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ABSTRACT 

 

The inverse kinematic problem is crucial for robotics. In this paper, a solution 

algorithm is presented using artificial intelligence to improve the pseudo-inverse Jacobian 

calculation for the 7-DOF Whole Arm Manipulator (WAM) and 6-DOF Titan II 

teleoperation system. An investigation of the inverse kinematics based on fuzzy logic and 

artificial neural networks for the teleoperation system was undertaken. Various methods 

such as Adaptive Neural-Fuzzy Inference System (ANFIS), Genetic Algorithms (GA), 

Multilayer Perceptrons (MLP) Feedforward Networks, Radial Basis Function Networks 

(RBF) and Generalized Regression Neural Networks (GRNN) were tested and simulated 

using MATLAB. Each method for identification of the pseudo-inverse problem was 

tested, and the best method was selected from the simulation results and the error 

analysis. 

 From the results, the Multilayer Perceptrons with Levenberg-Marquardt (MLP-

LM) method had the smallest error and the fastest computation among the other methods. 

For the WAM-Titan II teleoperation system, the new inverse kinematics calculations for 

the Titan II were simulated and analyzed using MATLAB. Finally, extensive C code for 

the alternative algorithm was developed, and the inverse kinematics based on the 

artificial neural network with LM method is implemented in the real system. The 

maximum error of Cartesian position was 1.3 inches, and from several trajectories, 75 % 

of time implementation was achieved compared to the conventional method. Because fast 

performance of a real time system in the teleoperation is vital, these results show that the 
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new inverse kinematics method based on the MLP-LM is very successful with the 

acceptable error. 
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CHAPTER 1: Introduction 

 
 

1.1. Overview 
 
 

This thesis focuses on an investigation of inverse kinematics based on fuzzy logic 

and artificial neural network for the WAM-Titan II telerobotic system. The teleoperation 

system has a redundant mechanical manipulator, which serves as the master controller, 

and a non-redundant mechanical manipulator, which is the slave manipulator. This non-

replica test bed was developed in the Robotics and Electro-Mechanical System 

Laboratory (REMSL) at the University of Tennessee. The system includes a 7 degree-of-

freedom (DOF) Barrett WAM manipulator as a master controller and a 6-DOF Schilling 

Titan II salve manipulator as shown in Figure 1-1. Because of their difference in numbers 

of degrees of freedom, Cartesian space control is needed instead of joint space control.  

In particular, this research addresses an alternative inverse kinematics design of 

the manipulators to reduce computations and to improve general performance. First, an 

investigation was performed to find identification of inverse kinematics for a 3-DOF 

planar redundant manipulator using a fuzzy logic with Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and Genetic Algorithm (GA). Using a circle trajectory, the errors 

between desired outputs and actual outputs were compared. Second, similarly, an 

artificial neural network was used for finding a substitute inverse kinematics solution, 

using Multilayer Perceptrons - Back Propagation (MLP-BP) with a Levenberg Marquardt          
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Figure 1-1. WAM-Titan II Teleoperation System 

 

optimization method Radial Basis Function Network (RBF), and Generalized Regression 

Neural Network (GRNN). The optimal inverse kinematics solution, which was the MLP-

BP, was compared with the results found from the experiments. An inverse kinematics 

solution for the Titan II based on the MLP-BP was tested and analyzed with current 

system. In the next section, background of teleoperation and artificial intelligence is 

discussed.  

 

1.2. Background 
 

From the ancient era, humans have discovered and invented tools to overcome 

their physical inability, and they have desired the existence of intelligent machines which 

can perform as human slaves. This led to the field of robotics, which has developed 

rapidly after development of computer technology. Various robots are built for the 
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purpose of physical aids, and they have been used in many areas. For instance, robotic 

manipulators have been used in manufacturing industry, hazardous material handling, and 

applications in dangerous environments such as oceans and space. However, due to the 

limitations in the current technology for sensing and controlling, human supervision is 

required in environments of unknown structure. In addition, in dangerous environments, 

humans cannot be present physically to perform work together with a robot. As a result, 

in the above cases and in many other applications, teleoperation is an interesting method 

to be achieved without position of an operator near the manipulator, where autonomous 

operation is not feasible. Traditionally, the term teleoperation refers to a human 

operator’s use of a master controller to operate a slave manipulator at a distance. 

Therefore, many researchers have worked in the teleoperation field these days. It is likely 

that teleoperation will spread widely in the future. 

An ideal teleoperation system for real situations should be capable of human-like 

performance of dedicated tasks with remote human assistance. The operator should have 

intelligent vision and tactile/kinesthetic feedback. This allows for efficient interaction 

without direct contact between the operator and the manipulator. Since this technology is 

not yet developed enough, performance of remote tasks like a real human is always 

limited in current era. Therefore, still many researchers are working on haptic 

telepresence, which involves transfer of feeling operation to the operator. There is a 

variety of other issues for teleoperation such as performance, stability, communication, 

and time delay between a slave and a master [1]. 

In teleoperation, two different approaches are used for achieving mapping: joint-

to-joint mapping and Cartesian space mapping. In joint-to-joint mapping, an operator is 
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able to control each joint directly with the complete slave manipulator configuration. In 

Cartesian space mapping, however, position and orientation or force and moment of the 

end-effector are controlled by the operator. Joint-to-joint mapping, in general, requires a 

system with similar kinematic structure of the master and the slave. Both should be either 

identical or scaled to each other. In the system, the slave joint actuator responds directly 

to the kinematically corresponding master joint actuator. Because transformations from 

joint space to Cartesian space and vice versa are not needed in this case, a fast and 

reliable response is obtained easily. Cartesian space mapping has some benefits; it allows 

the referencing of the positions of the manipulators, and it provides the ability to operate 

a redundant manipulator.  However, because it involves coordinate transformations, 

Cartesian space mapping is computationally intensive and has singularity problems. 

Computational complexities result in time delays and instability from the delays. 

The master manipulator of the WAM-Titan II teleoperation system is a Barrett 

WAM, which is a 7-DOF cable-driven back-drivable arm. This manipulator has 

centralized cables to transmit power to every joint; this feature provides no backlash and 

low friction [12]. It has built-in sensors to measure angles, forces, and torques of each 

joint. The WAM also has other features like back-drivability, gravity compensation, and 

force feedback capability. The back-drivability allows the WAM joints to be actuated by 

external forces, and it makes the WAM suitable for a master. The force feedback uses the 

back-drivability to measure force applied at the arm. In addition, the gravity 

compensation gives the operator the ability to move the arm smoothly. The standard 

WAM has 4-DOF, and, for the WAM-Titan II teleoperation, 3-DOF gimbals are attached 

at the end of the arm. This allows the master to be a dexterous redundant manipulator. 
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For a redundant manipulator, redundancy resolution can be undertaken to use the benefits 

of the extra DOF. The WAM is attached to the Compact Remote Console (CRC) 

platform in the teleoperation system. The CRC is an integrated vision assist system, 

which has four LCD video monitors, two LCD computer monitors, and video control 

units to achieve a broad range of remote operations. The CRC provides an ergonomic 

teleoperation workstation for viewing and controlling manipulators.  

The slave manipulator is a 6-DOF Schilling Titan II manipulator. This slave was 

originally designed and manufactured for underwater applications. This hydraulic 

manipulator originally had a parallel jaw gripper at the end, but the gripper was replaced 

with Barrett’s three fingered hand, called the Wraptor, shown in Figure 1-2. At each joint, 

a resolver is used for measuring the rotation. It is a non-back-drivable manipulator, unlike 

the WAM, due to its hydraulic characteristics. The slave arm’s six joints are azimuth, 

yaw, shoulder pitch, elbow pitch, wrist pitch, wrist yaw, and wrist rotation.  

 

 

Figure 1-2. The Barrett’s three fingered hand 
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In the WAM-Titan II teleoperation system, for achieving spatial association 

between the two manipulators, a Cartesian space mapping technique is used to control the 

slave robot following the same trajectory of the master controller, due to the kinematic 

dissimilarity between these two devices [2, 3]. The mapping technique uses two 

differential kinematic methods: forward kinematics and inverse kinematics. This mapping 

is described by a Jacobian matrix. The Jacobian is useful for finding singular 

configurations, analyzing redundancy, and determining inverse kinematics algorithms. 

As shown in Figure 1-3, the WAM-Titan II teleoperation system uses forward 

kinematics followed by inverse kinematics. The forward kinematics calculate the 

Cartesian space velocities of its end-effector from the measurement of the WAM joint 

angles, and then the velocities are used as command inputs to the Titan II inverse 

 

FK IK
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(RTAI) 

WAM  
(Joint 

Angles & 
Velocities) 

TITAN 
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WAM 
(Redundant) 
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(Non-

redundant) 

PC-104
Low 
Level 

Controll
er 

(QNX) 

Figure 1-3. WAM-Titan II Teleoperation system 
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kinematics, thereby producing the joint velocities. The joint angles are finally used as 

Titan II command inputs. 

Artificial intelligence is a research area that seeks to implant human-like 

intelligence. The artificial intelligence research is generally required in many areas like 

robotics, image and voice recognition, decision-making, non-linear controls, and 

uncertain or complex systems. Recently the field of artificial intelligence covers a 

number of technologies, including artificial neural networks, fuzzy logic, genetic 

algorithms, Bayesian networks, and chaotic theory [4]. Most of these technologies have 

developed significantly in recent years, gaining well-known use due to showing 

significant promise in several engineering applications. However, artificial intelligence is 

still limited in terms of general purpose applications, and more research is needed to 

solve many problems. 

The majority of current applications are supported by fuzzy logic and artificial 

neural networks. Both methods are commonly used to control complex and uncertain 

systems. Fuzzy logic is the theory to adapt a rule-and-inference based reasoning approach 

to represent fuzzy sets, rather than crisp sets, of input and output numbers in linguistic 

forms [4, 5]. The advantages of fuzzy logic are robustness from noise or uncertain 

failures and the ability to handle nonlinear systems.  However, the main disadvantage is 

the lack of a formal process to define a rule base, especially in unknown system. 

Artificial neural network theory represents a system by training exact input and output 

data, and formulates an approximation model of the system. This method is very effective 

when the data sets are exact and collected from all possible ranges of the system. Also, 

artificial neural networks require long training time to optimize weights and biases. These 
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two methods can be combined as integrated systems to aid each other mutually. In this 

paper, fuzzy logic systems and neural networks are introduced to solve inverse 

kinematics.  Additionally, a hybrid system like ANFIS and Fuzzy-GA is proposed to 

define fuzzy rules numerically. In the next section, motivation of this thesis is presented. 

 

1.3. Motivation 
  

The main issue which should be addressed is the inverse kinematics. The solution 

of the inverse kinematics is complex because of the nonlinearities; as a result, a closed 

form solution may not be found. Multiple or infinite solutions may exist when the 

Jacobian matrices are rank deficient or manipulators are kinematically redundant. Even if 

the inverse kinematics has a closed form solution, unstable movements may happen near 

the singularities. 

In inverse kinematics of redundant manipulators, the extra degrees of freedom can 

be effectively used to improve the manipulator’s ability to avoid obstacles or singular 

points. On the other hand, inverse kinematics of redundant manipulators is more complex 

than non-redundant manipulators. Mapping between position space and joint space has 

always been difficult for redundant manipulators because of the presence of a non-square 

Jacobian matrix. Therefore, some constraints are needed to make the Jacobian a square 

and non-singular matrix.  

To solve the inverse kinematics problems, various computational schemes have 

been developed. However, a major difficulty in solving inverse kinematics is associated 

with demanding computations required to solve pseudo-inverse calculations. To reduce 
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the computational complexity of inverse kinematics and redundant resolution, fuzzy and 

neural network methods are used in this paper. The next section outlines the structure of 

this thesis.  

