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Abstract 

 

Spatial variations in suspended concentrations of fine sediment and indicator bacteria in streams 

is noted as a source of uncertainty in various applications of water quality datasets. Without proper 

analysis of the persistence and reasoning for this variance in natural systems, a finer resolution of 

model calibration is necessary to account for spatial variation in stream cross sections. This level 

of calibration has become of utmost importance due to technological advancements presenting the 

ability for water quality modeling frameworks to generate a much finer resolution of outputs. 

While the importance of model calibration has been noted for remediating levels of uncertainty in 

output datasets, single point sampling along a stream cross section is still predominately utilized 

for input data acquisition within the field. In order to test the level of variation which might be 

accounted for by implementing higher resolution sampling strategies, five evenly distributed 

positions were sampled simultaneously along stream cross sections. Along with lateral variation, 

vertical variation was addressed by sampling at 20% and 80% of the respective stage. These sample 

sets were analyzed for: 1) spatial variation in suspended sediment concentrations, 2) spatial 

variation in microbial concentrations, and 3) association between the variations of these 

constituents.  Results showed spatial and temporal variations clearly existed within both datasets. 

Due to the sporadic nature of these variations both within and between events on any given site, it 

is recommended spatial variation be accounted for by higher resolution input calibration steps 

rather than purely empirical framework improvements. Spearman correlations showed little 

evidence of particulate to microbial associations within this study, but it is recommended particle 

size distributions be evaluated in consideration to attempting correlations between total suspended 

solids and fecal indicator bacteria in future studies.
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1.0 Review of Literature: In-Stream Pollutant Transport and Associated Uncertainties 

 

1.1 Introduction 

 

Accuracy and precision of measured water quality parameters introduces uncertainty for use in 

assessments and modeling, presenting the necessity to better understand its role in developing 

watershed management strategies. Two of the most common uncertainties noted in water resources 

is the sampling methodology and modeling frameworks used to predict potential sediment and 

microbial concentrations. Excessive fine sediment and pathogen bacteria are both of great concern 

in regards to ecological and public health (www3.epa.gov 2015). Considering the association 

between microbial and sediment concentrations through potential attachment effecting transport 

and fate of microbial populations, attempts were made to understand uncertainty inherent within 

both parameters simultaneously. Uncertainty and associations within these datasets were analyzed 

by evaluating variations in concentrations along a stream cross section. This is important due to 

the fact that technological advancements have led to improvements in computer processing, 

allowing for water resource modeling applications to predict large skews of variables on very finite 

scales in all dimensions of a given reach. In accordance with updated modeling resolution, 

sampling methodologies must be updated to properly assess constituents’ lateral variance in the 

field for proper calibration of fine resolution modeling applications.  

 

1.1.1 Restoration and Management 
 

The EPA lists pathogens and sediment within the top five constituents of concern among streams 

on state 303(d) lists, in which these compromised water bodies require watershed management 

and Total Maximum Daily Load (TMDL) targets (www3.epa.gov 2015). Total Maximum Daily 

Loads (TMDL) were implemented as part of the Clean Water Act in 1977 to help minimize 

pollution to acceptable levels in surface water. These regulations are based in methodologies which 
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were not designed to encompass the needs of increased technological processing power that 

generate finer scale outputs, in turn requiring finer scale inputs for calibration (Karr & Yoder 2004, 

Yager 2007).  The older methodology has been adopted by modeling efforts utilized for 

conceptualizing stream processes on a much finer scale than it was ever intended to analyze. The 

culmination of this error leads to ineffective management practices due to inappropriate regulatory 

standards with improper implementation of inadequately understood management designs. 

 

Pathogens have been listed as the number one constituent causing impairment within United States 

streams and rivers, being a cause of impairment for 10,681 of the 43,180 impaired waters listed 

(www3.epa.gov 2015). Pathogens are of obvious public concern, especially in consideration to 

human exposure. While this constituent is of highest concern, the methods utilized for tracking 

potential contamination have been heavily scrutinized (Characklis et al 2005, Karr & Yoder 2004, 

Yen 2002). Error associated with analytical methods, along with modeling frameworks which lack 

to fully account for constituents interactions with their surroundings, contribute to this scrutiny. 

Indicator bacteria (IB), which are utilized in pathogen tracking efforts due to their more cost 

effective analytical methodologies, are typically modeled as free floating particles (Jamieson et al 

2005, Wilkinson et al 1995). Associations between microbes and particulate matter have been 

noted through partitioning experiments (Auer & Niehaus 1993, Characklis et al 2005, Krometis et 

al 2007). This association leads to transport mechanisms which rely on much larger masses than 

that of the microbes, leading to a source of uncertainty in the form of miscalibrated modeling 

frameworks. 
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Fine sediment was fifth in constituents of concern, being listed as the cause of impairment for 

6,466 of the 43,180 impaired waters nationally (www3.epa.gov 2015). Sedimentation has been 

noted as one of the largest pollutant sources to address through watershed management efforts, 

due to both its ecological and socioeconomical effects (Apitz 2012, USEPA 2006). Excess 

suspended sediments have been shown to jeopardize ecological integrity, greatly impairing water 

quality (Schwartz et al 2011). Suspended sediment as particulate matter has also been associated 

with fate and transport of both microbial communities and other pollutants of concern, making it 

a common surrogate for overall water quality in a stream. A large amount of the uncertainty 

associated with random sampling is due to misjudgment of transport potential. This misconception 

has been primarily contributed to improper calibration of models in consideration to discontinuous 

bed form roughness.  

 

1.1.2 Uncertainty in Surface Water Quality 

 

Uncertainty is the level of variance noted between calculated and measured datasets which cannot 

be directly contributed to a known source of error with predefined levels of confidence. The field 

of water resources engineering is filled with varying levels of uncertainty (Harmel et al 2006, 

McCarthy et al 2008). In most uncertainty studies within the genre of water quality, error is 

categorized as sampling, analytical, and empirical (Harmel et al 2006, Harmel et al 2010, Harmel 

et al 2007, Harmel et al 2009, McCarthy 2008). Essentially, error from the methodology used to 

collect a sample, error based on the method utilized in laboratory analysis, and error associated 

with mathematical modeling efforts, respectively. While research has been performed on various 

constituents of these categories, proper culmination of error has only recently been assessed but 

not yet applied within the field (Harmel et al 2006, Harmel et al. in press). This is of particular 

interest when considering the relative error associated with modeling efforts. One must not only 
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consider the error inherent within the model structure itself, but also that represented within the 

data (Silberstein 2006, Harmel et al. in press). Although more research has been performed to 

quantify and understand uncertainty in sediment concentrations in surface waters, uncertainties 

regarding microbial data are only now being explored (Harmel et al 2006). Further, beyond simply 

quantifying these uncertainties, it is critical to understand why these uncertainties exist in an effort 

to match fundamental processes to observed data trends.  

1.2 Fundamental Pollutant Transport Processes 

 

1.2.1 Suspended Sediment  

 

Stream geomorphology influences flow regimes, sediment transport, channel boundary 

characteristics, and water quality to produce, maintain, and renew lotic habitats on a spatial and 

temporal scale (Cluer & Thorne 2014). For error associated with sediment load estimations, the 

sampling (data acquisition) category has been widely noted as the prevalent form of error (Harmel 

et al 2010, Harmel et al 2009). One explanation for this, which has been of great interest for 

sampling uncertainty associated with suspended sediments, is variation in concentrations due to 

the local effect of roughness elements on the velocity profile (May 2007, Yager et al 2007). 

