Stratigraphy and Structure of Part of the Western Blue Ridge Foothills near Tellico Plains, Southeastern Tennessee

Steven L. Martin
University of Tennessee, Knoxville

Recommended Citation

Martin, Steven L., "Stratigraphy and Structure of Part of the Western Blue Ridge Foothills near Tellico Plains, Southeastern Tennessee.
" Master's Thesis, University of Tennessee, 1997.
https://trace.tennessee.edu/utk_gradthes/4844

To the Graduate Council:
I am submitting herewith a thesis written by Steven L. Martin entitled "Stratigraphy and Structure of Part of the Western Blue Ridge Foothills near Tellico Plains, Southeastern Tennessee." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology.

Robert D. Hatcher, Jr., Major Professor

We have read this thesis and recommend its acceptance:
William M. Dunne, Thomas W. Broadhead, G. Michael Clark
Accepted for the Council:
Dixie L. Thompson
Vice Provost and Dean of the Graduate School
(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Steven L. Martin entitled "Stratigraphy and structure of part of the western Blue Ridge Foothills near Tellico Plains, southeastern Tennessee." I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology.

Robert D. Hatcher, Jr., Major professor

We have read this thesis and recommend its acceptance:

Accepted for the Council:
Curmink.l
Associate Vice Chancellor and
Dean of The Graduate School

Stratigraphy and structure of part of the western Blue Ridge Foothills near Tellico Plains, southeastern Tennessee

A Thesis
Presented for the
Master of Science
Degree
The University of Tennessee, Knoxville

Steven Lee Martin
May, 1997

Dedication

This thesis is dedicated to my parents for their love and support in helping me accomplish my goals.

Acknowledgments

Numerous people, both directly and indirectly, were involved in the creation of this thesis. Foremost, I am forever thankful to my major advisor, Prof. Robert D. Hatcher, Jr., for his insight, encouragement, and support throughout this project. I am very fortunate to have had the opportunity to work under his guidance. I would also like to thank my other committee members Dr. William M. Dunne, Dr. G. Michael Clark, and Dr. Thomas W. Broadhead for their comments and assistance during this project. I am also thankful for the Department of Geological Sciences Graduate Teaching Assistantship and the U. T. K. Science Alliance Center of Excellence Distinguished Scientist Stipend for financial support during my graduate enrollment. Additional support from the George D. Swingle Memorial Fellowship Award is also greatly appreciated.

I am very grateful to Mark Carter and Don Geddes for their friendship, field assistance, and discussions on the geology of the Western Blue Ridge. I would also like to thank Camilo Montes for his computer assistance, and to the many other Hatcher students I have had the pleasure of working with. A special thanks to Nancy Meadows and Gina Keeling for their invaluable help and friendships. Thanks also to Leonard Wiener and Carl Merschat (North Carolina Geological Survey), and Dr. Kauko Laajoki (University of Oulu, Finland) for sharing their work and interpretations in some of the same rocks. I would also like to thank Dr. Don W. Byerly for his advice and employment during my undergraduate degree. Many thanks to the many geology students (both graduate and undergraduate) I have had the pleasure of working with and knowing during my undergraduate and graduate degrees at the University of Tennessee. Your friendships have made this experience enjoyable. I am also very grateful to the department office staff (Melody, Cindy, and Denise) who are always willing to help.

Thanks to the rangers and staff at the Tellico and Hiwassee Ranger Districts for
keys to gain access to some of the Forest Service roads and maps. Many thanks to the folks of Tellico Plains for their hospitality and access on their property during field work.

A very special thank you to my parents Chuck and Shirley Martin, and the rest of my family. Your love, encouragement, and support have made this endeavor possible. I am especially grateful to Dr. Dan Walker (National Research Council and UT graduate) for his friendship, encouragement, and advise throughout my undergraduate and graduate degrees. Dan, I cannot thank you enough for all you have done for me.

Abstract

The Upper Proterozoic Walden Creek and Great Smoky Groups (Ocoee Supergroup) are a thick sequence of metasedimentary rocks that underlies the western Blue Ridge Foothills in southeastern Tennessee. These rocks represent synrift sedimentation along the Late Proterozoic to Early Cambrian Laurentian margin. They were subsequently deformed and metamorphosed during the Taconic orogeny (Ordovician), then brittlely deformed by northwestward thrusting during the Alleghanian orogeny (Permian). Rejected alternative interpretations suggest that the Walden Creek Group may be Middle Ordovician to Mississippian in age, and deposited in a post-Taconic successor basin, possibly during the Acadian orogeny. Those interpretations require that these rocks were metamorphosed and deformed only during the Alleghanian orogeny.

Detailed geologic mapping (1:12,000 and 1:24,000) of a $191 \mathrm{~km}^{2}\left(\sim 74 \mathrm{mi}^{2}\right)$ area indicates the western Blue Ridge Foothills in southeastern Tennessee consist of Chilhowee Group (Lower Cambrian), Walden Creek Group, and Great Smoky Group lithologies broken by late Paleozoic brittle faults. Rocks assigned to the Great Smoky Group are correlated with the Ammons and Dean formations, whereas rocks of the Walden Creek Group are correlated with the Wilhite and Sandsuck formations. A klippe of quartz arenite on Groundhog Mountain is correlated with the Hesse Quartzite (Chilhowee Group). The contact between the overlying Walden Creek Group (Wilhite Formation) and Great Smoky Group (Dean Formation) is conformable, thus providing an upper bound for the age of the Walden Creek Group. This contact previously has been interpreted as the southern continuation of the Greenbrier fault, as a Middle Ordovician unconformity, and more recently as conformable. The only other conformable contact between formations in the study area is between the Dean Formation and the underlying Ammons Formation (Great Smoky Group); all others are faults. In the Walden Creek

Group, the Wilhite Formation is thrust (Miller Cove fault) onto the Sandsuck Formation, which is thrust (Great Smoky fault) onto Valley and Ridge units.

Rocks within the study area were metamorphosed once, and cut by six regional thrust faults, and four generations of folds and cleavages. Metamorphism during the Taconic orogeny reached chlorite and biotite grade in the study area. During this orogeny, F_{1} folds with axial-planar slaty cleavage $\left(S_{1}\right)$ formed along with pressure-solution cleavage ($\mathrm{S}_{1 \mathrm{a}}$). Brittle Alleghanian deformation resulted in emplacement of the Bullet Mountain, Great Smoky, Maggies Mill, Miller Cove, Rabbit Creek and Oconaluftee faults. These faults separate the western Blue Ridge Foothills in the study area into three thrust sheets (Great Smoky, Miller Cove, and Rabbit Creek thrust sheets). The Bullet Mountain thrust sheet is located in the Valley and Ridge and is interpreted to have been transported northwestward beneath the Great Smoky thrust sheet. F_{2} kink folds and S_{2} crenulation cleavage formed as a result of this Alleghanian deformation in the Miller Cove thrust sheet. F_{3} folds and axial-planar slaty cleavage $\left(S_{3}\right)$ formed in the Great Smoky thrust sheet. Folding of these western Blue Ridge thrust sheets by duplexing of Valley and Ridge footwall units represents the F_{4} folding event.

Strain analysis ($\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry methods) of ten oriented sandstones from the Walden Creek Group and the Great Smoky Group in three western Blue Ridge thrust sheets yield mean strain ratios $\left(R_{x y}, R_{x z}, R_{y z}\right)$ of $1.33,1.71,1.3(X \geq Y \geq Z)$ and 1.61, 2.27, $1.43(\mathrm{X} \geq \mathrm{Y} \geq \mathrm{Z})$, respectively. Strains appear to be the result of one or two western Blue Ridge deformation events. The highest strain values occur near Alleghanian brittle faults, and toward the southeast in the direction of increasing metamorphic grade and deformation.

An environmental assessment for a hypothetical residential development within the Sixmile Creek and Rocky Branch watersheds in the study area indicates slope instabilities exist due to mechanical discontinuity characteristics in bedrock, recognition of
previous landslides, topography, and climate. Previous landslides within this area are classified as debris slides and debris flows, and were possibly triggered by heavy rainfall events. Extensive development is not recommended in most of the assessment area.

Table of Contents

Chapter Page
I. Introduction 1
Location of study area 6
Previous work 7
Objectives 11
Methodology 12
II. Stratigraphy 13
Introduction 13
Description of rock units 16
Great Smoky Group 16
Ammons Formation 20
Horse Branch Member 20
Dean Formation 21
Conglomerate lithofacies 24
Slate lenses 27
Walden Creek Group 30
Wilhite Formation 31
Metasiltstone lithofacies 32
Sandstone members 39
Sandsuck Formation 45
Sandstone lithofacies 46
Carbonate lithofacies 49
Other units 52
Chilhowee Group 55
Hesse Quartzite 55
Shady Dolomite 57
Rome Formation 57
Conasauga Group 58
Knox Group 58
Age of the Walden Creek Group - Stratigraphic evidence 59
III. Structure 67
Introduction 67
Faults 68
Bullet Mountain fault 71
Great Smoky fault 73
Structure beneath the Great Smoky thrust sheet 75
Maggies Mill fault 79
Miller Cove fault 82
Rabbit Creek fault 84
Oconaluftee fault 90
Minor faults 95
Hunt Branch fault 95
Tellico Mountain fault 96
Other faults 100
Folds 101
F_{0} folds 103
F_{1} folds 103
F_{2} folds 109
F3 folds 109
F_{4} folds 114
S-surfaces (foliations) 116
S_{0} (bedding) 116
S_{1} (slaty cleavage) 119
$S_{1 \mathrm{a}}$ (pressure-solution cleavage) 124
S_{2} (crenulation cleavage) 127
S_{3} (slaty cleavage) 130
Joints and veins 130
Structural chronology of the western Blue Ridge
in southeastern Tennessee 133
Strain analysis 137
Methodology 141
Results of study 144
Discussion of results 153
Strain analysis conclusions 166
IV. Environmental Assessment of the Sixmile Creek and Rocky Branch Watersheds, Northwest Slope of Waucheesi Mountain 167
Introduction 167
Methodology 167
Bedrock geology 170
Rock discontinuities 171
Lithologic discontinuities 173
Bedding 173
Contacts 176
Tectonic discontinuities 176
Cleavage 176
Joints 177
Faults 178
Sulfidic zones 178
Geomorphology 178
Surficial deposits 179
Conclusions and recommendations 183
V. Conclusions 185
References cited 188
Appendices 202
Appendix A - Structural data 203
Appendix B - Modal analysis 235
Appendix C - Strain data 240
Appendix D - Procedures for cross section construction and retrodeformation using Adobe Illustrator ${ }^{T M}$ 244
Vita 249

List of Figures

Figure Page
I-1. Geologic map of the western Blue Ridge in southeastern Tennessee, western North Carolina, and northern Georgia 2
I-2. Regional geologic map of the western Blue Ridge in southeastern Tennessee showing location of study area (heavy black line) and quadrangle locations 4
I-3. Previous geologic investigations in the western Blue Ridge of southeastern Tennessee, southwestern North Carolina, and northern Georgia 8
II-1. Regional correlations of Late Proterozoic to early Paleozoic stratigraphy in eastern Tennessee and southwestern North Carolina 14
П-2. Simplified geologic map of study area 17
П-3. Schematic stratigraphic column for the lithologies exposed in the study area 22
II-4. Characteristic lithologic features of the conglomerate lithofacies in the Dean Formation (Great Smoky Group) 25
II-5. Classification of coarse-grained rocks of the Great Smoky Group 28
II-6. Characteristic lithologic features of the metasiltstone lithofacies in the Wilhite Formation (Walden Creek Group) 34
II-7. Characteristics of ankeritic metasiltstone in the Wilhite Formation (Walden Creek Group) 37
II-8. Classification of coarse-grained rocks of the Wilhite Formation 41
II-9. Characteristic lithologic features of the sandstone member in the Wilhite Formation (Walden Creek Group) 43
■-10. Classification of coarse-grained rocks of the Sandsuck Formation and Chilhowee Group 47
II-11. Characteristic lithologic features of the sandstone lithofacies in the Sandsuck Formation (Walden Creek Group) and quartz arenite in the Hesse Quartzite (Chilhowee Group) 50
II-12. Characteristic lithologic features of the carbonate lithofacies in the Sandsuck Formation (Walden Creek Group) 53
II-13. Contact relationships between the Dean Formation (Great Smoky Group) and the Wilhite Formation (Walden Creek Group) 64
III-1. Thrust sheets, bounding faults, and major folds in the study area 69
III-2. Overturned Wilhite sandstone in the footwall of the Rabbit Creek fault along Tennessee State Highway 68 at Grave Mountain, Tellico Plains 7.5-minute quadrangle 86
III-3. The Oconaluftee fault zone 93
III-4. Tellico Mountain fault zone 97
III-5. F_{0} folds in fine-grained rocks of the Wilhite Formation 104
III-6. Characteristics of F_{1} folds in the Miller Cove thrust sheet 107
III-7. Characteristics of F_{2} folds in the Miller Cove thrust sheet 110
III-8. Characteristics of F_{3} folds in the Great Smoky thrust sheet 112
III-9. Lower-hemisphere equal-area projections of S_{0} (bedding) data in the Bullet Mountain, Great Smoky, and Miller Cove thrust sheets 117
III-10. Characteristics of S_{1} (slaty cleavage) in the Miller Cove thrust sheet 120
III-11. Increased development of slaty cleavage $\left(S_{1}\right)$ from northwest to southeast across the study area 122
III-12. Characteristics of $S_{1 a}$ (pressure solution) cleavage in the Miller Cove thrust sheet 125
III-13. Characteristics of S_{2} (crenulation) cleavage in the Miller Cove thrust sheet 128
III-14. Lower-hemisphere equal-area projection of 18 poles to S_{3} (slaty cleavage) in Great Smoky thrust sheet 131
III-15. Chronology of orogenic events and related structures of the western Blue Ridge in southeastern Tennessee (modified from Carter, 1994) 134
III-16. Location of samples used for strain analysis 142
$\amalg \mathrm{II}-17 . \mathrm{X} / \mathrm{Y}$ axial ratios as determined by the $\mathrm{R}_{\mathrm{f}} / \phi$ method 145
III-18. Lower-hemisphere equal-area projections of strain ellipsoid axes 147
III-19. Flinn diagram of $\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry strain values in each thrust sheet 149
III-20. X/Y axial ratios as determined by the normalized Fry method 151
III-21. Flinn diagram of 75 flattened quartz pebbles from Basin Gap, station BRF-575, Bald River Falls 7.5-minute quadrangle 154
III-22. Microstructures in the Great Smoky thrust sheet 159
III-23. Microstructures in the Miller Cove thrust sheet 162
III-24. Microstructures in the Rabbit Creek thrust sheet 164
IV-1. Physiographic units of study area showing location of environmental assessment area 168
IV-2. Orientation of mesoscopic structures within the Sixmile Creek and Rocky Branch watersheds 174
IV-3. Geologic map of the Sixmile Creek and Rocky Branch watersheds 181

List of Tables

Table Page
III-1. Size orders of folds 102
III-2. Westem Blue Ridge strain analysis 138
III-3. Microstructural analysis of strain samples 156

List of Plates

I Geologic Map of parts of the Tellico Plains, Bald River Falls, Farner, and Unaka 7.5-minute Quadrangles, southeastern Tennessee and southwestern North Carolina (scale 1:24,000) In Pocket
II Station Map In Pocket
III Cross sections and retrodeformed sections of the western Blue Ridge Foothills near Tellico Plains, southeastern Tennessee and southwestern North Carolina In Pocket
IIIa Cross sections In Pocket
IV Surficial deposits In Pocket

Chapter I

Introduction

The Ocoee Supergroup is the principal lithostratigraphic unit in the westerm Blue Ridge of eastern Tennessee, western North Carolina, and northern Georgia (Fig. I-1). It has been interpreted as the product of Late Proterozoic to Early Cambrian synrift sedimentation along the southeastern Laurentian margin (Stose and Stose, 1949; King and others, 1958; DeWindt, 1975; Rankin, 1975; Hatcher, 1972, 1978; Rast and Kohles, 1986). King and others (1958) defined the Ocoee Supergroup in the Great Smoky Mountains National Park as consisting of the Snowbird, Great Smoky, and Walden Creek groups. The sequence was subsequently deformed and metamorphosed during the Taconic orogeny (Ordovician), and deformed again during the Alleghanian orogeny (Permian) (Butler, 1972; Rankin, 1975; Hatcher, 1972, 1978; Kish, 1989; Connelly and Dallmeyer, 1990; Kish, 1991; Woodward and others, 1991; Connelly and Woodward, 1992). Recent hypotheses based on paleontological data suggest that all or part of the Ocoee Supergroup may be younger (Middle Ordovician to Mississippian) than originally thought (Tull and Groszos, 1988, 1990; Unrug and Unrug, 1990; Thompson and Tull, 1991; Unrug and others, 1991; Tull and others, 1993). According to these hypotheses, those units were deposited in a post-Taconic successor basin (possibly during the Acadian orogeny), then were deformed and metamorphosed during the Alleghanian orogeny.

The western Blue Ridge Foothills near Tellico Plains in southeastern Tennessee is a critical area for determining important stratigraphic and structural relationships between groups of the Ocoee Supergroup (Fig. I-2). The bedrock geology here consists of faulted and tightly folded metasedimentary rocks of the Walden Creek and Great Smoky groups. The rolling hills and low mountains of the Foothills belt are underlain by the dominantly fine-grained clastic strata of the Walden Creek Group, whereas the dominantly coarse-

Figure I-1. Geologic map of the western Blue Ridge in southeastern Tennessee, western North Carolina, and northern Georgia. Field area is represented by polygon outlined by heavy black line. Modified from Carter and others (1995a).

Geologic abbreviations: DCF-Dunn Creek fault; GF-Greenbrier fault; GSF-Great Smoky fault; MCF-Miller Cove fault; MMF-Maggies Mill fault; OF-Oconaluftee fault; RCFRabbit Creek fault.

Geographic abbreviations: GSMNP BDY-Great Smoky Mountains National Park boundary.

Figure I-2. Regional geologic map of the western Blue Ridge in southeastern Tennessee showing location of study area (heavy black line) and quadrangle locations. Heavy dashed lines represent the study areas of Carter (1994) and Geddes (1995) to the southwest and northeast of the study area, respectively. Modified from Carter and others (1995a).

Geologic abbreviations: GSF-Great Smoky fault; MCF-Miller Cove fault; MMFMaggies Mill fault; OF-Oconaluftee fault; RCF-Rabbit Creek fault.

Geographic abbreviations: HR-Hiwassee River, R-Rafter; TP-Tellico Plains; TR-Tellico River.

Quadrangle abbreviations: BJ-Big Junction; BRF-Bald River Falls; FAR-Farner; MCFMcFarland; MEC-Mecca; RAF-Rafter; TP-Tellico Plains; WOF-Whiteoak Flats.

grained clastic strata of the Great Smoky Group underlie the Unaka Mountains belt, which includes the high peaks of the Great Smoky Mountains, and the Unaka Mountains along the state line in southeastern Tennessee and southwestern North Carolina (Fig. I-2; Plate I).

This study focuses mainly on the stratigraphic and structural relationships between the Walden Creek and Great Smoky groups to determine the age and tectonic setting of the sequence. Reports of Silurian to early Mississippian microfossils from the Walden Creek Group (Unrug and Unrug, 1990; Unrug and others, 1991) have raised questions concerning the nature of the contacts between the Walden Creek Group and other units in the western Blue Ridge, as well as the age of these units. This suggestion also affects the interpretations of depositional and tectonic setting for the Walden Creek Group (Tull and Groszos, 1988, 1990; Thompson and Tull, 1991; Tull and others, 1993). The purpose of this study is to provide new data that will help define the stratigraphic and structural relationships, and structural chronologies of the Walden Creek Group in a portion of the western Blue Ridge foothills in southeastern Tennessee.

Location of study area

The western Blue Ridge of eastern Tennessee and western North Carolina can be subdivided into three physiographic subprovinces: (1) the westernmost frontal Blue Ridge fault blocks; (2) the Foothills belt; and (3) the Unaka Mountains belt (Rodgers, 1953). The study area spans part of the Valley and Ridge, the Foothills belt, and includes the westernmost mountain range of the Unaka Mountains belt to the southeast. The area encompasses approximately $191 \mathrm{~km}^{2}\left(\sim 74 \mathrm{mi}^{2}\right)$ near Tellico Plains, Tennessee, and includes portions of the Tellico Plains, Bald River Falls, Farner and Unaka 7.5-minute quadrangles (Fig. I-2). The area is bounded to the northwest by Mocking Crow Mountain, to the northeast by the Tellico River, to the southeast by the Unicoi Mountains,
and to the southwest by the Tellico Plains/Mecca 7.5-minute quadrangle boundary (Fig. I2; Plate I).

Previous work

Some of the most significant geologic investigations of the Ocoee Supergroup in southeast Tennessee have been conducted along the Ocoee River Gorge south of the study area (Fig. I-3). Here, Safford (1856) originally defined the type sections of the Ocoee as the "Ocoee conglomerates and slates," while Hurst and Schlee (1962) were able to distinguish important stratigraphic continuities between major units within the Ocoee Supergroup. These stratigraphic continuities were recently reconfirmed in the Ocoee Gorge (Costello and Hatcher, 1986; Costello, 1993). King and others (1958) provided the modern stratigraphic framework of the Ocoee Supergroup in an extensive study of the geology of the Great Smoky Mountains National Park. Most of the previous geologic investigations near this study area were masters theses by University of Tennessee graduate students: McKinney (1964), Poppelreiter (1980), Carter (1994), and Geddes (1995). Other geologic investigations were conducted by Hale (1974), Merschat and Wiener (1973), Wiener and Merschat (1978, 1981, 1992), and Merschat and Hale (1983) (Fig. I-3).

One of the earliest modern detailed geologic investigations in the Tellico Plains area of southeastern Tennessee was by McKinney (1964), who mapped early Paleozoic strata in the Groundhog Mountain area near Tellico Plains. This area is within the Bullet Mountain thrust sheet and consists of Lower Cambrian Shady Dolomite and Rome Formation thrust northwest over Middle to Upper Cambrian Conasauga Group and Upper Cambrian to Lower Ordovician Knox Group of the Valley and Ridge. Within this area is Groundhog Mountain, which is capped by a clean, medium-grained quartzite. The mountain was previously postulated by Rodgers (1953) to have formed by tight folding of

Figure I-3. Previous geologic investigations in the western Blue Ridge of southeastern Tennessee, southwestern North Carolina, and northern Georgia. Study area is shaded.

Lower Cambrian strata with subsequent erosion exposing Chilhowee Group lithologies, which are probably analogous to Glade and Lick Mountains in southwestern Virginia. The Groundhog Mountain klippe may be associated with the Great Smoky fault, either to the main fault surface or to an intermediate slice related to the Great Smoky fault system. McKinney (1964) concluded that the quartzite capping Groundhog Mountain is a klippe of Hesse Sandstone (Chilhowee Group) that has been thrust onto younger Shady Dolomite and Rome Formation. McKinney also interpreted the klippe to be an intermediate slice of upper Chilhowee Group rocks related to the Great Smoky fault system. If this klippe is related to the Great Smoky fault, the fault surface would be warped due to a later stage of deformation, and the strata in the upper plate would be overturned to the southeast. A portion of the southern part of the study area was mapped by Hale (1974), who observed a conformable stratigraphic relationship between the coarser-grained lithologies of the Great Smoky Group and the overlying banded metasiltstones of the lower Walden Creek Group. Hale also mapped sequences of arkosic sandstone within the banded metasiltstones. Poppelreiter (1980) made regional correlations between major structures in the area, and concluded that the contact between the Great Smoky Group and the Walden Creek Group is conformable.

Merschat and Wiener (Merschat and Wiener, 1973; Wiener and Merschat, 1978, 1981; Merschat and Hale, 1983; and Wiener and Merschat, 1992) made alternative interpretations for some of the contact relationships and correlations between major units of the Ocoee Supergroup in southeast Tennessee, southwest North Carolina, and north Georgia. Principally, they interpreted the contact between the Great Smoky Group and the Walden Creek Group to be the southern continuation of the Greenbrier fault, which changes the facing direction or tops of bedding and stratigraphic nomenclature across the contact.

Recently, Carter (1994) and Geddes (1995) mapped and interpreted the geology of
the western Blue Ridge Foothills to the southwest and northeast of the study area (Fig. I2). Detailed geologic mapping by Carter delineated the stratigraphic sequence of the uppermost formations of the Great Smoky Group, the Walden Creek Group, and the lower formations of the Chilhowee Group northeast of the Hiwasee River and southeast of Starr Mountain. Important results of this study included: (1) a stratigraphic contact between the underlying Great Smoky Group and underlying Walden Creek Group in doubly plunging anticlines cored by Great Smoky Group strata; (2) mappable metasandstone units within the metasiltstone lithofacies of the Wilhite Formation (Walden Creek Group); (3) carbonate lithologies in the Sandsuck Formation in the footwall of the Miller Cove fault; (4) a conformable relationship between the underlying Sandsuck Formation and the overlying Chilhowee Group; and (5) regional correlations for the area. Geddes (1995) mapped the area northeast of the study area between Citico Creek and the Tellico River. He delineated the uppermost formations of the Great Smoky Group and Walden Creek lithologies southeast of the Miller Cove fault, and was also able to demonstrate the stratigraphic relationship between the Great Smoky Group and Walden Creek Group. This relationship is present in southwest-plunging second-order anticlines that expose the upper formations of the Great Smoky Group and the overlying Walden Creek Group. An important correlation made in this thesis is the correlation of the upper part of the Cades Sandstone with the Dean Formation of the Great Smoky Group. Both Carter (1994) and Geddes (1995) integrated seismic reflection data (Cook and others, 1983) with surface data to provide evidence for the Foothills duplex beneath the Great Smoky overthrust.

Objectives

The main objectives of this thesis are: (1) determine the lithologies and areal extent of Walden Creek Group and upper Great Smoky Group formations; (2) determine the
stratigraphic and structural relationships between the Walden Creek Group and the Great Smoky Group; (3) provide evidence in order to constrain an age interpretation for the Walden Creek Group; (4) determine the amount of internal strain in these units; and (5) complete a hypothetical applied problem that involved evaluation of an area for potential residential development using lithologic, structural, and geomorphic data. Achieving the first four objectives will help formulate conclusions about the age of the Walden Creek Group and model the chronology of tectonic events that have shaped the western Blue Ridge Foothills of the southern Appalachians. Objective five was completed by applying many of the bedrock data, along with additional surficial geologic data, to a problem.

Methodology

This research involved detailed geologic mapping $(1: 12,000)$ of the study area (Plate I). Field work was begun, while still an undergraduate in mid-July, 1992, and continued until mid-August, 1992. Mapping resumed in January, 1993, as a graduate student and continued with interruptions to August, 1995, and involved foot traverses along streams, ridges, roads, and highways. Most traverses were across regional strike, spaced closedly enough to permit tracing contacts along strike. Structural measurements of bedding, cleavages, folds, lineations, and fractures were collected from more than 2,300 stations throughout the study area (Plate II) using a Sylva Ranger ${ }^{\mathrm{TM}}$ compass. Structural analyses were aided using Stereonet software, developed by R. W. Allmendinger (Cornell University) for the Macintosh personal computer. Petrographic studies were conducted using a Leitz Orthoplan Pol polarizing microscope. Strain studies, using both the $\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry method, were performed using software developed by Adolph Yonkee (University of Utah) for the Macintosh personal computer.

Chapter II

Lithostratigraphy

Introduction

The Ocoee Supergroup forms most of the westem Blue Ridge province of the southern Appalachians in southeastem Tennessee, southwestern North Carolina, and northeastem Georgia (King and others, 1958) (Fig. I-1). Its thickness has been estimated to be approximately 15 km ($50,000 \mathrm{ft}$), which is dominated by terrigenous clastic sedimentary rocks deposited nonconformably on Middle Proterozoic (Grenvillian) crystalline basement (Hayes, 1900; Keith, 1907a, 1907b; Stose and Stose, 1949; King and others, 1958; Odom and others, 1973; Costello, 1978; McConnell and Costello, 1982, 1984; Costello, 1986; Rankin and others, 1989). The Ocoee Supergroup is overlain by two separate groups of strata. In southeast Tennessee along the westem Blue Ridge boundary, the Ocoee Supergroup is conformably overlain by the Lower Cambrian Chilhowee Group (King and others, 1958; King, 1964; Neuman and Nelson, 1965; Walker and Driese, 1991) (Figs. I-1, II-1). To the east in the central Blue Ridge, the Ocoee Supergroup is conformably overlain by the rocks of the Murphy belt (Keith, 1907a; Hurst, 1955; King and others, 1958; Hadley, 1970; Mohr, 1975) (Figs. I-1, II-1).

The Ocoee is divided into three groups; the Snowbird, the Great Smoky, and the Walden Creek Groups (King and others, 1958). An unbroken continuous stratigraphic sequence of the Ocoee Supergroup does not exist due to faulting and probable complexity of the depositional basin geometry. Reconstruction of the Ocoee stratigraphic sequence requires correlation of similar formations across faults, but King and others (1958), Hamilton (1961), and Unrug and Unrug (1990) had problems correlating formations from a hanging wall with similar units in the subjacent footwall. Traditionally, the large body of fine-grained rocks underlying most of the study area is interpreted as belonging to the

Figure II-1. Regional correlations of Late Proterozoic to early Paleozoic stratigraphy in eastern Tennessee and southwestern North Carolina. Number key denotes authors(s) and contributor(s) who defined the stratigraphic unit. No thickness or time durations are indicated by the size of individual blocks. Modified from Carter (1994).

Number key index: 1-Safford (1856); 2-Safford (1869); 3-Hayes (1891); 4-Keith (1895); 5-Campbell (1899); 6-Keith (1903); 7-Keith (1904); 8-Keith (1907a); 9-King and others (1944); 10-Hurst (1955); 11-King and others (1958); 12-King and Furguson (1960); 13Hurst and Schlee (1962); 14-King (1964); 15-Fairly (1965); 16-Neuman and Nelson (1965); 17-Hernon (1968); 18-Merschat and Wiener (1973); 19-Mohr (1975); 20-Wiener and Merschat (1978); 21-Keller (1980); 22-Wiener and Merschat (1981); 23-Ausburn (1983); 24-Walters and Woodward (1987); 25-Lewis (1988); 26-Unrug and Unrug (1990); 27-Tull and others (1991); 28-Woodward and others (1991); 29-Carter (1994); 30-Geddes (1995).

		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$				емои｜！						

产			产彦	－	或	$\stackrel{\text { ® }}{\text { ¢ }}$	$\frac{\square}{\text { \％}}$
ие！̧！nopıO			ueuques			s！ozoseladd	

Walden Creek Group. Wiener and Merschat (1978), Merschat and Hale (1983), and Wiener and Merschat (1992) have correlated this body with the Snowbird Group. Detailed accounts of the history of previous stratigraphic investigations of the Ocoee Supergroup were presented by Rodgers (1991) and Carter (1994).

Description of rock units

The following sections are lithologic descriptions of mappable rock units present in the study area, as well as descriptions of the correlated formations as defined by previous investigators. The stratigraphic nomenclature employed here follows that of King and others (1958) for Walden Creek Group strata, and of Hurst (1955) and Mohr (1975) for Great Smoky Group strata (Figs. II-1, II-1; Plate I). Murphy belt nomenclature for Great Smoky Group formations is used here to emphasize the stratigraphic relationship that exists between the rocks that overlie the Great Smoky Group in the western Blue Ridge of southeastern Tennessee and in the central Blue Ridge in southwestern North Carolina. The lowest mappable stratigraphic unit exposed in the field area is the Ammons Formation (Great Smoky Group), which is overlain by the Dean Formation (Great Smoky Group) (Fig. II-1). The Wilhite Formation (Walden Creek Group) follows in the sequence, and conformably overlies the Dean Formation. The Wilhite metasiltstone is the most dominant lithology exposed in the study area (Fig. II-2; Plate I). The Sandsuck Formation (Walden Creek Group) is the highest mappable stratigraphic unit in the field area, and is separated from the Wilhite Formation by the Miller Cove fault. A lithologic description of early Paleozoic strata in the Groundhog Mountain area, as mapped by McKinney (1964), is also included.

Great Smoky Group

The Great Smoky Group is the thickest unit in the Ocoee Supergroup, at an

Figure II-2. Simplified geologic map of study area. See Plate I for detail. Cross sections (Plate III) located along lines A-A', B-B', and C-C'.

Geologic abbreviations: BMF-Bullet Mountain fault; ES-Epperson synclinorium; GRAGrindstone Ridge anticlinorium; GSF-Great Smoky fault; HBF-Hunt Branch fault; KHAKirkland Hollow anticlinorium; MCF-Miller Cove fault; MMF-Maggies Mill fault; OFOconaluftee fault; PRA-Payne Ridge anticlinorium; RCF-Rabbit Creek fault; TMATellico Mountain anticlinorium; TPS-Tellico Plains synclinorium; U-upthrown fault block; D-downthrown fault block.

Geographic abbreviation: TP-Tellico Plains.

estimated $8,000 \mathrm{~m}(25,000 \mathrm{ft})$ in the Great Smoky Mountains National Park region, and is generally composed of granule to pebble conglomerate, fine- to coarse-grained sandstone, dark silty or argillaceous slate, phyllite, and schist (King and others, 1958; Hadley and Goldsmith, 1963; King, 1964). This massive sequence extends 240 km (150 mi) along regional strike from the Pigeon River in eastern Tennessee southwestward into northern Georgia, and $65 \mathrm{~km}(40 \mathrm{mi})$ across regional strike from the foothills of southeastern Tennessee eastward to the flanks of the Murphy syncline of southwestern North Carolina and northern Georgia. The Great Smoky Group is also exposed in the Brasstown Bald and Shooting Creek windows beneath the Hayesville-Allatoona fault system in southwestern North Carolina (Hopson and others, 1989).

The base of the Great Smoky Group through most of its extent in the Great Smoky Mountains National Park is cut off by the Greenbrier fault. In the southeastern portion of Great Smoky Mountains National Park, however, the Great Smoky Group has been interpreted to conformably overlie the Snowbird Group (King and others, 1958). Montes (unpub. M.S. thesis) is currently reexamining the base of the Great Smoky Group near Bryson City, NC, to determine the contact relationship with the underlying Snowbird Group. In southeast Tennessee, along the Ocoee, Hiwassee, and Tellico Rivers, the top of the Great Smoky Group is conformably overlain by the Walden Creek Group (Hurst and Schlee, 1962; Hale, 1974; Poppelreiter, 1980; Costello and Hatcher, 1986, 1991; Carter, 1994; Geddes, 1995; this study). The Great Smoky Group is also conformably overlain by the Hiwassee River Group in the Murphy belt (Hurst, 1955; Tull and others, 1991).

Great Smoky Group lithologies generally consist of pebble conglomerate, graywacke, sandstone and slate (Hurst, 1955; King and others, 1958; Hemon, 1968; Mohr, 1975). The conglomerate is generally a coarser facies of the graywacke, and is characterized by graded beds and poor sorting. These rock types are repetitively interbedded throughout the Great Smoky Group sequence, and the formations are
distinguished from each other by the relative abundance of each rock type.

Ammons Formation

The Ammons Formation is a sequence of well-oxidized mica schist, metasiltstone, and sandstone, with an atypical graphitic, laminated schist and metasiltstone member (Horse Branch Member) in the upper 300 m (990 ft) of the formation (Mohr, 1975; Ausburn, 1983). The oxidation state of this unit is greater than most units in the Great Smoky Group, because the mineral assemblages consist of magnetite, pyrite, and epidote rather than graphite, pyrrhotite, and zoisite (Mohr, 1975). The Ammons Formation conformably overlies the Grassy Branch Formation, and is stratigraphically equivalent to the Hothouse Formation of Hurst (1955) and Hemon (1968), and to the upper part of the Boyd Gap Formation of Merschat and Wiener (1973) and Wiener and Merschat (1978, 1981, 1992) (Fig. II-1). Mohr (1975) described the Ammons Formation as fine- to medium-grained felsic graywacke, metasiltstone, quartz-mica schist, and rare conglomerate. The upper $300 \mathrm{~m}(990 \mathrm{ft})$ of the Ammons Formation consist of a distinctive dark gray, graphitic, laminated schist, and dark laminated metasiltstone (Mohr, 1975; Ausbum, 1983; Geddes, 1995). The Hothouse Formation, as originally described by Hurst (1955), consists of interbedded graywacke and mica schist. with lesser amounts of conglomerate and quartzite. The thickness of the Ammons Formation is estimated to be 1,200 to $1,500 \mathrm{~m}(3,900$ to $4,900 \mathrm{ft})(\mathrm{Mohr}, 1975)$, while the Hothouse Formation is estimated to be 2,440 to $3,350 \mathrm{~m}(8,000$ to $11,000 \mathrm{ft})$ (Hurst, 1955).

Horse Branch Member

The lowest stratigraphic unit exposed in the study area occurs along the southeastem boundary on the southeastern slopes of the Unicoi Mountains in southeastem Tennessee and southwestem North Carolina (Fig. II-2). Lithologically, this
unit consists of a medium gray to black, sulfidic and graphitic, medium- to coarse-grained feldspathic graywacke interbedded with dark gray to black, sulfidic, graphitic slate, and metasiltstone (Fig. II-3). Bed thicknesses range from 5.5 cm to 1.0 m for the graywackes, while the metasiltstone contains primary depositional dark and light bands that range from 0.7 to 1.5 cm . This unit is correlated with the Horse Branch Member of the Ammons Formation (Mohr, 1975; Ausburn, 1983; Geddes, 1995) (Figs. II-1, II-2). Mohr (1975) estimated the Horse Branch Member to be about $300 \mathrm{~m}(990 \mathrm{ft})$, while Ausburn (1983) estimated the thickness to range between 330 to $1300 \mathrm{~m}(1,090$ to 4,265 ft). The thickness of the Horse Branch Member in the study area is estimated to be approximately $360 \mathrm{~m}(1,175 \mathrm{ft})$. Good exposures of this lithology are found along Bald River and U. S. Forest Service roads 126 and 44201 southeast of Basin Gap, Bald River Falls 7.5-minute quadrangle (Plate I).

Dean Formation

The Dean Formation conformably overlies the Ammons Formation, and is the uppermost unit of the Great Smoky Group in southeastern Tennessee and southwestern North Carolina (Hurst, 1955; Hemon, 1968; Mohr, 1975; Geddes, 1995). It is equivalent to the Buck Bald Formation of Merschat and Wiener (1973) and Wiener and Merschat (1978, 1981 1, 1992) (Fig. II-1). Hurst (1955) defined the Dean Formation as a unit consisting of staurolite-mica schist, cross-biotite schist, quartz metaconglomerate, quartzite, and pseudodiorite interbedded with lesser amounts of phyllite and sericite schist, with metagraywacke and metaarkosic sandstones locally present. These lithologies undergo horizontal and vertical variations along with many breaks in the lithologic sequence (Hurst, 1955). Mohr (1975) defined the Dean Formation as a unit consisting mostly of light gray, thinly bedded to laminated schist, and coarse-grained to conglomeratic felsic metagraywacke. Also occurring within this formation are beds of

Figure II-3. Schematic stratigraphic column for the lithologies exposed in the study area.

northwest boundary of field area				
Walden Creek Group		Great Smoky fault $=\equiv=$	Sandstone lithofacies - massively interbedded quartz arenite, feldspathic sandstone, quartz-pebble conglomerate and slate. $\text { (}-530 \mathrm{~m} \text { exposed) }$ Camonate lithofacies - thinly bedded micritic limestone.	$T_{-200 \mathrm{~m}}^{0 \mathrm{~m}}$
		(- Miller Cove fault	Metasiltstone lithofacies - predominantly banded metasiltstone, locally interbedded with thinly bedded slate and carbonate. (1100 m - 1200 m thick) Sandstone members - feldspathic sandstone, graywacke, and quartz-pebble conglomerate with locally interbedded banded metasiltstone. ($50 \mathrm{~m}-750 \mathrm{~m}$ thick)	
				$-1000 m$
				$\begin{aligned} & -1200 m \\ & -1400 m \\ & -1600 m \end{aligned}$
			Conglomerate lithofacies - graded, feldspathic, granule to pebble conglomerate, graywacke, and feldspathic sandstone with interbedded dark-banded metasiltstone and slate. $\text { (} 560 \mathrm{~m}-965 \mathrm{~m} \text { thick) }$ Slate layers - banded dark sulfidic and graphitic, metasiltstone, and slate. ($23 \mathrm{~m}-87 \mathrm{~m}$ thick)	$\begin{aligned} & -1800 m \\ & -2000 m \\ & -2200 m \end{aligned}$
	$\begin{aligned} & \infty \\ & \check{c} \text { 읓 } \\ & \text { ㅌ } \\ & \text { E E } \\ & \text { E } \end{aligned}$		Horse Branch Member- interbedded gray to black, sufidic and graphitic, feldspathic graywacke, metasiltstone, and slate. (-360 m exposed)	$\underbrace{-2400 \mathrm{~m}}_{2600 \mathrm{~m}}$

Explanation

quartz sandstone

ankeritic metasiltstone
carbonate
banded and unbanded slate
banded metasiltstone \square feldspathic sandstone
feldspathic graywacke
feldspathic granule to pebble conglomerate sulfidic and graphitic graywacke

[^0]quartz-pebble metaconglomerate with minor amounts of metasiltstone and metaquartzite. Both Hurst (1955) and Mohr (1975) estimated the thickness of the Dean Formation to be 750 to $1,000 \mathrm{~m}(2,500$ to $3,500 \mathrm{ft}$). while Ausburn (1983) estimated the thickness of the Dean Formation to be 1,100 to $1,300 \mathrm{~m}(3,600$ to $4,265 \mathrm{ft})$.

