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ABSTRACT 

 

Gaseous/gaseous hydrogen oxygen shear coaxial injectors were modeled to 

investigate grid parameters affecting solution and to determine if a steady state 

solution might exist if only one circulation zone was present.  The General 

Equation Mesh Solver (GEMS), which implements the Reynolds Averaged 

Navier-Stokes equations with the k-ω turbulence model, was used to conduct the 

study.  The Gambit grid generator was used to construct computational grids.  

Different grids were compared in a search for the optimum configuration while 

residual levels were monitored in search of a steady state solution. 
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Chapter 1.  Introduction 

1.1 Background 

There has been considerable interest in shear coaxial injectors in recent years for 

applications in rocket engines.  One focus has been to create computational 

models that accurately predict the experimental results thus far obtained.  While 

making many advances in computational fluid dynamics, the 

engineering/scientific community still does not accurately predict all aspects of 

these injectors.  This thesis is one step of many toward a better prediction of this 

turbulent reacting flow.  Previous research as well as this work are based on 

gas/gas hydrogen oxygen injectors.  A description of this geometry is in order.  

  

A cross-section of a multi-element injection system is shown in Figure 1.  This 

figure and all other figures are provided in the Appendix.  Although only three 

injectors are pictured in this figure, there may be several hundred in a typical 

assembly.  Naturally, this would require a staggering amount of computational 

power to accurately model such geometry.  Only one element, therefore, is 

considered here. This single element is represented by the dotted rectangle shown 

around one of the injectors.  Figure 2 shows a blowup of this uni-element injector 

with the dotted line representing the axis of symmetry for an axisymmetric 

calculation.  A throat has been added to achieve choking.  Figure 3 shows another 

view looking down the tubes so that coaxial nature of the injector is illustrated.  
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Note that Figures 1-3 are not to scale.  Table 1 has a complete list of the exact 

dimensions used for the geometry.   

 

A cursory examination of recent work by others is in order.  The Propulsion 

Center at Penn State carried out a joint experimental/analytical study [1, 2, 3] in 

which the experiment was compared to computational solutions.  Deshpande and 

Merkle [1] stated that computations on refined grids of chemically reacting flow 

fields were too computationally intensive to be of practical use at the time and 

focused their efforts on the impact that the unsteady nature of the flow has on 

global characteristics.  One of their conclusions was that the unsteady nature of 

the flow increased with momentum ratio of the hydrogen flow to the oxygen flow 

but not in a monotonic manner.   They also stated that the unsteadiness is local to 

the near field of the splitter post and becomes damped out downstream.  One 

suggestion they give is that some artificial damping might be employed to model 

this flow field.  

 

Deshpande et. al. [2] also carried out a computational study of the effects of 

splitter plate thickness on the flame holding characteristics of the flow.  One 

conclusion was that the splitter plate had to be a finite thickness in order to anchor 

the flame without having to preheat the reactants.  Studies were conducted to 

investigate the location of the flame in relationship to the momentum ratios of 

each inlet species as well as the plate thickness.  In order to facilitate this study, a 

larger splitter plate was modeled than some of the other studies mentioned.    
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Table 1:  Geometry Specification 

Parameter Value 

Length of Oxygen Tube 0.1778m 

Length of Hydrogen Annulus 0.127m 

Inner Radius of Oxygen Tube 3.8735 x 10-3m 

Outer Radius of Hydrogen Annulus 6.35 x 10-3 m 

Outer Radius of Oxygen Tube/Inner Radius 

of Hydrogen Annulus 

4.7625 x 10-3m 

Hydrogen Annulus Height (Channel Height) 1.5874 x 10-3m 

Length from Injector Face to Throat 4.9275 x 10-2m 

Throat Radius 6 x 10-3m 
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Three different computational groups [3] compared their solutions and found that 

the solutions were all similar and provided a reasonable prediction of the flow 

field.  This conclusion was based on comparison to experimental measurements. 

All groups assume axisymmetry and claim that three-dimensional calculations 

will be feasible in the near future.  

 

Recent advances in processor power have allowed Archambault and Peroomian 

[4] to carry out three-dimensional calculations and compare the fidelity of two 

dimensional and three-dimensional calculations.  One of their conclusions was 

that the axisymmetric calculation captures most of the essence of the flow field 

reasonably well.  Based on this conclusion and on site computing power, all 

computations for this thesis are on two dimensional axisymmetric grids.  

 
1.2 Proposed Research Topic 
 
The current computational power at the UT Space Institute allows parallel 

processing of a significant number of grid points.  This capability can be 

employed to run a refined shear layer grid against a coarse shear layer grid to 

determine if the amount of error in the outer portion of the shear layer may be 

reduced through grid refinement as suggested by Archambault and Peroomian [4].   

In order to give proper refinement in the shear layers and boundary layers, 

gridding schemes must be investigated in order to keep the number of grid points 

from going too high and overburdening the current computer configuration while 
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still giving proper refinement in the needed regions.  Also, to keep the numerical 

simulation feasible, direct numerical simulation will be avoided by employing 

Reynolds Average Navier-Stokes equations (RANS) with the two-equation k-ω 

turbulence model to close the system, as described by Wilcox [6].  This is 

implemented in the General Equation Mesh Solver (GEMS) written by Li and 

Merkle [7]. 