Roughness elements are present in two forms during sediment entrainment: immobile and mobile 

grains (Ghilardi et al 2014). Perhaps the more studied of the two, immobile grains are defined as 

macroroughness elements which dissipate the relative available energy for entrainment (May 

2007, Yen 2002, Yager et al 2007). These increased areas of roughness further dissipate available 

shear stress, which increases settling while simultaneously decreasing energy available for 

entrainment. This produces dynamic sediment profiles varying both laterally across and 

longitudinally along the channel. It has even been noted that grain sorting, interchanging of grain 

size distribution within the water column due to dissipation of available energy upon entrainment 
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of heavier grains, greatly alters flow velocity and bed morphology (Frey et al 2003, Ghilardi et al 

2014, Recking et al 2009). Grain sorting results in pulses of fine sediment followed by bursts of 

larger coarse grains (Frey et al 2003, Recking et al 2009). Studies have even shown natural rivers 

experience large variation in sediment load for similar discharges (Recking et al 2009, Turowski 

et al 2009). Therefore, given ample sediment supply and capacity, roughness factors will control 

fate and form of geomorphic structures (Buffington & Montgomery 1997). 

 

Being that both headwaters (May 2007, Hassan 2005) and rivers (Recking et al 2009, Turowski et 

al 2009) have shown evidence of flow variations due to roughness factors along the cross section, 

it would seem logical that the streams which lie between these two scales would experience similar 

effects. Bedform resistance has been shown to contribute up to 75% of total channel roughness, in 

turn defining the effective shear stress (Buffington & Montgomery 1997). Effective shear stress is 

the empirical variable utilized to represent energy loss due to a stream bed and its banks 

(Buffington 1997). This variable is typically evaluated in relation to velocity, depth, and a relative 

roughness value averaged for the reach (Yen 2002). While this method presents a good foundation 

for evaluation of the energy dissipated by the wetted perimeter, it does not adequately evaluate the 

system’s complex dynamics in consideration to implementation and evaluation of management 

efforts (Byrd 2000). Velocity profiles vary incrementally with relative roughness, which is not 

encapsulated by an averaged value (Byrd et al 2000). The relative effectiveness of macroroughness 

elements in resisting flow is dependent upon its size and density (Papanicolaou et al 2001). 

Defining the applicable ratio for potential flow variation by roughness element size would allow 

for better field evaluation of possible sampling sites, which in turn would be utilized in calibrating 

the model to reach specific characteristics. 
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1.2.2 Pathogen and Fecal Indicator Bacteria 

 

It has been noted in previous studies that a large amount of error exists within microbial transport 

modeling (McCarthy et al 2008, Quilliam et al 2011). This is due to both misguided perceptions 

inherent within respective modeling frameworks (Jamieson et al 2004, Quilliam et al 2011, 

Wilkinson et al 1995) and dismissal of data uncertainty (Harmel et al in press). Microbial transport 

is typically modeled as free floating particles (Jamieson et al 2004, Wilkinson et al 1995), despite 

evidence that certain microbial species associated with particulate matter in regards to entrainment. 

Research dating back to 1985 shows this association and relates it to two transport methods 

(Marshall 1985). The first method of connection to particles by microbes is generally through a 

weak Van der Waahls bond, due to the varying charges between microbes and the ions associated 

with certain sediment types (Howell et al 1996). Once these microbes have been drawn to the 

particulate matter, certain species proceed to attach themselves to particles via extracellular 

polymers (Marshall 1985). Various research studies have shown this bond to be “indefinite” in 

behavior, thus altering the respective entrainment regime of various microbial species to that of 

the larger particles they’re attached to (Jamieson 2005). 

1.2.3 Importance of Linking Evaluation of Constituents  

 

Research has pointed to an increased level of effectiveness in the implementation of TMDL’s 

which utilize a culmination of biological, chemical, and physical characteristics (Apitz 2012, 

Harmel 2010, Karr & Yoder 2004). To properly deal with these constituents, a 

hydromorphological viewpoint is crucial (Apitz 2012, Vaughan et al 2009). Hydromorphological 

views are based within three fields; hydrology, geomorphology, and ecology (Vaughan et al 2009). 

Without considering all three viewpoints, restoration and management efforts will suffer. Due to 

the intricacies inherent within a quasi-equilibrium based system, a large range of variables must 
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be considered simultaneously. Without doing so, the alteration generated by opposing constituents 

will negatively affect model calibrations. With the prevalence of uncertainty within the field of 

water quality data, it is advantageous to eliminate as much error in as many measurements as 

possible. The interactions between constituents are also the least parameterized aspect associated 

with current modeling efforts.  

 

Links between ecology and physical habitat are of great interest in water quality research and 

management (Vaughan et al 2009). Functional traits and suspended sediment transport metrics 

have been shown to correlate both negatively and positively at varying frequencies (Schwartz et 

al 2011). It has been shown in areas with unpredictable flow magnitudes and frequency, abiotic 

factors control in lieu of biotic trophic factors such as predation (Montgomery 1999, Schwartz et 

al 2011, Poff & Ward 1989). Species abundance and community structure have been shown to rely 

on geomorphic processes in four dimensions: longitudinal, lateral, vertical, and temporal 

(Montgomery 1999, Poff & Ward 1989). While current modeling efforts account for all these 

dimensions, the lateral alteration in roughness along the cross section is measured on far too broad 

of a scale for proper calibration of reach specific characteristics within modeling applications 

(Jamieson et al 2005, May 2007, Nitsche et al 2011, Yager et al 2007). Various species depending 

on sediment loads in altering ways, makes proper implementation of BMP’s for sediment control 

very difficult. With the current lack of resolution within the modeling frameworks utilized for 

designing these practices, predictably positive outcomes are arguably impossible. 

 

 

 



 

 8  
 

1.3 Implications 

 

1.3.1 Monitoring 

 

Current automated sampling efforts implement a vertically integrated intake at a singular point 

within the stream (Harmel et al 2010), and grab samples are typically taken at a single point 

perceived as center of flow (Harmel & King 2005, Martin et al 1992). While many constituents 

were mostly assumed thoroughly mixed, making these sampling methodologies valid, more recent 

studies have stated otherwise (Harmel et al 2010, Harmel & King 2005, Papanicolaou et al 2001, 

Quilliam et al 2011). It has been established within the field that sediment and microbial transport 

vary by both vertical and lateral spatial domains (Martin et al 1992, Rode & Suhr 2007, Cluer & 

Thorne 2014). The USGS even implemented Equal-Width-Increment (EWI) and Equal-Discharge-

Increment (EDI) methods for sampling purposes, which have been widely accepted for stormwater 

sampling (Harmel et al 2006). Unfortunately, cost and time restrictions have limited the utility of 

these constructs (Harmel et al 2010). Some research even showed variation within dissolved 

constituents, which are still widely accepted as well mixed within all streams  (Harmel et al 2010). 

In association with variations in shear stress, available degradable material for entrainment varies 

along the cross section as well (Frey 2003). The culmination of discontinuity between parameters 

generates numerable facets to uncertainty presenting themselves in undefined variance within the 

sampled dataset which effects viability of modeled output. Error associated with cross sectional 

profile variation has been noted from 20% up to an order of magnitude within the literature (Yager 

et al 2007). Multiple empirical forms have been shown successful in limiting error by assessing 

variance in roughness along the cross sectional profile, but none of these forms have been widely 

accepted or utilized within the field (Nitsche et al 2011).  
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The River Continuum Concept proved that geomorphic and ecologic processes are linked linearly 

along the flow path for a given region with uniform geology, topography, and climate; however, 

process domains proved that, given a finer scale resolution, a more diverse set of hydrogeomorphic 

conditions could be analyzed with the principles of this method (Rosgen 1994, Montgomery 1999). 