In the study area, the coarse-grained, graded, granule to pebble conglomerate, feldspathic sandstone and graywacke, and slate exposed in strike belts along the northwest slopes of the Unicoi Mountains in the southeastern portion of the map and along Tellico Mountain in the upper northwest half of the map are correlated with the Dean Formation. These Great Smoky Group lithologies are also exposed in the cores of breached anticlines (whalebacks) beneath the Wilhite Formation to the northwest of the main strike belt mentioned above (Fig. II-2; Plate I). The Dean Formation is divided into two map units in the study area, a conglomerate lithofacies and slate lenses. The thickness of the Dean formation in the study area is estimated to range from 560 to 965 m (1,835 to $3,165 \mathrm{ft}$) thick.

Conglomerate lithofacies

This heterogeneous lithology consists of an irregularly interbedded succession of light- to dark-gray coarse-grained granule to pebble conglomerate, light gray medium- to coarse-grained graywacke and feldspathic sandstone, black slate, and dark gray metasiltstone (Fig. II-3). Bed thickness in the coarser-grained rocks ranges from 1 to 10 m , while the finer-grained, interbedded slates and metasiltstones have a thickness of less than 1.5 m . Many individual beds contain a complete graded sequence from conglomerate at the base to slate at the top. Other primary sedimentary structures include scour-and-fill features, cross bedding, and soft-sediment folds.

The most prominent lithology present is granule- to pebble-conglomerate and very coarse-grained sandstone (Figs. I-4A, II-4B). Conglomerate clasts consist of poorly to

Figure II-4. Characteristic lithologic features of the conglomerate lithofacies in the Dean Formation (Great Smoky Group). Sample location on top of Tellico Mountain on Tennessee State Highway 68 (station TP-563), Tellico Plains 7.5-minute quadrangle. (A) Granule- to pebble-conglomerate. Centimeter scale. (B) Enlarged image (plane light) of conglomerate thin section. $\mathrm{Q}=$ quartz, $\mathrm{F}=$ feldspar, and $\mathrm{SL}=$ slate clast. Field of view is approximately 3.5 cm wide.

(A)

(B)
moderately sorted, rounded to sub-angular, quartz, feldspar, and rock fragments in a coarse sand matrix. Granule-size clasts consist of rounded bluish smoky quartz, and angular plagioclase and potassium feldspar, while pebble-sized clasts include wellrounded milky quartz, and slate chips (Appendix B). Cobble-size clasts are rare, but include limestone, dolomite, and quartzite, along with slate. Most of the medium- to coarse-grained feldspathic sandstones and graywackes are gradational downward into the underlying conglomerates. Other sandstones in this unit grade upward into metasiltstone and slate. The metasiltstone and slate in these graded sequences are commonly 6 cm thick with primary composition layering occurring as rippled bands or laminae. Much of the coarse-grained, graded sequences higher in the stratigraphic section contain greenish banded metasiltstone that is compositionally and texturally similar to the metasiltstone of the overlying Wilhite Formation, but without the ankerite that characterizes the Wilhite metasiltstones in this area. The sandstones consist principally of quartz and feldspar, and range from graywacke, subgraywacke, and feldspathic quartzite to quartzite (Fig. II-5). Matrix consists of metamorphic sericite, chlorite, and biotite that are present in various amounts, along with detrital muscovite and biotite.

Excellent exposures of the conglomerate lithofacies of the Dean Formation in the study area can be found along Tennessee Highway 165 (Tellico River road) at the eastern edge of the Tellico Plains 7.5-minute quadrangle, at Bald River Falls (Bald River Falls 7.5-minute quadrangle), along Tennessee Highway 68 at the top of Tellico Mountain (Tellico Plains 7.5-minute quadrangle), and on Forest Service road 126 leading to Basin Gap (Bald River Falls 7.5-minute quadrangle).

Slate lenses

Interbedded within the conglomerate lithofacies are mappable bodies of slate and metasiltstone. These lenticular units are exposed along the northwest slopes of the

Figure II-5. Classification of coarse-grained rocks of the Great Smoky Group. Present study (black circles) as compared to stratigraphically equivalent Great Smoky Group units (uppermost Great Smoky Group and Buck Bald Formation), and older Great Smoky Group units (Thunderhead Sandstone and Elkmont Sandstone). Diagram modified from Pettijohn (1949).

Number key: $\quad 1$ - Sample TP-563; TN Hwy. 68 on top of Tellico Mountain, Tellico Plains 7.5-minute quadrangle.

2 - Sample TP-710; TN Hwy. 68 and Graves Mountain, Tellico Plains 7.5-minute quadrangle.

3 - Sample BRF-391; Tellico River 480 m southeast of Bald River Falls, Bald River Falls 7.5-minute quadrangle.

4 - Sample BRF-459; Tellico River 1.8 km southeast of Bald River Falls, Bald River Falls 7.5-minute quadrangle.

5 - Sample BRF-481; Tellico River 1.4 km northwest of Bald River Falls, Bald River Falls 7.5-minute quadrangle.

6 - Sample BRF-846; confluence of Tellico River and Wildcat Creek, Bald River Falls 7.5-minute quadrangle.

Explanation
[.. Uppermost Great Smoky Group - Salisbury (1961) ($\mathrm{n}=10$)
KN Thunderhead Sandstone - King (1964) ($n=12$)
Elkmont Sandstone - King (1964) ($n=3$)

- Buck Bald Formation - Carter (1994) ($n=3$)

O Dean Formation - Geddes (1995) ($n=5$)

- Dean Formation - this study $(\mathrm{n}=6)$

Unicoi Mountains and along Tellico Mountain (Fig. II-2; Plate I). The slate bodies along Tellico Mountain are thicker than those along the Unicoi Mountains to the southeast, resulting either from original stratigraphic thickness changes or faulting. These finegrained units consist of black, variably sulfidic and graphitic slate, and light to dark gray banded metasiltstone. The slate bodies located near the top of the unit contain a greater concentration of banded metasiltstone than do the slate bodies lower in the section, with much of the banded metasiltstone being very similar in appearance to the overlying banded metasiltstones of the Wilhite Formation. The upper slate and metasiltstone units are moderately well exposed along Forest Service road 126 northwest of Basin Gap, Bald River Falls 7.5-minute quadrangle. Other good exposures of black slate are located along Forest Service road 126 to Basin Gap, and along Tennessee Highway 68 as the road ascends Tellico Mountain, Tellico Plains 7.5-minute quadrangle. The thicknesses of these slate bodies range from 23 to $87 \mathrm{~m}(75$ to 285 ft$)$ along the southeastem portion of the study area, and to as great as approximately $190 \mathrm{~m}(630 \mathrm{ft})$ along Tellico Mountain to the northwest.

Walden Creek Group

The Walden Creek Group is the youngest and most lithologically diverse unit in the Ocoee Supergroup (King and others, 1958) (Fig. II-1). The Licklog, Shields, Wilhite, and Sandsuck formations (oldest to youngest) comprise the Walden Creek Group. It consists of a $2,500 \mathrm{~m}-(8,000 \mathrm{ft}-)$ thick continuous succession of slate, metasiltstone, sandstone, conglomerate, and carbonate in the Foothills northwest of the Great Smoky Mountains (King and others, 1958; Hamilton, 1961; King, 1964). The Walden Creek Group can be traced from Jones Cove and Richardson Cove (Hamilton, 1961) through the Foothills belt of eastern Tennessee and into northeastern Georgia (McConnell and Costello, 1982). This sequence of strata is dismembered by faulting throughout the Foothills belt in
southeastern Tennessee. South of the Little Tennessee River, and within the study area, lower Walden Creek strata (Wilhite Formation) are separated from the Sandsuck Formation by the Miller Cove fault (King, 1964; Neuman and Nelson, 1965; Carter, 1994; this study) (Fig. II-2; Plate I). In the study area, the Walden Creek conformably overlies the Great Smoky Group, while the top of the Walden Creek Group is cut off due to faulting (Great Smoky fault) and is thrust onto the Early Cambrian Shady Dolomite and Rome Formation.

Wilhite Formation

Most of the bedrock in the study area consists predominantly of a greenish-gray banded metasiltstone with intertonguing lenses of sandstone and conglomerate that are assigned to the Wilhite Formation of the Walden Creek Group (Figs. II-2, II-3; Plate I). These predominantly fine-grained rocks gradationally overlie the Dean Formation of the Great Smoky Group. King and others (1958) divided the Wilhite Formation into two members: the Dixon Mountain Member and the Yellow Breeches Member. The Dixon Mountain Member is the stratigraphically lowest member, and consists predominantly of micaceous and sandy siltstone with carbonate concentrated along laminae. The Yellow Breeches Member is characterized by sandy and conglomeratic limestone and dolomite interbedded with slate and metasiltstone. The thicknesses of the Dixon Mountain and Yellow Breeches members are about $450 \mathrm{~m}(1,500 \mathrm{ft})$ and $610 \mathrm{~m}(2,000 \mathrm{ft})$, respectively.

The Wilhite Formation in the study area is equivalent to the Dixon Mountain Member of the Wilhite Formation, the Shields Formation, and the Licklog Formation north of the Little Tennessee River in the Great Smoky Mountains (King and others, 1958; Hamilton, 1961; Hadley and Goldsmith, 1963; King, 1964; Neuman and Nelson, 1965), and to the Wilhite Formation in northwestern Georgia (McConnell and Costello, 1980, 1982, 1984). The Yellow Breeches Member of the Wilhite Formation is not present
in the study area. The rocks correlated with the Wilhite Formation in this study have previously been correlated by Merschat and Wiener (1973), Wiener and Merschat (1978, 1981) Merschat and Hale (1983), and Wiener and Merschat (1992) with the Snowbird Group. Compositionally, the coarse-grained rocks of the Wilhite Formation are more quartz-rich, less feldspathic, and less micaceous than the coarse-grained rocks of the Snowbird Group (King and others, 1958) in the Great Smoky Mountains region (Carter, 1994; this study). Additionally, the fine-grained rocks of the Wilhite Formation are more argillaceous and less current-laminated than the more granular fine-grained Pigeon Siltstone (Snowbird Group) (King, 1964). Both the Wilhite Formation and the Pigeon Siltstone contain carbonate-bearing strata indicated by the occurrence of ankerite along laminae (King, 1964). These rocks are correlated with the Wilhite Formation rather than the Snowbird Group because of the compositional differences.

In the study area the Wilhite Formation consists of a metasiltstone lithofacies with interbedded sandstone (Figs. II-2, II-3; Plate I). The sandstone layers form discontinuous mappable units that consist mostly of coarse-grained rocks and generally lack finergrained metasiltstone interbeds. The true thickness of the Wilhite Formation is indeterminate because faulting has cut off the top of the section. It is estimated that 1,100 to $1,200 \mathrm{~m}(3,600$ to $4,000 \mathrm{ft})$ of Wilhite Formation strata is exposed in the study area.

Metasiltstone lithofacies

The metasiltstone lithofacies of the Wilhite Formation is the most dominant lithology exposed in the study area. It consists predominantly of metasiltstone, locally interbedded with slate and thinly-bedded fine-grained sandstone (Fig. II-3). The lower portions of the metasiltstone lithofacies are generally more darker gray, slaty, and calcareous than the upper part. The upper sequences of the metasiltstone lithofacies have
more of an olive hue, and are locally sandy, especially in the southwestern portion of the field area. Excellent exposures of the entire sequence of the metasiltstone lithofacies occur along U. S. Forest Service road 210 (Tellico River road), Bald River Falls 7.5minute quadrangle.

The most common lithology of the metasiltstone lithof acies is fine- to coarsegrained, greenish-gray to dark gray, banded metasiltstone (Figs. II-6A, II-6B). The banding represents primary deposition, and ranges in thickness from 0.2 to 4.0 cm . Bedding is characterized by rythmic, and graded, dark- and light-colored laminae. The fine-grained dark laminae consist predominantly of chlorite and sericite, and represent the more argillaceous parts of the metasiltstones. The coarser-grained light-colored laminae are comprised principally of silt- and very fine sand-size quartz and plagioclase grains, with subordinate amounts of chlorite, sericite, and local carbonate. Sedimentary structures preserved on many beds include ripple marks, dewatering structures, and scour and fill features. The metasiltstones commonly weather to various shades of brown, gray, and a very distinctive maroon or brick red color, which is due to a high concentration of iron (Fe) and manganese (Mn).

Dark-gray to greenish-gray, slightly banded slate and silty slate occur throughout the sandstone lithofacies, but are generally more abundant in the lower sections of the formation near the Great Smoky Group contact. Beds are commonly composed of thinner laminae ($<1.0 \mathrm{~cm}$), which are less prominent and sometimes difficult to distinguish from the green metasiltstones higher in the section. The darker slate in the lower part of the formation is composed primarily of clay, muscovite, chlorite, and siltsized particles with local occurrences of (and sometimes abundant) ankerite rhombs and pyrite cubes. Often the ankerite and pyrite are weathered and are altered to limonite and goethite pseudomorphs. Hurst and Schlee (1962) recognized similar, but more pyritic black slate above Great Smoky Group lithologies in the Ocoee River Gorge and

Figure II-6. Characteristic lithologic features of the metasiltstone lithofacies in the Wilhite Formation (Walden Creek Group). Sample location at the intersection of Forest Service roads 341 and 341C (station TP-75), Tellico Plains 7.5 -minute quadrangle. (A) Primary depositional banding in metasiltstone. Centimeter scale. (B) Enlarged image (negative) of banded metasiltstone thin section. Field of view is approximately 2 cm .

(B)
correlated it with the Nantahala Formation in the Murphy belt to the east. Although lacking the darker color and the abundance of pyrite, the thin black slates near the base of the Wilhite Formation near Bald River Falls have similar composition, texture, and stratigraphic position to the slates in the Ocoee River Gorge. Thus, the lower part of the Wilhite Formation in the study area may be correlative to the Nantahala Formation, possibly representing a distal western facies of that formation (Carter and others, 1993b; Carter, 1994). The best exposures of dark slates can be found in the southeastern portion of the study area along U. S. Forest Service road 210 near Turkey Creek Mountain and Bald River Falls, and U. S. Forest Service roads 126 and 384 at the base of the Gravelstand Top and Waucheesi Mountain, Bald River Falls 7.5-minute quadrangle (Plate I).

The lower sections of the metasiltstone lithofacies, and in minor amounts in the lower sandstone units, contain accessory ankerite (Figs. II-7A, II-7B). Ankerite occurs as aggregates and anhedral to euhedral rhombs, and when fresh has a cream to light tan color. The ankerite weathers rusty brown and may be completely weathered leaving rhomb-shaped voids. Ankerite can comprise as much as 25 percent of the rock mass, although the concentration varies laterally and vertically in a stratigraphic sequence. Ankeritic metasiltstone has previously been reported northeast and southwest of this study area in the Rafter, Whiteoak Flats, and Farner 7.5-minute quadrangles (Hale, 1974; Merschat and Hale, 1983; Carter, 1994; and Geddes, 1995). Geddes (1995) was able to distinguish mappable zones of ankeritic metasiltstone ranging from 120 to 520 m (400 to $1,700 \mathrm{ft}$) thick. Southwestward, into the present study area, the ankeritic metasiltstones occur as lateral discontinuous zones with the concentration of ankerite varying between each zone. For this reason, the ankerite-bearing metasiltstones are not designated as a mappable stratigraphic unit. The zones of ankeritic metasiltstone were used as marker beds during mapping, and are an indicator of stratigraphic positioning in the metasiltstone

Figure II-7. Characteristics of ankeritic metasiltstone in the Wilhite Formation (Walden Creek Group). Sample location along northwest slope of Tellico Mountain 1.5 km (0.9 mi) southwest of Tennessee State Highway 68 (station TP-343), Tellico Plains 7.5-minute quadrangle. (A) Ankeritic metasiltstone sample containing both fresh and weathered ankerite rhombs. (B) Enlarged image (negative) of ankeritic metasiltstone thin section. Field of view is approximately 7 mm wide. Photo courtesy of Prof. Robert D. Hatcher, Jr.

(A)

(B)
sequence. In the Coker Creek area of this study and into the Farner 7.5-minute quadrangle to the southwest, ankeritic metasiltstone was observed to have abundant, wellrounded, heavy mineral inclusions in the ankerite aggregates and rhombs (Hale, 1974; Merschat and Hale, 1983). They concluded the heavy mineral inclusions were of the same composition as the groundmass, thus indicating the carbonate was probably a postdepositional metamorphic feature. Good exposures of ankeritic metasiltstone can be found along U. S. Forest Service road 210 (Tellico River road) approximately 1.0 km (3,281 ft) southeast of the confluence of Turkey Creek and Tellico River, Bald River Falls 7.5 -minute quadrangle, and at Hot Water Branch 450 m ($1,500 \mathrm{ft}$) west off Tennessee Highway 68 in the southern portion of the study area, Tellico Plains, 7.5-minute quadrangle.

Sandstone members

The sandstone members of the Wilhite Formation consist predominantly of pinkishgray to tan, medium- to coarse-grained feldspathic sandstone, conglomerate, and rare metasiltstone in graded beds and interbedded lenses (Figs. II-2, II-3; Plate I). The sandstone members occur as mappable but discontinuous sheets or lenses that vary vertically and laterally in composition and thickness. The lowest sequence of sandstone occurs approximately 300 to $1,100 \mathrm{~m}$ (990 to $3,600 \mathrm{ft}$) above the contact with the Great Smoky Group, and underlies Payne Ridge in the southeastern portion of the study area. The same body of sandstone is also exposed on the northwest limb of the Epperson syncline, underlying the area around Grindstone Ridge and Tellico Mountain, where it is estimated to occur 90 to 150 m (300 to 500 ft) above the contact with the underlying Great Smoky Group (Plate I, Plate III). The southwestward plunging Epperson synclinorium preserves a younger sequence of sandstone bodies, approximately 110 m (360 ft) above the lower sequence of sandstone in the southwestern portion of the study
area. These rocks underlie portions of the Coker Creek area, Black Mountain, and Borin Top.

The sandstone bodies are abundant in the central and southwestern portions of the map area and continue southwestward into the Farner and McFarland 7.5-minute quadrangles (Carter, 1994). These sandstone bodies pinch out rather abruptly to the northeast because of possible changes in the depositional environment and proximity to the source. Both the lower and upper sequences of sandstone contain a range of lithologies that are classified as graywacke, subarkose, and quartz arenite (Fig. II-8). The graywacke, subarkose, and quartz arenite lithologies are present in each lens, sheet, or body of sandstone. These lithologies grade vertically and laterally into each other, and do not form distinct mappable units. Each mappable sandstone body does, however, have unique sedimentological characteristics relative to its position in the section. Most of the sandstone bodies are conglomeratic at or near the base of the section. The sandstone units in the lower sequence consist of a quartz-pebble conglomerate with slate chips. The sandstones are generally graywacke with abundant subarkose and quartz arenite, some of which are calcareous. In the upper sequence of sandstones, the lower portion is conglomeratic, but clasts consist of quartz pebbles and lack the slate chips present in the lower sequences. The sandstones are also more lithologically subarkosic with lesser amounts of graywacke and quartz arenite. Metasiltstone is also more abundant in the upper sequences of sandstone. Here, metasiltstone occurs as mappable lenses within the sandstone, and as silty sandstone at the top of the section. The estimated thicknesses of the sandstone members range from 50 to $235 \mathrm{~m}(160$ to 775 ft).

The best exposures of sandstone are found along creeks and near ridge tops. The sandstone beds are massive for the most part and range in thickness from 1 to 4 m . Quartz and feldspar are the primary constituents of the predominantly medium-grained sandstone (Fig. II-9A). Quartz is typically white, with lesser amounts of smoky quartz

Figure II-8. Classification of coarse-grained rocks of the Wilhite Formation. Present study (black circles) compared to other coarse-grained rocks of the Wilhite Formation, and to rocks of the Snowbird Group. Modified from Pettijohn (1949).

Number key: 1 - Sample TP-51v; confluence of Conasauga Creek and Wilson Branch, Tellico Plains 7.5-minute quadrangle.

2 - Sample TP-133; TN Hwy 68 (NW slope of Graves Mountain), Tellico Plains 7.5 -minute quadrangle.

3 - Sample TP-289; U. S. Forest Service road 341 H, Tellico Plains 7.5minute quadrangle.

4 - Sample TP-722; TN Hwy 68 (Coker Creek), Tellico Plains 7.5minute quadrangle.

5 - Sample TP-928; Tellico River (1,500 ft NW of Tellico Beach), Tellico Plains 7.5-minute quadrangle.

6 - Sample TP-963v; Payne Ridge, Tellico Plains 7.5-minute quadrangle.

7 - Sample TP-998; 1,500 ft NW of the confluence of Conasauga Creek and Payne Branch, Tellico Plains 7.5-minute quadrangle.

Explanation

Snowbird Group - King (1964) ($n=3$)
주ํ Wilhite sandstone - King (1964) ($n=7$)
$\square \quad$ Wilhite sandstone - Carter (1994) ($n=9$)

- Wilhite sandstone - this study $(n=7)$

Figure II-9. Characteristic lithologic features of the sandstone member in the Wilhite Formation (Walden Creek Group). (A) Medium-grained sandstone exposure along Monroe County Highway 2342 (station TP-1097), Tellico Plains 7.5-minute quadrangle. Rock hammer is 32 cm in length. (B) Enlarged image (plane light) of sandstone thin section. Sample location at Grave Mountain on Tennessee State Highway 68 (station TP-133), Tellico Plains 7.5-minute quadrangle. Field of view is approximately 2 cm wide.

(A)

(B)
and rare occurrences of blue quartz. The feldspar (plagioclase) is rarely fresh, and weathers progressively from dirty white to a pinkish tan. Locally interbedded with the sandstone are pebble-size conglomerate that occur as thin- to thickly bedded lenses and graded channels. These lenses and channels are commonly about 1 m thick. The conglomerate consists predominantly of quartz pebbles, with subordinate quartzite, carbonate, and slate chips in a medium-grained subarkose to graywacke matrix. Sedimentary structures include local occurrences of cross bedding, graded bedding, and scour marks.

Petrographically, the sandstones are composed of moderately sorted, subangular to subrounded, quartz and feldspar (andesine) in a clay-rich matrix (Fig. II-9B). Quartz is the primary constituent with subequal amounts of feldspar and mica, warranting the designation of subarkose, graywacke, or quartz arenite, depending on the relative abundance of each constituent (Fig. II-8). Most quartz grains exhibit undulatory extinction, elongation, and flattening parallel to foliation, and, where closely packed, recrystallization occurs along grain boundaries. Feldspar grains are less abundant than quartz, but are similar in shape and size, and have undergone a greater degree of replacement by mica and carbonate. Many feldspar grains have been sericitized. The matrix consist mainly of sericite and chlorite with minor amounts of calcite, muscovite, and biotite. Accessory minerals include pyrite, hematite, magnetite, tourmaline, and zircon (Appendix B).

Sandsuck Formation

The Sandsuck Formation is the uppermost unit of the Walden Creek Group and, in the study area, is separated from the underlying Wilhite Formation by the Miller Cove fault (Figs. II-1, II-2; Plate I). In the study area, the Sandsuck Formation consists of sandstone, conglomerate, shale, and carbonate, and underlies Mocking Crow and Pine

Mountains and the adjacent valley to the southeast. These rocks are separated into sandstone and carbonate lithofacies, and are correlated with the lower member of the Sandsuck Formation of Carter (1994) (Figs, II-1, II-2; Plate I). The true thickness of the Sandsuck Formation is indeterminate here because the top and bottom of the formation are cut off by the Great Smoky and Miller Cove faults, respectively. The exposed thickness of the Sandsuck Formation in the study area is estimated to be $530 \mathrm{~m}(1,735 \mathrm{ft})$.

Sandstone lithofacies

The sandstone lithofacies of the Sandsuck Formation consists of massively interbedded quartz arenite and subarkosic sandstone, quartz-pebble conglomerate, and shale (Fig. II-3). The coarse-grained sandstone comprises most of the section and is more abundant and conglomeratic lower in the section. Shale and siltstone horizons are rare in the lower sections, but become more abundant higher in the section. The dominant lithology of parts of the sandstone lithofacies is a weathered, coarse-grained, light brown quartz arenite and grayish-brown, subarkosic sandstone (Fig. II-10). Fresh exposures of this lithofacies are rare, but when fresh the quartz arenites are tan, and the subarkosic sandstones are dark gray. These coarse-grained sandstones form massive beds up to about 2 m thick, and sedimentary structures, such as graded bedding and cross bedding, are rare. Locally interbedded with the coarse-grained sandstone is quartz-granule to pebble conglomerate. The conglomerate is moderately graded and discontinuous, with beds approximately 1 m thick. The siltstone and shale lithologies are medium gray when fresh, and weather to distinctive terra cotta brown chips. These fine-grained lithologies form thin beds about 5 to 10 cm thick, and commonly grade from shale and fine-grained siltstone to coarser-grained siltstone and fine-grained sandstone. The siltstone and shale are locally interbedded with the coarse-grained sandstone in the lower section of the sandstone lithofacies, but increase and thicken higher in the section enclosing the

Figure II-10. Classification of coarse-grained rocks of the Sandsuck Formation and Chilhowee Group. Present study (circles) compared to other coarse-grained rocks of the Sandsuck Formation and Chilhowee Group in southeastern Tennessee. Modified from Pettijohn (1949).

Number key: $\quad 1$ - Sample TP-1388; TN Hwy 165 along the Tellico River, Tellico Plains 7.5-minute quadrangle.

2 - Sample GH-2: Groundhog Mountain, Tellico Plains 7.5-minute quadrangle.

Explanation

- Sandsuck Formation (lower member) - Carter (1994) ($n=4$)
- Sandsuck Formation (middle member) - Carter (1994) ($n=2$)
\square Sandsuck Formation (upper member) - Carter (1994) ($\mathrm{n}=2$)
- Cochran Formation (Chilhowee Group) - Carter (1994) ($\mathrm{n}=1$)
- Sandsuck Formation - this study ($n=1$)

O Hesse Quartzite (Chilhowee Group) - this study ($n=1$)
carbonate at the top of the unit. Siltstone and shale are the dominant lithology underlying the valley southeast of Mocking Crow Mountain.

Compositionally, the rocks of the sandstone lithofacies consist of moderate to wellsorted, subrounded quartz, with minor amounts of feldspar and matrix-forming clays (Fig. II-11A). Quartz grains are typically monocrystalline with one type of detrital quartz, rather than the polycrystalline quartz grains common in the coarse-grained rocks of the Wilhite Formation. Unlike the coarse-grained rocks of the Wilhite Formation, the feldspar in the sandstone lithofacies is predominantly microcline with lesser concentrations of plagioclase. Accessory minerals include weathered hematite and/or pyrite, tourmaline, and zircon (Appendix B). The dominant constituent of the conglomerate is milky quartz, with subordinate feldspar (plagioclase) and various lithic fragments in a finer-grained, quartz-rich sandy matrix.

Carbonate lithofacies

The carbonate lithofacies of the Sandsuck Formation consists of a dark gray, finegrained micritic limestone (Figs. II-2, II-3; Plate I). The carbonate is exposed only at the base of the northwest slope of Queens Mountain (Tellico Plains 7.5-minute quadrangle), and is interpreted to occupy a small, flat valley at the confluence of Conasauga Creek and Steer Creek. This discontinuous mappable lens of limestone is bounded at the top by the Miller Cove fault, and is interbedded with the shale and sandstone in the upper sections of the sandstone lithofacies This limestone unit is correlative with the limestone mapped by Carter (1994), because of similar lithologic and stratigraphic position of these rocks in the Maggies Mill fault block. Carter (1994) assigned the carbonate lithologies to the lower member of the Sandsuck Formation because: (1) the carbonate lithologies are enclosed by and interbedded with lithologies distinctly different from similar carbonates correlated with the Yellow Breeches Member of the Wilhite Formation (Hamilton, 1961;

Figure II-11. Characteristic lithologic features of the sandstone lithofacies in the Sandsuck Formation (Walden Creek Group) and quartz arenite in the Hesse Quartzite (Chilhowee Group). (A) Enlarged image (plane light) of sandstone thin section. Sample location along Tellico River on Tennessee State Highway 165 near Tellico Plains City Limits (station TP-1388), Tellico Plains 7.5-minute quadrangle. Field of view is approximately 2 cm wide. (B) Enlarged image (plane light) of quartz arenite thin section. Unoriented sample from Groundhog Mountain, Tellico Plains 7.5-minute quadrangle. Field of view is approximately 2 cm wide.

(A)

(B)

King 1964; Neuman and Nelson, 1965; Unrug and others, 1991); (2) the lack of lithologic similarities between the strata in the footwall of the Miller Cove fault and the strata in the hanging wall; and (3) similar carbonate lithologies assigned to the Sandsuck Formation in the Ocoee River Gorge (Hurst and Schlee, 1962; Sutton, 1971; Hatcher and others, 1991), in northwestern Georgia (Salisbury, 1961), and northeast of the study area near English Mountain (Hamilton, 1961).

The limestone is characterized by 0.5 - to 1.0 m-thick beds locally interbedded with shale. Compositionally, the limestone consists predominantly of microcrystalline micrite and sparry calcite (Figs. II-12A, II-12B). Sub-rounded detrital quartz grains are common and are sporadically dispersed within the matrix, while feldspar grains are rare.

Accessory minerals are opaque, and include magnetite and/or hematite (Appendix B).

Other units

Other units exposed in the study area include parts of the Chilhowee Group, Shady Dolomite, Rome Formation, Conasauga Group, and Knox Group (Figs. II-1, II-2; Plate I). These units occupy the northwestern portion of the study area near Groundhog Mountain and, with the exception of the Chilhowee Group, comprise Valley and Ridge footwall strata beneath the Great Smoky and Bullet Mountain faults. The Groundhog Mountain area was mapped and studied by McKinney (1964). His work is compiled into this study, and the stratigraphy is briefly discussed below (Fig. II-2; Plate I). The Groundhog Mountain area is included in this study in order to: (1) verify that the quartzite capping Groundhog Mountain is a klippe of Hesse Quartzite; and (2) provide continuity with the Early Cambrian to Late Proterozoic strata of the western Blue Ridge in the hanging wall of the Great Smoky fault. McKinney (1964) interpreted the klippe of Chilhowee Group quartzite to be located in an intermediate slice of strata related to the Great Smoky fault system, with the fault surface below the klippen corresponding to the lower surface of the

Figure II-12. Characteristic lithologic features of the carbonate lithofacies in the Sandsuck Formation (Walden Creek Group). Sample location near the confluence of Conasauga and Steer creeks (station TP-534), Tellico Plains 7.5-minute quadrangle. (A) Carbonate sample from the Sandsuck Formation. Centimeter scale. (B) Enlarged image (negative) of carbonate thin section. Field of view is approximately 4.5 cm wide.

(A)

(B)
slice and the main Great Smoky fault surface overriding the lower slice surface. West of the study area, Early Cambrian Chilhowee Group rocks underlie Starr Mountain and comprise the hanging wall strata of the Great Smoky fault. The Shady Dolomite and Rome Formation are exposed in the Bullet Mountain thrust sheet, with slices of Knox Group exposed along the fault trace. Upper Conasauga Group and Knox Group strata are exposed in the footwall of the Bullet Mountain fault.

Chilhowee Group

Lower Cambrian Chilhowee Group rocks form a linear belt of mountains in east and southeast Tennessee, including Stone, English, Chilhowee, Starr, Chestnut, and Bean Mountains (Fig. I-1). Rocks of the Chilhowee Group cap the western Blue Ridge stratigraphic sequence, and consist of alternating coarse- and fine-grained formations. The coarse-grained lithologies in the upper formations are predominantly quartz arenite, while the lower formations consist of feldspathic sandstone and conglomerate. The Chilhowee Group is comprised of the (oldest to youngest) Cochran Formation, Nichols Shale, Nebo Quartzite, Murray Shale, Hesse Quartzite, and Helenmode Formation (Fig. II-1).

Hesse Quartzite

Two masses of quartz arenite are exposed on Groundhog Mountain and on a knob $915 \mathrm{~m}(3,000 \mathrm{ft})$ to the southeast, and are interpreted as klippes of Chilhowee Group rocks related to the Great Smoky fault (McKinney, 1964) (Fig. II-2; Plate I). I traversed the southeast slope of Groundhog Mountain to collect samples and to confirm McKinney's observations. These rocks consist of clean, well-sorted, white to tan or pink, medium- to coarse-grained quartz arenite (McKinney, 1964; this study) (Fig. II-11B). The slopes of Groundhog Mountain are covered with this lithology as talus or wash. The
quartz arenite occupies the upper $30 \mathrm{~m}(100 \mathrm{ft})$ of Groundhog Mountain. Exposures are few and bedding is often massive. Compositionally, the orthoquartzite consists of over 90 percent quartz, with little or no feldspar and minor clay material (Fig. II-10; Appendix B). Assessory minerals include hematite, magnetite, and tourmaline. McKinney (1964) observed local Skolithos tubes in the quartzite that occurs as float or talus on the slopes of Groundhog Mountain.

Does the quartzite on Groundhog Mountain belong to the coarse-grained lithologies of the Chilhowee Group (Hesse Quartzite, Nebo Quartzite, Cochran Formation) or to the Sandsuck Formation? Compositionally, the sandstones of the Cochran and Sandsuck Formations are more feldspathic and conglomeratic than the Hesse and Nebo Quartzites (Figs. II-10, II-11 A, II-11B). For this reason, the quartzite capping Groundhog Mountain should be correlated with either the Hesse or Nebo Quartzites. Lithologically, the Hesse and Nebo Quartzites are similar. Both formations are texturally mature quartzites that are cross-bedded and contain locally abundant Skolithos tubes (Neuman and Nelson, 1965; Walker and Driese, 1991). Typically, the Hesse Quartzite is more massively bedded, less cross-bedded, and has locally more abundance of Skolithos tubes than the Nebo Quartzite. McKinney (1964) tentatively correlated the quartz arenite on Groundhog Mountain with the Hesse Quartzite, because of the lithologic similarities to that unit. I also tentatively correlate the quartz arenite with the Hesse Quartzite based on lithologic similarities; massive bedding, composition, and similar texture. However, it is lithologically possible the quartz arenite could be correlated with the Nebo Quartzite. Additionally, the quartz arenite capping Groundhog Mountain is correlated with the Hesse Quartzite due to structural observations and implications (see Great Smoky fault section, Chapter III).

Shady Dolomite

The Lower Cambrian Shady Dolomite consists of two units in the study area: a lower dolomite unit and an upper shale-carbonate unit (McKinney, 1964). The dolomite unit consists of alternating, medium- to thick-bedded, light gray siliceous dolomite and medium dark-gray dolomite in the lower portion of the section, and thinly bedded, siliceous, yellowish brown and bluish-gray shaly dolomite in the upper section of the dolomite unit (McKinney, 1964). The shale-carbonate sequence consists of yellowishgray, light green, and light bluish-gray shale and mudstone, chert, and a few interbedded carbonate beds in the upper part of the sequence. The shale-carbonate sequence underlies the valleys within the area of the Shady Dolomite with the best exposures in Kirkland Hollow, just beneath the Great Smoky fault (McKinney, 1964). The true thickness of the Shady Dolomite cannot be determined in the study area because of faulting and erosion. McKinney (1964) estimated a thickness between 60 to $90 \mathrm{~m}(200$ to 300 ft), while Neuman and Nelson (1965) reported a thickness of approximately $330 \mathrm{~m}(1,100 \mathrm{ft})$ for the Shady Dolomite in Miller Cove.

Rome Formation

The Lower Cambrian Rome Formation consists mostly of maroon and red mudstone and silty shale with interbedded tan, red, and pink siltstone; fine-grained sandstone; and bluish-gray argillaceous carbonate (McKinney, 1964). Shale and mudstone dominate the section, but siltstone and associated sandstone are also abundant throughout the section. Bedding ranges from less than 20 cm thick for the shales and siltstones to less than 1 m thick for the interbedded sandstones. Intertidal sedimentary structures include mudcracks and flow casts, especially in the siltstones and sandstones (McKinney, 1964). Detrital mica is also locally present along siltstone bedding planes (McKinney, 1964). Shale and carbonate beds occur near the base of the formation and
mark the conformable transition zone into the underlying Shady Dolomite. Poorly exposed carbonate beds are also occur elsewhere in the Rome Formation (Rodgers, 1953; McKinney, 1964). The top of the formation is not exposed in the study area due to faulting; therefore, the minimum thickness of the Rome is estimated to be $300 \mathrm{~m}(1,000$ ft) thick (McKinney, 1964).

Conasauga Group

Only the upper part of the Middle Cambrian Conasauga Group is exposed in the study area. This unit is predominantly a yellowish-gray to light greenish-gray, fissile, clay shale with carbonate lithologies at the top (McKinney, 1964) A transition zone of medium dark-gray shaly limestone (about 5 cm thick) separates the clay shale and overlying light gray, massively bedded limestone (about 30 cm thick), which contains silty laminae and irregular silty dolomite layers that produce a ribboned appearance on weathered surfaces (McKinney, 1964). The Conasauga Group in this area is located in the footwall of the Bullet Mountain fault, with less than $190 \mathrm{~m}(600 \mathrm{ft})$ of the upper part being preserved (McKinney, 1964).

Knox Group

The Upper Cambrian to Lower Ordovician Knox Group conformably overlies the Conasauga Group. The Knox Group consists of medium to massively interbedded dark to light-gray limestone and dolomite that are characterized by a ribboned appearance similar to the underlying carbonates of the upper Conasauga Group (McKinney, 1964). The carbonates of the Knox Group are more cherty than the underlying Conasauga Group carbonates (McKinney, 1964), and the appearance of tan-weathering chert nodules in the soil marks the contact between the two groups. The carbonates in the study area are correlated with the southeastern phase of the Knox Group (McKinney, 1964) which
regionally consists of a limestone-dominated package estimated to be more than 940 m (3,100 ft) thick (Rodgers, 1953).

Age of the Walden Creek Group - Stratigraphic evidence

The age of the Walden Creek Group and Ocoee Supergroup has been debated for more than a century (Hayes, 1891; Keith, 1895; Hayes, 1895; Keith, 1904; Stose and Stose, 1949; King and others, 1958; Tull and Groszos, 1990; Unrug and Unrug, 1990; Unrug and others, 1991; Tull and others, 1993). Traditionally, the age of the Ocoee Supergroup is considered to be Late Proterozoic (King and others, 1958). Unsubstantiated reports of fossils from the Wilhite Formation suggest that all or part of the Ocoee Supergroup is Silurian to early Mississippian (Unrug and Unrug, 1990; Unrug and others, 1991; Broadhead and others, 1991). Determining the age of the Walden Creek Group requires analysis of the units that are overlying, underlying, and possibly equivalent to the Walden Creek Group. The purpose of this section is to provide better evidence from the present study area to constrain the age of the Walden Creek Group.