 

Finally, the outer circulation region shown in Figure 4 by the large 

counterclockwise arrows is much larger than the inner circulation region depicted 

in the same figure by the clockwise small arrows.  Note that the direction of the 

small arrows may not always be clockwise but yet is dependent upon the ratio of 

the momentum to that of the hydrogen flow to the oxygen flow.  By cutting the 

combustion chamber off at the same radius as the hydrogen flow as seen in Figure 

5, the outer circulation region can be eliminated while at the same time reducing 

the total number of grid points.  This will allow examination of the inner 

circulation region without the interference of the outer circulation zone.  The 

isolation of the inner circulation zone will allow for a search of a steady state 

solution to determine if the unsteady effects are due solely to the outer 

recirculation zone or if some of the unsteadiness is inherent to the inner 

circulation zone.  
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Chapter 2.  Basic Solution Tools 
 
2.1 General Equation Mesh Solver  
 
The General Equation Mesh Solver (GEMS) written by Li and Merkle [7] was the 

software employed to obtain the flow field solutions.  This solver is an implicit 

unstructured solver allowing for two or three-dimensional calculations.  Two-

dimensional calculations can be carried out either in axisymmetric or planar form.  

All calculations in this thesis were done using two-dimensional axisymmetric 

calculations.   

 

The basic general equation form solved by the software is as follows.   

0=
∂
∂

+
∂
∂

i

i

x
FQ

τ
     (2.1) 

Where Q = (ρ, ρu, ρv, ρw, ρh0-p)T and the flux vectors Fi are the conservative 

flux vectors and τ is a pseudo-time variable for marching. 

 

2.2 Chemistry 

The solver allows for multiple species in chemically reacting flow.  Finite rate 

reactions using the Arrhenius Law were used in this study [13].  Thermodynamic 

data, transport data, and binary diffusivity data were taken from industry 

compiled files [7-12].  The particular model used was an 18 equation, 9 species 

model listed below.  The species used are H2, O2, OH, H2O, H, O, HO2, H2O2, and 

N2 and the reversible reactions are 

H2  + OH  H2O  + H 
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O2  + H  OH  + O 

H2  + O  OH  + H 

O2  + H  + N2  HO2  + N2 

H2  + N2  H  + H  + N2 

O2  + N2  O  + O  + N2 

H  + HO2  H2  + O2 

H2O  + N2  OH  + H  + N2 

H2O  + O  2OH 

O  + HO2  O2 + OH 

H + HO2  2OH 

OH + HO2  O2 + H2O 

H2 + HO2  H + H2O2 

OH + H2O2  H2O + HO2 

2HO2  O2 + H2O2 

H + H2O2  OH + H2O 

H2O2 + N2  2OH + N2 

H + O + N2  OH + N2 

 

2.3 Two-equation k-ω Turbulence Model 

The shear coaxial fuel injector scenario is a turbulent problem.  Direct numerical 

simulation of this problem is beyond the scope of the current computers.   

Fortunately, GEMS allows for the calculation of either laminar flows or turbulent 

flows.  The latter option avoids the computational intensity of direct numerical 

simulation by using the k-ω turbulence model where k is the kinetic energy and ω 

is the turbulence frequency as described by Wilcox [6].  This is a two-equation 

model that brings closure to the Reynolds Average Navier-Stokes equations 

(RANS).   
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2.4 Hardware 

The hardware used to run the current software configuration consists of a Beowulf 

cluster of 50, 2 GHz Pentium IV processors each with a gigabyte of RAM.  A 

fiber-optic fast switching network provides the communications backbone.   To 

use this set up, the mesh is first partitioned with METIS from the University of 

Minnesota [15].  Then MPICH from Argonne National Laboratory [16] handles 

communication between the processors.  Library calls are made to both of these 

packages directly from the FORTRAN 90 code in the GEMS package and 

associated utilities.  

 

2.5 Gambit Grid Generator  

The Gambit Grid generator from Fluent Technologies [17] was used to generate 

the grids for this project.  A cursory comparison was conducted between XCFD-

GEOM [18] and between the Gambit Grid generator [17].  The latter was selected 

because of greater flexibility in unstructured gridding techniques.  More about this 

flexibility is discussed in the next two sections. 
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Chapter 3.  Grid Generation 
 
3.1 Parametric Study Setup 
 
One of the main goals of this study was to achieve a grid independent solution.  

One way to ensure this accuracy is through proper grid refinement.  Grid 

refinement could not be carried too far to the extreme because the solutions had to 

be obtained within a reasonable amount of time.  The way to achieve both of these 

objectives was by refining the grid in areas where previous research, knowledge, 

and intuition had shown the most need for refinement.  These areas are where 

high property gradients exist and grid refinement is in the direction or directions 

of the property gradients.  Unfortunately, these regions are not always known 

beforehand.   In other areas the grid can be coarse in order to minimize CPU time.  

Unstructured grids allow for that kind of flexibility and hence were useful in this 

case.  

 

Parametric studies were first carried out on the oxygen tube by itself and the 

hydrogen annulus by itself.   The purpose of these  studies was to determine 

exactly how much grid resolution was needed in the injector section to obtain a 

grid independent solution.  The criteria for judging the profiles was based on 

common configurations in every day fluid mechanics texts, specifically turbulent 

pipe flow for the oxygen tube and turbulent channel flow for the hydrogen 

annulus. Keep in mind, however, that the hydrogen annulus is not exactly a 

channel flow due to the axisymmetric nature of the geometry.   
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For the initial parametric study of the oxygen tube and the hydrogen annulus, the 

grids for both the oxygen tube in the hydrogen annulus were chosen to be 

rectangular meshes to match the straightforward rectangular geometry of the cross 

sections.  Later, when the combustion chamber nozzle is attached to the tube and 

annulus, the mesh in the immediate region of exit section of the injector is no 

longer made a rectangular mesh.  This will be explained more in detail in Chapter 

4.   