 

1.4. Thesis Outline 
 
 

Chapter 2 discusses a general concept of the kinematics. Homogeneous 

transformation matrices and Denavit-Hartenberg parameters are introduced. The forward 

kinematics is formulated using the transformation matrix, and differential kinematics is 

presented with the Jacobian matrix. The inverse kinematics is also analyzed and its 

differential kinematics is described by the geometric Jacobian matrix.  Singular 

configurations are characterized, and several methods are discussed to avoid the 

singularities. 

Chapter 3 introduces the WAM-Titan II teleoperation, and the specifications are 

discussed. DH parameters for the WAM and Titan II manipulators are developed, and 

kinematic transformations for both manipulators and the formulation of the 

corresponding Jacobian are provided.  Moreover, the architecture of the teleoperation 

system is explained.  

Chapter 4 presents the fuzzy logic and the artificial neural network. Brief reviews 

of the fuzzy logic and the artificial neural network are provided. For the fuzzy logic, 

ANFIS and GA are introduced. For the artificial neural networks, MLP-BP with LM, 

RBF, and GRNN are discussed. 
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Chapter 5 describes the simulation approach for inverse kinematics of a 3-DOF 

planar manipulator using the methods explained in Chapter 4. Kinematics of the planar 

manipulator is analyzed, and details for the each method are explained. 

Chapter 6 discusses the simulation results for the planar manipulator, and they are 

analyzed to find the best method. The MLP-BP is chosen for the real teleoperation 

system, and the final simulation experiments for the Titan II manipulator are performed 

using MLP-BP. The results are discussed in detail. A summary and suggestions for future 

work are given in Chapter 7. 
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CHAPTER 2: Kinematics 

 
 

2.1. Introduction 
 

This chapter is devoted to the kinematics of serial type robotic manipulators. The 

study is general, but is focused in the WAM-Titan II Teleoperation System manipulators 

in Chapter 3. Kinematics is the study of dynamics and generally deals with the motion of 

bodies. Therefore, the kinematics of robotic manipulators involves the geometric or time-

based properties of the motion, such as position, velocity, acceleration, or higher order 

derivatives [6]. A robotic manipulator is considered as a set of chain links connected by 

joints, and a joint appears between adjacent links. One end of the kinematic chain is fixed 

to a base, and the other end, called an end-effector generally is positioned. The links are 

numbered from the base to the end of the chain. The joints also are numbered in same 

manner. Generally, manipulators have revolute joints or prismatic joints. The revolute 

joint is usually considered as one axis of rotation of connected links. The prismatic joint, 

which can slide, is considered as one axis of translation of connected links. Therefore, 

generally a joint has a single degree of freedom, and n joints of a manipulator have n 

degrees of freedom.  

Typically, a manipulator needs 6-DOF to operate in three-dimensional space. 

Therefore, at least six joints are required in order to manipulate: three for position and 

three for orientation. In particular, a planar manipulator needs at least three joints: two for 
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position and one for orientation. Therefore, a function in terms of joint angles 

characterizes the position and the orientation of the end-effector. If a manipulator has 

more degrees of freedom than those required to operate, then the manipulator is 

kinematically redundant, and it is called a redundant manipulator. Redundant 

manipulators easily achieve more dexterous motions.  

Forward kinematics determines position and orientation from joint angles. In 

contrast to forward kinematics, inverse kinematics determines joint angles from position 

and orientation. Forward kinematics always has a unique solution, but inverse kinematics 

may have infinite solutions. The relationship between the joint velocities and the 

linear/angular velocity of the end-effector is given by differential or velocity kinematics. 

This can be described by a Jacobian matrix. The Jacobian matrix has the current 

manipulator configuration, and it can be computed by differentiating the forward 

kinematics with respect to the joint variables. From the velocity relationship with the 

Jacobian matrix, the forward and inverse kinematics can be also described instead of 

position and orientation. Indeed, the differential kinematics is useful when the 

manipulator characteristics need to be analyzed. Especially, in the inverse kinematics, the 

Jacobian matrix is the main tool to perform and determine inverse kinematics algorithms. 

Calculation of kinematics using homogeneous transformations is introduced in the next 

section. 

2.2. Homogeneous Transformation 
 

To determine the kinematic relationship between joint angles and 

position/orientation, a transformation from a base to an end-effector is necessary. For this, 
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a homogeneous transformation is defined in [6~8]. Typically a position of any joint is 

expressed with respect to a base reference frame, and the orientation is also expressed in 

terms of the three unit vectors with respect to the same reference frame. This expression 

is presented by the relationship between the coordinates of the same point in two different 

fames, o and a. If  is the vector of coordinates of an arbitrary point x with respect to 

the reference frame o, then it can be expressed as 

ox

  (2.1) o o o
a a= +x x R xa

where  is the vector which describes the origin of frame a with respect to the reference 

frame o, and R  is a rotational matrix of frame a with respect to the reference frame o. 

 is the vector of  coordinates of the point 

o
ax

o
a

ax x  with respect to frame a. It is shown in 

Figure 2-1.   

 

 

ox  o  

oz  

oy  

ay  

ax  

az  

a

x

ox

ax

o
ax  

Figure 2-1. Homogeneous transformation 
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The equation (2.1) can be represented as 

 
1

o o
o a a

T
a⎡ ⎤

= ⎢ ⎥
⎣ ⎦

R x
x

0
x  (2.2) 

where the 
1

o
o ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x
x  and the 

1

a
a ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x
x . This representation is called as the homogeneous 

representation, and the (4x4) matrix is called as homogeneous transformation . 

Therefore, the equation (2.2) can be rewritten as 

o
aA

  (2.3) o o
a=x A xa

a

a

For more analysis of the equation (2.1), it is differentiated with respect to time as 

  (2.4) o o o a o
a a a= + +x x R x R x

This expression can be rewritten with skew-symmetric matrix and constant  as ax

  (2.5) 
0

0

( )o o o
a a a
o o a
a a a

= +

= + ×

x x S ω R x

x ω R x

where  and =R SR ( )ωS  is a skew-symmetric matrix in term of angular velocities. This 

result is useful later for the Jacobian matrix [6, 8], and Denavit-Hartenberg parameters 

are shown in the next section. 

2.3. Denavit-Hartenberg Parameters 
 
 

From the homogeneous transformation, a general method is required to describe 

link connections for a specific manipulator.  The basic idea is that every manipulator can 

be described by Denavit-Hartenberg parameters with a kinematic link relationship. The 

DH parameters are the link length ( ), the link twist (a α ), the link offset ( ), and the d
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joint angles (θ ). From the link relationship, the homogeneous transformation matrix is 

obtained to define the position/orientation of the current joint with respect to the previous 

joint. If every homogeneous transformation matrix of a manipulator can be defined from 

the DH parameters, then the position/orientation of the end-effector can be also defined 

with respect to the reference frame, which is generally its base.  

As shown in Figure 2-2, the basic concept of defining the DH parameters is 

described follows [6~8]. The angle iα  is the distance between  and , and the 

distance  is the coordinate of '  along axis 

io 'io

id io 1i−z  as shown in Figure 2-1. The link twist, 

iα , is the angle between axis 1i−z  and axis  about axis . The joint angle, iz ix iθ , is the 

angle between axis   and axis  about axis 1i−x ix 1i−z . Counter-clockwise rotation is 

positive for iα , and iθ . The link length and the link twist are always constant at each   

Link i-1 Link i 
Joint i 

iα  'i

 

Figure 2-2. DH parameters 

y  

1i−y  
1i−z  

1i−x  

1−ia  

iθ  
'ix  

'iz  

ix  
iy  

io  
iz  

1−io  

'io  
ia  

id  
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joint, but the other two parameters are variable depending on the joint type. If joint is 

revolute, then iθ  is variable. If joint is prismatic, then  is variable. From [8], there are 

two constrains for uniqueness of the DH parameters. The first is that axis  is 

perpendicular to axis , and the second is that axis  intersects axis . These two 

constrains give a unique homogeneous transformation matrix.  

id

ix

1i−z ix 1i−z

Form the DH parameters, the final homogeneous transformation matrix between 

two joints is  

 

cos( ) sin( ) cos( ) sin( )sin( ) cos( )
sin( ) cos( )cos( ) cos( )sin( ) sin( )

0 sin( ) cos( )
0 0 0 1

i i i i i i

i i i i i i
i

i i

a
a

d

i

i

i

θ θ α θ α θ
θ θ α θ α θ

α α

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  (2.6) 

Therefore, the forward kinematics is provided by matrix multiplication of the 

homogeneous transformation calculated by the DH parameters. The coordinate 

transformation of an n-DOF manipulator is given by 

 0 0 1 2
1 2 3 ... n

n
1

n
−=T A A A A  (2.7) 

where  is a (4x4) homogeneous transformation matrix from the base to joint n. From 

the calculation of the coordinate transformation, the forward kinematics can be 

determined and is described in the next section. 

0
nT

2.4. Forward Kinematics 
 
 

Forward kinematics determines position and orientation of the end-effector from 

joint values as a variable parameter. By the above the DH parameters and the 
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homogeneous transformation matrices, the position and orientation of an n-DOF 

manipulator with respect to the base are expressed by 

 
0 0

0 ( ) ( )
( )

1
n n

n T

q q
q

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

R x
T

0
 (2.8) 

where  is a rotation matrix and  is a position vector. In the rotation matrix, the 

column vectors should be orthogonal each other, and the three column vectors form the 

reference frame of the end-effector. The third column vector is in the direction of 

approach of the end-effector, the second column vector is normal to the third vector in the 

sliding direction, and the first vector is normal to the other two vectors in right-hand rule 

[6, 8]. 

0
nR 0

nx

2.4.1. Jacobian matrix 
 

Another method to describe the forward kinematics is using a velocity 

relationship. This differential or velocity kinematics is presented by Jacobian matrix 

which is computed by differentiation of the forward kinematics function with respect to 

the joint variables. The velocity relationship can be written as 

 ( )θ=x J θ  (2.9) 

where , 
linear velociy
angular velocity
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x ( )θJ  is a (6 )m×  Jacobian matrix in terms of joint angles, 

and is joint velocities. There are two types of Jacobian matrices: geometric and 

analytical Jacobian. Generally, the Jacobian matrix is considered to be the geometric 

Jacobian, which is slightly different from the analytical Jacobian. The main difference 

between these two Jacobian matrices is that they use different velocities of rotation. The 

θ
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rotational velocities, the Euler angles for instance, rather than the angular velocities, are 

considered in the analytical Jacobian matrix. The analytical Jacobian is defined and the 

relationship between the geometric and analytical Jacobian matrices is described in [6, 8]. 