The upper formations of the Chilhowee Group have been established as Early Cambrian from the presence of the crustacean Isoxys chilhoweana (Walcott, 1890), and the ostracode Indiana tennesseensis (Laurence and Palmer, 1963) in the Murray Shale. The base of the Cambrian is restricted to the units that have paleontological evidence available (King and others, 1958). Although much of the contact between the overlying Chilhowee Group and underlying Walden Creek Group is faulted, conformable contact relationships exist between the Cochran Formation (Chilhowee Group) and the Sandsuck Formation (Walden Creek Group) in several areas in southeastern and eastern Tennessee (Fig. I-1). These areas include: (1) Bean Mountain (Rackley, 1951), (2) Chestnut and Starr Mountains (Phillips, 1952; Carter, 1994), (3) southwestern slope of Chilhowee Mountain (Neuman and Nelson, 1965), (4) northwestern slope of English Mountain, and
(5) Del Rio district, north of the French Broad River (Keller, 1980). Additionally, Keller (1980) mapped a continuous section of the entire Walden Creek Group beneath the Chilhowee Group. The Walden Creek Group rocks in this study area, however, are separated from the main Walden Creek Group outcrop belt of the Foothills by several faults.

In the Foothills belt, the Sandsuck Formation is separated from the remainder of the Walden Creek Group by regional faults, except in the vicinity of English Mountain. Here, the constituent formations of the Walden Creek Group were defined by King and others (1958), and Hamilton (1961) mapped a continuous section of Walden Creek Group strata from the Licklog Formation to the Sandsuck Formation in the hanging wall of the Great Smoky fault. In the footwall, Hamilton (1961) observed Sandsuck Formation lithologies beneath the Chilhowee Group and tentatively correlated the Sandsuck Formation across the fault. The correlations of lithologically similar strata across faults have been used by many workers in the Foothills belt. Lithologic correlations across fault blocks are difficult, so these correlations must be made cautiously.

Paleontological data provide evidence to better constrain the age of the Walden Creek Group. Knoll and Keller (1979) reported occurrences of the Late Proterozoic to Paleozoic(?) acritarch Bavlinella faveolata in the Walden Creek Group throughout the Foothills belt. Additionally, soft-bodied metazoan macrofossils originally reported by Rackley (1951) and Phillips (1952) have been rediscovered along Ellis Branch in the Sandsuck Formation in the Mecca 7.5-minute quadrangle (Broadhead and others, 1991; Carter, 1994). In this region of southeastern Tennessee, the Sandsuck Formation is conformably overlain by fossiliferous Chilhowee Group rocks suggesting that the Sandsuck Formation is no younger than Early Cambrian, and may still be Late Proterozoic (Broadhead and others, 1991).

In the study area, no fossils were identified, so the age of the Walden Creek Group
must be determined by analyzing stratigraphic relationships. The Chilhowee Group is preserved in the study area, but in klippes of the Great Smoky fault (McKinney, 1964), while the top of the Walden Creek Group is cut out by the Miller Cove and Great Smoky faults (Figs. II-2, II-3; Plate I, Plate III). The only independent evidence available locally for constraining the age of the Walden Creek Group is analysis of the stratigraphic relationships between the Walden Creek Group and the underlying Great Smoky Group.

The contact between the Walden Creek Group (Wilhite Formation) and the Great Smoky Group (Dean Formation) has been interpreted as: (1) the southern continuation of the Greenbrier fault (Merschat and Wiener, 1973; Wiener and Merschat, 1978, 1981; Merschat and Hale, 1983; Wiener and Merschat, 1992); (2) as a conformable contact (Hale, 1974; Poppelreiter, 1980; Costello and Hatcher, 1986, 1991; Carter and others, 1993b, 1995a, 1995c; Carter, 1994; Geddes, 1995; this study); and (3) an unconformity (Tull and Groszos, 1988, 1990; Thompson and Tull, 1991; Tull and others, 1993; Carter and others, 1995b). In the Great Smoky Mountains National Park, the Greenbrier fault juxtaposes Great Smoky Group rocks in the hanging wall onto Walden Creek Group and Snowbird Group rocks in the footwall. If the contact between the Walden Creek Group and Great Smoky Group in the study area is the southern continuation of the Greenbrier fault, a large portion of the metasiltstones and sandstones mapped as Wilhite Formation should be correlated with the Snowbird Group.

If the contact were a regional unconformity, all or part of the fine-grained metasedimentary rocks above the Great Smoky Group in the foothills belt in southeastern Tennessee would have been deposited in a post-Taconic successor basin. According to Tull and others (1993) an unconformity occurs in the Murphy syncline below the Mineral Bluff Group in southwestern North Carolina, and in the Talladega slate belt in Alabama. This interpretation requires deformation and metamorphism to have occurred during the Acadian (Silurian) and the Alleghanian (Permian) orogenies. Their tectonic scenario also
permits the deposition of the middle Paleozoic fossil fragments reported by Unrug and Unrug (1990), and Unrug and others (1991). The pronounced lithologic change across the contact and the variable nature of the sediments beneath the Wilhite Formation could indicate, however, that an unconformity is present between the Walden Creek Group and the Great Smoky Group. Hurst (1955) reported the contact between the Dean Formation (Great Smoky Group) and Nantahala Formation (Hiwassee River Group) in the Mineral Bluff quadrangle in northern Georgia appeared gradational and concordant. However, Hurst (1955) suggested the contact may be unconformable because of the pronounced lithologic change across the contact, and the changing character of the metasediments beneath the Nantahala Formation. The Wilhite Formation is regionally equivalent to the Nantahala Formation because the contact relationship between the Wilhite and Dean formations in southeastern Tennessee is similar to the contact relationship between the Nantahala and Dean formations in the Murphy syncline.

Field evidence suggests a conformable contact between the Walden Creek and Great Smoky Groups. A conformable stratigraphic relationship for the Walden Creek and Great Smoky Groups has been reported along the Ocoee, Hiwassee, and Tellico Rivers in southeastern Tennessee (Hale, 1974; Poppelreiter, 1980; Costello and Hatcher, 1986, 1991; Carter, 1994). The boundary between the two units is exposed along the northwest slope of Unicoi Mountain in southeastern Tennessee. Here, the contact between the two units is variably gradational, intertonguing, and sometimes very sharp. No evidence of faulting, such as truncation of map units, gouge, small faults, or slickenlines, was observed. Moreover, none of the units appeared to be erosionally truncated, nor were there any Dean Formation clasts exposed in the Walden Creek Group sediments.

A transition zone consisting of Wilhite metasiltstone interbedded with Dean Formation lithologies, described by Poppelreiter (1980) in the upper part of the Dean Formation, was also recognized in this study. The transition zone occurs in the
gradational conglomerate lithofacies and slate lenses in the Dean Formation, and consists of conglomeratic graywacke at the bottom of a sequence and greenish-gray banded metasiltstone and slate at the top. These metasiltstones occur in sequences of 1 to 3 m thick, and are distinguishable from the black laminated slate ($\sim 5 \mathrm{~cm}$ thick) at the top of most graded sequences in the Dean Formation. These metasiltstones are lithologically similar to those in the overlying Walden Creek Group and are also interbedded with dark slate of the conglomerate sequence. Additionally, the contact between the Walden Creek Group and the Great Smoky Group is complexly folded and overturned to the southeast (Carter and others, 1993a) (Plate I). Erosion has exposed many map-scale anticlines (whalebacks) cored by Great Smoky Group lithologies. In the study area, Great Smoky Group lithologies are exposed northwest of the main contact in the core of the Tellico Mountain anticlinorium (Plate I). The contact between the Walden Creek and Great Smoky Group here is relatively sharp (Figs. II-13A, II-13B). Other whalebacks occur southwest of the study area along the Ocoee (Hurst and Schlee, 1962) and Hiwassee (Carter, 1994) Rivers in southeastern Tennessee.

Modal analysis of coarse-grained lithologies from both groups reveals each group as being comprised essentially of the same constituents (Appendix B), but is texturally different. The coarse-grained lithologies of the sandstone units of the Wilhite Formation have smaller, better sorted, more rounded grains, and are less conglomeratic. This may represent a drastic change in the depositional environment such that the Wilhite and Dean Formations have similar sources, but the sandstones of the Wilhite Formation represent more distal sedimentation. Geddes (1995) suggested a map-scale gradation from older formations to younger formations between the uppermost fine-grained lithologies of the Dean Formation and the fine-grained lithologies of the Wilhite Formation. Rocks assigned to the lowermost Wilhite Formation are not as dark and sulfidic as the Dean Formation, yet are darker and more sulfidic than the fine-grained rocks higher in the

Figure II-13. Contact relationships between the Dean Formation (Great Smoky Group) and the Wilhite Formation (Walden Creek Group). Outcrop exposure located on top of Tellico Mountain on Tennessee State Highway 68. (A) Sharp contact between the thickbedded, granule- to pebble-conglomerate of the Dean Formation and the thin-bedded, ankeritic, banded metasiltstone of the Wilhite Formation. (B) Close-up of photo above showing the sharpness of the contact between the Dean Formation and the Wilhite Formation. Rock hammer is 32 cm in length.

(A)

(B)

Wilhite Formation sequence. I thus believe the relationships between the Walden Creek Group and the Great Smoky Group strongly suggest that the contact between the two group is conformable.

Based on the evidence presented above, the age of Walden Creek Group is Late Proterozoic to Early Cambrian. The soft-bodied metazoans and acritarchs are the oldest reported fossils in the western Blue Ridge, and thus, the base of the Cambrian as defined by King (1949) might include at least the middle member of the Sandsuck Formation from which the fossils were recovered (Carter, 1994). A conformable stratigraphic relationship with the underlying Great Smoky Group results in a probable Late Proterozoic age for the oldest Walden Creek Group metasediments.

Chapter III

Structure

Introduction

The Ocoee Supergroup of the western Blue Ridge has undergone at least two deformational events during the Taconic (Ordovician) and Alleghanian (Permian) orogenies. The Taconic orogeny is characterized by folding, faulting, cleavage development, and Barrovian metamorphism, while the Alleghanian orogeny is characterized by brittle faulting and folding (Hamilton, 1961; Hadley and Goldsinith, 1963; King. 1964; Neuman and Nelson, 1965; Butler, 1972; Hatcher, 1972; Dallmeyer, 1975; Hatcher, 1978, 1989; Hatcher and others, 1989a; Connelly and Dallmeyer, 1991 ; Kish, 1991; Woodward and others, 1991). Structures observed in the field area related to these two events include thrust faults, folds, foliations, and joints. Thrust faults include meso- and macro-scale brittle structures, some of which are possibly reactivated pre- to synmetamorphic structures (King, 1964; Neuman and Nelson, 1965; Geddes, 1995). Several periods of deformation have produced folds ranging from centimeter- to kilometer-scale. Foliations include continuous (slaty) cleavage, pressure-solution cleavage, and crenulation cleavage. A chronology of previous structural studies in southeastern Tennessee is presented by Rodgers (1991) and Carter (1994).

Structures in the western Blue Ridge are the result of regional deformation. The amount of internal strain preserved in these rocks can be estimated using standard analytical and geometrical strain analysis techniques ($\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry methods). The purpose of recent strain analyses of clastic rocks in the western Blue Ridge has been to quantify the amount of internal deformation (strain), and to relate this strain to regional structures and deformational history (Lewis, 1988; Walters, 1988; Connelly, 1993; Carter, 1994).

Faults

Six major faults are exposed in the study area: Bullet Mountain, Great Smoky, Maggies Mill, Miller Cove, Rabbit Creek, and Oconaluftee (Figs. II-2, III-1; Plate I). These faults juxtapose rocks of different age and metamorphic grade.

The northwestemmost fault exposed in the study area is the Bullet Mountain fault, which thrusts Lower Cambrian Shady Dolomite and Rome Formation strata onto younger Paleozoic Conasauga and Knox Groups (McKinney, 1964). McKinney (1964) interpreted the Bullet Mountain fault as an exposed slice of the frontal Blue Ridge fault system. The Bullet Mountain fault has also been interpreted as a floor thrust in a duplex beneath the Great Smoky fault (Carter, 1994). The Great Smoky fault is locally the frontal Blue Ridge fault, and thrust metamorphosed Lower Cambrian and Late Proterozoic rocks of the western Blue Ridge over unmetamorphosed Paleozoic rocks of the Valley and Ridge. The Maggies Mill fault is related to the Great Smoky fault, and separates lower Sandsuck Formation from the upper units of the Sandsuck Formation and Chilhowee Group (Carter, 1994). The Miller Cove fault juxtaposes chlorite grade, cleaved Wilhite Formation onto lower grade (anchizone) and less cleaved Sandsuck Formation of the Walden Creek Group. Southeast of the Miller Cove fault is the Rabbit Creek fault, which consists entirely of Great Smoky Group strata in the hanging wall, and Walden Creek Group strata in the footwall. The Rabbit Creek fault was originally mapped by Neuman and Nelson (1965) in the Great Smoky Mountains National Park, and traced southwestward to the study area by Wiener (unpub.) and Geddes (1995). The Rabbit Creek fault is interpreted as a reactivated syn- to premetamorphic structure (Neuman and Nelson, 1965; Geddes, 1995). The Oconaluftee fault consists of upper Great Smoky Group and lower Walden Creek Group hanging-wall strata which are penetratively cleaved and metamorphosed to chlorite and biotite grade. The footwall strata of the Oconaluftee fault consist of Great Smoky Group rocks that are present in the hanging wall of the Rabbit Creek fault, and

Figure III-1. Thrust sheets, bounding faults, and major folds in the study area. Refer to Fig. II-2 and Plate I for stratigraphic explanation. Cross-sections (Plates III, IIIa) located along lines $\mathrm{A}-\mathrm{A}^{\prime}, \mathrm{B}-\mathrm{B}^{\prime}$, and $\mathrm{C}-\mathrm{C}^{\prime}$.

Geologic abbreviations: BMF-Bullet Mountain fault; ES-Epperson synclinorium; GRAGrindstone Ridge anticlinorium; GSF-Great Smoky fault; HBF-Hunt Branch fault; KHAKirkland Hollow anticlinorium; MMF-Maggies Mill fault; MCF-Miller Cove fault; OFOconaluftee fault; PRA-Payne Ridge anticlinorium; RCF-Rabbit Creek fault; TMATellico Mountain anticlinorium; TMF-Tellico Mountain fault; TPS-Tellico Plains synclinorium: U-upthown fault block: D-downthrown fault block; K-klippe.

Geographic abbreviation: TP-Tellico Plains.

have been interpreted to represent a distal facies change within upper Great Smoky Group lithologies (Geddes, 1995). The Greenbrier fault is a large thrust that is transected by metamorphic isograds, and is interpreted to emplace younger rocks over older rocks everywhere along its trace (King and others, 1958; Neuman and Nelson, 1965). Neuman and Nelson (1965) interpreted the Oconaluftee fault as a postmetamorphic dextral strikeslip fault that obliquely cuts the Greenbrier fault, but then swings into parallelism with it, and either truncates or occupies the same movement plane as the Greenbrier. The trace of the Oconaluftee was mapped northeast of the study area by Geddes (1995). Geddes (1995) interpreted the Oconaluftee as a reactivated syn- to premetamorphic structure because this fault truncates older structures.

Bullet Mountain fault

The Bullet Mountain fault thrust rocks of the Chilhowee Group, Shady Dolomite, and Rome Formation over Conasauga Group and Knox Group (Rodgers, 1953;

McKinney, 1964; Hardeman, 1966). In the study area, the trace of the Bullet Mountain fault is located along the contact between the maroon siltstones of the Rome Formation, and the tan shales of the Conasauga Group and the Knox Group carbonates. Three faultbounded slices of Knox Dolomite also occur along the fault. The Bullet Mountain fault is exposed $1.4 \mathrm{~km}(4,500 \mathrm{ft})$ north of Rural Vale school at the Mecca/Tellico Plains 7.5minute quadrangle boundary, and was traced northeastward by McKinney (1964) north of Groundhog Mountain, to the intersection of Tennessee State highways 39 and 68. The Bullet Mountain fault was estimated by McKinney (1964) to dip approximately 30° to 40° to the southeast.

McKinney (1964) interpreted the Bullet Mountain fault as a large intermediate slice of footwall rocks associated with the Great Smoky fault system that was transported northwestward beneath the Great Smoky fault. McKinney (1964) suggested that because
structures within the Bullet Mountain thrust sheet closely coincide with structures associated with the emplacement of the klippe fault surface on Groundhog Mountain, the emplacement of the Bullet Mountain fault and klippe fault surface occurred during the same deformational event. Additionally, McKinney (1964) suggested the Bullet Mountain fault is a splay of the Great Smoky fault system because the Bullet Mountain fault is truncated by the Great Smoky fault along the northwestern side of the Conasauga reentrant. Carter (1994) suggested the Bullet Mountain fault may have been deformed into a duplex as it was transported beneath the Great Smoky fault, and that the Bullet Mountain fault is the floor thrust of a duplexed slice. Carter (1994) also interpreted the Bullet Mountain duplex as consisting of the Harrison Mill fault system in front of Bean Mountain south of the Hiwassee River.

In this study, the Bullet Mountain fault is interpreted as the floor thrust of the Bullet Mountain duplex, which has been transported northwestward beneath the Great Smoky fault (Plates III, ШI). The roof thrust for this duplex is interpreted to be the Great Smoky fault. Lithologies in this duplex include the Rome Formation, Shady Dolomite, and Chilhowee Group. Chilhowee Group rocks are not exposed at the surface within the Bullet Mountain thrust sheet, but are interpreted to underlie the Shady Dolomite within the duplex. Klippes of Chilhowee Group rocks, probably related to the Great Smoky fault, are however, exposed above the Bullet Mountain thrust sheet throughout southeast Tennessee (Rodgers, 1953; Hardeman, 1966). It is suggested in this study that these klippes of Chilhowee Group rocks may possibly be derived from Chilhowee Group rocks in the Bullet Mountain thrust sheet (Plates III, IIIa). Based on cross-section analysis, and because of the occurrence of Shady Dolomite and Chilhowee Group rocks in the Bullet Mountain thrust sheet, a minimum displacement of $25 \mathrm{~km}(15.5 \mathrm{mi})$ on the Bullet Mountain fault is estimated (Plates III, IIIa).

Great Smoky fault

In the southern Appalachians, the frontal Blue Ridge fault system separates the rocks of the western Blue Ridge province from the rocks of the Valley and Ridge province. The Great Smoky fault is the frontal Blue Ridge fault in southeastern Tennessee and extends approximately $116 \mathrm{~km}(78 \mathrm{mi})$ from Chilhowee Mountain to Bean Mountain (Rodgers, 1953; Hardeman, 1966) (Fig. I-1). The Great Smoky fault thrust very low-grade metasedimentary (anchizone) rocks of the Sandsuck Formation and Chilhowee Group over unmetamorphosed rocks of the Shady Dolomite, Rome Formation, Conasauga Group, Knox Group, and Athens Shale (Rodgers, 1953; McKinney, 1964; Hardeman, 1966; Carter, 1994).

In the study area, the trace of the Great Smoky fault is located $0.6 \mathrm{~km}(2,000 \mathrm{ft})$ north of Webb Branch at the Mecca and Tellico Plains 7.5-minute quadrangle boundary, and extends northeastward along the northwest slope of Pine and Mocking Crow Mountains through the city of Tellico Plains (Fig. II-2; Plate I). The fault juxtaposes rocks of the Sandsuck Formation over rocks of the Shady Dolomite and Rome Formation. Throughout much of its length, the Great Smoky fault is mapped by the distribution of residuum because exposures of the fault are poor to nonexistent. The trace of the fault is easily mapped, however, because the lithologic contrasts between the maroon siltstones of the Rome Formation and the carbonate of the Shady Dolomite in the footwall are easily distinguished from the coarser-grained sandstones and weathered tan shales of the Sandsuck Formation in the hanging wall. The Great Smoky fault is a low-angle fault with an undulating surface with an average dip of approximately 15° southeast (McKinney, 1964; this study). Carter (1994) estimated the dip of the fault to range from $10^{\circ}-25^{\circ}$ southeast.

The Great Smoky fault is not well exposed in the study area. McKinney (1964) observed a gouge zone about two feet wide along a road off Tennessee State Highway 68,
$0.6 \mathrm{~km}(2,000 \mathrm{ft})$ southwest of the Tellico Plains city limits, and in an old iron pit 0.5 km (1,500 ft) northeast of Coppenger Cemetery. A good exposure of footwall Rome Formation just beneath the Great Smoky fault is exposed in a creek along the northwest slope of an unnamed mountain $0.6 \mathrm{~km}(2,000 \mathrm{ft})$ southwest of Conasauga Creek. Residual soils and colluvium cover the fault surface here, but offer good control of the fault trace with shales and sandstones of the Sandsuck formation exposed close by.

The Great Smoky fault is interpreted as a thin-skinned, postmetamorphic, brittle structure (Hamilton, 1961; Hadley and Goldsmith, 1963; King, 1964; Neuman and Nelson, 1965; Carter, 1994; this study). Several lines of evidence support these conclusions, including: (1) the low-angle nature of the fault, as indicated by the coves region in the Great Smoky Mountains National Park, the trace of the fault along the base of Starr Mountain, and seismic reflection data (Cook and others, 1983) along the Tellico River; (2) no basement rocks are exposed in the frontal Great Smoky thrust sheet; (3) metamorphic grade of rocks within the Great Smoky thrust sheet increases southeastward, and are thrust onto unmetamorphosed rocks in the footwall, indicating that faulting and transport of the Great Smoky thrust sheet occurred after the regional metamorphic event; and (4) only brittle deformation is present along the exposed fault trace.

The Great Smoky fault is interpreted in this study as the fault surface that emplaced the quartzite on Groundhog Mountain. Outcrop patterns of the Great Smoky fault in the study area and to the southwest along Starr Mountain provide evidence for the low-angle nature of the fault (Fig. I-2; Plates I, III, IIIa). McKinney interpreted the emplacement of the Chilhowee Group quartzite to be related to an intermediate fault slice beneath the main Great Smoky fault surface. This interpretation is abandoned because of the lack of evidence supporting an intermediate fault beneath the Great Smoky fault in the study area, and because of the low angle of the Great Smoky fault.

The Great Smoky fault may have used the shale beds in the Sandsuck Formation as flats, and ramped across stronger sandstone units as it propagated out of the Ocoee basin onto the carbonate platform on the continental margin (King, 1964; Hatcher and others, 1989a). Hatcher (1978, 1989), Hatcher and others (1989a), and Hatcher and Goldberg (1991) interpreted the Great Smoky fault to have a displacement of approximately $250 \mathrm{~km}(150 \mathrm{mi})$. In the Great Smoky Mountains region, a minimum displacement on the Great Smoky fault is estimated to be $10 \mathrm{~km}(6 \mathrm{mi})$ based on the distance from the back edge of the windows to the outcrop trace of the fault to the northwest (Hamilton, 1961; King, 1964; Neuman and Nelson, 1965). Southwest of the study area, Carter (1994) estimated the amount of throw to be at least $5.4 \mathrm{~km}(3.4 \mathrm{mi})$. In the study area, the minimum displacement on the Great Smoky fault is estimated to be approximately $35 \mathrm{~km}(22 \mathrm{mi})$ based on cross section analysis (Plate \amalg II).

Structure beneath the Great Smoky thrust sheet
Structures beneath the Great Smoky thrust sheet are interpreted from cross-section construction, retrodeformation, and analysis (Plates III, IIIa; Appendix D). These structures include; the Foothills duplex, an unnamed duplex, a blind thrust fault, the Chestuee fault, and the Saltville fault (Plates III, IIIa). Evidence for these structures are made from geologic observations and interpretations in the study area, and from the down-plunge projection of structures northeast and southwest of the study area. COCORP seismic reflection data (Cook and others, 1983) reprocessed by Prof. J. K. Costain and Cahit Coruh at Virginia Polytechnic Institute and State University (VPI), and unpublished Arco Exploration Company seismic reflection data constrain some of the resolvable structures in the cross section(s).

Three cross-section lines extend from the Valley and Ridge Middle Ordovician syncline near Mount Vernon, TN, through the Foothills belt of southeastern Tennessee
and southwestern North Carolina (Plates I, III, IIIa). These cross sections extend approximately $24 \mathrm{~km}(15 \mathrm{mi})$ normal to regional strike, and are spaced approximately $10.5 \mathrm{~km}(6.5 \mathrm{mi})$ apart. The depth to basement is interpreted to be approximately 5 km $(16,500 \mathrm{ft})$ as determined by seismic reflection data (Cook and others, 1983). The cross sections can be divided into strata above and below the Blue Ridge-Piedmont megathrust sheet. The hanging-wall structures of this megathrust sheet are discussed throughout this chapter. Footwall structures and evidence for the existence of these structures are discussed below as they occur from the southeast to the northwest in the cross section(s) (Plate III, IIIa).

The Foothills duplex is the southeasternmost footwall structure in the cross section(s), and formed subsequent to the emplacement of the Great Smoky thrust sheet. Evidence for the formation of the Foothills duplex is interpreted from windows exposed in the Great Smoky Mountains region (King, 1964; Neuman and Nelson, 1965, Hatcher and others, 1989b), seismic reflection data along the Tellico River (Cook and others, 1983), and deflection and deformation of previously formed structures in the western Blue Ridge foothills of southeastern Tennessee (Carter, 1994; Geddes, 1995; this study). Moderately strong southeast-dipping reflectors extend from the top of the seismic section (sea level) to basement, and are interpreted to represent strata of the Foothills duplex. The Foothills duplex in the cross section(s) is located along strike with the windows in the Great Smoky Mountains region, and with the Foothills duplex in the cross sections of Carter (1994) and Geddes (1995). Lithologically, the Foothills duplex includes the Rome Formation, Conasauga Group, and Knox Group. The Chickamauga Group is interpreted to not be involved in the duplexing beneath the Great Smoky thrust sheet in the study area, because it is not exposed in the southernmost windows (Cades Cove and Calderwood). This indicates the Great Smoky fault has cut down section to the southwest (Geddes, 1995; this study). Exposures of Knox and Chickamauga Group rocks occur in
the northern windows in the Great Smoky Mountains region, suggesting the Great Smoky thrust sheet was arched upward during imbrication and duplexing of footwall units.

Northwest of the Foothills duplex is an unnamed duplex that also folds the Great Smoky thrust sheet. This unnamed duplex, like the Foothills duplex, contains rocks of the Rome Formation, Conasauga Group, and Knox Group. The floor thrust to this duplex juxtaposes early Paleozoic Valley and Ridge units, and has a small displacement that decreases to the southwest due to room (space) problems in cross section construction (Plate III, IIIa). It is tentatively hypothesized that the floor thrust of this unnamed duplex may be related to the Pulaski fault in northeastern Tennessee, which thrusts Knox Group and older strata onto Knox and Chickamauga Group rocks.

A thrust fault exposed at the surface northwest of Starr Mountain (Rodgers, 1953; Hardeman, 1966) is interpreted to be a blind thrust in the study area. At the surface, this thrust fault juxtaposes rocks of the Knox and Conasauga Groups against rocks of the Chickamauga and Knox Groups. Seismic reflection data (Cook and others, 1983) reveal weak southeast dipping reflectors in this area, possibly representing units related to the hanging wall of this blind thrust. This blind thrust and structures related to this fault are transected by the Great Smoky fault (Plates III, IIIa). It is interpreted that the blind thrust and associated hanging-wall anticline were decapitated as the Great Smoky thrust sheet was emplaced. This structure may have also acted as an abutment to impede continued movement of the Great Smoky thrust sheet.

The Chestuee fault is not exposed in the study area, but rocks of this thrust sheet are exposed in the northwestemmost portions of the study area. The Chestuee fault is interpreted as a flat in the cross section, and its location within the cross section is dependent on the amount of Chickamauga Group strata exposed in the Middle Ordovician syncline along the northwestem portions of the cross section (Plates III, IIIa). Assuming the Chickamauga Group in conformably underlain by the Knox Group,

Conasauga Group, and the Rome Formation, the Chestuee fault is placed at the base of the Rome Formation (Plates III, IIIa). Unpublished seismic reflection data by Arco Exploration Company across the Valley and Ridge in Monroe County in southeastern Tennessee reveal reflectors, interpreted as the Chestuee fault, at about the same elevation as the Chestuee fault in the cross sections. Location of the ramp between the Chestuee and Saltville faults is difficult to distinguish from seismic data. The positioning of this ramp is partially constrained by an assumed ramp angle of 20 degrees, which is determined form southeast-dipping reflectors from seismic data. Also constraining the position of the ramp is the location of structures above this ramp, such as the Foothills duplex.

The Saltville fault is the lowest structure in the cross sections, and separates Valley and Ridge strata from basement. The location of this fault is well constrained by seismic data (Cook and others, 1983). Formations in this thrust sheet are interpreted to include the Rome Formation, Conasauga Group, Knox Group, and parts of the Chickamauga Group. The thickness of the Chickamauga Group changes between cross sections because the Chestuee fault cuts down section to the northeast. This interpretation permits increased thickness of the Chickamauga Group in the Chestuee thrust sheet as the Middle Ordovician syncline that exposes the Chickamauga Group plunges to the northeast.

Interpretations from cross-section construction, retrodeformation, and analysis results in two possible hypotheses concerning the thrusting sequence beneath the Great Smoky thrust sheet: (1) the sequence of deformation is toward the foreland with emplacement of the blind thrust subsequent to duplexing of Valley and Ridge footwall strata, and before the final emplacement of the Blue Ridge thrust sheet; or (2) emplacement of the blind thrust was the first structure to form in the footwall strata and formed out-of-sequence. These interpretations are based on the crosscutting relationships
between the blind thrust and the Great Smoky fault interpreted from geologic maps by Rodgers (1953) and Hardeman (1966) (Plates III, IIIa).

The first interpretation concerning the sequence of thrusting results in forelanddirected (northwest) thrusting. The first structure to be emplaced is the Blue Ridge thrust sheet. Duplexing of Valley and Ridge footwall strata beneath the Great Smoky fault results in the formation of the Foothills duplex and the unnamed duplex, respectively. As the Great Smoky fault was folded by duplexing of the Valley and Ridge footwall units, movement along the Great Smoky fault continues, although it must be partially locked. The next structure to form was the blind thrust. Emplacement of the blind thrust resulted in the formation of a hanging-wall anticline, which was then decapitated during the final emplacement of the Blue Ridge thrust sheet. Emplacement of the Chestuee thrust sheet follows in the sequence with the Saltville thrust sheet being the last footwall structure to form in the cross sections.

The second interpretation concerning the sequence of thrusting involves emplacement of the blind thrust and formation of the hanging-wall anticline followed by the emplacement of the Blue Ridge thrust sheet, which decapitates the hanging-wall anticline. The Blue Ridge thrust sheet is then folded due to the formation of the Foothills duplex and unnamed duplex beneath this thrust sheet. The emplacement of the Chestuee and Saltville faults, respectively, follow in the thrusting sequence. Problems with this interpretation requires the blind thrust to be out-of-sequence, which may be kinematically unfeasible.

Maggies Mill fault

The Maggies Mill fault was mapped southwest of the study area by Carter (1994), who interpreted the fault as a brittle structure that juxtaposed rocks of the lower and middle members of the Sandsuck Formation. Previously, the Maggies Mill fault had been
mapped as the Sylco Creek fault (Rodgers, 1953), and the Miller Cove fault (Wiener and Merschat, 1992), but Carter (1994) recognized that the Miller Cove fault is southeast of this structure. Carter (1994) observed two important lithologic and structural characteristics of the Maggies Mill fault: (1) lithologic similarities between footwall and hanging wall strata; and (2) a lack of structural or metamorphic discontinuities across the fault. The trace of the fault is mapped on the basis of different footwall and hanging-wall stratigraphy. Carter (1994) estimated the dip of the Maggies Mill fault to range from 25° to 40° southeast.

The Maggies Mill fault is traceable from the southwest into the Tellico Plains 7.5minute quadrangle along Webb Branch. The fault is traceable northeastward crossing Conasauga Creek at Conasauga Mill, and continuing along the northwest slope of Mocking Crow Mountain before being cut off by the Great Smoky fault near Kirkland Hollow (Fig. II-2; Plate I). Because the trace of the Maggies Mill fault in the study area is only 3.6 km , criterion used by Carter (1994) for mapping the fault was used in this study. Exposure of the fault in the study area is poor, but the fault was mapped based on the following evidence: (1) the abrupt juxtaposition of different stratigraphic sections of the Sandsuck Formation; and (2) geomorphic expression of the contact as the fault is traced along Webb Branch. The fault trace is characterized mostly by coarse-grained quartz sandstone and conglomerate in the hanging wall, and predominantly siltstone and shale in the footwall. The contact between these lithologies is abrupt, unlike the majority of contacts between different lithologies in the Sandsuck, which are dominantly gradational. Through much of its trace, the Maggies Mill fault parallels northeasttrending drainages, and may be the cause of topographic breaks (benches) along some slopes The outcrop pattern of the Maggies Mill fault suggests the fault dips approximately 30° to 40° southeast.

Carter (1994) considered three possible interpretations for the formation of the

Maggies Mill fault and the amount of displacement associated with it: (1) The Maggies Mill fault may be an imbricate of the Miller Cove fault, (2) a slice of the Miller Cove fault, or (3) an imbricate of the Great Smoky fault. For the Maggies Mill fault to be an imbricate of the Miller Cove fault, lithologic similarities should exist between footwall and hanging-wall strata without much displacement (Carter, 1994). No similarities exist between the lithologies bounding the Miller Cove fault, because the hanging wall units are lithologically different, intensely cleaved, and more metamorphosed than the footwall units. If the Maggies Mill fault is a slice of the Miller Cove fault, the lithologies in the footwall would be laterally equivalent to the lithologies in the hanging wall, with horizontal displacement possibly as large as the displacement of the Miller Cove fault (Carter, 1994). Carter (1994) favored the Maggies Mill fault being an imbricate of the Great Smoky fault, because of similarities between lithology, cleavage morphology, cleavage intensity, and metamorphism between hanging wall and footwall strata.

Based on the limited exposure and extent of Maggies Mill fault in the study area, the Maggies Mill fault is interpreted to be an imbricate of the Great Smoky fault because of lithologic similarities between hanging wall and footwall strata (Plates III, IIIa). The hanging-wall strata of the Maggies Mill fault consist of a sequence of quartz sandstone gradationally overlain by shale that locally contains carbonate bodies, while footwall strata consist of a lithologically similar quartz sandstone and shale sequence. Carter (1994) recognized similar lithologic sequences in the hanging wall strata to the southwest. The quartz sandstone/shale sequence in both the footwall and hanging wall of the Maggies Mill fault suggest rocks in the footwall are lithologically similar to rocks in the hanging wall. Additionally, rocks in the hanging wall of the Maggies Mill fault have similar metamorphic grade (anchizone), cleavage morphology, and cleavage intensity with rocks in the footwall. Therefore, based on the evidence presented above and by Carter (1994), the Maggies Mill fault is interpreted to be an imbricate of the Great Smoky
fault with an estimated displacement of $1 \mathrm{~km}(.6 \mathrm{mi})$ (Plates III, IIIa). Displacement on the fault increases to the southwest into the area mapped by Carter (1994), where the hanging-wall strata of the Maggies Mill fault are interpreted to be thrust onto higher units of the Sandsuck Formation in the footwall.

Miller Cove fault

The Miller Cove fault is a major structure in the westem Blue Ridge that thrusts penetratively cleaved chlorite and higher-grade metamorphic rocks of the Wilhite Formation onto less cleaved and less metamorphosed (anchizone) rocks of the Sandsuck Formation (King, 1964; Neuman and Nelson, 1965; Carter, 1994). Because the Miller Cove fault juxtaposes structures that developed during different orogenic events, it is interpreted as a basement fault (Hatcher and others, 1989a), which decapitates regional synmetamorphic folds in cross section (Plates III, IIIa). The Miller Cove fault family extends discontinuously approximately $250 \mathrm{~km}(167 \mathrm{mi})$ from northwest of English Mountain to the Cartersville District in northwestem Georgia (Costello, 1984; Hatcher and others, 1989a) (Fig. I-1). In the vicinity of the study area, the Miller Cove fault was mapped as the northern continuation of Salisbury's (1961) Alaculsy Valley fault by Wiener and Merschat (1992).

From the southwest, the Miller Cove fault is exposed in the study area along the base of a prominent line of ridges along Steer Creek. The Miller Cove fault is traceable northeastward along Steer Creek, beneath Tennessee State Highway 68 to Tellico Lake, where the fault trace is located along Quarry Creek to the Tellico River. The fault then is located along a northeast-trending drainage of the Tellico River to Puncheon Hollow in the northeasternmost portion of the study area. The Miller Cove fault is easily mapped because of the distinct lithologic and structural differences between hanging wall and footwall strata, and the geomorphic expression of the fault in the topography. Rocks in
the hanging wall of the Miller Cove fault are metamorphosed to chlorite grade, and have a dominant S-surface (foliation) that is characterized by continuous (slaty) cleavage (S_{1}) in fine-grained lithologies. Locally, these cleaved, fine-grained rocks were later deformed by pressure solution $\left(\mathrm{S}_{1 \mathrm{a}}\right)$ and crenulations $\left(\mathrm{S}_{2}\right)$. Footwall rocks are metamorphosed to anchizone, and the dominant S-surface (foliation) is a weakly developed slaty cleavage $\left(S_{3}\right)$ in fine-grained rocks. The topographic expression of the fault trace indicates the Miller Cove fault dips approximately 20° to 30° southeast.

The formation of the Miller Cove fault has been interpreted to be a major brittle structure related to the Great Smoky fault, because metamorphic discontinuities across the Miller Cove fault indicate that it is younger than premetamorphic faults, such as the Dunn Creek and Greenbrier faults, and older than the Great Smoky fault (King, 1964; Neuman and Nelson, 1965). Wiener and Merschat (1978) suggested the Alaculsy Valley fault in southeastern Tennessee and northwestern Georgia is a premetamorphic fault related to the Dunn Creek and Line Springs faults in the Great Smoky Mountains region that juxtaposes Snowbird Group, which has now been shown by Costello and Hatcher (1991) to be Walden Creek Group, rocks onto Walden Creek Group rocks. Woodward and others (1991) interpreted the formation of axial-planar cleavage, folds, and minor ductile thrust faults as developing during early emplacement of the Miller Cove thrust sheet in the Great Smoky Mountains region, and related to ductile deformation associated with a moving thrust sheet (after Mitra and Eliott, 1980). They inferred that this early Miller Cove fault was reactivated or truncated by a later brittle Alleghanian structure. Thus, Woodward and others (1991) concluded that the Miller Cove thrust sheet is multiphase structure with both a ductile pre- to synmetamorphic and brittle postmetamorphic history of movement.

Southwest of the study area in the Mecca and McFarland 7.5-minute quadrangles, Carter (1994) interpreted the Miller Cove fault as a brittle structure because of structural
and metamorphic discontinuities across the fault, gouge zones, and discrete crenulations. Imbricates of the Miller Cove fault transect preexisting continuos (slaty) cleavage and contain slickenlines. Microstructurally, highly strained and partially recrystallized quartz occur within folded quartz veins and discrete and zonal crenulations are axial planar to the microfolds in the Miller Cove imbricate zone (Carter, 1994). Crosscutting relationships suggest that slaty cleavage developed prior to veining, microfolding, and development of axial-planar crenulations. Gouge zones crosscut all preexisting structures (Carter, 1994).

