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Abstract

The ”Fluid Ball Conjecture” states that a static stellar model in General Relativity

is spherically symmetric. This conjecture has been the motivation of much work

since first studied by Avez in 1964. There have been many partial results( ul-Alam,

Lindblom, Beig and Simon, etc) which rely heavily on arguments using the Positive

Mass Theorem and the equivalence of conformal flatness and spherical symmetry.

The purpose of this thesis is to outline the general problem, analyze and compare

the key differences in several of the partial results, and give existence and uniqueness

proofs for a particular class of equations of state which represents the most recent

progress towards a fully generalized solution.
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Chapter 1

Introduction

The “Fluid Ball Conjecture” seems to have first been addressed by Avez in 1964.[23]

The conjecture is concerned with equilibrium configurations for static stellar models.

As in the Newtonian case [21], the belief is that a static stellar model equilibrium

configuration always attains spherical symmetry. Partial results to the conjecture

were attained in the 1970’s and 1980’s. Kunzle [20], Kunzle and Savage [15] made

contributions to the conjecture but used very restrictive equations of state. ul-Alam

[24],[25] brought in the use of the Posititve Mass Theorem [28]. ul-Alam’s work

in the 1980’s unfortunately relied on unphysical equations of state to complete the

proof. Lindblom [22] succeeded in proving spherical symmetry in the case of uniform

density stars using ul-Alam’s work and the use of Robinson-type identities that had

previously been used in proving uniqueness of static black holes.[27],[26]. A drawback

to the work of ul-Alam and Lindblom in the 1980’s was that their method of proof

required the existence of a “reference spherical stellar model” with the same mass

and surface potential Vs as their static stellar model. To complete the proof using

their method they assumed the existence of the “reference model”, without proof. In

1994 joint work of ul-Alam and Lindblom [29] proved the existence of the ”reference

spherical stellar model” under certain restrictions on the equation of state. This

represented the most complete work up to that point. Given a static stellar model
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and assuming an equation of state satisfying certain properties, the “reference stellar

model” existed and the procedure developed in the 1980’s utilizing the Positive Mass

Theorem showed that the static stellar model must in fact be spherical. In 2007 the

most recent result pertaining to the “Fluid Ball Conjecture” by ul-Alam used a spinor

norm weighted scalar curvature integral. It was this integral that had been used by

Witten to prove the Positive Energy Theorem in n-dimensions[30].

The method of proving spherical symmetry using the Positive Mass Theorem

has been the standard method of proof since it was first utilized by ul-Alam. The

procedure is to start with a static stellar model with a certain given equation of state.

The goal is to find a conformal factor so that the mass of the conformal metric is

zero and the conformal scalar curvature is non-negative. The Positive Mass Theorem

then implies that the conformal metric must in fact be flat. In the conformally flat

case , Avez [23] showed that the original geometry had to be spherical. The difficulty

in this method is showing the non-negativity of the conformal scalar curvature. The

conformal factor is modeled after the conformal factor for the “reference spherical

model”. This was the source of difficulty in ul-Alam and Lindblom’s work in the

1980’s. In order to show existence of the “reference stellar model” and the non-

negativity of the conformal scalar curvature certain restrictions were placed on the

equation of state. All of the modifications to this method revolved around restrictions

on the equation of state.

Point-wise non-negativity of the conformal scalar curvature is a strict requirement.

In an effort to relax this condition, the use of a spinor norm weighted scalar curvature

integral was utilized by ul-Alam in 2007. This allows the point-wise non-negativity to

be relaxed as long as the overall negative contribution to the integral of the conformal

scalar curvature is small. The scalar curvature integral is precisely the integral used by

Witten in his proof of the Positive Energy Theorem. In ul-Alam’s work a conformal
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factor is defined as a limit of conformal factors. In the limit, the scalar curvature

integral with the scalar curvature in the original metric is shown to go to zero. The

scalar curvature integral equaling zero implies the existence of a global convariantly

constant spinor field. It is known that spinors are a type of “square root” of a vector

so the global covariantly constant spinor field allows us to define a global covariantly

constant frame field. This implies that the space is flat. Classical arguments [23] then

imply that since the conformal geometry is flat, then the original geometry must be

spherically symmetric.

Let us now give a couple of standard definitions and then rigorously define the

static stellar model. We assume a metric signature of (−,+,+,+). Let Greek indices

run from 0 to 3 and let Latin indices run from 1 to 3.

Energy-Momentum Tensor for a perfect fluid:

Tµν = (ρ+ p)uµuν + pgµν (1.1)

where u is a unit time-like vector field representing the 4-velocity of the fluid, ρ

is the density and p is the pressure of the fluid.

Einstein Equation:

Rµν = 8π(Tµν −
1

2
T λλ gµν ) (1.2)

where ,Rµν is the Ricci Tensor and gµν is the metric tensor.

A Static Stellar Model is a static, asymptotically flat space-time that satisfies the

Einstein equation coupled with a perfect-fluid matter model. Physically, “static”

means that the metric is time independent and the star is non-rotating. This

corresponds to the mathematical definition.[20]

A space-time M is called static if and only if there exists a 3-dimensional manifold

Σ and a diffeomorphism Ψ : M → Σ× R such that
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(i.) Cx = Ψ−1({x} × R) are time-like curves for all x ∈ Σ

(ii.) Σt = Ψ−1(Σ× {t}) are globally space-like hyper-surfaces for all t ∈ R

(iii.) Cx for all x ∈ Σ are tangent to a Killing vector field k on M that is orthogonal

to all Σt

The main objective of this thesis is expository. This is a compilation of the work

of brilliant men over the last 50 years. We hope to give a complete picture of existence

and uniqueness of the static stellar model that is current to date. Simply put, the

“Fluid Ball Conjecture” pertains to the actual shape of a star. It seems intuitively

obvious that a highly idealized star modeled as a perfect fluid in equilibrium which

does not rotate or change over time would be spherical in shape. In the context of

General Relativity proving this expectation is not straight forward. This paper deals

with this problem as a whole. We give a complete proof of the existence of spherically

symmetric stellar models with an equation of state of acceptable regularity. It is

a rather straightforward proof that utilizes a theorem from the theory of ordinary

differential equations (O.D.E) which handles the singularity that arises in the center

of the star. We also give a complete proof of the most recent result on the uniqueness

of a static stellar model given by Masood ul-Alam. This proof constructs a conformal

factor as a limit of constructed conformal factors and shows the spinor norm weighted

scalar curvature integral goes to zero in the limit, implying in this case conformal

flatness. Finally, we analyze constraints on certain physical quantities that occur in

the framework of General Relativity. These constraints lend themselves as support

to the “Fluid Ball Conjecture”.

4



Chapter 2

Existence and Uniqueness of

Static, Spherically Symmetric

Solutions

Existence and uniqueness proofs for spherically symmetric static stellar models with

perfect fluid source are scattered throughout literature. Lindblom and ul-Alam [29]

proved existence in their joint work for a given equation of state, mass, and surface

potential Vs. Pfister [5] proved a general existence theorem for a certain class of

equations of state using a Banach fixed point method. Mak and Harko [6] proved an

existence theorem using a Riccati type first order O.D.E. with a solution expressed

in the form of an infinite power series. The goal of this section is to discuss an

existence theorem given by Rendall and Schmidt [7]. Although not the most general

existence theorem for the spherically symmetric static stellar model with perfect fluid

source, the proof is rather straightforward. We hold fast to the intuitive geometry

of standard coordinates and the result follows from a modified existence theorem for

singular ordinary differential equations. We start with a given central pressure and

prove global existence and uniqueness for the Einstein equations representing the

spherically symmetric static stellar model. Since we start from the center of the star,

5



it is possible that the star’s radius is infinite. In this case the vacuum region will be

empty. If the star has a finite radius the boundary will occur at r = R where p(R) = 0

and p denotes the pressure. This particular existence and uniqueness theorem allows

for stars of infinite radius, i.e. where the pressure does not have compact support.

Certain results on the finiteness of the star can be derived from the given equation of

state. We discuss this in a different section. We now state the main theorem.

Theorem 2.1 [Rendall and Schmidt (1991)]

Let an equation of state ρ(p) be given such that ρ is defined for p ≥ 0, non-negative,

and continuous for p ≥ 0, C∞ for p > 0 and suppose that dρ
dp

> 0 for p > 0.

Then there exists for any value of the central density ρ0 a unique inextendible static,

spherically symmetric solution of Einstein’s field equations with a perfect fluid source

and equation of state ρ(p). The matter either has finite extent, in which case a unique

Schwarzschild solution is joined on as an exterior field, or the matter occupies the

whole of space, with ρ tending to zero as r tends to infinity.

We note that the constraint of an equation of state ρ(p) being C∞ is one of

convenience. This proof works for equations of state with lesser regularity. We now

want to set the problem up.

2.1 Derivation of the System of Equations

The metric in Schwarzschild coordinates for a static, spherically symmetric space-time

is given by

ds2 = −c2ea(r)dt2 + eb(r)dr2 + r2(dθ2 + sin2 θdφ2) (2.1)
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where c represents the speed of light in vacuum and b, a are functions that only depend

on r, the “area radius”. Notice that we use the metric signature (−,+,+,+). The

Einstein field equations are given by

Gµν = Rµν −
1

2
Rgµν =

8πG

c2
Tµν (2.2)

where µ, ν = 0, 1, 2, 3, Gµν denotes the Einstein tensor, Rµν is the Ricci curvature,

R = Rµ
µ is the scalar curvature, and G is the gravitational constant. We take the

cosmological constant Λ to be zero. The perfect fluid stress energy tensor is given by

Tµν = ρuµuν +
p

c2
(uµuν + gµν) (2.3)

where u = (u0, u1, u2, u3) represents the components for the 4-velocity of our static

fluid. Aligning the 4-velocity with the static Killing field, we have u0 = −
√
ea and

since the fluid is in equilibrium the spatial components are all zero, i.e. ui = 0 for

i = 1, 2, 3. This gives us

gνµuµuν = −1 (2.4)

Other variables include ρ, which is the proper energy density, and p, the proper

pressure. Combining equations (2.1)-(2.3) we are able to derive the system of field

equations with respect to the above coordinates.[8]

8πG

c2
ρr2 =

rb′ − 1

eb
+ 1 (2.5)

8πG

c4
pr2 =

ra′ + 1

eb
− 1 (2.6)

8πG

c4
p =

1

2eb
(a′′ +

1

2
(a′)2 +

a′ − b′

r
− 1

2
a′b′) (2.7)

where ′ denotes differentiation with respect to r. Also, we note that the field equations

for G22 and G33 are the same. This provides us with three independent equations

and four functions. We follow a strategy outlined in [8]. We want to eliminate p from
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equations (2.6) and (2.7). Setting these two equations equal and solving gives us the

expression

eb

r2
=
a′b′

4
− (a′)2

4
− 1

2
a′′ +

a′ + b′

2r
+

1

r2
(2.8)

Next, we add equations (2.5) and (2.6) together, which gives us

8πG

c2
(ρ+

p

c2
) =

a′ + b′

reb
(2.9)

We now want to divide both sides of (2.6) by r2 for r 6= 0 and differentiate both

sides with respect to r. We have the expression

8πG

c4
p′ =

2

r3
− e−b[ a

′

r2
+
a′b′

r
+

2

r3
+
b′

r2
− a′′

r
] (2.10)

We can eliminate a′′ from equation (2.10) by using equation (8). Rearranging

terms and simplifying gives us the expression

8πG

c4
p′ = −a

′

2

(a′ + b′)

reb
(2.11)

We combine equation (2.11) with (2.9). This gives us

2p′ = −c2a′(ρ+
p

c2
) (2.12)

This equation represents the conservation of energy-momentum for a static perfect

fluid. Equations (2.5),(2.6),and (2.12) now contain all of the constraint information

for our functions. We have only three equations for four functions for our system.

We close this system by specifying an equation of state, ρ(p).

Now, equation (2.5) can be rewritten as

8πG

c2
r2ρ(r) =

d

dr
(r − re−b + const.) (2.13)
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Integrating both sides with respect to r gives us

8πG

c2

ˆ
r2ρ(r)dr = r − re−b =⇒ e−b = 1− 8πG

c2

1

r

ˆ
r2ρ(r)dr + const. (2.14)

For our solutions we are seeking regular centers of spherical symmetry. In order

to avoid a “conical singularity” in the metric at r = 0, we set the constant equal to

zero.[16] This gives us the following expression

e−b(r) = 1− 8πG

c2

1

r

ˆ r

0

s2ρ(s)ds (2.15)

We recall the expression for the Newtonian mass given up to radius r by the expression

m(r) = 4π

ˆ r

0

s2ρ(s)ds (2.16)

Its derivative with respect to r is given by

m′(r) = 4πr2ρ(r) (2.17)

We combine equations (2.15) and (2.16) to get an expression for e−b

e−b = 1− 2G

c2

m

r
(2.18)

This is the spatial metric potential. Now, if we differentiate equation (2.18) with

respect to r we get

e−bb′ =
2G

c2

rm′ −m
r2

(2.19)

and inserting equation (2.17) into (2.19) gives us

e−bb′ =
2G

c2

4πr3ρ−m
r2

(2.20)
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If we solve equation (2.9) for a′e−b we get

a′

eb
=

8πG

c2
(ρ+

p

c2
)r − e−bb′ (2.21)

We insert (2.20) into (2.21) and we get the expression

a′e−b =
8πG

c2
(ρ+

p

c2
)r − 2G

c2

(4πr3ρ−m)

r2
(2.22)

=
8πG

c2
ρr +

8πG

c4
pr − 8πG

c2
ρr +

2Gm

c2r2
(2.23)

=
2

c2r2
(4πGpr3 +Gm) (2.24)

Solving for a′ we get

a′ =
2

c2r2e−b
(4πGpr3 +Gm) (2.25)

If we insert the expression for a′ into the equation for energy-momentum conservation,

which is equation (2.12) we get

2p′ = −c2(
2

c2r2e−b
(4πGpr3 +Gm))(ρ+

p

c2
) (2.26)

= −(
2

r2e−b
(4πGpr3 +Gm))(ρ+

p

c2
) (2.27)

Finally, if we insert the expression in equation (2.18) into (2.27) we have the following

expression.

p′(r) = − 1

r2
(4πGp(r)r3 +Gm(r))(ρ(r) +

p(r)

c2
)(

1

1− 2G
c2

m(r)
r

) (2.28)

Equation (2.28) is known as the Tolman-Oppenheimer-Volkoff (T.O.V.) equation

of hydrostatic equilibrium. We collect some of the equations that are standard in

10



deriving interior solutions for static, spherically symmetric perfect fluid stellar models.

p′(r) = − 1

r2
(4πGp(r)r3 +Gm(r))(ρ(r) +

p(r)

c2
)(

1

1− 2G
c2

m(r)
r

) (2.29)

m′(r) = 4πr2ρ(r) (2.30)

e−b(r) = 1− 2G

c2

m(r)

r
(2.31)

2p′(r) = −c2a′(r)(ρ(r) +
p(r)

c2
) (2.32)

We introduce an equation that represents a normalized mean density. It is given by

w(r) =
m(r)

r3
(2.33)

Inserting this into equation (2.18) gives us

e−b = 1− 2G

c2
r2w(r) (2.34)

We can express the T.O.V. equation in terms of w using equations (2.33) and (2.34)

which yields

p′ = − 1

r2
(4πGpr3 +Gr3w)(ρ+

p

c2
)(

1

1− 2G
c2
r2w

) (2.35)

= −Gr( 1

1− 2G
c2
r2w

)(4πp+ w)(ρ+
p

c2
) (2.36)

If we differentiate (2.33) with respect to r and use equation (2.30) we get
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w′(r) =
r3m′(r)− 3m(r)r2

r6
=⇒ r3w′(r) +

3m(r)

r
= m′(r) (2.37)

= 4πr2ρ(r) (2.38)

(2.39)

Simplifying this expression we get

r3w′(r) + 3r2w(r) = 4πr2ρ(r) =⇒ w′(r) =
1

r
(4πρ(r)− 3w(r) (2.40)

If we are given an equation of state, ρ(p) then we can use it to integrate equation

(2.2). This gives us

a(r) = −
ˆ p(r)

p0

2

ρ(p) + p
c2

dp (2.41)

where p0 is the pressure at the center of the star.

Finally, equations (2.35) and (2.40) form a system of equations for the functions

p(r) and w(r). If we solve this system, then we can determine b(r) from equation

(2.34) and a(r) from equation (2.41). We collect the system here

p′ = −Gr( 1

1− 2G
c2
r2w

)(4πp+ w)(ρ+
p

c2
) (2.42)

w′(r) =
1

r
(4πρ(r)− 3w(r) (2.43)

eb(r) =
1

1− 2G
c2
r2w(r)

(2.44)

a(r) = −
ˆ p(r)

p0

2

ρ(p) + p
c2

dp (2.45)
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The derivation of the T.O.V equation was motivated and executed by eliminating

a′ from equations (2.6) and (2.12). Instead of eliminating a′ from (2.6) and (2.12) we

could eliminate p. For this purpose we consider the following auxiliary functions [9].

y2(r) = e−b(r) = 1− 2G

c2
r2w(r) (2.46)

z(r) = e
a(r)
2 (2.47)

x(r) = r2 (2.48)

The goal now is to express equations (2.6) and (2.12) in terms of the new variables just

given and then combine the equations, eliminating p. For (2.6) we need an expression

for da
dr

. From (2.47) we get

2 ln(z(r)) = a(r) (2.49)

Differentiating both sides of (2.49) with respect to x gives us

2
1

z

dz

dx
=
da

dr

dr

dx
=
da

dr

1

2
√
x

(2.50)

Solving (2.50) for da
dr

gives us

da

dr
= 4
√
x

1

z

dz

dx
(2.51)

We also have

da

dx
=

2

z

dz

dx
(2.52)

We want to express ρ in terms of w and the auxiliary functions (2.46)-(2.48). Recall

equation (2.43). For this we have the following derivation
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ρ =
4π

4π
ρ (2.53)

=
1

4π
[
3m

r3
− 3m

r3
+ 4πρ] (2.54)

=
1

4π
[
3m

r3
+

2r2

2r2
(4πρ− 3m

r3
)] (2.55)

=
1

4π
[3w + 2r2 1

r
(4πρ− 3w)

1

2r
] (2.56)

=
1

4π
[3w + 2r2dw

dr

1

2r
] (2.57)

=
1

4π
[3w + 2x

dw

dr

dr

dx
] (2.58)

=
1

4π
[3w + 2x

dw

dx
] (2.59)

We want to express (2.6) using functions (2.46)-(2.48) and (2.51). We express (2.12)

using functions (2.46)-(2.48), (2.52) and (2.59). This gives us the following two

equations.

8πG

c4
p = 4y2 1

z

dz

dx
− 2G

c2
w (2.60)

dp

dx
= −1

z

dz

dx
(ρ+

p

c2
) = −1

z

dz

dx
(

1

4π
[3w + 2x

dw

dx
] +

p

c2
) (2.61)

We want to now eliminate dependence on p from (2.60) and (2.61) and set the equation

to equal zero. This equation can be expressed in the following way by means of

calculation and simplification [7], [9].