 

A short introductory grid was attached to each inlet with boundary conditions set 

to inviscid walls to ensure a uniform flow coming into the inlets.  The remaining 

boundary conditions for the inlets and exits are summarized in a Table 2.     

 

3.2 Stretching in x Direction for Oxygen Tube  

As an initial step, the oxygen tube was meshed with a 146x13 grid and the flow 

field solved.  This grid was stretched in both the x and y directions.  Then the grid 

was doubled in refinement in both dimensions and solved to also yield solutions  

on 292x26, 584x52, and 1168x104 grids.  Figure 6 shows the initial x stretching 

scheme used in contrast to a fixed ∆x.  In addition to the grids representing a 

doubling of the original 146x13 grid, a grid with stretching in both directions was 

also solved with dimensions of 584x104.  This grid has the same y lines as the 

1168x104 but only half of the x lines of that finest grid.  
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 Table 2:  Inlet and Outlet Boundary Conditions 

Boundary Location Boundary Values 

Oxygen Tube Inlet Pressure = 1.29 MPa 

Temperature = 297 K 

Mass Flow = 4.2x10-2 kg/s 

Oxygen Tube Outlet Back Pressure=1.29 MPa 

Oxygen Tube Reynolds Number based 

on Diameter 

3.11 x 106 

Hydrogen Inlet Pressure = 1.29 MPa 

Temperature = 297 K 

Mass Flow = 1.03 x 10-2 kg/s 

Hydrogen Outlet Back Pressure = 1.29 MPa 

Hydrogen Annulus Reynolds Number 

based on Channel Height 

6.24 x 105 
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A comparison of the velocity exit profile on the various grids used in the oxygen 

tube is shown in Figure 7.  In order to avoid any interference given by the exit 

boundary conditions, the exit profile was actually measured at 3% of the tube 

length from the outlet.  An important note is that the 584x104 grid exit velocity 

profile lies directly on top of the 1168 by 104 grid.  The conclusion is that 584 is 

enough x points in the oxygen tube.  Here it can be clearly seen that cutting the 

number of x grid points by 50% in this case yields the same exit velocity profile 

as long as the y resolution is the same.  

 

It is also important to note at this time that the solution at the left end of the tube 

is of little importance.  The only part that is of any interest in this case is the exit 

profile.  A look at the friction velocity uτ in Figure 8 shows that grids with enough 

∆x refinement at the inlet will resolve the transition to turbulence.  The friction 

velocity uτ is defined as 

ρ
τ

τ
wallu =     (3.1) 

With τwall being the wall stress defined as 

y
u

wall ∂
∂

= µτ     (3.2) 

Since the wall stress is less for laminar flow, the friction velocity is also less.  

This gives the short dip in the friction velocity while the flow is still laminar at the 

inlet.  Notice that grids 1168x104, 584x52, and 584x104 all show a sharp dip in 
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friction velocity at the inlet of the tube.  Here the refinement in the x direction at 

the entrance has high enough resolution to model the transition to turbulence.  The 

coarse grids do not capture this transition. The important point to note is that the 

resolution of this transition makes very little difference in exit velocity profile as 

seen from the precision of the profiles in Figure 7.  Also note that in the transition 

region there is a slight difference in the friction velocity between the 584x104 and 

the 1168x104 grids.  The important point to note here is that even though there is 

a slight difference in the transition region, the curves become identical a short 

distance from the transition region further supporting the idea that modeling of the 

transition region has very little effect on exit velocity profile.   

 

3.3 Stretching in x Direction for Hydrogen Annulus 

Computations in the hydrogen annulus give rise to similar conclusions.  As an 

initial step in modeling the hydrogen annulus, grid stretching in the x direction 

was compared with uniform grid spacing.  A 430x30 grid stretched in x and y and 

an 860x60 grid representing doubling in refinement in each dimension of the 

430x30 grid was compared with an 860x60 fixed ∆x grid and an 250x60 fixed ∆x 

grid.  Figure 9 shows the difference in exit velocity profiles for these grids.  All 

three curves representing the grids that have 60 y grid points lie virtually on top of 

each other.  This shows that the stretched 860x60 grid profile solution is no 

different than the 860x60 fixed ∆x grid.  More importantly it shows that the 

250x60 fixed ∆x grid gives the same exit profile as 860x60 grid.  This is 

important in that the number of x grid points can be cut by a major amount 
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without affecting the exit profile.  In this case a cut of  71% did not alter the exit 

velocity profile.  This is a significant savings in grid points. 

 

The main difference in the curve that stands by itself is that it has a different 

number of y grid points, 30 instead of 60 like the other grids.  The conclusion, 

therefore, is that there is a stronger dependence of the velocity exit profile on the 

number y grid points than the number of x grid points in support of the idea that 

the grid refinement is needed only in the directions of the largest property 

gradients, which is in this case ∂u/∂y mostly in the boundary layer.   

 

Figure 10 shows a friction velocity comparison of the hydrogen tube grids.   