Evidence for the Miller Cove fault being a postmetamorphic brittle structure in the study area includes many of the structural and metamorphic features observed to the southwest by Carter (1994). Imbricates of the Miller Cove fault were observed west of Tellico Lake and along County Highway 2342 (Rafter Rd.), Tellico Plains 7.5-minute quadrangle (Plate I). These imbricates and related structures, such as fault gouge, crenulations, and slickenlines, transect the preexisting continuous (slaty) cleavage. The juxtaposition of penetratively cleaved rocks onto less cleaved rocks, and brittle fault fabrics associated with imbricates of the Miller Cove fault provide evidence for Alleghanian thrusting of the Miller Cove fault in my study area.

The amount of throw and horizontal displacement on the Miller Cove fault cannot be determined because of the lack of correlative lithologic markers across the fault. Because the Miller Cove fault juxtaposes slaty cleaved chlorite grade rocks onto less cleaved anchizone rocks, Carter (1994) suggested the vertical displacement to be at least 5 km and the horizontal displacement to be at least 10 km to account for the differences in metamorphic grade across the fault (Plates III, IIIa).

Rabbit Creek fault

The Rabbit Creek fault was originally mapped in the Great Smoky Mountains

National Park, and it thrust Great Smoky Group onto Walden Creek Group rocks (Neuman and Nelson, 1965). The Rabbit Creek fault is traceable for approximately 56 $\mathrm{km}(35 \mathrm{mi})$ from the vicinity of Cades Cove to the vicinity of Tellico Plains in southeastern Tennessee. The fault was mapped southwestward from the Little Tennessee River to the northeast boundary of this study area by Wiener (unpub.) and Geddes (1995). Criteria used for mapping this fault include a major lithologic contrast across the contact, fault fabrics observed at several locations along the contact, and many distinct topographic lineaments (Neuman and Nelson, 1965; Geddes, 1995).

In the study area, the Rabbit Creek fault is traced from the northeast along the northwest slope of Henson Mountain, and along Big Branch to the Tellico River. Along this portion of the fault trace, sulfidic and graphitic black slate of the Dean Formation have been thrust over green-banded ankeritic metasiltstone of the Wilhite Formation. From the Tellico River southward, the fault trace is located near the top of Grave Mountain, and trends $0.6 \mathrm{~km}(2,000 \mathrm{ft})$ southwest of Tennessee State Highway 68 where it is cut off by the Oconaluftee fault. The hanging wall of the fault contains coarsegrained orthoquartzite, graywacke, granule conglomerate, and black slate of the Dean Formation, while rocks in the footwall consist of mostly overturned medium-grained arkosic sandstones of the Wilhite Formation in the footwall (Fig. III-2). The criteria used for mapping the Rabbit Creek fault northeast of the study area (Neuman and Nelson, 1965; Geddes, 1995) are used in this study. The strongest evidence for recognition of the Rabbit Creek fault in the study area is the prominent lithologic changes across the contact. Throughout its trace in the study area, the hanging-wall strata of the Rabbit Creek fault consist of lithologies typical of similar Great Smoky Group lithologies observed in the southeastemmost portions of this study area. The footwall strata contain green-banded metasiltstone and ankeritic metasiltstone, along with arkosic sandstone and conglomerate typical of the Walden Creek Group. The channel conglomerate in the

Figure III-2. Overturned Wilhite sandstone in the footwall of the Rabbit Creek fault along Tennessee State Highway 68 at Grave Mountain, Tellico Plains 7.5-minute quadrangle.

footwall is polymictic, and consists of quartz pebbles and slate chips that are lithologically similar to the underlying Great Smoky Group. Good exposures of footwall and hanging-wall strata of the Rabbit Creek fault in the study area are along Tennessee State Highway 68 at Grave Mountain (Tellico Plains 7.5-minute quadrangle). Here the main fault trace is covered and located in a drainage between the hanging wall and footwall exposures (Figs. II-2, III-1; Plate I). Small brittle faults and slickenlines were recognized in hanging-wall strata near the main trace of the fault. Topographic lineaments were also used to assist mapping the Rabbit Creek fault. The dip of the Rabbit Creek fault ranges from 30 to 60° southeast in the Great Smoky Mountains National Park (Neuman and Nelson, 1965), and from 30° southeast to almost vertical southwest of the park and northeast of the study area (Geddes, 1995). The dip of the Rabbit Creek fault in the study area is estimated from outcrop patterns to be dip 30 to 40° southeast.

Neuman and Nelson (1965) interpreted the Rabbit Creek fault as a predominantly premetamorphic structure that has been reactivated because the fault cuts or is cut by younger faults. Neuman and Nelson (1965) mapped the coarse-grained rocks in the hanging wall as Cades Sandstone unclassified (Great Smoky Group), and the fine-grained rocks in the footwall as Wilhite Formation (Walden Creek Group) and Metcalf Phyllite (Snowbird Group). In the Great Smoky Mountains region, the Cades Sandstone is isolated from the main body of the Great Smoky Group by the Oconaluftee fault. Rocks similar to Cades Sandstone occur in the hanging wall of the Oconaluftee fault, which cuts across footwall strata (Neuman and Nelson, 1965). If the Rabbit Creek fault is related to the Oconaluftee fault, Neuman and Nelson (1965) suggested rocks in the hanging wall would be equivalent to or younger than rocks in the footwall.

Geddes (1995) mapped the Rabbit Creek fault northeast of my study area, from the Tellico River northeastward to Citico Creek, in southeastern Tennessee (Fig. I-2).

Geddes (1995) interpreted the Rabbit Creek fault as a reactivated premetamorphic fault because of the presence of cataclasite, brittle deformation of slaty cleavage, and an increase in metamorphic grade from anchizone and lower chlorite grade to chlorite grade when crossing the structure from northwest to southeast. Geddes (1995) recognized the same lithologic similarities as Neuman and Nelson (1965) between Great Smoky Group rocks in the Rabbit Creek and Oconaluftee thrust sheets. Because of compositional and textural similarities to the Dean Formation in the Oconaluftee thrust sheet, Geddes (1995) correlated the rocks in the Rabbit Creek thrust sheet with the Dean, Ammons, Wehutty, and Copperhill Formations of the Great Smoky Group, and suggested abandoning the name "Cades Sandstone."

I also chose to interpret the Rabbit Creek fault in my study area as a reactivated postmetamorphic brittle fault, because the Rabbit Creek fault cuts earlier-formed structures, and the fault zone contains brittle fault fabrics. Compositional and textural similarities also exist between rocks in the Rabbit Creek thrust sheet and rocks in the hanging wall of the Oconaluftee fault in the study area, thus providing evidence to support the interpretations of Neuman and Nelson (1965) and Geddes (1995) concerning the equivalence of rocks in the Rabbit Creek thrust sheet with those in the hanging wall of the Oconaluftee fault. Footwall and hanging-wall strata of the Rabbit Creek fault are exposed on Tennessee Highway 68 at Graves Mountain (Figs. III-1, III-2). Here the footwall strata consist of folded sandstone of the Wilhite Formation. The Rabbit Creek fault may have propagated through fine-grained metasiltstone and slate separating the two exposures, and is located in a drainage between them. The hanging-wall strata consist of a locally sulfidic orthoquartzite and slate, and is interpreted as belonging to the Great Smoky Group. Minor faults were observed in the hanging-wall strata, and are interpreted as splays of the Rabbit Creek fault. Most of the intense deformation from the Rabbit Creek fault in this area is localized in the folding of the footwall strata. Possible fault
breccia was observed in Big Branch, approximately $1250 \mathrm{~m}(4,000 \mathrm{ft})$ upstream from its confluence with the Tellico River, providing evidence for brittle deformation.

Displacement on the Rabbit Creek thrust sheet is interpreted to decrease to the southwest (Plates I, III, IIIa). Based on cross section analysis, the Rabbit Creek fault is estimated to have a displacement of approximately $2.3 \mathrm{~km}(1.4 \mathrm{mi})$ along cross section line A-A', and a estimated displacement of approximately $1.9 \mathrm{~km}(1.2 \mathrm{mi})$ along cross section line $\mathrm{B}-\mathrm{B}$ '.

Oconaluftee fault

The Greenbrier fault is a major structure in the Great Smoky Mountains region that was first recognized by King and others (1958) and separates the Ocoee Supergroup into two major stratigraphic sequences (King, 1964). King and others (1958) originally interpreted the hanging-wall strata as consisting of Great Smoky Group rocks conformably overlying Snowbird Group, while footwall units consist of Snowbird Group conformably (?) overlain by unclassified Ocoee Supergroup formations and Walden Creek Group. Recent unpublished geologic mapping by C. Montes (pers. comm.) in the Dellwood 7.5-minute quadrangle (North Carolina) suggests the contact between the Snowbird and Great Smoky Groups, originally mapped as conformable by Hadley and Goldsmith (1963), is the continuation of the premetamorphic Greenbrier fault with reactivation and brittle deformation during the Alleghanian orogeny along portions of the fault. In the Great Smoky Mountains National Park, the Greenbrier fault thrust Great Smoky Group over Walden Creek Group, Snowbird Group, rocks of the Rabbit Creek thrust sheet, and Grenville crystalline basement rocks (King and others, 1958; Hadley and Goldsmith, 1963; King, 1964; Neuman and Nelson, 1965) (Fig. I-1). The Greenbrier fault is interpreted as a premetamorphic ductile structure associated with the Taconic orogeny because ductile fault fabrics are present, regional metamorphic isograds transect
the fault boundary, and the fault does not deform regional cleavage (Hadley and Goldsmith, 1963; King, 1964; Milton, 1983; Connelly and Dallmeyer, 1990; Woodward and others, 1991; Connelly and Woodward, 1992).

The Oconaluftee fault is both a high-angle dextral fault and a thrust fault in the central and western Great Smoky Mountains (King, 1964; Neuman and Nelson, 1965). At its northern end, the Oconaluftee fault is a dextral strike-slip fault that obliquely cuts the Greenbrier fault (Fig. I-1). The trace of the Oconaluftee fault becomes parallel to the Greenbrier fault south of Wear and Tukaleechee Coves, and was interpreted by Neuman and Nelson (1965) as a low-angle thrust that truncates, overrides, or reactivates the preexisting Greenbrier fault plane. They named this segment of the fault the Oconaluftee-Greenbrier fault. In the southwestern portion of the Great Smoky Mountains National Park, Neuman and Nelson (1965) mapped the lowest formation of Great Smoky Group (Elkmont Sandstone) in the hanging wall of the Oconaluftee, and "Cades Sandstone" (Great Smoky Group) and Metcalf Phyllite (Snowbird Group) in the footwall.

Geddes (1995) mapped the Oconaluftee fault northeast of the study area, and used as evidence the emplacement of Wilhite and Great Smoky Group units over rocks in the Rabbit Creek thrust sheet to map the Oconaluftee fault. Geddes (1995) presented evidence the Oconaluftee fault is a brittle Alleghanian fault because of the truncation of rock units in the Rabbit Creek fault, and the truncation of 1st- and 2nd-order folds. Geddes (1995) suggested the hanging wall of the Oconaluftee fault in the Great Smoky Mountains National Park is composed of the two lowest Great Smoky Group formations (Elkmont and Thunderhead Sandstones), while to the southwest, between the Tellico River and Citico Creek, the two uppermost Great Smoky Group formations (Dean and Ammons) are also exposed in the hanging wall. This change is explained by regional structures. In the Great Smoky Mountains region, 1st-order anticlines bring up older

Great Smoky Group units, but between the Little Tennessee River and Tellico River, the southwest-plunging 1st-order Epperson synclinorium brings down younger Great Smoky Group units, as well as the overlying Wilhite Formation (Carter and others, 1995b). This also is evidence of the small displacement along the Oconaluftee and Rabbit Creek faults.

The Oconaluftee fault is traceable approximately $72 \mathrm{~km}(45 \mathrm{mi})$ from near Elkmont, Tennessee, in the Great Smoky Mountains to near Tellico Plains, southeastern Tennessee (Fig. I-1). In my study area, the Oconaluftee fault is located along the northwest slopes of Henson, Tellico, Grave, and Queens Mountains (Tellico Plains 7.5minute quadrangle). This fault cuts the Rabbit Creek fault along the northwest slope of Grave Mountain, and is cut off by the Miller Cove fault along the northwest base of Queens Mountain (Fig. II-2; Plate I). Rocks in the hanging wall of the Oconaluftee fault consist of coarse-grained conglomerate and graywacke along with slate lenses correlated with the Dean Formation (Great Smoky Group). Conformably overlying these Great Smoky Group lithologies are the metasiltstones of the Walden Creek Group. Footwall lithologies consist mostly of fine-grained graphitic and sulfidic slate, with lenses of orthoquartzite and graywacke, and are interpreted to be correlative with the Dean Formation. The dip of the Oconaluftee fault in the study area ranges from approximately 30° southeast in the northeastern portion of the study area near the Tellico River to approximately 45° southeast southwestward along Tellico, Grave, and Queens Mountains.

In the study area, the Oconaluftee fault is exposed on Tennessee State Highway 165 along the Tellico River (Fig. III-3A), and on Tennessee State Highway 68 at Grave Mountain (Plate I). The main trace of the Oconaluftee fault is $180 \mathrm{~m}(600 \mathrm{ft})$ northwest of the bridge crossing the Tellico River on Tennessee State Highway 165 at the Tellico Plains-Bald River Falls 7.5-minute quadrangle boundary (Figs. II-2, III-1; Plate I). From this locale northward to the main fault, numerous thrust faults deform hanging-wall strata. These faults are characterized by brittle fault fabrics, such as fault gouge and

Figure III-3. The Oconaluftee fault zone. (A) Sketch of the Oconaluftee fault zone along the Tellico River, Tennessee State Highway 165, Tellico Plains 7.5-minute quadrangle. (B) The Oconaluftee fault. Location of photograph is indicated by the boxed area in (A).

slickenlines (Fig. III-3B). These faults also decapitate folds and transect the continuous (slaty) cleavage. Similar structural and lithologic relationships are present along the Oconaluftee fault on Tennessee State Highway 68 at Grave Mountain. Here, the hangingwall strata are deformed by splays from the main Oconaluftee fault. A high-angle strikeslip fault also deforms hanging-wall strata. Dextral strike-slip faulting related to the Oconaluftee fault has been reported northeast of the study area in the Great Smoky Mountains region (Neuman and Nelson, 1965). Similar brittle structures related to the Oconaluftee fault observed along the Tellico River are also present along Tennessee State Highway 68. These structures include gouge, slickenlines, decapitation of folds, and transection of continuous (slaty) cleavage. Based on the evidence presented above, I interpret the Oconaluftee fault as a postmetamorphic structure that transects rocks of the Rabbit Creek thrust sheet (Plate I). Based on cross-section interpretations, a minimum displacement on the Oconaluftee fault is estimated to be approximately $1.4 \mathrm{~km}(0.9 \mathrm{mi})$ (Plates III, III).

Minor faults

Minor map-scale faults that deform rocks within the study area include: the Hunt Branch fault, Tellico Mountain fault, a small thrust fault on Payne Ridge, and a normal fault near Coker Creek (Fig. II-2; Plate I). These faults appear to have small displacements, and are not traceable very far along strike. The significance of these faults in this study is that they are mappable structures that displace contacts.

Hunt Branch fault

The Hunt Branch fault was mapped by McKinney (1964), and is exposed on the eastern limb of an anticline in the northern portion of study area (Figs. II-2, III-1; Plate I). McKinney (1964) postulated this fault cut an adjacent syncline and thrust Shady

Dolomite over Rome Formation. The Hunt Branch fault probably dies out southward in the Kirkland Hollow anticlinorium, and apparently merges with the Bullet Mountain fault to the north (McKinney, 1964). McKinney (1964) interpreted the fault to dip 30° east.

Tellico Mountain fault
The Tellico Mountain fault, originally recognized by Poppelreiter (1980), is exposed atop Tellico Mountain on Tennessee State Highway 68 (Figs. III-4A, III-4B). Here, hanging-wall lithologies consist of very coarse-grained granule to cobble conglomerate, and graywacke that is overlain to the southeast by green-banded ankeritic metasiltstone. Footwall units are similar to those in the hanging wall, and consist of coarse-grained granule conglomerate and graywacke overlain by banded metasiltstone. Cobble-size clasts are absent in the exposed footwall sequence. Approximately 90 m (300 ft) northwest of the Tellico Mountain fault the coarse-grained conglomerate and graywacke conformably overlie dark gray to black metasiltstone and slate. The trace of the Tellico Mountain fault extends approximately $3 \mathrm{~km}(2 \mathrm{mi})$ along the crest of Tellico Mountain, and dips approximately 35° southeast. In this study, the trace of the Tellico Mountain fault is based on the relationships observed on Tennessee State Highway 68. The fault is interpreted to terminate in an anticline to the southwest $1.7 \mathrm{~km}(1.1 \mathrm{mi})$ from the exposure on Tennessee State Highway 68 (Plate I). To the northeast, the fault is difficult to trace because the relationships observed on Tennessee State Highway 68 are not traceable. Therefore, the Tellico Mountain fault is extrapolated northeastward along the crest of Tellico Mountain. Beyond here, evidence for the Tellico Mountain fault diminishes. The stratigraphic throw of the Tellico Mountain fault is approximately 15 m $(50 \mathrm{ft})$, with an estimated horizontal displacement of 25 to $30 \mathrm{~m}(75$ to 100 ft$)$.

Poppelreiter (1980) interpreted this fault as a late Paleozoic fault that thrust coarse-grained units of the Walden Creek Group over fine-grained units of the Walden

Figure III-4. Tellico Mountain fault zone. (A) Sketch of the Tellico Mountain fault zone along Tennessee State Highway 68 at Tellico Mountain, Tellico Plains 7.5-minute quadrangle. (B) The Tellico Mountain fault. Location of photograph is indicated by the outlined area in (A).

(B)

Creek Group. This thrust is interpreted to have originated in the basal décollement of the Great Smoky fault because of moderately low-angle thrusting on bedding planes and early low-angle extension prependicular to bedding (Poppelreiter, 1980). Poppelreiter (1980) also suggested intense shear strain concentrated along the bounding zones of competent layers was responsible for the thickening and thinning of the interbedded slate and metasiltstone. These layers differentially flow into the overlying strata during compression and upward transport.

In this study, the Tellico Mountain fault is interpreted to repeat a sequence of Dean Formation conglomerate and graywacke overlain by Wilhite Formation metasiltstone. The coarse-grained conglomerate and graywacke in both hanging-wall and footwall sequences are correlated with the Dean Formation of the Great Smoky Group because of similar graywacke and conglomerate composition with other Great Smoky Group units in southeastern Tennessee (Fig. II-5). The metasiltstone in both hanging-wall and footwall sequences is correlated with the Wilhite Formation of the Walden Creek Group because of ankerite-bearing metasiltstones approximately $60 \mathrm{~m}(200 \mathrm{ft})$ southeast of the fault. Additionally, the hanging-wall and footwall metasiltstones are lithologically similar. Ankeritic metasiltstones are present just above the Great Smoky Group/Walden Creek Group contact in the southeastern portion of this study area. Thus, the Tellico Mountain fault is interpreted to repeat the Great Smoky Group/Walden Creek Group contact in this portion of the study area.

The Tellico Mountain fault is interpreted as a brittle fault that formed as a result of continued tightening of the Tellico Plains anticlinorium during Alleghanian deformation. Evidence for the brittle nature of this fault include gouge, slickenlines, and truncation of bedding (Fig. W-4B). Some bedding planes of the conglomerate and graywacke in both the hanging wall and footwall contain lenses of slate and metasiltstone that are tectonically thickened in the hinges of folds. Many bedding plane surfaces also contain
slickenlines, providing evidence for both flexural flow and flexural slip folding. Additionally, quartz veins are truncated abruptly at the slate contacts and feather out in the finer portions of the graded graywacke beds, representing an early period of westnorthwest extension during folding (Poppelreiter, 1980; Carter and others, 1995a).

Other faults

Two small faults were originally mapped within the Wilhite Formation in the study area by Hale (1974). Hale (1974) inferred a thrust fault on Payne Ridge and a normal fault in the Coker Creek area because of the offset of outcrop patterns of sandstone units, bedding orientations, and repetition of sandstone units. Geologic mapping for this study confirms the outcrop patterns of the Wilhite sandstone units as mapped by Hale (1974).

A small thrust fault deformed Wilhite Formation sandstone on Payne Ridge. This fault is located between Payne Ridge and an unnamed ridge to the southeast and is inferred to extend to Sixmile Creek to the northeast. The extent of the fault is uncertain because of the difficulty tracing faults in this area where there are no lithologic contrasts on either side of the contact. Evidence for faulting of this sandstone unit include the offset of the outcrop pattern in the sandstone units, the intensely folded zones of metasiltstone north of the sandstone unit near the fault zone (Hale, 1974), and the narrow linear drainage between Payne Ridge and the unnamed ridge (Plate I). The fault is not exposed, but there are no confirming structures present to account for the abrupt termination of the sandstone. The origin of this fault is possibly related to continued folding of the Payne Ridge anticlinorium during Alleghanian deformation.

In the southern portion of the study area, mostly in the Farner 7.5 -minute quadrangle, Hale (1974) mapped a normal fault between Wilhite sandstone units. This normal fault is interpreted to have developed along a small fold on the east limb of a
small syncline (Hale, 1974). The trace of this fault extends from southeast of Cataska School northeastward to the Farner/Tellico Plains 7.5-minute quadrangle boundary, while the northeastward extent of the fault into the Tellico Plains 7.5 -minute quadrangle is unconfirmed. The northeastern portion of the Farner 7.5 -minute quadrangle is included to provide continuity with previously mapped areas within and surrounding the study area. Geologic mapping for this portion of the study area primarily included field checking Hale's (1974) data. The outcrop patterns of the Wilhite sandstone mapped by Hale (1974) were confirmed here. Along the fault, bedding is locally overturned in the footwall where sandstone beds are repeated, but are upright to the northeast where they form the east limb of a small anticline (Hale, 1974). The fault is not exposed. Map patterns, however, along with bedding orientation provide evidence for the fault, and include: (1) sandstone units exposed in the upthrown block contain mappable metasiltstone between sandstone units that are not exposed in the sandstone of downthrown block; (2) repetition of sandstone units across the fault; and (3) intense folding in this area. This normal fault probably formed during folding of the sandstone. Instead of a normal fault here, the sandstone units could alternately be repeated by intense folding. This requires upright southeast-dipping beds northwest of the beds that are overturned to the southeast. Instead of upright and dipping to the southeast, these beds dip northwest, so I believe that mapping a fault here is the best solution to this outcrop pattern.

Folds

Soft-sediment folds $\left(\mathrm{F}_{0}\right)$ and evidence for four tectonic folding events $\left(\mathrm{F}_{1-4}\right)$ are present in the study area. Tectonic folds in the study area are divisible into 1st- order to 6th-order structures, while syndepositional folds are only 5th- to 6th-order structures (Table III-1). The chronology of the folding events is determined from the relationship between folds to the regional axial-planar slaty cleavage, and to later faulting events. F_{0}

Table III-1. Size order of folds.

	Order	Amplitude range	Wavelength range	examples
Regional structures	1 st	> 500 m	> 5 km	Murphy synclinorium (F_{1}) Ducktown anticlinorium (F_{1}) Epperson synclinorium (F_{1})
Map scale (quadrangle) structures	2 nd	$500 \mathrm{~m}-50 \mathrm{~m}$	$5 \mathrm{~km}-1 \mathrm{~km}$	Payne Ridge anticlinorium (F_{1}) Grindstone Ridge anticlinorium (F_{1}) Tellico Mountain anticlinorium (F_{1}) Tellico Plains synclinorium (F_{3}) Kirkland Hollow anticlinorium (F_{3})
	3 rd	$50 \mathrm{~m}-15 \mathrm{~m}$	$1 \mathrm{~km}-50 \mathrm{~m}$	"Whaleback" anticlines (F_{1})
Mesoscale structures	4 th	$15 \mathrm{~m}-1 \mathrm{~m}$	$50 \mathrm{~m}-1 \mathrm{~m}$	
	5 th	$1 \mathrm{~m}-10 \mathrm{~cm}$	$1 \mathrm{~m}-10 \mathrm{~cm}$	
	6 th	$<10 \mathrm{~cm}$	$<10 \mathrm{~cm}$	

folds are present throughout the study area and occur within bedding, indicating their syndepositional formation. F_{1} folds are 1st- and higher-order structures characterized by penetrative axial-planar slaty cleavage, implying a synmetamorphic origin for the formation of these folds. Deformation of slaty cleavage by 5th- and higher-order folds in the Miller Cove thrust sheet defines the F_{2} folds. Second- and higher-order F_{3} folds occur in the Bullet Mountain, Great Smoky, and Maggies Mill thrust sheets. These folds are interpreted to have formed during post-metamorphic faulting, because fold hinges are oriented subparallel to regional post-metamorphic faults. F_{4} folds appear as 2nd-order structures that deform the entire Blue Ridge thrust sheet, and are evident by the occurrence of windows in the Great Smoky Mountains National Park region.

F_{0} folds

Soft-sediment F_{0} folds are preserved in the study area in the fine-grained rocks of the Sandsuck, Wilhite, and Dean Formations (Fig. III-5). These F F_{0} folds are 5th- and higher-order open to isoclinal structures, and have fold hinges that generally plunge gently to the northeast and southwest with axial surfaces moderately inclined to nearly recumbent. F_{0} folds are recognized by the transection by regional slaty cleavage and intralayer geometry, wherein soft-sediment folds are bounded above and below by bedding surfaces. Most soft-sediment folds have been modified by later folding and faulting events. F_{0} folds probably formed by downslope movement of water-saturated sand, silt, and clay in response to gravitational and overburden forces.

F_{1} folds

The Miller Cove thrust sheet is dominated by F_{1} folds. These folds occur at all scales, from the 1st-order Epperson synclinorium (Laajoki, 1993) and the 2nd-order Payne Ridge anitclinorium to 4th- and higher-order parasitic folds to these regional

Figure III-5. F_{0} folds in fine-grained rocks of the Wilhite Formation. 6th-order softsediment fold from the Farner 7.5-minute quadrangle. Centimeter scale. Sample courtesy of Mark Carter.

structures (Table III-1). F_{1} folds are recognized and distinguished from other fold generations by the axial-planar relationship of these folds to regional slaty cleavage (S_{1}) (Fig. III-6A).
F_{1} fold geometry is scale dependent. Most 1 st- and 2nd-order F_{1} folds (anticlines) are open to closed structures that are doubly plunging gently to northeast and southwest, and have axial surfaces that are moderately inclined to the southeast. Most 3rd- and higher-order F_{1} folds (anticlines) generally are overturned, or steeply inclined to the northwest, with axial surfaces dipping gently to steeply northwest, and hinges doubly plunging gently to the northeast and southwest (Figs. III-6A, III-6B). These folds have a great circle orientation of $13981^{\circ} \mathrm{W}$, and a corresponding β pole of 4909°. All F_{1} folds verge toward the northwest. Slaty cleavage $\left(\mathrm{S}_{1}\right)$ in the Miller Cove thrust sheet is axialplanar to F_{1} folds (compare Figs. III-6B, III-10B), and the intersection lineation ($\mathrm{L}_{1 \times 0}$) between bedding $\left(S_{0}\right)$ and slaty cleavage $\left(S_{1}\right)$ is subparallel to F_{1} fold hinge (Figs. III-6C, III-6D), indicating this folding event and regional metamorphism were coeval.
F_{1} folds in the study area are predominantly similar folds. These folds exhibit flexural slip and flexural flow folding that, according to Donath and Parker (1964), depend on the rheology of the layering and on the metamorphic temperatures and pressures to produce variations in ductility between layers. Observed F_{1} folds that deform predominantly coarse-grained lithologies produce constant bedding-thickness folds with slickenlines on bedding surfaces. Interbedded coarse- and fine-grained lithologies, however, contain a ductility contrast between layers, and yield by thickening of hinges and thinning of the limbs of the less competent fine-grained lithologies in response to folding. These changes of thickness in the hinges and limbs provide evidence that flexural flow is also present as a folding mechanism in the study area.

Figure III-6. Characteristics of F_{1} folds in the Miller Cove thrust sheet. (A) 5th-order F_{1} fold near Barnum Creek, station TP-1107, Tellico Plains 7.5-minute quadrangle. Rock hammer (approximately 32 cm long) is located in the hinge of the fold, and is inclined to the southeast parallel to the axial surface. (B) Lower-hemisphere equal-area projection of $66 \mathrm{~F}_{1}$ poles to axial surfaces. (C) Lower-hemisphere equal-area projection of $66 \mathrm{~F}_{1}$ fold hinges. (D) Lower-hemisphere equal-area projection of 23 bedding (S_{0})-slaty cleavage $\left(\mathrm{S}_{1}\right)$ intersection lineations. Note relationship between the intersection lineation ($\mathrm{L}_{\mathrm{l} \times 0}$) between bedding $\left(\mathrm{S}_{0}\right)$ and slaty cleavage $\left(\mathrm{S}_{1}\right)$, and F_{1} fold axes. Also note the relationship between poles to F_{1} axial surface measurements and poles to S_{1} cleavage (see Fig. III-10B).

(A)

F_{2} folds

Locally slaty cleavage $\left(\mathrm{S}_{1}\right)$ within the Miller Cove thrust sheet is deformed by open 5th- and higher-order F_{2} folds (Fig. III-7A). These folds plunge gently to the northeast and southwest, with axial surfaces that dip moderately to steeply to the northwest and moderately to the southeast (Figs. II-7B, III-7C). These F_{2} folds are classified as kink or chevron folds. F_{2} folds are oriented subparallel to hinges of crenulation cleavage $\left(\mathrm{S}_{2}\right)$ observed locally in fine-grained rocks within the Miller Cove thrust sheet (compare Figs. $\amalg-7 \mathrm{C}$ and $\mathrm{II}-13 \mathrm{C}$). The relationship between these F_{2} folds and crenulation cleavage $\left(\mathrm{S}_{2}\right)$ is uncertain. The similarities between the orientation of axial surfaces of F_{2} folds and crenulation cleavage $\left(S_{2}\right)$, however, suggest they may be related.

Carter (1994) recognized a close spatial relationship between folds similar to these F_{2} folds and brittle faults. Discrete zones of chevron-like kink folds occur along the Tellico River road (Tennessee State Highway 165) near the boundary between the Tellico Plains and Bald River Falls 7.5-minute quadrangle (Fig. III-7A). These zones are in close proximity to the Oconaluftee fault and related hanging-wall splays, suggesting these folds maybe related to late Paleozoic faulting.

F3 folds

F_{3} folds are 3rd- and higher-order folds west of the Miller Cove thrust sheet in the Great Smoky and Bullet Mountain thrust sheets. Other F_{3} folds include 4th- and higherorder parasitic folds to these structures. F_{3} folds in the Great Smoky thrust sheet are gentle to open with tight folds present locally. These folds plunge gently to the northeast and southwest, and have axial surfaces that dip moderately to the southeast (Figs. III-8A, III-8B). F3 axial surfaces are oriented subparallel to the poorly developed slaty cleavage $\left(S_{3}\right)$ in the Great Smoky thrust sheet, and probably formed coevally (compare Figs. III-

Figure III-7. Characteristics of F_{2} folds in the Miller Cove thrust sheet. (A) Nearsimilar F_{2} chevron folds in the Wilhite Formation along the Tellico River, near station BRF-840, Bald River Falls 7.5-minute quadrangle. (B) Lower hemisphere equal-area projection of poles to $15 \mathrm{~F}_{2}$ axial surfaces. (C) Lower hemisphere equal-area projection of $15 \mathrm{~F}_{2}$ fold hinges.

(A)

Figure III-8. Characteristics of F_{3} folds in the Great Smoky thrust sheet. (A) Lowerhemisphere equal-area projection of poles to $5 \mathrm{~F}_{3}$ axial surfaces. (B) Lower-hemisphere equal-area projection of $5 \mathrm{~F}_{3}$ fold hinges.

(A)

(B)

113

8A and III-14). F_{3} folds are predominantly parallel folds with bedding-parallel slickenlines on fold limbs suggesting flexural slip folding. Detailed mapping southwest of the study area (Carter, 1994) and within the study area by myself revealed locally overturned footwall synclines in the footwall of the Miller Cove and Maggies Mill faults (Plate I). Formation of these folds beneath these faults suggests that folds in the Maggies Mill and Great Smoky thrust sheets may be related to faulting (Carter, 1994; this study). Fourth- and higher-order F_{3} folds also occur in the Bullet Mountain thrust sheet, and include the Kirkland Hollow anticlinorium and the Tellico Plains synclinorium. These folds and parasitic folds to these structures have fold axes oriented parallel to the Bullet Mountain fault (McKinney, 1964). Because the folds in the Great Smoky and Bullet Mountain thrust sheet appear to be related to postmetamorphic faulting rather than synmetamorphic S_{1} cleavage development, they are interpreted as F_{3} folds.

F_{4} folds

F_{4} folds in the Blue Ridge thrust sheet have been described to the southwest (Carter, 1994) and northeast (Geddes, 1995) of the study area, and are interpreted to have formed during ramping and duplexing of Paleozoic Valley and Ridge footwall strata (Plates III, IIIa). Footwall deformation has been documented beneath the frontal western Blue Ridge thrust sheets north of the study in the vicinity of the Great Smoky Mountains National Park (Neuman, 1951; King, 1964; Neuman and Nelson, 1965; Hatcher and others, 1989a, 1989b). Here windows expose anticlinal imbricated footwall rocks that provide evidence that duplexing of the footwall arched the Blue Ridge thrust sheet after emplacement.
F_{4} folds are interpreted as 3rd- and 2nd-order folds by Carter (1994) and Geddes (1995) to the southwest and northeast of the study area, respectively. Although they did not observe mesoscale folds associated with this folding event, Carter (1994) and Geddes
(1995) provided evidence for this event based on map-scale structures. Carter (1994) suggested these folds deformed the Maggies Mill fault, along with map-scale folds in the hanging wall of the Maggies Mill and Miller Cove faults. Geddes (1995) interpreted that footwall duplexing of early Paleozoic strata produced F_{4} folds in the hanging wall of the Blue Ridge thrust sheet. Geddes (1995) provided evidence of this interpretation from observations of the surface geology, which included deflection of the biotite isograd, foldinterference patterns, deflection of bedding and cleavage, and topographic expressions. Geddes (1995) suggested that the Foothills duplex is generally a doubly plunging antiform with doubly plunging culminations at various locations on its surface. The overall dip of the roof of the Foothills duplex has been calculated, using structure contour maps drawn on the base of the Great Smoky thrust sheet, to be 0.6° to the southwest within and between each of the windows in the Great Smoky Mountains National Park region (King, 1964; Neuman and Nelson, 1965; Hatcher and others, 1989b).

Mesoscopic F_{4} folds, or foliations related to the F_{4} folding event, were not recognized in this study. However, possible surface evidence for this folding event is interpreted from map patterns of earlier formed structures. Structures, such as the Tellico Mountain anticlinorium and Payne Ridge anticlinorium are interpreted to have continued to have tightened as the Great Smoky thrust sheet was folded by duplexing of the Valley and Ridge footwall strata. The retrodeformation of Alleghanian deformation of western Blue Ridge hanging-wall strata shows the opening of some previously formed folds (Plate III; Appendix D). It is also suggested that the thrust fault on Payne Ridge and the normal fault in Coker Creek may have formed due to this folding event. Although surface evidence for the F_{4} folding event is inconclusive in the study area, evidence for folding of the Great Smoky thrust sheet is best observed in the windows near the Great Smoky Mountains region. For this reason, the Great Smoky thrust sheet is interpreted to be folded by duplexing of Valley and Ridge footwall strata representing the F_{4} folding event.

S-surfaces (foliations)

One depositional S-surface and four tectonic foliations were recognized in the study area. These foliations include bedding $\left(S_{0}\right)$, continuous (slaty) cleavage $\left(S_{1}\right)$, pressure-solution cleavage ($\mathrm{S}_{1 \mathrm{a}}$), crenulation cleavage $\left(\mathrm{S}_{2}\right)$, and discontinuous (slaty) cleavage $\left(S_{3}\right)$. Bedding $\left(S_{0}\right)$ is present throughout the study area and, depending on lithology, influences the development of other S-surfaces. Continuous (slaty) cleavage $\left(\mathrm{S}_{1}\right)$ is the most pervasive tectonic S -surface in the Miller Cove thrust sheet and is best developed in fine-grained metasiltstones and slates. Pressure-solution cleavage ($\mathrm{S}_{1 \mathrm{a}}$) and crenulation cleavage $\left(\mathrm{S}_{2}\right)$ are locally developed in fine-grained lithologies within the Miller Cove thrust sheet. A weakly developed discontinuous (slaty) cleavage (S_{3}) is locally present in fine-grained rocks in the Great Smoky thrust sheet.

S_{0} (bedding)

Bedding in the Bullet Mountain thrust sheet, compiled from McKinney (1964), is deformed by the 3nd-order Kirkland Hollow anticlinorium and Tellico Plains synclinorium, higher-order parasitic folds, and the Hunt Branch fault. Bedding in the Bullet Mountain thrust sheet dips both gently to moderately southeast, and moderately northwest (Fig. III-9A). Poles to bedding in the Bullet Mountain thrust sheet defines a great circle with orientation $13789^{\circ} \mathrm{W}$, and β pole with orientation 4701°. In the Great Smoky thrust sheet, bedding dips moderately to the southeast, with poles to bedding defining a great circle with orientation $31286^{\circ} \mathrm{N}$, and β pole orientation of 22204° (Fig. III-9B).

In the Miller Cove thrust sheet, bedding is deformed by the Rabbit Creek and Oconaluftee faults, the Epperson synclinorium, the Payne Ridge, Grindstone Ridge, and Tellico Mountain anticlinoriums, higher-order parasitic folds, and many meso- and

Figure III-9. Lower-hemisphere equal-area projections of S_{0} (bedding) data in the Bullet Mountain, Great Smoky, and Miller Cove thrust sheets. Stereoplots include scatter, contoured at 2% per 1% area, and Kamb contoured with a 3.0σ base value using a 2.0σ contour interval. (A) 123 poles to bedding in Bullet Mountain thrust sheet. Using Kamb contour, area counted equals 6.8%. (B) 118 poles to bedding in the Great Smoky thrust sheet. Using Kamb contour, area counted equals 7.1%. (C) 1934 poles to bedding in the Miller Cove thrust sheet. Using Kamb contour, area counted equals 0.5%.

smaller-scale faults. Generally, bedding in the Miller Cove thrust sheet dips moderately to the southeast, but gentle and steeply southeast- and northwest-dipping beds frequently occur. Poles to bedding in the Miller Cove thrust sheet define a great circle orientation of $31590^{\circ} \mathrm{N}$, and β pole orientation of 22500° (Fig. III-9C). Comparison of the stereoplots in the Bullet Mountain, Great Smoky, and Miller Cove thrust sheets reveal similar great circles and corresponding β poles.

S_{1} (slaty cleavage)

S_{1} is the dominant tectonic foliation in the Miller Cove thrust sheet, and is best developed in banded metasiltstone and slate (Fig. III-10A). S_{1} is axial-planar to F_{1} folds, and dips predominantly to the southeast (Fig. III-10B). Poles to S_{1} (slaty cleavage) in the Miller Cove thrust sheet show a great circle with an orientation of $13289^{\circ} \mathrm{S}$, and β pole orientation of 421° (Fig. III-10B). Refraction of slaty cleavage across layers of different grain size occurs throughout the study area. Upon weathering, cleaved rocks tend to part preferentially along cleavage $\left(S_{1}\right)$ planes rather than bedding $\left(\mathrm{S}_{0}\right)$ planes, as well as along the intersection between cleavage and bedding (Fig. III-10A).
S_{1} is more intensely developed from northwest to southeast across the study area in the direction of increasing metamorphic grade. S_{1} is characterized by smooth disjunctive (Powell, 1979) moderately to closely spaced slaty cleavage in fine-grained rocks, and anastomosing to rough disjunctive widely spaced cleavage in coarse-grained rocks. In the northwestern portion of the Miller Cove thrust sheet, S_{1} formed both by pressure-solution and the alignment of clay minerals recrystallized to chlorite and muscovite (sericite) (Fig. III-11A) . Cleavage selvages generally range from 0.05 mm - to 0.5 mm-thick, and separate poorly- to moderately-developed microlithons that are 0.02 mm - to 0.3 mm -thick (Fig. III-11A).