The Jacobian can be divided by two parts. The first three rows of the Jacobian matrix are 

related to linear velocity. The last three rows are related to angular velocity. Therefore, 

the Jacobian matrix can be rewritten as 

 v

ω

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

J
J

J
 (2.10) 

In order to compute the Jacobian, it is necessary to distinguish each joint as 

prismatic or revolute. In the case of a prismatic joint i, the Jacobian matrix can be written 

as 

 , 1

,

v i i

iω

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

J z
J 0

 (2.11) 

and in case of the revolute joint i, it can be written as 

 , 1

, 1

( )v i i i

i iω

−

−

× −⎡ ⎤ 1−⎡ ⎤
=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

J z x x
J z

 (2.12) 

where  is the rotation axis of joint i ,  is the position vector of end-effector with 

respect to the base, and  is the position vector of joint i  with respect to the base. The 

axis  can be obtained from the third column of the rotation matrix of joint i  with 

respect to the base frame. The vectors x  and 

1i−z x

1i−x

1i−z

1i−x  can be obtained from the 

transformation matrix [6~8]. Inverse kinematics, as a more complex problem than the 

forward kinematics, is analyzed in the next section. 
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2.5. Inverse Kinematics 
 
 

Inverse kinematics determines joint values from position and orientation of the 

end-effector as a variable parameter. Inverse kinematics is a useful method for 

commanding position and orientation or for teleoperation between different DOF 

manipulators. In addition, because controlling a manipulator is naturally executed in joint 

space, inverse kinematics is used in controls [9]. However, inverse kinematics is not as 

simple as the forward kinematics. Its solution may not have a closed form. Therefore, 

only simple manipulator geometries allow analytical inverse kinematics solutions to be 

computed. Furthermore, multiple solutions or infinite solutions may exist because of the 

nonlinear characteristics. The typical example of inverse kinematics with multiple 

solutions is an elbow up/down position in a planar manipulator which has three revolute 

joints. At a certain given position and orientation in operational space (or Cartesian 

space), the inverse kinematics of the manipulator determines two solutions:  the elbow up 

position and the elbow down position. In this case, the more degrees of freedom a 

manipulator has, the more solutions it has. In order to overcome this problem, it is 

necessary to analyze manipulators in motion. Therefore, differential or velocity inverse 

kinematics with the Jacobian is required. If position and angular velocity are used as 

variables instead of position and orientation, static positioning is possible, where the 

Jacobian matrix has full rank. However, at certain points, the Jacobian matrix is not 

invertible. These points are called as singularities. When the Jacobian is rank deficient, 

one or more degrees of freedom of the manipulator are lost. Therefore, its end-effector 

can move only in a certain linear or angular directions. However, in real operation of a 
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manipulator, singularities can be avoided by the operator or software by avoiding 

configurations where the links are aligned. Another problem with inverse kinematics is 

approaching singularities. If an end-effector is moved close to its singularity, the Jacobian 

matrix still has full rank, but its condition number becomes a high number. Therefore, 

from the small velocity inputs, the large output is produced. In this case, the manipulator 

has jumps or the controller shuts down the operation because it cannot drive beyond the 

capabilities of the actuators. Therefore, it is also important to avoid this problem, but it is 

not easy. To avoid this, Principal Component Regression (PCR) or Damped Least Square 

(DLS) is used. To invert the Jacobian matrix, a pseudo-inverse method is used. Even 

though the end-effector reaches singularities, the solution of the inverse kinematics is 

attained from the pseudo-inverse method. If a manipulator is redundant, then its Jacobian 

matrix is not invertible because it is not a square matrix. Therefore, the pseudo-inverse is 

required to solve the inverse kinematics of a redundant manipulator. Singular Value 

Decomposition (SVD) is another method that is used to perform the pseudo-inverse and 

the PCR [22, 23].  

2.5.1. Pseudo-inverse method 
 

The pseudo-inverse is a common way to find the solution for an inverse problem. 

The equation (2.9) can be written as 

  (2.13) †=θ J x

 where the matrix  is the pseudo-inverse, and this matrix is unique. The pseudo-inverse 

has the following properties. If the Jacobian matrix is square and full rank, then 

†J

† 1−=J J . 

 20



 

If the Jacobian matrix is not full rank, then two types of the pseudo-inverse can be 

considered. For the first type, the Jacobian matrix has more rows than columns. In this 

case, a manipulator is kinematically insufficient, and there are more constraints than joint 

velocity variables. Therefore, normally no solution exists. The solution of the pseudo-

inverse minimizes −x Jθ , and gives the closest to the desired solution, which is a least 

square method. The second type is that the Jacobian matrix has more columns than rows. 

In this case, the manipulator is kinematically redundant, and there are less constraints 

than joint velocity variables. Therefore, generally infinite solutions exist. The pseudo-

inverse minimizes the norm of θ  in this case, and its solution is the particular solution 

[10]. If the Jacobian matrix is full rank, the pseudo-inverse can be calculated as 

 † ( )T T 1−=J J J J , (2.14) 

and it is called as the right pseudo-inverse. The pseudo-inverse can be generally 

calculated by the Singular Value Decomposition method explained below. 

2.5.2. Singular value decomposition 
 

Singular value decomposition (SVD) is a powerful tool for computing and 

analyzing the pseudo-inverse and damped least squares methods. Let J  be the Jacobian 

matrix. A singular value decomposition of the Jacobian matrix consists of expressing J  

in the form [21] 

  (2.15) T=J UΣV
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where and  are orthogonal matrices and  is a diagonal matrix. If  is (U V Σ J )m n× , then 

 is ( , Σ  is ( , and V  is (U )m m× )m n× )m n× . The singular value decomposition of any 

matrix exists even if the matrix is not full rank. The pseudo  inverse of  is equal to J

  (2.16) † † T=J VΣ U

where  is the inverse of a diagonal matrix whose diagonal entries are non-zero, and it 

takes the form 

†Σ

 

1

†
2

1 0 0

10 0

10 0
r

σ

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ  (2.17) 

If any of the singular values is zero, then a zero is replaced in the corresponding entry of 

. If the Jacobian matrix is not full rank like the above first case, then one or more 

singular values will be zero. Finally the equation (2.16) can be rewritten as 

†Σ

  (2.18) † 1

1

r
T

i i i
i
σ −

=

=∑J v u

where  is the ith  column vector of V ,  is the  column vector of ,  is the rank 

of the Jacobian matrix. From the maximum singular value and the minimum singular 

values, the condition number can be calculated as 

iv iu ith U r

 max

min

( )Con σ
σ

=J . (2.19) 

If condition number is high, such that the Jacobian matrix is ill conditioned, then the 

Principal Component Regression (PCR) can be performed to reduce sensitivity of the 
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Jacobian matrix. The PCR method performs SVD of the Jacobian, and it examines its 

condition number. If the condition number is higher than a certain number, which is 

depends on the system, then its weak or smallest singular value is replaced with zero to 

eliminate the least square problem.  

2.5.3. Damped Least Square (DLS) 
 

The DLS solves inverse kinematics problems when target positions are near a 

singularity area or unreachable area. In this situation, it is not easy to handle robustly, and 

normal inverse methods will oscillate badly because the Jacobian is very sensitive to 

small changes in joint angles. The PCR method also can solve the singularity problem, 

but the DLS solves a discontinuity of the PCR when the condition number is high. The 

method performs the inverse kinematics, and optimizes the joint velocities to give the 

minimum position tracking error. The DLS is defined as follows [10, 11]. The joint 

velocities θ are found to minimize this value 

 
2 2λ− +x Jθ

2
θ  (2.20) 

where λ  is the damping constant, which is not zero, and the first term shows the actual 

error. The equation is equivalent to 

 
λ
⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

J x
θ

I 0
 (2.21) 

The normal of this equation is 

  (2.22) 
T T

λ λ λ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛

=⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

J J J x
θ

I I I 0
⎞
⎟
⎠
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Therefore, this can be rewritten as  

 ( )2T λ+ =J J I θ J xT

)λ −

1)

 (2.23) 

Because the is cannot be singular, the damped least square solution is  TJ J

  (2.24) 2 1 2 1( ) (T T T Tλ −= + = +θ J J I J x J JJ I x

From the above equation,  and 2 1( )T Tλ −+J J I J 2(T T λ −+J JJ I  are identical. However, 

the size of  is larger than   if the Jacobian matrix is a redundant manipulator. 

This equation can be rewritten by SVD as 

TJ J TJJ

 2 1 2 1
2 2

1
( ) ( ( ) )

r
T T T T T i

i i
i i

σλ λ
σ λ

− −

=

+ = + =
+∑J JJ I VΣ ΣΣ I U v uT  (2.25) 

From the equation, equation (2.18) and (2.25), the only difference is the singular value 

term, which is commonly called as a filter factor. If the singular value σ  is much larger 

than the damping constantλ , then the DLS method is identical to the pseudo-inverse. 

However, if the singular value is smaller, then the singular value term gradually goes to 

zero as σ  goes to zero. Therefore, the DLS method acts like the pseudo-inverse method 

if an end-effector is away from singularities, and acts like PCR if an end-effector is close 

to singularities. In Chapter 3, the WAM-Titan II teleoperation system is introduced, and 

the specifications are presented. Moreover, the architecture of the teleoperation system is 

discussed. 
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CHAPTER 3: WAM-Titan II Teleoperation System 

 

In teleoperation, tasks are performed by a slave manipulator while controlled by a 

master manipulator remotely. Controlling the slave manipulator by the master 

manipulator can be achieved by either joint-to-joint control or Cartesian space control. In 

this chapter, the master and slave manipulators are introduced, and the issues with the 

kinematic coordination of the end-effector in Cartesian space are investigated. 

 

3.1.  Whole-Arm-Manipulation (WAM) 
 

The master manipulator is a 7-DOF WAM which is consisted of 4-DOF arm and 

an attached 3-DOF gimbals as shown in Figure 3-1. Every joint is a revolute joint, and 

the first four joints are driven by cables. Since this robot arm is cable-driven, it does not 

use any gears for manipulating the joints. The gears are replaced by a cable drive, 

eliminating any backlash problems and allowing for improved speed and stiffness. The 

gimbals are attached to the end of the arm, and three potentiometers are put together to 

measure each joint angle. However, these joints are not drivable. The gimbals’ three 

revolute joint axes intersect at the middle of a handle. This spherical wrist can decouple 

the position and orientation of the end-effector, which is the handle of the WAM arm. 

Because it is a 7-DOF manipulator, the WAM arm is a kinematically redundant 

manipulator, and this gives a benefit of more dexterous motion of the arm. As a master  
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Figure 3-1. WAM and Titan II 
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arm, the redundancy provides more controllable handling to the operator. The main 

features of the WAM arm are back-drivability and gravity compensation. The back-

drivability is given by its advanced cable-drive system. Unlike other manipulators, for 

example the Titan II, it can be operated passively by an operator. The gravity 

compensation feature assists the operator to reduce fatigue. Gravity affects the whole arm, 

including the joints and links, and it causes them to drop under the arm’s own weight. 

The gravity compensator is able to balance the effects of gravity, so that the master 

manipulator feels weightless to the operator during operation.  

As mentioned previously, the WAM is a redundant manipulator, meaning that it 

has more degrees of freedom than the number of degrees of freedom required to define 

the position and orientation of the end-effector. In general, six degrees of freedom are 

required in 3D space. The extra degree of freedom of the WAM manipulator can by 

effectively used to improve the ability of the manipulator. On the other hand, this 

redundant manipulator is more complex to control than a non-redundant manipulator. 

Mapping between operational space and joint space has always been difficult for 

redundant manipulators because of the presence of a non-square Jacobian matrix. Since a 

direct pseudo-inverse does not work at all times, an additional optimization algorithm is 

required along with the Jacobian calculation. Namely, some constraints need to be 

implemented, which would make the Jacobian square and non-singular. Since the WAM 

has seven degrees of freedom, the redundant manipulator does not have a unique solution. 

Therefore, functional constraints like joint limit avoidance and obstacle avoidance 

constraints can be adapted to solve the redundancy. 
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 The WAM comes with a PC with a Linux operating system, which is patched by 

the Real-Time Application Interface (RTAI). The PC includes the WAM controller 

software. This performs a 500Hz position/torque control closed-loop over CAN bus 

between the WAM and the PC, where the final controller commands to the WAM are the 

motor torques. Therefore, the WAM itself is entirely motor torque controlled [12]. The 

arm's weight ranges from 25.4 to 27.2 kg, and its payload varies from 3 to 4.5 kg 

depending on the configuration. 

3.1.1.  DH parameters and joint ranges for WAM 
 

The WAM can be divided by three parts: shoulder, elbow, and wrist. This 

structure of the WAM is similar to a human arm. The first three joints intersect each other 

at the base frame, which is the WAM reference frame. The fourth joint is the elbow, and 

the last three joints also intersect each other at the middle of the handle. Therefore, the 

end-effector is located at the handle. This configuration and the dimensions are shown in 

Figure 3-2. The DH parameters for the WAM can be defined from the configuration and 

dimensions as shown in Table 3-1. 