While this allows for assessment of what would be ecologically pristine water standards in regards 

to geomorphic practices in areas where no pristine examples have persisted, it does not decrease 

calibration error due to sampling error and outdated empirical frameworks which will eventually 

mislead BMP implementation. This shows lack of differentiating between assessment and design 

based modeling applications could potentially mislead restoration efforts by performing system 

analysis on an inappropriate scale for modeler’s intended use. To note, Rosgen associates cross 

sectional area with varying flow regimes due to slope and material type (Rosgen 1994). While 

research has spoken in favor of these views since, sampling efforts still neglect collecting at enough 

points to generate the resolution necessary for accurately modeling geomorphic processes. 

1.3.2 Modeling 

 

The US National Research Council has identified model accuracy improvement, especially in the 

area of bacterial estimates, essential in development of water quality treatment innovations 

(Krometis et al 2007). Jamieson (2004) claims a complete watershed scale microbial water quality 

model must include the following: i) characterize production and distribution of waste and 

associated microorganisms, ii) simulate transport of microorganisms from land to streams, iii) 

route microorganisms through stream networks. While the microbial to sediment association has 

been validated in numerous works, most modeling applications still treat microbial transport in 

streams as that of a free floating particle (Jamieson et al 2004, Wilkinson et al 1995). If microbes 

are truly indefinitely associated with particulate, then it is the particulates much larger mass which 
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must be considered for entrainment (Davies 2000, Jamieson et al 2004). It has also been shown 

that microbial communities are not only stored within benthic sediments, but also grow within 

these systems (Characklis et al 2005, Howell et al 1996, Sherer et al 1992). This implies a 

background concentration which must be taken in to account, which has been shown in some areas 

to exceed non-point source input (Sherer et al 1992). Microbial association with sediment particles 

attributed as one of the last remaining complications in designing a reliable microbial population 

prediction model (Jamieson et al 2005, Tian et al 2002). 

 

With the human and ecological implications of geomorphic variation on ecosystems, proper 

modeling is required to appropriately implement management practices (Harmel et al 2007, Karr 

& Yoder 2004). Entrainment modeling efforts have been shown to over predict sediment loads due 

to lack of accounting for variation in bed roughness elements (Byrd et al 2000, Tian et al 2002, 

Yager et al 2007). Cross sectional discontinuity has even been evaluated as the predominant source 

of uncertainty in regards to sediment load water quality data (Harmel et al 2009). For this to truly 

be implemented, better sampling must be performed within the field to properly assess the true 

condition which is being modeled (Silberstein 2006). Along with a better evaluation of the system 

being modeled, a more diverse modeling framework would allow for implementation throughout 

varying hydromorphic settings (Montgomery 1999). Current modeling efforts have all been 

implemented to express very specific hydromorphic regimes, which is the reason no single method 

has been widely adopted within the field (Nitsche et al 2011).  

 

Uncertainties present themselves both in the evaluation of what management to implement, and in 

understanding management efficiency (Harmel et al 2009, Silberstein 2006). Even when the 
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correct methods are implemented, inadequate resolution within the methodologies used to assess 

these systems can lend to inadequacy in efficiency of evaluations for the systems used (Karr & 

Yoder 2004). Once research congruently agrees upon updated viewpoints, it becomes irresponsible 

to misuse modeling applications which were designed on a much broader spectrum for assessment 

purposes. Design based modeling systems require a much more refined view to adequately address 

the issues inherent within infinitely dynamic natural systems. To calibrate a model in consideration 

to the delicate quasi equilibrium which maintains sustainable lotic communities, proper 

implementation and evaluation is necessary. In consideration to TMDL, more streams are listed 

than are cleared from 303d listing (Karr & Yoder 2004). Karr and Yoder contribute this to 

improper evaluation of management practices leading to management which miss the mark in 

consideration to mitigating TMDL constituents. 

1.3.3 Ecological 

 

The Clean Water Act section 502(19) defines pollution as human-induced alteration of waters 

caused by pollutants as well as non-pollutant agents, such as flow alteration, loss of riparian zone, 

physical habitat alteration, and introduction of alien taxa (Karr & Yoder 2004).  Relative levels of 

sedimentation are essential for physical and trophic structures in lotic ecosystems (Apitz 2012, 

Schwartz et al 2011). However, many urban and agricultural activities result in heightened levels 

of sediment. This increased sediment load has been linked to impaired waterways, and is listed as 

one of the most detrimental pollutants to lotic ecosystems (Apitz 2012, USEPA 2006). Even in 

urbanized areas where sediment loadings from impervious surfaces are not high, increased runoff 

volumes illicit high flows which can deplete available sediment stores. Not only is either the 

abundance or lack of sediment adverse to the system, but other pollutant sources are often 
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transported and stored within sediments (Apitz 2012). Sediment is therefore, arguably, the most 

detrimental non-point source pollutant source within surface waters. 

1.4 Summary 

 

Due to the importance of both sediment and indicator bacteria to environmental policy and public 

health, the level of relative uncertainty involved in evaluation of these parameters is unacceptable 

(Apitz 2012). For sediment, a more accurate sampling methodology should be implemented to 

properly calibrate modeling on a fine enough scale for designing sustainable restoration and 

management efforts (Harmel et al 2010, May 2007, Nitsche et al 2011, Papanicolaou et al 2001, 

Silberstein 2006, Yager et al 2007).  For microbial evaluation, further understanding in regards to 

the level of association between particles and microbes must be assessed in natural systems. While 

partitioning has been performed to evaluate the particle size and type most associated with a given 

microbe (Auer 1993, Davies & Bavor 2000, Jamieson et al 2005, Wilkinson et al 1995), the effects 

of high energy flows and roughness elements on partitioning needs further evaluation. Current 

partitioning evaluations have been largely performed with dosed samples in a laboratory. While 

these experiments provide datasets which are necessary in establishing the fundamentals of this 

relationship, they are not absolutely representative of natural systems. Once the level to which 

microbial communities associate with particulate matter in transport is properly assessed, it will 

be possible to empirically represent the ratio of relative masses in correspondence to relative 

entrainment.  

