 
crossover  

N=30 35 days Soybean oil diet 
(baseline) compared 
to high oleic acid 
soybean oil diet 
 
 
 

-82 
(11%-1.9%) 

N.S. Pooled data of men and women. Baseline diet of 10.96% 
energy closest to DRI for LA. AA did not differ among 
remaining groups tested either 
 

Lasserre (103) Randomized 
crossover 

N=24 5 months Peanut oil diet 
(baseline)  compared 
to milk fat diet 
 
Peanut oil diet 
(baseline) compared 
to low erucic acid 
rapeseed oil (canola 
oil)  diet 

-90 
(6.5%-0.6% ) 

 
 

 
-30 

(6.5%-4.5%) 

N.S. 
 
 
 
 
 

N.S. 
 

Used peanut oil group b/c close to DRI for LA. Subjects 
were nuns in monastery.  
 
 
 
Used peanut oil group b/c close to DRI for LA. Subjects 
were nuns in monastery.  
 

Liou (118) Randomized 
crossover 

N=24 4 weeks High linoleic 
sunflower oil (diet) 
compared to high 
oleic acid safflower 
oil (diet) 

-63 
(10.5%-3.8%) 

N.S. Incorporated test oils into baked foods (cookies, breads), 
mayonnaise, salad dressing. AA data presented in graphs, 
not tables. Fish intake was avoided for all groups. AA PL 
content did not differ between sequence of diets going 
from high LA to low LA or vice versa. Study address low 
or high LA with constant ALA at 1% 
 

Vega-Lopez (119) Randomized 
crossover 

N=15 35 days Canola oil diet 
compared to palm 
oil diet 
 

-50 
(6.5%-3.3%) 

N.S. Canola oil in mixed foods was replaced by palm oil in 
mixed foods.  
AA did not change among all three dietary groups. 
Canola oil diet is baseline because closest to DRI LA 
intake.  

Geppert (120) Randomized 
double- blind  
intervention  

N=54 8 weeks Baseline diet 
compared to LA 
reduced diet (using 
olive oil capsules) 

-12 
(5.8%-5.1%) 

N.S. Used olive oil capsules with vegetarians. 

King (113) Randomized 
parallel 

N=66 6 weeks Baseline diet 
compared to low fat 
diet.  

-29 
(10%-7.1%) 

+4.1a Used modified food items for diets containing different 
amounts of fat. Reported AA PL in % change.  
 

Li (122) Parallel 
intervention  

N=17 28 days High LA diet to 
moderate LA diet 
using canola 
oil/canola margarine 
 

-48 
(13.5%-7%) 

 
 
  

N.S 
 
 
 
 

Subjects were given diet more than twice DRI for LA and 
then given diet resembling the DRI for LA. All groups 
were asked to not consume fish.  
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aPercent change (±) from baseline in AA that is significant (p<0.05). Non-significance is denoted by N.S. 

Abbreviations: AA, arachidonic acid; DRI, Dietary Reference Intake; LA, linoleic acid  

High LA diet to 
normal LA diet 
using canola 
oil/canola margarine 
 

-39 
(11.9%-7.3%) 

 
 

  
          N.S. 

 
 
 

Mantzioris (123) 
 

Parallel 
intervention 

N=15 4 weeks Control diet 
(sunflower oil) 
group compared to 
intervention diet 
(flaxseed oil) 

-57 
(7.8%-3.3%) 

N.S. Control group consumed relatively close to DRI for LA 
while intervention group reduced LA by more than half. 

Goyens (121) Double-blind 
intervention  

N=19 6 weeks Reduced LA in food 
items (margarines, 
pastries, baked 
goods)  

-57 
(7%-3%) 

N.S. Test oils consumed in margarine and pastries.  Prohibited 
consumption of fish or marine foods in all groups.  
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 Table 2.  Studies outlining the effects of supplementing dietary linoleic acid levels (g/day) on changes in plasma/serum phospholipid arachidonic acid content. 

Author, 

(reference) 

Study design Subjects Diet length Diet comparison LA  

(% change) 

Baseline to 

intervention                              

∆ AA (%) change Comments 

Thijssen (124) Randomized multiple 
crossover 

N=45 
 

5 weeks Stearic acid  diet to 
oleic acid diet in 
food items (using 
margarines, breads, 
sponge cakes) 
 
Oleic Acid to 
Linoleic Acid food 
items (margarines, 
breads, sponge 
cakes) 
 

14 
(2.1% -2.4%) 

 
 
 
 

 
287 

(2.4%-9.3%) 

N.S. 
 