0 = (1− 2G

c2
xw)

d2z

dx2
− G

c2

dz

dx
[
d

dx
(w + x

dw

dx
)]− G

2c2

dw

dx
z (2.62)

= y2 d
2z

dx2
+ y

dy

dx

dz

dx
− G

2c2
z
dw

dx
(2.63)

=
d

dx
(y
dz

dx
)− G

2c2

z

y

dw

dx
(2.64)
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If ρ is given then equation (2.62) is linear in the variable z and if z is given, then

(2.62) is linear in w.[9] We next want expressions for dρ
dx

and dw
dx

. Using equation (2.35)

and r2 = x we get

dρ

dx
= (

dp

dρ
)−1 dp

dx
(2.65)

= (
dp

dρ
)−1dp

dr

dr

dx
(2.66)

= (
dp

dρ
)−1[−Gr( 1

1− 2G
c2
r2w

)(4πp+ w)(ρ+
p

c2
)]

1

2
√
x

(2.67)

= −G
2

(
dp

dρ
)−1(

1

1− 2G
c2
xw

)(4πp+ w)(ρ+
p

c2
) (2.68)

and using equation (40) and r2 = x we get

dw

dx
=
dw

dr

dr

dx
(2.69)

=
1

r
(4πρ− 3w)

1

2
√
x

(2.70)

=
1

2x
(4πρ− 3w) (2.71)

Equations (2.68) and (2.71) provide a system of equations for unknown functions

w(x) and ρ(x). Solving for w allows us to recover b from (2.46). Given an equation

of state, and having solved the system for ρ we then solve (2.45) for a. We collect

this system here.
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dρ

dx
=− G

2
(
dp

dρ
)−1(

1

1− 2G
c2
xw

)(4πp+ w)(ρ+
p

c2
) (2.72)

dw

dx
=

1

2x
(4πρ− 3w) (2.73)

a(r) = −
ˆ p(r)

p0

2

ρ(p) + p
c2

dp (2.74)

eb =
1

1− 2G
c2
xw

(2.75)

Finally, equations (2.72)-(2.75) represents the system our proof will deal with. First

note that while equation (2.72) is regular at x = 0, (2.73) is not. In an effort to

have uniform properties for both equations we want to make (2.72) singular at x = 0.

Define a function ρ1 so that

ρ = ρ0 + xρ1 (2.76)

where ρ0 denotes the density at the center of symmetry. Similar to equation (2.77)

we have the corresponding relationship

p(ρ) = p0 + xp1(ρ1) (2.77)

where p0 denotes the central pressure. Substituting (2.76) and (2.77) into equation

(2.72),(2.73) and algebraically manipulating (2.73) gives us

x
dρ1

dx
+ ρ1 =− G

2
(
dp

dρ
(ρ0) + xh(ρ1))−1(

1

1− 2G
c2
xw

)(4πp0 + 4πxp1(ρ1) + w) (2.78)

· (ρ0 + xρ1 +
p0

c2
+
xp1(ρ1)

c2
)

x
dw

dx
+

3

2
w = 2πxρ1 + 2πρ0 (2.79)

where dp
dρ

= dp
dρ

(ρ0) + xh(ρ1) for some smooth function h.
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2.2 The Singular Point

Rendall and Schmidt prove an existence theorem for singular ordinary differential

equations. We state it now.

Theorem 2.2 [Rendall and Schmidt (1991)]

Let V be a finite-dimensional real vector space, N : V → V a linear mapping,

F : V × I → V a smooth (i.e. C∞) mapping and g : I → V a smooth mapping,

where I is an open interval in R containing zero. Consider the equation

s
df

ds
+Nf = sF (s, f(s)) + g(s) (2.80)

for a function f defined on a neighborhood of 0 in I and taking values in V . Suppose

that each eigenvalue of N has positive real part. Then there exists an open interval

J with 0 ∈ J ⊂ I and a unique bounded C1 function f on J \ {0} satisfying (2.80).

Moreover f extends to a C∞ solution of (2.80) on J . If N,G and g depend smoothly

on a parameter γ and the eigenvalues of N are distinct then the solutions also depends

smoothly on γ.

We want to apply Theorem 2.2 to the set of equations (2.78) and (2.79). We first

want to put it into the proper form. We first define f : R→ R2 by

f(x) =

 ρ1(x)

w(x)

 (2.81)

We now want to look at equation (2.78). Note that we have the following equivalence.

(1− 2G

c2
xw)−1 = 1 +

2G

c2
xw(1− 2G

c2
xw)−1 (2.82)

Inserting (2.82) into (2.78) gives us
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x
dρ1

dx
+ ρ1 = −G

2
(
dp

dρ
(ρ0) + xh(ρ1))−1[1 +

2G

c2
xw(1− 2G

c2
xw)−1](4πp0 + 4πxp1(ρ1) + w)

(2.83)

· (ρ0 + xρ1 +
p0

c2
+
xp1(ρ1)

c2
)

We expand the right-hand side of (2.83) and collect terms. We then define functions

F1 : I × R2 → R and g1 : I → R where I ⊂ R is an open interval containing 0. This

way we can write (2.83) as

x
dρ1

dx
+ ρ1 = −G

2

dp

dρ
(ρ0)(

p0

c2
+ ρ0)w + xF1(x, f(x)) + g1(x) (2.84)

Further still, we write (2.84) as

x
dρ1

dx
+ ρ1 +

G

2

dp

dρ
(ρ0)(

p0

c2
+ ρ0)w = xF1(x, f(x))) + g1(x) (2.85)

Now, for equation (2.79) we define functions F2 : I × R2 → R and g2 : I → R by

F2(x, f(x)) = 2πρ1(x) (2.86)

g2(x) = 2πρ0 (2.87)

This allows us to express (2.79) as

x
dw

dx
+

3

2
w = 2πxρ1 + 2πρ0 = xF2(x, f(x)) + g2(x) (2.88)

We can now define our function N : R2 → R2 in matrix form. It is given by

N =

 1
G(

p0
c2

+ρ0)

2 dp
dρ

(ρ0)

0 3
2

 (2.89)
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We can now write out our system of equations (2.78),(2.79) in the form given by

Theorem 2.2. We use the expression in (2.85),(2.88), and (2.89). This gives us

x
df

dx
+Nf(x) = xF (x, f(x)) + g(x) (2.90)

x
d

dx

 ρ1(x)

w(x)

+

 1
G(

p0
c2

+ρ0)

2 dp
dρ

(ρ0)

0 3
2

 ρ1(x)

w(x)

 = x

 F1(x, f(x))

F2(x, f(x))

+

 g1(x)

g2(x)


(2.91)

We now just note that F is a combination of smooth functions, and hence smooth.

g is a combination of smooth functions, and hence smooth. The matrix N is upper

triangular with eigenvalues 1 and 3
2

hence all its eigenvalues are real and positive.

Therefore, by theorem 2 there exists an open interval J with 0 ∈ J ⊂ I and a unique

bounded C1 function f on J \ {0} satisfying (2.91). Moreover, f extends to a C∞

solution of (2.91) on the entire interval J . This means that we have a unique smooth

solution of equations (2.72) and (2.73) in a neighborhood of 0 for the given central

density ρ0 and equation of state ρ(p).

2.3 Extending the Solution Uniquely

Our final step in the proof is showing that our unique, smooth solution f can be

extended in a unique way. If our star is finite, there will be some xb such that

p(xb) = 0 where xb corresponds to R which is the radius of the star. In this case, the

Schwarzschild vacuum solution will connect to the interior solution at the boundary

region.[10] If the star is infinite, then p(x) > 0 for all x,ρ → 0 as x → ∞, and the

vacuum region is empty. Standard existence and uniqueness theorems for ordinary

differential equations imply that f can be extended in a unique way as long as the

right-hand sides of (2.72) and (2.73) are well-defined.[7]. We first look at (2.72).
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We want to make sure that as x → ∞ dρ
dx

> 0 for all x in the interior solution,

i.e. the region where p > 0. If the star is infinite then the “interior” solution will

occupy all of space. Our hypothesis for Theorem 2.1 includes dρ
dp
> 0 and ρ(p) ≥ 0

for p ≥ 0. We also know that G, c > 0 and w > 0 for p > 0. These imply that the

first, second, and fourth factors in equation (2.72) are positive in the “interior” region.

We first want to show that y2 = 1− 2G
c2
xw cannot vanish while p > 0. If this were

to occur, then p > 0 implies we are still in the “interior” solution. If y2 vanished

in the interior, then dρ
dx

= 0 and we would lose uniqueness of our extension. Let

0 ≤ x < xb be an interval where y2 > 0 and p > 0. We know that since dρ
dp
> 0 that

the density ρ(p) does not increase outward, i.e. when p decreases. This implies that

dw
dx
≤ 0. Equation (2.64) then gives us

d

dx
(y
dz

dx
) =

G

2c2

z

y

dw

dx
≤ 0 (2.92)

Since z, y > 0 and G, c are positive constants. Equation (2.60) can be rewritten as

y
dz

dx
=
G

c2

z

y
[
4πp

c2
+ w] (2.93)

Equation (2.92) gives us that the derivative of y dz
dx

is non-positive, which means that

the expression in (2.93) is non-increasing. Therefore we have

y
dz

dx
≤ y

dz

dx
|x=0 (2.94)

This gives us the following inequality, recalling (2.46)-(2.48).
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G

c2

z

y
[
4πp

c2
+ w] ≤ G

c2
[
4πpc
c2

+ w0] (2.95)

z

y
[
4πp

c2
+ w] ≤ 4πpc

c2
+ w0 (2.96)

z
[4πp
c2

+ w]
4πpc
c2

+ w0

≤ y (2.97)

[4πp
c2

+ w]
4πpc
c2

+ w0

≤ y (2.98)

Therefore, (2.98) shows that it is impossible for y to vanish before p. This of course

implies that y2 = 1 − 2G
c2
xw cannot vanish in the region where p > 0. Hence dρ

dx
> 0

for p > 0 and ρ extends uniquely to the boundary of the star. For equation (2.73) we

recall the expression in (2.79) and note that ρ = ρ0 + xρ1 is unique and smooth up

to the boundary and so w must also be smooth and unique up to the boundary.

Consider the case where the star is finite. The radius is given by R which

corresponds to some xb. The exterior solution is the Schwarzschild solution and

is uniquely given by the following metric potentials.

ea(r) = e−b(r) = 1− 2G

c2

m(R)

r
(2.99)

The spatial metric potential for the interior solution is given by equation (2.75)

by the following.

e−b(r) = 1− 2G

c2
r2w(r) = 1− 2G

c2

m(r)

r
(2.100)

So we see by equation (2.99) and (2.100) that the spatial potential for the interior

solution matches up to the spatial potential of the exterior vacuum solution at the

boundary, r = R. For the space-time potential in the interior, we have by equation
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(2.74) that

ea(r) = exp[−
ˆ p(r)

p0

2

ρ(p) + p
c2

dp] (2.101)

at the boundary, r = R, the space-time potential can only be joined together

continuously, i.e. in C0 fashion. This is because it may be the case that ρ(R) > 0. If ρ

does not vanish at the boundary then we can get at most a C1 space-time potential.

This follows from equation (2.2) and the fact that if ρ does not equal zero at the

boundary then the Ricci tensor must be discontinuous at the boundary. We also

make note that the metric cannot be extended because as r increases so does the area

of the r = const. group orbits.

In the case of an infinite star, we have p(r) > 0 for all r > 0. We know that

limr→∞ p(r) exists since p(r) is bounded below by 0 and monotonically decreasing.

This implies that dp
dr

must vanish at infinity. Recall equation (2.46). Note that y2 ≤ 1.

(2.42) give us

dp

dr
= −Gr 1

y2
(4πp+ w)(ρ+

p

c2
) (2.102)

We know w vanishes at infinity by definition since m(r) ≤ m(R) < ∞. Also, ρ ≥ 0

for p ≥ 0 The fact that limr→∞
dp
dr

= 0, −Gr → −∞ as r →∞ and 1
y2
≥ 1 gives us

0 = lim
r→∞

dp

dr
= − lim

r→∞
Gr

1

y2
(4πp+ w)(ρ+

p

c2
) (2.103)

≤ − lim
r→∞

Gr(4πp+ w)(ρ+
p

c2
) (2.104)

Clearly we see that limr→∞ p(r) = 0. This implies that limr→∞ ρ(r) = 0. This

completes the proof of Theorem 2.1.
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Chapter 3

Uniqueness of the Static Stellar

Model

The metric tensor in a static model in General Relativity has the form:

ds2 = −V 2dt2 + gabdx
adxb (3.1)

where gab, a, b = 1, 2, 3, denotes the spatial metric for the t = const. hyper-surfaces

and V and gab are time-independent. Coupling Einstein’s equation with a perfect

fluid matter model gives us the following pair of equations [31]

DaDaV = 4πV (ρ+ 3p) (3.2)

Rab = V −1DaDbV + 4π(ρ− p)gab (3.3)

where the density and pressure are denoted by ρ and p, respectively. Da and Rab are

with respect to the spatial metric, and the density is assumed to be a given function

of pressure, ρ(p), which is referred to as the equation of state. Combining the two

equations above and the Bianchi identity yields:

Dap = −V −1(ρ+ p)DaV (3.4)
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If this static stellar model was spherically symmetric, then this equation would

be equivalent to the so-called Tolman-Oppenheimer-Volkoff (T.O.V.) equation for

hydrostatic fluids for a metric tensor of the above form. These equations have become

standard over the evolution of the attempt to solve this problem.

The idea of using the Positive Mass Theorem to prove rotational symmetry of

static stellar models which we analyze here was introduced by Masood ul-Alam in

the late 1980’s. Slight variations have been used in order to obtain uniqueness while

lessening the restrictions on the acceptable equations of state. The scheme is to first

parametrize the system in terms of the potential V , where the surface potential Vs

represents the boundary of the star. The task is then to derive a conformal factor

which transforms the spatial metric of the t = const. hyper-surface of the static stellar

model into a metric with zero mass and non-negative scalar curvature. The rigidity

part of the Positive Mass Theorem then implies that the conformal metric must be

flat. An old result due to Avez [23] says that a spatially conformally flat static perfect-

fluid solution is necessarily spherically symmetric. The technical difficulties with this

method revolve around showing the that the scalar curvature of the conformal metric

is non-negative. The scalar curvature associated with conformal metric parameterized

by V is given by the equation

R̂ = (W̃ −W )
8

ψ5

d2ψ

dV 2
(3.5)

where W = DaDaV is the square of the field intensity for the static stellar model,

ψ is the conformal factor which transforms the spatial metric, and W̃ is the norm

squared of the field intensity for a “reference model”. More precisely, W̃ is related to

ψ via the second-order linear differential equation:

W̃
d2ψ

dV 2
(V ) = 2π[ρψ − 2V (ρ+ 3p)

dψ

dV
(V )] (3.6)
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In general, the conformally transformed scalar curvature is related to the original

scalar curvature by the formula

R̂ = ψ−4(R− 8ψ−1DaDaψ) (3.7)

where the scalar curvature R and the covariant derivative Da are with respect to the

spatial metric.[32]. The variations on this overall prescription have revolved around

choosing ψ and W̃ in a clever way. Outside the boundary of our finite static star,

the metric is necessarily Schwarzschild, which follows from the fact that outside of

our star we have a vacuum solution of Einstein’s equation. In the case rotational

symmetry holds (as we hope to prove), Birkhoff’s Theorem then implies that the

metric is Schwarzschild. Therefore, outside of the star, we choose the conformal

factor

ψ =
1

2
(1 + V ) (3.8)

for V ≥ Vs. (That his corresponds to the Schwarzschild metric is easily shown, see

[31].) Using this conformal factor the scalar curvature with respect to the conformal

metric outside of the star will be zero. The mass of the conformal metric will also

be zero. What is left is to determine W̃ and ψ for the interior solution. Choosing W̃

and ψ for the interior solution is what directs us to add restrictions to the equation

of state. The challenge of guaranteeing the sign of R̂ in the interior of the star be

non-negative is the heart of the variations of this method.

Lindblom in his 1988 paper [22] dealt with constant density models (see also [31]).

This allowed the equation of hydrostatic equilibrium to be integrated explicitly. He

then assumed without proof the existence of a “reference spherical model” which

possesses the same equation of state, in this case the same constant density, and the

same surface potential Vs. This “reference spherical model” is then used to define ψ

and W̃ inside the star. This leads to 8
ψ5

d2ψ
dV 2 being non-negative inside the star and
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vanishing on the outside. The sign of (W̃ −W ) in this case can then be determined

using Robinson type identities and the maximum principle for elliptic operators.

In 1993 [29], Lindblom and ul-Alam demonstrated the existence of a “reference

spherical model” for an appropriately chosen mass parameter ν = M(Vs) which

possesses the same equation of state and surface potential value as the static stellar

model. This means finding ‘area radius’ and ‘mass’ functions rν(V ),mν(V ), solving a

system of ordinary differential equations described below, and from them computing

the ‘field strength’ function Wν(V ). The conformal factor is then found inside the

star to by solving the first-order linear differential equation

dψ

dV
=

ψν

2rν
√
Wν

[1−
√

1− 2mν

rν
] (3.9)

with the boundary condition ψν(Vs) = 1
2
(1 + Vs). The parameters subscripted by

ν are the parameters of the “reference spherical model”. The significance of this

equation is that in the case of a spherically symmetric model with a mass parameter

of ν, the conformal factor which transforms the spatial metric to a flat spatial metric

satisfies this equation [31]. Unique solutions rν(V ) and mν(V ) exist (inside the star)

if we assume that the equation of state is at least C1. Specifically, the equation

of state being C1 implies that ρ(V ) and p(V ) are also C1 for V < Vs, and then

standard existence-uniqueness for O.D.E. systems give solutions on a maximal domain

(Vν , Vs].[29] In this case we set W̃ = Wν . One of the pivotal points of this variable

mass modification being successful is monotonicity with respect to the mass parameter

µ of the function Wµ(V ) for a fixed V ∈ (Vµ, Vs). This monotonicity result follows

from showing that the sign of the expression

Σµ =
dWµ

dV
− 8π

3
V (ρ+ 3p) +

4Wµ

5V

ρ+ p

ρ+ 3p

dρ

dp
(3.10)
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is non-negative. The sign of Σµ is guaranteed to be non-negative if the equation of

state satisfies one of two conditions, Condition A or Condition B. Assuming that

the equation of state is at least C1 and satisfies either Condition A or Condition B

ensures that Σν is non-negative. This implies that Wµ is monotonic with respect

to µ. Monotonicity then implies that for W̃ = Wν , we have W̃ − W ≥ 0. For

the quantity 8
ψ5

d2ψ
dV 2 to be guaranteed non-negative the equation of state must satisfy

another condition

5ρ2 − 6p(ρ+ 3p)κ ≥ 0 (3.11)

where κ = ρ+p
ρ+3p

dρ
dp

. If it happens to be the case that limV→V +
ν
rν > 0 for the “reference

spherical model”, then a slight perturbation is made in the mass parameter ν. ψ

and W̃ are then chosen based on the perturbed mass ν + δ. The two factors of the

conformal scalar curvature seem to not be directly related. However, the conditions on

the equation of state are. In fact, the inequality just mentioned is exactly Condition

B. Moreover, it is shown that Condition A implies Condition B. So an equation of

state which satisfies either Condition A or Condition B will imply that both factors of

the conformal scalar curvature are non-negative. Then the line of argument described

above implies the result. Uniqueness, in fact, implies that the mass parameter ν is

actually equal to the ADM mass M of the given static stellar model.

The most recent uniqueness proof by ul-Alam [4] takes a more localized approach.

The basic outline of his strategy is the same. The biggest modification made by ul-

Alam is by utilizing the spinor norm weighted scalar curvature integral that appears

in Witten’s proof of the Positive mass theorem. This proof moves away from trying to

construct a conformal factor that forces the point-wise non-negativity of the conformal

scalar curvature and instead constructs a conformal factor such that the negative

contribution of the conformal scalar curvature to the spinor norm weighted integrated

scalar curvature can be made as small as we like. This relaxes the need for the scalar

curvature of the conformal metric to be non-negative everywhere. We allow areas of
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the conformal geometry to have negative scalar curvature but the contribution to the

integral must be small. Instead of defining a global conformal factor and a global

W̃ he constructs a sequence of conformal factors and a corresponding sequence of W̃

starting at V = Vs and working inward. This approach entails many more technical

details but strengthens the overall result in that the only restriction on the equation

of state is that it is piecewise C1. The remainder of this section will be devoted to

outlining the proof of ul-Alam’s result which constitutes the most recent uniqueness

proof for the static stellar model.

We first give the statement of the theorem and list the hypothesis.
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3.1 Statement of the theorem.