In the southeastern portion of the Miller Cove thrust sheet, cleavage intensity

Figure III-10. Characteristics of S_{1} (slaty cleavage) in the Miller Cove thrust sheet. (A) Slaty cleavage $\left(\mathrm{S}_{\mathrm{l}}\right)$ in banded metasiltstone of the Wilhite Formation. Bedding (S_{0}) dips gently to the southeast, while slaty cleavage dips steeply to the southeast (see Fig III-6D for $\mathrm{L}_{0 \times 1}$ orientations). Bee hive (scale) is attached to a bedding surface. Near station BRF-850, Tellico River, Bald River Falls 7.5 -minute quadrangle. (B) Lower-hemisphere equal-area projections of 1273 poles to S_{1} (slaty cleavage) in the Miller Cove thrust sheet. Stereoplots include scatter, contoured at 2% per 1% area, and Kamb contoured with a 3.0 σ base value using a 2.0σ contour interval and 0.7% of the area counted.

(A)

(B)

Figure III-11. Increased development of slaty cleavage $\left(S_{1}\right)$ from northwest to southeast across the study area. (A) Enlarged negative image (from thin section) of bedding, pressure-solution, and slaty cleavage relationship in banded metasiltstone in the northwestern portion of Miller Cove thrust sheet. Station TP-146, approximately 600 m (2,000 ft) north of Epperson Church, Tellico Plains 7.5-minute quadrangle. Field of view is approximately 2 cm . (B) Enlarged negative image (from thin section) of bedding and slaty cleavage relationship in the banded metasiltstone of the Wilhite Formation in the southeastern portion of Miller Cove thrust sheet. Station BRF-259, Tellico River, Bald River Falls 7.5 -minute quadrangle. Field of view is approximately 2 cm .

(A)

(B)
increases and becomes nearly continuous. Cleavage selvages range from 0.02 mm to 0.5 mm thick, and consist of strongly aligned chlorite, biotite, and muscovite with evidence of pressure solution along these selvages (Fig. III-11B). The recrystallized clays are so strongly oriented that microlithon boundaries are usually obliterated. It appears the importance of pressure-solution diminishes as a cleavage-forming mechanism in this region of the study area.

Coarse-grained rocks in the Miller Cove thrust sheet locally exhibit an anastomosing to rough disjunctive narrowly-to broad-spaced cleavage (Powell, 1979), probably related to S_{1}. This cleavage is better developed in clay-rich sandstone and conglomerate, and appears as thin clay-rich seams that anastomose around large quartz and feldspar grains. In the eastermmost portion of the study area, quartz pebbles have been flattened and rotated toward the plane of cleavage. The common orientation of S_{1} in both fine- and coarse-grained lithologies, along with the refraction of S_{1} between the different lithologies, indicate the spaced cleavage in coarse-grained rocks in the Miller Cove thrust sheet is related to S_{1} that has developed in finer-grained lithologies.

$\mathrm{S}_{1 \mathrm{a}}$ (pressure-solution cleavage)

Fine-grained rocks in the Miller Cove thrust sheet locally exhibit a secondary stylolitic disjunctive spaced cleavage $\left(\mathrm{S}_{1 \mathrm{a}}\right)$ (Powell, 1979) formed by pressure solution. This $S_{1 \mathrm{a}}$ cleavage appears as thin dark bands $(<0.5 \mathrm{~mm})$ that are spaced 0.1 cm to 1.0 cm apart (Fig. II-12A), and was recognized nearby to the southwest by Carter (1994). This pressure-solution cleavage is best observed microscopically. When observed mesoscopically, these surfaces generally dip moderately to the northwest (Fig. III-12B). To the southwest and northeast of the study area, Carter (1994) and Geddes (1995) observed pressure-solution cleavage dipping moderately to steeply to the northwest and southeast. This pressure-solution cleavage ($\mathrm{S}_{1 \mathrm{a}}$) is moderately coherent, and rocks

Figure III-12. Characteristics of $S_{1 a}$ (pressure solution) cleavage in the Miller Cove thrust sheet. (A) Enlarged negative image (from thin section) of pressure-solution ($\mathrm{S}_{1 \mathrm{a}}$) cleavage in banded metasiltstone in the Miller Cove thrust sheet. Pressure-solution ($\mathrm{S}_{1 \mathrm{a}}$) cleavage is defined by the white lines suborthogonal to bedding $\left(\mathrm{S}_{0}\right)$ and at acute angles to slaty $\left(\mathrm{S}_{1}\right)$ cleavage. Station BRF-590, Tobe Creek, Bald River Falls 7.5-minute quadrangle. Field of view is approximately 7 cm . (B) Lower-hemisphere equal-area projection of 7 poles to $S_{1 \mathrm{a}}$ (pressure solution) cleavage.

(A)

(B)
usually do not part along this surface. Opaque and other insoluble minerals accumulated along these $S_{1 a}$ surfaces, suggesting that $S_{1 \mathrm{a}}$ cleavage formed by a pressure-solution mechanism. This pressure-solution cleavage is distinguished from bedding, and cleavage-parallel pressure-solution selvages by cross-cutting relationships (Fig. III-12A). $S_{1 a}$ is predominantly oriented suborthogonal to S_{0} in fold hinges, and usually overprints S_{1}. The relationship between $S_{1 a}$ and S_{1} is not totally clear. Normally, $S_{1 a}$ overprints and deforms S_{1}, but occasionally S_{1} deforms $S_{1 a}$. Carter (1994) observed reorientation of recrystallized clay minerals into parallelism with $S_{1 a}$, suggesting that the $S_{1 a}$ formed coevally with S_{1} and possibly continued afterwards.

S_{2} (crenulation cleavage)

S_{2} is a zonal crenulation cleavage (Powell, 1979) that deforms S_{1} and is developed in the fine-grained rocks of the Miller Cove thrust sheet. This cleavage is characterized by 0.1 to 1.0 cm -thick bands that deform S_{1} surfaces (Fig. III-13A). The axial surfaces of these crenulations dip both to the southeast and northwest (Fig. III-13B), and have hinges that plunge gently to the northeast and southwest (Fig. III-13C). These crenulations are interpreted to have formed by buckling.

The relationship between crenulation cleavage $\left(\mathrm{S}_{2}\right)$ and F_{2} is not clear. They are interpreted to be related because they both deform S_{1} and have similar axial plane and hinge orientations (compare Figs III-7B, III-7C, III-13B, III-13C). S_{2} and F_{2} also occur near each other in deformed Wilhite metasiltstones near the Oconaluftee fault. Crenulation cleavage $\left(\mathrm{S}_{2}\right)$ is distinguished from F_{2} folds by morphology (compare Figs. III-7A, III-13A). F_{2} folds are more kinked and chevron-like, whereas S_{2} surfaces are more subtle, with longer wavelengths and smaller amplitude than F_{2} folds. Cohesion across the crenulated surfaces is strong until after intense weathering, when the rocks preferentially part along these surfaces. Since S_{2} cleavage is interpreted to be related to

Figure III-13. Characteristics of S_{2} (crenulation) cleavage in the Miller Cove thrust sheet. (A) Crenulation $\left(\mathrm{S}_{2}\right)$ cleavage in banded metasiltstone of the Wilhite Formation near the Oconaluftee fault. Station BRF-840, Tellico River, Bald River Falls 7.5-minute quadrangle. (B) Lower-hemisphere equal-area projection of $13 \mathrm{~S}_{2}$ poles to axial surfaces. (C) Lower-hemisphere equal-area projection of $13 \mathrm{~S}_{2}$ axes.

(A)

(B)

(C)
F_{2} folds, by analogy it is inferred that S_{2} postdates $S_{1 a}$.

S3 (slaty cleavage)

A S_{3} cleavage is locally developed in the Great Smoky thrust sheet. This cleavage formed in fine-grained siltstone and shale of the Sandsuck Formation, and generally dips moderately to the southeast with a great circle orientation of $31487^{\circ} \mathrm{N}$ and corresponding β pole with an orientation of 2243° (Fig. III-14). S3 cleavage is axial-planar to F_{3} folds in the Great Smoky thrust sheet. A moderate to strong spaced cleavage is also locally developed in the fine-grained rocks of the Great Smoky thrust sheet. To the southwest of this study area, Carter (1994) observed pencil structures related to a spaced cleavage higher in the stratigrapic sections of the Sandsuck Formation. These pencil structures were not observed in the lower stratigraphic sections of the Sandsuck Formation in this study.

Slaty cleavage $\left(S_{3}\right)$ in the Great Smoky thrust sheet is similar to slaty cleavage $\left(S_{1}\right)$ in the Miller Cove thrust sheet. S_{3} in the Great Smoky thrust sheet has similar orientation (compare Figs. III-10B and III-14), weathering characteristics, and cleavageforming mechanisms. Cohesion is weak along weathered S_{3} surfaces resulting in flat chips of siltstone and shale similar to those in the Miller Cove thrust sheet. Spaced pressure-solution selvages occur along S_{3} and contain iron oxide residues and weakly aligned clay minerals. The primary mechanism of cleavage formation appears to be related to pressure solution (Carter, 1994; this study).

Joints and veins

Joints and veins occur throughout the study area. These structures transect bedding and all other structures except for late-stage brittle faults, which deform veins in many instances. Joints and veins are prominent in the fine-grained metasiltstone and slate

Figure III-14. Lower-hemisphere equal-area projection of 18 poles to S_{3} (slaty cleavage) in Great Smoky thrust sheet.

lithologies, and are very common in the coarse-grained sandstone and conglomerate (see Chapter IV, joint section, for discussion of joint orientation). Drainage is frequently joint controlled. Portions of a strongly incised drainage can flow tens of meters along a single joint surface. Spacing between joints and veins are variable. On the average, spacing between joint and vein sets range from 0.5 to 1.5 m . The aperture of joints and thickness of vein sets are also variable. Spacing ranges from less than 1.0 mm for most joints, and averages approximately 0.5 m for veins. Veins are mostly filled with quartz and minor amounts of carbonate. Gold-bearing quartz veins occur in the metasiltstone in the southeastern portion of study area near Coker Creek (Hale, 1974).

Structural chronology of the western Blue Ridge in southeastern Tennessee

Rocks of the Ocoee Supergroup that were deposited along the Laurentian margin were initially deformed by the Ordovician Taconic orogeny (Fig. III-15). Early in this event, the rocks of the western Blue Ridge were deformed by the Rabbit Creek, Line Springs, Dunn Creek, and Greenbrier faults, and by folds related to the emplacement of these structures. During the metamorphic event accompanying this orogeny, western Blue Ridge rocks were synchronously metamorphosed and regionally folded. The resulting Barrovian metamorphism increases from chlorite-grade in the western Blue Ridge to sillimanite-grade to the east in the central Blue Ridge. In the western Blue Ridge Foothills belt in southeastern Tennessee, the Taconic metamorphic event (up to biotite grade) initiated the development of open to closed 1st- and higher-order F_{1} folds, axial-planar slaty cleavage $\left(S_{1}\right)$, and pressure-solution cleavage ($\mathrm{S}_{1 \mathrm{a}}$) (Fig III-15). The pressure-solution cleavage ($\mathrm{S}_{1 \mathrm{a}}$) may have developed coevally with the formation of F_{1} folds and slaty cleavage $\left(S_{1}\right)$ during the waning stages of this event. Taconian metamorphism and related structures account for most of the deformation preserved in the rocks of the western Blue Ridge Foothills in southeastern Tennessee.

Figure III-15. Chronology of orogenic events and related structures of the western Blue Ridge in southeastern Tennessee (modified from Carter, 1994).

The second orogenic event to deform the rocks of the western Blue Ridge was the late Paleozoic Alleghanian orogeny. Structures related to this orogeny exhibit brittle deformation attributed to the emplacement of the Blue Ridge megathrust sheet, which accounts for the extensive foreland fold-thrust belt in the central and southern Appalachians. Evidence for this orogeny includes development of the Blue Ridge fault system along the entire length of the Laurentian margin, westward movement of the Blue Ridge-Piedmont megathrust sheet onto the Laurentian platform, and faulted Mississippian rocks in the footwall of the Great Smoky fault. In southeastern Tennessee, emplacement of these brittle faults initiated the development of F_{2} kink folds and a local crenulation cleavage $\left(\mathrm{S}_{2}\right)$. These structures are interpreted to be Alleghanian because they deform regional slaty cleavage $\left(S_{1}\right)$ (Fig. III-15). Alleghanian brittle faults include the Rabbit Creek (reactivated premetamorphic fault), Oconaluftee, Miller Cove, Maggies Mill, and Great Smoky faults. These structures clearly transect and deform the older pervasive Taconian structures. The emplacement of the Maggies Mill and Great Smoky faults is interpreted to have resulted in the formation of F_{3} folds and a local slaty cleavage $\left(\mathrm{S}_{3}\right)$ that is axial planar to these folds. Alternatively, it is possible F_{3} folds and related axial planar slaty cleavage $\left(\mathrm{S}_{3}\right)$ formed during the Taconian orogeny, because of the similar orientations between F_{1} folds and S_{1} (slaty) cleavage in the Miller Cove thrust sheet and F_{3} folds and S_{3} (slaty) cleavage in the Great Smoky thrust sheet (compare Figs. III-6, III-8, III-10, III-14). Additionally, finite-strain measurements in sandstones near these brittle structures record relatively high strains. During the final emplacement of the frontal Blue Ridge thrust sheets, Valley and Ridge footwall strata beneath the Blue Ridge megathrust sheet were thrust into duplexes, and western Blue Ridge hanging wall rocks were gently folded into F_{4} folds.

Strain analysis

Recent studies that have attempted to quantify western Blue Ridge strain in eastern Tennessee were conducted by Lewis (1988) and Walters (1988), using the $\mathrm{R}_{\mathrm{f}} / \phi$ method (Ramsay, 1967; Dunnet, 1969; Dunnet and Siddans, 1971; Lisle, 1977; Lisle, 1985). Lewis (1988) used quartz grains as strain markers from 17 samples of the Thunderhead Sandstone (Great Smoky Group) in the Greenbrier thrust sheet near Wear Cove (Table III-2). He reported $\mathrm{R}_{\mathrm{xy}}, \mathrm{R}_{\mathrm{xz}}$, and R_{yz} values between 1.11 and 3.44 with means and standard deviations of $1.62 \pm 0.34,2.32 \pm 0.54$, and 1.44 ± 0.26, respectively. Lewis (1988), using quartz grains as strain markers, recognized that some strain ellipsoids associated with these strain values were oriented subparallel to the Greenbrier fault, and concluded these are related to the emplacement of the Greenbrier fault. Other ellipsoids are possibly related to later thrusting and deformation of the Greenbrier fault. Lewis (1988) concluded that the ellipsoids recorded superimposed strain from the initial emplacement and later deformation of the Greenbrier fault. Walters (1988) studied the relationships between the Greenbrier, Rabbit Creek, and Great Smoky faults near Cades Cove. He used quartz grains as strain markers, and analyzed eight samples of "Cades" and Elkmont Sandstones (Great Smoky Group). Walters (1988) reported R_{xz} and R_{yz} values between 1.20 and 4.60 with means and standard deviations of 2.56 ± 1.09 and 2.24 ± 0.82, respectively (Table III-2). A $R_{x y}$ value of 1.05 was obtained from one sample. Walters (1988) reported comparatively low strains in the Elkmont Sandstone (R_{xz} of 1.57 ± 0.13) relative to the "Cades" Sandstone (R_{xz} of 2.94 ± 1.16), and concluded that the Elkmont Sandstone is the upright anticlinal backlimb of a fold nappe that exposes "Cades Sandstone" on the overturned forelimb. Walters (1988) interpreted that an overturned nappe developed in the hanging wall of the Rabbit Creek fault after the emplacement of the Greenbrier fault. Walters (1988) also concluded that the measured finite strains are the final product of superimposed incremental strains associated with the complex
Table III-2. Western Blue Ridge strain analysis.

Rock unit	Thrust sheet	$\mathbf{R}_{\text {xy }}$	$\mathbf{R}_{\mathbf{x} \boldsymbol{z}}$	$\mathrm{R}_{\mathbf{y z}}$	Method	Reference
Thunderhead Sandstone	Greenbrier	1.62	2.32	1.44	$\mathrm{R}_{\mathrm{f}} / \boldsymbol{\phi}$	Lewis, 1988
Elkmont Sandstone "Cades" Sandstone	Greenbrier Rabbit Creek	1.05	2.56	2.24	$\mathrm{R}_{\mathrm{f}} / \boldsymbol{\phi}$	Walters, 1988
Thunderhead Sandstone and rocks of Webb Mountain Roaring Fork Sandstone Shields, Wilhite, and Sandsuck Formations	Greenbrier Dunn Creek Miller Cove	1.14 1.25	$\begin{aligned} & 1.33 \\ & 1.53 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.23 \end{aligned}$	$\begin{gathered} \mathrm{R}_{\mathrm{f}} / \phi \\ \text { normalized Fry } \end{gathered}$	Connelly, 1993
Sandsuck Formation Wilhite and Dean Formations	Great Smoky and Maggies Mill Miller Cove	$\begin{aligned} & 1.12 \\ & 1.23 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 1.24 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 1.52 \end{aligned}$	$\begin{gathered} \mathrm{R}_{\mathrm{f}} / \phi \\ \text { normalized Fry } \end{gathered}$	Carter, 1994
Sandsuck Formation Wilhite and Dean Formations Dean Formation	Great Smoky Miller Cove Rabbit Creek	$\begin{aligned} & 1.33 \\ & 1.61 \end{aligned}$	$\begin{aligned} & 1.71 \\ & 2.27 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.43 \end{aligned}$	$\begin{gathered} \mathrm{R}_{\mathrm{f}} / \phi \\ \text { normalized Fry } \end{gathered}$	This study

structural history of the Cades Cove region.
In the Great Smoky Mountains National Park region, Connelly (1993) analyzed 69 sandstone samples from various Ocoee Supergroup units within three premetamorphic thrust sheets south of English Mountain. He employed both $\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry methods (Fry, 1979; Erslev, 1988). Using the $\mathrm{R}_{\mathrm{f}} / \phi$ method, Connelly (1993) recorded $R_{x y}, R_{x z}$, and $R_{y z}$ values between 1.01 and 1.79 with means and standard deviations of $1.14 \pm 0.11,1.33 \pm 0.16$, and 1.17 ± 0.08, respectively (Table III-2). The normalized Fry method yielded $\mathrm{R}_{\mathrm{xy}}, \mathrm{R}_{\mathrm{xz}}$, and R_{yz} values between 1.03 and 3.24 with means and standard deviations of $1.25 \pm 0.24,1.53 \pm 0.28$, and 1.23 ± 0.11, respectively (Table III-2). Both methods reveal an increase in strain values toward the southeast into the hinterland, with strain values for the Fry method typically 5 to 20 percent greater than those determined by the $\mathrm{R}_{\mathrm{f}} / \phi$ method. The large strain values of the normalized Fry method suggest at least some strain was inhomogeneously concentrated in the matrix (Connelly, 1993), or samples were collected near faults. Using a strain factorization technique (Ramsay and Huber, 1983; Kligfield and others, 1984) that has been proven as a viable modeling technique in the Appalachian foreland (Couzens and others, 1993), Connelly (1993) attempted to model kinematically the deformation along the hanging wall flat-and-ramp portions of the thrust sheets. Unfortunately, the strain factorization technique failed to predict consistently the observed finite strains in these western Blue Ridge thrust sheets.

Southwest of the study area, Carter (1994) analyzed nine coarse-grained sandstone and granule conglomerate samples from the Great Smoky, Maggies Mill, and Miller Cove thrust sheets, using both $\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry methods (Dunnet, 1969; Fry, 1979; Peach and Lisle, 1979; Erslev, 1988). Carter (1994) also measured the long, intermediate, and short axes of pebbles from an exposure, and plotted them on a Flinn diagram (Flinn, 1962). $\mathrm{R}_{\mathrm{xy}}, \mathrm{R}_{\mathrm{xz}}$, and R_{yz} values from the $\mathrm{R}_{\mathrm{f}} / \phi$ method range between 1.05 and 1.63 with means and standard deviations of $1.12 \pm 0.05,1.22 \pm 0.14$, and $1.37 \pm$
0.18 , respectively (Carter, 1994) (Table III-2). Using the normalized Fry method, Carter (1994) reported $\mathrm{R}_{\mathrm{xy}}, \mathrm{R}_{\mathrm{xz}}$, and R_{yz} values between 1.03 and 1.78 , with means and standard deviations of $1.23 \pm 0.13,1.24 \pm 0.12$, and 1.52 ± 0.17, respectively (Table III-2). Measured quartz pebbles from conglomerates yielded $R_{x y}, R_{x z}$, and $R_{y z}$ values of $1.57 \pm$ $0.31,1.75 \pm 0.45$, and 2.71 ± 0.8, respectively. Strain values from the $\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry methods and measured pebbles fall within the field of apparent flattening on the Flinn diagram (Carter, 1994). Carter's (1994) data and conclusions are consistent with strain measurements from previous studies north of the Little Tennessee River (Lewis, 1988; Walters, 1988; Connelly, 1993). Carter (1994) concluded that strain increases towards the southeast with no correspondence of the X / Y plane to regional slaty cleavage, because of non-coaxial incremental strains produced during the F_{2} event, or from a strain event that developed prior to regional F_{2} deformation. Carter (1994) suggested that, because strain magnitudes and orientations are similar to those in the Great Smoky Mountains, the strain history may be the result of one period of pre- to synmetamorphic deformation rather than a superposition of polyphase strain events.

The purpose of this strain analysis study is to determine the amount of internal strain in coarse-grained sandstone and conglomerate of the Walden Creek and Great Smoky Groups in southeastern Tennessee using both the $\mathrm{R}_{\mathrm{f}} / \phi$ (Dunnet, 1969; Peach and Lisle, 1979) and normalized Fry (Fry, 1979; Erslev, 1988) methods. The importance of this study is the contribution of strain data to the existing set of strain data for the western Blue Ridge in southeastern and eastern Tennessee. The results of this study are compared with strain studies to the northeast in the Great Smoky Mountains where major premetamorphic faults are abundant, and to the southwest where predominantly synmetamorphic folds are exposed. Additional strain analysis of samples within reactivated premetamorphic structures, such as the Rabbit Creek thrust sheet, may provide insight into the polyphase deformational history of the western Blue Ridge.

Methodology

Ten oriented samples of coarse-grained Wilhite sandstone and Dean graywacke from the Great Smoky and Miller Cove thrust sheets were collected for strain analysis (Fig. III-16). These samples were oriented in the field with respect to bedding with three mutually perpendicular thin sections (parallel to bedding, perpendicular to bedding, and perpendicular to strike) cut from each sample. Modal analyses were performed to estimate the amount of quartz, feldspar, and matrix in the samples (Appendix B). Thin sections placed in a Beseler 45MX enlarger produced large negative photographs for measurements. Approximately 200 quartz grain boundaries in these photographs were digitized using a Kurta Model 12X17 digitizing tablet and associated Pen works software for the Apple Macintosh computer, and input into strain software developed by Adolph Yonkee (Weber State) for the Macintosh computer. $\mathrm{R}_{\mathrm{f}} / \phi$ plots using methods developed by Dunnet (1969) and Peach and Lisle (1979), and normalized Fry plots using methods developed by Fry (1979) and Erslev (1988) were also generated with Yonkee's programs. The orientation and magnitude of the strain ellipse for each thin section (three per sample) were determined for both the $\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry data sets. For each method, the three ellipses for each sample were used to calculate the orientation and magnitude of the strain ellipsoid for each sample using a method described by Owens (1984).

Additionally, 75 quartz pebbles from an exposure of Dean Formation conglomerate along Forest Service Trail 126A to Basin Gap (station BRF-575, Bald River Falls 7.5-minute quadrangle) were collected and measured for plotting on a Flinn diagram. These pebbles were oriented with their long and intermediate axes rotated from the bedding plane toward the cleavage plane, suggesting that the observed shapes of the pebbles were the result of tectonic strain modifying original depositional shape. The

Figure III-16. Location of samples used for strain analysis.

Geologic abbreviations: BMF-Bullet Mountain fault; ES-Epperson synclinorium; GRAGrindstone Ridge anticlinorium; GSF-Great Smoky fault; HBF-Hunt Branch fault; KHAKirkland Hollow anticlinorium; MMF-Maggies Mill fault; MCF-Miller Cove fault; OFOconaluftee fault; PRA-Payne Ridge anticlinorium; RCF-Rabbit Creek fault; TMATellico Mountain anticlinorium; TMF-Tellico Mountain fault; TPS-Tellico Plains synclinorium; U-upthown fault block; D-downthrown fault block.

Geographic abbreviation: TP-Tellico Plains.

three principal axes of each pebble were measured, and the ratios of the principal axes were calculated to determine Flinn's (1962) k. These ratios were then plotted on a Flinn diagram for graphical analysis.

Results of study

The strain analysis of coarse-grained rocks in the study area is consistent with previous strain analyses of coarse-grained lithologies in the Ocoee Supergroup northeast and southwest of the study area. $\mathrm{R}_{\mathrm{f}} / \phi$ method results in $\mathrm{R}_{\mathrm{xy}}, \mathrm{R}_{\mathrm{xz}}, \mathrm{R}_{\mathrm{yz}}$ ratios ($\mathrm{X}>\mathrm{Y}>\mathrm{Z}$) between 1.05 and 2.30 with means and standard deviations of $1.33 \pm 0.19,1.71 \pm 0.26$, and 1.30 ± 0.16, respectively (Table III-2; Appendix C). $\mathrm{R}_{\mathrm{f}} / \phi$ values generally increase in magnitude to the southeast in the direction of increasing metamorphic grade, and near postmetamorphic brittle faults (Fig. III-17; Plate III). The orientations of the principal strain axes are variable, but general trends are recognized: X axes generally parallel strike, Y axes are normal to strike and parallel to transport direction, and Z axes generally plunge moderately northwest (Fig. III-18A). The orientation of the Y axes is highly variable. Seven of the ten R / ϕ values fall within the field of apparent constriction on a Flinn diagram (Fig. III-19A). Half of the $\mathrm{R}_{\mathrm{f}} / \phi$ values reveal minimal constriction and flattening.

Strain ratios ($\mathrm{R}_{\mathrm{xy}}, \mathrm{R}_{\mathrm{xz}}, \mathrm{R}_{\mathrm{yz}}$) determined by the normalized Fry method range between 1.11 and 3.20 with means and standard deviations of $1.61 \pm 0.26,2.27 \pm 0.35$, and 1.43 ± 0.08, respectively (Table III-2; Appendix C). Because of the amount of matrix material and the lack of consistent packing of quartz grains, only seven of the ten samples were analyzed. Strain ratios from the normalized Fry method also increase to the southeast and near fault zones (Fig. III-20). Orientation of the principal axes from the normalized Fry method, although variable, is similar to the orientations obtained from the $\mathrm{R}_{\mathrm{f}} / \phi$ method. The X and Z axes are generally parallel and normal to regional strike,

Figure III-17. X / Y axial ratios as determined by the $\mathrm{R}_{\mathrm{f}} / \phi$ method. Trend of the X axis is indicated for each ellipse. Interpretive Flinn diagram shows progressive deformation to the southeast.

Geologic abbreviations: BMF-Bullet Mountain fault; ES-Epperson synclinorium; GRAGrindstone Ridge anticlinorium; GSF-Great Smoky fault; HBF-Hunt Branch fault; KHAKirkland Hollow anticlinorium; MMF-Maggies Mill fault; MCF-Miller Cove fault; OFOconaluftee fault; PRA-Payne Ridge anticlinorium; RCF-Rabbit Creek fault; TMATellico Mountain anticlinorium; TMF-Tellico Mountain fault; TPS-Tellico Plains synclinorium; U-upthown fault block; D-downthrown fault block.

Geographic abbreviation: TP-Tellico Plains.

Figure III-18. Lower-hemisphere equal-area projections of strain ellipsoid axes. See Appendix C for axes data. (A) $\mathrm{R}_{\mathrm{f}} / \phi$ method. (B) normalized Fry method.

Figure III-19. Flinn diagram of R_{f} / ϕ and normalized Fry strain values in each thrust sheet. (A) R_{f} / ϕ values. (B) normalized Fry values.

y/z
O Great Smoky thrust sheet
(A)

Miller Cove thrust sheet
Normalized Fry values

- Rabbit Creek thrust sheet

(B)

Figure III-20. X/Y axial ratios as determined by the normalized Fry method. Trend of the X axis is indicated for each ellipse. Interpretive Flinn diagram shows progressive deformation to the southeast.

Geologic abbreviations: BMF-Bullet Mountain fault; ES-Epperson synclinorium; GRAGrindstone Ridge anticlinorium; GSF-Great Smoky fault; HBF-Hunt Branch fault; KHAKirkland Hollow anticlinorium; MMF-Maggies Mill fault; MCF-Miller Cove fault; OFOconaluftee fault; PRA-Payne Ridge anticlinorium; RCF-Rabbit Creek fault; TMATellico Mountain anticlinorium: TMF-Tellico Mountain fault; TPS-Tellico Plains synclinorium; U-upthown fault block; D-downthrown fault block.

Geographic abbreviation: TP-Tellico Plains.

respectively. Orientation of the Y axes is generally parallel to transport direction (Fig. III18B). Six of the seven normalized Fry values fall in the field of apparent flattening on a Flinn diagram with one of those values revealing minimal constriction (Fig. III-19B).

Two assumptions are required for the measurement of pebbles to yield simple finite strain ratios. These assumptions include: original sphericity of the pebble before deformation, and minimal loss of the pebble volume due to pressure solution. Nearly spherical pebbles are rare but have been observed in Wilhite sandstone. Additionally, the majority of quartz pebbles observed were rotated from the bedding plane and toward the plane of cleavage. The effects of pressure solution on most pebbles are negligible.

The principal axes of 75 quartz pebbles oriented parallel to regional slaty cleavage record mean $R_{x y}, R_{x z}$, and $R_{y z}(X>Z>Y)$ values of $1.32 \pm 0.18,2.22 \pm 0.39$, and $1.70 \pm$ 0.29 , respectively (Appendix C). When plotted on a Flinn diagram, 88 percent of quartz pebbles fall within the field of apparent flattening (Fig. III-21).

Discussion of results

Two values of strain for (seven out of ten samples) each sample(s) were generated from the $\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry methods. The $\mathrm{R}_{\mathrm{f}} / \phi$ method describes strain based on axial ratios and orientation of grains (grain shape), while the normalized Fry method creates a graphical estimate of strain based on the distribution of grain centers. The normalized Fry method was used for only seven of the ten samples, because of the large amount of matrix material and subsequent lack of closely packed quartz grains in the three unused samples. To determine which method yielded the best results, fabric elements and microstructures of each sample in each thrust sheet were analyzed (Table III-3). Fabrics observed in the samples include a depositional fabric, a tectonic fabric, or a combination of both. Other important considerations for determining the fabric of the sample was the packing of quartz grains, and amount of matrix material present in the

Figure III-21. Flinn diagram of 75 flattened quartz pebbles from Basin Gap, station BRF-575, Bald River Falls 7.5-minute quadrangle.

Quartz pebbles

Table III-3. Microstructural anaylsis of strain samples.

thrust sheet	statigraphic unit	sample	fabrics	microstructures	comments*

[^1]samples. If the sample was grain supported, it was considered to have closely packed quartz grains, where grain boundaries were in contact with each other. The determination of whether deformation was partitioned in the matrix or in the quartz grains was also an important factor in determining which strain method was more reliable. If deformation was concentrated in the quartz grains, the sample was considered to have a prominent tectonic fabric. These samples contained deformed quartz grains. Matrix-supported samples with relatively unstrained quartz grains were interpreted as lacking a tectonic fabric. These samples were considered to have a predominantly depositional fabric. Tectonic microstructures observed in quartz in coarse-grained lithologies included sweeping and patchy undulatory extinction, fluid inclusion planes, deformation lamellae, sutured and serrated grain boundaries, intragranular fractures, and transgranular stylolites. These microstructures are characteristic of low-grade metamorphic rocks (Groshong, 1988; Knipe, 1989; Lloyd and Knipe, 1992; Onasch and Dunne, 1993), and were produced by deformation mechanisms including dislocation glide, dislocation creep, pressure-solution, and microfracturing. The strain ratios of the three ellipses generated by the $\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry method for each sample may not be consistent with the strain ratios of the principal axes of the strain ellipsoid as calculated using Owens (1984) method. The lack of consistency between ellipses and ellipsoid occurs when Owen's (1984) method for calculating the ellipsoid fails to achieve similarity of results between the six calculation attempts. In these situations the strain ratios of the three ellipses are important because of their consistency with the fabrics present in the thin-section photographs from which the ellipses were calculated. Samples that have strain ellipse values inconsistent with the principal axes of the strain ellipsoid are denoted in Appendix C by an asterisk.
$\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry strain values are relatively low in the Great Smoky thrust sheet. The two samples (TP-256 and TP-1388) analyzed from this thrust sheet exhibit
both depositional and tectonic fabric components. Sample TP-1388 is located in the quartz-rich coarse-grained lithologies in the lower portions of the Sandsuck Formation, and in close proximity to the Great Smoky fault. Sample TP-256 is located higher in the stratigraphic sequence where lithologies are finer grained and often interbedded with shale. Sample TP-256 exhibits a better depositional fabric than TP-1388: TP-1388, however, contains a more pronounced tectonic fabric and has closely packed quartz grains (Table III-3). Because of the amount of matrix material and the predominantly depositional fabric in TP-256, the normalized Fry method was not used for this strain analysis. In both samples, the $\mathrm{R}_{\mathrm{f}} / \phi$ method provides the most reliable results because of this method's dependency on grain shape. Microstructures observed in both samples include sweeping undulatory extinction, sutured grain boundaries, fluid-inclusion planes, and intragranular fractures (Fig. III-22A, III-22B). Of the two samples analyzed in this thrust sheet, only one set of ellipses (TP-1388; $\mathrm{R}_{\mathrm{f}} / \phi$) show any consistency with the strain ellipsoid. This sample (TP-1388) has a pronounced tectonic fabric and closely packed quartz grains. Sample TP-1388 has higher strain values than sample TP-256, and is probably due to sample TP-1388's closer proximity to the Great Smoky fault (Fig III-16, Appendix C). Much of the strain in sample TP-256 is probably concentrated in the matrix. The parallel orientation of the X axes to regional strike may also suggest a component of diagenetic compaction (Fig. III-18; Appendix C).

Strain values in the Miller Cove thrust sheet were obtained from seven samples collected on the upright backlimb of anticlines throughout this thrust sheet (Fig. III-16). Five of these samples were collected from the Wilhite Formation (Walden Creek Group) and two from the Dean Formation (Great Smoky Group). Fabrics present in the Wilhite Formation generally exhibit a prominent depositional fabric along with a locally prominent tectonic fabric. Generally, these samples are matrix supported and lack closely packed grains, making them unsuitable for normalized Fry analysis (Table III-3).

Figure III-22. Microstructures in the Great Smoky thrust sheet. (A) Enlarged inverted negative image (from thin section) of microstructures from sample TP-256, Conasauga Creek, Tellico Plains 7.5 -minute quadrangle. Field of view is approximately 2 cm . (B) Enlarged inverted negative image (from thin section) of microstructures from sample TP1388, Tellico River, Tellico River 7.5-minute quadrangle. Field of view is approximately 2 cm .

(A)

Samples from the Dean Formation also reveal a depositional and local tectonic fabric, but are more poorly sorted and packed than the Wilhite samples (Fig. III-23A, III-23B). Microstructures in the Miller Cove thrust sheet include patchy and sweeping undulatory extinction, sutured and serrated grain boundaries, subgrains, deformation laminae, intragranular fractures, and pressure solution (Fig. III-23A, III-23B). Here, as in the Great Smoky thrust sheet, normalized Fry analysis yields strain values higher than values obtained from the $\mathrm{R}_{\mathrm{f}} / \phi$ method. Both $\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry analyses result in strain values that increase to the southeast, with some relatively large strains near faults (Figs. III-17, III-20; Appendix C; Plate III). The $\mathrm{R}_{\mathrm{f}} / \phi$ method is interpreted to be a more reliable method for determining strain in this thrust sheet, because strain values generated from this method better reflect grain shape and apparent strains observed in the thin section photos. The large strain values associated with the normalized Fry method may be related to deformation partitioned in the matrix. Because of the high amount of matrix material and the lack of packed grains, two samples (TP-51 and TP-1355) were not analyzed by the normalized Fry method. Of the samples analyzed in the Miller Cove thrust sheet, the ellipses of samples TP-963, TP-1355 ($\mathrm{R}_{\mathrm{f}} / \phi$), and TP-1014 (normalized Fry) are not consistent with the strain ellipsoid. For these samples, the ellipses generated from the $\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry method should be also considered along with the strain ellipsoid, because the strain ellipses more closely resemble the apparent strain observed in the thin-section photographs.

Strain values from the Rabbit Creek thrust sheet are analyzed from one sample from the Dean Formation. (Fig. III-16). This sample exhibits a pronounced tectonic fabric and closely packed quartz grains. Microstructures include sweeping undulatory extinction, sutured grain boundaries, and deformation laminae (Fig. III-24). Strain values for both the $\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry methods are high (Figs. III-17, III-20; Appendix C). The high strain values for this sample are probably the result of the emplacement of the

Figure III-23. Microstructures in the Miller Cove thrust sheet. (A) Enlarged inverted negative image (from thin section) of microstructures from sample TP-133, Tennessee State Highway 68, Tellico Plains 7.5-minute quadrangle. Field of view is approximately 2 cm . (B) Enlarged inverted negative image (from thin section) of microstructures from sample TP-563, Tennessee State Highway 68, Tellico Plains 7.5-minute quadrangle. Field of view is approximately 2 cm .

(A)

(B)

163

Figure III-24. Microstructures in the Rabbit Creek thrust sheet. Enlarged inverted negative image (from thin section) of microstructures from sample TP-710, Tennessee State Highway 68, Tellico Plains 7.5-minute quadrangle. Field of view is approximately 2 cm .

Rabbit Creek and Oconaluftee faults. Strain ellipses generated by the $\mathrm{R}_{\mathrm{f}} / \phi$ method are more consistent with the strain ellipsoid than the strain ellipses generated by the normalized Fry method. For this reason, the $\mathrm{R}_{\mathrm{f}} / \phi$ method is interpreted to be a more reliable measure of the finite strain in this sample.

Strain analysis conclusions

1) Mean strain ratios determined by the R_{f} / ϕ method are $1.33,1.71$, and 1.30, respectively. Strain ratios determined by the normalized Fry method are 10 to 25 percent higher. These ratios are consistent with previous studies in the Great Smoky Mountains National Park region, and in the western Blue Ridge foothills to the southwest of the study area.
2) Strain increases to the southeast in the direction of increasing metamorphic grade, and near late Paleozoic brittle faults. Observed microstructures such as undulatory extinction, deformation lamellae, sutured grain boundaries, stylolites, intragranular fractures, and fluid-inclusion planes are indicative of low-grade metamorphic deformation mechanisms such as dislocation creep, pressure solution, and brittle fracturing.
3) The principal strain axes of the strain ellipsoid are oriented so that X axes are strike parallel, Y axes are parallel to transport direction, and Z axes plunge moderately to the northwest. The $\mathrm{R}_{\mathrm{f}} / \phi$ method yields more reliable results because of the consistent orientations of the strain ellipsoid, and consistent fits of the strain ellipses with the threedimensional strain ellipsoid.
4) Strain analysis ($\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry) suggest that rocks of the western Blue Ridge Foothills in the study area were deformed by at least one strain event.

Chapter IV
 Environmental Assessment of the Sixmile Creek and Rocky Branch Watersheds, Northwest Slope of Waucheesi Mountain

Introduction

The purpose of this chapter is to apply some of the geologic data and information gathered during this study from two watersheds to a hypothetical site environmental assessment for possible residential development (Fig. IV-1; Plate IV). This assessment uses geologic information to distinguish among possible alternative locations for residential development. Geologic variables such as mechanical discontinuities in bedrock, lithologic type, geomorphic features (surficial deposits, slopes, soils), and ground and surface water are considered in this assessment. This area was assessed according to these geologic factors and the potential impact on the local environment related to residential development, such as increased runoff, degradation of water quality, and habitat destruction. Residential development of this area would include the construction of residences, roads, and public utilities (electricity, sewer, water). Several small tracts within the assessment watershed have already been developed, and are located in the northwestern portion of the watersheds.