 
 
 
 

 
N.S. 

No order to diets 
given. Subjects 
received all 3 diets 
with varying 
amounts of LA.   
 
 
 

Lichtenstein (117) Randomized 
double-blind 
crossover 

N=30 35 days Baseline soybean oil 
diet compared to 
Low saturated fat-
soybean oil diet. The 
soybean oils varied 
in linoleic acid 
composition 
 
Baseline high oleic-
soybean oil diet to 
low ALA-soybean 
oil diet 

15.8 
(11% -12.7%) 

 
 
 
 
 
 

552 
(1.9 %-2.5%) 

N.S. 
 
 
 
 
 
 
 

N.S. 
 

Pooled data of men 
and women. Five 
diets of random 
order. Subjects 
visited metabolic 
kitchen 3 times 
week. Varying LA 
amounts using 
modified soybean 
oils.  

Vega-Lopez (119) 
 

Randomized 
crossover  
 
 
 
 
 
 

N=15 
 

35 days Canola oil diet 
compared  to 
soybean oil diet 

64.2 
(6.5%-10.7%) 

N.S. Canola oil in mixed 
foods was replaced 
by soybean oil in 
mixed foods. AA did 
not change among all 
three dietary groups. 
Canola oil diet is 
baseline because 
close to the DRI for 
LA. 
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Liou (118) Randomized 

crossover  
N=22 

 
4 weeks Low LA diet (high in 

oleic acid safflower 
oil) compared to high 
LA diet (high in 
sunflower oil) 

176 
(3.8%-10.5%) 

N.S. AA PL content 
presented as graphs, 
not numerically. Fish 
was avoided in all 
dietary groups. ALA 
intake was kept 
constant between 
low/high diet 
  

 

Valsta (96) Randomized 
crossover  

N=39 
 

6 weeks Habitual diet 
compared to high 
linoleic acid 
trisunflower oil diet.  

86 
(4.2%-7.8%) 

+10 Fish cut in half in all 
dietary groups. Has a 
baseline for before 
each diet. Used 
trisunflower oil in 
margarine, food oil, 
salad dressing, bread, 
cake and cookies, in 
place of habitual 
foods.  
 

Raatz (114) Randomized 
crossover  

N=10 
 

28 days Low fat diet (20% 
energy) compared to 
high fat diet (45% 
energy).  
 

100 
(6%-12%) 

-16 Modified foods rich 
in linoleic acid. 
Random order to 
diet, so baseline was 
chosen based on DRI 
of LA. Used washout 
period of 21-28 days 

Lasserre (103) Randomized 
crossover 

N=24 
 

5 months Peanut oil diet 
compared to 
sunflower oil 

111 
(6.5%-13.7%) 

-20 Used peanut oil 
group b/c close to 
DRI for LA.  

Innis (111) 
 

Randomized 
crossover  
 

N=24 
 

8 weeks 
 

Low LA diet  to high 
LA diet 
 

176 
(3.8%-10.5%) 

 

N.S. 
 

Controlled for 
dietary AA. 
 

King (113) Randomized parallel  
intervention 

N=33 6 weeks Baseline diet 
compared to 
moderate fat diet. 

13 
(10.3%-1.6%) 

-3.2a Used modified food 
items for diets 
containing different 
amounts of fat. 
Reported AA PL as 
% change.  
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aPercent change (±) from baseline in AA that is significant (p<0.05). Non-significance is denoted by N.S. 

Abbreviations: AA, arachidonic acid; DRI, Dietary Reference Intake; LA, linoleic acid  

 
 
 
 

Li (122) Parallel intervention  N=10 
 
 
 
 
 
 
 

N=7 
 
 

14 days 
 
 
 
 
 
 
 

14 days 

Baseline Western 
diet to intervention 
diet increased in LA 
intake using 
safflower oil 
 
 
Baseline Western 
diet to intervention 
diet increased in LA 
intake using 
safflower oil 
 

17.8 
(10.1%-1.9%) 

 
 

 
 
 
 

82.4 
(7.4%-13.5%) 

N.S. 
 
 
 
 
 
 
 
 

N.S. 