Theorem 3.1 [M. ul-Alam (2007)]

A static stellar model satisfying the following assumptions is necessarily spherically

symmetric.

i.) The space-time 4-manifold is M4 = N3 × R with line element

ds2 = −V 2dt2 + gijdx
idxj

gij is a complete Riemannian metric on N and V : N → [Vmin, 1).

ii.) The spatial metric and gravitational potential satisfy the asymptotic conditions:

gij = (1 +
2m

r
)δij +O(r−2)

V = 1− m

r
+O(r−2)

iii.) The density ρ = ρ(p) is a piecewise C1 positive, non-decreasing function of p for

p > 0. ρ = 0 in the exterior region.

vi.) The sets on the spatial hyper-surface N along which ρ has discontinuity are

smooth 2-surfaces. There are at most a finite number of these surfaces.

v.) The pressure p = p(r) is globally Lipschitz and p > 0 in the fluid region and p = 0

in the exterior vacuum. p is a non-negative, bounded, measurable function.

vi.) The boundary V = Vs < 1 of the interior fluid region and the vacuum region are

both level sets of V . The level set of Vs is a smooth 2-surface.

29



vii.) The gravitational potential V and the metric gij are C1,1 globally and locally C3

in the complement of the smooth 2-surfaces where ρ has discontinuity and the level

set of Vs.

The Einstein equations for a static Lorentzian metric:

ds2 = −V 2dt2 + gijdx
idxj (3.12)

with the perfect fluid energy-momentum tensor reduce [31] to the following system

of equations:

DiDiV = 4πV (ρ+ 3p) (3.13)

Rij = V −1DiDjV + 4π(ρ− p)gij (3.14)

where Di and Rij are with respect to the Riemannian 3-metric, gij. The differential

Bianchi identity for gij implies the equation for hydrostatic equilibrium

Dip = −V −1(ρ+ p)DiV (3.15)

We carry out the integration of the equation for hydrostatic equilibrium on an interval

[V, Vs] where ρ is a C1 function of p which gives us

ln(
Vs
V

) =

ˆ p

0

ds

ρ(s) + s
= h(p) (3.16)

The right hand side of this equation is invertible so we can consider p and ρ as

functions of the potential

p(V ) = h−1(ln(
Vs
V

)) (3.17)

ρ(V ) = ρ(p(V )) (3.18)
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Since ρ(p) is C1 in this interval, it follows that p(V ) and ρ(V ) are also C1 for V < Vs

which follows from the fact that V is assumed to be C3 away from the boundary and

on the complement of the discontinuities of ρ.

3.2 The “reference system” of O.D.E.

We state now a local existence lemma of the spherically symmetric equations from

ul-Alam and Lindblom’s joint work.[29]

Consider the following system of equations.

dr

dV
=

r(r − 2m)

V (m+ 4πr3p)

dm

dV
=

4πr3(r − 2m)ρ

V (m+ 4πr3p)

Here ρ(V ), p(V ) are given C1 functions in [Vm, b], and initial conditions are given at

V = b, satisfying r > 0, r > 2m > −8πr3p. (Where b ∈ (Vm, Vs] is arbitrary). For

a spherically symmetric solution (with metric coefficients depending only on V ) the

squared field strength DiV D
iV admits the expression:

W̃ = (1− 2m

r
)(
dr

dV
)−2 =

V 2(m+ 4πr3p)2

r3(r − 2m)
.

Let (Vc, b] be the maximal interval of existence for a solution with given initial

conditions r(b),m(b). Then r > 0, r > 2m > −8πr3p and W̃ > 0 on this interval, and

furthermore we are assuming p(V ) < ∞ for V ∈ [Vm, 1) (where Vm is the minimum

value of V in the interior).
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Lemma 3.1 [ul-Alam (2007)]

Either the maximal interval of existence (Vc, b] contains [Vm, b], or Vc ∈ [Vm, b). In

either case, r and m are monotonic functions of V and sup[Vc,b](2m/r) < 1 on the

corresponding interval ([Vm, b] or (Vc, b]). In the second case limV→V +
c
W̃ = 0. Then

either limr→V +
c
r(V ) = 0 (“regular zero” of W̃ ) or limr→V +

c
r(V ) > 0 (“irregular zero”).

If the former, we have mr−3 → (4π/3)ρ(Vc) as V ↓ Vc; if the latter, mr−3 → −4πp(Vc).

In particular, m < 0 on approach to an irregular zero of W̃ .

3.3 Spinor approach to the Positive Mass Theo-

rem.

In order to understand the strategy of our proof it is necessary to consider Bartnik’s

version [17] of Witten’s Positive Mass Theorem[30]. We state it here.

Theorem 3.2 [ Bartnik (1985)]

Suppose that (Mn, g) is a complete spin manifold satisfying the asymptotic flatness

conditions:

i.) (Φ∗g − δ) ∈ W 2,q
−τ (ER0) for some asymptotic structure Φ, R0 > 1, q > n, (3.19)

and τ ≥ 1

2
(n− 2)

ii.) R(g) ∈ L1(Mn, g) (3.20)

with non-negative scalar curvature: R(g) ≥ 0. Let ξ0 be a spinor, constant near

infinity and normalized by |ξ0|2 → 1 at infinity, and let ξ be the unique solution of

Dirac’s equation satisfying:

ξ − ξ0 ∈ W 2,q
−τ .
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Then the mass of Mn is non-negative and is given by

c(n)mass(g) =

ˆ
M

(4|∇ξ|2 +R|ξ|2)dvolg (3.21)

Furthermore, if mass(g) = 0, then M is flat. (Here c(n) = 2(n− 1)ωn−1.)

A desirable approach along the lines of ul-Alam’s method for a uniqueness proof

would be to construct a conformal factor ψ̃ which makes mass(ĝ) = 0 (where ĝ = ψ̃4g)

and use the theorem above. We do in fact have a spin manifold since any orientable

3-manifold has a spin structure.[13] The problem is that we do not know the sign of

R̂ at this point. The sign of R̂ is necessary in proving that vanishing of the mass

implies flatness.

It is important now to recall the argument used by Bartnik to define his mass

integral and to conclude that the metric was flat in the case that the mass of the

metric was zero. The key to Witten’s method is the Lichnerowicz-type identity

(|∇ψ|2 +
1

4
R|ψ|2 − |Dψ|2) ∗ 1 = d(< ψ, σij.∇jψ > ∗ei) (3.22)

where D is the Dirac operator and

σij =
1

2
[ei, ej] = eiej + δij (3.23)

(Here (ei) is a local orthonormal frame, and we use Clifford multiplication.) Its

derivation can be found in the appendix of this paper. The goal was to find an

asymptotically constant spinor field, ψ, satisfying Dψ = 0, and then identify the

right hand side of Witten’s identity, (3.22), with the mass. The first step that Bartnik

took was to show that the Dirac operator was in fact an isomorphism between certain

weighted Sobolev spaces. This was Proposition 6.1 in [17]. In proving that these the
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two weighted Sobolev spaces were isomorphic non-negative scalar curvature was used

in conjunction with the strong maximum principle to show that the kernel of D and

its adjoint was trivial. Secondly, it was shown that for an arbitrary spinor field ψ0,

which is constant at infinity, there exist a spinor field ψ which satisfies Dψ = 0 and

that ψ−ψ0 are elements of a weighted Sobolev space where the weight is equal to the

rate of the mass decay condition for the manifold. This was given in Corollary 6.2 in

[17]. This shows existence of the spinor occurring in Bartnik’s integral expression for

the ADM mass, after identifying the boundary term in Witten’s identity,(3.22), with

the ADM mass. The positivity of mass is then an easy consequence assuming the

non-negativity of the scalar curvature. Finally, in the case that the mass was zero we

have

c(n)mass(g) =

ˆ
M

(4|∇ψ|2 +R|ψ|2) ∗ 1 = 0 (3.24)

This implies that ∇ψ ≡ 0. From the spinor ψ we can define a vector vψ via the

surjective map

< vψ, X >= Im < ψ,X.ψ > for X ∈ Rn (3.25)

Since ∇ψ = 0 then ∇vψ = 0. Since ψ0 was an arbitrary constant spinor at infinity in

our construction we can find a basis for TM consisting of covariantly constant vector

fields. This means that M must be flat.

3.4 Strategy of proof of the Main Theorem.

The importance of outlining Bartnik’s proof is that we will use the same technique in

order to prove that with a properly defined conformal factor we too will have a flat

metric for our static stellar model. Namely, by choosing an appropriate conformal

factor, we can make the spinor norm weighted scalar curvature as small as we like.

Taking limits, we find three linearly independent parallel spinors, which allows us to
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find a basis for TM consisting of covariantly constant vector fields. We use this to

conclude that the conformal metric is flat.

We denote the scalar curvature of the conformal metric ĝ = ψ̃4g by R̂, given by

the following equation:

R̂ = (W̃ −W )
8

ψ̃5

d2ψ̃

dV 2
(3.26)

(See (3.6) for W̃ .) The sign of R̂ is not yet known at this point so we cannot apply

Bartnik’s argument for existence of such a spinor with respect to our conformal metric

ĝ and hence cannot yet define mass(ĝ). However, an easy calculation shows that the

scalar curvature R with respect to our original metric g is given by

R = 16πρ (3.27)

Since ρ ≥ 0 we know that R ≥ 0. Therefore, we can apply Bartnik’s argument for

the existence of the needed Dirac spinor with regards to the metric g. Let ξ0 be an

arbitrary spinor field that is constant at infinity. Corollary 6.2 from Bartnik [17] then

says that there exists a spinor field ξ = ξ0 + ξ1 which satisfies Dξ = 0 and decays

to ξ0 at the needed rate. In other words, ξ is constant at infinity and ξ1 falls off to

the order of O(r−τ ) for some τ > 1
2
. Therefore the mass of our metric g admits the

expression:

c(n)mass(g) =

ˆ
M

(4|∇ξ|2 +R|ξ|2)dvolg (3.28)

We want to define a conformal factor ψ̃(V ) for V ∈ [Vm, 1). Outside of our static

star Birkhoff’s theorem says that our space-time should be Schwarzschild. In this

case, we know the form of the conformal transformation which sets the mass and

scalar curvature to zero. The conformal transformation is

ψ(V ) =
1

2
(1 + V ) (3.29)

35



for V ∈ [Vs, 1). We start defining ψ̃ by setting ψ̃ = ψ for V ∈ [Vs, 1). Therefore,

R̂ = 0 on [Vs, 1) and the mass of ĝ is zero. Under a conformal transformation the

spinor Θ = ψ̃−2ξ satisfies the Dirac equation DΘ = 0 relative to the conformal metric

ĝ.[3] The spinor Θ is given by

Θ = ψ̃−2ξ = ψ̃−2(ξ0 + ξ1) = ξ0 + Θ1 (3.30)

Θ1 = ψ̃−2ξ1 will fall off like O(r−τ ) which follows from our assumptions on ξ1 and

the conformal factor approaching a constant at infinity. Using the spinor Θ with its

falloff we can identity the right hand side of Witten’s identity with the mass of ĝ just

as Bartnik did in his proof. Since the mass of ĝ is zero, the integral formula with

respect to ĝ becomes ˆ
M

(R̂‖Θ‖2 + 4‖∇ĝΘ‖2)dvolĝ = 0 (3.31)

We express the first term with respect to the original metric g. This gives us

0 =

ˆ
M

(R̂‖Θ‖2 + 4‖∇ĝΘ‖2)dvolĝ =

ˆ
M

R̂ψ̃2‖ξ‖2dvolg +

ˆ
M

4‖∇ĝΘ‖2dvolĝ. (3.32)

We will divide [Vm, Vs] into two sets, A and B. On the set A we define ψ̃ to satisfy

the second order linear O.D.E.:

d2ψ̃

dV 2
=

2π

W̃
[ρψ̃ − 2V (ρ+ 3p)

dψ̃

dV
] (3.33)

assuming W̃ > 0 is given. The significance of the second order ODE is as follows. In

the case that the stellar model is spherically symmetric Einstein’s equation coupled

with the perfect fluid matter model will yield the following equations

dr

dV
=

r(r − 2m)

V (m+ 4πr3p)
(3.34)

dm

dV
=

4πr3(r − 2m)ρ

V (m+ 4πr3p)
(3.35)
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and then the squared field intensity is:

W (V ) = (1− 2m

r
)(
dr

dV
)−2 =

V 2(m+ 4πr3p)2

r3(r − 2m)
(3.36)

Solutions for these equations are given for V ∈ [a, b] with initial values given at V = b.

Also, for a stellar model which is spherically symmetric the conformal factor ψ̃ which

makes ψ̃4g flat will satisfy the linear ODE

dψ̃

dV
=

ψ̃

2r
√
W̃

[1−
√

2m

r
] (3.37)

Differentiating this whenever possible will yield the second order O.D.E., (3.33). On

the set B we define ψ̃ = u where u is a function for which we have control over the

scalar curvature of u4g. If we break the integral up along the sets A and B, where

A ∪B = [Vm, Vs], and recall that for V ∈ (Vs, 1] we have R̂ = 0 we get

0 =

ˆ
M

R̂ψ̃2‖ξ‖2dvolg +

ˆ
M

4‖∇ĝΘ‖2dvolĝ (3.38)

=

ˆ
V −1(A)

R̂ψ̃2‖ξ‖2dvolg +

ˆ
V −1(B)

R̂ψ̃2‖ξ‖2dvolg +

ˆ
V −1((Vs,1))

R̂ψ̃2‖ξ‖2dvolg

(3.39)

+

ˆ
M

4‖∇ĝΘ‖2dvolĝ

=

ˆ
V −1(A)

R̂ψ̃2‖ξ‖2dvolg +

ˆ
V −1(B)

R̂ψ̃2‖ξ‖2dvolg +

ˆ
M

4‖∇ĝΘ‖2dvolĝ (3.40)

=

ˆ
V −1(A)

(W̃ −W )
8

ψ̃5

d2ψ̃

dV 2
ψ̃2‖ξ‖2dvolg +

ˆ
V −1(B)

Ru4gu
2‖ξ‖2dvolg+ (3.41)

ˆ
M

4‖∇ĝΘ‖2dvolĝ

=

ˆ
V −1(A)

(W̃ −W )
8

ψ̃3

d2ψ̃

dV 2
‖ξ‖2dvolg +

ˆ
V −1(B)

Ru4gu
2‖ξ‖2dvolg +

ˆ
M

4‖∇ĝΘ‖2dvolĝ

(3.42)
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From this vantage point our ultimate goal can be seen. We want to be able to make

the third integral as small as we like. What is left is to define the sets A and B, the

function ψ̃ and W̃ on A and u on B.

We want to look at the integral in equation (3.42) and construct the functions

W̃ , ψ̃, and u on intervals contained in [Vm, Vs] depending on what set the interval

falls in and the behavior of d2ψ̃
dV 2 at the right endpoints. First, we have a lemma gives

existence of solutions for the spherically symmetric ODE system near Vs and starting

properties for the solutions at V1 ∈ [Vm, Vs).

Lemma 3.2 [ul-Alam (2007)]

There exists a noncritical value V1 < Vs, and solutions (r,m, W̃ , ψ̃) of equations

(3.34)-(3.37) on [V1, Vs] with ψ̃ > 0, and if for V ≥ Vs we define ψ̃ as in (3.29), then ψ̃

is C1,1 on [V1, 1). Furthermore on (V1, Vs] 0 < 2d ln ψ̃
dV

< 1, W̃ −Wave > 0, and d2ψ̃
dV 2 > 0.

In particular,
´
V −1([V1,Vs])

(W̃ −W ) 8

ψ̃3

d2ψ̃
dV 2‖ξ‖2dvolg > 0. (Wave is defined later.)

3.5 Auxiliary system of differential equations.

Lemma 3.2 gives us positivity of the integral on the set [V1, 1) and the starting

conditions of W̃ and d2ψ̃
dV 2 . Our goal is to continue into the star constructing the

conformal factor ψ̃. Some intervals we will use W̃ to define ψ̃ by means of equation

(3.33). On certain intervals in [Vm, V1], however, we will define ψ̃ according to the

solution to one of two differential equations. On these certain intervals, which we will

define later, we want ψ̃ to have certain properties which depend on the properties of

the interval it is defined on. So on certain intervals we will set ψ̃ = u where u is the

solution to this DE we not describe.
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Let γ denote the adiabatic index

γ :=
ρ+ p

p

dp

dρ
(3.43)

We know that for our model star dρ
dp
≥ 0 which means that γ > 0 on the interior of

the star, V < Vs. A simple computation yields the next lemma.

Lemma 3.3 [ul-Alam (2007)]

At V < Vs where d2ψ̃
dV 2 = 0 and ψ̃ is three times differentiable we have

d3ψ̃

dV 3
=

10πρ

γW̃
[γ − 6

5
(1 +

p

ρ
)2]
dψ̃

dV
=

5πρ2ψ̃

γW̃V (ρ+ 3p)
[γ − 6

5
(1 +

p

ρ
)2] (3.44)

Let α, β be constants. We define two alternative O.D.E. for the function u

αρu− 2V (ρ+ 3p)
du

dV
= 0 (3.45)

βu+ ρu− 2V (ρ+ 3p)
du

dV
= 0 (3.46)

If we integrate these two equations on an interval [a, b] using (α̂, β̂) = (α, 0) for (3.45)

and (α̂, β̂) = (1, β) for (3.46) we get

1

u(V )
=

1

u(b)
exp(

ˆ b

V

α̂ρ(ν) + β̂

2ν(ρ(ν) = 3p(ν))
dν) (3.47)

α is chosen in equation (3.45) so that u and ψ̃ will match in a C1,1 way at V = b.

This implies that

α = 2b(1 + 3p
ρ

)dlnψ̃
dV

(b). In the case that limV→b+
d2ψ̃
dV 2 = 0, a simple calculation using

(3.33) shows that α = 1. If limV→b+
d2ψ̃
dV 2 > 0 a similar calculation shows that α < 1.

In both cases, 0 < α ≤ 1, we have that 0 < 2V d ln ψ̃
dV

< α ≤ 1 at V = a. This fact is

key in choosing W̃ on certain intervals, which we will discuss more in detail later. If
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limV→b+
d2ψ̃
dV 2 < 0, then an α that ensures a C1,1 match of u and ψ̃ at b will be greater

than 1. Therefore we lose the inequality 0 < 2V d ln ψ̃
dV

< 1 at a. This is precisely where

the equation (3.46) comes in. In the case that limV→b+
d2ψ̃
dV 2 < 0 we use (3.46). If we

assume that ψ̃ was chosen so that 0 < 2bd ln ψ̃
dV

(b) < 1 at V = b and choose β so that

0 < β < 3p(b), then at V = a (3.46) gives us

0 = βu+ ρ(a)u− 2V (ρ(a) + 3p(a))
du

dV
=⇒ 2V (ρ(a) + 3p(a))

du

dV
= βu+ ρ(a)u

(3.48)

(3.49)

Therefore

2V (ρ(a) + 3p(a))
du

dV
= βu+ ρ(a)u ≤ (3p(b) + ρ(a))u (3.50)

=⇒ 2V
d lnu

dV
≤ (3p(b) + ρ(a))

(ρ(a) + 3p(a))
< 1 (3.51)

where the last inequality follows from the fact that p increases into the star.

Now, if u satisfies equation (3.45), then we have an explicit expression involving

the scalar curvature Ru4g

u4Ru4g =
2Wα

γV 2(1 + 3p
ρ

)2
(6(1 +

p

ρ
)2 − 5γ + γ(1− α)) + 16πρ(1− α) (3.52)

In particular, note that if α = 1 and γ ≤ 6
5
(1 + p

ρ
)2 we have Ru4g ≥ 0. When u

satisfies equation (3.46) we have an explicit expression involving the scalar curvature

of the metric u4g given by

u4Ru4g =
2W

γV 2(1 + 3p
ρ

)2
(6(1 +

p

ρ
)2(1− β

3p
)− γ(5 +

6β

ρ
+
β2

ρ2
))− 16πβ (3.53)

40



3.6 The critical set and the oscillation set.

The function u described above will be used to define ψ̃ on two types of intervals, the

intervals containing critical values of V and intervals where d2ψ̃
dV 2 oscillates indefinitely.

We first describe the set of intervals which contain the critical values of V . We call

this set U . The next lemma describes the construction of the sets in U .

Lemma 3.4 [ul-Alam (2007)]

Suppose V1 < Vs is not a critical value of V . Given any ε > 0 we can ensure that

critical values of V in [Vm, V1] are contained in a union of a finite number of disjoint

intervals [Vm, j0)∪ (
⋃k
n=1(in, jn)) = U such that the 1-dimensional Lebesgue measure

of U , and 3-dimensional Hausdorff measure of V −1(U) satisfy

max{L1(U), H3(V −1(U))} < ε (3.54)

Proof.