The finest three grids show a pronounced dip in the friction velocity at the inlet 

due to the level of refinement at the inlet.  The modeling of the transition to 

turbulence has no effect on the exit profile as can be readily seen in Figure 9 by 

the fact that the two grids that did not model the turbulence transition give an 

indistinguishable profile from the 860x60 grid that models the transition.  This 

further solidifies the conclusion made from the oxygen tube friction velocity that 

the number x grid points can be cut significantly and still maintain the same exit 

velocity profile.  Furthermore, fixed ∆x grids give an identical exit velocity 

profile as the profiles obtained from stretched ∆x grids.   
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3.4 Comparisons to Other Models 

In order to inspect the accuracy of the oxygen tube computations, a comparison 

was made with several turbulence models.  Figure 11 shows three popular 

turbulence models taken from Wilcox’ enclosed disk [9] as well as a log wall 

approximation and the viscous sub layer approximation.  All were compared with 

the finest 1168x104 grid on a semi log plot.  The viscous sub layer region is 

evident in the region that deviates from the log wall approximation between 10-6 

and 10-5.  The parabolic curve is the viscous sub layer approximation.  This is the 

region where the velocity scale u+ is approximately equal to the non-dimensional 

length scale y+.  The region from 10-5 out to the region of the velocity defect law 

follows closely to the log wall approximation except for the Cebeci-Smith model, 

which seems to overestimate the velocity.  The comparison to these various 

models shows that the GEMS computation is in an appropriate accuracy range.   

 

Figure 12 shows a similar comparison of the hydrogen annulus exit velocity 

profile to the same models.  Here again the parabolic curve represents the viscous 

sub layer approximation.  The straight line represents the log wall approximation.  

Although there is slight difference between all the models, the GEMS code falls 

fairly close to the other models.  

 

The issue of how well developed the flow is should be raised.  The oxygen tube is 

some 23 diameters long.  Figure 13 shows a development of the velocity profile at 

the corresponding locations of 75% on down through 3%.  The origin is placed at 
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the tube exit so that x = -100% would be at the inlet of the tube and x = 0 % 

would be at the exit of the tube.  In this coordinate system the fluid flows first 

passed the x = -75% location and on out to the x = - 3% location to exit the tube.  

There is still significant development between the x = -25% location and x = - 3% 

location.  The confidence in the amount of development of the oxygen profile can 

be fortified by the results in Figure 12 again showing that the GEMS computation 

is reasonably close to two of the other models being Baldwin-Lomax and Spallart-

Allmaras which are both models of fully developed profiles.  Wilcox code [6] is 

also for incompressible flows.  At this stage of comparison, the solutions are at 

low enough Mach number that the incompressible approximation is valid.     

 

The hydrogen annulus on the other hand is much more developed than the oxygen 

tube.  The hydrogen annulus is 80 channel heights long.  Figure 14 shows how 

well developed the flow is.  Notice that on the graph the flow is developed well 

enough that only the x = -75% velocity profile is distinguishable from the other 

three and hence not fully developed yet.  Once the hydrogen flow has reached the 

x = -50% location it is significantly developed as can be seen by the overlap of the 

two curves.  

 

3.5 Stretching in the y Direction 

Stretching in the y direction was utilized on all grids.  The final goal was to set the 

first grid point off the wall to a distance corresponding to the non-dimensional 

length scale, y+=1, in order to obtain a high degree of accuracy in the boundary 
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layer.  Note, however, that some of the coarser grids in the initial parametric 

studies in sections 3.2-3.4 had first y grid point values corresponding to y+=8 or 

less.  The finest and final grid choices all had y+=1.  The first grid point off the 

wall was calculated using the following formula.   

                                               
ρτ

µ

wally
y
=+     (3.1) 

where 

2

2uC f
wall

ρ
τ =     (3.2) 

The variable y in 3.1 is the spacing from the wall to the first grid point that is 

desired.  The friction coefficient Cf in 3.2 was taken from an empirical formula 

from White [14] as follows. 

)Re06.0(ln
455.0

2
x

fC =    (3.3) 

White gives this formula +/- 2% accuracy over the entire turbulent range.  Rex is 

the Reynolds number based on the length of the tube or channel.  Table 3 gives 

the pertinent data used to compute the distance of the first grid point.  

 

The result for oxygen was 6.356x10-7m.  The result for hydrogen was 1.4x10-6m.  

This distance was so small that a fixed ∆y for grid points was not at all feasible.  

For the oxygen tube there would be more than 6000 y grid points alone and that is 

only for half the tube considering the symmetry used in implementing the grid.  

Stretching in the y direction, therefore, was imperative if the boundary layer was  

 17 



Table 3:  First ∆y Calculation 

Variable Description Value 

y+ Non-dimensional length scale 1 

µ (O2) Viscosity for Oxygen 207x10-7 Pa.S 

µ (H2) Viscosity for Hydrogen 9.0x10-6 Pa.S 

T Temperature for both gases 298 K 

Cf (O2) Friction Coefficient for Oxygen 2.667x10-3 

Cf (H2) Friction Coefficient for Hydrogen 2.351x10-3 

ρ (O2) Density for Oxygen 16.72 kg/m3 

ρ (H2) Density for Hydrogen 1.053 kg/m3 

u (O2) Inlet velocity for Oxygen 54 m/s 

u (H2) Inlet velocity for Hydrogen 177 m/s 
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 to be accurately modeled.  

 

3.6 Final Inlet Grid Configuration 

Based on the conclusions above, the final grid configuration arrived at for the 

oxygen tube was 350x104 fixed ∆x.  The number of x grid points was chosen by 

reducing the finest grid x resolution by 71% as was done with the hydrogen 

annulus.  The hydrogen grid was chosen to be 250x60 with fixed ∆x.  The slight 

modifications to these parameters are discussed next.  