Used safflower 
oil/safflower 
margarine to increase 
LA in diet to almost 
twice DRI of LA. 
AA did not differ 
among all groups in 
study.  
 
 

Montoya (125) 
 

Sequential 
interventions  

N=41 
 

4 weeks From palm oil based 
diet compared to 
olive oil based diet. 
 
Olive oil based diet 
to sunflower oil base 
diet 

16 
(3.2%-3.7%) 

 
 

229.8 
(3.7%-12.2%) 

N.S. 
 
 

 
N.S. 

Used nuns and 
priests. Everyone 
consumed same 
sequence of diets.  
AA did not change 
among the three test 
diets. No crossover, 
subjects were their 
own controls. 
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Table 3.  Studies outlining the effects of supplementing dietary linoleic acid levels (g/day) on changes in plasma/serum phospholipid arachidonic acid content. 

 
Author, 

(reference) 
Study design Subjects Diet length LA source, amount  supplemented (g/d) ∆ AA (%) change Comments 

Thies (127) 
 

Randomized, double-blind, parallel 
intervention 
 

N=8 12 weeks 
 

Oil blend (0.64) 
 
 
Placebo oil (0.9) 
 
 

N.S. 
 
 

N.S. 
 
 

Different oil blends were 
sources of LA 

Geppert (116) 
 

Randomized double- blind parallel 
intervention  
 

N=20 8 weeks 
 

Oil blend (0.86) 
 

-7a 
 

Blend palm, rapeseed and 
sunflower oil 

Johansson (128) 
 

Randomized, double-blind, crossover 
 

N=12 4 weeks 
 

Sea buckthorn berry oil (0.90) 
 

N.S. 
 

Sea buckthorn berry oil is 
17.9% LA 

Kew (129) 
 

Double-blind, parallel intervention 
 

N=42 4 weeks 
 

Olive oil (0.92) 
 

N.S. 
 

 

Buckley (130) Double-blind parallel intervention 
 

N=45 
 
 

4 weeks 
 

Olive oil (0.95) 
 
 

N.S. 
 
 

 

Yaqoob (131) 
 

Randomized, double- blind parallel  
intervention 

N=8 per 
group 

12 weeks 
 

Placebo (coconut/soybean oil) (1.0) 
 
Olive oil (1.2) 
 
Sunflower oil (6.95) 

N.S. 
 
 

N.S. 
 

N.S. 
 
 

 

Wallace (132) 
 

Randomized, double- blind  parallel 
intervention 
 
 

N=8 
 
 

N=8 

12 weeks 
 

Oil blend (1.52) 
 
 
palm/soybean oil (1.7) 
 

N.S. 
 
 

N.S. 
 
 

 

Miles (133) 
 

Randomized, double-blind parallel 
intervention  

N=8 12 weeks 
 

Placebo (palm/sunflower oil) (2.07) 
 

N.S. 
 
 

 

Grimsgaard (115) 
 

Double-blind, parallel intervention 
 

n=78 7weeks 
 

Corn oil (2.24) 
 

+3.1 
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Conquer (134) 
 

Double-blind, parallel intervention N=24 42 days 
 

Corn oil (2.39) 
 

N.S. 
 
 

 

Finnegan (135) 
 

Double-blind, parallel intervention 
 

N=50 6 months 
 

Safflower/sunflower  (11.6) 
 

N.S. 
 

Test oils provided as 
margarine and capsules 

Anderson (126) 
 

Parallel intervention 
 

N=8 
 
 

N=9 

3 months 
 

Olive oil (0.2) 
 
 
Olive oil (0.2) 
 

N.S. 
 
 

N.S. 
 

Olive oil supplement 
 
Provided LA for two 
different groups 
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Table 4.  Studies outlining the effects of supplementing dietary gamma-linolenic acid on changes in plasma/serum phospholipid arachidonic acid content. 

 
Author, (reference) Study design Subjects Diet length GLA source,  amount 

supplemented (mg/d) 

∆ AA (%) 

change 

Comments 

Thavonen (126) 
 

Randomized, double-
blind crossover 
 

N=15 3 weeks Black current seed oil (378) N.S. 
 

Subjects aged 55-75 years old. 

Mills (127) 
 

Randomized double-
blind parallel 
intervention 

N=10 28 days Borage oil (1300) +12 
 

AA data available for only pre 
and post intervention (28 days). 