Let ε > 0. We first want to show that the set C = {x ∈ V −1([Vm, V1]) : W (x) = 0}

has 3-dimensional Hausdorff measure 0. Suppose for contradiction that C has positive

3-dimensional Hausdorff measure. Then there exists an open 3-dim ball O(r) with

radius r which contains C and that O(r) \ C < ε2
2

for any given ε2 > 0. Therefore C

cannot have positive H3 measure. Next, for any [a, b] ⊂ [Vm, Vs) the co-area formula

gives us [2]

H3({x ∈ V −1([a, b])|W (x) 6= 0}) =

ˆ b

a

(

˛
V=τ,W 6=0

W
−1
2 )dτ =

ˆ b

a

f(τ)dτ (3.55)

where we let
¸
V=τ,W 6=0

W
−1
2 = f(τ). This equality given by the co-area formula

shows that the function f(τ) must be integrable on any interval [a, b] ⊂ [Vm, Vs) since

the H3([Vm, Vs)) < ∞. Using the continuity of integration we know that for our

given ε > 0 there exists a δ1 > 0 such that if S ⊂ [Vm, Vs) and L1(S) < δ1 then
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´
S
f(τ)dτ < ε. The equality given by the co-area formula then tells us that

H3({x ∈ V −1(S)|W (x) 6= 0}) =

ˆ
S

(

˛
V=τ,W 6=0

W
−1
2 )dτ =

ˆ
S

f(τ)dτ < ε (3.56)

Putting these things together we have that for any S ⊂ [Vm, Vs) such that L1(S) < δ1

then

H3(V −1(S)) = H3((C ∩ V −1(S)) ∪ (Cc ∩ V −1(S))) (3.57)

= H3(C ∩ V −1(S)) +H3(Cc ∩ V −1(S)) (3.58)

= 0 +H3(Cc ∩ V −1(S)) (3.59)

< ε (3.60)

Our assumption that V is a C3 function on the complement of the 2-surfaces where ρ

has discontinuity gives us by Sard’s theorem [1] that the critical values of V in [Vm, V1]

form a set of measure zero. Since this set has measure zero it can be contained in a

countable union, denoted U , of disjoint open intervals such L1(U) < δ for any given

δ > 0. Since the interval (Vm, V1) is bounded we can arrange the open intervals so that

U = [Vm, j0)∪ (
⋃k
n=1(in, jn)). If we choose δ < min(ε, δ1) then we have L1(U) < δ < ε

and L1(U) < δ < δ1 implies H3(V −1(U)) < ε.

Let U be the set given by Lemma 4 with respect to the V1 given by Lemma 3.2. For

the set U we set out to make the spinor norm weighted scalar curvature integral over

this set as small as we like. This is accomplished by choosing the function u described

in the previous section. On intervals in U , we use equation (3.45) and 0 < α < 1

if d2ψ̃
dV 2 > 0 at the right endpoint and we use equation (3.46) and 0 < β < 3p(b) if

d2ψ̃
dV 2 < 0 at the right endpoint, and α or β is chosen so that u and ψ̃ agree in C1,1

fashion at the right endpoint.
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Let Cα,β be the constant given by

Cα,β = max{ sup | 2Wα

γV 2(1 + 3p
ρ

)2
(6(1 +

p

ρ
)2 − 5γ + γ(1− α)) + 16πρ(1− α)|, (3.61)

sup | 2W

γV 2(1 + 3p
ρ

)2
(6(1 +

p

ρ
)2(1− β

3p
)− γ(5 +

6β

ρ
+
β2

ρ2
))− 16πβ|}

where the sup is taken over V −1([Vm, V1]). This constant appears in the next lemma

which allows us to control the size of
´
Ru4gu

2‖ξ‖2 on intervals in U .

Lemma 3.5 [ul-Alam (2007)]

Suppose that on [a, b] ⊂ (Vm, V1] u satisfies equation (3.45) or (3.46), with initial

conditions u(b) = ψ̃(b), and du
dV

(b) = dψ̃
dV

(b) where on [b, V1], ψ̃(V ) is C1,1 and 0 <

2V d ln ψ̃
dV

< 1. Suppose further that for V ≥ V1, ψ̃(V ) is as in Lemma 3.2. Then

|
ˆ
V −1([a,b])

Ru4gu
2‖ξ‖2dvolg| ≤ 4Cα,βV

−1
m H3(V −1([a, b])) (3.62)

where the constant V1 is as in Lemma 3.2, and the constant Cα,β is as in (3.61).

Recall that on the set U there are only a finite number of intervals, i.e. U =

[Vm, j0) ∪ (
⋃k
n=1(in, jn). Therefore, using Lemma 3.5 we can control the integral´

Ru4gu
2‖ξ‖2 on all of U using the next lemma. On U we set ψ̃ = u where u was

defined by the construction above.

Lemma 3.6 [ul-Alam (2007)]

We have a constant C5 independent of ε and U from Lemma 3.4 such that for a ψ̃

constructed above the total contribution in the spinor norm weighted scalar curvature

integral from the set U is bounded by

|
ˆ
V −1(U)

Ru4gu
2‖ξ‖2dvolg| = |

ˆ
V −1(U)

Rψ̃4gψ̃
2‖ξ‖2dvolg| < C5ε (3.63)
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where ε is from Lemma 3.4. In case Vs is not a critical level set we can choose C5 to

be independent of the chose of V1

We want to define another set of intervals, U ⊂ [Vm, V1], and describe how we

choose the conformal factor on U . The set U is defined in order to capture intervals

where d2ψ̃
dV 2 oscillates indefinitely. As in the set U , for U we define the function u

which satisfy the DE described in the previous section. Let U ⊂ [Vm, V1] be a set of

intervals where |γ − 6
5
(1 + p

ρ
)2| < ε2 for some ε2 > 0 which we will shortly define with

motivation. Lemma 3.3 and the regularity conditions on the ρ(p) imply that intervals

where d2ψ̃
dV 2 changes sign rapidly will be included in U .

On intervals in U , we will have d2ψ̃
dV 2 = 0 at the right endpoint. We use equation

(3.45) with α = 1 to define our function u, and the set ψ̃ = u on intervals in U . The

purpose of defining ψ̃ = u on intervals in U is that we want to control the size of´
V −1(U)

Ru4gu
2‖ξ‖2dvolg. To this end, and for motivating our definition of ε2, we state

a lemma.

Lemma 3.7 [ul-Alam (2007)]

Suppose on [a, b] ⊂ [Vm, V1), |γ − 6
5
(1 + p

ρ
)2|ψ̃(b) ≤ γε2, for some ε2 > 0. Suppose

further that d2ψ̃
dV 2 (b) = 0. Then on [a, b] we can find a positive function u with u(b) =

ψ̃(b), du
dV

(b) = dψ̃
dV

(b) such that

|
ˆ
V −1([a,b])

Ru4gu
2‖ξ‖2dvolg| < 40πMε2(Vmψ̃(b))−3H3(V −1([a, b])))

Using Lemma 3.7 we get an integral bound on each interval in U . In order to

extend this to all of U we need a global bound on (ψ̃(b))−2, i.e. a bound that holds

for every right endpoint of intervals in U . This is given by following.
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Lemma 3.8 [ul-Alam (2007)]

Suppose on [k, l], ψ̃ is C1,1. On some subintervals [k1, l1] of [k, l], ψ̃ coincides with u

satisfying (3.45) or (3.46) with 0 < α ≤ 1 or 3p(l1) > β > 0 and on the rest of [k, l],

0 ≤ 2V d ln ψ̃
dV
≤ 1. If ψ̃(l) > 0, then 1

(ψ̃(V ))2
≤ l

V (ψ̃(l))2
on [k, l].

In light of Lemma 3.2, we view Lemma 3.8 with interval [a, b] from Lemma 3.7

being a subinterval of [Vm, Vs]. We can then replace l

V (ψ̃(l))2
with Vs

V (ψ̃(Vs))2
. This gives

us the following control on the integral from Lemma 3.7

|
ˆ
V −1([a,b])

Ru4gu
2‖ξ‖2dvolg| < 40πMε2(Vmψ̃(b))−3H3(V −1([a, b]))

≤ 40πMε2
Vs

V 3
mψ̃(Vs)2ψ̃(b)

H3(V −1([a, b])) (3.64)

≤ 40πMε2
V

3/2
s

V
9/2
m ψ̃(Vs)3

H3(V −1([a, b]) (3.65)

= 40πMε2CVs,VmH
3(V −1([a, b])) (3.66)

where CVs,Vm = V
3/2
s

V
9/2
m ψ̃(Vs)3

. Lemma 3.7 classifies what sets belong to U by choice of

ε2. Setting ε2 properly, we can use this inequality in order to mitigate the negative

contribution on intervals in U . We know that the sum of H3(V −1([a, b])) over

all possible intervals in U must be less than the total measure H3(V −1([Vm, Vs])).

Defining ε2 < MCVs,VmH
3(V −1([Vm, Vs]) and using this to define our set of intervals

U in Lemma 3.7 shows that we can make
´
V −1(U)

Ru4gu
2‖ξ‖2dvolg as small as we like

when we properly define what constitutes intervals in the set U by specifying an ε2

for Lemma 3.7. Therefore, we define U to be the set of intervals {[a, b] ⊂ [Vm, V1)} in

which d2ψ̃
dV 2 (b) = 0 and |γ − 6

5
(1 + p

ρ
)2| < ε2 where ε2 < MCVs,VmH

3(V −1([Vm, Vs]))
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3.7 The conformal factor on the regular set.

We have defined ψ̃ on the set U and U . Our goal is to define ψ̃ on [Vm, Vs]. We now

describe the process for choosing W̃ on (Vm, V1] \ U . This will aid us in defining ψ̃

on the remaining parts of [Vm, Vs]. On these intervals W̃ is used to define a ψ̃ which

satisfies equation (3.33). For a non-critical value τ ∈ (Vm, Vs] we define the function

Wave(τ) =

¸
V −1(τ)

√
W‖ξ‖2

¸
V −1(τ)

‖ξ‖2√
W

(3.67)

Using the co-area formula we see that with this definition, and for the set U given in

Lemma 3.4 and V1 given in Lemma 3.2

ˆ
V −1((Vm,V1]\U)

Wave ◦ V −W
ψ̃3

8d2ψ̃

dV 2
‖ξ‖2dvolg = 0 (3.68)

Using the fact that Wave(τ)−W (x) = Wave(τ)−W̃ (x)+W̃ (x)−W (x) and the above

equation we have

ˆ
V −1((Vm,V1]\U)

W̃ ◦ V −W
ψ̃3

8d2ψ̃

dV 2
‖ξ‖2 =

ˆ
V −1((Vm,V1]\U)

W̃ ◦ V −Wave ◦ V
ψ̃3

8d2ψ̃

dV 2
‖ξ‖2

(3.69)

We want to now describe the method for defining W̃ on sets in (Vm, V1] \ U . Our

goal is to keep W̃−Wave

ψ̃3

8d2ψ̃
dV 2 ≥ 0. We define discontinuities in W̃ in order to accomplish

this, as well as other goals. Specifically, suppose ψ̃ has been defined on an interval [b, a]

and we must give W̃ a discontinuity at b. For the interval [c, b], W̃ is defined so that

either W̃ < Wave if d2ψ̃
dV 2 (b) < 0 or so that W̃ ≥ Wave if d2ψ̃

dV 2 (b) ≥ 0. For this purpose,

if W̃ has been defined on [b, a] and it happens that W̃ −Wave changed signs at b and

d2ψ̃
dV 2 did not, then we give W̃ a discontinuity at b. That is, we pick new initial data

r−(b),m−(b) for the ODE system, and compute W̃ (b−) from those (slightly greater

or slightly smaller than W̃ (b+), W̃ = Wave± δ). Then we solve the ODE system with

the new data at b to find, on some interval [c, b], r(V ),m(V ).We then use r(V ) and
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m(V ) to compute W̃ (V ) on [c, b]. If d2ψ̃
dV 2 changes signs continuously at b and W̃−Wave

does not (so d2ψ̃
dV 2 (b) = 0), then we define ψ̃ to be u on [c, b] where u satisfies equation

(3.45) with α = 1. Note that d2ψ̃
dV 2 (V ) = 0 persists on [c, b], while Ru4g ≥ 0 on this

interval. A big difference in this proof is that we allow intervals where d2ψ̃
dV 2 < 0. In

previous work this was circumvented by placing restrictions on the equation of state.

In this construction, when d2ψ̃
dV 2 < 0 we ensure that Wave − δ ≤ W̃ < Wave, giving a

discontinuity to W̃ if needed. We also ensure that ψ̃ remains C1,1 at b. In order to

describe this process more rigorously, we start with a lemma.

Lemma 3.9 [ul-Alam (2007)]

On any V -interval where m and r are positive solutions of equations (3.34)-(3.35), we

have 0 < 2V d ln ψ̃
dV

< 1.

The value of d ln ψ̃
dV

can be derived by using equation (3.37). In the case where

m(b), r(b) are both positive, Lemma 3.9 is needed to ensure that we are able to define

proper initial values at b when a discontinuity in W̃ is needed. The next lemma

guarantees we can change the initial data for (3.34),(3.35) at V = b, so as to produce

the desired change in W̃ , while preserving the condition given in Lemma 3.9.

Lemma 3.10 [ul-Alam (2007)]

Suppose a set of solutions of equations (3.34)-(3.37) exists on [b, a] for some a and

0 < 2V d ln ψ̃
dV

(b) < 1, ψ̃(b) > 0.

Suppose limV→b+ W̃ := W̃+ = W̃ (b) ≥ 0. Given δ > 0 we can find positive

constants r−, and m−, W̃− such that W̃−,r−, and m− satisfy equation (3.36) at

V = b, W̃+ + δ > W̃− > W̃+ and the value of d ln ψ̃
dV

computed from these constants

using (3.37) remains the same at b.
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Similarly, if W̃+ > 0, given δ > 0 we can find positive constants r−m− and

W̃−,such that W̃−, r−, and m− satisfy equation (3.36) at V = b, W̃+− δ < W̃− < W̃+,

and the value of d ln ψ̃
dV

computed from these constants using (3.37) remains the same

at b..

Lemma 3.10 requires 0 < 2V d ln ψ̃
dV

< 1 at b. By Lemma 3.9 this is true if m and r

are both positive. In the case that m(b) = 0 but r(b) > 0 we have the following lemma.

Lemma 3.11 [ul-Alam (2007)]

Suppose for initially positive solutions r(V ),m(V ), W̃ (V ), ψ̃(V ) of equations (3.34)-

(3.37) on [b, a], r(b) > 0, ψ̃ is positive and C1,1 on [b, a]. Suppose further that m(b) = 0

or V d ln ψ̃
dV

(b) = 0. Then we can find a positive C1,1 conformal function ψ̃ on the region

Vm ≤ V ≤ a for which the scalar curvature is nonnegative for Vm ≤ V ≤ b.

Note that in the case that m(b) = 0 but r(b) > 0 we must have d2ψ̃
dV 2 > 0 just

before b. In this case we require W̃ −Wave > 0. Since Wave is bounded away from

zero, we know that W̃ cannot equal zero at a point where m(b) = 0 unless r(b) = 0.

This rules out the case of “irregular zeros” (defined earlier). Gathering the previous

lemmas we can now state the main lemma for giving needed discontinuities to W̃ on

the set (Vm, V1] \ U .

Lemma 3.12 [ul-Alam (2007)]

Suppose regular solutions r(V ),m(V ), W̃ (V ), and ψ̃(V ) of equations (3.34)-(3.37)

exists on [b, a] ⊂ [Vm, Vs], r(V ),m(V ), W̃ (V ), ψ̃(V ) are positive on [b, a] and ψ̃ is

C1,1 on [b, a]. Suppose further that 0 < 2V d ln ψ̃
dV

(b) < 1. Then we can give a jump

discontinuity to W̃ at b (as small as desired, in either direction) so that ψ̃(V ) is a C1,1

positive function on [d, b] for some d < b. When ρ is continuous at b the sign of d2ψ̃
dV 2
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does not change at the discontinuity. When ρ is discontinuous at b, the limit from the

left of limV→b−
d2ψ̃
dV 2 has the same sign as it would be without the given discontinuity

of W̃ at b.

3.7.1 Accumulation of discontinuities.

There is an issue we need to address. There is a possibility that an infinite number

of discontinuities are needed in W̃ and they accumulate at a point. If k is the

number of discontinuities and they accumulate at a point b then it is possible that

limk→∞ 2V d ln ψ̃k
dV

= 1. This would keep us from continuing to define W̃ to the left

of b using Lemma 3.12. It is also possible that in the case of an infinite number of

discontinuities we may not be able to control the sign of W̃ −Wave no matter how

small the initial value we give W̃ . This issue is handled in two cases: when W̃ is

increased above Wave to make W̃ −Wave positive and when W̃ is decreased below

Wave to make W̃ −Wave negative. For the first case we have the following lemma.

Lemma 3.13 [ul-Alam (2007)]

Suppose on [a, b] ⊂ (Vm, Vs] \U that 0 < 2m < r and Wave + δ ≥ W̃ ≥ Wave for some

δ > 0. If W̃ (a) = Wave(a), W̃ (b) = Wave(b) + δ, and c1 a Lipschitz constant of Wave

on [a, b] then b− a > δ
c2+c1

, where c2 = 8π(ρ(Vm) + p(Vm)) > 0.

This lemma prevents the accumulation of intervals in (Vm, Vs] \ U such that W̃

needs to be raised by placing a lower bound on the width of the interval on which

the need to raise W̃ can arise. However, note that this lower bound degenerates as

δ → 0. Therefore, we can conclude that there can be at most a finite number of times

in [Vm, Vs] we will need to raise W̃ above Wave. In the second case a similar result is

not available. This follows from the fact that for the above lemma an upper bound
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on dW̃
dV

was available and utilized. For a similar result in the case that W̃ is lowered

in order to make W̃ < Wave we need a lower bound on dW̃
dV

which is not available.

We must handle this case in a different way. There is no way to guarantee that an

accumulation of intervals in which W̃ needs to be lowered will not happen. In the case

an accumulation point occurs we show that the negative contribution to the spinor

norm weighted scalar curvature integral which occurs in (Vm, Vs] \ U can be offset

locally. This gives us non-negativity of the integral over an interval containing the

accumulation point. The lemma also ensures that we can proceed further into the

star using Lemma 3.12.

Lemma 3.14 [ul-Alam (2007)]

Let b ∈ [i, j] ⊂ (Vm, V1] \ U . Suppose we have a convergent sequence {bk}, bk ∈ [i, j]

such that b1 = b and on (bk+1, bk] we have rk(V ),mk(V ), W̃k(V ), and ψ̃k(V ) are all

positive solutions to equations (3.34)-(3.37), d
2ψ̃k
dV 2 ≤ 0, W̃k < Wave, 0 < 2mk < rk, and

at bk+1 (rk,mk, W̃k) is related to (rk+1,mk+1, W̃k+1) by the discontinuity constructed

in Lemma 10 with W̃+(bk+1) = Wave(bk+1) and W̃−(bk+1) = λk > 0. Denote limk→∞ bk

by b∞. Then we can find an N such that for the solutions (rk(V ),mk(V ), W̃k(V ))

and k ≤ N we have

ˆ
V −1([a,bN ])

W̃N −Wave

ψ̃3
N

d2ψ̃N
dV 2

‖ξ‖2dvolg+
N−1∑
k=1

ˆ
V −1([bk+1,bk])

W̃N −Wave

ψ̃3
N

d2ψ̃N
dV 2

‖ξ‖2dvolg ≥ 0

for some a < b∞, and at a: 0 < 2V d ln ψ̃N
dV

< 1.

Remark: In the first integral we assume N is taken large enough, so that the solution

(rN ,mN , W̃N) is defined slightly to the right of b∞.

This result is precisely what we need in the case where an accumulation point of a

sequence of discontinuities occur when trying to keep Wave − δ ≤ W̃ < Wave in order

to guarantee positivity of the integral on the interval and continue the construction
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of W̃ inward.