 

3.7 Boundary Layer Refinement 

Careful grid refinement considerations for the oxygen and hydrogen exits have 

been studied and now attachment of a combustion chamber grid can be 

implemented using the conclusions from previous sections.  All boundary layers 

on the computational grid need refinement due to the strong velocity gradients 

within the layer.  Figure 15 is a blowup of the computational grid geometry with 

labels indicating those boundary layer sections on the walls.  First of all notice 

that the actual computational grid is only half of the geometry shown in Figure 5 

due to the symmetry axis.  The axis of symmetry does not need strong grid 

refinement in that area because the gradients are very small in the center of the 

tube.  The other walls, however, are viscous and will have a corresponding 

boundary layer and must have refinement in the y direction due to the boundary 

layer gradients.   
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In previous sections the hydrogen annulus and oxygen tube boundary layers were 

already studied and the proper determination of the smallest ∆y made on those 

viscous walls.  The only two additional walls in the complete grid are the wall at 

the end of the splitter plate and the outer wall along the combustion chamber 

going down to the throat and out the nozzle.  The velocities and other information 

in these regions were not known beforehand.  Here intuition was used to 

determine the proper grid resolution in these areas.  The outer wall continuing 

from the hydrogen annulus out to the throat and on out the nozzle was simply 

taken to be the same grid refinement as the boundary layer in the hydrogen 

annulus on its outer wall.  The end of the splitter plate is a different situation 

altogether.  The velocities close to the wall at this splitter plate may vary greatly 

depending upon the momentum ratio of the hydrogen flow to the oxygen flow.  

Since such a range of velocities might exist here depending upon the properties of 

the recirculation region, this particular wall was simply set at a first grid point 

distance value averaged between the ∆y values for the hydrogen annulus and 

oxygen tube on their viscous wall boundary layers.  This allowed for some sort of 

uniform transition between each of the two injector exits.  

 

3.8 Shear Layer Refinement 

Viscous walls are not the only place where there are strong velocity gradients.  In 

this geometry strong velocity gradients will also be encountered in the shear 

layers whose the expanding regions enclosed by dotted lines in Figure 15 show 

approximate position.  While these dotted lines represent the traditional view of 
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the shear layer, the fact that there is a finite thickness splitter plate here that 

allows for the inner circulation zone makes the shear layers a little less defined 

than an infinitesimal thickness splitter plate shear layer.  The entire region of the 

inner circulation zone as shown in Figure 4 by the small arrows may contain 

strong velocity gradients at any point within that region depending on the eddy 

sizes.  Grid refinement must be applied to that entire region also in both 

directions.  

 

The need for a non-rectangular grid becomes apparent when trying to grid the 

shear layer sections.  Figure 16 shows the result of continuing a boundary layer 

grid into the shear layer zone.  While this technique is obviously an easy way to 

generate a grid rapidly, it leaves much to be desired.  As the flow moves farther 

and farther from the splitter plate, the shear layer expands and the velocity 

gradients eventually began to decrease and damp out.  In Figure 16, however, the 

grid resolution in the y direction directly off of the splitter plate boundary layer 

continues all the way down the chamber.  The result, therefore, is too much grid 

resolution in too small a space at a far distance down the chamber.  The grid must 

have the most resolution in places that need it but lesser amount of resolution in 

places that do not need it in order to conserve grid points.   

 

3.9 Transitioning From Refined Areas To Coarser Areas 

Unstructured grids give the flexibility to make transitions from these areas that are 

extremely refined into areas that are much coarser.  An unstructured grid is a grid 
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in which the degree of each node may be different.  The degree of a node is 

defined as the number of connecting nodes to that node.  While the complete grids 

for this thesis are unstructured, most of the grid is actually structured.  The 

unstructured sections are only needed to transition from refined areas to coarser 

areas and thereby save grid points.  

 

Gambit [17] offers quadrilaterals and triangles as the primary cell shapes.  It 

pieces these together in a number mapping schemes, some that include only 

triangles and some that include only quadrilaterals and some that are hybrid.  The 

general procedure is to place nodes upon an edge of the geometry.  There are 

several spacing schemes provided to the user for the edge nodes.  Once the edges 

of the geometry are meshed, the user can employ one of the automatic mapping 

schemes to mesh the inside of the entire geometry at once.  Unfortunately, the 

mapping schemes are not very robust and have a tendency to fail if the edges are 

meshed in such a way that will produce high aspect ratio grids.  That is precisely 

the crux of the problem in the boundary layer; high aspect ratio cells abound.   

 

The end of the oxygen or hydrogen tube gives a good example of the difficulty 

encountered in one of these transition regions.  In section 3.2 it was determined 

that a constant ∆x in the injector tube was sufficient to model a proper exit profile 

for either the oxygen tube or the hydrogen annulus.  In those studies, however, the 

fluid in the tube exited into free space.  When the combustion chamber is 

attached, there should be some interaction between the chamber pressure, shear 
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layer, and some of the boundary layer sections along the splitter plate close to the 

end of the tube.  In anticipation of this interaction, the ∆x should be refined along 

the splitter plate towards the end of the tube or the annulus.  On the outer radius of 

the hydrogen annulus or upon the axis of symmetry of the oxygen tube the effects 

of the boundary layer near the exit of the tube on the splitter plate and its 

interaction with the inner circulation zone and shear layers should not be felt.  The 

∆x in these regions along the axis of symmetry and the outer radius of the 

hydrogen annulus can and should remain constant.   

 

Figure 17 shows a solution that Gambit offers to this region.  Shown is the region 

at the top of the splitter plate where there is a small ∆x in the hydrogen boundary 

layer and transitioning up through the hydrogen annulus into larger ∆x on the 

outer radius.  ∆x was taken to be a constant value down both the hydrogen 

annulus and the oxygen tube up to 1/8 length of the tube from the combustion 

chamber/inlet interface.  At this location ∆x is gradually refined until maximum 

refinement is reached at the end of the hydrogen annulus or oxygen tube.  Since 

such a small ∆x was not needed on the outer radius of the hydrogen annulus, 

transitioning was used in order to save grid points.   