Miles (128) 
 

Randomized double-
blind intervention 

N=8-12 12 weeks Borage oil capsules (2000) 
 

+15 
 

Consumed capsules for 12 
weeks. AA only increased after 
the 8th week, no difference 
after 8th week.  

Theis (129) 
 

Double-blind parallel 
interventions 

N=8 12 weeks GLA-rich triacylglycerol capsules 
(770) 

+27a 
 

Subjects consumed capsules for 
12 weeks. AA changed only on 
12th week. 

Yaqoob (130) 
 

Double-blind parallel 
intervention  
 

N=8 12 weeks Evening primrose oil (1062) 
 

N.S. 
 

 

Ebden (131) 
 

Double-blind 
intervention 

N=6 8 weeks Efamol oil (360) 
 

N.S. 
 

No crossover with placebo. 
Subjects were asthmatics used 
medication or bronchodilator.  

Johnson (132) 
 

Pre-post intervention N=5 3 weeks Ultra-GLA capsules (6000) 
 
 

+31 
 

 

 
aPercent change (±) from baseline in AA that is significant (p<0.05). Non-significance is denoted by N.S. 

Abbreviations: AA, arachidonic acid; GLA, gamma-linolenic acid 
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Table 5.  Studies outlining the effects of supplementing dietary arachidonic acid on changes in plasma/serum phospholipid arachidonic acid content. 

 
Author, 

(reference) 
Study design Subjects Diet length AA source, amount 

supplemented (mg/d) 
∆ AA (%) 

change 

Comments 

Ishikura (133) 
 

Double-blind crossover 
 

N=25 1 month SUNTGA40S capsules (720) 
 

+27 
 

Derived from Mortierella alpina 

Nelson (134) 
 

Single blind crossover 
intervention 
 

N=10 50 days ARASCO (1490) 
 

+85 Had 65 day washout period. 
Derived from Mortierella alpina 

Theis (129) 
 

Randomized, double-
blind, parallel 
intervention 

N=48 12 weeks  ARASCO (680) 
 

+85 
 

Derived from Mortierella alpina 

Theis (129) 
 

Randomized, double-
blind, parallel 
intervention 

N=48 12 weeks  ARASCO (680) 
 

+85 
 

Derived from Mortierella alpina 

Kusmoto (135) 
 

Double-blind 
intervention  
 

N=12 4 weeks SUNTGA40S (838) 
 

+45 

 
Derived from Mortierella alpina 

Sinclair (136) Parallel intervention N=4 7 days White meat/eggs  
 
 
 

+52a 
 

Consumed AA rich, low fat 
diet. 

Seyberth (59) 
 

Single blind 
intervention 
 

N=4 2-3 weeks, 
depending upon 

subject 

Capsules, AA ethyl ester (6000) 
 

+136 
 

Averaged from all 4 subjects. 

 
aPercent change (±) from baseline in AA that is significant (p<0.05). Non-significance is denoted by N.S. 

Abbreviations: AA, arachidonic acid 
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2. Discussion  

Arachidonic acid is arguably the most important PUFA associated with membrane 

phospholipids. Upon release, AA can be enzymatically metabolized to a surfeit of bioactive 

derivatives, eicosanoids, known to contribute to a variety of chronic diseases (48, 75, 107, 108). 

The relative abundance of AA in membrane phospholipids positively influences eicosanoid 

production (137). It is well known that dietary PUFA can affect tissue AA levels; however, what 

is uncertain and wrought with controversy is whether modifying current intakes of dietary LA 

will result in concomitant changes in tissue AA content. Therefore, if the public chose to 

consume less LA, would tissue AA levels go down, and antithetically, if the public consumed 

more LA would tissue levels of AA go up? The goal of this paper was to ascertain the 

relationship between dietary LA and tissue AA content in adults consuming a Western-style 

background diet. It was not designed to address other controversies surrounding the issues of 

dietary PUFA or in other population groups. 

Many papers interchange the more general term n-6 PUFA for dietary LA, but there are 

two major n-6 PUFA, LA and AA, and they are distributed unevenly in the Western diet. While 

LA is the major PUFA in almost every commonly consumed food, AA is exclusively found in 

animal products, such as, muscle, organ meats and eggs (138). They have distinct biological 

activities that are biochemically linked via desatuation and elongation, and as such, LA is the 

conditionally essential fatty acid. Linoleic acid is specifically required in the skin to maintain the 

integrity of the epidermal water barrier and AA is the immediate precursor to eicosanoids, as 

well as being the n-6 PUFA selectively incorporated into the membranes of certain tissues, i.e., 

brain (139). When consumed (LA vs. AA) they appear to have differential effects on tissue fatty 
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acid composition, where AA appears to more robustly modify tissue AA levels and eicosanoids 

(112, 140). 