3.8 Convergence of a sequence of conformal fac-

tors.

Our goal on (Vm, V1]\U is to define W̃ in such a way as to get a conformal factor which

satisfies equation (3.33) with W̃ replaced by Wave. This will give us R̂ = Wave−W
ψ̃3

d2ψ̃
dV 2 .

The spinor norm weighted scalar curvature integral over such an interval with this

scalar curvature will be zero (see (3.68)). This involves creating a sequence (W̃n) on

(Vm, V1] \ U and proving convergence for a subsequence of (ψ̃n).

This process is as follows. Fix an interval [a, b] ⊂ (Vm, V1] \ U . In the above

construction we started W̃ at b W̃ < Wave or W̃ ≥ Wave, depending on the sign

of d2ψ̃
dV 2 . If W̃ < Wave on [a, b] and |W̃ −Wave| ≥ δ at some point in [a, b] then we

introduce a discontinuity in W̃ . At the left endpoint of intervals in U ∪ U we start

defining W̃ = Wave±δ depending on the sign of d2ψ̃
dV 2 at the left endpoint of the interval

in U ∪ U . If W̃ −Wave vanishes and changes signs while d2ψ̃
dV 2 remains the same sign,

then we give a discontinuity to W̃ . All of which uses Lemma 3.12. Notice that δ is

used to squeeze W̃ closed to Wave when d2ψ̃
dV 2 < 0. To define the sequence we replace

δ above with 1
n
. In this case δ → 0 as n → ∞. Now, we denote the solution to

equation (3.33) using W̃n on [a, b] as ψ̃n. For each n, [a, b] is the union of two sets,

Sn± where Sn+ denotes the set where d2ψ̃n
dV 2 ≥ 0 and Sn− denotes the set where d2ψ̃n

dV 2 < 0.

The construction of W̃n gives us that

ˆ
V −1([a,b]∩Sn±)

W̃n −Wave

ψ̃3
n

8d2ψ̃n
dV 2

‖ξ‖2 ≥ 0 (3.70)
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Lemma 3.14 guarantees that the integral over Sn− is non-negative. The other is non-

negative by construction. We now state a needed lemma.

Lemma 3.15 [ul-Alam (2007)]

Suppose equation (3.70) holds and,

ˆ
V −1([a,b])

W̃n −Wave

ψ̃3
n

8d2ψ̃n
dV 2

‖ξ‖2 → 0 as n→∞ (3.71)

Then ˆ b

a

|
(1− Wave

W̃n
)(ρψ̃n − 2V (ρ+ 3p)dψ̃n

dV
)

Wave

|dV → 0 as n→∞ (3.72)

This lemma helps us satisfy a necessary hypothesis for our convergence lemma,

which we state now.

Lemma 3.16 [ul-Alam (2007)]

Suppose in an interval [a, b], the functions en, f1, f2, ψ
(n)
1 and ψ

(n)
2 satisfy

dψ
(n)
1

ds
= ψ

(n)
2 (3.73)

dψ
(n)
2

ds
= (1− en)(f1ψ

(n)
1 + f2ψ

(n)
2 ) (3.74)

where f1 and f2 are piecewise continuous, and en are uniformly bounded measurable

functions such that´ b
a
|en(f1ψ

(n)
1 + f2ψ

(n)
2 )|ds→ 0 as n→∞. Suppose further that ψ

(n)
i (a) = ψ

(0)
i (a) and

|ψ(n)
i (s)| are all bounded by a number independent of n. Then there is a subsequence

{ψ(k)
1 } which converges to a C1,1 solutions ψ of the following equation with the initial

conditions ψ(a) = ψ
(0)
1 (a) and dψ

ds
= ψ

(0)
2 (a),

d2ψ

ds2
= f1ψ + f2

dψ

ds
(3.75)
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Lemma 3.16 is used to get the conformal factor ψ̃ on [a, b] ⊂ (Vm, V1] \ (U ∪ U)

which satisfies equation (3.33) with W̃ replaced by Wave. In using Lemma 3.16 in

conjunction with Lemma 3.15 we have ψ
(n)
1 a solution of equation (3.33) with respect

to W̃n, f1 = 2πρ
Wave

, f2 = 4πV (ρ+3p)
Wave

, and en = 1 − Wave

W̃n
. Also, d

ds
= − d

dV
which causes

the sign in front of f2 in equation (3.75) to be positive. The conclusion of Lemma

3.16 gives us our desired conformal factor ψ̃ on [a, b]

We perform a similar scheme to intervals in U . We want ψ̃ defined on intervals in

U to satisfy equation (3.33) with W̃ replaced with Wave. Recall that on intervals in

U u is chosen to satisfy equation (3.45) with α = 1. We want to adapt Lemma 3.16

for this situation. Suppose [a, b] ⊂ U . Let [a, sn] be an interval such that s1 = b and

sn → a as n → ∞. Let χn be the characteristic function for the interval [a, sn]. For

the function u chosen on intervals in U we have

d2u

dV 2
=

1

2V (1 + 3p
ρ

)2
[γ − 6

5
(1 +

p

ρ
)2]u (3.76)

Define f3ψ
(n)
1 = d2u

dV 2 and f
(n)
1 = f1 + f3χn where f1 is defined as before, f1 = 2πρ

Wave
.

We also define f2 as before, f2 = 4πV (ρ+3p)
Wave

. en we define as before, en = 1 − Wave

W̃n
,

except on [a, sn] where we set en = 0. We now have the following lemma for intervals

in U .

Lemma 3.17 [ul-Alam (2007)]

The conclusion of Lemma 3.16 remains valid if we replace f1 by the function f
(n)
1 .

This will give us the desired conformal factor ψ̃ for intervals in U .
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3.9 Conclusion of the proof.

Now, we put all of the lemmas above into our final argument to prove the main

theorem. Let 0 < δn = 1
n
. First, we choose ψ̃n(V ) for V ≥ Vs to be equal to 1

2
(1 +V ).

We start with equation (3.42) for the spinor norm weighted scalar curvature integral.

By Lemma 3.2 we know there exists a noncritical value V1 < Vs, which does not

depend on n, and solutions (rn,mn, W̃n, ψ̃n) of the spherically symmetric equations

(3.34)-(3.37) on [V1, Vs], with ψ̃n > 0 which is C1,1 on [V1, 1) when adjoined to ψ̃n

defined above for [Vs, 1). Also, on [V1, Vs] we have 0 < 2V d ln ψ̃n
dV

< 1, W̃n > Wave, and

d2ψ̃n
dV 2 > 0. This gives us

ˆ
V −1([V1,Vs])

W̃n −Wave

ψ̃3
n

d2ψ̃n
dV 2
‖ξ‖2 > 0 (3.77)

Let 0 < ε < δn
2C5

be the chosen ε for Lemma 3.4 where C5 is the constant

that appears in Lemma 3.6. This gives us the set U which contains a finite

number of intervals which contain the critical values of V . We can choose this ε

to involve C5 to bound the measure of L1(U) and H3(V −1(U)) since the constant

C5 is independent of which ε and U is chosen in Lemma 3.4. We define U to be

precisely those intervals {[a, b]} where d2ψ̃
dV 2 (b) = 0 and |γ − 6

5
(1 + p

ρ
)2| < ε2 where

ε2 < MCVs,VmH
3(V −1([Vm, Vs])). Once we have the interval [V1, Vs] in place, we

progress inward into the star with initial conditions given at V1. Intervals will either

lie in U , U or (Vm, V1]\(U∪U). We will only have to deal with intervals by consequence

of our regularity properties.

We start at V1 with d2ψ̃n
dV 2 > 0. This means that apart from intervals in U , for

as long as d2ψ̃n
dV 2 ≥ 0 we must have W̃n −Wave ≥ 0. If we come to a point b where

W̃n −Wave = 0 and changes signs to W̃n −Wave < 0 to the left of b but d2ψ̃n
dV 2 remains

non-negative, we give W̃n a small discontinuity upwards (to make it larger than Wave)

and start (rn,mnW̃n) again at b, using Lemma 3.12.
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If d2ψ̃n
dV 2 = 0 at a point b and goes negative continuously to the left of b while

W̃n −Wave ≥ 0 then our action to the left of b depends on the sign of γ − 6
5
(1 + p

ρ
)2

at b. If γ − 6
5
(1 + p

ρ
)2 > 0 at b (note that this means the third derivative d3ψ̃

dV 3 (V ) > 0

at V = b) then we give a discontinuity to W̃n at b and set W̃n(b−) = Wave(b)− δn. If

γ− 6
5
(1 + p

ρ
)2 ≤ 0 at b then we use equation (3.45) and with α = 1 and define ψ̃n = u

as long as γ − 6
5
(1 + p

ρ
)2 ≤ 0. The reason for the this is that if d2ψ̃n

dV 2 has a zero and

then goes negative, then we want d3ψ̃n
dV 3 > 0 for continuity. If this is not the case then

we want to redefine ψ̃n = u as an interval in U since a point where γ − 6
5
(1 + p

ρ
)2 = 0

will always be in an interval of U . Now, for as long as d2ψ̃n
dV 2 < 0 we want to keep

Wave − δn ≤ W̃n < Wave. If this changes while d2ψ̃n
dV 2 < 0 we introduce a discontinuity

according to Lemma 3.12. Lemma 3.14 handles this case where the possibility of

accumulation of discontinuity occurs by ensuring that the integral is positive on some

interval containing the accumulation point. We note that if d2ψ̃n
dV 2 > 0, then by Lemma

3.13 there can be at most a finite number of times we will need to raise W̃n so that

W̃n − Wave > 0. At each of the points we need to raise W̃n we use Lemma 3.12.

At the right endpoint of these intervals we ensure that ψ̃n remains C1,1. At the left

endpoint of these intervals we maintain 0 < 2V d ln ψ̃n
dV

< 1.

If we arrive at an interval in U then we define ψ̃n = u with u satisfying equation

(3.45) with α = 1. α = 1 ensures that u connects to ψ̃n in a C1,1 fashion at the

right endpoint of the interval in U . At the left endpoint of this interval we have

0 < 2V d ln ψ̃n
dV

< 1. If we come to an interval [i, j] in U , then we set ψ̃n = u and define

u on [i, j] according to equation (3.45) or (3.46), depending on the sign of d2ψ̃n
dV

at the

right endpoint, j. If limV→j+
d2ψ̃n
dV

> 0 then we use equation (3.45) with 0 < α < 1

to define u. If limV→j+
d2ψ̃n
dV

< 0 then we use equation (3.46) with 0 < β < 3p(j) to

define u. If limV→j+
d2ψ̃n
dV

= 0 then we use equation (3.45) with α = 1 to define u. At

i we start W̃n by setting, W̃n = Wave− δn if d2ψ̃n
dV 2 < 0 at i or we set W̃n ≤= Wave + δn
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if d2ψ̃n
dV 2 > 0 at i. The proper α, β chosen ensures u connects to ψ̃n in a C1,1 fashion at

j. At the left endpoint of this interval, i, we have 0 < 2V d ln ψ̃n
dV

< 1.

Suppose we have defined W̃n and ψ̃n up until the interval [b, 1] and that ψ̃n is C1,1

on [b, 1), and 0 < 2V d ln ψ̃
dV

< 1 at b. We now want to continue to the next interval

which has b as a right end point. The interval will be contained in one of three sets;

U ,U , or (Vm, V1]\(U∪U). Suppose the next interval is an open interval in U , say (a, b).

The intervals in U are the intervals given by Lemma 3.4 which contain critical values

of V .(Note that for the sake of notation we use (a, b) where (a, b) = (in, jn) for some

n = 1..k.) There are only a finite number of these intervals. If limV→b+
d2ψ̃n
dV 2 ≥ 0 then

we define u to be a solution to equation (3.45) with 0 < α ≤ 1. This ensures that u(b)

agrees with ψ̃n(b) in a C1,1 fashion and that 0 < 2V d ln ψ̃n
dV

< 1 at a. If limV→b+
d2ψ̃n
dV 2 < 0

then we define u to be a solution to equation (3.46) with 0 < β < 3p(b). This ensures

that u(b) agrees with ψ̃n(b) in a C1,1 fashion and that 0 < 2V d ln ψ̃n
dV

< 1 at a. In

both cases, equation (3.47) implies that u is positive on (a, b). On this interval we set

u(V ) = ψ̃n(V ) for V ∈ (a, b) and continue inward. Sets in U are disjoint so we know

the next interval cannot be in U . Depending on the sign of d2ψ̃n
dV 2 at a and which set

the next interval lies in we progress inward. If the next interval [c, a] happens to be

an interval in (Vm, V1] \ (U ∪U) we start W̃n at a with W̃n = Wave± δn depending on

the sign of d2ψ̃
dV 2 .

Now, suppose the interval [a, b] is an interval in (Vm, V1] \ (U ∪ U). In this case

the endpoint a we do not fix for this demonstration. The left endpoint a will be the

first point in which we must alter W̃n. We start with W̃n at b according to Lemma

3.12, unless the previous interval was in U or U . If the previous interval was in U

or U then we define W̃n = Wave ± δn, where the ± is determined by the sign of d2ψ̃n
dV 2

at b. If d2ψ̃n
dV 2 > 0 at b then we choose W̃n so that W̃n = Wave + δn at b. If d2ψ̃n

dV 2 < 0

at b then we choose W̃n so that W̃n = Wave − δn at b. If d2ψ̃n
dV 2 = 0 and ρ, hence

d2ψ̃n
dV 2 , is continuous at b, then on the interval [a, b] d2ψ̃n

dV 2 will be positive or negative
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depending on the equation of state using equation (3.44). If γ > 6
5
(1 + p

ρ
)2 at b then

d2ψ̃n
dV 2 < 0 on [a, b] and if γ < 6

5
(1 + p

ρ
)2 at b then d2ψ̃n

dV 2 > 0 on [a, b] for some a < b.

We must also address the issue of accumulation points. Suppose we have sequential

intervals Ij = [aj+1, aj] ⊂ (Vm, V1] \ (U ∪ U) where a1 = b, d2ψ̃n
dV 2 ≥ 0, and at each aj a

discontinuity is introduced to W̃n in order to raise W̃n above Wave at aj to maintain

non-negativity of the integral over the interval. We know from lemma 3.13 that

there can be at most a finite number of (Ij)
M
j=1. Lemma 3.12 is used on each interval

Ij = [aj+1, aj]. Suppose we have sequential intervals Ji = [bi+1, bi] ⊂ (Vm, V1]\(U ∪U)

where b1 = b, d2ψ̃n
dV 2 ≥ 0, and at each bi a discontinuity is introduced to W̃n in order

to maintain Wave − δn ≤ W̃n < Wave at bi which keeps the integral over the interval

nonnegative. We know that the number of these intervals may tend to infinity and an

accumulation of discontinuities (bi) can occur. Lemma 3.12 is used on each interval

Ji = [bi+1, bi]. In this case, Lemma 3.14 gives us an N such that for all i ≤ N we have

ˆ
V −1([a,bN ])

W̃nN −Wave

ψ̃3
nN

8d2ψ̃nN
dV 2

‖ξ‖2 +
N−1∑
i=1

ˆ
V −1([bi+1,bi])

W̃ni −Wave

ψ̃3
ni

8d2ψ̃ni
dV 2

‖ξ‖2 ≥ 0

(3.78)

for some a < limi→∞ bi. This lemma ensures that the contribution of the integral is

non-negative and at a 0 < 2V d ln ψ̃N
dV

< 1 which allows us to continue construction

inwards of W̃n.

Finally, suppose that our interval [a, b] is contained in U with 0 < ε2 <

δn
80πCVs,VmH

3(V −1([Vm,Vs]))
in Lemma 3.7 where CVs,Vm = V

3/2
s

V
9/2
m ψ̃(Vs)3

. By definition this

means that

|γ − 6

5
(1 +

p

ρ
)2|ψ̃(b) ≤ γε2

and that d2ψ̃
dV 2 (b) = 0. In this case we define u to be a solution of equation (3.45) with

α = 1. α = 1 u connects to ψ̃n at b in a C1,1 fashion and a we have 0 < 2V d ln ψ̃n
dV

< 1.
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On this interval we set u(V ) = ψ̃n(V ) for V ∈ [a, b] and continue inward.

Now, we have defined a conformal factor ψ̃n which is globally C1,1 and uniformly

bounded away from zero. We refer back to the expression in equation (3.42) and split

the integral along the different types of sets in order to address each type individually.

0 =

ˆ
V −1(([Vm,V1]\U)∩Uc)

(W̃n −Wave(τ))
8

ψ̃3
n

d2ψ̃n
dV 2
‖ξ‖2dvolg+ (3.79)

∑
α

ˆ
V −1(([Vm,V1]\U)∩U∩[iα,jα])

Ru4gu
2‖ξ‖2dvolg+

ˆ
V −1([V1,Vs])

(W̃n −Wave(τ))
8

ψ̃3
n

d2ψ̃n
dV 2
‖ξ‖2dvolg +

ˆ
V −1(U)

Ru4gu
2‖ξ‖2dvolg

+

ˆ
M

4‖∇ĝΘn‖2dvolĝ

The integral over V −1(([Vm, V1] \ U) ∩ U c
) when W̃n −Wave ≥ 0 is nonnegative

by construction and when W̃n −Wave < 0 it is non-negative by Lemma 3.14. The

integral over V −1(U) we can make greater than −δn
2

by Lemma 3.6. The integral over

V −1(([Vm, V1] \U)∩U) is greater than −δn
2

by Lemma 3.7 and the global bound from

Lemma 3.8. The integral over V −1([V1, Vs]) is non-negative by Lemma 3.2. This gives

us

0 =

ˆ
V −1(([Vm,V1]\U)∩Uc)

(W̃n −Wave(τ))
8

ψ̃3
n

d2ψ̃n
dV 2
‖ξ‖2dvolg+ (3.80)

∑
α

ˆ
V −1(([Vm,V1]\U)∩U∩[iα,jα])

Ru4gu
2‖ξ‖2dvolg+

ˆ
V −1([V1,Vs])

(W̃n −Wave(τ))
8

ψ̃3
n

d2ψ̃n
dV 2
‖ξ‖2dvolg+

ˆ
V −1(U)

Ru4gu
2‖ξ‖2dvolg +

ˆ
M

4‖∇ĝΘn‖2dvolĝ

> −δn (3.81)
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Now we want a conformal factor which satisfies equation (3.33) withWave replacing

W̃ on intervals in (Vm, Vs] \ U . Suppose [a, b] ⊂ (Vm, Vs] \ (U ∪ U). From equation

(3.80) and (3.81) we see that

0 ≤
ˆ
V −1(([a,b])

(W̃n −Wave(τ))
8

ψ̃3
n

d2ψ̃n
dV 2
‖ξ‖2dvolg (3.82)

≤
ˆ
V −1(([Vm,V1]\U)∩Uc)

(W̃n −Wave(τ))
8

ψ̃3
n

d2ψ̃n
dV 2
‖ξ‖2dvolg → 0

and by Lemma 3.15 this gives us that

ˆ b

a

|
(1− Wave

W̃n
)(ρψn − 2V (ρ+ 3p)dψn

dV
)

Wave

|dV → 0 (3.83)

as n→∞. This allows us to use Lemma 3.16 with ψn1 = ψ̃n, f1 = 2πρ
Wave

, f2 = 4πV (ρ+3p)
Wave

,

and en = 1−Wave

W̃n
. The conclusion of Lemma 3.16 give us the desired conformal factor

ψ̃ on [a, b].