 

Considering the potential uncertainty of these parameters has been predominately evaluated in 

laboratory conditions, efforts need to be made towards evaluating their relative existence within 

natural systems. While the dynamic processes within natural systems has widely been noted, little 
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effort has been put forth toward evaluating methods of analyzing this variation within sampling 

methodologies. For proper model calibration to occur, sampling frequency must be evaluated in 

relation to both time and space. To evaluate potential benefits to scale based on spatial frequency, 

five points were simultaneously sampled laterally along a cross section. Samples were duplicated 

for each storm to evaluate the alterations due to sediment pulse sheets. Once concentrations were 

derived, the structures of graphs of concentration vs lateral position were evaluated for correlations 

between TSS and IB concentrations. In conclusion, the issues addressed are as follows: 1) lateral 

variations in concentrations of both TSS and IB, 2) associations between particulate matter and 

IB, and 3) consistency of this variation and association between duplicate sampling sets.  
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2.0 Suspended Sediment and Fecal Indicator Bacteria Spatial Covariance  
 

2.1 Abstract 

 

Lack of accounting for spatial covariance in microbial and suspended sediment concentration have 

been contributed to generation of uncertainty with use of measured data for load estimations and 

model calibration. While current sampling methodologies focus on single point sampling 

strategies, updated modeling frameworks which utilize improved technological processing 

capabilities generate output on a much finer resolution than what these sampling strategies were 

intended. To analyze the potential for suspended sediment concentration and microbial density 

variation to be an issue in water quality data the following questions were evaluated: 1) presence 

of lateral variance in microbial densities and suspended sediment concentrations within natural 

systems, 2) potential persistence of microbial to particulate associations during transport within 

the water column, and 3) whether this variance is distributed in a systematic manner which could 

potentially be contributed to cross sectional characteristics. By implementing a finer resolution 

sampling methodology on streams with varying levels of roughness, it is hypothesized that further 

insights toward the contributions of these relationships can be derived by graphical and statistical 

analysis. Some of the uncertainty generated within modeling outputs has been contributed to lack 

of accounting for lateral variation in roughness elements on a fine enough scale, and while positive 

results have been noted in utilization of models which account for this error none have completely 

eliminated the uncertainty within the dataset (Nitsche et al 2011). There was clear evidence of 

lateral variation within the samples gathered, with relative standard deviations over 40% for the 

majority of sample sets. The variance noted was not systematic, showing different characteristics 

between duplicate samples, various events, and altering sites. Another noted contributor to 

uncertainty is the effects on microbial concentration’s fate and transport due to particulate 
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association (Characklis et al 2005, Jamieson et al 2005, Yager et al 2007). While these associations 

were clearly noted in the literature (Characklis et al 2005, Jamieson et al 2005, Yager et al 2007), 

the variability in Spearman correlation statistics within this study would lead to a different view. 

It is speculated lack of consistent correlation in these sample sets is due to the fact that TSS can 

easily be more heavily weighted toward larger grains which microbial populations do not associate 

with. Future correlation assessments in the field are recommended to incorporate particle size 

distribution analysis. 

 

2.2 Introduction 

 

Fecal coliform and E.coli, two of many indicator bacteria utilized in tracking potential pathogen 

presence in surface waters, are of great concern to public health (Auer & Niehaus 1993, USEPA 

2002). Pathogens have been listed as the number one constituent causing impairment within United 

States streams and rivers, being a cause of impairment for 10,681 of the 43,180 impaired waters 

listed (www3.epa.gov 2015). The presence of waterborne pathogens has been associated with 

disease outbreaks following storm events due to both re-entrainment of bed material and non-point 

source pollution (Curriero et al 2001, Jamieson et al 2004, Wilkinson et al 1995). Studies have 

shown a single day of storm sediment and microbial loads can be equivalent to several years of 

dry weather loads (Krometis et al 2007). In addition to the temporal variation between baseflow 

and flood stages, spatial variation in fecal indicator numbers per volume have been noted in 

streams (Jamieson et al 2005, Krometis et al 2007) and lakes (Auer & Niehaus 1993, Gannon et al 

1983).  These spatial variations have been accredited to associations between sediment and 

microbes, altering flow regimes, and natural microbial stores (Characklis et al 2005).  
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Along with effecting fate and transport of microbial communities, sedimentation plays a large role 

in the disturbance of lotic ecosystems itself. Sedimentation is attributed to the disturbance of 6,466 

of the 43,180 impaired waterways nationally (www3.epa.gov 2015). Suspended sediment models 

that predict suspended sediment loads, e.g., Einstein method and van Rijn, have been based on the 

concept of vertical concentration profiles containing smallest concentrations near the water surface 

and the greatest concentrations near the channel bed as defined by the Rouse number (Rouse 1965, 

Sturm 2009). While Rouse (1965) laid the framework for evaluating geomorphic conditions of a 

reach, it was never meant to be an all-encompassing method by which all systems were evaluated 

(Yen 2002). Rouse set forth the foundations for evaluating sediment entrainment in open channels 

in the most general case, considering channels which were assumed wide and shallow, to allow 

broadest applicability of the initial analysis of these parameters (Yen 2002). While this assumption 

is valid for rivers in which ratio of bed far exceeds that of the banks along the wetted perimeter, 

turbulence from both bank and bed influence velocity patterns along the cross-section of a stream 

and may not create a logarithmic vertical sediment profile. Recent studies have also highlighted 

the importance of evaluating variation in roughness regimes in consideration to alteration in 

sediment entrainment laterally along a given cross section due to large immobile grains impeding 

flow (Nitsche et al 2011, Papanicolaou et al 2001, Yager et al 2007). Macroroughness elements, 

immobile grains which perturb flow, have various effects dependent upon density, size, and 

roughness (Papanicolaou et al 2001, Yager et al 2007). These effects have been shown in both 

headwaters and larger open channels such as rivers (Hassan et al 2005, May 2007, Yager et al 

2007, Recking et al 2009, Turowski et al 2009). 
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Research dating back to Marshall (1985) begins to inform our understanding of microbial 

associations with particles. Since, sediment association has been widely noted as a potential 

mechanism by which microbes fate is altered (Auer & Niehaus 1993, Characklis et al 2005, 

Gannon et al 1983, Jeng et al 2005, Krometis et al 2007). While modern research points to 

confounding factors in microbial transport, such as persistence of microbial communities within 

benthic soil groups and association of microbes to particulate matter, these factors are typically 

ignored within modeling applications (Nitsche et al 2011). While this natural persistence has been 

noted for various species of microbes, which microbes will survive naturally in the environment 

depends greatly upon soil type and particle size distribution (Jeng et al 2005). Most modern 

modeling applications assume all constituents to be evenly mixed, which has actually only been 

shown applicable to dissolved constituents (Harmel and King 2005, Martin et al 1992). Many 

microbial modeling applications also assume microbes to be free floating particles, which has been 

shown to not always be the case (Jamieson et al 2005). In consideration to the groundwater study, 

the only study which showed 100% association between microbes and particulate matter (Mahler 

2000), it would seem that the only defining factor in whether microbes should be modeled in 

consideration to particulate mass rather than their own mass is potential exposure to particulates.  

With the level to which microbe to particulate associations has been shown to occur, neglecting 

this interaction within model calibration will continuously implement empirical based error on to 

the output dataset. Stream properties effects on microbial fate and transport should be more heavily 

analyzed as well (Jamieson et al 2005). The effects of cross sectional roughness discontinuity on 

flow regimes have been established, but must also be considered for in-stream sediment and 

microbial fate and transport (Quilliam et al 2011). 
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While the literature noted strong evidence of spatial variance for many constituents of interest, 

little effort has been made to evaluate the presence, persistence, and distribution of these spatial 

patterns within the field. Sediment profiles have been noted to vary laterally due to alteration of 

roughness elements. Spatial variation has also been noted for microbial communities due to 

alteration in roughness elements and availability of natural stores based upon bed sediment 

regimes. Variation in fate and transport have also been noted for microbial communities due to 

sediment to microbial association. Due to these varying concentrations, the error associated with 

current single point sampling methodologies must be understood. While these methods still hold 

valid utility in consideration to analyzing broad scale water quality characteristics, evaluation of 

the potential error they could generate in consideration to sampling efforts for TMDL development 

and Stormwater Control Measure (SCM) effectiveness studies presents itself as inherent 

uncertainty within implementation of management design efforts as well as improper regulatory 

decisions. For initial evaluation, an arbitrary number of 5 sections were utilized in evaluating the 

presence of these elements. The variation of these elements were analyzed to: 1) evaluate presence 

of lateral variance in microbial densities and suspended sediment concentrations within natural 

systems, 2) examine potential persistence of microbial to particulate associations during transport 

within the water column, and 3) determine whether this variance is distributed in a systematic 

manner which could potentially be contributed to cross sectional characteristics which could be 

accounted for within empirical frameworks to negate the necessity of utilizing more rigorous 

sampling strategies as a means of calibrating models to the level of variance present within a given 

reach. 
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2.3 Methods 

 

2.3.1 Site Descriptions 

 

Sampling was performed on 4 separate runoff events, at the three sites described in Table 1 below. 