From the DH parameters, the homogeneous transformation matrix can be 

generated by the equation (2.6) and (2.7). Using the parameters in the Table 3-1, the 

transformation matrix from the base frame to frame 1 is 

 

1 1

1 10
1

cos( ) 0 sin( ) 0
sin( ) 0 cos( ) 0

0 1 0
0 0 0

θ θ
θ θ

−

0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

A , (3.1)  
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Figure 3-2. WAM DH parameters 
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Table 3-1. DH Parameters for WAM 

i  ia (m) iα (rad) id (m) iθ (rad) 

1 0 
2
π

−  0 1θ  

2 0 
2
π  0 2θ  

3 0.045 
2
π

−  0.55 3θ  

4 0.4 
2
π

−  0 4θ  

5 0 
2
π  0 5 2

πθ −  

6 0 
2
π

−  0.1514 6 2
πθ −  

7 0 0 0 7θ  

 

and other transformation matrices are shown in the Appendix A. Therefore, the final 

homogeneous transformation matrix is 

 . (3.2) 0 0 1 2 3 4 5
7 1 2 3 4 5 6 7=T A A A A A A A6

The calculation of Jacobian matrix is based on each of the homogeneous transformation 

matrix relations. The joint ranges of the WAM are shown in Table 3-2. In the next section, 

the Titan II manipulator is discussed in detail. 

3.2. Titan II 
 

The Schilling Titan II is a 6-DOF manipulator and a slave in the WAM-Titan II 

teleoperation system. Its material is titanium, so that this hydraulic manipulator is durable 

and versatile from precise operations to heavy duty industrial operations. Because it is 
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Table 3-2. Joint Ranges 

Joint Minimum Maximum 

1 150 ( 2.6 )rad− ° −  150 (2.6 )rad°  

2 113 ( 2.0 )rad− ° −  113 (2.0 )rad°  

3 157 ( 2.8 )rad− ° −  157 (2.8 )rad°  

4 50 ( 0.9 )rad− ° −  180 (3.1 )rad°  

5 160 ( 2.8 )rad− ° −  160 (2.8 )rad°  

6 160 ( 2.8 )rad− ° −  160 (2.8 )rad°  

7 150 ( 2.6 )rad− ° −  150 (2.6 )rad°  

 

driven by hydraulic power, it is possible not only to operate under water, but also to 

handle large payloads.  The pressure of oil supplied into the arm is 300 psi, and the 

maximum lift capacity is 240 lb. The actuators of the Titan II are hydraulic linear or 

rotary actuators. Each joint has a servo valve to control the oil flow though the joint’s 

chambers and a resolver to measure joint angles. 

The Titan II has six revolute joints:  azimuth, shoulder, elbow, pitch, yaw, and roll. 

The azimuth joint contains a hydraulic rotary vane actuator which rotates the arm 

horizontally. The shoulder joint has a linear actuator which is connected between the 

azimuth and the first link. It moves the arm vertically. The third joint, elbow, has the 

same type of hydraulic actuator as the azimuth. This joint moves the second link up and 

down. The pitch and yaw joints also have hydraulic rotary vane actuators, but they are 

located at 90  from each other. The pitch joint moves vertically, and the yaw joint moves °
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horizontally. The last joint has a hydraulic rotary vane actuator, which can continuously 

rotate in both directions. 

The hydraulically actuated slave arm originally utilized a master controller called 

a Mini-Master. This small controller is kinematically similar to the slave arm, so that an 

operator controls the slave arm by joint-to-joint operation. It has a control panel and 

sends signals between the Mini-Master and the Titan II via RS232 serial communication. 

These signals activate a solenoid valve, and drive the hydraulic actuator. For this 

teleoperation system, this master is only used for diagnostic operation.   

 For the WAM-Titan teleoperation, PC/104, which is a small embedded computer, 

is used to host for a low level control. The low level controller is provided by Oak Ridge 

National Laboratory (ORNL), and it communicates with the Titan II via Ethernet. The 

low lever control is developed by QNX, which is a real time operating system, and closes 

200Hz control loop with the Titan II. The controller receives joint angle commands, and 

executes low level servo control of the actuators.  

3.2.1. DH parameters and joint ranges for Titan II 
 

The dimensional and configuration diagram is shown in Figure 3-3. Each joint is 

revolute, and the base frame is located on the bottom of the azimuth. The shoulder joint 

connects the azimuth and the upper arm, but the joints do not intersect each other. 

Furthermore, the last three joints, pitch, yaw, and wrist, also do not intersect, so they do 

not form a spherical wrist. One reason for this configuration is that the Titan II is 

designed for joint-to-joint teleoperation. The DH parameters for the Titan II can be 

defined from the configuration as shown in Table 3-3. 
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Figure 3-3. DH parameters for Schilling Titan II 

 

 

 

 

Table 3-3. DH Parameters for Titan II 

i  ia (inch) iα (rad) id (inch) iθ (rad) 

1 4.77 
2
π  7.67 1θ  

2 33.5 0 0 2θ  

3 19 0 0 3θ  

4 5.25 
2
π

−  0 4θ  

5 0 
2
π  0 5 2

πθ +  

6 0 0 7.61 6θ  

 33



 

From the DH parameters, the homogeneous transformation matrix is calculated 

like the WAM transformation matrix. Using the parameters in the Table 3-3, the 

transformation matrix from the base frame to frame 1 is 

 

1 1 1

1 1 10
1

1

cos( ) 0 sin( ) cos( )
sin( ) 0 cos( ) sin( )

0 1 0
0 0 0 1

a
a

d

1

1

θ θ θ
θ θ θ

⎡ ⎤
⎢ ⎥−⎢=
⎢
⎢ ⎥
⎣ ⎦

A ⎥
⎥

5

, (3.3)  

and other transformation matrices are shown in Appendix B. Therefore, the final 

homogeneous transformation matrix is 

 . (3.4) 0 0 1 2 3 4
6 1 2 3 4 5 6=T A A A A A A

The joint ranges of the Titan II are shown in Table 3-4. In the next section, the 

architecture of the WAM-Titan II teleoperation system is described. 

 

 

Table 3-4. Joint Ranges for Titan II 

Joint Minimum Maximum 

1 135 ( 2.4 )rad− ° −  135 (2.4 )rad°  

2 41.4 ( 0.7 )rad− ° −  78.8 (1.4 )rad°  

3 180 ( 3.1 )rad− ° −  90 (1.6 )rad°  

4 90 ( 1.6 )rad− ° −  90 (1.6 )rad°  

5 90 ( 1.6 )rad− ° −  90 (1.6 )rad°  

6 continuous  continuous  

 34



 

 

3.3. Teleoperation 
 

The current WAM-Titan II teleoperation system is a unilateral teleoperation 

system. This means that there is no force feedback between the master controller and the 

slave manipulator. The WAM manipulator has capabilities for force feedback, and the 

Titan II manipulator can provide end-effector force data, but the current system is not 

fully developed, and does not use these features yet. 

The existing teleoperation system between the WAM master and the Titan II slave 

mainly runs on three computers: two for the low level controller of each manipulator and 

one High Level Controller (HLC) to perform the coordinate mapping. The three 

computers are connected by a local area network (LAN). Other computers are used for 

simulating the slave manipulator using a commercial program, RoboWorks, developing 

the Titan II low level software, and controlling with the HLC program remotely.  

The HLC software is designed by REMSL, and the main function of this 

controller is to perform Cartesian space mapping and to improve the control strategy. The 

high level control software has been developed primarily to perform 1) the WAM 

forward kinematics, 2) the Titan II inverse kinematics, and 3) the Ethernet 

communication for the WAM PC, the PC/104, and the other computers.  The simulation 

PC operates under a Windows OS and is used to simulate the Titan II using RoboWorks.  

There are two operation modes. The first is a simulation without actual operation of the 

Titan II. The second mode is used for monitoring the slave during actual operation. 

Therefore, an operator can easily test and observe the status of the Titan by its 3D model. 
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The development PC is based on QNX, which is a real-time OS and is used to program 

and upload to the PC/104 through the network. To control with the high level controller 

remotely, a touch screen PC is used. The PC is mounted in the Compact Remote Console 

(CRC) unit. The CRC was manufactured by Agile Engineering, Inc., and provides an 

ergonomic teleoperation workstation for viewing and controlling manipulators. A 

Windows/C++ based GUI was developed in order to select the control mode for the 

teleoperation system, and also to control the camera displays on the CRC monitors.  The 

GUI is displayed on the touch screen computer in the CRC, along with the GUI for the 

Wraptor controls. The GUI is used to control the teleoperation system remotely. This 

interface allows the operator select from several operation modes, such as the orientation 

modes, the Cartesian position mode, etc. The interface is based on Ethernet TCP/IP 

communication between two different operating systems: the HLC uses Linux and the 

touch screen uses Windows 2000. This interface can also accept keyboard inputs to the 

HLC PC. The keyboard inputs have higher priority than that of the touch screen inputs.  

The CRC video devices are a Pelco MX4000 Multiplexer and a CM6700 Switcher. 

The CRC has the capability to connect with up to eight cameras and display on four 

monitors. The Pelco Multiplexer can display a group of four or nine cameras on a single 

monitor, as well as display a picture-in-picture. Therefore, an operator sitting on the CRC 

can watch eight camera views at once and can change the monitor views at any time 

during operation. The communication between the interface and the video devices uses 

RS-232 with a Pelco ASCII protocol. 

The main architecture of the WAM-Titan II teleoperation system involves the 

forward kinematics transformation of the WAM master joint angles to its end-effector 
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positions. At this phase, coordinate mapping is performed from the velocities of the 

WAM to the velocities of the Titan II. The Titan II inverse kinematics then transforms the 

end-effector position of the WAM to joint angles of the Titan II. For these algorithms of 

the HLC, in the first step, the WAM low level control program sends the measured joint 

angles of the WAM with time steps to the HLC, via Ethernet. The Titan II low level 

controller also sends current Titan II joint angles to the HLC via Ethernet.  The HLC 

calculates the homogeneous transformation matrices and Jacobian matrices for the WAM 

and the Titan II. The linear and angular velocities of the WAM end-effector are generated 

by the forward kinematics, based on the WAM Jacobian. To execute the Titan II inverse 

kinematics, the HLC performs the SVD and calculates the pseudo-inverse. The joint 

velocities of the Titan II are calculated by the inverse kinematics with the Cartesian 

velocities of the WAM and the time steps. The HLC sends the joint velocities to the Titan 

low level controller, and the controller sends signals to the Titan hydraulic actuators, 

which move the joints. These steps comprise one cycle of the teleoperation control loop. 

In Chapter 4, brief reviews of fuzzy logic and artificial neural network are 

presented. For fuzzy logic, ANFIS and GA are introduced, and for artificial neural 

networks, multilayer perceptrons, RBF and GRNN are presented. 
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CHAPTER 4: Fuzzy Logic and Artificial Neural 

Networks 

 

4.1. Fuzzy Logic 
 

4.1.1. Overview 
 

Much recent research has focused on development for precision and accuracy, and 

the concept of fuzziness has been rejected by many scientists. However, this attitude does 

not reflect the human natural reasoning process. Humans use ambiguous linguistic 

meanings, and these meanings provide a big picture without a series of complex 

mathematical data which have unnecessary details. Therefore, fuzzy logic gives this 

conventional way of natural language to understand and to infer uncertain facts and their 

relationships. Fuzzy set theory was developed by Zadeh first in 1965, and the first fuzzy 

inference system was proposed by Mamdani in 1974 [28, 29]. Fuzzy logic uses this 

concept with if-then rules to interpret and apply humans’ expert knowledge. Fuzzy logic 

is useful where [30] 

1) Mathematical models are difficult to specify. 

2) Rules which express knowledge and facts are linguistic in nature. 

3) Classes of objects are more fuzzy than crisp in categorical data analysis. 

4) Observations are expressed in linguistic terms to implement human control 

strategies in robotics. 
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Therefore, the fuzzy logic is another intelligent tool to understand and express a non-

linear or complex system without massive mathematical forms. However, a disadvantage 

of fuzzy logic is the lack of a formal procedure to describe the fuzzy sets and membership 

functions of the control rules. Furthermore, for an unknown system without expert human 

knowledge, it is difficult to define rules with an ordinary fuzzy logic method.  