Next, suppose [a, b] is an interval in U with the above construction. We again

want a conformal factor ψ̃ defined on [a, b] which satisfies equation (3.33) with Wave

replacing W̃ as discussed previously. Following the hypothesis given in Lemma 3.16,

on the interval [a, b] with χn the characteristic function on [a, sn] we define

en = χn(1− Wave

W̃n

) (3.84)

f1 =
2πρ

Wave

(3.85)

f2 =
4πV (ρ+ 3p)

Wave

(3.86)

χnf3u = χn
d2u

dV 2
(3.87)

f
(n)
1 = f1 + χnf3 (3.88)
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Then for each n, on [a, sn] we have

ψ
(n)
1 = u (3.89)

dψ
(n)
1

ds
=
du

dV
:= ψ

(n)
2 (3.90)

dψ
(n)
2

ds
=
d2u

dV 2
χn (3.91)

=
d2u

dV 2
χn +

2π

Wave

(ρu− 2V (ρ+ 3p)
du

dV
) (3.92)

=
2πρu

Wave

+
d2u

dV 2
χn −

4πV (ρ+ 3p)

Wave

du

dV
(3.93)

= f1u+ χnf3u+ f2
du

dV
(3.94)

= f
(n)
1 ψ

(n)
1 + f2ψ

(n)
2 (3.95)

Also,

ˆ b

a

|en(f
(n)
1 ψ

(n)
1 + f2ψ

(n)
2 )|ds =

ˆ b

sn

|(1− Wave

W̃
)(

2πρ

Wave

u− 4πV (ρ+ 3p)

Wave

du

dV
|ds (3.96)

=

ˆ b

sn

|(1− Wave

W̃
)(

2π

Wave

)(ρu− 2V (ρ+ 3p)
du

dV
)|ds

(3.97)

= 0 (3.98)

where the last equality follows from the fact that u satisfies equation (3.45) with

α = 1. The above shows that on the interval [a, b] in U with f
(n)
1 replacing f1 in

Lemma 3.16, all of the hypothesis from Lemma 3.16 are met. Lemma 3.17 then gives

us the desired conformal factor ψ̃ on [a, b] in this case when [a, b] ⊂ U .
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Finally, ψ̃n(V ) for V ≥ Vs is fixed for all n by equation (3.29). R̂ on V ≥ Vs is

zero. This means for the integral over V −1([Vs, 1)) we have

ˆ
V −1([Vs,1)

4‖∇ĝΘn‖dvolĝ =

ˆ
V −1([Vs,1)

4‖∇ĝΘ‖2dvolĝ (3.99)

for all n. For V ≤ Vs on intervals in (Vm, Vs] \ U we have Θn = ψ̃−2
n ξ and Θ =

limn→∞ ψ̃
−2
n ξ = ψ̃ξ where ψ̃ is the limiting conformal factor. On compact intervals in

(Vm, Vs] \U this convergence is uniform. On compact intervals in ((Vm, Vs] \ (U ∪U))

the total integral is given by

ˆ
(W̃n −Wave)

8

ψ̃3
n

d2ψ̃n
dV 2
‖ξ‖2dvolg +

ˆ
4‖∇ĝΘn‖2dvolĝ (3.100)

Taking the limit as n→∞ on these intervals gives us

lim
n→∞

ˆ
(W̃n −Wave)

8

ψ̃3
n

d2ψ̃n
dV 2
‖ξ‖2dvolg + lim

n→∞

ˆ
4‖∇ĝΘn‖2dvolĝ =

ˆ
4‖∇ĝΘ‖2dvolĝ

(3.101)

where the first integral goes to zero by Lemma 3.16. For V ≤ Vs on intervals in U we

have ˆ
V −1(U)

Rn4
ug
u2‖ξ‖2dvolg +

ˆ
M

4‖∇ĝΘn‖2dvolĝ (3.102)

Taking the limit as n→∞ on each of these intervals gives us

lim
n→∞

ˆ
V −1(U)

Rn4
ug
u2‖ξ‖2dvolg + lim

n→∞

ˆ
M

4‖∇ĝΘn‖2dvolĝ =

ˆ
M

4‖∇ĝΘ‖2dvolĝ

(3.103)

where the first integral goes zero by Lemma 3.17. This means, that on [Vm, 1) \ U

with ψ̃ = limn→∞ ψ̃n we have

0 =

ˆ
M

4‖∇ĝΘ‖2dvolĝ (3.104)
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Now, we know that 0 =
´
M

4‖∇ĝΘ‖2dvolĝ on [Vm, 1) \ U implies that ∇ĝΘ = 0

on [Vm, 1) \ U . Therefore ψ̃2 = ‖ξ‖ by our choice of ξ and continuity. We have a

covariantly constant spinor field Θ = ξ
‖ξ‖ , with respect to the conformal metric ĝ,

defined on [Vm, 1) \U . We note here that our choice of ξ involved an arbitrary spinor

ξ0 which was constant at infinity. By definition of “constant at infinity” ξ0 is constant

with respect to an orthonormal frame ei near infinity where ei = eji∂xj and (xj) are

asymptotically flat coordinates satisfying the mass decay conditions. eji being the

“vielbein”. [17] We have a surjective map from the space of spinors to R3 given by

< vΘ, X >= Im < Θ, X ·Θ > for X ∈ R3 (3.105)

where vΘ ∈ R3. The fact that the map is surjective follows from the fact that Spin(3)

is the double cover of SO(3). If Θ is a spinor field generated by our construction then

it is covariantly constant on V −1([Vm, 1) \U). This means that vΘ is also covariantly

constant on V −1([Vm, 1)\U). Choose three spinors γi, i = 1..3 such that γi 7→ ei with

the map above. (ei) is an orthonormal frame of TpM at some point p near infinity.

Θi = γi, i = 1..3 are covariantly constant with respect to the conformal metric ĝ

on V −1([Vm, 1) \ U). Take a diagonal sequence in the conformal factors converging

to Θi. This diagonal sequence provides a conformal factor which makes all three

spinors covariantly constant. This implies that all three vectors ei are covariantly

constant. In particular, this gives us a that the frame (ei) is covariantly constant

on V −1([Vm, 1) \ U). We can extend the constant frame field (ei) to the set V −1(U)

by continuity. Therefore, we have a constant frame for TM , globally. Hence the

conformal metric is flat.

We recall the tensor used to prove spherical symmetry from conformal flatness

[22]

V 4RabcR
abc = 8W 2‖Ω‖2 + ‖∇TW‖2 (3.106)
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In the case that the conformal metric is flat, this tensor vanishes and standard

arguments imply that the original metric has to be spherical. In the vacuum, V

is a connected level set. When the above tensor vanishes in the vacuum, V ≥ Vs,

we see that W must be constant, which follows from the second term vanishing in

equation (3.106). We assume without loss of generality that Vs has only one connected

component. This implies that Vs is a noncritical level set of W . Lemma 3.6 in this

case implies that the constant C5 is independent of V1.

We started with a static stellar model with equation of state piecewise C1. We were

able to construct a conformal factor ψ̃ which forced ∇ψ̃4gΘ = 0 everywhere outside

of sets which contain critical values of V . This allows us to define an orthonormal

frame field that is covariantly constant everywhere outside of U . We extend the frame

field to U which gives us a global, constant frame field on TM . We conclude that

the conformal metric is flat. Standard arguments using the vanishing of the tensor

equation in (3.106) in the case of a flat conformal metric implies that our original

metric g must be spherically symmetric. This concludes the proof that given a static

stellar model it must be spherically symmetric.
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Chapter 4

Physical Constraints on Stellar

Models

The mathematical framework of General Relativity provides physical constraints to

stellar models. Assuming the validity of the theory of general relativity, we can

exclude certain physical phenomena from existing. We may also draw conclusions

regarding the physically unlikely. In this section we derive a lower bound on ∆ =

1− 2Gm(R)
c2R

in the case of a finite, static, spherically symmetric stellar model in which

the density is a monotonically decreasing function of r. In the Newtonian limit

c→∞, ∆1/2 corresponds to the Newtonian gravitational potential. The lower bound

on ∆ gives us bounds on the value of the metric potential at the boundary, as well as

an upper bound on the mass in the case of a fixed radius R, known as “Buchdahl’s

inequality”. We also explore a constraint on the adiabatic index of a finite, static

stellar model which is not necessarily spherically symmetric. This is directly related

to the proof of uniqueness for a static star. We show that the constraint on the

adiabatic index offers support to the “Fluid Ball Conjecture”. Finally, we look at

necessary and sufficient conditions ensuring the finiteness of the radius of a static,

spherically symmetric stellar model. This section follows work from Buchdahl [9],

Lindblom and ul-Alam [33], and Rendall and Schmidt [7].
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4.1 Buchdahl’s Inequality

Suppose we have a finite, static, spherically symmetric stellar Model with a perfect

fluid source, a radius R and mass m(R). The metric for such a stellar model is given

by

ds2 = −c2ea(r)dt2 + eb(r)dr2 + r2(dθ2 + sin2θdφ2) (4.1)

In this section we will use many of the expressions derived in chapter 2. The

motivation of these expressions follow from the work of Buchdahl [9]. We now recall

some of these expressions. We consider the system derived in equations (2.5)-(2.7).

We also consider the auxiliary equations given in (2.16) and (2.33).

m(r) = 4π

ˆ r

0

s2ρ(s)ds (4.2)

w(r) =
m(r)

r3
(4.3)

We also recall expression (2.46)-(2.48).

y2(r) = e−b(r) = 1− 2G

c2
r2w(r) (4.4)

z(r) = e
a(r)
2 (4.5)

x(r) = r2 (4.6)

Finally, recall the expression from (2.64).

d

dx
(y
dz

dx
)− (

G

2c2

1

y

dw

dx
)z = 0 (4.7)
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Theorem 4.1 [Buchdahl (1959)]

Given a finite, static, spherically symmetric perfect fluid stellar model of radius R

and mass m(R) such that the density of the perfect fluid does not increase outward,

i.e. dρ
dr
≤ 0 we have

∆ ≥ 1

9

where ∆ = 1− 2G
c2

m(R)
R

Proof.

We first consider the expression in (4.7) for r ≤ R and do a change of variable. Let

ξ(x) =

ˆ x

0

1

y(s)
dx (4.8)

This way, we can expression (4.7) as

d

dξ
(
dz

dξ
)− g(ξ)z (4.9)

where g(ξ) is equal to G
2c2

1
y
dw
dx

in terms of ξ. Since we assume that the density of the

star does not increase outward it follows that

0 ≥ dw

dr
=
dw

dξ

dξ

dx

dx

dr
=
dw

dξ

1

y(x)
2r (4.10)

which implies that dw
dξ
≤ 0. Therefore g(ξ) ≤ 0 since y ≥ 0. Since g(ξ) ≤ 0 we have

the inequality

0 =
d

dξ
(
dz

dξ
)− g(ξ)z ≥ d

dξ
(
dz

dξ
) (4.11)

This inequality, of course, implies that

dz

dξ
|r=R ≤

dz

dξ
≤ dz

dξ
|r=0 (4.12)

We can need an expression for dz
dξ

. Recall equation (4.5).

66



dz

dξ
=
dz

dr

dr

dx

dx

dξ
(4.13)

=
dz

dr

y(r)

2r
(4.14)

Next, we want to evaluate dz
dξ

at the boundary of our star, i.e. r = R. Recall

Birkhoff’s theorem [10]. Continuity implies that at the boundary our interior solution

must match the exterior solution, Schwarzschild’s vacuum solution in this case. So

y(R) = e
a(R)
2 and ea(R) = 1− 2G

c2
m(R)
R

. Therefore, we have

dz

dξ
|r=R =

dz

dr

y(R)

2R
(4.15)

= ea(R)a
′(R)

2

1

2R
(4.16)

= [1− 2G

c2

m(R)

R
]

1

4R
a′(R) (4.17)

= [1− 2G

c2

m(R)

R
]

1

4R

1

[1− 2G
c2

m(R)
R

]
[
2G

c2

m(R)

R2
] (4.18)

=
G

c2

m(R)

2R3
(4.19)

=
G

c2

1

2
w(R) (4.20)

Going back to the inequality in (4.12) and using (4.20), we get

G

c2

1

2
w(R) =

dz

dξ
|r=R ≤

dz

dξ
=
dz

dr

dr

dx

dx

dξ
=
dz

dr

y

2r
(4.21)

G

c2
w(R)

r

y
≤ dz

dr
(4.22)

If we integrate (4.22) with respect to r from r = 0 to r = R we get

G

c2
w(R)

ˆ R

0

r

y
dr ≤ z(r)|r=Rr=0 = ∆

1
2 − z(0) (4.23)
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Recall the definition of y2 from (4.4) and the fact that w′ ≤ 0. This means that

w(R) ≤ w(r) (4.24)

and

y2(r) = 1− 2G

c2
r2w(r) ≤ 1− 2G

c2
r2w(R) (4.25)

which implies that

y(r) ≤ [1− 2G

c2
r2w(R)]

1
2 (4.26)

Let C̃ = 2Gw(R)
c2

. Using (4.26) in (4.23) gives us

∆
1
2 − z(0) ≥ w(R)

ˆ R

0

r

y
dr (4.27)

≥ w(R)

ˆ R

0

r

[1− 2G
c2
r2w(R)]

1
2

dr (4.28)

= −w(R)

2C̃

ˆ 1−C̃R2

1

1

u
1
2

du (4.29)

=
w(R)

C̃
1− (1− C̃R2)

1
2 (4.30)

=
c2

2G
[1− y(R)] (4.31)

=
c2

2G
[1−∆

1
2 ] (4.32)

Note that z(0) ≥ 0 and therefore gives us the inequality

∆
1
2 ≥ c2

2G
[1−∆

1
2 ] (4.33)

2G

c2
∆

1
2 +

c2

c2
∆

1
2 ≥ 1 (4.34)
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∆
1
2 ≥ c2

2G+ c2
≥ 1

3
(4.35)

Finally, we see that

∆ ≥ 1

9
(4.36)

As a corollary to Theorem 4.1, we can just note the definition of ∆ and

algebraically manipulate equation (4.36) to find that

m(R)

R
≤ c2

G

4

9
(4.37)

m(R) ≤ c2

G

4

9
R (4.38)

Therefore, we have an upper bound on the mass of a finite, static, spherically

symmetric stellar model given a fixed radius R. As a side note, the derivation of

the upper bound on the mass in the case of a fixed radius is completely independent

of pressure.

If we assume that we have a finite, static, spherically symmetric stellar model but

parametrized by the potential V so that the line element takes the form

ds2 = −V 2dt2 + gijdx
idxj (4.39)

for i, j = 1, 2, 3 and V , gij only depends on r we can make another observation. Let

V (R) = Vs denote the potential at the surface of the star. By continuity of the metric

and Birkhoff’s theorem we know that

V 2
s = ∆ ≥ 1

9
(4.40)

Hence, we have a lower bound on the surface potential
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Vs ≥
1

3
(4.41)

4.2 Constraints on the Adiabatic Index

Suppose now that we have a finite, static stellar model that is not necessarily

spherically symmetric with a perfect fluid matter model. In this case we have the

metric given by

ds2 = −V 2dt2 + gijdx
idxj (4.42)

for i, j = 1, 2, 3 and V and gab are time-independent. We assume that we also have

an equation of state, p(ρ). We denote the adiabatic index of our fluid by γ and define

it by

γ(p) :=
ρ+ p

p

dp

dρ
(4.43)

We now state a theorem.

Theorem 4.2 [Lindblom and Masood-ul-Alam (1993)]

Consider a static stellar model in general relativity theory whose surface occurs at

a finite radius.(This assumes asymptotic conditions on V and gij) Assume that the

equation of state ρ = ρ(p) is a positive and non-decreasing C1 function of the pressure.

Assume that 1
γ(p)

is bounded as p → 0+. Then the adiabatic index must satisfy the

inequality

γ >
6

5
(1 +

p

ρ
)2 ≥ 6

5

at some point within the star.
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We suppose that our static stellar model has a surface potential of 0 < Vs < 1.

Recall from chapter 3 expressions (3.16), and (3.17)-(3.18). We can express the

pressure and density in terms of the potential,V .

h(p) :=

ˆ p

0

1

ρ(s) + s
ds = ln(

Vs
V

) (4.44)

p(V ) = h−1[ln(
Vs
V

)] (4.45)

ρ(V ) = ρ(p(V )) (4.46)

The proof for theorem 4.2 follows the technique we used to derive spherical symmetry

in chapter 3. We will define a conformal factor which transforms the spatial metric gij

and then make an observation about the adiabatic index in the case that the spatial

metric is conformally flat.

First, we define our conformal factor. The conformal factor for V ≥ Vs is defined

to be

ψ(V ) =
1

2
(1 + V ) (4.47)

This conformal factor showed up in chapter 3 during our proof of uniqueness of the

static stellar model. The conformal factor we use for 0 ≤ V ≤ Vs is given by the

expression [33]

ψ(V ) =
1

2
(1 + Vs) exp

[
− Vs

1 + Vs

ˆ Vs

V

ρ(s)

s[ρ(s) + 3p(s)]
ds

]
(4.48)

First note that (4.47) and (4.48) agree at the boundary, VS. To prove continuity of

the first derivative of the conformal factor we need a lemma.
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Lemma 4.1 [Lindblom and Masood-ul-Alam (1993)]

Consider a static stellar model in general relativity theory whose surface occurs at

a finite radius. Assume that the equation of state ρ = ρ(p) is a positive and non-

decreasing function in some open neighborhood of the surface of the star: i.e. for

pressures 0 < p < ε. Then lim p→ 0+ p
ρ

= 0.

Proof.

Recall equation (4.44). Since the equation of state ρ(p) is a non-decreasing function

we can estimate the integral.

h(p) =

ˆ p

0

1

ρ(s) + s
ds (4.49)

≥
ˆ p

0

1

ρ(p) + s
ds (4.50)

= ln(1 +
p

ρ
) (4.51)

We know that limp→0+ h(p) = 0, so raising (4.49) and (4.51) using exp and taking the

limit we get

0 = lim
p→0+

eh(p) − 1 ≥ lim
p→0+

p

ρ
(4.52)

since p, ρ ≥ 0 we see that

lim
p→0+

p

ρ
= 0 (4.53)

Proving Lemma 4.1.

Now, we want to show that the first derivative of ψ is continuous at VS. Computing

the derivative of ψ in the interior of the star gives us [33]

dψ

dV
=

Vsψ(V )

V (1 + Vs)(1 + 3p
ρ

)
(4.54)
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Recall that Vs is defined to be where p(V ) = 0. So taking the limit of (4.54) as

V → Vs and recalling the lemma gives us

dψ

dV
|Vs = lim

V→V −
s

Vsψ(V )

V (1 + Vs)(1 + 3p
ρ

)
(4.55)

=
Vsψ(Vs)

Vs(1 + Vs)
(4.56)

=
1

2
(4.57)

Comparing this to the derivative of ψ for V ≥ Vs defined in (4.47) reveals that dψ
dV

is

also continuous at the boundary. The second derivative of ψ vanished for V ≥ VS.

For V ≤ Vs we have[33]

d2ψ

dV 2
=

Vsψ(V )

V (1 + Vs)(1 + 3p
ρ

)

[
2 + 3Vs
1 + Vs

− 3

γ
(1 +

p

ρ
)2

]
(4.58)

We can see from this expression that d2ψ
dV 2 is continuous on the interior of the star

and is bounded since we assume that 1
γ

is bounded. Therefore the first derivative is

Lipshitz. Hence the conformal factor we have defined ψ is C1,1.

Proof of Theorem 4.2.