Locations of these streams were in East Tennessee and can maps can be seen in Figure 1. All 

sampling was performed while streams were elevated, with clear signs of entrainment presenting 

as turbidity. Duplicate samples were taken at all events except Beaver Creek due to a quicker 

response than could be captured for the targeted event. Duplicate events were sampled at Second 

Creek, due to the low microbial densities on other sites presenting questionable results. Due to the 

lower stage present at the banks of Second Creek, a single depth of 60% stage was sampled at 

these respective points along the cross section. While this negates the ability to assess the stage 

relative variance at these points, it still allows for the variance between the two banks themselves 

to be evaluated. 

 

 

 

Table 1: Site Description 

Site Soil Type Bed Description Bank Description 

Second Creek Silty Clay Mix of Clay and Rip 

rap stone 

Slightly sloping mix 

of clay and stone 

Beaver Creek Silty Clay Clay only Highly incised with 

predominant root wad 

structure 

Oostanaula Creek Silty Clay Clay with some 

woody debris 

Highly incised with 

smooth soil and root 

wad mixture 
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(a) 

 

 
(b) 

 

 
(c) 

 

 

Figure 1: Site locations: (a) Second Creek, (b) Beaver Creek, (c) Oostanaula Creek 
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2.3.2 Cross Sectional Monitoring Apparatus 

 

A metal strut was run across the top of the channel for connecting ¾” electrical metallic tubing  

(EMT) with ¾” strut straps. A 3/8” section of rebar was lowered down to the bottom of the 

channel supported by the ¾” EMT. At these five points, depths equal to 80% and 20% of the 

measured stage were taken (Byrd et al 2000). Zip ties attached the 3/8” sample tubing for setting 

sampling points at respective depths. Tubing from the 10 points then connected to individual 500 

mL vacuum safe Nalgene bottles. These bottles then connected to the side of a singular 1000 ml 

vacuum safe Nalgene bottle. A single vacuum pump was collected to the larger bottle to facilitate 

sample collection. Essentially, the pump generates pressure within the larger bottle, spreading 

the pressure to the smaller bottles and finally tubing, collecting a sample from the stream. To 

account for the variation in pressures generated by altering tubing lengths, control valves were 

placed on the lines leading from the cross section to sampling bottles.  An example of this setup 

in the field can be found in Figure 2. 

 

 

 

 
Figure 2: Sampling Apparatus in Field 
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To sample the variation in sediment concentrations due to discontinuous roughness factors along 

a cross section, five, evenly distributed points were sampled simultaneously across three streams 

in eastern Tennessee (Figure 1). The five points were place at 20% intervals of width. Sampling 

ports were set at 20% and 80% of stage. The first site at Second Creek was performed with a width 

of 26’ and had the following stages from left to right: 1) 1.00’ 2) 1.85’ 3) 1.85’ 4) 1.65’ 5) 1.25’. 

The second site sampled at Second Creek was performed on a cross section of width 24.5’ and had 

the following stages from left to right: 1) 0.70’ 2) 1.50’ 3) 1.50’ 4) 1.35’ 5) 0.93’. The site sampled 

at Beaver Creek had a width of 15’ with stages from left to right of: 1) 2.75’ 2) 2.70’ 3) 2.13’ 4) 

1.90’ 5) 1.90’. The site sampled along Oostanaula Creek had a width of 30’ with stages from left 

to right of: 1) 1.75’ 2) 2.92’ 3) 3.58’ 4) 2.25’ 5) 2.25’. 

2.3.3 Flow Rate Measurement 

 

For Second Creek, flows were measured using a gauging station from another project. The first 

event was collected with an ISCO 350 ADV. Unfortunately equipment malfunction generated 

issues with gathering flow data on the second event sampled at Second Creek.  

 

For Beaver Creek and Oostanaula Creek the Marsh Mcbirney FloMate 2000™ was first used to 

calculate velocities. The device was calibrated using the standard 5 gallon bucket of still water to 

evaluate a zero velocity point. Increments of one foot were used on during velocity measurements 

along the cross section, and duplicates were taken to mitigate the error associated with the device 

itself. After gathering the velocity profile along the cross section, the velocity area method was 

utilized to calculate flow rates. 
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2.3.4 Total Suspended Solids 

 

Total Suspended Solids (TSS) was measured in accordance with ASTM D5907. This methodology 

involves filtration of the samples to evaluate relative non-filterable material defined as TSS. 

Standard 1.5 μm filters were weighed within predesignated drying trays. Filters were then placed 

on filtration bells over Erlenmeyer flasks connected to a vacuum system. Sampling bells which 

can measure 250 ml volumetrically were then clamped on top of the filtration apparatus. The 

sample volumes were then measured with graduated cylinders before pouring them in to the 

sampling bell. While 100 ml are typically used in these analyses, the entirety of the sample in the 

250 ml bottle was used due to low concentrations. Following filtration, the samples were dried at 

105 ᴼF for one hour. The samples were then reweighed, with the sediment load being derived by 

subtracting the initial weight and dividing by the volume used.  

2.3.5 Idexx Colilert 

 

Microbial concentrations were quantified through the Idexx Colilert analytical methodology 

(Yakub 2002). Two dilutions, 0.01 and 0.001, were used to account for potential concentration 

fluctuations affecting the viability of the methodology. The samples were incubated in a 37 ᴼC 

oven for 4 hours, followed by a 44 ᴼC oven for 20 hours (Yakub, 2002). At the end of the 24 hour 

period, counts were taken for both fecal coliform and E.coli and statistically converted to MPN 

values.  

2.3.6 Statistical Analysis 

In order to assess potential spatial variation along the cross section, several statistical evaluations 

were used to quantify the differences in microbial and suspended sediment concentrations. First 

means and standard deviations were calculated for each sampling sets concentrations using 

Microsoft Excel. Following this Relative Standard Deviation (RSD) was derived by dividing 
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standard deviations by their respective means to normalize the average variance associated with 

each sampling set. Then residuals were calculated to ascertain whether any given sampling 

position along the cross section experienced less variance and tighter clustering in regards to the 

mean than for all other sampling sets. Finally multivariate correlation analysis was performed 

using JMP Pro, with Spearman correlations applied to analyze the correlation between suspended 

sediment and indicator bacteria within the given non-normally distributed dataset. 