The data presented in this paper does not suggest that a dose response between dietary 

LA and tissue AA exists within the backdrop of individuals consuming a Western-type diet. 

Increasing LA by up to 551% and reducing LA by as much as 90% failed to yield compelling 

evidence supporting the concept that any conversion of dietary LA to downstream metabolites 

results in tissue enrichment of AA, a notion commonly asserted (105). We chose to evaluate the 

data by looking at changes from baseline in tissue AA content to standardize the data from one 

study to the next. Each study began with a baseline value and we reported percent changes from 

that baseline. Supplemental intakes of LA were reported based on energy and when that value 

could not be determined, we reported absolute supplemented values, and these data were 

reported separately.  

As observed from the distribution of the responses, there was wide variability. Some 

papers showed small increases in tissue AA levels when dietary LA changed, while other papers 

showed small decreases, but most of these changes lacked significance. When there was 

significance, the changes were minimal and the distribution pattern of the data did not favor an 

increase or a decrease. We chose plasma/serum and erythrocytes as the tissues of choice because 

here is where the plethora of data exists in the human literature.  Erythrocytes are a more stable 

pool of dietary lipids, contain very little neutral lipids and thus represents a membrane fraction of 

AA. Fasting plasma/serum phospholipid levels primarily (but not exclusively) represents the 

membranes of lipoproteins derived from the surface of hepatic endoplasmic reticulum, and this 

pool is more responsive to more recent dietary PUFA intakes.  
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In an effort to identify why dietary LA may not modify tissue AA levels, we reviewed the 

literature for dietary GLA using the same search strategy. Was the conversion of LA to AA rate-

limiting, or were tissue levels of AA saturated? Delta-6 desaturase is the rate-limiting enzyme in 

the metabolism of LA to AA. GLA is a dietary n-6 PUFA that enters the metabolic pathway after 

the delta-6 desaturase step. If delta-6 desaturase is rate-limiting and tissue AA content is not 

saturated, then there should be evidence that including GLA in the diet increases tissue AA 

levels. When GLA was supplemented as the triacylglycerol form or as a component of a dietary 

oil containing GLA (i.e., blackcurrant, evening primrose or borage oil), tissue AA content 

increased in a dose responsive manner. These effects appeared to be less prominent in those 

studies (126-128) that used oils containing appreciable amounts of the more highly unsaturated 

n-3 PUFA stearidonic acid, i.e., blackcurrant or borage oil (138). When AA was supplemented in 

the diet, there was further enrichment in tissue AA content above that observed with either LA or 

GLA. These results suggest that delta-5 desaturase potentially becomes rate limiting when GLA 

is supplemented. The reaction mediated by delta-5 desaturase is an intermediate step between 

GLA and AA and by-passing that step with dietary AA leads to further enrichment. These data 

seem to suggest that while dietary LA maybe a metabolic precursor for AA, its influence on 

tissue levels are limited by the enzymatic conversion through delta-6 desaturase and not due to 

tissue saturation of AA. This data is supported by the poor rates of conversion of plasma/serum 

LA to AA in adults. In tracer studies involving stable isotopes, the estimated fractional 

conversion of LA to AA was between 0.3% and 0.6% (141). 

The levels of LA in the diet to achieve essentiality could be as low as 0.5-2.0% of energy 

in infants (13, 94) and it has been reported that tissue levels of AA no longer respond to dietary 

LA intakes above 2% energy in adults (95). Our study was designed to choose studies that 
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incorporated a Western-type diet where LA is not typically limiting, reflective of the general 

public. This means a full complement of PUFAs were being consumed along with LA 

supplementation. The DRIs for LA and ALA are 12g-17g/d and 1.1g-1.6g, respectively (women 

the lower figure, men the higher figure). This would be equivalent to intakes approximating 6% 

and 0.7% of calories per day for LA and ALA, respectively. It is not unreasonable to think that 

with a background diet containing LA, ALA, AA, and long-chain n-3 PUFAs, i.e. 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at typical intakes, that modifying 

LA levels may not influence tissue AA levels.  