We define our conformal metric to be g̃ij = ψ4(V )gij. Our choice of conformal metric

for V ≥ Vs ensures that the mass of g̃ij equals zero. The expression for the conformal

scalar curvature R̃ is given by the following expression.[33]

R̃ =
8

ψ

5

(2πρψ −DiDiψ) (4.59)

where Di is the covariant derivative with respect to the spatial metric gij. Using the

expression in (3.13) and expressions (4.47)-(4.48), (4.54), and (4.58) we can derive an

expression for the conformal scalar curvature. The result is given by the following.[33]
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ψ4(1 + Vs)R̃ = 16πρ(1− Vs) +
8ρ2VsD

iV DiV

γV 2(ρ+ 3p)2

[
3(1 +

p

ρ
)2 − γ 2 + 3Vs

1 + Vs

]
(4.60)

This expression holds on the interior of the star. Our chose of conformal factor for

V ≥ Vs gives us that R̃ = 0 for V ≥ Vs. Recall that for any stellar model that

has finite radius the potential on the surface, VS is strictly less that one [33]. The

expression in (4.60) reveals that the conformal scalar curvature R̃ is non-negative as

long as

[
3(1 +

p

ρ
)2 − γ 2 + 3Vs

1 + Vs

]
≥ 0 (4.61)

or equivalently,

γ ≤ 3(1 +
p

ρ
)2 1 + Vs

2 + 3Vs
(4.62)

We recall the Positive Mass Theorem discussed in chapter 3. We note that with

our defined conformal factor ψ the conformal metric g̃ij and asymptotic conditions

assumed for gij allows us to apply the rigidity statement of the Postive Mass Theorem

if R̃ is nonnegative. R̃ is non-negative precisely when the adiabatic index satisfies

the inequality in (4.62). If the inequality in (4.62) is satisfied, then the Positive Mass

Theorem implies that g̃ij is flat. In this case R̃ must vanish. If R̃ = 0 then by equation

(4.60) we see from the first term on the right that Vs = 1 and in the second term

on the right that 3(1 + p
ρ
)2 = γ 2+3Vs

1+Vs
, which implies equality in (4.62). However, this

contradicts the fact that we have a finite stellar model since Vs must be strictly less

than 1 if the star is finite. Therefore, we must assume that R̃ cannot be everywhere

non-negative. Hence, there must be at lease one point where R̃ < 0. At this point,

(4.62) is violated. Hence, at the point where R̃ < 0 we must have the inequality

γ > 3(1 +
p

ρ
)2 1 + Vs

2 + 3Vs
(4.63)
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Futhermore, noting that Vs < 1 in the case of a finite star, we have

γ > 3(1 +
p

ρ
)2 1 + Vs

2 + 3Vs
(4.64)

≥ 6

5
(1 +

p

ρ
)2 (4.65)

≥ 6

5
(4.66)

This concludes the proof of Theorem 4.2.

As a corollary to this theorem, we consider the case where our star has a polytropic

equation of state, i.e. an equation of state of the form

p(ρ) = κρ1+ 1
n (4.67)

where κ and n are constants. The constant n is known as the “polytropic index”.

The constraint on the adiabatic index γ in equation (4.65) gives us a constraint on

the polytropic index.

n <
5

1 + 6p
ρ

≤ 5 (4.68)

Therefore, this offers a direct analog to the Newtonian limit on the polytropic index,

n < 5 [34].

We make one further observation in this section. Recall the expression K defined

by Beig and Simon in [35] and recall “Condition B” from Lindblom and Masood-ul-

Alam [29]. “Condition B” was needed in the proof of spherical symmetry of static

stellar models. In fact, “Condition A” in [29] implies the first of the inequalities of

“Condition B”. “Condition B” is given by the inequality [29]

5ρ2

6p(ρ+ 3p)
≥ κ >

10V 2
s

exp[2h(p)]− 1
(4.69)
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where κ := ρ+p
ρ+3p

dρ
dp

. “Condition B” implies the upper bound on κ. This upper bound

on κ is equivalent to K ≤ 0 given by Beig and Simon[35]. If we analyze the upper

bound on κ we see that

5ρ2

6p(ρ+ 3p)
≥ κ =

ρ+ p

ρ+ 3p

dρ

dp
(4.70)

5

6
≥ ρ+ p

ρ+ 3p

dρ

dp

p(ρ+ 3p)

ρ2
=
ρ+ p

ρ2
p
dρ

dp
(4.71)

6

5
≤ ρ2

ρ+ p

1

p

dp

dρ
<
ρ2 + 2ρp+ p2

ρ+ p

1

p

dp

dρ
= (ρ+ p)

1

p

dp

dρ
= (4.72)

6

5
<
ρ+ p

p

dp

dρ
= γ (4.73)

So we see here that Buchdahl’s inequality manifest itself in the condition necessary

for spherical symmetry. Therefore, Buchdahl’s inequality rules out the existence of a

large class of potential counter examples to the Fluid Ball Conjecture.

4.3 Necessary and Sufficient Conditions for a

Finite Radius

In chapter 2 we proved the existence of spherically symmetric, static stellar models

with perfect fluid source. These model stars were either finite or infinite. In the case

the model star was finite the pressure became zero at an R < ∞ and the exterior

Schwarzschild solution matched the interior solution at the boundary. In the case the

model stars was infinite the density ρ > 0 for all r ≥ 0 and limr→∞ ρ(r) = 0. This

section looks at criteria based on the equation of state which supplies sufficient and

necessary conditions for a star to posses a finite radius.

In the case that ρ→ 0 as r →∞, if p(R) = 0 for some R <∞ and ρ(R) > 0 then

the star is obviously finite. So consider the case when p and ρ vanish simultaneously.

Our first goal is to derive a sufficient condition for a spherically symmetric, static
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stellar model to have a finite radius. We recall several equations from chapter 2:

(2.16), (2.33), and the T.O.V. equation in (2.36).

m(r) = 4π

ˆ r

0

s2ρ(s)ds (4.74)

w(r) =
m(r)

r3
(4.75)

dp

dr
= −Gr

[
1− 2G

c2
r2w

]−1

(
4πp

c2
+ w)(

p

c2
+ ρ) (4.76)

Theorem 4.3 [Rendall and Schmidt(1991)]

Consider a spherically symmetric, static stellar model such that dρ
dr
< 0,the equation

of state is C∞, and has a central pressure given by p0. Then a sufficient condition for

a finite radius is ˆ p0

0

1

(ρ(s))2
<∞

Proof.

Since we assume that dρ
dr
< 0 then equation (4.74) gives us the inequality

m(r) = 4π

ˆ r

0

s2ρ(s)ds (4.77)

≥ 4π

ˆ r

0

s2ρ(r)ds (4.78)

=
4

3
πρ(r)r3 (4.79)

If we take this inequality and recall (4.75), this gives us another inequality

m(r) ≥ 4

3
πρ(r)r3 =⇒ w(r) =

m(r)

r3
≥ 4

3
πρ(r) (4.80)

Using the T.O.V. equation in (4.76) and a change of variable x = r2, in conjunction

with the inequality in (4.80) we get
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dp

dx

dx

dr
= −Gr

[
1− 2G

c2
r2w

]−1

(
4πp

c2
+ w)(

p

c2
+ ρ) (4.81)

< −Grwρ (4.82)

≤ −Grρ4

3
πρ = −4Gπ

3
rρ2 (4.83)

Since dx
dr

= 2r, the above inequality gives us

dp

dx
< −2Gπ

3
ρ2 (4.84)

We now define p(x) to be the solution of

dp

dx
= −2Gπ

3
ρ2 (4.85)

given the same central pressure p0 and the same equation of state, ρ(p). This gives

us the inequality

p(x) < p(x) (4.86)

The differential equation for p given in (4.85) can easily be solved.

ˆ p(x)

p0

1

(ρ(s))2
ds = −2Gπ

3
x (4.87)

Now, if p(x1) = 0 for some x1 < ∞, then there must be some x2 ≤ x1 such that

p(x2) = 0 by equation (4.86). But, if the integral

ˆ p0

0

1

(ρ(s))2
ds <∞ (4.88)

then there must be an x1 < ∞ where p(x1) = 0. Therefore, for some x2 ≤ x1 < ∞

we have p(x2) = 0. Hence, the star is finite.
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We now look at a necessary condition for a spherically symmetric, static star to

be finite.

Theorem 4.4 [Rendall and Schmidt(1991)]

Consider a spherically symmetric, static stellar model such that dρ
dr
< 0,the equation

of state is C∞, and has a central pressure given by p0. Then a necessary condition

for a finite radius is ˆ p0

0

1

c−2s+ ρ(s)
ds <∞

Proof.

Suppose we have a solution to the spherically symmetric stellar model guaranteed

by Theorem 2.2 from chapter 2 with a central pressure given by p0. Suppose also

that the boundary of this star occurs at a finite radius x = x1 where x = r2. So

by definition the pressure p(x1) = 0. Consider the compact interval [0, x1] and the

continuous quantity

1− 2G

c2
xw (4.89)

This continuous quantity attains a minimum as some x0. Let this minimum value be

denoted A. Looking at the quantity it is not hard to see that A ≥ 0. Recalling once

more the T.O.V. equation given in this chapter by (4.76), but in terms of x, we have

the inequality

dp

dx
= −G

2

[
1− 2G

c2
xw

]−1

(
4πp

c2
+ w)(

p

c2
+ ρ) (4.90)

> −G 1

A
(
4πp

c2
+ w)(

p

c2
+ ρ) (4.91)

= −B(
p

c2
+ ρ) (4.92)

where B = −G
A

(4πp0
c2

+ w(0)). Similar to the proof of Theorem 4.3, we define p to be

the solution of
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dp

dx
= −B(

p

c2
+ ρ) (4.93)

with a central pressure given by p0 and the same equation of state. We can easily

solve equation (4.93).

ˆ p

p0

1

c−2s+ ρ(s)
= −Bx (4.94)

In this case, we see that p(x) < p(x). Since we assume that p(x1) = 0, then p(x1) = 0

since pressure is non-negative. This implies that

ˆ p0

0

1

c−2s+ ρ(s)
= Bx1 <∞ (4.95)

This completes the proof.
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Appendix A

Spin Geometry

We want to give a brief overview of spin geometry and use it to derive Witten’s

expression for the ADM mass of an asymptotically flat Riemannian manifold.

This appendix follows closely to Friedrich’s book ”Dirac Operators in Riemannian

Geometry”. We begin with the construction of spinors in the setting of Minkowski

space. We then generalize this construction to the setting of bundles where we

describe the connection and curvature for the spinor bundle. Lastly, we derive the

formula of Lichnerowicz and show how Witten used this in his construction of the

formula for mass in his proof of the Positive Mass Theorem.

A.1 Dirac Spinors

Let (M4, η) denote Minkowski space. Our first goal is the construction of the Dirac

Spinors. To this end, we start with the construction of the Clifford algebra. The

Clifford algebra for (M4, η) is an associative algebra over R with unit and a linear

map c : M4 → CL(M4) which satisfies the relationship

c(x).c(y) + c(y)c(x) = −2 < x, y >η .Id (A.1)
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where the “low dot” represents Clifford Multiplication and x, y ∈M4.[14]. Let {ei}3
i=0

be an orthonormal basis for M4. The Clifford algebra contains the relation

c(ei).c(ej) + c(ej).c(ei) = 0 for i 6= j (A.2)

In this case, we also get a basis for the 24 = 16 dimensional vector space CL(M4).

This basis of CL(M4) is formed by the elements Id and ei1 .ei2 . · · · eis where 1 ≤ i1 <

i2 < · · · < is ≤ n with 1 ≤ s ≤ n.[14]

Our goal is the construction of the Dirac spinors. The Dirac spinors, which we

denote S, is a 4 dimensional complex vector space which acts as a representation

space for an irreducible representation of a complexifed Clifford algebra. There are

two metric signatures that are common when describing Minkowski space. They are

(−,+,+,+), which is common in math literature, and (+,−,−,−) which is common

in physics literature. In the setting of spinors it is more natural to work with the

signature (+,−,−,−). Each one of these metric signatures will generate a Clifford

algebra. These Clifford algebras are not the same. In our case it is not necessary to

prescribe a metric signature for η since we are constructing a complexified Clifford

algebra. This is no loss of generality since

CL4 ≡ CL(M4)1,3 ⊗R C ≡ CL(M4)3,1 ⊗R C (A.3)

In other words, the complexification of the Clifford algebras generated by both metric

signatures will be isomorphic.[13]

The Clifford algebra CL(M4) has a representation space of a 4 dimensional

complex vector space. We denote κ to be the so-called Spin representation of the

Clifford algebra CL(M4). In other words, our representation is simply the following

isomorphism.[14]
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κ : CL(M4)→ End(S) (A.4)

We can now define the notion of Clifford multiplication of vectors and spinors. Let

v ∈M4. Under the representation, κ(c(v)) is an endomorphism of the space of Dirac

spinors, S. We define a linear map

µ : c(M4)⊗R S → S (A.5)

For v ∈M4 and ψ ∈ S we have

µ(c(v)⊗ ψ) = κ(c(v))ψ = c(v).ψ (A.6)

We now want to describe a certain subgroup of the Clifford algebra, Spin(4) ⊂

CL(M4). Consider the sub-group of CL(M4), the non-complexified Clifford algebra

generated by (M4, η), which is multiplicatively generated by {c(v)|v ∈M4 and ‖v‖ =

1}. We call this group Pin(4) ⊂ CL(M4). The elements in Pin(4) are the products

c(v1).c(v2) · · · .c(vm) with vi ∈ M4 and ‖v‖ = 1. Let O(4) denote the group

of orthogonal transformations of M4. There exists a continuous surjective group

homomorphism from Pin(4) onto the group O(4).[14] We denote this map

λ : Pin(4)→ O(4) (A.7)

In order to define this map we must first define another map. Every Clifford algebra

carries an anti-involution denoted

γ : CL(M4)→ CL(M4) (A.8)

such that

c(v) = γ(c(v))for v ∈M4 (A.9)
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γ possess several properties.[14]

1.) γ is Linear.

2.) γ ◦ γ = Id

3.) γ(c(v)) = c(v) for all v ∈M4.

4.) γ(x.y) = γ(y).γ(x) for x, y ∈ CL(M4).

The homomorphism λ : Pin(4)→ O(4) is then given by

λ(x) : M4 →M4, λ(x)v = x.c(v).γ(x) (A.10)

for x ∈ Pin(4) ⊂ CL(M4) and v ∈ M4. Now, let SO(4) denote the orthogonal

transformations of M4 which have unit determinant. Then the group Spin(4) ⊂

CL(M4) is given by

Spin(4) = λ−1(SO(4)) (A.11)

and ker(λ) = {−1, 1} ≡ Z2. We also state the fact that Spin(4) is simply connected.

Therefore Spin(4) is the universal double cover of the group SO(4) and λ is the

covering map. Now, for the complexified Clifford algebra CL(M4) the group Spin(4)C

is given by the following.

Spin(4)C = Spin(4)×Z2 S
1 (A.12)

In other words, Spin(4)C is the collection of equivalence classes [g, z] ∈ Spin(4)C

with the equivalence relationship (g, z) = (−g,−z). We want to list a couple of

homomorphisms.[14]
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1.) λ : Spin(4)C → SO(4) given by λ([g, z]) = λ(g) (A.13)

2.) i : Spin(4)→ Spin(4)C inclusion map (A.14)

3.) j : S1 → Spin(4)C inclusion map (A.15)

4.) l : Spin(4)C → S1 given by l([g, z]) = z2 (A.16)

5.) p : Spin(4)C → SO(4)× S1 given by p([g, z]) = (λ(g), z2) i.e. p = λ× l

(A.17)

Minkowski space is a four dimensional vector space. The dimension being an even

number means that the space of Dirac spinors, S decomposes into the direct sum of

the so-called positive and negative Weyl spinors.[14] This is denoted

S = S+ ⊕ S− (A.18)

In this case, Clifford multiplication by a non-zero vector v is a bijection, S± 7→ S∓.

In the space of Dirac spinors there exists a positive definite Hermitian inner

product such that

(c(v).ψ, φ) = −(ψ, c(v).φ) (A.19)

for v ∈ M4 and ψ, φ ∈ S. The spin representation κ : CL(M4) → End(S) when

restricted to the group Spin(4) ⊂ Spin(4)C ⊂ CL(M4) is unitary with respect to this

inner product. Furthermore,

det(κ(g)) = 1 (A.20)

for every g ∈ Spin(4). Therefore, the spin representation of the group Spin(4) is the

group SU(S).[14] For example, if we have the metric signature (−,+,+,+) then the
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spin representation of Spin(4) = Spin3,1 is given by the group SL(2,C) and has a

representation space of Weyl spinors, i.e two component spinors S±. In the general

case of [g, z] ∈ Spin(4)C we have the representation

κ([g, z])ψ = z.κ(g)ψ (A.21)

with determinant given by

det(κ([g, z])) = zdim(S) = z4 (A.22)

A.2 Spin Manifold and the Differential Structure

of the Dirac Bundle

We want to extend the structure described above to the setting of manifolds and fiber

bundles. A spin manifold is an oriented Riemannian manifold with a spin structure

on its tangent bundle. An oriented Riemannian manifold M admits a spin structure

(and is a spin manifold) if and only if its second Stiefel-Whitney class is zero.[13]

Let (M, g) be a 4 dimensional spin manifold. Let F denote the bundle of positively

oriented orthonormal frames of the tangent bundle TM . F is a principal bundle with

structure group SO(4). Suppose we have a Spin(4)C structure on TM . Since we have

a Spin(4)C structure, we know that there exists an S1 = SO(2)-principal bundle

P1 such that the fiber product F×̃P1 has a Spin(4)C structure.[14] Our Spin(4)C

structure is given by the pair (W ,Λ) where W is a Spin(4)C principal bundle and Λ

is a double covering map given by

Λ :W → F×̃P1 (A.23)

92



Recall from equation (A.17) that we also have the covering map p : Spin(4)C →

SO(4) × S1. The SO(4) principal bundle allows us to define an associated four

dimensional vector bundle.

T = F ×SO(4) M
4 =W × λM4 (A.24)

T is isomorphic to the tangent bundle TM . The fibers of T are Minkowski. As

described above, we can view T as an associated vector bundle to the Spin(4)C

principal bundle. Recall our spin representation κ. We can define another associated

vector bundle to the Spin(4)C principal bundle by

∆ =W ×SpinC(4) S (A.25)

The fibers of this associated vector bundle are a four complex dimensional space with

a Hermitian metric. These fibers are precisely the space of Dirac spinors. For this

reason, we call ∆ the Dirac spinor bundle.

Finally, recall that each orthogonal transformation of M4 induces and orthogonal

transformation of CL(4). Hence we get a representation of SO(4) denoted

ρ : SO(4)→ Aut(CL(4)) (A.26)

This allows us to define an associated bundle of Clifford algebras.[13]

C(T ) = F ×ρ CL(4) (A.27)

In this way, at each point p ∈ M there is a complexified Clifford algebra that is

generated by vectors in T |p ≡ TpM . This allows us the use of Clifford multiplication

fiber-wise since we can view the tangent space as a fiber of the vector bundle associated
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with the Spin(4)C principal bundle.

The Lie algebra of SO(4) we denote by so(4). The Lie algebra of S1 is iR and

so the Lie algebra of the product SO(4) × S1 is so(4) ⊕ iR. The Lie algebra of

Spin(4)C we denote by spinC(4). Let x ∈M and {ei}3
i=0 denotes the standard basis

of T |x = M4. Then spinC(4) = m2 ⊕ iR where

m2 = span{c(ei).c(ej)|1 ≤ i < j ≤ 4} (A.28)

m is a Lie algebra equipped with the commutator bracket which coincides with

Clifford multiplication

[x, y] = x.y − y.x (A.29)

We take the connection on the SO(4) principal bundle to be the Levi-Civita

connection, which is the unique torsion-free metric connection. This is an so(4)-

valued 1-form

Z : TF → so(4) (A.30)

We also fix a connection on the S1 principal bundle P1. It is given by

A : TP1 → iR (A.31)

We use the product of these connections to define a connection in the fiber product

F×̃P1.

Z × A : T (F×̃P1)→ so(4)⊕ iR (A.32)

The map dΛ : T (W) → T (F×̃P1) and the differential p∗ : m2 ⊕ iR → so(4) ⊕ iR

allow us to lift the connection Z × A to a connection
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Z̃ × A : T (W)→m2 ⊕ iR (A.33)

which completes a commuting diagram. The connection Z̃ × A determines a covariant

derivative in the Dirac bundle.[14]

Let X, Y be vector fields defined on M and let ψ be a spinor field. Then for the

spinor covariant derivative with respect to any connection A in (A.31) we have

∇A
Y (c(X).ψ) = c(X).(∇A

Y .ψ) + c(∇YX).ψ (A.34)

where ∇ is the Levi-Civita covariant derivative. [14] Also, the spinor covariant

derivative is metric with respect to the Hermitian inner product on the Dirac bundle.

In other words, if X is a vector field and ψ, ψ1 are both spinor fields then the vector

field acts as a derivation on the Hermitian inner product, i.e.