2.4 Results 

 

2.4.1 Fine Suspended Sediment 

 

A summary of the means and standard deviations for TSS can be found in Table 2. Residuals 

between -24 ppm and 27 ppm (Figure 3) were summarized for the ranges of TSS between 1 ppm 

and 48 ppm (Table 6). The triangles seen at point three along the x axis is in reference to the 

preferred grab sample position for single point sampling, and represents some of the lowest 

precision noted within these sampling sets for those collected at 80% stage. For these sites 

specifically, it appears that the left side of the channel represents the sites of greatest precision and 

accuracy in consideration to 80% stage sampling. Percentage of vertical position which had the 

greatest concentration were summarized to validate concerns with utilizing Rouse sediment 

profiles within streams (Figure 4). While the bottom should have had the greatest concentration, 

this was only true on 31% of the sampling points. The top which should have the smallest 

concentration, showed the greatest concentration in the majority, 46%, of the cases. The remaining 

cases, 23% of the sampling positions, showed equivalent concentrations. 
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Table 2: Total Suspended Solids Summary Table 

Site Event Sample Average 

TSS 

(ppm) 

Standard 

Deviation TSS 

(ppm) 

RSD  

(σ/μ) 

Flow Rate 

(cfs) 

Second Creek 1 a 34 8 24 
61 

 1 b 27 13 48 

 2 a 40 4 11 
NA 

 2 b 33 7 20 

Beaver Creek 1 a 15 6 41 18 

Oostanaula Creek 1 a 13 5 40 
56 

 1 b 17 14 87 

 

 

 

 

 
      Figure 3: Suspended Sediment Residuals from TSS samples  
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Figure 4: Vertical Sampling Position with Greatest Concentration 

 

 

 

The first event at Second Creek had TSS means of 34 ppm and 27 ppm with standard deviations 

of 8 ppm and 13 ppm respectively (Figure 5). The RSD, relative standard deviation, in this set of 

sampling was 24% and 48% respectively. The second event at Second Creek had means of 40 ppm 

and 33 ppm with standard deviations of 4 ppm and 7 ppm respectively (Figure 6). Relative standard 

deviations were found to be 11% and 20% respectively.  

 

The second site sampled was Beaver Creek, which had a mean of 15 ppm and a standard deviation 

of 6 ppm (Figure 7). The relative standard deviation was found to be 41%.While this precludes 

this set of sampling from evaluation of rate pulsing, evaluations can still be made toward the 

variation of entrained material along the given cross section. 

 

Oostanaula Creek, had means of 13 ppm and 17 ppm with standard deviations of 5 ppm and 14 

respectively (Figure 8).  

31%

46%

23%

VERTICAL POINT OF GREATEST TSS

Bottom Top Even
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        Figure 5: TSS v. Position Event 1 on Second Creek 
 

 

 

 

 

 
       Figure 6: TSS v. Position Event 2 on Second Creek 
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      Figure 7: TSS v. Position Beaver Creek 

 

 

 

 
      Figure 8: TSS v. Position Oostanaula Creek 
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This site was the widest with the largest stage, and the RSD greatly reflects this ppm respectively. 

Relative standard deviations were found to be 40% and 87% through greatest level of standard 

deviation respective to mean values. It should also be noted that this site had the largest level of 

variation in roughness due to a mix of woody debris and soft sediments along the cross section. 

2.4.2 Indicator Bacteria 

 

Summary results for means and standard deviations of microbial densities can be found in Table 

3 for fecal coliform and in Table 4 for E.coli. Statistical results for nonparametric Spearman’s 

correlations can be found in Table 5. While the graphs of residuals for both fecal coliform (Figure 

9) and E.coli (Figure 10) show tighter clustering toward the banks, no position maintains great 

precision in consideration to the mean. 

 

The first event at Second Creek had means of 73 MPN/ml and 61 MPN/ml with standard deviations 

of 13 MPN/ml and 16 MPN/ml respectively for fecal coliform (Figure 11). Means for E.coli were 

both 31 MPN/ml with standard deviations of 4 MPN/ml and 9 MPN/ml respectively (Figure 12). 

The standard deviation in this set of sampling accounted for 18% and 25% of the means for fecal 

coliform respectively. Alternatively standard deviations accounted for 4% and 9% respectively of 

the means for E.coli. Correlation in this sampling set was extremely low with the following 

Spearman p values: 0.2410 for fecal coliform to TSS along with 0.2048 for E.coli to TSS for the 

first set, and 0.5946 for fecal coliform to TSS along with 0.1071 for E.coli to TSS for the second 

set. 

 

The second event at Second Creek had fecal coliform means of 96 MPN/ml and 84 MPN/ml with 

standard deviations of 34 MPN/ml and 12 MPN/ml respectively (Figure 13). Standard deviations 

of fecal coliform account for 35% and 15% of the total means respectively. In consideration to  
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Table 3: Fecal Coliform densities (MPN/ml) Summary 

Site Event Sample Average 

Fecal 

(MPN/ml) 

Standard 

Deviation 

Fecal 

(MPN/ml) 

RSD (σ/μ) Flow 

Rate 

(cfs) 

Second Creek 1 a 72.92 13.26 18.18 
61 

 1 b 61.41 15.56 25.35 

 2 a 4.49 2.17 48.27 
NA 

 2 b 2.38 1.87 78.70 

Beaver Creek 1 a 3.46 2.60 75.19 18 

Oostanaula Creek 1 a 96.10 33.81 35.18 
56 

 1 b 83.57 12.38 14.81 

 

 

Table 4: E.coli densities (MPN/ml) Summary  

Site Event Sample Average E.coli 

(MPN/ml) 

Standard 

Deviation E.coli 

(MPN/ml) 

RSD 

(σ/μ) 

Flow 

Rate 

(cfs) 

Second Creek 1 a 31.29 4.41 14.09 
61 

 1 b 30.70 9.32 30.35 

 2 a 3.73 1.58 42.43 
NA 

 2 b 1.64 1.40 85.45 

Beaver Creek 1 a 3.05 2.78 91.41 18 

Oostanaula Creek 1 a 51.85 12.31 23.73 
56 

 1 b 37.68 11.21 29.77 

 

 

 

 

Table 5: Spearman’s p Nonparametric Correlation of Log Transformed Dataset 

Site Event Sample Set Fecal Coliform vs. TSS  E.coli vs TSS 

Second Creek 1 a 0.2410 0.2048 

 1 b 0.5946 0.1071 

 2 a 0.5422 0.3494 

 2 b 0.2395 -0.6386 

Beaver Creek 1 a -0.5908 -0.5503 

Oostanaula Creek 1 a -0.5140 -0.3634 

 1 b -0.1050 -0.0185 
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        Figure 9: Fecal Coliform Residuals 

 

 

 

 

 

 
        Figure 10: E.coli Residuals 
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        Figure 11: Fecal Coliform v. Position Event 1 on Second Creek 

 

 

 

 
        Figure 12: E.coli v. Position Event 1 on Second Creek 
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E.coli, means were found to be 52 MPN/ml and 38 MPN/ml with standard deviations of 

12MPN/ml and11 MPN/ml (Figure 14). The standard deviations of E.coli account for 24% and 

30% of their respective means. Correlation in this sampling set was extremely low with the 

following Spearman p values: 0.5422 for fecal coliform to TSS along with 0.3494 for E.coli to 

TSS for the first set, and 0.2395 for fecal coliform to TSS along with -0.6386 for E.coli to TSS for 

the second set. 