The fuzzy logic concept uses mapping between input space and output space like 

other artificial intelligence methods. The input and output are described by if-then rules 

involving linguistic variables. The fuzzy rules may be derived from a mathematical 

model, expert knowledge, or an algorithm which automatically generates the fuzzy model. 

One of the significant differences of fuzzy logic is the fuzzy set and membership function 

(MF) represented by membership values. The fuzzy set contains elements with a partial 

degree of membership, unlike a crisp set, and the membership function maps the values 

of the universe of discourse onto the degrees of membership between 0 and 1 [4, 13]. 

The fuzzy inference system consists of five steps as shown in Figure 4-1. These 

process steps are explained in [5, 24, 30], and they are 

 

Step 1: Fuzzifying input variables using membership functions. 

In this step, the inputs are taken, and determined by the degree where they belong to each 

of the appropriate fuzzy sets via membership functions. The inputs are always crisp 

numerical values limited to the universe of discourse of the input variables. The output is 

a fuzzy degree of membership in the qualifying linguistic set, and always the interval 

between 0 and 1. The mapping can be written as 

 : [0,X 1]μ →  (4.1) 
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Figure 4-1. Fuzzy inference system 

 

Step2: Applying the fuzzy operator. 

The fuzzy operator is applied to resolve the antecedent if there are multiple inputs. For 

instance, the if-then rules are formed as 

 1 2( ) ( ) ( )If input x AND input y THEN output z= = = , (4.2) 

where , input , and output  represent fuzzy variables, and 1input 2 x , y and  are fuzzy 

values. There are two parts of the antecedent, and in this case, two parts of the antecedent 

are calculated together and produce a single number using the logical operators like AND 

or OR operation. The AND operator is usually min (minimum) or prod (product). The OR 

operator is either the max (maximum) or the probor (probabilistic OR), which is the 

algebraic sum . 

z

( , )a b a b= + ab−
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Step3: Applying the implication method. 

The implication reshapes and evaluates the consequent of the rule using the result of the 

antecedent of the rule. The input of implication is one single value and the output of 

implication is fuzzy sets. There are two commonly used methods: the AND method and 

the prod method. The AND method, which is min (minimum), truncates the output fuzzy 

set, and prod (product) scales the output fuzzy set. 

 

Step 4: Aggregating all outputs. 

Aggregation combines the fuzzy outputs, which represent the outputs of each rule, to 

result in a final fuzzy output set. The inputs of the aggregation process are the list of 

truncated or scaled output membership functions, and the output is one fuzzy set for each 

output variable. Commonly used methods are Max (maximum), probor (probabilistic 

OR), and sum (simply the sum of each rule’s output set). An example of the fuzzy 

operation, the implication, and the aggregation is shown in Figure 4-2. 

 

Step 5: Defuzzifying. 

In this step, the fuzzy output set is converted to crisp output. There are several methods 

for defuzzification, such as (1) centroid, which finds the geometric center of area or 

gravity of the fuzzy set, (2) bisector, (3) middle of maximum, which is the average of the 

maximum value of the output set, (4) largest of maximum, and (5) smallest of maximum. 
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Figure 4-2. Example of fuzzy inference engine 

 
 

4.1.2. Adaptive Neuro-Fuzzy Inference System (ANFIS) 
 

ANFIS is a hybrid system with the best aspects of fuzzy logic and artificial neural 

networks, and was originally proposed by Jang in 1993 [31]. From the fuzzy logic, 

ANFIS represents past knowledge in a set of constrains to reduce the optimization 

process of the artificial neural network. From the artificial neural network, it adapts 

backpropagation to tune fuzzy logic parameters automatically to the network. Therefore, 

the model of ANFIS can be explained by past data and predicted for future behaviors. 

ANFIS has proven to be an excellent function approximation tool. It implements first or 

zeroth order Sugeno-type systems where output membership functions are either linear or 

 42



 

constant. The ANFIS constructs a fuzzy inference system, while membership parameters 

are adjusted by a backpropagation algorithm. Thus, before the optimization processes for 

the membership parameters, input and output data sets are required to be given [5].  

There are some constrains of ANFIS because of its complexity, and the 

constraints are mainly associated with the Sugeno-type systems. The output membership 

function should be linear or constant. Therefore, the Sugeno-type system is either first 

order or zeroth order. The output of ANFIS is obtained by weighted average 

defuzzification, and the output should be single. Another constraint is that one rule 

connects only one output membership function. Rules cannot be shared. Therefore, the 

number of output membership functions is equal to the number of rules. The last 

constraint is that each rule has a single weight which is updated from backpropagation [4].   

An example of an ANFIS structure is shown in Figure 4-3. There are two inputs 

and one output. The first input has three membership functions, and the other input has 

fifteen membership functions. The membership function can be any type, but it should be 

same for every input. The number of rules is equal to the number of all possible cases, 

which is fourteen. Each node in the first layer generates the membership of inputs. The 

second layer implements the fuzzy AND operator, and calculates the firing strength of 

each rule. The third layer calculates the ratio of the rule’s firing strength to the sum of all 

the firing strengths at each node. The fourth layer generates the output level with the 

consequent parameters, and the output level is multiplied by the output of the third layer. 

The last layer aggregates the overall output by summing all the outputs of the fourth layer 

[4, 31, 33]. The tuning of adjustable parameters is a two-step procedure [31, 33]. In the 

first step, information is estimated in the network until the third layer, and the parameters  
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Figure 4-3. ANFIS structure 

 

are determined by a least-squares method. Subsequently the parameters in the input 

membership functions are altered using the gradient descent method. 

4.1.3. Genetic Algorithms (GA) 
 

Genetic Algorithms are another type of artificial intelligence method, which is 

reliable and robust for optimizing and solving solutions. GA were proposed by Holland in 

1975 [32]. This method originated from the biological concept of genetics and evolution 

theory [14]. As regarding that the most complete controllers are the human brain and 

other several astonishing natural controllers, natural selection, which is the process of 

evolution, is a highly successful design procedure. Genetic Algorithms use this scheme to 

 44



 

process and expand complex problems in which parameters interact. Individuals 

characterize potential solutions, and they are selected according to their fitness. They pass 

on their characteristics to following generations. Mating takes place between these 

individuals with sharing the characteristics of winning individuals, even fitter individuals 

can be created. Mutation also occurs to add new genes into a population. As in nature, 

most mutations are bad, but the infrequent valuable one can help improve the fitness of 

the individuals finding a better solution. 

The basic ideas of Genetic Algorithms are chromosomes, population, inheritance, 

mutation, selection, and crossover. The chromosome is an encoded string map to be 

optimized. It can hold a float value or binary value. The population is a group of 

individuals. Each individual is evaluated by decoding the chromosome values. After the 

fitness of each individual is evaluated, the selection procedure is performed. Individuals 

are selected to create the next generation. The probability of the selection procedure is 

related to the fitness function. A popular selection algorithm is the Roulette Wheel 

algorithm. The crossover takes place between pairs of individuals. The strings, which are 

float values or binary values, are mixed. The most basic crossover algorithm is Single 

Point Crossover. The mutation changes bits or individuals randomly. This procedure is 

performed with a low probability. Mutation guarantees that the probability of searching a 

given part of the solution space is never zero [14]. The basic procedure of genetic 

algorithms is  

1. Randomly generate an initial population. 

2. Evaluate all individuals using a fitness function, or evaluation function. 

3. Select a new population using a selection algorithm. 

 45



 

4. Perform crossover and mutation. 

5. Evaluate the new population using the fitness function. 

6. Repeat the above procedure until it reaches a goal error, or reaches the maximum 

number of a population. 

Many researchers have applied GA theory to finding optimized fuzzy inference 

systems. For example, the GA method is applied to optimize an if-then rule base of fuzzy 

logic, where the membership functions are already created [15]. In another approach, a 

GA is used for determining the number of membership functions, the number of fuzzy 

rules, and the rule base [16]. In a third approach in [17], GA is implemented by 

characteristic parameters to automate fuzzy logic design. This method is applied in this 

thesis. In this case, the GA can design fuzzy logic flexibly, with the numbers and 

positions of membership functions determined by the GA as well as the rule base. In the 

next section, artificial neural networks are discussed for the last three methods which are 

MLP, RBF, and GRNN. 

4.2. Artificial Neural Networks 
 

4.2.1. Overview 
 

Artificial neural networks are a method of computation and information 

processing that takes advantage of the structure of human brain. The human brain is 

embodied with neurons, and these neurons are linked each other through dendrites and 

axons. Signals transfer by chemical and electrical process in a synapse. The synaptic gap 

and its adjustment lead to the storage of information or learning [33, 35]. Mimicking 

these processes of biological neurons, the perceptron which is a mathematical model of 
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the neuron was developed by Rosenblatt in 1959 [37]. Artificial neural networks are used 

to predict and learn from a given set of data, and are a mapping process from input space 

to output space. All inputs are added with weights and biases, and passed to an activation 

function, which introduces nonlinearity to the network. The activation function, or a 

transfer function, makes networks capable of representing nonlinear characteristics. As 

shown in Figure 4-4, hard limit functions, linear functions and sigmoidal functions are 

common. The output from the activation function can be connected to another neuron’s 

input. The weights and biases are trained to minimize errors between desired outputs and 

actual outputs. The training is a learning process to update weights and biases. The 

weights and the biases have important roles in artificial neural networks. The weights 

determine the position in the input space, and without biases, inputs are constrained to 

pass through the origin of the input space [33].  
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Figure 4-4. Activation functions 
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Important characteristics of an artificial neural network are the ability to perform 

nonlinear mapping, and less sensitivity to noise. Because any failure of neurons or 

weights will slightly affect the performance, it is fault tolerant. Furthermore, it is easily 

implemented in other systems. However, artificial neural networks have the some 

drawbacks. They require extensive training data for training, and the training process is 

very time consuming according to the task. In addition, their characteristics prevent 

heuristic knowledge, so that the reason why they reach the results can not be explained. 

[19] 

The architecture of neural networks consists of neurons, layers, activation 

functions, and connections between layers. A single neuron may perform in certain cases, 

but several neurons are more effective. More than one neuron can be merged together in a 

layer, and a neural network can have multiple layers. Moreover, a single layer neural 

network may solve a simple problem, but multiple layers can solve more complex 

problems. In multiple layers, each neuron in each layer has an individual weight and bias, 

yet it has a common activation function. Multilayer feedforward networks are commonly 

used. This network type has three kinds of layers:  an input layer, hidden layers, and an 

output layer. The input layer does not have any neuron which contains a weight, a bias, 

and an activation function. Therefore, the input layer may not be called a layer. The 

neurons in the input layer accept inputs and distribute them to a subsequent hidden layer. 

Each hidden layer produces summations of weighted inputs and biases, and sends them to 

a transfer function. The result of the transfer function becomes inputs to the next layer. 

Finally, the last output layer produces outputs. The number of neurons in input and output 

layers is already decided by the respective problem statement. Therefore, only hidden 
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layers are considered in designing the architecture of the neural network. The number of 

hidden layers is not easy to decide, and it depends on training data and complexity of the 

problem. There is no straightforward rule to determine the number of hidden layers and 

the nodes in the hidden layer.  