X(ψ, ψ1) = (∇A
Xψ, ψ1) + (ψ,∇A

Xψ1) (A.35)

Finally, we want to give local expressions for the covariant derivative and curvature

operators. Let e : U ⊂ M → F be a local section of the frame bundle given on an

open set U . This is a positively oriented orthonormal frame field. Let {Eij = ei ∧ ej}

denote the standard basis of so(4), with matrix representation given by a 1 in the ith

column, jth row and a −1 in the jth column, ith row. The local connection form of Z

with respect to e we denote Ze. It is given by

Ze =
∑
i<j

ωijEij (A.36)

where ωij = g(∇ei , ej) are the standard 1-forms for the Levi-Civita connection. Let

s : U ⊂ M → P1 be a fixed section of the S1 principal bundle. Then the local

connection form of A with respect to s we denote As. It is given by a map
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As : TU → iR (A.37)

Then we have the local connection form of the product Z × A with respect to the

product of sections e× s : U → F×̃P1. It is given by

Z × Ae×s = (
∑
i<j

ωijEij, A
s) (A.38)

Let the lift of the product of sections e × s be given by ẽ× s : U → W . It is a fact

[13] that the Lie algebras spin(4) = m2 and so(4) are isomorphic, with isomorphism

given by

Eij 7→
1

2
c(ei).c(ej) (A.39)

With (A.38) and (A.39) we have the local connection form of Z̃ × A with respect

to ẽ× s. It is denoted Z̃ × A
ẽ×s

and given by

Z̃ × A
ẽ×s

= (
1

2
ωijc(ei).c(ej),

1

2
As) (A.40)

(A.40) allows us to give a local expression of the covariant derivative on the Dirac

bundle. It is the following.[14]

∇Aψ = dψ +
1

2

∑
i<j

ωijc(ei).c(ej).ψ +
1

2
Asψ (A.41)

We next want to define the curvature 2-form for the Dirac bundle. We start with

the curvature form for the Levi-Civita connection. It is

ΩZ : TF × F → so(4) (A.42)

given by
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ΩZ =
∑
i<j

ΩijEij (A.43)

where Ωij = dωij +
∑3

k=0 ωik ∧ ωkj. The curvature 2-form for the connection A is

given by

ΩA = dA (A.44)

We are then able to lift the product to a curvature 2-form for the connection Z̃ × A.

It is given by

ΩZ̃×A =
1

2

∑
i<j

Λ∗(Ωij)c(ei).c(ej)⊕
1

2
Λ∗(dA) (A.45)

=
1

4

∑
i<j

(
∑
k,l

Rijklσ
k ∧ σl)c(ei).c(ej) +

1

2
dA (A.46)

where {σk} is the dual frame. This allows us use of the following expression for the

second covariant derivative of a Dirac spinor field.[14]

∇A(∇Aψ) =
1

2

∑
i<j

Ωijc(ei).c(ej).ψ +
1

2
dA.ψ (A.47)

=
1

4

∑
i<j

(
∑
k,l

Rijklσ
k ∧ σl)c(ei).c(ej).ψ +

1

2
dAψ (A.48)

A.3 Dirac Operator and the Schrödinger-Lichnerowicz

formula

Let∇A denote the covariant derivative on the Dirac bundle. Recall (A.34) and (A.35).

These equations show how the covariant derivative ∇A interacts with the Hermitian
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inner product (, ) defined on the Dirac bundle. Let {ei} = e be the positively oriented

orthonormal frame field given above. We first define the Laplace operator on the Dirac

bundle. If ψ is a Dirac spinor field, then the Laplace operator on the Dirac bundle,

which we denote ∆A(ψ), is given by

∆A(ψ) = −
∑
i

∇A
ei
∇A
ei
ψ −

∑
i

div(ei)∇A
ei
ψ (A.49)

where the divergence is given by

− div(ej) =
∑
k

g(∇ekej, ek)ek (A.50)

Next we define the Dirac operator. The Dirac operator, denoted ��D, is a differential

operator on the space of spinors which is defined as the contraction of covariant

differentiation and Clifford multiplication.[14] Namely,

��Dψ =
∑
i

c(ei).∇A
ei
ψ (A.51)

We now give the statement of the Schrödinger-Lichnerowicz Formula.

Proposition A.1[Schrödinger-Lichnerowicz Formula]

Denote by R the scalar curvature of the Riemannian manifold and let dA = ΩA be

the imaginary-valued curvature 2-form of the connection A in the S1-principal bundle

associated with the Spin(4)C structure. Then one has for a Dirac spinor field ψ,

��D
2ψ = ∆Aψ +

1

4
Rψ +

1

2
dA.ψ

The goal now is to establish the Schrödinger-Lichnerowicz formula. The formula

is a way to relate the square of the Dirac operator and the Laplace operator on the

Dirac bundle. Let P ∈M . We have an orthonormal frame {ei} on TPM . Recall the

Clifford relationships from (A.1) and (A.2). In particular, at P we have
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c(ei).c(ei) = −1 (A.52)

c(ei).c(ej) + c(ej).c(ei) = −2δij (A.53)
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We now compute the difference between the square of the Dirac operator and the

Spin connection Laplacian.

��D
2 −∆A =

∑
i

c(ei).∇A
ei

(
∑
j

c(ej).∇A
ej

) +
∑
i

∇A
ei
∇A
ei

+
∑
i

div(ei)∇A
ei

(A.54)

=
∑
i,j

{c(ei).c(∇eiej).∇A
ej

+ c(ei).c(ej).∇A
ei
∇A
ej
}+

∑
i

∇A
ei
∇A
ei

+
∑
i

div(ei)∇A
ei

(A.55)

=
∑
i,j,k

g(∇eiej, ek)c(ei).c(ek).∇A
ej

+
∑
i,j

c(ei).c(ej).∇A
ei
∇A
ej

+
∑
i

∇A
ei
∇A
ei

(A.56)

+
∑
i

div(ei)∇A
ei

=
∑
j,i6=k

g(∇eiej, ek)c(ei).c(ek).∇A
ej

+
∑
j,i=k

g(∇eiej, ek)c(ei).c(ek).∇A
ej

+

(A.57)∑
i 6=j

c(ei).c(ej).∇A
ei
∇A
ej

+
∑
i=j

c(ei).c(ej).∇A
ei
∇A
ej

+
∑
i

∇A
ei
∇A
ei

+
∑
i

div(ei)∇A
ei

=
∑
j,i6=k

g(∇eiej, ek)c(ei).c(ek).∇A
ej
−
∑
i

div(ei)∇A
ei

+
∑
i 6=j

c(ei).c(ej).∇A
ei
∇A
ej
−

(A.58)∑
i

∇A
ei
∇A
ei

+
∑
i

∇A
ei
∇A
ei

+
∑
i

div(ei)∇A
ei

=
∑
j,i6=k

g(∇eiej, ek)c(ei).c(ek).∇A
ej

+
∑
i 6=j

c(ei).c(ej).∇A
ei
∇A
ej

(A.59)

= −
∑
j,i6=k

g(ej,∇eiek)c(ei).c(ek).∇A
ej

+
∑
i 6=j

c(ei).c(ej).∇A
ei
∇A
ej

(A.60)

= −
∑
j,i<k

g(ej,∇eiek −∇ekei)c(ei).c(ek).∇A
ej

+
∑
i<j

c(ei).c(ej).[∇A
ei
∇A
ej
−∇A

ej
∇A
ei

]

(A.61)
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=
∑
j,i<k

g(ej, [ek, ei])c(ei).c(ek).∇A
ej

+
∑
i<j

c(ei).c(ej).[∇A
ei
∇A
ej
−∇A

ej
∇A
ei

] (A.62)

=
∑
i<j

c(ei).c(ej).[∇A
ei
∇A
ej
−∇A

ej
∇A
ei

+∇A
ei
∇A
ej
−∇A

ei
∇A
ej

] (A.63)

=
∑
i<j

c(ei).c(ej).[∇A
ei
∇A
ej
−∇A

ei
∇A
ej
−∇A

[ei,ej ]
] (A.64)

=
∑
i<j

c(ei).c(ej).[∇A
ei
∇A
ej
−∇A

ei
∇A
ej
−∇A

[ei,ej ]
]+ (A.65)

∑
i≥j

c(ei).c(ej).[∇A
ei
∇A
ej
−∇A

ei
∇A
ej
−∇A

[ei,ej ]
]−
∑
i≥j

c(ei).c(ej).[∇A
ei
∇A
ej
−∇A

ei
∇A
ej
−∇A

[ei,ej ]
]

=
1

2

∑
i,j

c(ei).c(ej).(∇A
ei
∇A
ej
−∇A

ej
∇A
ei
−∇A

[ei,ej ]
) (A.66)

=
1

2

∑
i,j

c(ei).c(ej).R
A(ei, ej) (A.67)

Recall equation (A.48) and that

(∇A∇Aψ)(ei, ej) = RA(ei, ej)ψ (A.68)

This gives us for (A.67)

1

2

∑
i

c(ei).[−
1

2
Ric(ei) +

1

2
(eiydA)] = −1

4

∑
i

c(ei)Ric(ei) +
1

4

∑
i

c(ei)(eiydA)

(A.69)

=
1

4
R +

1

2
dA (A.70)

Therefore,

��D
2 = ∆A +

1

4
R +

1

2
dA (A.71)
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A.4 Witten’s expression for the mass

The above formula in equation (A.71) is key to the derivation of Witten’s expression

for mass. Suppose that M is an asymptotically flat,complete, n-dimensional, spin

manifold with metric

gij = δij + hij (A.72)

with hij ∈ W 2,α
−τ (M) for τ > n−2

2
and R ∈ L1. Then Witten’s expression for the mass

in n-dimensions is given by

c(n)mass(g) =

ˆ
M

(4‖∇̃ψ‖2 +R‖ψ‖2)dVg (A.73)

We are considering a general spin structure here instead of the more complicated

complexification. This means we do not specifically have a “Dirac” spinor, i.e. 4

component spinor. In this case, the Schrödinger-Lichnerowicz Formula takes the

following form when applied to a spinor ψ.[19]

��D
2ψ = ∇∗∇ψ +

1

4
Rψ (A.74)

In an orthonormal frame {ei}3
i=0, we recall the isomorphism between so(4) and

spin(4) given by

ei ∧ ej 7→
1

2
c(ei).c(ej) (A.75)

This allows us to lift the Levi-Civita connection Ze to a connection on an

associated spin bundle. The connection on the spin bundle is

Z̃ ẽ =
1

2
ωijc(ei).c(ej) (A.76)
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where ωij are the Levi-Civita connection 1-forms. This gives us the expression for the

covariant derivative of spinors in a local frame. We denote the covariant derivative

that acts on spinors as ∇̃. The formula for the covariant derivative is given by

∇̃ψ = dψ +
1

2

∑
i<j

ωijc(ei).c(ej).ψ (A.77)

= dψ − 1

4

∑
i,j

ωijc(ei).c(ej).ψ (A.78)

(A.79)

Now, let ψ be a spinor that is a solution to Dirac’s equation, i.e.

��Dψ = 0 (A.80)

that is asymptotic to a given constant spinor normalized by |ψ0|2 → 1. The required

spinor ψ = ψ0 + ψ1, where ψ1 ∈ W 2,α
−τ , exists.[17]

We need to prove an identity. Let (, ) denote the positive definite inner product on

the bundle of spinors, i.e. from (A.19). Recall that the Laplacian and Dirac operator

are both self-adjoint. Let σij = 1
2
[c(ei), c(ej)] so that

σij.∇̃j =
1

2
[c(ei), c(ej)].∇̃j (A.81)

= (δij + c(ei).c(ej)).∇̃j (A.82)

= ∇̃i + ei.��D (A.83)

Then,
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d{(ψ, σij.∇̃jψ)eiydV olg} = d((ψ, ∇̃iψ)eiydV olg) + d((ψ, ei.��Dψ)eiydV olg} (A.84)

= {(∇̃iψ, ∇̃iψ) + (ψ, ∇̃i∇̃iψ) + (∇̃iψ, e
i.��Dψ)+ (A.85)

(ψ, c(∇ie
i).��Dψ) + (ψ,��D

2ψ)}dV olg

= {‖∇̃ψ‖2 + (ψ, ∇̃i∇̃iψ)− (ei.∇̃iψ,��Dψ)+ (A.86)

(ψ, c(∇ie
i).��Dψ) + (ψ,��D

2ψ)}dV olg

= {‖∇̃ψ‖2 + (ψ, ∇̃i∇̃iψ)− (��Dψ,��Dψ)+ (A.87)

(ψ, c(∇ie
i).��Dψ) + (ψ,��D

2ψ)}dV olg

= {‖∇̃ψ‖2 + (ψ, ∇̃i∇̃iψ)− ‖��Dψ‖2+ (A.88)

(ψ, c(∇ie
i).��Dψ) + (ψ,��D

2ψ)}dV olg

= {‖∇̃ψ‖2 − (ψ,−∇̃i∇̃iψ)− ‖��Dψ‖2 + (ψ,��D
2ψ)+ (A.89)

(ψ,
1

4
Rψ)− (ψ,

1

4
Rψ) + (ψ, c(∇ie

i).��Dψ)}dV olg

= {‖∇̃ψ‖2 − (ψ,∇∗∇ψ) + (ψ,
1

4
Rψ)− (ψ,

1

4
Rψ)− (A.90)

‖��Dψ‖2 + (ψ,��D
2ψ)}dV olg

= {‖∇̃ψ‖2 +
R

4
‖ψ‖2 − ‖��Dψ‖2}dV olg, (A.91)

using (A.74). This is the identity we wanted to prove. We state it here for clarity.

{‖∇̃ψ‖2 +
R

4
‖ψ‖2 − ‖��Dψ‖2}dV olg = d{(ψ, σij.∇̃jψ)eiydV olg} (A.92)

This is the key to Witten’s formula for mass. We use this identity for our spinor

described above, i.e. ψ = ψ0 + ψ1. We integrate this over M and identify the

boundary term on the right with the ADM mass. Recall

c(n)mass(g) = lim
R→∞

ˆ
∂BR

(∂jgij − ∂igjj)eiydV olg (A.93)

104



Our next step is to integrate (A.91) with ψ = ψ0 +ψ1 over the region MR = {r ≤

R} and use Stokes Theorem. Note that the left hand side is real, and so we are only

concerned with the real part of the right hand side.

ˆ
MR

‖∇̃ψ‖2 +
R

4
‖ψ‖2 − ‖��Dψ‖2}dV olg =

ˆ
MR

d{(ψ, σij.∇̃jψ)eiydV olg} (A.94)

=

ˆ
∂MR

(ψ, σij.∇̃jψ)eiydV olg (A.95)

=

ˆ
∂MR

(ψ0 + ψ1, σij.∇̃jψ0 + σij.∇̃jψ1)eiydV olg

(A.96)

We now reference an identity given by Bartnik in [17]. It is the following relationship

d{(φ, σij.χ)(ei ∧ ej)ydV olg} = {(φ, σij.∇̃jχ)− (σij.∇̃jφ, χ)}eiydV olg (A.97)

The identity in (A.97) give us an equivalent expression for (A.96).

ˆ
∂MR

(ψ0, σij.∇̃jψ0) + d{(ψ0, σij.ψ1)(ei ∧ ej)ydV olg}+ (ψ1, σij.∇̃jψ)+ (A.98)

(σij.∇̃jψ0, ψ1)eiydV olg

In (A.98) we note that the last two terms will not contribute to the integral at infinity

because of the falloff conditions on ψ1. The second term disappears because d2 = 0.

This leaves us, at infinity, with the term (ψ0, σij.∇̃iψ0). Evaluating this term using

(A.78) and recalling that ψ0 is constant at infinity gives us
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(ψ0, σij.∇̃jψ0) = (ψ0, σijdψ0 −
1

4

∑
k,l

ωkl(ej)σijc(ek).c(el).ψ0) (A.99)

= (ψ0,−
1

4

∑
k,l

ωk,l(ej)σij.c(ek).c(el).ψ0) (A.100)

= (ψ0,−
1

4

∑
i,j,k,l

ωk,l(ej)σij.σkl.ψ0) (A.101)

= −1

4

∑
i,j,k,l

ωk,l(ej)(ψ0, σij.σkl.ψ0) (A.102)

Let σijkl = c(ei).c(ej).c(ek).c(el) if i 6= j 6= k 6= l and 0 otherwise. We can easily

verify the fact that σij is skew hermitian. Also, looking at the left hand side of (A.94)

we see that we are only interested in the real part of the right hand side. Therefore,

equation (A.102) simplifies to the following.[17]

1

2
ωij(ej)‖ψ0‖2 − 1

4
ωkl(ej)(ψ0, σijkl.ψ0) (A.103)

For the second term note that σijkl is antisymmetric. This term turns out to be equal

to the divergence plus terms on the order or r−2τ−1. Therefore it will not contribute

to the boundary integral at infinity.

Now we introduce coordinates that were used by Bartnik.[17]. Let ei = eji∂j be

an orthonormal frame near infinity satisfying:

eji − δij ∈ W
2,α
−τ (MR) (A.104)

This frame is called asymptotically constant. For the first term in (A.103) we want

to write out ωij in terms of Christoffel symbols and the frame.

ωij(ej) = Γijj + ∂j(e
i
j) +O(r−2τ−1) (A.105)
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Next we want to decompose the frame as e = (eij) = δ+ s+ a where s is a symmetric

part and a is the antisymmetric part. This gives us the following expression.[17]

ωij(ej) =
1

2
(∂jgij − ∂igjj) + ∂jaji +O(r−2τ−1) (A.106)

Finally note that

∂jajieiydV olg = d(aij(dx
i ∧ dxj)ydV olg) +O(R−2τ−1) (A.107)

Therefore, taking R → ∞ in (A.94)-(A.96), recalling (A.103), (A.106)-(A.107) and

the fact that our spinor ψ is in the kernel of the Dirac operator gives us

ˆ
M

‖∇̃ψ‖2 +
R

4
‖ψ‖2dV olg = lim

R→∞

1

4

ˆ
∂MR

(∂jgij − ∂igjj)eiydV olg =
c(n)

4
mass(g)

(A.108)

We note that under the decay conditions of asymptotic flatness, this integral

converges.

107



Vita

Joshua Michael Lipsmeyer was born on October 29, 1983 in Bigelow, Arkansas. He

was raised in a small town by loving parents Taneau and Gary Lipsmeyer. He was the

oldest of four children, with siblings Brandi Edwards, Joey Lipsmeyer, and Shannon

Howell. Josh received his high school diploma from Bigelow High School in 2002 with

honors. After a successful career in industry, Josh went on to pursue undergraduate

studies at the University of Arkansas at Little Rock where he graduated Magna Cum

Laude with a Bachelor of Science degree in mathematics with a minor in physics.

In 2012, Josh received a graduate teaching assistantship from the University of

Tennessee. There, his area of study was geometric analysis and general relativity

under the guidance of Dr. Alex Freire. In August 2015 he was awarded his Masters

of Science in mathematics.

108


	On the Existence and Uniqueness of Static, Spherically Symmetric Stellar Models in General Relativity
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	1 Introduction
	2 Existence and Uniqueness of Static, Spherically Symmetric Solutions
	2.1 Derivation of the System of Equations
	2.2 The Singular Point
	2.3 Extending the Solution Uniquely

	3 Uniqueness of the Static Stellar Model
	3.1 Statement of the theorem.
	3.2 The ``reference system" of O.D.E.
	3.3 Spinor approach to the Positive Mass Theorem.
	3.4 Strategy of proof of the Main Theorem.
	3.5 Auxiliary system of differential equations.
	3.6 The critical set and the oscillation set.
	3.7  The conformal factor on the regular set.
	3.7.1 Accumulation of discontinuities.

	3.8 Convergence of a sequence of conformal factors.
	3.9 Conclusion of the proof.

	4 Physical Constraints on Stellar Models
	4.1 Buchdahl's Inequality
	4.2 Constraints on the Adiabatic Index
	4.3  Necessary and Sufficient Conditions for a Finite Radius

	Bibliography
	Appendix
	A Spin Geometry
	A.1 Dirac Spinors
	A.2 Spin Manifold and the Differential Structure of the Dirac Bundle
	A.3 Dirac Operator and the Schrödinger-Lichnerowicz formula
	A.4 Witten's expression for the mass

	Vita