A few studies specifically evaluated the impact of dietary LA on tissue AA and failed to 

observe a positive relationship (111, 112).  For example, by maintaining constant intake of ALA 

and increasing LA levels from 3.8% energy to 10.5% energy using LA-rich oils,  LA was 

inversely associated with tissue AA levels (p<0.001) (47). These results were consistent with 

another study that reported an inverse relationship between dietary LA and tissue AA (112). This 

latter paper was not included in our review because it did not meet all of our inclusion/exclusion 

criteria, nevertheless it clearly showed that dietary LA does not increase tissue AA content. A 

number of studies included in this analysis also reported significant inverse relationships (103, 

113, 114, 116). The data suggests that as LA increases in the diet, it maybe be competing with 

AA for reacylation into phospholipids.   

A small number of studies modified LA intakes by using oils that also contained some 

ALA, such as soybean and canola oil (103, 117, 119), but the results from these studies were not 

significant and were similar to the other results. It must be remembered that soybean oil has a 

LA:ALA ratio similar (8:1) to that found in the US diet (10:1). We also included two studies that 

supplemented LA with recommended fish restrictions (because they met our inclusion/exclusion 
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criteria) (96, 118).  One study (+176% LA) reported no changes in AA levels, while the other 

(+86% LA) reported a 10% increase in AA.  

Some of the weaknesses of this review are reflected in the studies that qualified for our 

evaluation. Most were not designed to specifically address our research question; however, those 

that were specifically designed to evaluate the effect of dietary LA on tissue AA content yielded 

results that were similar to the overall results (111). Each study used a different population with 

potentially different background diets, but this would better reflect the consumption patterns of 

the general public. Not all studies were blinded (61% were blinded) and dietary LA was not 

exclusively modified. The methods for modifying LA intakes were varied and other dietary 

PUFA were not controlled for with the exceptions identified previously, and data for only two 

tissues were evaluated. When LA was modified, it was done so by typically changing the levels 

of an oil rich in LA (i.e., corn oil, safflower oil, sunflower oil) or foods containing LA (as 

opposed to adding pure LA), reflecting how the LA would be consumed by the general public. 

There was no standard length to the studies. For example, studies involving plasma/serum ranged 

between 14 days-5 months, and those looking at erythrocyte data ranged between 14-180 days. 

Importantly, the subjects were used as their own controls, the studies addressed changes in LA in 

relationship to Western-type diets, and the results were not different between those studies that 

were double-blind randomized placebo controlled trials (1/3) and those that were not. Despite 

these weaknesses, positive results were still identified with intakes of GLA and AA, helping to 

support those results reported with LA. 

In summary, elevated tissue AA levels are believed to be positively associated with 

eicosanoid formation and risk for a variety of chronic diseases, including cardiovascular disease, 

cancer and inflammation. The literature expresses concern over the fact that increasing dietary 
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LA can potentially enrich tissues with AA due to their metabolic link. The results of this study 

do not support this concern. There is insufficient evidence to suggest that changes in dietary LA 

will modify tissue AA content in an adult population consuming a Western-type diet. 
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AA is arguably the most important PUFA associated with membrane phospholipids.  

Upon release, it can be enzymatically converted to potent bioactive lipid molecules called 

eicosanoids. Eicosanoids are linked to a variety of chronic diseases such as CVD, cancer and 

inflammation (48). Furthermore, tissue AA abundance is directly correlated with eicosanoid 

production (14). What is less understood and more controversial is the impact of dietary 

precursors of AA (i.e. LA) on changes in tissue AA content. The literature expresses concern 

with regards to the high n-6 PUFA content in the Western diet, viz., LA, and how high intakes 

might lead to further enrichment of AA in tissues and subsequent eicosanoid production (150). 

As such, to lower tissue AA levels, recommendations emphasize reducing the levels of LA in the 

diet. To address this concern, a review of the literature regarding this issue may provide insight 

as to whether tissue AA is modified by dietary precursors (i.e. LA).  

Studies involving dietary interventions that modified LA intake were sought from the 

literature. The initial search produced 4336 abstracts. Using our inclusion/exclusion criteria, 293 

articles were retained and further reviewed. Eventually, 36 articles met all necessary criteria for 

retention.  Data on LA supplementation was analyzed as % change based on calories (increasing 

or decreasing from baseline) or the levels supplemented (g/d).  