Methodology

Abstract

A $5.2 \mathrm{~km}^{2}\left(2.1 \mathrm{mi}^{2}\right)$ tract of land was selected along the northwest slope of Waucheesi Mountain between Sixmile Creek and Rocky Branch drainages for evaluation for potential residential development in this portion of southeastern Tennessee (Fig. IV-1; Plate IV). This area was chosen because it is typical in terms of land being developed in this area for both second homes and permanent residences. The geologic mapping portion of this study included description and measurement of lithologic and structural

Figure IV-1. Physiographic units of study area showing location of environmental assessment area. Assessment area is outlined in the southeastern portion of the map. Refer to Figs. II-2, III-1, and Plate I for stratigraphic and structural explanations.

Geologic abbreviations: BMF-Bullet Mountain fault; ES-Epperson synclinorium; GRAGrindstone Ridge anticlinorium; GSF-Great Smoky fault; HBF-Hunt Branch fault; KHAKirkland Hollow anticlinorium; MCF-Miller Cove fault; MMF-Maggies Mill fault; OFOconaluftee fault; PRA-Payne Ridge anticlinorium; RCF-Rabbit Creek fault; TMATellico Mountain anticlinorium; TPS-Tellico Plains synclinorium; U-upthrown fault block; D-downthrown fault block; K-klippe.

Geographic abbreviation: TP-Tellico Plains.

discontinuities (bedding, contacts. cleavage, joints, and faults) between the Sixmile Creek and Rocky Branch drainages (Fig. IV-1; Plate I). The aerial extent of surficial deposits and sulfide-bearing map units are also identified. Slope gradients and stream density are geomorphic factors considered in this assessment.

Bedrock Geology

The environmental assessment site is located in the southeastern portion of the study area along the northwest slope of Waucheesi Mountain (Fig. IV-1; Plate IV). Here the rocks consist of the Great Smoky and Walden Creek Groups, as described in Chapters II and III (Fig. IV-1; Plate I). Lithologic units within the assessment area include graywacke and slate of the Dean Formation (Great Smoky Group), conformably overlain by the metasiltstone of the Wilhite Formation (Walden Creek Group) (Fig. IV-1; Plate I). Approximately 75 percent of the area consists of a graded sequence of granule- to pebblesize conglomerate, graywacke, and slate of the Dean Formation. Numerous mappable slate lenses within the Dean Formation are also exposed in the watersheds. The remaining portions of the assessment area are underlain by Wilhite Formation metasiltstone located in the northwestern portion of the tract.

The regional structure in this portion of southeastern Tennessee is a southeastdipping, southwest-plunging, overturned forelimb related to the first-order Ducktown anticlinorium. Parasitic folds to this larger structure were also indicated by the presence of upright northwest- and southeast-dipping beds. All contacts within this area are interpreted as conformable. Map-scale faults were not observed, and minor faults are difficult or impossible to observe without excavation. Bedding $\left(\mathrm{S}_{0}\right)$ is easily recognized in the graded, coarse-grained lithologies of the Dean Formation. Bedding in the mappable slate lenses is difficult to recognize because of the pervasive slaty cleavage, but is very prominent in the banded metasiltstones of the Wilhite Formation. All of the units are
deformed by regional slaty cleavage $\left(S_{1}\right)$-best developed in the fine-grained lithologiesbut also is present in the coarse-grained lithologies. Joints are common in both fine- and coarse-grained lithologies in the assessment area. These joints are either unfilled, or filled with quartz and calcite.

The fine-grained rocks of the Dean Formation, especially the mappable slate lenses, are the most sulfidic lithologies in the assessment area. The coarse-grained graywacke of the Dean Formation contains considerably lesser amounts of pyrite. The Wilhite Formation metasiltstone and slate also contain small to moderate amounts of locally abundant pyrite.

Rock discontinuities

Discontinuities are any planar structure or surface in a rock mass along which the rock mass may break or separate. Discontinuities are also the primary controlling factor of mass strength and deformability in a rock mass (Johnson and DeGraff, 1988). Bedding planes, lithologic contacts, cleavage, joints, and faults are discontinuities present in the assessment area. Discontinuities can be characterized by orientation, spacing, continuity, separation of discontinuity surface, and thickness and, if present, nature of joint fillings (Johnson and DeGraff, 1988). Strengths of rock masses imparted to a large degree by shear strengths of discontinuity surfaces typically depend on one or more of these characteristics, and are summarized by Bieniawski (1973) and Cording and others (1975) (Johnson and DeGraff, 1988).

The influence of discontinuity orientation on rock mass strength is evident in the slope failures along one or more discontinuities (Johnson and DeGraff, 1988). Hazardous mass-wasting processes may occur as a result of discontinuity or intersection of discontinuities providing a glide plane for the rock mass to move. Spacing of discontinuities also affects the overall rocks mass strength (Johnson and DeGraff, 1988).

Close spacing and extent of discontinuities reduce total strength of the rock mass (Johnson and DeGraff, 1988). The spacing and orientation of discontinuities may also cause wedge failures. Surface characteristics of discontinuities involve three factors: (1) waviness or undulation of the surface, which results in variations in orientation or attitude along a given discontinuity; (2) asperities on the surface of the discontinuity; and (3) physical properties of the material that may fill the space between two bounding surfaces of a discontinuity (Johnson and DeGraff, 1988; Pollard and Aydin, 1988). All these factors contribute to the strength of the rock mass. Where slope stability is involved, the undulatory nature of the surface has a greater influence on a rock mass strength than the asperities on a discontinuity, because asperities are sheared off by movement, resulting in a smoother surface (Johnson and DeGraff, 1988). The amount of separation between joint surfaces and the presence of filling material also have a profound influence on the strength of a jointed rock mass (Johnson and DeGraff, 1988).

The influence of these mechanical discontinuities, combined with topography, vegetation, and climate, is important when considering landslide potential (Varnes, 1984). Landslides are classified as either falls, topples, slides, lateral spreads, or flows (Varnes, 1978). Falls, slides, and flows are the most common landslides. Landslides tilt, shear. and pull apart rock and soil, resulting in destruction of man-made structures, economic losses, and sometimes human casualties. Landslides are caused either by the decreased ability of a slope to resist gravitational forces, an increased effectiveness of gravity acting on a slope, or a combination of these two factors (Varnes, 1958). These causes are important factors in determining slope stability, which represents the balance between driving forces (shear stress) and resisting forces (shear strength). This relationship is expressed as a ratio where slope stability equals shear strength divided by shear stress. Ratios greater than 1 denote slope stability. Ratios of 1 or less theoretically exceed geomorphic thresholds, and slope failures occur (Ritter and others, 1995). Factors that
increase shear stress include: removal of lateral support, addition of mass, earthquakes, regional tilting, removal of underlying support, and lateral pressure. Factors that decrease shear stress include weathering, pore water, and structural features (discontinuities) (Varnes, 1958).

Lithologic discontinuities

In this environmental site assessment, lithologic discontinuities include bedding planes and lithologic contacts. Bedding in Wilhite metasiltstone is recognizable and generally does not form a mechanical discontinuity, even in weathered rock. Bedding in Dean Formation graywacke and slate is coherent where fresh, but where weathered, forms mechanical discontinuities. Lithologic contacts between different rock types also form mechanical discontinuities. These discontinuity may influence the shear strength of the rock mass to a greater extent than some bedding planes, because of the different physical properties associated with the different rock types.

Bedding

Bedding orientations are consistent in the assessment area and dip gently to steeply southeast and northwest with a great circle orientation of $13487^{\circ} \mathrm{S}$ and corresponding β of 4403° (Fig. IV-2A; also see Fig. III-9). In the fine-grained lithologies of the Wilhite Formation, bedding is generally coherent and the likelihood of slope instability related to bedding is low. In the turbiditic Dean Formation, bedding in the coarse- and fine-grained lithologies more readily forms mechanical discontinuities (bedding-parallel fractures) than the more homogeneous fine-grained rocks of the Wilhite Formation. Additionally, in the coarse-grained units, beds are thick, possibly resulting in slope failures that involve blocks of substantial size. Since bedding dips generally to the southeast and the topographic slope dips northwest, landslides in this area are probably

Figure IV-2. Orientation of mesoscopic structures within the Sixmile Creek and Rocky Branch watersheds. (A) Lower-hemisphere equal-area projection of 87 poles to bedding. (B) Lower-hemisphere equal-area projection of 49 poles to slaty cleavage. (C) Lowerhemisphere equal-area projection of 130 poles to joints. Stereoplots include scatter and contoured at 2% per 1% area.

not directly related to bedding, but more commonly to slope-parallel joints. The intersection and combination of bedding and other discontinuities, such as a northwest-dipping joint set, probably influenced slope failure in the watersheds.

Contacts

Lithologic contacts in the watershed are oriented parallel to bedding and are not very coherent when weathered (Fig. IV-1; Plate I). The major lithologic contact in the area is the contact between the overlying Wilhite Formation metasiltstone and the underlying Dean Formation conglomerate and graywacke. Other lithologic contacts in this area are between the conglomerate and graywacke units, and the mappable slate lenses in the Dean Formation. Lithologic changes are frequent in the watersheds, and the different physical properties associated with each rock type vary across the contact. Weathering of these heterogeneous materials may potentially cause slope instability, especially in combination with slope steepness and heavy rainfall.

Tectonic discontinuities

Structural discontinuities observed in the watershed include cleavage, joints, and faults. The dominant discontinuity in the fine-grained lithologies is slaty cleavage $\left(\mathrm{S}_{1}\right)$. Joints are common in all lithologies, but are more prevalent in the fine-grained rocks. No major faults were observed in the assessment area.

Cleavage

Slaty cleavage $\left(S_{1}\right)$ is a major discontinuity in the watershed, and is best developed in the fine-grained lithologies. This discontinuity is consistent in orientation with moderate dip to the southeast with a great circle orientation of $13286^{\circ} \mathrm{S}$ and a corresponding β of 4204° (Fig. IV-2B). Cleavage surfaces weather readily to form excellent
release surfaces, and are involved in both planar and wedge instabilities.

Joints

Joints are common discontinuities in the watersheds in both the metasiltstone lithologies of the Wilhite Formation, and the Dean Formation granule- to pebble-size conglomerate and graywacke. Some of the joints are filled with quartz that welds the walls of fractures together making them very coherent. Gold-bearing quartz veins have been reported in the metasiltstone units, while similar quartz veins (Unaka veins) in the conglomerate and graywacke lack gold (Rove, 1929: Hale, 1974). The quartz veins in the coarse-grained Great Smoky Group lithologies along the northwest slope of the Unicoi Mountains are referred to as the Unaka veins, and were once thought to be gold-bearing (Ashley, 1911).

The most prominent set of joints and quartz veins strike northwest and dip steeply to the northeast and southwest (Fig. IV-2C; Appendix A). Less prominent joint sets and quartz veins are also recognized. One set strikes northeast (parallel to regional strike) and dips steeply to the southeast and northwest, while another set strikes almost east-west and dips steeply to the north and south (Fig. IV-2C: Appendix A). The orientation of joint sets varies, but are generally suborthogonal and subparallel to larger F_{1} fold axes (compare Figs. IV-2C and III-6C). This suborthogonal and subparallel relationship between joints and veins and fold axes indicates the formation of these structures probably occurred coevally. Similar relationships between joints, veins, and axial surfaces were observed to the northeast of the study area by Geddes (1995). The intersection of the different joint and vein sets, combined with the orientation of bedding and cleavage, provide potential surfaces for possible wedge failures and landslides. Additionally, the steepness of topography increases slope instability along these discontinuities.

Faults

No major faults were observed in the assessment area. Small-scale faults and associated fractures may be revealed upon excavation, but should not cause slope stability problems. Small-scale faults within the assessment area have small displacements, and are generally characterized by poorly developed discontinuous fault planes.

Sulfidic zones

Varying sulfide mineral concentrations were observed throughout the assessment area (Appendix B). Generally, the greater concentration of visible pyrite is observed in the black slate lenses in the Dean Formation (Fig. IV-1; Plate I). Microscopic analysis of the coarser-grained graywackes reveals that they also contain pyrite, but the concentrations are less and the pyrite crystals are smaller. Disseminated sulfides are also more common in the fine-grained lithologies. This is important because the smaller disseminated crystals have more surface area and are more readily decomposed to produce acid runoff (Reed and others, 1995). Hale (1974) reported sulfide minerals in host rock and in the vein systems at the Sixmile Creek adit in the assessment area. Excavation and exposure of bedrock that contains as little as 0.5 percent sulfide mineral content, such as pyrite, have the potential to acidify surface water runoff and become hazardous to downstream environments (Byerly and Middleton, 1981; Winchester, 1981; Byerly, 1990; Reed and others, 1995). In order for the development of this area to have a low environmental impact during construction, the handling, treatment, and placement of the sulfidic material must be considered.

Geomorphology

This environmental assessment of the Sixmile Creek and Rocky Branch watersheds lies within the Foothill Belt (Chilhowee Mountain-Walden Creek district) and High

Western Blue Ridge (Unaka Mountains district) geomorphic subsection of the Western Blue Ridge section in southeastern Tennessee (Hack, 1982; Carter and others, 1996). Geomorphic subdivisions are identified and mapped based on similarities or differences in geologic structure, lithology, topography, and geologic history (Thornbury, 1965). Approximately 75 percent of the assessment area lies within the Unaka Mountains district and is underlain by the Dean Formation. The remaining portion of the assessment area lies within the Chilhowee Mountain-Walden Creek district and is underlain by the Wilhite Formation. These districts have similar geologic structure and history, but are differentiated from each other by lithology and the influence of the regional structure on topography.

The terrain within the Unaka Mountains district is rugged and very steep, while the terrain in the Walden Creek district is less rugged and not as steep. The assessment area has a relief of about $2,000 \mathrm{ft}(650 \mathrm{~m})$ with the lowest elevation of $1,560 \mathrm{ft}(480 \mathrm{~m})$ near the confluence of Sixmile Creek and Rocky Branch. The highest elevation is 3,692 $\mathrm{ft}(1,180 \mathrm{~m})$ on Waucheesi Mountain (Plate V). Natural slopes in this region commonly approach 35 degrees with slope increasing to almost 60 degrees near the top of Waucheesi Mountain. Drainage patterns are dendritic and are interpreted to be partly controlled by the trends of joints, cleavage, and bedding.

Surficial deposits

Surficial deposits are important geomorphic features within the watershed that will directly affect residential development include surficial deposits. Surficial deposits include nontransported residual soils, and transported unconsolidated materials. Transported unconsolidated material include alluvium, colluvium, and landslide deposits. Residual soils are ubiquitous within the watersheds and vary in thickness. Mapping these soils was not included in this assessment. Alluvium, colluvium, and landslide deposits
are unconsolidated transported material mapped in the assessment area (Fig. IV-3; Plate IV). Alluvial deposits are more prominent and thicker in the larger drainages in the northwestern portion of the watershed, but are common in smaller drainages throughout the watersheds. Generally, alluvial deposits consist of clay- to cobble-size materials. Colluvial deposits are mostly concentrated at the base of slopes, and consist of clay- to gravel-size material.

Landslide deposits and landslide potential are important features and processes that most characterize the geomorphology within the watersheds. Two large areas within the watersheds consist of transported material by previous landslides, and are located near the headwaters of the Sixmile Creek and Rock Branch drainages. Using the classification of Varnes (1978), the landslides here would be debris slides and debris flows. Debris slides are rapid mass movements initiating along one or more regular to irregular, discrete movement surfaces. They involve primarily soil, vegetation, water, entrapped air, and upper bedrock layers (Varnes, 1978). Debris flows are rapid mass movements with continuous internal deformation (Vames, 1978). Debris slides and flows have been investigated throughout the southern Blue Ridge and were suggested to be triggered by heavy rains (Clark, 1987). Clark (1987) stated that these slides and flows occur in existing hillslope depressions and move downslope with the common movement interface along the bedrock-soil contact. The slide surface is locally identifiable in the upper portions of the valley here as a northwest-dipping joint surface. Slippage and flowage are also common in deep soils. Neary and Swift (1987) presented evidence for rainfall thresholds of more than 125 mm over 3 days triggering landslides in the southern Appalachians. Neary and Swift (1987) also concluded that heavy rainfall, saturated soils, steep slopes, and shallow soils were major factors influencing debris avalanches in western North Carolina. The dangers and consequences of rapid debris slides and flows within the watersheds would create serious hazards to residential development of this area. The

Figure IV-3. Geologic map of the Sixmile Creek and Rocky Branch watersheds. Boundaries of the watersheds and assessment area are indicated by heavy black line. Quaternary deposits are shaded. Contour interval equals 200 feet. See Fig. II-2 and Plate I for stratigraphic explanation.

Geologic abbreviations: Qac-alluvium and colluvium undifferentiated; Qal-alluvium; Qc-colluvium; Zws-Wilhite Formation metasiltstone; Zdg-Dean Formation graywacke and conglomerate; Zds-Dean Formation slate.

possible cause of landsliding within the watersheds is multivariant: steep slopes, combined with orientation of discontinuities, shallow soils, and heavy rainfall events are important factors that influence landsliding in this area.

Conclusions and recommendations

Mechanical discontinuities present in bedrock within the Sixmile Creek and Rocky Branch watersheds include joints, cleavage, bedding, lithologic contacts, and small-scale faults. The intersection of the most prominent discontinuities (joints, cleavage, and bedding) provide potential surfaces for wedge failures and landslides. These mechanical discontinuities decrease the shear strength of the rock mass, which directly affects slope stability. Other factors influencing slope stability include topography, vegetation, and extremely high precipitation events. Evidence for at least two mass movement events are located within the watersheds. Potential for future landslides exist in the same areas as the previous landslides. Steep slopes near the headwaters of Sixmile Creek and Rocky Branch drainages probably represent the areas that may be susceptible to future landslides. The landslides within the watersheds are classified as debris slides and debris flows. Previous investigations in the southern Appalachians suggest that landslides are triggered by constant high rainfall events (Clark, 1987; Neary and Swift, 1987).

From a geological perspective, residential development within the watersheds should be restricted to the lower elevations, but not in hollows or on debris fans. These areas should be underlain by the relatively homogenous Wilhite metasiltstone. Residences should be constructed on the spurs of ridges, and not in hollows or sides of ridges. Additionally, water and sewer lines should not be located in alluvial or landslide debris. During heavy rainfall events, flash floods are common, and landslide potential increases. Inevitably, any roads constructed in these watersheds will be damaged due to flooding
and/or mass movement of unconsolidated materials. Therefore, repeated repairs of these roads becomes a long-term economic issue. Residential development within the watersheds will also inevitably negatively impact the water quality due to possible acidic drainage and sedimentation.

Chapter V

Conclusions

1) Sedimentary and metasedimentary rocks exposed in the study area belong to the Great Smoky and Walden Creek Groups of the Upper Proterozoic Ocoee Supergroup in southeastern Tennessee. Great Smoky Group lithologies are correlated with the Horse Branch Member (oldest) of the Ammons Formation and the Dean Formation, whereas the overlying Walden Creek Group lithologies are correlated with the Wilhite Formation and the Sandsuck Formation (youngest). In addition to these units, unmetamorphosed Paleozoic rocks of the Valley and Ridge are exposed beneath the western Blue Ridge thrust sheet in the study area.
2) The contact between the predominantly coarser-grained Great Smoky Group (Dean Formation) and the predominantly finer-grained Walden Creek Group (Wilhite Formation) is conformable. This contact had been interpreted to be the southern continuation of the Greenbrier fault south of the Great Smoky Mountains National Park. Great Smoky Group lithologies consist of granule- to pebble-conglomerate, graywacke, sandstone, and slate, whereas Walden Creek Group lithologies consist of metasiltstone, sandstone, and carbonate.
3) Six major brittle thrust faults, four generations of folds, and four S-surfaces deform the rocks in the study area. The faults include the Bullet Mountain, Great Smoky, Maggies Mill, Miller Cove, Rabbit Creek, and Oconaluftee faults, and divide the area into four thrust sheets. The Bullet Mountain fault represents the floor thrust of a duplex containing Paleozoic rocks beneath the westem Blue Ridge thrust sheet. The Great Smoky fault is the roof thrust that transported metamorphosed western Blue Ridge rocks
onto unmetamorphosed rocks of the Valley and Ridge, and emplaced Hesse Quartzite (Chilhowee Group) on Groundhog Mountain. The Miller Cove fault thrust chloritegrade, cleaved rocks of the Wilhite Formation onto lower-grade, less-cleaved rocks of the Sandsuck Formation. The Rabbit Creek fault is a reactivated syn- to premetamorphic fault that thrust Great Smoky Group rocks onto Walden Creek Group rocks. The Oconaluftee fault also is a reactivated syn- to premetamorphic fault that juxtaposes rocks of the Dean Formation. The Maggies Mill and Oconaluftee faults are major structures in the Great Smoky and Miller Cove thrust sheets, respectively, and may be out-of-sequence.
4) Rocks in the Miller Cove and Rabbit Creek thrust sheets are deformed by axial-planar Fl folds, chevron-like (kink) F_{2} folds, slaty cleavage $\left(\mathrm{S}_{1}\right)$, pressure-solution cleavage $\left(S_{1 a}\right)$, and a crenulation cleavage $\left(\mathrm{S}_{2}\right)$. Axial-planar F_{1} folds along with slaty cleavage $\left(\mathrm{S}_{1}\right)$ and pressure-solution cleavage $\left(\mathrm{S}_{1 a}\right)$ developed as a result of the metamorphic event during the Taconic orogeny, while chevron-like (kink) F_{2} folds and crenulation cleavage $\left(\mathrm{S}_{2}\right)$ developed as a result of faulting during the Alleghanian orogeny. Rocks in the Great Smoky thrust sheet were deformed by F_{3} folds and by slaty cleavage $\left(S_{3}\right)$, which formed during the Alleghanian orogeny. Alternatively, F_{3} folds and S_{3} (slaty) cleavage may have formed during the Taconian orogeny because of similarity in orientation with F_{1} folds and S_{1} (slaty) cleavage in the Miller Cove thrust sheet. The F_{4} folding event represents gentle folding of the Blue Ridge thrust sheet due to duplexing of Valley and Ridge footwall units.
5) Cross-section construction and line- and area-balanced retrodeformation reveals the following sequence of deformational events for the western Blue Ridge Foothills in southeastern Tennessee: (1) emplacement of the Blue Ridge thrust sheet; (2) formation of
the Foothills dupex; (3) formation of the unnamed duplex; (4) emplacement of the blind thrust; (5) continued displacement along the Great Smoky fault due to duplexing, which resulted in the decapitation of the hanging-wall anticline related to the blind thrust; and (6) emplacement of the Chestuee and Saltville faults, respectively.
6) Strain analysis ($\mathrm{R}_{\mathrm{f}} / \phi$ and normalized Fry methods) suggests that rocks of the western Blue Ridge in the study area were deformed by at least one strain event during the Taconic orogeny. Strain values throughout the study area are relatively low, increasing toward the southeast in the direction of increasing deformation and metamorphic grade, and near late Paleozoic brittle faults.
7) Application of geologic data to an environmental assessment for a hypothetical residential development suggest that slope instabilities exist within the Sixmile Creek and Rocky Branch watersheds. Evidence for slope instabilities includes the recognition of previous landslides, combined with mechanical discontinuity characteristics, topography, vegetation, and climate. Previous landslides are classified as debris slides and debris flows. Development within these watersheds should be concentrated on ridge spurs in the relatively homogenous Wilhite Formation metasiltstones.

References cited

References cited

Ashley, G. H., 1911, The gold fields of Coker Creek, Monroe County. Tennessee:
Tennessee Geological Survey, Resources of Tennessee, v. 1, p. 78-107.
Ausburn, M. P., 1983, Stratigraphy, structure, and petrology of the northern half of the Topton quadrangle, North Carolina [M. S. thesis]: Tallahassee, Florida State University, 174 p.

Bieniawski, Z. T., 1973, Engineering classification of jointed rock masses: Transactions South African Institute of Civil Engineering, v. 15, p. 335-343.

Broadhead, T. W., Hatcher, R. D., Jr., and Costello, J. O., 1991, Tectonic and stratigraphic implications of mid-Paleozoic (?) fossils from the Late Proterozoic (?) Walden Creek Group rocks in the Foothills belt, eastern Tennessee, in Kish, S. A., ed., Studies of Precambrian and Paleozoic stratigraphy in the western Blue Ridge: Carolina Geological Society Guidebook, p. 39-44.

Butler, J. R., 1972, Age of regional metamorphism in the Carolinas, Georgia and Tennessee southern Appalachians: American Journal of Science, v. 272, p. 319333.

Byerly, D. W., 1990, Guidelines for handling excavated acid-producing materials: Federal Highway Administration Special Document D. O. T. FHWA-DF-89-0011, 81 p.

Byerly, D. W., and Middleton, W. M., 1981, Evaluation of the acidic drainage potential of certain Precambrian rocks in the Blue Ridge province: Proceedings of the 32nd Annual Highway Geology Symposium, p. 174-185.

Campbell, M. R., 1899, Description of the Bristol quadrangle (Virginia-Tennessee): U. S. Geological Survey Geologic Atlas, Folio 59, 6 p.

Carter, M. W., 1994, Stratigraphy and structure of a portion of the western Blue Ridge foothills, Polk and Monroe counties, southeast Tennessee [M. S. thesis]: Knoxville, University of Tennessee, 233 p.

Carter, M. W., Martin, S. L., Geddes, D. J., Hatcher, R. D., Jr., Lombardi, C. E., and Costello, J. O., 1993a, Western Blue Ridge tectonics of southeastern Tennessee, northern Georgia, and southwestern North Carolina-Preliminary results, Part I: Structure: Geological Society of America Abstracts with Programs, v. 25, p. A484.

Carter, M. W., Martin, S. L., Geddes, D. J., Broadhead, T. W., Hatcher, R. D., Jr., and Costello, J. O., 1993b, Western Blue Ridge tectonics of southeastern Tennessee, northern Georgia, and southwestern North Carolina-Preliminary results, Part II: Stratigraphy: Geological Society of America Abstracts with Programs, v. 25, p. A-484.

Carter, M. W., Geddes, D. J., Hatcher, R. D., Jr., and Martin, S. L., 1995a, Stratigraphic and structural relationships in the western Blue Ridge of southeastern Tennessee, in Driese, S. G., ed., Guidebook for field trip excursions, Southeast Section, Geological Society of America: University of Tennessee Department of Geological Sciences, Studies in Geology 24, p. 91-128.

Carter, M. W., Geddes, D. J., Hatcher, R. D. Jr., and Martin, S. L., 1995b, Stratigraphic and structural relationships of the Walden Creek group (Ocoee Supergroup), western Blue Ridge foothills, Tennessee and North Carolina: Southeast Section, Geological Society of America Abstracts with Programs, v. 27, no. 2, p. 42.

Carter, M. W., Hatcher, R. D., Jr., Geddes, D. J., Martin, S. L., and Montes, C., 1995c, New lithotectonic framework in the western Blue Ridge, southern Appalachians: Building on earlier USGS work: Geological Society of America Abstracts with Programs, v. 27, p. A-223.

Carter, M. W., Clark, G. M., and Lietzke, D. A., 1996, Bedrock geology, Quaternary geology, geomorphology, and pedology of part of the Western Blue Ridge geomorphic section, southern Blue Ridge subprovince, between Gatlinburg, Tennessee, and Hot Springs, North Carolina, in Foss, J. E., Clark, G. M., Lee, S. Y., and Leitzke, D. A., eds., Clays in and for the environment--Clay Mineral Society 1996, Great Smoky Mountains, Tennessee: The Clay Minerals Society field trip guidebook, Special Publication 96-02, v. 38, p. 1-25.

Clark, G. M., 1987, Debris slide and debris flow historical events in the Appalachians south of the glacial border: Geological Society of America Reviews in Engineering Geology, v. 7, p. 125-138.

Connelly, J. B., 1993, Structural development, strain history, and timing of deformation in the eastern Great Smoky Mountains [Ph. D. dissertation]: Knoxville, University of Tennessee, 178 p.

Connelly, J. B., and Dallmeyer, R. D., 1990, Ordovician (?) or Silurian (?) metamorphism in the western Blue Ridge, Tennessee: Evidence form ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ whole-rock phyllite ages: Geological Society of America Abstracts with Programs, v. 22, p. 231.

Connelly, J. B., and Dallmeyer, R. D., 1991, Polymetamorphic evolution of the western Blue Ridge. Tennessee and North Carolina; Evidence from ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ages: Geological Society of America Abstracts with Programs. v. 23, p. 18.

Connelly, J. B., and Woodward, N. B., 1992, Taconian foreland-style thrust system in the Great Smoky Mountains, Tennessee: Geology, v. 20, p. 177-180.

Cook, F. A., Brown, L. D., Kaufman, S., and Oliver, J. E., 1983, The COCORP seismic reflection traverse across the southern Appalachians: American Association of Petroleum Geologists Studies in Geology no. 14, 61 p.

Cording, E. J., Hendron, A. J., Jr., MacPherson, H. H., Hansmire, W. H., Jones, R. A., Mahar, J. W., and O'Rouke, T. D., 1975, Methods for geotechnical observations and instrumentation in tunneling: Department of Civil Engineering, University of Illinois at Urbana-Champaign, Report number UILU-ENG 75 2022, v. 1 and 2, 566 p.

Costello, J. O., 1978, Shear zones in the Corbin gneiss of Georgia, in Short contributions to the geology of Georgia: Georgia Geological Survey Bulletin 93, p. 32-37.

Costello, J. O., 1984, Relationships between the Cartersville fault and Great Smoky fault in the southern Appalachians: A reinterpretation [M. S. thesis]: Columbia, University of South Carolina, 75 p.

Costello, J. O., 1986, Corbin gneiss complex: Southernmost exposures of Grenville basement in the Appalachian Blue Ridge: Geological Society of America Centennial Field Guide, Southeastern Section, p. 277-280.

Costello, J. O., 1993, Studies in Appalachian foreland-to-hinterland transition zone geology, Georgia and Tennessee [Ph.D. dissertation]: Columbia, University of South Carolina, 144 p.

Costello, J. O., and Hatcher, R. D., Jr., 1986, Contact relationships between the Walden Creek Group and Great Smoky Group in Ocoee Gorge, Tennessee: Implications for the regional extent of the Greenbrier fault: Geological Society of America Abstracts with Programs, v. 18, p. 216.

Costello, J. O., and Hatcher, R. D., Jr., 1991, Problems of stratigraphic correlation between Great Smoky, Snowbird, and Walden Creek Groups between the Great Smoky National Park, central east Tennessee, and Ocoee Gorge, southeastern Tennessee, in Kish, S. A., ed., Studies of Precambrian and Paleozoic stratigraphy in the western Blue Ridge: Carolina Geological Society Guidebook, p. 13-25.

Couzens, B. A., Dunne, W. M., Onasch, C. M., and Glass, R., 1993, Strain variations and three-dimensional strain factorization at the transition from the southern to the central Appalachians: Journal of Structural Geology, v. 15, p.451-464.

Dallmeyer, R. D., 1975, Incremental ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ages of biotite and hornblende from retrograde basement gneisses of the southern Blue Ridge: Their bearing on the age of Paleozoic metamorphism: American Journal of Science, v. 275, p. 444460.

DeWindt, J. T., 1975, Geology of the Great Smoky Mountains, Tennessee and North Carolina, with road log for field excursion, Knoxville-Clingmans DomeMaryville: Compass, v. 52, p. 73-129.

Donath, F. A., and Parker, R. B., 1964, Folds and folding: Geological Society of America Bulletin, v. 75, p. 45-62.

Dunnet, D., 1969, A technique of finite strain analysis using elliptical particles: Tectonophysics, v. 2, p. 117-136.

Dunnet, D., and Siddans, A. W. B., 1971, Non-random sedimentary fabrics and their modification by strain: Tectonophysics, v. 12, p. 307-325.

Erslev, E. A., 1988, Normalized center-to-center strain analysis of packed aggregates: Journal of Structural Geology, v. 10, p. 201-209.

Fairly, W. M., 1965, The Murphy syncline in the Tate quadrangle, Georgia: Georgia Geological Survey Bulletin 75, 71 p.

Flinn, D., 1962, On folding during three-dimensional progressive deformation: Geological Society of London Quarterly Journal, v. 118, p. 385-433.

Fry, N., 1979, Random point distributions and strain measurements in rocks: Tectonophysics, v. 60, p. 89-105.

Geddes, D. J., 1995, Stratigraphy, structure, and environmental site assessment of a portion of the westem Blue Ridge, Monroe County, Tennessee [M. S. thesis]: Knoxville, University of Tennessee, 195 p.

Groshong, R. H., Jr., 1988, Low-temperature deformation mechanisms and their interpretation: Geological Society of America Bulletin, v. 100, p. 1329-1360.

Hack, J. T., 1982, Physiographic divisions and differential uplift in the Piedmont and Blue Ridge: U. S. Geological Survey Professional Paper 1265, 49 p.

Hadley, J. B., 1970, The Ocoee Series and its possible correlatives, in Fisher, G. W., Pettijohn, F. J., Reed, J. C., and Weaver, K. N.. eds., Studies in Appalachian geology: Central and southern: New York, Wiley Interscience, p. 247-260.

Hadley, J. B., and Goldsmith, R., 1963, Geology of the eastern Great Smoky Mountains, North Carolina and Tennessee: U. S. Geological Survey Professional Paper 349B, 118 p.

Hadley, J. B., and Nelson, W. H., 1971, Geologic map of the Knoxville quadrangle, North Carolina, Tennessee, and South Carolina: U. S. Geological Survey Miscellaneous Investigations Map I-654, scale 1:250,000.

Hale, R. C., 1974, Gold deposits of the Coker Creek district, Monroe County, Tennessee: Tennessee Division of Geology Bulletin 72, 93 p.

Hamilton, W. B., 1961, Geology of the Richardson Cove and Jones Cove quadrangles, Tennessee: U. S. Geological Survey Professional Paper 349-A, 55 p.

Hardeman, W. D., 1966, Geologic map of Tennessee: Tennessee Division of Geology, scale 1:250,000.

Hatcher, R. D., Jr., 1972, Developmental model for the southern Appalachians: Geological Society of America Bulletin, v. 83, p. 2735-2760.

Hatcher, R. D., Jr., 1978, Tectonics of the western Piedmont and Blue Ridge, southern Appalachians: Review and speculation: American Journal of Science, v. 278, p. 276-304.

Hatcher, R. D., Jr., 1989, Tectonic synthesis of the U. S. Appalachians, Chapter 14, in Hatcher, R. D., Jr., Thomas, W. A., and Viele, G. W., eds., The Appalachian Ouachita Orogen in the United States: Boulder, Geological Society of America, The Geology of North America, v. F-2, p. 7-100.

Hatcher, R. D., Jr., Thomas, W. A., Geiser, P. A., Snoke, A. W., Mosher, S., and Wiltschko, D. V., 1989a, Alleghanian orogen, Chapter 5, in Hatcher, R. D., Jr., Thomas, W. A., and Viele, G. W., eds., The Appalachian-Ouachita orogen in the United States: Boulder, Geological Society of America, The Geology of North America, v. F-2, p. 233-318.

Hatcher, R. D., Jr., Larson, K. W., and Neuman, R. B., 1989b, Western Great Smoky Mountains windows: The foothills duplex, in Hatcher, R. D., Jr., and Thomas, W. A., eds., Southern Appalachian windows: Comparison of styles, scales, geometry,
and detachment levels of thrust faults in the foreland and internides of a thrustdominated orogen: 27th International Geological Congress Field Trip Guidebook T167, p. 49-60.

Hatcher, R. D., Jr., and Goldberg, S. A., 1991, The Blue Ridge province, in Horton, J. W., Jr., and Zullo, V. A., eds., The Geology of the Carolinas - Carolina Geological Society 50th Anniversary Volume: Knoxville, The University of Tennessee, p. 11-35.

Hatcher, R. D., Jr., Costello, J. O., and Broadhead, T. W., 1991, Carbonate in Walden Creek Group-Sandsuck Formation, in Kish, S. A., ed., Studies of Precambrian and Paleozoic stratigraphy in the western Blue Ridge: Carolina Geological Society Guidebook, p. 79-86.

Hayes, C. W., 1891, The overthrust faults of the southern Appalachians: Geological Society of America Bulletin, v. 2, p. 141-154.

Hayes, C. W., 1895, Description of the Cleveland sheet (Tennessee): U. S. Geological Survey Geologic atlas, Folio 20, 12 p.

Hayes, C. W., 1900, Geological relations of the iron-ores in the Cartersville District, Georgia: American Institute of Mining Engineers Transactions, v. 30, p. 403-419.

Hernon, R. M., 1968, Geology of the Ducktown, Isabella, and Persimmon Creek quadrangles, Tennessee and North Carolina: U. S. Geological Survey Open-File Report, 71 p.

Hopson, J. L., Hatcher, R. D., Jr., and Stieve, A. L., 1989, Geology of the eastern Blue Ridge, northeastern Georgia and the adjacent Carolinas, in Fritz, W. J., Hatcher. R. D., Jr., and Hopson, J. L., eds., Geology of the eastern Blue Ridge of northeastern Georgia and the adjacent Carolinas: Georgia Geological Society Guidebook, v. 9, p. 1-40.

Hurst, V. J., 1955, Stratigraphy, structure, and mineral resources of the Mineral Bluff quadrangle, Georgia: Georgia Geological Survey Bulletin 63, 137 p.

Hurst, V. J., and Schlee, J. S., 1962, Ocoee metasediments, north-central Georgia, southeast Tennessee: Southeastern Section, Geological Society of America Guidebook 3, Georgia Department of Mines, Mining, and Geology, 28 p.

Johnson, R. B., and DeGraff, J. V., 1988, Principles of engineering geology: New York, Wiley, 497 p.

Keith, A., 1895, Description of the Knoxville sheet (Tennessee-North Carolina): U. S. Geological Survey Geologic Atlas, Folio 16, 6 p.

Keith, A., 1903, Description of the Cranberry quadrangle (North Carolina-Tennessee): U. S. Geological Survey Geologic Atlas, Folio 90, 9 p.

Keith, A., 1904, Description of the Asheville quadrangle (Tennessee-North Carolina): U. S. Geological Survey Geologic Atlas, Folio 116, 10 p.

Keith, A., 1907a, Description of the Nantahala quadrangle (North Carolina-Tennessee): U. S. Geological Survey Geologic Atlas, Folio 143, 11 p.

Keith, A., 1907b, Description of the Roan Mountain quadrangle (Tennessee-North Carolina): U. S. Geological Survey Geologic Atlas, Folio 151, 12 p.

Keller, F. B., 1980, Late Precambrian stratigraphy, depositional history, and structural chronology of part of the Tennessee Blue Ridge [Ph. D. dissertation]: New Haven, Yale University, 353 p.

King, P. B., 1949, The base of the Cambrian in the southern Appalachians: American Journal of Science, v. 247, p. 513-530, 622-645.

King, P. B., 1964, Geology of the central Great Smoky Mountains, Tennessee: U. S. Geological Survey Professional Paper 349-C, 148 p.

King, P. B., Furguson, H. W., Craig, L. C., and Rodgers, J., 1944, Geology and manganese deposits of northeastern Tennessee: Tennessee Division of Geology Bulletin 52.

King, P. B., Hadley, J. B., Neuman, R. B., and Hamilton, W. B., 1958, Stratigraphy of the Ocoee Series, Great Smoky Mountains, Tennessee, and North Carolina: Geological Society of America Bulletin, v. 69, p. 947-966.

King, P. B., and Furguson, H. W., 1960, Geology of northeastemmost Tennessee: U. S. Geological Survey Professional Paper 311, 136 p.