4.2.2. Multilayer Perceptrons Network (MLP) 
 
 

A multilayer perceptrons network is a feedforward network with nonlinear 

activation functions and a linear output layer. This type of network can approximate any 

function between input and output association with enough neurons. For a training 

method, the MLP generally uses backpropagation to optimize network error. The MLP 

may be trapped in local minima instead of global minima. In this case, the best ways to 

avoid local minima are to repeat the training until acceptable error is found or to increase 

the number of neurons. For the basic procedure of the MLP, weights are initialized to 

random small values and inputs are weighted by these weight matrices, added with the 

biases, and acted upon by the activation function. The final outputs are compared with the 

desired output, and the error is calculated. This error is back propagated through the 

network, and weights and biases are adjusted to minimize the error. This is repeated until 

the error goal is met. A structure of a basic neuron with multiple inputs is shown in 

Figure 4-5. It shows the weights w(n), the bias b, the summation of weighted incoming 

signals, and the activation function F( ). The cell inputs are n times signals p, and the 

output is the scalar a. They can be expressed as 

 
1

(
n

j j
j

a w p
=

)b= +∑F  (4.3) 
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Figure 4-5. Structure of a basic neuron 

 

 Levenberg Marquardt (LM) 
 

The Levenberg Marquardt (LM) method is one of optimization or nonlinear least 

squares solution, and it is the fastest training method in the backpropagation training 

method. Levenberg [26] and later Marquardt [27] suggested a damped Gauss-Newton 

method. LM searches the minimum of a multivariable function which is a performance 

function and the sum of the squares of the error in artificial neural network. LM is 

iterative like other nonlinear optimization methods, and it does not require computation 

of the Hessian matrix. The performance function can be expressed with the Jacobian 

gradient and the Hessian matrix. If the Jacobian gradient is zero at a stationary point or a 

saddle point and the Hessian matrix is positive definite, then the input variables, which 
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are weights and biases in artificial neural networks, are in local minima. LM can be 

computed as 

 1[ ]Tμ −Δ = − +x I J J g  (4.4)  

where μ  is scalar, T e=g J ,  is the Jacobian matrix, and  is an approximate 

Hessian matrix. From the equation, the value of 

J TJ J

μ  is decreased or increased depending 

on how the performance function changes. Therefore, LM can be thought of as a 

combination of steepest descent and the Gauss-Newton method. When the current 

solution is far from the correct one, μ  is increased, and the algorithm behaves like a 

steepest descent method, which is slow but guaranteed to converge. When the current 

solution is close to the correct solution, μ  is decreased, and LM becomes a Gauss-

Newton method. The μ  can be regarded as a learning rate [34].  

 The main disadvantage of the LM method is that it requires storage memory for 

some matrices which is quite large for certain problems. A memory reduction method can 

reduce the memory usage, but there is a drawback to using memory reduction. The 

memory deduction method performs that a large matrix is broken up into submatrices, 

and a significant computational overhead is associated with computing the large matrix in 

submatrices [18]. 

4.2.3. Radial Basis Function Network (RBF) 
 

A Radial Basis Function (RBF) is another type of artificial neural networks. RBF 

has a similar architecture of multilayer networks, but it uses a distance between weights 

and inputs instead of weighted inputs. The distance is multiplied by biases. RBF has two 
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layers, a hidden layer and an output layer. For the hidden layer, a Gaussian nonlinear 

transfer function is used. The outer layer neurons are activated by a standard linear 

function like a multilayer perceptrons method. If the distance is close to zero, the 

nonlinear function at the hidden layer has maximum output, and the hidden layer neuron 

is activated. A spread constant value is used for RBF, and the value is related to the bias 

in the hidden layer. RBF is good for identifying a function with less training time. 

However, it requires more neurons than other methods [36, 38].  

4.2.4. Generalized Regression Neural Network (GRNN) 
 
 

Generalized Regression Neural Network (GRNN) is a kind of RBF, but has a 

special linear layer. The first hidden layer is a radial basis layer, which is the same as 

RBF. The special linear layer is the summation layer, which consists of the summation 

neurons and one division neuron. The summation neuron calculates the sum of the 

weighted outputs of the pattern layer, and the division neuron calculates the sum of the 

un-weighted outputs of the pattern layer. The output layer divides the output of the 

summation neuron by the output of the division neuron. This method also has good 

results with appropriate spread constants outside of its training range, and it has the 

fastest training method [39]. 

In Chapter 5, the simulation approach for inverse kinematics of a 3-DOF planar 

manipulator using the five methods explained in this chapter is described. Kinematics of 

the planar manipulator is analyzed, and details for the each method are explained. 
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CHAPTER 5: Simulation Approach 

 

5.1. Introduction 
 

In order to choose an appropriate and efficient algorithm to execute the inverse 

kinematics, a series of simulations were conducted using a 3-DOF planar manipulator as 

shown in Figure 5-1. The purpose of the inverse kinematics is to determine the values of 

joint variables given in Cartesian space. The differential kinematics is described by a 

Jacobian matrix. The Jacobian is useful for finding singular configurations, analyzing 

redundancy, and determining inverse kinematics algorithms. The main issue which 

should be addressed is the complexity of the inverse kinematics solution that results from 

the nonlinearities; as a result, a closed form solution may not be found. Multiple or 

infinite solutions may exist when the Jacobian matrices are rank deficient or the 

manipulators are kinematically redundant. Even when the inverse kinematics has a closed 

form solution, unstable movements may happen near the singularities. 

This simulation introduces several techniques based on fuzzy logic and artificial 

neural network systems, like ANFIS, Fuzzy-GA, MLP-LM, RBF, and GRNN, to solve 

for the inverse kinematics solution of the 3-DOF planar manipulator. Computing the 

inverse kinematics using fuzzy logic and artificial neural networks overcomes the 

disadvantage of the large amount of calculations, so that the real-time performance can be 

improved to suitable accuracy. The methods also may solve singularity problems. 
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Figure 5-1. 3-DOF planar manipulator 

 

The 3-DOF planar manipulator was chosen to perform the simulation because it 

has a simpler architecture and less number of degree of freedom compared to the real 6-

DOF manipulator. With the 3-DOF manipulator, it is possible to simulate several 

artificial intelligent methods in less time and easily to modify the artificial intelligent 

methods to improve their performance. If a greater number of DOF is chosen, then this 

manipulator requires complicated architecture of each artificial method. Therefore, more 

training or modification time is required.  If a smaller number of DOF manipulator is 

chosen, then it is possible to simulate easily and quickly, but it may not adaptable to 

move on the real simulation due to its small number of DOF. Furthermore, the 3-DOF 

manipulator is a redundant manipulator in 2-D work space because the simulation is only 

concerned in a position operation. Therefore, the Jacobian matrix of the 3-DOF 
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manipulator is not square due to its extra degree of freedom, so that the simulation of the 

3-DOF manipulator can be adapted to a redundant manipulator simulation too. 

In order to solve the inverse kinematics problems, much research has been 

pursued in artificial intelligence. For instance, many researchers applied fuzzy logic in 

1990’s. For example, fuzzy logic was applied for the inverse kinematics solution of a 3-

DOF planar manipulator based on the gradient method. The outputs of a fuzzy logic 

system are joint velocities, and the inputs are a transpose of Jacobian matrix with current 

errors [24]. In another approach in [40], Fuzzy Associative Memory (FAM) is used as a 

regular fuzzy logic rule-base, and applied to a 4-DOF planar manipulator. The outputs are 

joint velocities, and the inputs are Jacobian and Cartesian velocities. For hybrid fuzzy 

logic which is combined with other artificial intelligence, [41] uses ANFIS for a 2-DOF 

planar manipulator, and [42] uses GA for Stanford and puma 260 robots. For another 

instance for the artificial neural networks, inverse kinematics and geometrically bounded 

singularities prevention are applied for a 3-DOF planar manipulator [43]. This approach 

uses two neural networks to perform redundancy resolution. The outputs are joint 

velocities and inputs are Cartesian velocity and current joint angles. [44] uses a Hopfield 

network, a recurrent network, to perform inverse kinematics for 4-DOF planar 

manipulator. The outputs are joint accelerations from an energy function, and inputs are 

Cartesian velocity and current joint angles. 

From the above work, it is easily seen that many kinds of investigations were 

performed by artificial intelligence for inverse kinematics calculations. However, these 

artificial intelligence methods were mostly applied to low number of DOF planar 

manipulators. Especially, Cartesian velocities and current joint angles were used as inputs 

 55



 

to perform inverse kinematics. However, if an artificial intelligence method computes an 

inverse Jacobian matrix instead of Cartesian velocities and joint angles, then the inverse 

kinematics can be performed simpler and faster. In this case, inputs of the new artificial 

intelligence are current joint angles only, and the inverse kinematics is performed 

separately. This method allows fast execution time and fewer number of inputs. 

Furthermore, this novel method can be implemented by other inverse techniques such as 

pseudo-inverse, DLS, and redundancy resolution. 

The planar manipulator is a combination of three links and three joints with one 

end fixed and the other end free. The joints are all revolute and are driven by actuators. In 

order to move the free end, called the end-effector, along a certain path, the joints are to 

be moved to track the desired path. It is necessary to know the displacements of the joints 

at each instant of time. In terms of robotics, kinematics is the study of motion of 

manipulators with position, velocity and acceleration of each link and the end-effector 

without consideration of masses and torques/moments [20]. The forward kinematics 

approach determines the position and orientation of the end-effector in a Cartesian space, 

given the joint displacements and the link parameters. This approach always has a unique 

solution. The other approach, called the inverse kinematics, deals with finding the joint 

displacements for a given position and orientation of the end-effector. The inverse 

kinematics approach in robotics is essential to robot motion panning and control. While 

forward kinematics is simple, straightforward, and has a unique solution, the inverse 

kinematics can be complex depending on the structure of the robot and its number of 

degrees of freedom. The inverse kinematics of the 3-DOF manipulator normally has 

multiple or even infinite possible solutions and it is not always obvious which set of joint 
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angles to choose. This makes it difficult for the manipulators to track the Cartesian 

commands in real-time. 

Figure 5-2 shows a typical block diagram of an industrial robot, which has two 

phases, a planning phase and an execution phase. In the planning phase, a desired 

trajectory is represented by inverse kinematics. The error between the outputs of the 

inverse kinematics and actual joint angles is delivered to the controller in the execution 

phase. The controller drives the manipulator to track the converted joint movements. In 

the simulation, only the planning phase is considered.  

DH parameters for the 3-DOF planar manipulator are shown in Table 5-1. From the DH 

parameters, the homogeneous transformation matrix from base frame to the end- effector 

frame is calculated as 

  (5.1) 
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Figure 5-2. General block diagram of a manipulator 
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Table 5-1. DH Parameter for the 3-DOF Manipulator 

i  ia (m) iα (rad) id (inch) iθ (rad) 

1 1a  0 0 1θ  

2 2a  0 0 2θ  

3 3a  0 0 3θ  

 

 

where  is the end-effector Jacobian of the manipulator. The Jacobian matrix is 

calculated as 

2 3×∈J R

 11 12 13

21 22 23

J J J
J J J
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

J  (5.3) 

where  11 1 1 2 1 2 3 1 2 3sin( ) sin( ) sin( )J a a aθ θ θ θ θ θ= − − + − + +  

21 1 1 2 1 2 3 1 2 3cos( ) cos( ) cos( )J a a aθ θ θ θ θ θ= + + + + +  

12 2 1 2 3 1 2 3sin( ) sin( )J a aθ θ θ θ= − + − + +θ  

22 2 1 2 3 1 2 3cos( ) cos( )J a aθ θ θ θ= + + + +θ  

13 3 1 2 3sin( )J a θ θ θ= − + +  

23 3 1 2 3cos( )J a θ θ θ= + + . 

The above equation can be solved for  by means of the pseudo-inverse  as q †J

 † ( )θ=θ J x  (5.4) 
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where  is the pseudo-inverse of J . If the rank of the Jacobian matrix is 2, then the 

right pseudo-inverse is

†J

† ( 1T )T −=J J JJ . The right pseudo-inverse of J  can also be found 

using singular value decomposition. If the rank is less than 2, the pseudo-inverse can be 

solved as  using SVD. In the redundancy resolution, it is crucial to compute 

 for each of the relevant joint space configuration. However, it is very difficult to 

achieve the desired real-time operation with conventional digital and sequential 

computational methods. 

† † T=J VΣ U

†J x

 The Figure 5-3 shows the workspace of the 3-DOF planar manipulator. The home 

position of the manipulator is 1 18θ = ° , 2 70θ = ° , and 3 70θ = °  which is an elbow up  
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Figure 5-3. Workspace of the 3-DOF manipulator 
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configuration. Joint limit ranges are arbitrarily chosen as 130 130iθ− ≤ ≤ where 

 each revolute joint. A length of one meter is selected for all the links. The 

next section discusses the fuzzy logic for the 3-DOF planar manipulator simulation. 