 The results demonstrated that no significant correlations were found between changes in 

LA consumption and changes in tissue AA content when expressing the data based on % calories 

increasing or decreasing) or g/d supplementation. Two possible reasons could explain the results, 

(i) feedback inhibition on the conversion of LA to AA via the delta-6 desaturase step, and/or (ii) 

tissue saturation of AA. To address these possibilities, we investigated articles that supplemented 

GLA in the diet.  GLA is an n-6 PUFA that is introduced after the delta-6 desaturase step. By 

supplementing diets with GLA, it resulted in AA enrichment in tissue phospholipids, suggesting 
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the ability of dietary LA to modify tissue AA was being controlled by the delta-6 desaturase step. 

When AA was supplemented to the diet, further enrichment occurred, suggesting subsequent 

secondary regulatory steps (i.e., delta-5 desaturase) are involved in AA formation from 

precursors.  

In conclusion, these results indicate there is insufficient evidence to suggest that tissue 

AA content is affected by changes in LA intake in the context of a Western diet. This affect 

appears to be based on feedback inhibition of delta-6 desaturase. However, by-passing this 

regulatory step with dietary GLA results in further enrichment of AA, apparently regulated by 

delta-5 desaturase. And finally, of all the n-6 PUFA in the diet, tissues are most responsive to 

dietary AA.  
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Figure 4: Effects of decreasing dietary linoleic acid (LA) intake (% change) based on energy on 
changes in plasma/serum phospholipid arachidonic acid (AA) content. Significant changes 
(p<0.05) in AA as reported in the original papers are designated as triangles. Non-significant AA 
changes as reported in the original papers are designated as diamonds. Abbreviations: AA, 
arachidonic acid; LA, linoleic acid; PL, phospholipid.  
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Figure 5: Effects of increasing dietary linoleic acid (LA) intake (% change) based on energy on 
changes in plasma/serum phospholipid arachidonic acid (AA) content. Significant changes 
(p<0.05) in AA as reported in the original papers are designated as triangles. Non-significant AA 
changes as reported in the original papers are designated as diamonds. Abbreviations: AA, 
arachidonic acid; LA, linoleic acid; PL, phospholipid.   
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Figure 6: Effects of increasing dietary linoleic acid (LA) intake (g/d) on changes in 
plasma/serum phospholipid arachidonic acid (AA) content. Significant changes (p<0.05) in AA 
as reported in the original papers are designated as triangles. Non-significant AA changes as 
reported in the original papers are designated as diamonds. Abbreviations: AA, arachidonic acid; 
LA, linoleic acid; PL, phospholipid. 
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Figure 7: Effects of increasing dietary linoleic acid (LA) (% change) intake based on energy on 
changes in erythrocyte (RBC) phospholipid arachidonic acid (AA) content. Significant changes 
(p<0.05) in AA as reported in the original papers are designated as triangles. Non-significant AA 
changes as reported in the original papers are designated as diamonds. Abbreviations: AA, 
arachidonic acid; LA, linoleic acid; PL, phospholipid. 
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Figure 8:  Effects of decreasing dietary linoleic acid (LA) (% change) based on energy on 
changes in erythrocyte (RBC) phospholipid arachidonic acid (AA) content. Significant changes 
(p<0.05) in AA as reported in the original papers are designated as triangles. Non-significant AA 
changes as reported in the original papers are designated as diamonds. Abbreviations: AA, 
arachidonic acid; LA, linoleic acid; PL, phospholipid. 
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Figure 9: Effects of increasing dietary gamma-linolenic acid (GLA) (mg/d) on changes in 
plasma/serum phospholipid arachidonic acid (AA) content. Significant changes (p<0.05) in AA 
as reported in the original papers are designated as triangles. Non-significant AA changes as 
reported in the original papers are designated as diamonds. Abbreviations: AA, arachidonic acid; 
GLA, gamma-linolenic acid; PL, phospholipid 
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Figure 10: Effects of increasing dietary arachidonic acid (AA) (% change) based on energy on 
changes in plasma/serum phospholipid AA content. Significant changes (p<0.05) in AA as 
reported in the original papers are designated as triangles. Non-significant AA changes as 
reported in the original papers are designated as diamonds. Abbreviations: AA, arachidonic acid; 
PL, phospholipid. 
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