Kish, S. A., 1989, Igneous and metamorphic history of the eastern Blue Ridge, southwestern North Carolina: K-Ar and Rb-Sr studies, in Fritz, W. J., Hatcher, R. D., Jr., and Hopson, J. L., eds., Geology of the eastern Blue Ridge of northeast Georgia and the adjacent Carolinas: Georgia Geological Society Guidebook, v. 9, p. 41-55.

Kish, S. A., 1991, Potassium-argon dating in the westem Blue Ridge of North Carolina
and Tennessee, in Kish, S. A., ed., Studies of Precambrian and Paleozoic stratigraphy in the westem Blue Ridge: Carolina Geological Society Guidebook. p. 69-77.

Kligfield, R., Crespi, J., Naruk, S., and Davis, G. H., 1984, Displacement and strain patterns of extensional orogens: Tectonics, v. 3, p. 577-609.

Knipe, R. J., 1989, Deformation mechanisms-recognition from natural tectonites: Journal of Structural Geology, v. 11, p. 127-146.

Knoll, A. H., and Keller, F. B., 1979, Late Precambrian microfossils from the Walden Creek Group, Ocoee Supergroup, Tennessee: Geological Society of America Abstracts with Programs, v. 11, p. 185.

Laajoki, K., 1993, Revision of the lithostratigraphy of the Walden Creek Group in southeastern Tennessee and its implications to the basin models of the Ocoee Supergroup: Southeastern Section, Geological Society of America Abstracts with Programs, v. 5, p. 28.

Laurence, R. A., and Palmer, A. R., 1963, Age of Murray Shale and Hesse Quartzite on Chilhowee Mountain, Blount County, Tennessee: U. S. Geological Survey Professional Paper 475-C, p. C53-C54.

Lewis, J. C., 1988, Structural geology and finite strain analysis of the Precambrian Thunderhead Sandstone along the Greenbrier fault and Roundtop klippe [M. S. thesis]: Knoxville, University of Tennessee, 186 p.

Lisle, R. J., 1977, Clastic grain shape and orientation in relation to cleavage from the Aberystwyth Grits, Wales: Tectonophysics, v. 39, p. 381-395.

Lisle, R. J., 1985, Geological strain analysis: A manual for the $\mathrm{R}_{\mathrm{f}} / \phi$ method: New York, Pergamon Press, 99 p.

Lloyd, G. E., and Knipe, R. J., 1992, Deformation mechanisms accomodating faulting of quartzite under upper crustal conditions: Journal of Structural Geology, v. 14, p. 127-143.

McConnell, K. I., and Costello, J. O., 1980, Guide to geology along a traverse through the Blue Ridge and Piedmont provinces of north Georgia, in Frey, R. W., ed., Excursions in southeastern geology: American Geological Institute, v. 1, p. 241258.

McConnell, K. I., and Costello, J. O., 1982, Relationship between Talladega belt rocks
and Ocoee Supergroup rocks near Cartersville, Georgia, in Bearce, D. N., Black, W. W., Kish, S. A., and Tull, J. F., eds., Tectonic studies in the Talladega and Carolina slate belts, southern Appalachian orogen: Geological Society of America Special Paper 191, p. 19-30.

McConnell, K. I., and Costello, J. O., 1984, Basement-cover rock relationships along the western edge of the Blue Ridge thrust sheet in Georgia: Geological Society of America Special Paper 194, p. 263-280.

McKinney, T. F., 1964, Geology along the Great Smoky fault, Groundhog Mountain area, Tellico Plains, Tennessee [M. S. thesis]: Knoxville, University of Tennessee, 49 p.

Merschat, C. E., and Hale, R. C., 1983, Geologic map and mineral resources summary of the Farner quadrangle, Tennessee and North Carolina: North Carolina Geological Survey Geologic Map GM 133-NE, scale 1:24,000.

Merschat, C. E., and Wiener, L. S., 1973, Provisional geologic map of the Ocoee Supergroup, southwestern North Carolina and southeastern Tennessee: Geological Society of America Abstracts with Programs, v. 5, p. 420.

Michél-Levy, A., 1877, De lemploi du microscope polarisant a lumière parallèle: Annuel Mines, v. 12, p. 392-471.

Milton, D. J., 1983, Garnet-biotite geothermometry confirms the premetamorphic age of the Greenbrier fault, Great Smoky Mountains, North Carolina: Geological Society of America Abstracts with Programs, v. 15, p. 90.

Mitra, G., and Elliott, D., 1980, Deformation of the basement in the Blue Ridge and the development of the South Mountain cleavage, in Wones, D. R., ed., Proceedings, the Caledonides in the USA: Virginia Tech Department of Geological Sciences, Memoir 2, p. 307-311.

Mohr, D. W., 1975, Stratigraphy and structure of part of the Great Smoky and Murphy belt groups, western North Carolina: American Journal of Science, v. 273-A, p. 41-71.

Neary, D. G., and Swift, L. W., Jr., 1987, Rainfall thresholds for triggering a debris avalanching event in the southern Appalachian Mountains: Geological Society of America Reviews in Engineering Geology, v. 7, p. 81-92.

Neuman, R. B., 1951, The Great Smoky fault: American Journal of Science, v. 249, p. 740-754.

Neuman, R. B., and Nelson, W. H., 1965, Geology of the westem part of the GreatSmoky Mountains, Tennessee: U. S. Geological Survey Professional Paper 349-D, 81 p.

Odom, A. L., Kish, S. A., and Leggo, P. J., 1973, Extension of "Grenville basement" to the southern extremity of the Appalachians: $\mathrm{U}-\mathrm{Pb}$ ages of zircons: Geological Society of America Abstracts with Programs, v. 5, p. 425.

Onasch, C. M., and Dunne, W. M., 1993, Variation in quartz arenite deformation mechanisms between a roof sequence and duplexes: Journal of Structural Geology, v. 15, p. 465-475.

Owens, W.H., 1984, The calculation of a best-fit ellipsoid from elliptical sections on arbitrarily oriented planes: Journal of Structural Geology, v. 6, p. 571-578.

Peach, C. L., and Lisle, R. J., 1979, A Fortran IV program for the analysis of tectonic strain using deformed elliptical markers: Computers and Geosciences, v. 5, p. 325-334.

Pettijohn, F. J., 1949, Sedimentary rocks, 1st ed., New York, Harper, 526 p.
Phillips, H. E., 1952, The geology of the Starr Mountain area, southeast Tennessee [M. S. thesis]: Knoxville, University of Tennessee, 61 p.

Pollard, D. D., and Aydin, A., 1988, Progress in understanding jointing over the past century: Geological Society of America Bulletin, v. 100, p. 1181-1204.

Poppelreiter, B. S., 1980, A structural analysis of metasedimentary rocks of the Ocoee Supergroup above the Great Smoky overthrust in southeast Tennessee [M. S. thesis]: Knoxville, University of Tennessee, 115 p.

Powell, C. McA., 1979, A morphological classification of rock cleavage: Tectonophysics, v. 58, p. 21-34.

Rackley, R. I., 1951, Geology of the Bean Mountain area [M. S. thesis]: Knoxville, University of Tennessee, 76 p.

Ramsay, J. G., 1967, Folding and fracturing of rocks: New York, McGraw-Hill, 568 p.
Ramsay, J. G., and Huber, M. I., 1983, The techniques of modern structural geology, volume 1: Strain analysis: London, Academic Press, 307 p.

Rankin, D. W., 1975, The continental margin of eastern North America in the southern

Appalachians: The opening and closing of the Proto-Atlantic ocean: American Journal of Science, v. 275-A. p. 298-336.

Rankin, D. W., Drake, A. A., Jr., Glover, L., III, Goldsmith, R., Hall, L. M., Murray, D. P., Ratcliff, N. M., Read, J. F., Secor, D. T., and Stanley, R. S., 1989, Preorogenic terranes in Hatcher, R. D., Jr., Thomas, W. A., and Viele, G. W., eds., The Appalachian-Ouachita orogen in the United States: Boulder, Geological Society of America, The Geology of North America, v. F-2, p. 7-100.

Rast, N., and Kohles, K. M., 1986, The origin of the Ocoee Supergroup: American Journal of Science, v. 286, p. 593-616.

Reed, B. C., McConnell, W. T., and Mullen, D. M., 1995, Potential for slope instability and acidic runoff along a section of the U. S. 19 corridor; Cherokee, Graham, and Swain Counties, North Carolina: Proceedings of the 46th Annual Highway Geology Symposium, p. 14-24.

Ritter, D. F., Kochel, R. C., and Miller, J. R., 1995, Process geomorphology, 3rd ed., Dubuque, Brown, 546 p.

Rodgers, J., 1953, Geologic map of east Tennessee with explanatory text: Tennessee Division of Geology Bulletin 58, Part II, 168 p.

Rodgers, J., 1991, Evolution of ideas about the Ocoee conglomerates and slates, in Kish, S. A., ed., Studies of Precambrian and Paleozoic stratigraphy in the western Blue Ridge: Carolina Geological Society Guidebook, p. 1-12.

Rove, O. N., 1926, Reconnaissance of the gold deposits of eastern Tennessee; University of Wisconsin [unpub. M. S. thesis], 92 p.

Safford, J. M., 1856, A geological reconnaissance of the state of Tennessee: Nashville, 1st Biennial Report of the State Geologist, 164 p.

Safford, J. M., 1869, Geology of Tennessee: Nashville, Mercer, 550 p.
Salisbury, J. W., 1961, Geology and mineral resources of the northwest quarter of the Cohutta Mountain quadrangle: Georgia Geological Survey Bulletin 71, 61 p.

Stose, G. W., and Stose, A. J., 1949, Ocoee Series of the southem Appalachians: Geological Society of America Bulletin, v. 60, p. 267-320.

Sutton, T. C., 1971, Relationship between metamorphism and geologic structure along the Great Smoky fault system, Parksville quadrangle, Polk and Bradley Counties,

Tennessee [Ph.D. dissertation]: Knoxville, University of Tennessee, 148 p.

Thompson, T. W., and Tull, J. F., 1991, Stratigraphy of the Mineral Bluff Group, southwestern North Carolina, in Kish, S. A., ed., Studies of Precambrian and Paleozoic stratigraphy in the western Blue Ridge: Carolina Geological Society Guidebook, p. 97-110.

Thombury, W. D.. 1965, Regional geomorphology of the United States: New York, Wiley, 609 p.

Tull, J. F., and Groszos, M. S., 1988, Murphy belt: Stratigraphic complexities and regional correlations, in Fritz, W. J., and LaTour, T. E., eds., Geology of the Murphy belt and related rocks, Georgia and North Carolina: Georgia Geological Society Guidebook, v. 8, no. 1, p. 35-74.

Tull, J. F., and Groszos, M. S., 1990, Nested Paleozoic "successor" basins in the southern Appalachian Blue Ridge: Geology, v. 18, p. 1046-1049.

Tull, J. F., Thompson, T. W., Groszos, M. S., Aylor, J. G., Jr., and Kish, S. A., 1991, Murphy belt stratigraphic nomenclature, in Kish, S. A., ed., Studies of Precambrian and Paleozoic stratigraphy in the westem Blue Ridge: Carolina Geological Society Guidebook, p. 79-86.

Tull, J. F., Ausich, W. I., Groszos, M. S., and Thompson, T. W., 1993, Appalachian Blue Ridge cover sequence ranges at least into the Ordovician: Geology, v. 21, p. 215218.

Unrug, R., and Unrug, S., 1990, Paleontological evidence of Paleozoic age for the Walden Creek Group, Ocoee Supergroup, Tennessee: Geology, v. 18, p. 1041 1045.

Unrug, R., Unrug, S., and Palmes, S. L., 1991, Carbonate rocks of the Walden Creek Group in the Little Tennessee River valley: Modes of occurrence, age, and significance for the basin evolution of the Ocoee Supergroup, in Kish, S. A., ed., Studies of Precambrian and Paleozoic stratigraphy in the western Blue Ridge: Carolina Geological Society Guidebook, p. 27-36.

Vames, D. J., 1958, Landslide types and processes, in Eckel, E., ed., Landslides and engineering practice: Highway Research Board, Special Report 29, p. 20-47.

Vames, D. J., 1978, Slope movement types and processes, in Schuster, R. L., and Krizek, R. J., eds., Landslides-Analysis and controls: National Research Council, Highway Research Board Special Report 176, p. 11-33.

Walcott. C. D., 1890, The fauna of the lower Cambrian or Olenellus zone: U. S. Geological Survey, 10th Annual Report, pt. 1, p. 509-760.

Walker, J. D., and Driese, S. G., 1991, Constraints on the position of the PrecambrianCambrian boundary in the southern Appalachians: American Journal of Science, v. 291, p. 258-283.

Walters, R. R., 1988, Structural geometries, fabrics, and stratigraphic relationships in the Cades Cove region, Great Smoky Mountains National Park [M. S. thesis]: Knoxville, University of Tennessee, 155 p.

Walters, R. R., and Woodward, N. B., 1987, Structural relationships in the Cades Cove area, Great Smoky Mountains National Park, Tennessee: Geological Society of America Abstracts with Programs, v. 19, p. 880.

Wiener, L. S., unpub., Geologic map of the Citico-Tellico area, Monroe and Blount Counties, Tennessee: unpublished Ph. D. dissertation map, scale 1:24,000.

Wiener, L. S., and Merschat, C. E., 1978, Summary of geology between the Great Smoky fault at Parksville, Tennessee and basement rocks of the Blue Ridge at Glade Gap, North Carolina, in Milici, R. C., ed., Field trips in the southern Appalachians, Tennessee Division of Geology Report of Investigation No. 37, p. 2-29.

Wiener, L. S., and Merschat, C. E., 1981, Provisional geologic map of southwest North Carolina, southeast Tennessee, and north Georgia: North Carolina Geological Survey Open-File Map, scale 1:250,000.

Wiener, L. S., and Merschat, C. E., 1992, Geologic map of southwesterm North Carolina, including adjoining southeastern Tennessee and north Georgia: North Carolina Geological Survey, scale 1:250,000.

Winchester, P. W., Jr., 1981, Some geotechnical aspects of early planning along corridor K, Appalachian Development Highway; Section between Andrews and Almond, North Carolina: Proceedings of the 32nd Annual Highway Geology Symposium, p. 186-202.

Woodward, N. B., Connelly, J. B., Walters, R. R., and Lewis, J. C., 1991, Tectonic evolution of the Great Smoky Mountains, in Kish, S. A., ed., Studies in Precambrian and Paleozoic stratigraphy in the westem Blue Ridge: Carolina Geological Society Guidebook, p. 57-68.

Appendices

Appendix A
Structural data
APPENDIX A - Structural Data

-Stas	Fabric Element								Faltric Element								
	Betcking	Cle.s.v.ge			Frature	fold		$\begin{array}{\|c\|} \hline S_{u x} \times s_{1} \\ \text { Intersection } \\ \text { 1 ine:ation } \\ \hline \end{array}$	-3,4		Cle.rvage			Fr.acture	Fokd		sis. intersection tine.ata,
		S_{1}	5.	S; Axial Surf.ue:		Huny.	Axtol Surfute			Beedding:	S,	S.,	S: Axial Sintace		Hange	Axi.l Surflue	
$\begin{array}{cc}\text { TP } & 1 \\ 2 \\ 2\end{array}$	N42E. 685E	N30E, 88SE							TP 14	N30E, 55SE	N65t. 40St			N69t, 63St			
	N25E, 505E				N27t, 63NW									N27t, 775t			
					N63W, 81NE									N67W, 57Nt			
					N32E, 67NW				15	NSOE, 755E							
					N73W, 78SW				16						223, 14	N49E. 74SE	
	N3SE, 735E	N3SE, 73SE													209. 19	N34E, 515E	
	N54E, 215E				NS2W, 80St										219, 31	N32t. 625 t	
					N68E, 61 NW				17	N38E, 4SSE							
					N23W, 765W				18	N60E. 805E	NS06, 345E						
	NS4E, 845E	N31E, 655t							19	N60E, 645t							
	N42E, 40SE																
	NS.3E, 675E	N44E. 795E															
		NSOE, B5SE							20	NS9E, 555E							
	N40E, 38NW	N40E. 52SE							21	N46E, 365E							
	N43E, 22NW	N47t. 5658			No9W. 73 NE				22		N30E. 12St						
					N21E. 815E				23	N43E. 26SE							
					N04W, 83.5W				24	N31E. 85SE							
					N49E, 26NW				25	N43E, 625E							
					N41E, 34NW				26	N38E, 62SE							
	NO6E, 54SE	N50t, 62SE			N24W, 72SW				27		N38E, 795E						
					N65E, 35NW				28	N31E, 65St							
					NS3W, 54SW				29	N4OE, 68SE				N49W. 78NE			
	N73E, 40SE	N34t, 605t							30	NSSE, 17SE	N37t. 815 Sk						
		N35E. 70SE			N77E, 81NW				31		N441, 6,45t						
					N63t, 87NW				32	N46E, 335E	N50E. 605s			N36W. 77Nt			
					Na3E, 61 NW				33		N461. 705 St						
					NIIW. 52NE				34	N3OE, 35St	N30f. 77.51						
					N24W. 66Nt				15	N34E, 185t	N/B1. A1se			N806. 785f			
					N76t, 78NW				36	N39E, 19St	N301. 6,15t			N43W. 77 NF			

-Station numbers correspond to stations on Plate II.
Stations with a TP prefix are located on the Tellico Plains 7.5 -minute quadrangle.
Stations with a BRF prefix are located on the Bald River Falls 7.5 -minute quadr angle. Stations with a BRF prefix are located on the Bald River Falls 7.5 -minute quadrangle.
Stations with an F prefix are located on the Farner 7.5 -minute quadrangle. Slations $T P-1420$ to IP-1575 compled irom Mc. Kurney (1964).
Fracture me.isurements followetil by it denote irac fures that are filled.
Stations are listed in the order in whe li they were visited along successive traverses.

-Star	falric							$\begin{array}{\|c\|} \hline s_{x} 5_{1} \\ \hline \text { Intersection } \\ \text { tine.tion } \\ \hline \end{array}$	-Star	Bedding	F.abric flement						
	Beddung				fracture		Towd				$c^{\text {chenurge }}$			Fr.ature	Fold		
		5.	s.,	$\begin{aligned} & \hline \text { S. Axal } \\ & \text { Surface } \end{aligned}$		Hange	Axiol Surfoce				5	5.	$\begin{aligned} & \text { S: Axial } \\ & \text { Surface } \\ & \hline \end{aligned}$		Henge	Axal Soutace	
IP 37	N556. 3358	N29E. 8bSE			N2IW. 7\%ne				IP 78	N50L, 53 NW	N5.4. 71.5 SE						
38	N34E, 1958	N43E. 52SE							79						40.4	N3bt. 0454t	
39		N42E, 26SE			NJOW, 86NE				80		N38E, 73SE						
40		N42E. 83SE							${ }^{81}$		NS22. 6, ${ }^{\text {S }}$ SE						
41	Na3E. 36nw	N35E. 665E							82	N41E, 365 SF	N695. 6158						
42	N34E, 44SE	N34E.605E			N75E, 655E				83	N606, 555E	N606, 715t						
43		N256. 525E							84	N64E, 585E	N646, 5858						
44	NSOE, 275E	N26E, 63SE			N59. 75NW				${ }^{85}$	Na06, 775 SE	N35E. 64.5E						
45		N29E, 5ISE							86	N42E, 305E	NBoE, 355t						
46	N20E, 075E	N206, 70SE							${ }^{87}$		N366.63se						
47	N41E. 275 SE	N40E. 46SE			N61E, 86SE				88		N34.6.605E						
48	N33E. 605E								89	N466, 515 SE							
49		N166. 54SE							90	N47E. 3358				NBoE, 335E			
50	N70E, 545E								91	N35E.625E							
51	N49E, 295E								92	N35E. 425E							
52	N25t, 525E				N86W. 68ne				93	N356, 555E	N20E. 555t						
53	N556, 75.5E	N40E, 82SE							94	N306. S2SE				N77W, 875W			
54	N506, 75SE	N43E. 855E							95	N40E, 525E	N345. 6755						
55	N53E. 4258								96		N535. 7558						
56	n566, 38NW				NStw, 875w				97	N306, 435F	N4.4. 4658						
57	N43E, 60NW	N386. 585E							98	N356, 4158							
58	NaUE, 115E	N21E, 6ase			N68w. 82ne				99	N306, 445E							
					N31E. 52 NW				(0)	N3SE, 415 L	N315.66.55						
					N22E. 28NW				101	N43E. 205E							
					N44E, 77SEE				102		N3EE, 53SE						
59	N46E. 205E								103		N6St, 23SE						
60	Na4E, SISE								104	N4BE, 23 NW	NABE. 7.45 SE						
	N34E, 475E								105		N56E. 63SE						
62	N39E. 2258	N21E, 755 E							106	N30E, 165 E	N301. 6658			NO7E, 70Nw			
63		N422. 66SE												N67W, 805w			
64	N47E. 435E				Nrow. 645 W				107		${ }^{\text {N294, } 7.158}$						
65	N345, 295E	N344, 7158							108	N41E. 5555	N30L, 6.25 E						
66	N41E, 45SE	N31E. 7258			N2OW, 68NE				109		N25E. 745E						
67	N35E, 295E								110		N422. 575E						
68	N34E.675t								III	N37e, 505t	N400. 855\%						
69		N34E. 83.58							112	N376. 535E	N374. 6,358						
70	Nase, 59SE	N455. 7558							113	Na3E, 66NW	N2.4t, 615St						
7		N3St, 76St							114	N42E, 73,5E							
72		N43E, 78SE							115	N316. 50St							
73	N35E. 305E	N20E, 74SE							116	N21w, 59ne							
74		N40E, 745t							117		${ }^{\text {N-400, } 6,351}$						
75	N41E. 1758	N322. 7558							118		N+1E.615E						
76		N422, 7558			NuSw. 74Sw				119		N400. 6555						
77		N301. 5.55							120		N301.815:						

$\cdot 51$ at	Falric Element								F.tric flenem								
	Beddurs	clewnese					told	$\underset{\substack{\text { Intersection } \\ \text { Iineation }}}{ }$	-sant	Beddung	Cleavivipe					fold	
		s_{1}	s.,	S: Axial Surface	tracture	H"Me	Asi.l Surlace				s,	s.	S: Axial Surfice	Fracure	Hinge	Ascall Surnace	
IP 293	${ }^{\text {N39E, } 255 t}$								1P 337	Na7te 2158							
294	N346, 265E								338	Na9t. 68SE	Na9t. must						
295	N57E. 515E								339	Na22, 475t	N536, 5435i						
296	NS3E, 455E								340	N+22, 33, 5	N361. 7.15t				224. 110		
297	N400, 455t								341		N211. 7751						
298		N49F. 53.5 St							342	N35E, 28SE	N4661. 3735						
299		N47t. 59.5E							343								
300	N50E, 1556	N52E, 275t							344		N301. 7151						
301		N322. 525t							345		N2SE, 34 NWW						
302	N33E, 415E								346	N356, 1656	N355.665t				215.17	N355. 66St	
303		N54F, 65St							347		${ }^{\text {N306, 455t }}$						
304		N346, 7858							348	Nase, lose	N4\%. HIUSE						
305	NSIE, 45NW								349	N366. 5555							
306	NSUE, 535E								350	N28E, 615F							
310	N511. 2658								351	N35E.355							
308	NSIE, 7INW								352	N316.56.51							
309	NSIE, 50NW								353	NSUE, 3654							
310	NS3E, 645E								354	N366. 6858							
311		NG3E. 495E							355	N46E,61NW							
312		N251. 66.51							356	N23E, 625E							
313	N47E. 355E	N45E, 25SE							157	N422, 665t							
314	NS56, 205t								358	N33E, 79nw							
315		N6If. gost							359	N276, 545t	N3\%,						
316		N611, 655E							360	N22E, 62NW							
317	NSEE, 90								361	N27e. 625 S							
318	N444, 68SE								362	N 313.7858							
319	NS3E, 6258	N65F. 62St							363	N33E, 27NW	N277, 6.258						21.16
320		N433. 56.51							364	N176. 48St							
321	N49E, 37NW	N57E, 615							365	N406, 305t							
322	NaOE, 16 NW	N256, 505E							366	N326, 735E							
323		N27E, 80SE							367	N356, 90							
324	N36E, 66NW	N46E, 645E							368	N316, 48SE	N36t. 58sit						
325	N376, 55se								369	N27E, 445E							
326	nost. Ssnw								370	N41E, 435 E							
327		N344. 7658							371		N36t, 475t						
328	N68E, 38SE	N6Bt, 3055							372	N326, 57st							
329		N316. SISE							373	NS9E, 265t	NS9E. \%9St						
330	N246, 385E								374	N42E, 615 St							
331		N58E, 37, ${ }^{\text {S }}$							375	N47E, 425E							
332						215.7	NSSE 74.5		376	N576, 68SE							
333	NS8E, 085E	N51E. 57St							377	N322, 90							
334	N63E, 345E								378	NS56. 665E	N46E. 705F						
335		N53E.475t							379		Not1. Hest						
336	N2BE, 685E								380		N351 42St						

	Betur	Cleanye			tencure		foll		Stas	Bedturs	Clewinge			trature	${ }^{1.1 .4}$		
		s	s.	S.axil		1 Hepe	Axal Surice				s.	s.	Stame		1 lunge	Anal Suture	
			s.						19425	N435, 445t				tanure			
382	N666, fsest								126	N3SE. 405E							
338 344	NA7E. 995	N3if. 755 E							${ }_{48}^{427}$	NS35.485E	N536, 23.5 L						
385		N3.4, 595t							${ }_{42}{ }^{4}$		Nasf. $7,5 \mathrm{se}$						
386		Na3t, oust							410	N33E. Isw							
387 388 8	Nsti 485E	NStst, 6 OSE							431	Nati, 355							
388	Nast 45st	N37. 599E							432 43 43	N3SE, 355	N3SE, 7 3SE N4OE, 7IS						
350	Horzonal	Na16, 558 s It							434		Nast, wist						
391 392	Ns72. 505 S	N346, 532 t							${ }_{4}^{435}$								
3923									${ }_{437}^{436}$								
394	N376.615E								438	N6E5, 405E							
395		N206, 715 st							439	N65t, 19w	N655. 74.45						
396 397									440 44	N356, 12Nw	NS52. 75st						
398	NalE, bost								442	Na6t, osst	Natet asst						
399		Nast. 9 95E							$4 \cdot 3$	NS5E.415E							
400 401	Na4t, 215E								444 445 4	N66E, 335	NSIL . . sft						
402	N376, 255	N366. 7 NW							${ }_{44} 4$	NS6E. 355E							
403	Nsst. 255 s (447	Na86, 16.5 t	Nstb, 6ust		Natie. 2sNW				
404									446		N3\%, ,1/54						
406	NS3E, 185E								449						211.4	Na11.	
407		N3S5, 865t							450	N415, 27NW	Na15, 6451						
${ }_{408}^{408}$									${ }_{452}^{45}$	N27t. 66Nw							
${ }_{410} 4$	Nasti 3 S3t								${ }_{453} 4$	Nast, 175E							
411	Nat5 685.5								${ }_{4}^{454}$	Nilt, 275							21.6
412 413		N31. 8351							${ }_{455}^{45}$								
413 414	NSIE, 695 t								456 457	N316, 29W				Noow, 6s.w			
415		Natfe sst							${ }_{458}$	Na7E, 27NW							
416		Natte 355							459		Nalt, 71.5 F						
417		N475, 885							460						30.27	Nust, 61.4	
418 419									${ }_{462}^{461}$								
420	NSSE, 4s5								${ }_{463} 4$	NA7E, 16 NW	Nasti. wsst						224.21
421											Nat1. ussi						
42		Nalf. S4sf							46	Ns9t, 3st							
423 424									${ }_{46} 6$	Nale manw							

	Beldding	Cleanove					fold	s.xs. Intersection inne.tioun	-5t,0	Becthing	Cleavaly			fracture	fold		Su.5. Imesertion Inc. Inturn
- 5108		5 ,	s.	$\begin{aligned} & S_{: ~ A x i a l ~}^{\text {A }} \\ & \text { Surfiace } \\ & \hline \end{aligned}$	Frature	Hinye	Anoll Sutaue				5	s.	$\begin{aligned} & 5_{5} \text { Axtad } \\ & \text { Surface } \end{aligned}$		1 Hunce	Axtal Suthate	
BRF 472	N496. 30NW	N62E. 725 E							BRF 515	N40E, 3556	N406, 5BSt						
473	NS5E. 38nw	N4UEE, 49St							516	N22E, 355E	N31E. 5 SSE						
474		N41E. G95E							517	N39t, 401NW							
475	n30E, 38Nw	N27E. 42.5 E							518	N366, 34NW	N44E. 16.5 St						
476	N.156. 33 NW	N25f, 3858							519	NoSt. 25sE	N315. 4.4.5\%						
477		Nstst. Hest							520	N522.41NW	N491. 1×4						
478				N412. 305E					521	N39E, J9NW	N39t. 5.1515						
				221.2					522	N366, 42NW	N36t. 495 St						
479	N622. 42Nw	N34E.485E						50.11	523	N-19E.43NW	N322. St, ${ }^{\text {S }}$						
480	Na46, 90	N51E. 22.5 E							524	N22E, 255E	No77. 47.5 St						
481	N31E, 575E								525	N49E, 52NW	N18F. 33SF						
482	N43E. 5 Inw	N51E.675t							526	N246, 685E	N24E, 4655						
483	nsol, 62Nw	NSIE, 6BSE							527	N41E, 855t	N695. 5358						
484	N38E, 095E	N25E. 28SE							528	N344. 90							
485	N47E, 165E	NasE. 445E							529		N422, 4255						
486	N36E, 045E	N606. 345E							530	Na3E, 555E							
487	N31E, 3758								531	N66E, 60NW	Notet. 215 se						
488	N28E, 255E								532	N52E, 855t	N537. 11.54						
489	N24E, 425E	N422. 575t							533	Nast. 705E	Na51, 1351						
490	NASE, 70NW	N43E, 3258							534	N43E, 7558	Na3E. 335E						
491	NS9E, 85Nw	N74E. 3658							536	NSIE, 56SE							
492	N556. 7558	N65E. 275E							537	N40E. 605t	NatIt, 34.5t						
493	N4IE, 36NW	N378. 3758							538	N477, 585E							
494	N4SE. 37NW	Na55, 515t							539	N4BE, 625 E							
495	ns7e. 45Nw	NS9E, 525E							540	N32E.4858	N321. 215 St						
496	N43E, 49Nw	N24E, 405E							541	N33E, 545E	N33E. 25 St						
497	N62E, 63NW	N24E, 43, 5 E							542	N31E, 52.58	N31E. 28.58						
498	N316, 7 INW	N22E. 2758							543	N306.625E	N422. .1.5E						
499	N556, 50SE	N256, 225E							544	N396, 555E							
500	N79E. 62 NW	N20E, 355.							545	N37E, 625E	N376. 4435						
501	NS56. 785E	N338. 155t							546	N31E, 45SE							
502	N366, 56SE	N30. 295t							547	N45E, 645E							
503	N41E, 665E	NSIE. 475.							548	N45E, 42NW	N451. 5.751						
504	NG3E, 800nw	N63E. 525E							549	N53E, 17NW	N422. 415 St						
505	N42E, 60SE	N53E.425E							550	horizontal							
506	N506. 90	N566, 485E							551	N25E, 64NW							
507	N39E, 695E	N322, 2258							552	N316.69nw	N396, 775E						
508	N522, 81NW	Na9E, 5658							553	${ }^{\text {N30E, 885E }}$	N301. 42.5 E						
509	N61E, 265E	N21E. 505t							554	N366, 6258							
510	N40E, 595E	N21E, 2758							555	N335,6558	N336. 3558						
511						214.9	N336. A4SE		556	Na22, 575t	N+22, 305E						
512	N37e, 46NW	N37E, 555E							557	N52E, 585E	N521. 4058						
513	N28E, 2055	N30E, 44SE							558	Na9E. 595E							
514	N30E, 44SE								559	N4SE. 54SE							

	Fabric Elenteen								-5108	athra fle							
	Beddurs	Cleavage			fracture	fold				Beedidng	cilearage			Ftacture	Fold		
-Stat		s	5.	S: Axial Surface		\% 1 \%ex	Axtil Surfue				s	5.	S. Axal Surficte		Hinge	Astall surfice	
1P 701	N5OE, 20SE N61E, 31SE								BRE 821	N444. 5.35F				Ns3w. 50sw			
702		N61E. S9St							822	Nobl. 6958	NSte. 1 ",						
703		N4IE, 50SE							823	NS9t, SbSE	NS7E. 1158						
704	N6SE, 385E				NA1E, 65SEEi				824	Na7e. 7958							
705	NabE, 465E								825	Nale, 73 SE	Nalt. 375E						
706	N40E, 415 SE	NauE. SSSt							826	N53E. 68SE							
707	Na1E. 4558								8_{27}	NS9E, 74SE							
700	N30E. 305E								${ }^{828}$	N27e, 465E							
209	NSOE. S5SE								829	N38E, 585E							
2	NS4E, 315E				N65E. 85SE				830	Na4E. S8SE							
7	N66E, 325E								IP 718	ns9, s8nw	N25t. 3658						
712	NS3E. 1158				N7IW. 87Ne				719	N27e, 315E							
713	N32E, 17NW	N33E. 30St							720		N25t. 4338						
714	N49E. 22Nw								721	N3-4, 29 NW	N346. 69\%1						
715	N39E, 385E								722						45.5	N.15t, whe	
716	N61E. 5258								723	NGIE, 12NW							
7		N40E. 27SE							224	N40E, 275E	N355. 4ust						
bre 794	N64E. 685E	N344. 2255							725	horizontal	N366. 503:						
795	N44E, 72NW	N446. 325 St							726	Ni7t. 57nw	N251. 1751						
796	N63E, 45Nw	NSIE. 415E							727	N $40 \mathrm{E}, 69 \mathrm{NW}$	N311. 3 MS						
797	ngbe, finw	N522. 4051							728	NS4E, 31nw	N44E, 215 St						
798	NSSE. 59nw	N3SE. 5258							729	horizontal	N30E. 2158						
799	N64E, 50Nw								730	N30E, linw	N304. 29St						
800	NSEE, 635 E	N49E, 395E							731	N44E, 31nW	N422. 12.54						
101	N376. 37NW	N26t. 55st							732	N6BE, 34NW	N305. 4351						
802	Na9E, 49SE								733	N49E, 645t	N4Mt, 1.1.5P						
${ }^{803}$	Na1E, 29SE								734	NS7E. 88SE	NS7t. 4151						
${ }^{804}$	N366, 565E								735	NS2E, 39NW	N522. 2558						
805	N37E, 64SE								736	NS3E, 47NW	N444, 46St						
806	NSSE, IINW	NS22, 435E							737	N696, 53nW	NS4E, 26SE						
807	N62E, 488w	Na8E. 505F							738	nsot, 39nw	N50. 3558			NS4W, 84SW			
${ }_{808}$						224, 5	N40E, 465t		739	N60E, 51 NW	Na51. 3551						
809	Na4E, 24NW	Na4E, 45SE							740	NAIE, 68NW	N411, 3758						
810	NSIE, 68SE	NSIE, 44SE							741	N57E. 12nw	N376. 18 SSE						
811	N61E, 645E	N61E, 6458							742	NSIE, IINW	Na9t. 5sst						
812	NS3E. 465E				N49W, 78Ne				743	N2SE, 43SE	N29E. 635 s						
813	NSIE, 365E								744	NG1E, 42NW	N3yt. 525t						
814	NS4E, 3658								745		N401. 7151						
815	NaOE, SISE								746	Na7e, 38SE	N33E. 725t						
816	NSSE, 49SE								747	- N63E, 4558				N/3W. 4SNW			
817	N61f. 635E								748	- 332 E 29NW	N422. 6ast						
818	N65E, S25E								749	Na7E, 45SE							
819	Nolf. 625s								750	N411, 44St							
1201	Notal Susi								251		Nill. M4						

-51, ${ }^{\text {a }}$	Fubrer tlement								-Stast								
	Beldring	Cleavaige			Frowlure	Fold				Cleavose				fracture	fold		
		S_{1}	5..	S: Axill Surface		Hamp:	Axial Surlace			Beulturs	s.	5."	$\begin{aligned} & S_{\text {: Axald }} \\ & \text { Surface } \end{aligned}$		Hange	Axill Surtace	
1P 752	N12W, 32NE	N12w. 32Ne							$\mathrm{FP}^{5} 7$	N74W, 48NE							
753	N45E. 22NW	N29E, 48SE							795	N49E, 625 E	N.19E. 12.51						
754	N33E. 22Nw	N33E, 475s							796	N65. 445E							
755	N3¢E. 21 nw	N24E, 445E							797	N44t, 46St							
756	N69t, 58nw	N24E, 2955							798	Na55. 535E							
757	N516.90								799	N49E. 82NW							
758	nase, senw	NA9E, 385E							810	N21E. 57 NW							
759	N43E. 59Nw								${ }_{801}$		N27E. 44SE						
7601	N29E. 17 mw	N29E, 505F							${ }^{802}$	N60E, 44SE							
761	N59E. 69 NW								${ }^{803}$	N:OE, 50SE							
762		N19E, 88SE							804	NS6E, 35SE							
763		N555, 625t							805	N75W. 355w							
764		NS4\%, 53.5							806	N656, 325E							
765		N316. 345 St							817	N88E, 7158							
766		N59E, 56SE							808	NB3E, 345E				N200, 795t			
767	Na4E, 58SE								8(x)	N60E, 30SE							
768	N51E. 59SE	N51E. 6.3.3t							810	N33E. 72NW							
769	N57t, 615E								811	N28E, 7nw							
770	Na1E. 365E								812	N41E, 415E							
71	N66E. 315 SE								813						13.6	N43E. 22.5	
772	N59E, 59SE								814	N38E, 05sE							
773	N64E, 39SE								815	N32E. ו9NW	N32E. 74.SE						
774		N37E, 545E							816		N336. 565E						
775	N23E, 46SE								817		N33E. 56, 5 E						
776	NBEE, 415 SE	N22E. 745E							818		N37E, 73SE						
77	nsbe, 45SE								819	NABE, 31 NW	Na8E, 7258						
778						239.5	N596, 8258		820		N47E. 49SE						
						237.7	N57E. 70SE		821		N57E. 8258						
						235, 3	N55E, 68SE		822	N75W. 25sw	N472. 5758						
779	n5se, 499E								8^{82}		Nast, 50SE						
780	N39E, 4558	N39E, 525E							${ }_{824}$	N30E, 305E	N30E, 65SE						
781						232. 10	N52E.645E		825		NBEE, 60SE						
782	NSIE, 435E	NSIE, 76SE							826	N6SE, 46SE							
783						41.3	N4IE, 74SE		${ }^{827}$	NABE, 30SE	NABE, 30SE						
784	N41E. 42NW	N41E, 665E							${ }^{828}$	N37E, 245E							
785	Na86, 70nw					42, 24	N42E. 68SE		${ }^{829}$	N71E, 55SE							
786	ns3e. 5bnw								830	N59E, 44SE	N59E. 4.45 F						
787	N34E, 47NW								831	N336, 3958							
788	N2BE, 50NW								${ }^{832}$	hurizontal							
789	N536. 335E								${ }^{83}$	N206, 54NW							
790		N64E, GLISE							834	N72E. 355E							
791	N34E, 455E								835	N39E, 33NW	N50E, 68SE						
792	N606. 305E								836						18, 18	NabE. 6554	
79.1	N63E, 335E								837	Na66, 3958	N395. 66.58						