 

 In Figure 17 rectangular blocks are left visible to illustrate the methodology used 

in generating the grids.  Each rectangle was drawn and nodes placed upon each 

edge.  On the bottom edge there would be more nodes than there were on the top 

edge.  Gambit used what is referred to as a 'quad pave' to make the transition.  The 
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reason individual rectangles had to be drawn was because gambit's lack of 

robustness in generating the quad pave.  Through trial and error the following 

restrictions were found to be true when using a quad pave meshing scheme.  If the 

edge nodes were spaced so as to create high aspect ratio cells, the quad pave was 

very likely to fail or produce undesirable results.  Also, the more cells an 

individual rectangle had in it, the more likely it was to produce undesirable 

results.  As a result of these restrictions, small rectangles making small transitions 

had to be constructed.  Obviously this procedure is not a highly automated 

technique at this time.  The automatic quad pave procedure often failed in high 

aspect ratio regions where it was needed most.   

 

Figure 18 shows a larger portion of the oxygen tube grid without the individual 

blocks being visible.  The section shown is a portion of the coarse grid used in the 

computations.  Figure 19 shows the similar situation in the oxygen tube 

transitioning at the inlet/chamber interface.  

 

3.10 The Coarse Grid And Refined Grid  

Now that a workable transitioning scheme has been employed, the shear layers 

can be transitioned into less refined areas to get away from the inefficiencies that 

were illustrated in Figure 16.  Figure 20 shows the results of transitioning the 

shear layers into coarser areas.  The remainder of this study focuses on two grids, 

one referred to as the coarse grid in Figure 20 and the other referred to as the 

refined grid in Figure 21.  For both of these grids the oxygen tube and hydrogen 
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annulus grids were identical.  The transition from refined shear layer areas into 

coarser areas was performed much more slowly on the refined grid in Figure 21 

than the coarse grid in Figure 20 as can be seen from visual inspection.  This 

should allow for testing to see whether shear layer refinement plays a significant 

role in this case. 
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 Chapter 4.  Initial and Boundary Conditions 

4.1 Initial Conditions And Ignition 

With the grids complete computational runs could then proceed.  One of the 

issues is how to ignite the mixture without causing an explosion and hence 

causing the code to crash.  A workable solution was found by setting the initial 

conditions in such a way as to minimize the reaction area until the run could 

progress far enough to reach some kind of stable flame regime.  Specifically, this 

was accomplished by filling the oxygen tube and hydrogen annulus both at a 

temperature of 297 K.  The oxygen tube was set with a mass fraction of 100% 

oxygen and the hydrogen annulus with a mass fraction of 100% hydrogen.  The 

combustion chamber, throat, and nozzle, in contrast, were set to 1200 K with 

100% mass fraction of oxygen.  This gave an interface of hydrogen at 297 K at 

the end of the hydrogen annulus to oxygen at 1200 K at the annulus entrance into 

the chamber.  Figure 22 shows the temperature contour at the time of ignition 

where that interface initiates combustion.  Figure 22 also shows as time 

progresses the flame front beginning to wash down the chamber.  Figure 23 shows 

the progression even further to the point of washing out the throat and eventually 

achieving a stable flame down the length of the combustion chamber and out the 

nozzle.  

 

In order to reach a stable flame scenario, care had to be exercised to keep the code 

from crashing just at the point of ignition.  The initial condition for oxygen at 

1200 K was sufficient for igniting the reactants.  The temperature at the interface 
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between hydrogen and oxygen quickly jumped to the temperature regime of 

adiabatic combustion of hydrogen and oxygen.  In order to keep the code from 

blowing up during this time, a small CFL was chosen and linearly increased to 

reach the maximum CFL used during the runs.  The maximum CFL for all runs 

was 0.1.  Taking 1/100 of the maximum CFL and performing a linear increase of 

the CFL during each real time step so that at the 100th iteration the maximum 

CFL was reached accomplished the linear increase for the CFL.  

 

4.2 Boundary Conditions 

The only other conditions to be specified were the boundary conditions.  The inlet 

conditions for the oxygen and hydrogen entrances were specified by setting a 

pressure, temperature, and mass flow rate.  These inlet conditions were chosen 

based on configurations from previous experimental work [5] so that the results 

might fall into the same regime.  The nozzle exit boundary condition was also 

chosen based on the previous experimental work.  Table 4 shows the complete 

listing of the boundary conditions used on the full grid runs.  
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Table 4:  Boundary Conditions 

Boundary Values 

Oxygen Inlet Pressure = 1.29 MPa 

Temperature = 297 K 

Mass Flow Rate = 4.2 kg/s 

Hydrogen Inlet Pressure = 1.29 MPa 

Temperature = 297 K 

Mass Flow Rate = 1.02 kg/s 

Nozzle Exit Back Pressure = 0.101 MPa 
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 Chapter 5.  Shear Layer Analysis 

5.1 Profile Comparisons 

Once runs had been achieved with stable flames on both the coarse and refined 

grids, a shear layer analysis was conducted.  A location was chosen at x = 9 mm 

to extract a cross section profile.  Remembering that the origin of x starts at the 

end of the splitter plate, the location of 9 mm was chosen by intuition to be far 

enough away from the splitter plate so as not to cross the inner circulation zone 

but at the same time to not be into the converging section of the nozzle.  Once that 

location was chosen profiles were constructed by averaging the extracted profile 

over the last 10 frames of the run.  A frame was generated by saving the results of 

the flow field calculation every 20 real time steps in hopes of avoiding any drastic 

fluctuations in the profile that could be caused from vortex shedding or flame 

flapping.  