 

The second site sampled was Beaver Creek, which had a fecal coliform mean of 4 MPN/ml and a 

standard deviation of 2.2 MPN/ml which accounted for 48% of its respective mean (Figure 15). In 

consideration to E.coli the mean was 4 MPN/ml with a standard deviation of 1.6 MPN/ml which  

 

 

 
       Figure 13: Fecal Coliform v. Position Event 2 on Second Creek 
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       Figure 14: E.coli v. Position Event 2 on Second Creek 

 

 

accounted for 42% of its respective mean (Figure 16). Upon attempting a second run the stage and 

turbidity had lowered below what was considered acceptable on site for sampling. While this 

precludes this set of sampling from evaluation of rate pulsing, evaluations can still be made toward 

the variation of entrained material along the given cross section. Correlation in this sampling set 

was extremely low with the following Spearman p values: -0.5908 for fecal coliform to TSS, and 

-0.5503 for E.coli to TSS. 
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75% respectively for the sampling sets. With regards to E.coli means were2 MPN/ml and 3 

MPN/ml with standard deviations of 1.4 MPN/ml and 3 MPN/ml respectively (Figure 18). This 

site was the widest with the largest stage, and the relative variance in consideration to means 

greatly reflects this through respective ratios of standard deviations to means. It should also be  
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       Figure 15: Fecal Coliform v. Position Beaver Creek 

 

 

 

 

 
       Figure 16: E.coli v. Position Beaver Creek 

 

 

0

1

2

3

4

5

6

7

8

0 2 4 6

[C
] 

(M
P

N
/L

)

Horizontal Position

Fecal Coliform v Position

Beaver Creek Fecal Bottom

Beaver Creek Fecal Top

0

1

2

3

4

5

6

7

0 2 4 6

[C
] 

(M
P

N
/L

)

Horizontal Position

E.coli v Position

Beaver Creek E.coli Bottom

Beaver Creek E.coli Top



 

 36  
 

 

 

 
       Figure 17: Fecal Coliform v. Position Oostanaula Creek 

 

 

 

 

 
       Figure 18: E.coli v. Position Oostanaula Creek 
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noted that this site had the largest level of variation in roughness due to a mix of woody debris and 

soft sediments along the cross section. Correlation in this sampling set was extremely low with the 

following Spearman p values: -0.5140 for fecal coliform to TSS along with -0.3634 for E.coli to 

TSS for the first set, and -0.1050 for fecal  coliform to TSS along with -0.0185 for E.coli to TSS 

for the second set. 

2.5 Discussion 

The first event at Second Creek showed decreases in average TSS concentrations with increase in 

standard deviations for both events between the first and second sampling sets. Considering the 

second sampling sets were taken farther in to the falling limb of the hydrograph, it is thought this 

potentially could be indicative of an increase in variation corresponding with a decrease in flow. 

In conjunction with this speculation, it is theorized that the areas of greater roughness are more 

greatly subjected to the effects of decreasing flow than those which lack structures implementing 

as large effects of energy dissipation on the system. In turn, energy dissipation should not be 

considered a linear function laterally across the stream. This speculation lends to the assertion that 

roughness effects both spatial and temporal variation along a given cross section.  While current 

sampling methodologies assume microbes to act like dissolved particles (Harmel & King 2005), 

these results elude to the opposite viewpoint. With the level of variance noted spatially present 

along the cross section, it is fairly obvious no single point can adequately represent the mean alone.  

 

The second event sampled was much smaller with a much quicker response. The main difference 

being the scale at which variation occurred. The RSD still doubled as the event proceeded, but the 

values themselves were half of the initial event. While the percentages were lower in the second 

event, the overall concentrations were actually higher. It is speculated this is due to the system 
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having depleted less of the stores available for entrainment during the smaller event, also lending 

to less variation due to the abundance of sediment to be entrained within areas of lower available 

energy. Higher initial RSD values for fecal coliform were also noted. While in all other cases the 

standard deviations increased in accordance with decreasing stage, it can be seen that there was a 

positive relationship between stage and standard deviations in this case. It is speculated this is due 

to the greater variance in energy regimes, due to the theorized effects of lower flows mentioned 

above, being expressed as larger variations in the particle size distribution captured within the 

sampling scenarios. During the extent where energy was still elevated enough to entrain larger 

particles, a larger variance in presence of bacteria was noted.  

 

Both events at Second Creek showed tighter clustering of residuals between sampling sets on the 

bank for TSS, similar to what the residuals of all events sampled proposed. While the first event 

of the cross section through an event, the second event shows variance on the order of 25% as the 

event progressed. The first event also showed greater accuracy to the mean concentration along 

the banks, while the second event showed greatest accuracy in consideration to mean at the center 

of the cross section. This lends to the view that no single point can be defined along a cross section 

which will consistently lend to optimal precision or accuracy even at a respective site chosen. 

 

Beaver Creek was only sampled once during the targeted high flow event; however, the RSD is 

clear proof of cross sectional variation. While the reach was straight far before the point sampled, 

one bank was notably higher in concentration than the other. Both banks presented root packs, yet 

only one was notably effected by their existence. It is also interesting to note there is less variance 

between vertical points sampled on the left bank in comparison to the right. With roughness clearly 
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affecting entrainment on a fine enough scale that even associating factors in patches based upon 

material type alone would appear inadequate, the necessity for implementing more rigorous 

sampling applications for properly calibrating modeling applications to their respective reach is 

clearly validated. While counts were extremely low on Beaver Creek, the standard deviations 

accounted for their means in corresponding manners with those found on Second Creek. These 

percentages were slightly higher than those found on sites with reasonable microbial counts, but 

the point could still easily be made that they are representative of values that prove the persistence 

of cross sectional variation. They also directly correspond to the percentage of variation noted 

within the sediment data for this site, further supporting the association theorem presented within 

the hypothesis. This site also showed evidence of potential negative correlations between TSS and 

indicator bacteria through Spearman correlations. While this may seem to depose the theory of 

microbial to particulate association, an argument can also be made that it supports it. As larger 

particles are entrained, TSS potentially increases in overall weight. Considering that the indicator 

bacteria evaluated have been strictly shown to associate with smaller particles (Auer & Niehaus 

1993, Characklis et al 2005, Jamieson et al 2005), as TSS increases it would be logical that in turn 

these microbial concentrations decrease. This lends to the evidence that microbial to particulate 

associations should be evaluated through constituents such as turbidity rather than TSS in the field. 

 

Oostanaula Creek was both the widest and deepest stream evaluated, and the largest amount of 

variance in concentrations were noted on this site accordingly. This site consisted of the most 

sporadic variations in concentrations along the cross section between the two sampling events.  

Oostanaula Creek shared similar characteristics to that of the events at Second Creek, except at 

Oostanaula Creek the means increased along with the standard deviations. It is intriguing to note 
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that the point which experienced the greatest variation between events was in the middle at 80% 

of stage, which is typically the point recommended for collecting grab samples. While the center 

of the stream had concentrations higher than average during the initial sampling set, it had 

concentrations much lower than average during the second sampling. While the largest ratios of 

standard deviation in respect to their corresponding means was noted in this channel, significant 

variation was noted throughout. The relative counts may be debatable in consideration to microbial 

variation along the channel due to how low the level of concentrations were found to be, but similar 

variation was noted within the suspended solids evaluated at this site. Not only were similar 

variations noted, but the graphs appear to show systematic variations occurring in accordance with 

sediment values. This eludes to a prevalence of both variation and microbial partitioning occurring 

at these sites. Also to note, while the percentage by which the standard deviation accounted for the 

mean during the duplicate sample did not follow a similar trend of increasing in regards to fecal 

coliform, the increases in standard deviation within the duplicate sample did follow the trend noted 

within sediment regimes. The variation noted in percentages was likely due to the small counts 

which were received during this event, rather than being indications of any significant trends. 