1, 2, 3i and=

 

5.2. Fuzzy Logic 
 

5.2.1. ANFIS 
 

As shown in Figure 5-4, the fuzzy logic inference system takes as inputs the 

elements of the Jacobian matrix, which is calculated from the current joint variable values. 

From these inputs, the fuzzy logic inference system generates as outputs the elements of 

the Jacobian pseudo-inverse matrix, so that the inverse kinematic system calculates the 

† ( )θJ x

Inverse Kinematics 

θ  x  θ  

†J  

∫  

Fuzzy 
Logic Inference 

System 

θ  

 

Figure 5-4. Inverse Kinematics system for ANFIS 
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necessary trajectories for the joint variables based on the location of the end-effector. 

Instead of performing inverse kinematics, the fuzzy inference system generates the 

Jacobian pseudo-inverse matrix first, and then performs the inverse kinematics 

calculations, so that the number of inputs can be reduced. If the inference system 

performs inverse kinematics, generally eight inputs are required: two for the location of 

the end-effector and six for the elements of the Jacobian matrix. The number of inputs 

strongly influences the training and performance time. 

As mentioned in Chapter 4, ANFIS has some constraints, unlike a regular fuzzy 

logic method. The most critical one is that ANFIS can accept only one output. Therefore, 

the inverse kinematic system needs six fuzzy logic inference systems for each element of 

the Jacobian pseudo-inverse matrix. As the number of degrees of freedom of the 

manipulator increases, the number of required inference systems also increases. The 

number of membership functions is nine at each input, and triangular membership 

functions are chosen as shown in Figure 5-5. For the output membership, a linear 

function is chosen as the first order Sugeno-type fuzzy model. To apply the fuzzy 

operators, prod is selected for the AND operator, and probor is selected for the OR 

operator. The final output of the system is the weighted average of all rule outputs for 

defuzzification. 

To train the weights for the rule-base, first 10,000 data sets of joint angles are 

generated randomly. The data set is large enough to cover all possible joint angles, even 

though they are randomly collected. However, for the exact universe of discourse, the 

maximum and minimum joint angles are also added manually. From the data set, the  
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Figure 5-5. Membership functions for fuzzy inputs ( ) †
11J

 

fuzzy input / output sets are calculated. The fuzzy inference system needs six inputs, 

which are elements of the Jacobian matrix, as well as a single output, which is an element 

of the Jacobian pseudo-inverse matrix. 

5.2.2. Genetic Algorithm 
 

For an alternate method of generating and adjusting fuzzy membership functions 

and the fuzzy rule-base automatically, a Genetic Algorithms (GA) method is used in the 

inverse kinematics solution. The main structure of the fuzzy inference system used has 

the same configuration as shown in Figure 5-4. The inputs of the fuzzy inference system 

are elements of the Jacobian matrix, which are calculated from the current manipulator 
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joint angles, and the output is the pseudo-inverse matrix. Therefore, without mass 

computation of the Jacobin matrix, the pseudo-inverse and SVD, this system can perform 

inverse kinematics.  

To apply a Genetic Algorithm to the fuzzy inference system, a means of 

evaluating different designs is required. This evaluation or fitness needs to be performed 

relatively quickly as a GA needs to be able to process large numbers of different 

combinations of parameters. The evaluation function is a function called by a GA to 

calculate the fitness of parameters from a chromosome, as shown in Figure 5-6. The 

parameters are passed to the evaluation function, which processes and returns a value 

corresponding to how well the parameters performed. For this, an evaluation function 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

 
 
 
1~4 Number of input/output membership functions for each variable 
 
5~12 Spacing for how the membership functions are spread for each variable 
 
13~20 Spacing for how the rule-base is formed 
 
21~22 Angles for the slope of a plane for how the rule-base space is partitioned 

 
 
 
 
 

Figure 5-6. Chromosome 
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program is written, and the evaluation function of a rule is expressed as 

 

N

error
Fitness

∑
+

=

1

1
 (5.5) 

where error is , and N is the total number of the error. After performing 

error checking, the parameters are used for creating fuzzy inference system files, and 

setting the appropriate scaling factors.  

†
desired fuzzyJ J− †

To run a GA, a suitable encoding for each of the parameters and bounds for each 

of them must be selected. Binary encoding is used to allow the GA algorithm to search 

the solution more precisely. The numbers of membership functions are limited to the odd 

integers between three and nine. Therefore, the information can be captured in two bits 

per variable. The spacing parameters specify how the memberships are spaced out across 

the universe of discourse. The value of the parameters indicates whether the membership 

functions are close together at the center of the range or spread out at the limits. The rule-

base also needs to be specified. Characteristic spacing parameters for each variable and 

characteristic angles for each input variable are used to construct the rules. The spacing 

parameters use a spacing method similar to the one used in the membership functions. 

The angle parameters determine the slope of a line through the origin on which seed 

points are placed. From those parameters, the membership functions and the rule-base 

can be generated by the GA. In the next section, the artificial neural network is presented 

in similar approach as the fuzzy logic.  
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5.3. Artificial Neural Network 
 
 

Multilayer neural perceptrons (MLP) networks are applied to the inverse 

kinematics problem, and the networks are trained with mapping between elements of the 

Jacobian matrix and elements of the Jacobian pseudo-inverse matrix, as shown in Figure 

5-4. The Jacobian matrix is calculated from the DH parameters and the homogeneous 

transformation matrix. The set of all possible training data is acquired randomly, like the 

fuzzy logic inference system. To cover the entire workspace, 15,000 data are generated 

for inputs / outputs. Unlike ANFIS, a neural network can have more than one output, but 

if the number of outputs is increased, the training time and error are also increased. 

Therefore, it is important to find an optimal number of outputs while comparing to the 

training time and overall error. After training, the performance of the system is tested by 

having the network generate joint angles for arbitrary end-effector trajectories. 

Neural networks have been applied for a variety of applications which involve 

non-linear relations between the input and output patterns. The inverse kinematics 

application is highly nonlinear, as it involves the inverse of the Jacobian matrix. Neural 

networks are more precise for the inverse kinematic system than other artificial 

intelligence methods if given data set is well collected and exact. Therefore, it is 

important to collect all possible and general data without noise or disturbances. For this, 

overcoming singularities by several methods are required even though most data are 

calculated rather than collected from simulation experiments. The DLS method is chosen 

in the simulation. DLS is a powerful method not only to approximate a rank deficient 

matrix, but also to prevent sudden jumps of a manipulator. 
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In order to reduce performance time, six outputs from the artificial neural network 

are used. This allows for only one network to be required to execute the inverse 

kinematics. However, the training time is longer and more neurons are required to reduce 

the sum of the squared errors. For the 3-DOF planar manipulator, 48 neurons are used for 

six outputs. If the number of outputs is reduced, the number of neurons can be reduced, 

but more networks are needed, which results in slower performance. The number of 

hidden layers is also essential to increase performance. If the number of hidden layers is 

raised, the calculation of the inverse kinematics will be extended. However, especially in 

order to identify a nonlinear system, increasing hidden layers helps to reduce errors. 

Because there are no formal processes to decide the number of neurons and hidden layers, 

several experiments are necessary.  

Another consideration in artificial neural network design is the activation 

functions. A specific activation function is required for a certain neural network.  For 

instance, a perceptron network uses a hard limit function, and a linear network requires a 

linear activation function. LM also needs a linear activation function for the output layer. 

However, for other layers, LM does not require specific activation functions. In general, 

if the inputs and outputs have nonlinear relationships, then nonlinear activation functions 

are used like sigmoidal functions. MATLAB has two kinds of sigmoidal functions: logsig 

and tansig. For the simulation, tansig functions are used, though they are not significantly 

different. 

LM uses an approximate Hessian matrix, and this allows for fast searching for 

local or global minima. However, if many neurons or large training data sets are used, the 

Hessian matrix becomes very large, which requires large memory space in order to 
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perform the LM method. Therefore, there is a limitation on increasing neurons and 

training data sets. In MATLAB, a memory reduction parameter can be used for reducing 

memory usage. However, the training time will be slower if that parameter is used. The 

basic idea of the memory reduction option is that the Hessian matrix can be calculated by 

dividing into submatrices. Therefore, the whole Hessian matrix cannot be stored in 

memory, but the calculation time is increased. 

RBF and GRNN are similar to MLP, but they use a spread constant. The larger 

spread constant the function approximation is smoother. If the smaller spread constant 

than the normal distance between inputs and weights, then data are fit too closely. In 

Chapter 6, the simulation results for the 3-DOF planar manipulator are discussed and 

analyzed to find the best method. The MLP is chosen for the real teleoperation system, 

and the final simulation for the Titan II manipulator is performed using the MLP method. 
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CHAPTER 6: Simulation Results 

 

6.1. Introduction 
 
 

The previous chapters provided a variety of simulation approaches for each 

artificial method to perform inverse kinematics to obtain Cartesian space and joint space 

mapping. The ultimate goal of this simulation is to manipulate the Titan II by using the 

inverse kinematics. In this chapter, the simulation results will be presented and discussed 

for each of the methods that were proposed to perform the inverse kinematics for the 3-

DOF manipulator. Based on performance and error, the best of these methods will be 

identified, and that method will be adopted for the 6-DOF Titan II manipulator. 

Using MATLAB, a circle trajectory is generated and simulated for each method 

as shown in Figure 6-1. For each method, the generated trajectory will be performed by 

the 3-DOF manipulator, and the results will be analyzed. After finding the best method, a 

more complex trajectory will be simulated in MATLAB and RoboWorks for the Titan II 

manipulator. It is important that the final simulation is as similar to the real system as 

possible, so that eventually the best method can perform as part of the WAM-Titan II 

teleoperation system. 

MATLAB, which uses a matrix computing environment, has powerful tools for 

fuzzy logic and artificial neural networks. Its programming language is easy to 

manipulate and plot any numerical calculation compared to other languages. However,  
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Figure 6-1. A circle trajectory for a 3-DOF manipulator 
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symbolic calculations are not easy to perform using MATLAB. MATLAB has many 

useful toolboxes, such as the Signal Processing Toolbox, the Control System Toolbox, 

the Fuzzy Logic Toolbox, and the Neural Network Toolbox. For this simulation, the 

Fuzzy Logic Toolbox and the Neural Network Toolbox will be used.  

The RoboWorks robot simulator, created by Newtonium, can be used for 

modeling and animating 3D mechanical objects. This simulator has several tools for 

creating and modifying 3D objects. There is a hierarchy of objects that allows for a lower 

rank object to inherit position and orientation from a higher rank object. For example, if 

the higher rank object is moved or rotated, all lower rank objects are moved or rotated 

together, like a manipulator’s links. Therefore, this program makes it easy to model and 

simulate manipulators. Furthermore, it has a communication tool called RoboTalk that 

allows for communication via a keyboard, a data file, or the Ethernet.  RoboTalk allows 

for precise simulations and communication between different platforms. However, the 

program does not have any function to simulate physical interaction or other phenomena. 

It only accepts kinematic situations which are suitable for this simulation. In the next 

section, results of fuzzy logic for the 3-DOF manipulator are presented. 

 

6.2. Fuzzy Logic Results 
 

6.2.1. ANFIS 
 

For simulating the fuzzy inference system using ANFIS, nine triangular 

membership functions were defined at each fuzzy inference system.  The total number of 
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inference systems was six for each element of Jacobian pseudo-inverse matrix. After 

training for several epochs, ANFIS optimized the weights of the Sugeno-type fuzzy 

system. The sum of squared errors is shown in Table 6-1, and the output surfaces are 

shown in Figure 6-2.  

The range of the training data set was selected to be the range from  (-2.27 

radian) to 130  (2.27 radian), for every joint, which means that the 3-DOF manipulator 

can easily reach a singularity. Therefore, the number of membership functions should be 

increased until each fuzzy inference system meets an acceptable sum of squared error 

(SSE).  The maximum and minimum joint angles were added to the training data, so that 

the universe of disclosure covered all possible joint angles. Therefore, the number of 

training data points was 10,002 instead of 10,000. 