 

Figure 24 shows the velocity profile comparison at the x = 9 mm location.  Notice 

that most of the difference in the profiles is in the shear layer region and splitter 

plate wake region.  The Mach profile comparison in Figure 25 shows a good 

correlation on the boundary layer at the outer radius, but shows no particular 

correlation in any other region.  The species profiles in Figures 26, 27, and 28, 

however, all show some difference within the shear layer and wake region while 

having very little difference in results outside of that region.  This is to be 

expected since there is very little flow in the y direction outside the circulation 

zone. 
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The temperature profile comparison in Figure 30 shows a marked difference in 

the width of the high temperature region as well as the intensity.  The peak 

intensity of the temperature on this profile has a 17% difference from one grid to 

the other.  This should be enough to produce significantly different characteristics 

downstream in a larger model.  Also, in Figure 31, a marked difference can be 

seen in the pressure profile mostly in the shear layer and wake region.  There is a 

difference all the way across the profile in the pressure comparison, but the 

highest percentage of difference is found in the shear layer wake region.  In 

Figure 32 the density profile shows the most difference in the shear layer wake 

region like most of the other properties do.  

 

5.2 Grid Dependency Conclusions  

In the profiles previously reviewed most of the differences in the results were 

located in the shear layer wake region.  This is in light of the fact that grid 

independent solutions were obtained for the oxygen tube and hydrogen annulus 

independently.  This is clear evidence that grid resolution in the shear layer plays 

a major role in the quality of the results.  Furthermore, the difference in solutions 

at the short distance from the splitter plate could cause a major change in the 

solution in much longer geometries.  
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Chapter 6.  Convergence and Unsteadiness 

6.1 Convergence of Oxygen Tube and Hydrogen Annulus 

One of the objectives of this study was to see if there is a steady state solution to 

the flow field if the outer circulation zone was eliminated.  In the parametric 

studies conducted on oxygen tube and hydrogen annulus independently, steady 

state solutions were found for both of those flow fields.  Figure 33 illustrates the 

convergence of the oxygen tube computation.  Four of the runs on the oxygen 

tube were from grids that were doubled in each dimension.  Is interesting to note 

that a doubling of two dimensions make some four times as many points in the 

grid.  The number of iterations required for convergence, however, did not 

increase by a factor of 4.  Another point to make is that the 584x52 grid and the 

584x104 grid had almost identical convergence rates.  This suggests that in this 

geometry the convergence rate was based on the x grid resolution.  The aspect 

ratio for these two runs differ by factor of two because of decreasing the y 

resolution by a factor of 2, which increases the value of y + corresponding to the 

first grid point by a factor of two.  The dominant CFL in this geometry, which 

affected convergence, was based on x.  

 

The convergence rates were compared for the hydrogen annulus grids in Figure 

34.  Like the oxygen tube all the hydrogen grids yielded a steady state solution 

and were driven to machine accuracy.  A similar conclusion about the 

convergence rate depending on the number of x grid points can be drawn from the 

hydrogen grids.  The 860x60 stretched grid in the 860x60 fixed ∆x grid had 
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nearly identical convergence rates.  The nonlinear effects at the beginning of the 

run shifted the fixed ∆x grid so that it achieved machine accuracy in fewer 

iterations than the stretched grid, but the general slopes are the same.  

 

6.2 Convergence of Full Grids 

Even though the oxygen tube and hydrogen annulus produced steady state 

solutions, neither of the full grids converged to a steady state solution.  Figure 35 

shows a comparison of the convergence between the coarse grid and refined grid.  

The banded appearance is produced from a dual time step solution procedure.  In 

each real time step there would be a certain number of inner time steps.  This dual 

time stepping produces an oscillation in the residual giving the banded look 

appearing in the figure.  The important point to note in this figure is that the 

general trend of the residual between the coarse grid in the refined grid is similar.  

Visual inspection of the figure shows that the residual stops decreasing at around 

–3 and a steady state solution is not realized.  

 

In looking for the source of the unsteadiness that causes the steady state solution 

to be elusive, examination of the flow field was in order.  Figure 36 shows he 

Mach contour on the refined grid.  The downwash from the wake region of the 

splitter plate is still apparent at the throat.  As a result the sonic line is extremely 

curvy there.  Figure 37 gives a clearer picture of this choking by showing the 

sonic line in the throat.  This sonic condition in the wake of the splitter plate 

appears to tend towards going subsonic out the nozzle.  Upon examination of this 

 32 



sonic line the size of the throat was called in to question.  The throat radius was 

originally chosen from the experimental geometry conducted at Penn State [5].  

The difference in that geometry, however, was that the chamber was many times 

longer than this one which allowed time for the shear layer to expand and for the 

flame and temperature profile also to expand.  This expansion produced a much 

different profile at the throat thereby insuring adequate choking in the longer 

chamber of the physical experiments.  

 

A quasi 1-D analysis of this geometry requires many estimations because it is not 

true quasi 1-D due to property variations with respect to y.  Even with estimations 

and averaging across the grid, it is questionable as to whether the flow field is 

choked.  Without the combustion a quasi 1-D approximation would be more 

appropriate.  The approximation for cold flow shows that it is not choked and can 

be seen in Figure 38 by examining the results of a non-reacting cold flow case.  

The sonic line travels into the inlets in that case.  

 

In search of a steady state solution the throat radius from the experiments was 

abandoned and a quasi 1-D analysis on cold flow was computed and the throat 

radius set to 92% of the choking radius.  The area was computed by solving the 

following equation [19] for the choking area, A* 
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where the zero subscript denotes stagnation properties, γ is the ratio of specific 

heats, and R is the specific gas constant for the mixture.  Table 5 shows the values 

used for the calculation. 