-Stas	Fatrict Heneelt								f.abru tlement								
	$\stackrel{\text { Bedding }}{\text { Nast, } 17 \mathrm{NW}}$	Cleanage			Ffrature	fold			'Stas	Betchurg	Cle.wase			Fractue	told		
		s,	s..	S: Axial Surface		1 H4Y\%	Axial Suntace				s.	s.	$S_{\text {S Axial }}$ Surtace		Hluge	Axall Surtace	
F 48		N422. 675t							IP 922	N46E, 315E							
49	na9e. 3inw	Na96. 535t							923	N316, 295t							
50		Na0E, 54SE							42.4	NS3E, 435E							
51	N4SE, 82anw								925	NA3E. 48SE							
52	N45E, 36Nw								926	N29L, 185E	N35t.725						
53	N39E, a8Nw								927	N26E, 615 SE	N336, 12:5						
54						21.2	N21E. 57SE		928	N28E, 245E							
55	N3SE, 125E								929	N52E.325E							
56	Na1E, 24NW								930	N29t, 565E							
57	N34E, 175E								931	N56E, 635E							
58	Na3E, 17NW	N366, 28SE							932	N55t, 215E	Na77. 4ust						
59	n57e, isnw								933						56, 30	NS66, 54.SF	
TP 895	N356, 23NW								934	Na7E, 475E							
${ }^{896}$	N33E, 17NW	N316, 415E							935	N63E, 635E							
${ }^{897}$	N19E, 16NW	N19E, 315 St							936	N67E, 46SE							
F 60	N37E, 15SE	N37E. 635E							937	N616, 37NW							
61	N37E, 325E	N30E. 745t							938	N61E.49SE							
62	N42E. 235E								939	N316.90							
63	Nale, 195t								940	N34E, 45SE							
64	N29E, SISE								941	N34E, 495E							
IP 898	N50E, 46St								942	N57E, 245E							
${ }^{89}$	N376. 23.58								943	N27, 265E							
900	N72E, 90								944		N55t, 47st						
901	N56E, 315E								945	Na3E, 385E							
902	Nasf. 565t								946	N54E, 265E							
903	N14E, 565t								947	N3\%t, 4.35	N14.15:4	NS6t. 6SNw		no4t. 79nw			
90.4	Naye, Sise													N2Of. 71 NW			
905	Na4E, 90									N316. 5254							
906	N296, 59NW								949	Na9E, 7158							
907					NOE, 56 W				950	horizonial							
908	Na0w. 525w								951						13. 21	N33E. 205E	
909	NasE. SSNw								952	N6SE, 52NW							
910	N346, 565E								953	N31E.615t	N311, 365t						
911	NS6E, 68SE								954	NASW. 90							
912	Na99, 565E								955	N37E. 7258							
913	N61E, 355E								BRF 831	NS4E, 305E	N30E, 445E						
914	N44E, 465E								${ }^{83}$	NS7E, 3158	N57, 54st			NOE, 87E			
915	Na99, 55sE								${ }^{83}$						225. 34	NS3E. 56¢t	
916	N499, 295E								${ }^{83}$	N499. 335E	N55E, 65SE			N42W. 72 NE			
917	N23E, 355E								${ }^{835}$	N57E, 245E	N57. 575						
918	N566, 475E								836	N49E, 35St					16, 10	N37t, 76.5t	
919	Na4E, 63NW									N596. 465E							
920	NoE, S3W								${ }^{838}$	NS9E. 79NW							
121	NS3E. 525E								${ }^{83}$	NSUE, 255t	Natcric. 1.38				55. 17	N+64. 6154	

Fabric Element									Falxic Element								
-Stas		Cleavage				Fold		SixS Intersection Ineation	-Stas	Cleaviuse				Fracture	forl		S. $\times 5$, intersection Lineation
	Beriding	S_{1}	S_{1},	S: Axial Surface	fracture	Hinge:	Axal Surfice			Berding	5.	S.	S: Axial Surface		Hinge	Axial Surfice	
TP 1093	N4IE. O6SE	N3SE, 061SE	N4SE, 69NW						IP 1137	HORIZONTAL	NO4E. 2058						
1094	HORIZONTAL								1138	N10E, 125E							
1095	NIOE, 30SE	N29E, 66SE							1139	N74E, 285E	N50E, 415E						
1096	HORIZONTAL								1140	NS 2\%, 185E	N53E. 17 St			NO4W, 57NE			
1097	N2SE, 495E								1141	N68E, 385E	N6BE, 54SF						
1098	N52E, 395F								1142	N38E, 235E							354. 22
1099	N36E, 42SE								1143	horizonial	N30E, 17St						44. 10
1100	NSOE, 665E								1144	NSEE, 30SE	N-10t, 51SE						
1101	NS4E, 34SE								1145	N43E, 46NW							
1102	N52E, B0NW								1146	N36E, 72SE							
1103	NS3E. 28NW								1147	N33E. 265E							
1104	N36E, 70NW	N42E, 82SE							1148	N39E, 165E				N67E, 906i)			
1105		N37E. 79nW							1149	HORIZONTAL							
1106	N46E, 46NW								1150	N23E. 415 SE							
1107	N58E, 39SE								1151	NS 4E, 16SE				N677, 90			
1108						38. 11	N61t, 35St		1152	N40E, 48SE							
1109	HORIZONTAL								1153	N41E. 38SE							
1110	N46E, 385E								1154	N67E. 38NW							
1111	N66E. 235E								1155	N36E. 205E							
1112	N39E, 25SE								1156	N23E. 39SE							
1113	N37E, 185E								1157	N37E, 30SE							
1114	N33E, 225E	N22E. 82St			N64W, 72NE				1158	N37E, 395E	N27E, 5.45E						
1115	NSEE, 145E								1159	N32E, 265E							
1116	N27E, 46NW								1160	N37E. 215E							
1117						52. 12	N48E. 865E		1161	N59E. 275E							
1118	N38E, 365E	N32E, 885E							1162	N33W, 205W	N37E. 64St						
1119	N30E, 66NW								1163	N4IE, 48SE	N41E.625E						
1120	N44E. 175E	N39E. 175f							1164	NSSE. 24St	N39t. 56,5t						
1121	N23E. 10SE								1165		N351. 6e15t						
1122	N4IE, 6INW								1166		N49E. 6015						
1123	N49E, 24NW								1167	N44E. 26SE							
1124	NS6E, 095E	N3 31, 72st			NS2W. 68NI				1168		N.tII,						
1125	N62E, 1 15E								1169	N43E, 285E	N236, 60) 5 t						
1126	N44E, 395E								1170	N43E, 385E							
1127	N5SE, 3356								1171	N26E, 285E	N 26 t . 6 HSt						
1128	N33E, 185E								1172	N28E, 29SE							
1129	N47E, 86St								1173						208, 3	N37t, 315F	
1130	N40E, 47SE	N42E. 84NW							1174	N71E. 44SE	N4SE, 60St						
1131	N22E, 395E	N25E, 86St							1175	N81E, 605E	N79t. 85SE						
1132	N38E, 86SE								1176	N30E, 36SE							
1133	NIOE, 10St	N25L. 64St				2% \%	N3H. blst		1177	N47E. 59SE	N47t, 509\%						
1134	N4IE, 245E	N36E. 45St							1178	N34E, 185E	N72L. (x1NW						
1135	N40E, 135E	N42E. 44St							1179	N37E, 175E							
1136	NSOE, 26SE	N 298.495 t							1180	N39E, 15SE	N384, 8858						

			Cleavare	Sa			fout	\%xs,				ckere				\%1.4	S, \times
Stim	Beddusg	s.	s..	$\sum_{\substack{\text { s.axiol } \\ \text { Sutrice }}}$	Fractue	Hinue	Axal Sutive		-sat	Becturs	s.	s.		fructur	1 lunge	1 Surne.	(messertuon
1P1181	N3E6, 358	Nsfe, 7ost							If 1225	N26E, 1258	N266, 1254						
${ }^{1182}$	N715.405E	Nser.							${ }^{1226}$	N235.1655	NS6E.485t						
${ }_{11188}^{1188}$		NS22.465t							${ }_{\text {BRF } 872}^{1227}$		N35, 7use						
1165	NSIL, 9938	Nste, 315s							${ }^{878}$	N6S5. 4258	N60t. S5st						
1186 1187		NAEE, 1 ISE							${ }_{880}^{879}$								
1188	Ns22, 575								${ }^{881}$	NSIE. 695 s E							
${ }_{11190}^{1189}$		Nsff. 58st							${ }_{883}^{888}$	N54, 3058							
119	Na86, 995t	Nage, 315							${ }_{88} 8$	Ns46, 6958	Nast, 5034						
1192									${ }_{885}^{\text {888 }}$								
1194	N55, 4255	N521.275t							${ }_{88} 8$	Na4t, 235 t							
1195	N622. 405 St								${ }^{888}$	NS66.90	N615. 415 SH						
1197	Nsft. 635 L								${ }_{980}^{880}$	Ns66, 45st							
1198	Nasf. 20NW	Naf6, 5s4E			Now				${ }^{891}$	NsEE. 725t							
${ }_{129} 119$	Nat5s, 475t				Nssw. Gunt				${ }_{893}^{892}$	NS4, 5 S5t							
1201	Ns66, 505t								${ }_{89} 9$	Na35, q95t							
1202	N995. 125 S								${ }^{\text {P1P128 }}$	N351.285t	Na35 6est						
1204		Na9t, bose							${ }^{1228}$	N316, 1258							
1205	Nate, 3sNu	N372, 385\%							123	Nsot, 115 st							
1206 1207									1232 123		Na46.1455						
1288	horizonial								1234	n306. 28 NW	Naot. Sose						
1209	N216. 1 NW								${ }^{1235}$	N299, 36 NW	N311.12,25						
1211	Horzonial								(1236	- horzonal	Navz						
1212	NuE. 148								1238	Ns55, 045E	ns91. 6051						
1218	horizonral								1219 1240 120	Nsft 3 3nw Noaw, 12 Nt	N221,245						
1215	N215, 2654	N215, 4655							1241		N66t. 365						
1216	N4465.5956								1242 1243 1		N66t, 325E						
1218	N200, osw	NIIL 395t							${ }_{124}$	horioonal							
1219	Horzontal	Horzontal							${ }^{1245}$	N42E.045							
1221		N3St 20st							1297	N3EE, IOSE	N35E. 405t						
1222	N22E.12NW								1248	N322. 1158	N36E, 505s						
1223 1224	N27E, 16SE N33!, (リ)								1249 1250	N3IE, 19SE HORIZONTA	N(t)						

- Staed	Falricic Elemeent								f.lunc lleen ent								
	Bexding	Cleivage					f.ind		- Star	Bedding	Cleavivie					f.uk	
		s,	5..	S: Axial Surface	fracture	Hunge	Axal Surface				5,	s,	S: A×1. 1 Surfate	frature	Hinge	Axal Surne	
IP 1251	HORIZONTAL								IP 1295	N63E.465E	N61E. 58SE						
1252	N39E, 145E	N3SE. 29SE							1296	N4SE. 6858				N41E, 66.5w			
1253	horizontal	Na1E, 2655							1297	NS5E. 4258	N46E, grse						
1254	N42t, 88NW	NalIE. 48SE							1298	Ns5E, 56St							
1255	Na2E. 24 NW	N32E. 305t							1299	N48E, 3358	NaOE, S5SS						
1256	N37E. 19NW	N21E. 245t							1300	N48E, 365E	Na26. 72.51						
1257	NABE. 56 NW	Na4f, 245t							1301	Nate. 48SE	Na4t. 5.5 St			N82w. 90			
1258	NS6E, 80SE	NS66. 5058							1302	NS7E, 2658							
1259	N29E, 38SE	NA4E. 715E							1303	NS3E. 345E							
1260	N466, 335E								1304	NSOE, 195E	Na4E. 465t			N24W, 60Ne			
1261	N26E, 44NW	N25E, SISE							1305	N44E, 125E							*
1262	N37t, 18Nw	NASE, 46SE							1306	N42E, 385E	NS22, Susf						
1263	N306, 145E								1307	NS2E, 185E	N522. 5s.st						
1264	NaOE. 10 NW								1308	N49E, 415E	Na9E, 6, 6.5F						
1265	N75E, 12 NW	${ }^{\text {N244. } 11.585}$							1309		N576. 58,						
1266	N41E, 315 sE	NIOE, 50SE							1310	N46E, 855t							
1267	N32E, 295E								BRF 895	N60E, 16NW	Nsot, 3ase						
1268		N29E, 40SE							896	N22E, 11 NW	N406. 5.45E						
1269	N32E, 1258								897	N49E. 205\%	NSUE, 545E						
1270	horizonial								IP 13"1	N47E, O855	N.412. 2.4 .4						
1271	N30E, 265E	N266, 705E							1312	N40E. 635E							
1272	N59E, 1 ISE								1313	NS66, 3358							
1273	NS9E, 405E	N39E, 60St							1314	N366, 365E							
1274	N46E, 185E								1315	N61E.425E	NS11. 56:51						
1275	N56E, 18SE	N566. 595t							1316	N41E. 3158	N45E, 65st						
1276	N396. 2451								1317	N546. binw	NS011.14.011						
1277	N476, 3858								1318	N31E, 17NW	N355. 2 List						
1278	NSIE, 44SE								1319	N27E, 825E							
1279	N622, 44SE								1320	NS7E. 3158							
1280	N43E. 285E								1321	NSEE, 22SE							
1281	NS3E, 665E								1322	N61F, 36:5E	N895. Gest						
1282	N33E, 335E								1323	N24E, 14NW							
1283	N38E, 295E								1324		Nast. 66.51						
1284	N37E, 095E	N28E. 545E							1325	N62E. 29NW							
1285	N52E, 365E								1326	N40E.42SE	N400. 8.25t						
1286	Na7t, 11 NW	N47E, 66Nw			N26w. 665w				1327		N44E. 6055						
1287	N41E, 422E	N41E. 522E							1328	N45E. 325 E							
1288	N33E, 34NW	N27E, 66NW							1329	N4SE. 3958	N455. 765st						
1289	N45E. 57Nw	N57t. 7258							1330		N466. 56.SE						
1290	N42E, 68NW	N511, 8258							1331	N71E, 435E	N711, 6est						
1291	NaSE, 34NW	N47E. 545t							1332	N346, 2658	N46E. 5ust						
1292	N57e, 20NW	N366. 575t							1333	NSSE, 22NW	N614. 6.251						
1293		N51.t. 45SE							1334	N44E, 2158	NS.9t.4.5E						
1294	N48E, 495E	N47E. 625 St							1335	N43E. 26SE							

?	
4	
3	
	MMIMMITMIMIMMIMIMIM

Appendix B
Modal analysis
Modal analyses of coarse-grained clastic rocks from the study area.

Stratigraphic unit	Hesse Quartzite	Sandsuck Formation	Wilhite Formation					
Sample no.	GH 2	TP-1388v	TP-51v	TP-133	TP-289	TP-722	TP-928	TP-963v
Quartz	91.7	71.6	50.0	60.5	53.8	50.9	58.2	87.3
$\begin{gathered} \hline \text { Plagioclase } \\ \text { (comp.) } \\ \hline \end{gathered}$		0.7	14.6 (An_{35})	9.5 (Ar_{35})	9.5 (A_{36})	17.7 (An_{36})	12.5 ($\mathrm{A}_{3}{ }^{4}$)	2.8
Microcline		11.6		0.7	1.6	1.0	1.0	
Perthite			1.5	0.7	1.0	1.6	0.3	
$\begin{aligned} & \hline \text { Clay/ } \\ & \text { Sericite } \end{aligned}$		11.8	12.8	10.2	8.1	11.8	9.7	0.9
Chlorite			10.7	7.4	5.3	9.2	7.4	3.9
Muscovite	0.1	0.5	5.2	2.9	3.2	4.7	2.7	0.8
Biotite			Tr	Tr	Tr	0.3	0.1	
Hematite	7.1	2.8	1.4	1.0	6.7	0.6	2.1	3.3
Pyrite						1.1	0.9	
Magnetite/ Illmenite	0.4		0.1	0.2	0.2		1.3	
Carbonate			2.1	5.3	9.1		3.2	
Ankerite								
Tourmaline	0.2	0.3	1.0	0.4	0.7	0.6	0.2	0.5
Zircon		Tr	0.1	0.2		0.2	0.2	
Apatite			Tr					
Lithic fragments	0.5	0.7	0.7	1.0	0.8	0.3	0.2	0.5
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
No. of pts. counted	1000	1000	1000	1000	1000	1000	1000	1000

[^2]Modal analyses of coarse-grained clastic rocks from the study area (continued).

Stratigraphic unit	Wilhite Formation	Dean Formation						
Sample no.	TP-998	TP-563	TP-710	BRF-391	BRF-459	BRF-481	BRF-846	
Quartz	77.0	53.8	78.1	57.0	65.2	54.7	50.2	
$\begin{gathered} \text { Plagioclase } \\ \text { (comp.) } \\ \hline \end{gathered}$	$1.5\left(\mathrm{An}_{36}\right)$	12.2 (An_{33})	1.6	9.7 (An_{35})	14.0 (An_{35})	14.0 (An_{34})	9.9 (An_{35})	
Microcline	0.2		0.9	1.4				
Perthite		Tr		1.0	0.3	0.8	0.5	
$\begin{gathered} \hline \text { Clay/ } \\ \quad \text { Sericite } \\ \hline \end{gathered}$	1.9	21.5	0.4	4.9	0.6		11.8	
Chlorite	2.6	10.9	12.8	20.6	15.8	22.0	23.3	
Muscovite	0.5	0.3	0.8	1.5	0.4	0.1		
Biotite	Tr			Tr	1.5	6.3		
Hematite	1.1	1.1	2.0	2.1	0.8	2.1	3.8	
Pyrite	0.1		3.0	0.2	0.5			
$\begin{array}{r} \hline \text { Magnetite/ } \\ \text { Illmenite } \\ \hline \end{array}$	0.1			0.5	0.7		0.1	
Carbonate	14.3	Tr						
Ankerite								
Tourmaline	0.2	0.2	0.3	0.9	0.2	Tr	0.4	
Zircon	0.4		0.1	Tr	Tr			
Apatite	0.1			0.2				
Lithic fragments				Tr			Tr	
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
No. of pts. counted	1000	1000	1000	1000	1000	1000	1000	

*Plagioclase compositions determined using the Michel-Lévy (1877) method.
Modal analysis of ankeritic metasiltstone from the study area

	$\begin{aligned} & \stackrel{\oplus}{2} \\ & \stackrel{1}{2} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\sim}{\sim}$	No			ले	$\frac{0}{i}$	No		$\stackrel{\aleph}{\infty}$				\cdots	N	$\stackrel{\text { ® }}{ }$			$\begin{aligned} & \text { O} \\ & \text { O- } \end{aligned}$	응
		$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & 0.0 \\ & \stackrel{0}{\widetilde{0}} \\ & 00 \\ & \frac{0}{2} \end{aligned}$	$\stackrel{\cong}{\overline{0}}$		$\stackrel{0}{2}$					$\begin{aligned} & \text { ᄃ } \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$			$\stackrel{\text { ® }}{\square}$	

Modal analysis of carbonate lithology from the study area.

Stratigraphic unit	Sandsuck Formation
Sample no.	TP-534
Micritic calcite	60.3
Sparry calcite	34.0
Intraclasts	
Onkolites	
Quartz	4.6
Plagioclase (comp.)	0.4
Magnetite	0.1
Hematite	0.5
Clay/ Sericite	
Biotite	
Chlorite	0.1
Muscovite	
Total	100.0
No. of pts. counted	1000

Appendix C
 Strain data

Three-dimensional finite strain analysis ($\mathbf{R} / \mathbf{\phi}$)

Sample	Orientation	Plane	Strike	Dip	Rake	Ratio	Axis	Stretch	Axis Trend	Axis Plunge	x/y	x/z	y/z	Solution
*TP-256	N5SE, 47SE	$\begin{aligned} & \mathrm{b} \\ & \mathrm{p} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \hline 055 \\ & 055 \\ & 145 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 47 \mathrm{~S} \\ & 43 \mathrm{~N} \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 62 \\ 168 \\ 44 \\ \hline \end{array}$	$\begin{aligned} & 1.12 \\ & 1.12 \\ & 1.20 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.68 \\ 1.11 \\ \hline 1.32 \\ \hline \end{array}$	$\begin{array}{r} 272.7 \\ 22.7 \\ 144.7 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 32.2 \\ 28.5 \\ 44.4 \\ \hline \end{array}$	1.19	1.94	1.63	433
TP-1388	N70E, 32SE	$\begin{aligned} & \hline \mathrm{b} \\ & \mathrm{p} \\ & \mathrm{v} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 070 \\ 070 \\ 160 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 32 \mathrm{~S} \\ 58 \mathrm{~N} \\ 90 \\ \hline \end{array}$	$\begin{array}{\|r} \hline 138 \\ 30 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & 1.106 \\ & 1.21 \\ & 1.22 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.76 \\ 0.99 \\ 1.32 \\ \hline \end{array}$	$\begin{array}{\|r} \hline 300.6 \\ 177.4 \\ 55.6 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33.5 \\ 39.6 \\ 32.5 \\ \hline \end{array}$	1.33	1.74	1.30	422
TP-51	N49E, 29SE	$\begin{aligned} & \mathrm{b} \\ & \mathrm{p} \\ & \mathrm{v} \end{aligned}$	$\begin{array}{\|l\|} \hline 049 \\ 049 \\ 139 \\ \hline \end{array}$	$\begin{aligned} & \hline 29 \mathrm{~S} \\ & 61 \mathrm{~N} \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 4 \\ 5 \\ 47 \\ \hline \end{array}$	$\begin{aligned} & 1.19 \\ & 1.35 \\ & 1.12 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.86 \\ 0.96 \\ 1.21 \\ \hline \end{array}$	$\begin{array}{\|r} \hline 315.6 \\ 146.1 \\ 51.7 \\ \hline \end{array}$	$\begin{array}{r} 49.6 \\ \hline 39.9 \\ 5.2 \\ \hline \end{array}$	1.26	1.41	1.12	qII
TP-133	N79E, 49SE	$\begin{aligned} & \mathrm{b} \\ & \mathrm{p} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \hline 079 \\ & 079 \\ & 169 \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \mathrm{~S} \\ & 41 \mathrm{~N} \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 41 \\ 1 \\ 86 \\ \hline \end{array}$	$\begin{aligned} & 1.23 \\ & 1.51 \\ & 1.19 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{aligned} & \hline 0.80 \\ & 0.99 \\ & 1.26 \\ & \hline \end{aligned}$	$\begin{array}{r} 357.7 \\ 213.9 \\ 88.8 \\ \hline \end{array}$	$\begin{array}{\|r} 9.1 \\ 78.8 \\ 6.5 \\ \hline \end{array}$	1.27	1.58	1.24	411
*TP-963	N30E, 39SE	$\begin{aligned} & \mathrm{b} \\ & \mathrm{p} \\ & \mathrm{v} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 030 \\ 030 \\ 120 \\ \hline \end{array}$	$\begin{aligned} & \hline 39 \mathrm{~S} \\ & 51 \mathrm{~N} \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 79 \\ 39 \\ 67 \\ \hline \end{array}$	$\begin{aligned} & 1.29 \\ & 1.47 \\ & 1.07 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.67 \\ 1.19 \\ 1.26 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 241.8 \\ 357.9 \\ 121.3 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 32.5 \\ 34.6 \\ 38.6 \\ \hline \end{array}$	1.06	1.88	1.78	422
TP-1014	N44E, 40SE	$\begin{aligned} & \mathrm{b} \\ & \mathrm{p} \\ & \mathrm{v} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 044 \\ 044 \\ 134 \\ \hline \end{array}$	$\begin{aligned} & 40 \mathrm{~S} \\ & 50 \mathrm{~N} \\ & 90 \end{aligned}$	$\begin{array}{r} 17 \\ 30 \\ 110 \\ \hline \end{array}$	$\begin{aligned} & 1.29 \\ & 1.21 \\ & 1.19 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.86 \\ 1.04 \\ 1.11 \\ \hline \end{array}$	$\begin{array}{r} 154.0 \\ 275.7 \\ 53.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 19.8 \\ 55.6 \\ 26.9 \\ \hline \end{array}$	1.07	1.29	1.21	433
*TP-1355	N4SE, 38SE	$\begin{aligned} & \mathrm{b} \\ & \mathrm{p} \\ & \mathrm{v} \end{aligned}$	$\begin{array}{\|l} \hline 045 \\ 045 \\ 13.5 \\ \hline \end{array}$	$\begin{aligned} & 38 \mathrm{~S} \\ & 52 \mathrm{~N} \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \\ 64 \\ 104 \\ \hline \end{array}$	$\begin{aligned} & 1.06 \\ & 1.16 \\ & 1.46 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{aligned} & 0.83 \\ & 0.87 \\ & 1.38 \\ & \hline \end{aligned}$	$\begin{array}{\|r} \hline 20.3 \\ 170.7 \\ 10.8 \\ \hline \end{array}$	$\begin{array}{r} 7.9 \\ \hline 24.5 \\ 64.1 \\ \hline \end{array}$	1.59	1.66	1.15	411
TP-563	N57E, 28SE	$\begin{aligned} & \mathrm{b} \\ & \mathrm{p} \\ & \mathrm{v} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.57 \\ & 057 \\ & 147 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \mathrm{~S} \\ & 62 \mathrm{~N} \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 136 \\ 160 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 1.19 \\ & 1.18 \\ & 1.14 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{aligned} & 0.89 \\ & 0.98 \\ & 1.13 \\ & \hline \end{aligned}$	$\begin{array}{r} 310.2 \\ 64.9 \\ 213.8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 13.1 \\ 60.8 \\ 25.6 \\ \hline \end{array}$	1.15	1.27	1.10	411
BRF-263	N5SE, 39SE	$\begin{aligned} & \mathrm{b} \\ & \mathrm{p} \\ & \mathrm{v} \\ & \hline \end{aligned}$	$\begin{aligned} & 055 \\ & 055 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 39 \mathrm{~S} \\ & 51 \mathrm{~N} \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 5 \\ 12 \\ 165 \\ \hline \end{array}$	$\begin{aligned} & 1.38 \\ & 1.43 \\ & 1.28 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline x \\ y \\ y \\ \hline \end{array}$	$\begin{aligned} & \hline 0.74 \\ & 0.91 \\ & 1.48 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline 223.7 \\ 118.3 \\ 25.9 \\ \hline \end{array}$	$\begin{array}{r} 67.9 \\ 6.2 \\ 21.1 \\ \hline \end{array}$	1.63	2.(K)	1.23	42?
TP-710	N54E, 31SE	$\begin{aligned} & \hline b \\ & p \\ & v \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 054 \\ & 054 \\ & 144 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} 31 \mathrm{~S} \\ 59 \mathrm{~N} \\ 90 \end{array}$	$\begin{array}{r} 8 \\ 30 \\ 125 \\ \hline \end{array}$	$\begin{aligned} & 1.46 \\ & 1.36 \\ & 1.97 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline z \\ y \\ x \\ x \end{array}$	$\begin{aligned} & \hline 0.69 \\ & 0.91 \\ & 1.59 \\ & \hline \end{aligned}$	$\begin{array}{r} 159.6 \\ 259.2 \\ 7.5 \\ \hline \end{array}$	$\begin{aligned} & 34.4 \\ & 13.7 \\ & 52.3 \\ & \hline \end{aligned}$	1.75	2.30	1.32	411

* Strain ratio of ellipses not consistent with principal axes of strain ellipsoid.
Three-dimensional finite strain analysis (normalized Fry)

Sample	Orientation	Plane	Strike	Dip	Rake	Ratio	Axis	Stretch	Axis Trend	Axis Plunge	x/y	x / z	y / z	Solution
*TP-1388	N70E, 32SE	$\begin{aligned} & \hline b \\ & p \\ & \mathrm{p} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 070 \\ & 070 \\ & 160 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 32 \mathrm{~S} \\ 58 \mathrm{~N} \\ 90 \\ \hline \end{array}$	$\begin{array}{r} 1.31 \\ 30 \\ 70 \end{array}$	$\begin{array}{\|l} \hline 1.26 \\ 1.26 \\ 1.24 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.60 \\ 0.87 \\ 1.92 \\ \hline \end{array}$	$\begin{array}{r} 297.1 \\ 174.4 \\ 45.7 \\ \hline \end{array}$	$\begin{aligned} & 27.7 \\ & 4.5 .8 \\ & 31.3 \\ & \hline \end{aligned}$	2.21	3.20	1.45	411
TP-133	N79E, 49SE	$\begin{aligned} & \hline b \\ & p \\ & v \\ & v \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 079 \\ 079 \\ 169 \end{array}$	$\begin{array}{\|l} \hline 49 \mathrm{~S} \\ 41 \mathrm{~N} \\ 90 \end{array}$	$\begin{array}{\|r} \hline 45 \\ 174 \\ 84 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.24 \\ 1.40 \\ 1.41 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 0.70 \\ 1.14 \\ 1.26 \\ \hline \end{array}$	$\begin{array}{r} 304.2 \\ 184.9 \\ 53.6 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 26.4 \\ 44.6 \\ 33.8 \\ \hline \end{array}$	1.11	1.80	1.63	4.33
TP-963	N30E, 39SE	$\begin{aligned} & \hline b \\ & p \\ & \mathrm{p} \\ & \hline \end{aligned}$	$\begin{aligned} & 030 \\ & 030 \\ & 030 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 39 \mathrm{~S} \\ & 51 \mathrm{~N} \\ & 90 \end{aligned}$	$\begin{array}{r} 120 \\ 39 \\ \hline 17 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 1.38 \\ 1.44 \\ 1.38 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.68 \\ 1.01 \\ 1.45 \\ \hline \end{array}$	$\begin{aligned} & 243.9 \\ & 353.6 \\ & 112.2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 34.4 \\ 26.2 \\ 44.2 \\ \hline \end{array}$	1.44	2.13	1.49	422
*TP-1014	N44E, 40SE	$\begin{aligned} & \hline b \\ & p \\ & \mathrm{p} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 044 \\ 044 \\ 134 \\ \hline \end{array}$	$\begin{array}{\|l} 40 \mathrm{~S} \\ 50 \mathrm{~N} \\ 90 \\ \hline 90 \end{array}$	$\begin{array}{r} 6 \\ 4.5 \\ 100 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 1.33 \\ 1.35 \\ 1.21 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.66 \\ 0.89 \\ 1.71 \\ \hline \end{array}$	$\begin{array}{r} 26.3 .6 \\ 144.9 \\ 19.0 \\ \hline \end{array}$	$\begin{array}{\|l} 30.6 \\ 39.1 \\ 35.9 \\ \hline \end{array}$	1.92	2.59	1.35	$4{ }^{33}$
TP-563	N57E, 28SE	$\begin{aligned} & \hline b \\ & p \\ & v \\ & p \end{aligned}$	$\begin{array}{\|l\|} \hline 057 \\ 057 \\ 057 \\ 147 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 28 \mathrm{~S} \\ 62 \mathrm{~N} \\ 90 \\ \hline \end{array}$	$\begin{array}{r} 131 \\ 162 \\ 75 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.60 \\ 1.28 \\ 1.21 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.74 \\ 0.96 \\ 1.41 \\ \hline \end{array}$	$\begin{array}{r} 20(1) .2 \\ 134.3 \\ 21.7 \\ \hline \end{array}$	$\begin{array}{r} 14.2 \\ 74.5 \\ 6.1 \\ \hline \end{array}$	1.47	1.91	1.130	433
BRF-263	N55E, 39SE	$\begin{aligned} & \hline b \\ & p \\ & \mathrm{p} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 055 \\ 055 \\ 054 \\ \hline 145 \end{array}$	$\begin{array}{\|l\|} \hline 39 \mathrm{~S} \\ 51 \mathrm{~N} \\ 90 \\ \hline \end{array}$	$\begin{array}{r} 176 \\ 3 \\ 155 \\ \hline \end{array}$	$\begin{array}{\|l} 1.86 \\ 1.73 \\ 1.47 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline z \\ y \\ x \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.70 \\ 0.96 \\ 1.48 \\ \hline \end{array}$	$\begin{array}{r} 206.0 \\ 111.7 \\ 21.1 \\ \hline \end{array}$	$\begin{array}{\|} \hline 68.6 \\ 1.7 \\ 21.3 \\ \hline \end{array}$	1.54	2.11	1.37	411
*TP-710	N54E, 3ISE	$\begin{array}{\|l\|} \hline b \\ p \\ v \\ \hline \end{array}$	$\begin{array}{\|c} 054 \\ 054 \\ 054 \\ 144 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31 \mathrm{~S} \\ 59 \mathrm{~N} \\ 90 \end{array}$	$\begin{array}{r} 1 \\ 36 \\ 126 \\ \hline \end{array}$	$\begin{aligned} & 1.54 \\ & 1.30 \\ & 1.94 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline z \\ y \\ x \\ x \end{array}$	$\begin{array}{\|l} \hline 0.69 \\ 0.96 \\ 1.50 \\ \hline \end{array}$	$\begin{array}{r} 151.0 \\ 261.0 \\ 15.3 \\ \hline \end{array}$	$\begin{array}{\|l} 37.7 \\ 23.9 \\ 42.9 \\ \hline \end{array}$	1.56	2.17	1.39	411

1.43
± 0.08
2.27
± 0.35
1.61
± 0.26
MEAN
STD DEV

[^3]OWENS' OUTPUT DATA

Measurements of quartz pebble principal axes and axial ratios

Measurernents of principal axes in mm.

Appendix D

Procedures for cross section construction and retrodeformation using Adobe Illustrator ${ }^{T M}$

Procedures for cross section construction and retrodeformation using Adobe Illustrator ${ }^{T M}$

The following procedures apply to the construction of cross sections and retrodeformed cross sections in Plate III using Adobe Illustrator software for the Macintosh computer.

Cross sections

Step 1-Scanning. Scan cross section as line art using Ofoto software, and save as pict file. Be sure to also scan in the scale along with your cross section.

Step 2-Transferring to Adobe Illustrator ${ }^{T M}$. Open Adobe Illustrator ${ }^{T M} 6.0$ and open the scanned pict as a template.

Step 3-Tracing template. Trace, using the pen tool, the topographic profile and cross section boundaries (sides and bottom of cross section) as one object (polygon). The rest of the cross section is traced as separate lines. Each stratigraphic unit or structure (fault) has its own line, therefore some lines will overlap. For example, a stratigraphic unit bounded by a fault will have a line representing the stratigraphic unit, and a line representing the fault. Use different stroke weights for lines representing different types of contacts. Stratigraphic contacts are best converted to 0.5 -point lines, while fault contacts are left as 1.0 -point lines (the default line weight is 1.0 -point).

Step 4-Preserving line art and template. Open a new file in Adobe Illustrator ${ }^{\mathrm{TM}} 6.0$ and import the line art from the template. This file is used to edit your cross section and to make revisions. Keep the original file containing the line art and template as a backup.

Step 5-Rotate to horizontal. In the new file just created, select all (command A) and rotate the base of the cross section to the horizontal. To ensure the base of the cross section is completely horizontal increase, magnification to 800% (using the zoom tool) and rotate section until it is horizontal. Next, make the vertical lines representing the sides of the cross section completely vertical using the direct-selection tool (the open arrow tool). Do not select all here, just select the node(s) you wish to move in order to make the sides of the cross section vertical.

Step 6-Constructing reference lines ("sticks"). These lines are constructed to represent the thickness of individual units (using the scale scanned in with the cross section), the top of basement, and the ramp angles. These reference lines ensures each stratigraphic unit has constant thickness, and are "installed" precisely normal to bedding. Other reference lines and/or objects may be used at your discretion to ensure constant thickness of stratigraphic units. Make copies of the reference lines representing the thickness of each stratigraphic unit and distribute them throughout the cross section. Reference lines representing the top of basement ensure that each supracrustal unit will have the same dip as basement. Reference lines oriented parallel to ramps ensures stratigraphic units will have the same dip as the ramp. Increase magnification to 800% and make the necessary adjustments to ensure stratigraphic units have constant thickness by first adjusting the "sticks" normal to bedding and then correcting the thickness. It is best to begin with the least deformed part of the section (near basement and, here, westernmost units).

Step 7-Coloring the cross section using Pantone ${ }^{T M}$ colors. Copy the lines representing the area you wish to color, removing them as a unit without changing their shape, then connect those lines using either the pen tool or the open arrow tool and command join to
make a polygon. Fill each polygon with the color you want, make the line "none", and move the polygon back to the section. Pantone colors are located in the custom colors section of Adobe Illustrator ${ }^{\mathrm{TM}}$.

Retrodeformed cross sections

Step 8-Line-balancing of Valley and Ridge footwall units. Line-balancing Valley and Ridge footwall units can be accomplished using two techniques. The first technique requires measuring each line (using the measure tool-ruler) of the cross section. Draw a line equal to the length of the line measured in the cross section. Do this for each line to be retrodeformed. The second technique involves copying the line to be retrodeformed and rotating that line to the horizontal. For folded strata, select the entire line and rotate (using rotate tool) the line around the end of the line till the adjacent node is horizontal. Unselect the first node which the line was originally rotated around, and rotate the line around the adjacent node that was just rotate to the horizontal. Repeat this procedure until the entire folded/curved line is horizontal.

Step 9-Line- and area-balancing of western Blue Ridge hanging-wall units. Parts of this portion of the cross section is retrodeformed using line- and area-balancing techniques. Units or thrust sheets in the hanging wall that have undergone at least one period of deformation can be line-balanced using the procedure in Step 8. Line-balanced portions of the hanging-wall units include the strata in the Great Smoky and Bullet Mountain thrust sheets. Area-balancing is required for retrodeforming strata that has undergone at least two episodes of deformation. First, copy and isolate the hanging wall strata. Second, copy and isolate individual thrust sheets that comprise the hanging-wall units. Group each thrust sheet after the individual thrust sheets have been isolated. Next, establish a horizontal reference line representing an original flat fault surface (Great

Smoky fault). Each thrust sheet will be rotated to parallel along this horizontal line. Select all of the thrust sheets to be retrodeformed, and rotate each thrust sheet so that the leading edge of the fault is aligned with the horizontal reference line. Rotate the object till the next node is parallel to the horizontal reference line. Continue to rotate the object to the horizontal reference line until the next node is parallel to this line. Select only the nodes of the object that need to be rotated. Unselected nodes will not move. Once you have rotated the object, unselect the nodes of the object that do not need to be rotated. Continue this procedure until the entire thrust sheet is retrodeformed.

Step-10-Coloring. Color retrodeformed sections as needed in the same manner as in Step 7.

Vita

Steven Lee Martin was born in Knoxville, Tennessee on April 1, 1963 to Charles Edward and Shirley Drummond Martin. Steves' family moved to Chattanooga, Tennessee in 1965. He attended Alpine Crest Elementary, Hixson Junior High, and Hixson High schools in the Chattanooga public school system, from which he graduated in June, 1981. Steve enrolled at the University of Tennessee at Chattanooga (UTC) in August, 1981. While at UTC, he earned a Bachelor of Science degree in Business Administration with a concentration in Marketing, and played varsity soccer in four years. After Graduating from UTC in May, 1985, he worked as a customer service representative for World Carpets. Inc., in Dalton, Georgia. He was then employed at the Chattanooga Freight Bureau, Inc., where he worked from 1986 to 1989 as a transportation broker and consultant. During this time he became interested in geology. After taking Geology 101 at UTC, Steve decided to return to school for a second undergraduate degree. He enrolled at the University of Tennessee at Knoxville (UTK) in August, 1989, and received a Bachelor of Science degree in Geology in December, 1992. He became a graduate student in the Department of Geological Sciences at UTK in January, 1993. He earned a Master of Science degree in Geology in December, 1996.

PLATE I

Geologic Map of parts of the Tellico Plains,
Bald River Falls, Farner, and Unaka
7.5-minute Quadrangles,

Tennessee and North Carolina
Steven L. Martin
1996

Plate III
Cross sections and retrodeformed sections of the western Blue Ridge
Foothills near Tellico Plains, southeasternTennessee and southwestern North Carolina

Explanation

Cross section A-A

Plate Illa

Cross sections

Cross section $\mathrm{A}-\mathrm{A}^{\prime}$

A

Cross section B-B'

B

B^{\prime}

Explanation

[^0]: sulfidic and graphitic slate

[^1]: * The lack of consistency between ellipses and ellipsoid occurs when Owen's (1984) method for calculating the ellipsoid fails to achieve similarity of results between the six calculation attempts.

[^2]: *Plagioclase compositions determined using the Michel-Lévy (1877) method

[^3]: Samples TP-256, TP-5I, and TP-1355 not used for normalized Fry method.

 * Strain ratio of ellipses not consistent with principal axes of strain ellipsoid.