Spearman correlations were also very misconstrued within this sampling effort. They maintained 

a negative correlation between sediment loads and indicator bacteria concentrations, and then 

decreased as the event progressed. The most likely explanation from the literature reviewed is that 

grain sorting was driving the variation found in this stream, similar to the scenario explained on 

Second Creek. 
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2.6 Conclusion 

 

With sampling being the initial form of uncertainty in water quality datasets, it should be of critical 

importance to understand and minimize uncertainty to generate accurate models which can inform 

watershed management. With RSDs ranging between 11% to 87% for TSS and 14% to 91% for 

indicator bacteria the 7 sampling trials, it is safe to assert that lateral variation in entrainment 

occurs. With the majority of events showing evidence of RSDs over 40%, it becomes obvious that 

lateral variation cannot simply be ignored in model calibration efforts. Also with the fact that 

concentration profiles do not follow the typical assumptions of greatest concentration at the bed 

made for generating them, it is validated that the methods utilized be reassessed. While the 

processes involved with variation are not fully understood, enough research has been done to 

initiate these theories in to current sampling and modeling methodologies. Multiple modeling 

efforts have been made to account for these phenomena (Nitsche et al 2011, Tian et al 2002, Yager 

et al 2007), however none have been able to completely mitigate the uncertainty inherent within 

the dataset. It is theorized that this is due to the lack of effort initiated toward better evaluation of 

the system through more rigorous sampling efforts and lack of calibration due to insufficient data 

input for modeling programs. Uncertainty in any dataset is a trickledown effect beginning with the 

initial collection of the data itself, hence the situation will never improve while the uncertainty 

incorporated with the initial efforts are ignored.  

 

While many other studies have shown associations between microbes and particulate matter (Auer 

& Niehaus 1993, Characklis et al 2005, Jamieson et al 2005), Spearman correlations were 

extremely variable within this study lending to the opposite viewpoint. Correlations ranged from 

0.5946 to -0.6386, showing both positive and negative associations between microbial counts and 
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suspended sediment concentrations. With little consistency noted even between sample sets, no 

association can be made between suspended sediment and indicator bacteria in this dataset. Even 

in the cases which showed stronger correlations. One potential explanation for this begins with the 

fact microbes have been shown to only associate with smaller particles (Auer & Niehaus 1993, 

Characklis et al 2005, Jamieson et al 2005). This generates issues in consideration to how particle 

size distribution effects TSS concentrations. With the largest particles having the greatest effect 

on the outcome of the weight used to calculate this concentration, the correlation to prove particle 

to microbial association exists could easily be misconstrued. With the evidence of associations 

which has presented itself within partitioning studies, it is recommended that further research be 

implemented within the field which analyzes the particle size distribution of the TSS 

concentrations gathered in order to attempt correlations purely to the particle sizes which microbial 

populations have been shown to associate with.  

 

While no clear association between particles and microbes were noted in this study, the lateral 

variation of both constituents was prevalent in all sampling sets. Not only was variation noted, but 

alterations between these lateral variations was noted between sampling sets within the same event. 

With variation being both prevalent and sporadic in nature, modeling frameworks must utilize 

sampled data to appropriately calibrate models in consideration to the uncertainty generated by 

this variance. If some systematic variance had been noted on a site specific scale, it might be 

possible to simply adjust the model for site specific characteristics. Unfortunately with the 

dynamic nature of entrainment, depending upon stores of material along with characteristics of 

flow, variance in entrainment has been noted in other studies for similar events on a particular 

reach (Buffington & Montgomery 1997). Without the implementation of a sampling based 
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calibration step, management programs will continuously miss the mark unless routinely 

overdesigned. Considering the necessity of sedimentation to maintain healthy stream life, sediment 

load cannot be overly removed from the system without generating negative effects. With 

persistence and growth recognized in the system, natural input being virtually unavoidable in any 

area with living species, and the introduction method in to the system being primarily broad scale 

runoff, it is infeasible for management practices to ever truly be able to completely remove 

microbial communities from surface waters. Hence fate and transport need to be properly analyzed 

for appropriate management techniques to be developed, much less implemented, to contend with 

potential arising issues in concern to microbial evaluation (Davies 2000). Therefore while it may 

cost money to initiate these practices, it will indefinitely save money in the grand scheme to more 

efficiently manage systems rather than overly manage systems in attempts to account for the 

uncertainty inherent within these datasets. 
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Table 6: Cumulative Results 

Sample Type TSS(ppm) [C]Fec0.01 

(MPN/L) 

[C]Ecol0.01 

(MPN/L) 

SC001 L 33 100.358 27.62379 

SC002 MLT 33 70.07202 38.99282 

SC003 MLB 47.9798 61.12883 28.28843 

SC004 MT 39 82.56925 33.61952 

SC005 MB 23 68.75286 31.38734 

SC006 MRT 32 56.44373 24.72165 

SC007 MRB 41 79.85808 36.02776 

SC008 R 23 64.17123 29.64223 

SC009 L 29 73.52448 24.4434 

SC010 MLT 25 37.45742 22.67084 

SC011 MLB 3 42.02225 27.62379 

SC012 MB 19 74.45998 42.62032 

SC013 MRT 42 75.04892 37.95359 

SC014 MRB 26 52.88459 17.5847 

SC015 R 44 74.45998 42.02225 

SC020 L 37 53.72715 42.94553 

SC021 MLB 45 144.6096 70.07202 

SC022 MLT 45 120.0009 57.26831 

SC023 MB 34 90.20702 60.83425 

SC024 MT 40 142.4939 56.44373 

SC025 MRB 42 86.76378 57.4205 

SC026 MRT 44 77.20358 40.50297 

SC027 R 34 53.75985 29.28679 

SC028 L 40 75.61274 26.01028 

SC029 MLB 32 106.7048 63.40904 

SC030 MLT 28 80.17804 36.98875 

SC031 MB 44 89.39787 31.00241 

SC032 MT 30 70.81261 31.97508 

SC033 MRB 28 97.57433 46.41915 

SC034 MRT 38 78.88636 31.00241 

SC035 R 24 69.41447 34.60555 

BC001 LT 17.36842 4.156506 3.086889 

BC002 LB 19.58763 2.038123 2.038123 

BC003 MLT 19.60784 0 1.00941 

BC004 MLB 18.59296 7.363701 5.155638 

BC005 MT 24 4.156506 3.086889 

BC006 MB 12 6.304554 6.304554 
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   Table 6 Continued 

BC007 MRT 5 5.201314 3.086889 

BC008 MRB 20 3.086889 3.086889 

BC009 RT 9 6.304554 5.201314 

BC010 RB 6 6.304554 5.247822 

0A001 RB 9.655172 4.156506 2.038123 

0A002 RT 10 4.156506 3.086889 

0A003 MRB 10.66667 1.00941 1.00941 

0A004 MRT 11.03448 1.00941 0 

0A005 MB 19.33333 3.060268 2.038123 

0A006 MT 27.08333 1.00941 1.00941 

0A007 MLB 13.54839 0 0 

0A008 MLT 12.75168 4.120175 3.086889 

0A009 LB 10 0 0 

0A010 LT 9.166667 5.247822 4.156506 

0A011 RB-2 18.4 1.00941 1.00941 

0A012 RT-2 36.2963 2.038123 2.038123 

0A013 MRB-2 43.33333 1.00941 1.00941 

0A014 MRT-2 1.666667 2.038123 2.038123 

0A015 MB-2 6.542056 3.086889 3.086889 

0A016 MT-2 0.714286 2.038123 0 

0A017 MLB-2 0.746269 3.086889 3.086889 

0A018 MLT-2 23.07692 9.848915 9.848915 

0A019 LB-2 10.68702 6.304554 6.304554 

0A020 LT-2 25.38462 4.156506 2.038123 
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