 

The choking radius computed from the area was 3.23x10-3 m from which the 

throat radius was set to 92% of that value.  This new geometry is shown in Figure 

39 and shows that even with cold flow the flow field is now choked at the throat.  

Runs were then conducted on the new geometry with reacting flow to see if a 

steady state solution could be found for the flow field.  Figure 40 shows the 

reacting flow field Mach contour with the smaller throat.  Figure 41 shows the 

sonic line on the same run exhibiting much more uniformity and much less of the 

effects from the wake of the splitter plate.  Unfortunately, this configuration still 

did not yield a steady state solution.  Figure 42 shows the results of the residual 

from the new configuration compared with the previous residuals from the coarse 

grid and refined grids.  Notice that general trends of the residual are similar to the 

previous geometry.  Visual inspection indicates the limit of the residual has been 

realized.  
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Table 5:  Parameters For Choking Radius Computation 

Parameter Value 

Mass flow 0.0523 kg/s 

Stagnation Pressure 1.29 MPa 

Stagnation Temperature 300K 

Specific Gas Constant 1020.9 J/kg.K 

Ratio of Specific Heats 1.4 
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 Chapter 7.  Conclusions and Recommendations 

7.1 Conclusion 

Comparisons between the property profiles across the shear layers in the 

combustion chamber show that grid refinement changes the profile a significant 

amount.  The differences in the profiles due to the refinement of the grid in the 

shear layer may alter the flow field characteristics far downstream in larger 

combustion chambers.  In order to accurately model the shear layer sections, a 

high level of grid refinement is needed in the shear layer due to strong property 

gradients in the combustion region.  

 

No steady state solution was found on the full computational grid flow field.  

Elimination of the outer circulation zone did not eliminate the unsteadiness of the 

flow field and indicates there is an inherent unsteadiness associated with the inner 

circulation zone, shear layer, and splitter plate wake.  

 

7.2 Recommendations  

Further refinement is needed in the shear layer section to compare with the 

refined shear layer grid used in this study in order to ascertain how close the 

solution on the refined grid is to being grid independent.  In order to efficiently 

generate such grid refinements, more robust grid generation techniques or 

software are needed. Some other methods of analyzing unsteadiness could be 

employed.  GEMS code could be made to make 2-D contours of the residual so 

that regions of unsteadiness could be readily identified.  Furthermore, a longer 
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chamber could eliminate some of the choking problems encountered on the first 

two full grids. 

 

Additional factors could also be modeled like the heat flux up the splitter plate.  

Eventually, 2 phase flows will need to be accurately modeled to bring the problem 

to a maximum level of realism. 
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Figure 1:  Shear Coaxial Injector Assembly 
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Figure 3:  View Looking Down Coaxial Injector Tube 
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Figure 5:  Combustion Chamber Cutoff 
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Figure 7:  Oxygen Tube 

Exit Velocity Profile Comparison 
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Figure 8:  Oxygen Tube 

Friction Velocity Comparison 
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Figure 9:  Hydrogen Annulus 

Exit Velocity Profile Comparison 
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Figure 10:  Hydrogen Annulus 
Friction Velocity Comparison 
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Figure 11:  Oxygen Tube 

Exit Velocity Profile Comparison Against Models 
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Figure 12:  Hydrogen Annulus 

Exit Velocity Profile Comparison Against Models 
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Figure 13:  Development of Oxygen Velocity Profile 

on Stretched 1168x104 Grid 
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Figure 14:  Development of Hydrogen Velocity Profile 

on Stretched 860x60 Grid 
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Figure 15:  Grid Refinement Areas 

 56 



                                       
 
 

 

 
 

        

Hydrogen 
Annulus 

To 
Nozzle 

Oxygen 
Tube 

 Figure 16:  Inefficient Shear Layer Grid Scheme 
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Figure 17:  Visible Blocks of Grid Transitioning 
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 Figure 18:  Oxygen Tube Grid Transitioning at Inlet/Chamber Interface 
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 Figure 19:  Hydrogen Annulus Grid Transitioning at Inlet/Chamber Interface 
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Figure 20:  Shear Layer Coarse Grid 
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Figure 21:  Shear Layer Refined Grid 
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 Figure 22:  Temperature Contour During Ignition of Flame 
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 Figure 23:  Temperature Contour As Flame Stabilizes 
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 Figure 24:  Velocity Profile Comparison in Chamber 
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Figure 25:  Mach Profile Comparison in Chamber 
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Figure 26:  H2 Profile Comparison in Chamber 
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Figure 27:  O2 Profile Comparison in Chamber 
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 Figure 28:  H20 Profile Comparison in Chamber 
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Figure 29:  OH Profile Comparison in Chamber 
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 Figure 30:  Temperature Profile Comparison in Chamber 
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Figure 31:  Pressure Profile Comparison in Chamber 
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Figure 32:  Density Profile Comparison in Chamber 
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 Figure 33:  Oxygen Tube Convergence Comparison 
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 Figure 34:  Hydrogen Annulus Convergence Comparison 
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 Figure 35:  Full Grid Convergence Comparison 
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 Figure 36:  Mach Contour on Refined Grid 
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 Figure 37:  Sonic Line on Refined Grid 
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 Figure 38:  Sonic Line for Cold Flow Case 
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 Figure 39:  Sonic Line for Cold Flow Case with Choked Throat 
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Figure 40:  Mach Contour for Reacting Flow on Smaller Throat 
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 Figure 41:  Sonic Line for Reacting Flow on Smaller Throat 
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Figure 42:  Full Grid Comparison Convergence with Smaller Throat 
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