130− °

°

 

Table 6-1. Parameters Used for Training and Errors 

FIS Pseudo-inverse of 
J 

Training 
data 

Membership 
function Type of MF SSE 

1 †
11J  10002 9-9-9 triangular 

/linear 
0.04437 

 

2 †
12J  10002 9-9-9 triangular 

/linear 
0.05827 

 

3 †
21J  10002 9-9-9 triangular 

/linear 
0.05450 

 

4 †
22J  10002 9-9-9 triangular 

/linear 
0.06546 

 

5 †
31J  10002 9-9-9 triangular 

/linear 
0.07233 

 

6 †
32J  10002 9-9-9 triangular 

/linear 0.08914 
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Figure 6-2. Output surfaces for the fuzzy inference system 
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After training all the fuzzy inference systems, the 3-DOF manipulator was again 

simulated with a circle trajectory. The error of the Jacobian pseudo-inverse is shown in 

Figure 6-3. The error was defined as , and the maximum error was 0.04 for 

. Two-norm of errors is also calculated. 

† †
desired fuzzy−J J

†
21J

Figure 6-4 and Figure 6-5 show the joint velocity error and Cartesian velocity 

error of the 3-DOF manipulator end effector. The largest error generally occurs at the 

middle of the iteration time because of the shift that occurs there.  It increases until the 

end effector passes the halfway point through the circle trajectory; after that point, it 

decreases. Another possible reason for the error is that the fuzzy inference systems may 

not have been trained enough near singularities. The maximum error of the joint velocity 

was at joint two, and the maximum error of the Cartesian velocity was   

 in the y direction. Figure 6-6 depicts the Cartesian position error between 

the desired trajectory position and the actual trajectory position. The maximum error was 

0.03 meters. 

41.9 10 / srad−×

43.3 10 / sm−×

 

6.2.2. Genetic Algorithm 
 

To perform the simulation of the fuzzy inference system using GA, MATLAB 

was used with the open source Genetic Algorithm Optimization Toolbox (GAOT), which 

is provided by Houck et al. [25]. The evaluation function has to be provided for the 

toolbox, and equation (5.5) was applied. The encoding for each of the parameters and 

bounds for each of them were selected and used as discussed in Chapter 5.The numbers 
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Figure 6-3. ANFIS Pseudo-inverse Jacobian error 
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Figure 6-5. ANFIS Cartesian velocity error 
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of membership functions are limited to the odd integers, and this requires just two bits per 

variable. The other parameters, along with their ranges and precisions, were selected as 

given in Table 6-2. 

The same architecture of the fuzzy inference system was used for GA. The total 

number of the inference system was also six for each element of Jacobian pseudo-inverse 

matrix. 10002 data sets of inputs and outputs were used for running the GA. Several runs 

of the GA were performed for a hundred generations each. A plot of the Jacobian pseudo-

inverse error is shown in Figure 6-7. The maximum error was 0.05, and the shapes of the 

curves are generally smoother than those from ANFIS. The joint velocity and Cartesian 

errors are shown in Figure 6-8 and Figure 6-9. Unlike ANFIS, there is no large error at 

the middle of the iteration time. However, the overall error of the GA is bigger than that 

of ANFIS. The maximum error of the joint velocity was at joint one, and 

the maximum error of the Cartesian velocity was    in the x direction. The 

maximum Cartesian position error was 0.035 meters, which is slightly bigger than that of 

ANFIS, as shown in Figure 6-10.  

42.8 10 / srad−×

45 10 / sm−×

 

Table 6-2. Parameters Used for Encoding 

Parameter Range Precision Number of Bits
Number of MF 3~9 2 2 

MF Spacing 0.1 ~ 1.0 0.01 7 
MF Spacing (exponent) -1 ~ 1 2 1 

Rule-base spacing 0.1 ~ 1.0 0.01 7 
Rule-base spacing 

(exponent) -1 ~ 1 2 1 

Rule-base angle 0 ~ 2π  π /512 11 
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Figure 6-7. Fuzzy-GA Pseudo-inverse Jacobian error 
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Figure 6-8. Fuzzy-GA Joint velocity error 
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Figure 6-9. Fuzzy-GA Cartesian velocity error 
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Figure 6-10. Fuzzy-GA Cartesian error 
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The next section shows results of the artificial neural network for the 3-DOF manipulator 

by each proposed method. 

6.3. Neural Network Results 
 

6.3.1. Multilayer perceptrons network 
 

The simulation for the artificial neural network with the multilayer perceptrons 

network was performed with an architecture similar to that of the fuzzy inference system. 

The network identified the pseudo-inverse Jacobian matrix with current joint values as 

inputs. Multilayer Perceptrons were used for the structure of the network, and an LM 

optimization method was adopted for training. The greatest benefit of the artificial neural 

network is that the number of outputs is not constrained, so that the six elements of the 

Jacobian pseudo-inverse matrix could be used for one output. Therefore, only one 

artificial neural network system was required to achieve the simulation of the 3-DOF 

planar manipulator. 

The same numbers of input/output data were collected, like fuzzy logic and GA, 

and they were trained with four hidden layers. At each hidden layer, thirty neurons were 

used to meet the acceptable SSE. However, due to the large number of neurons, a 

tremendous amount of memory was required for the computations needed to train the 

network. To solve the problem, the memory reduction parameter was setup as fourteen in 

MATLAB. However, the memory reduction resulted in very long computational time. 

After training the network, the simulation time of the ANN was fastest among the other 
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methods. For the four hidden layers and one output layer, the tansig and purelin 

activation functions as shown in Figure 4-4 were chosen.  

 Figure 6-11 shows the Jacobian pseudo-inverse error of the circle trajectory; the 

maximum error was . The maximum error of the joint velocity and the Cartesian 

velocity are  and , as shown in Figure 6-12 and Figure 6-13. 

The maximum position error is 0.013 meters, as shown in Figure 6-14. It is clear from the 

graphs that the end effector tracking with the 3-DOF manipulator was very good with 

small errors compared to the previous methods. It is also evident from the graphs that the 

two-norm errors do not have high peaks like the fuzzy logic results and are smoother 

curves than the GA results. The errors could have been smaller if the ANN was trained 

with more time, or if the number of neurons in the hidden layers was increased. However, 

it was sufficient to show that the ANN is a better method for the inverse kinematics. 

35 10−×

52.7 10 / srad−× 40.7 10 / sm−×

6.3.2. RBF and GRNN 
 

For the Radial Basis Function Networks (RBF), the newrbe function was used for 

the simulation in MATLAB. The function designed an exact RBF quickly. The spread 

constant was chosen as 1.0, which is a default value, and the networks were trained with 

5,000 input/output data sets. The data sets were smaller than other methods because the 

MATLAB function required large memory space. Therefore, the data sets should have 

been reduced to meet the memory requirement. As shown in the Appendix C, the 

maximum error of the Cartesian position was , which is the largest error for the 3-

DOF manipulator. Furthermore, the number of neurons of RBF was too high. The newrbe  

0.070m
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Figure 6-11. Pseudo-inverse Jacobian error for MLP 

0 100 200 300 400 500 600 700
-3

-2

-1

0

1

2

3

4

5
x 10-5

Time

Jo
in

t v
el

oc
ity

 e
rro

r (
ra

d/
s)

 

 
dq1
dq2
dq3
norm

 

Maximum 
Joint velocity 

error ( 2θ ) 
2.7x10-5 rad/s 
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Figure 6-13. Cartesian velocity error for MLP 
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function generated 5,002 neurons for the simulation. Another RBF function, newrb, was 

used in an effort to reduce the number of neurons, but this function generated nearly 

5,000 neurons with poor performance. 

For the generalized regression neural network (GRNN), the newgrnn function was 

used with 10,002 data sets. This function designed a GRNN faster than RBF. GRNN is a 

kind of RBF, so that spread constant was required. The spread has an important role in 

the design of a GRNN and significantly affects the results. The spread of the GRNN was 

0.2, and the results were shown in the Appendix D. The maximum error of the Cartesian 

position was , and the overall errors were small enough to apply to the 

teleoperation system. However, the number of neurons is the same as the number of the 

training data set, which was 10,002 neurons. The number of neurons is important for the 

teleoperation system because the computation time normally depends on the number of 

neurons. If too many neurons are used, the overall performance is slower. The next 

section presents results of the five methods which are ANFIS, Fuzzy-GA, MLP, RBF, 

and GRNN for the 3-DOF manipulator, and discusses approaches and results of final 

simulation for the 6-DOF Titan II manipulator.  

0.020 m

6.4. Results and Final Simulation 
 

6.4.1. Results 
 
 
In the simulation of the 3-DOF planar manipulator, five artificial intelligent methods 

were investigated, and the results are shown in Table 6-3. First, the results of the fuzzy 

logic method with ANFIS and GA showed that it successfully identified the complex  
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Table 6-3. Results of the 3-DOF Manipulator 

Maximum Error 

Type Pseudo-
inverse 

Jacobian 
Joint Velocity Cartesian 

Velocity 
Cartesian 
Position 

     Fuzzy – ANFIS 0.04 41.9 10 / srad−× 43.3 10 / sm−×  0.030m  

     Fuzzy – GA 0.05 42.8 10 / srad−× 45 10 / sm−×  0.035m  

     ANN – MLP 0.005 52.7 10 / srad−× 40.7 10 / sm−×  0.013m  

     ANN – RBF 0.15 46 10 / srad−×  48 10 / sm−×  0.070m  

0.020m  41.2 10 / srad−× 41.8 10 / sm−×       ANN – GRNN 0.025 

 

nonlinear inverse kinematics. The overall position and velocity error was minimal. 

However, the fuzzy logic showed slower performance, which is not sufficient for 

application in a real system. Furthermore, the artificial neural network method shows 

better accuracy. The most important reason why the fuzzy logic is not suitable for inverse 

kinematics is that it was too complicated to apply the fuzzy rule-base to the real 

teleoperation system.   

Second, the results of RBF and GRNN show that the accuracy was not better than 

MLP, and the networks required many neurons. The number of neurons was same as the 

number of the input/output data sets. Therefore, RBF and GRNN are not appropriate for 

the real system. However, RBF and GRNN require less time to build a network than the 

LM optimization method. They work well if fast computation is not needed or if many 

data sets are required for training. Therefore, it is a good technique to use RBF or GRNN 

first for training with many data sets before standard multilayer perceptrons network is 

trained. 
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 Last, from the above results, a multilayer perceptrons network with LM was 

determined to be the best solution for the WAM-Titan II teleoperation system. The 

maximum errors were the smallest among the others, and due to its simple architecture, it 

is easy to substitute the new inverse kinematics into the current system. However, one 

drawback of the multilayer feedforward perceptrons network is time consumption. A 

multilayer perceptrons network needs abundant time to train a network with many data 

sets, even though LM is used for optimization. Furthermore, LM needs a large amount of 

memory for approximate Hessian matrix to optimize. 

 In summary, the multilayer perceptrons method is chosen for a final simulation, 

which is inverse kinematics of the Titan II manipulator, and the other four methods are 

excluded due to the above reasons. However, the four methods may have better 

performance for the Titan II manipulator than the MLP method. On the other hand, 

because the 6-DOF manipulator for the final simulation is more complicated and has 

higher dimension for its workspace than the 3-DOF manipulator cases, the chances of this 

are slight.  

6.4.2. Final simulation 
 

For the application of the inverse kinematics for the Titan II based on a multilayer 

perceptrons - backpropagation artificial neural network, a 6-DOF revolute manipulator 

was created in MATLAB as shown in Figure 6-15. The manipulator has the same 

dimensions as that of the Titan II, so that it has same DH parameters. Unlike the 3-DOF 

manipulator, a new workspace was created in 3-D space. Each joint limit of the Titan II 

was set for generating training data sets. A new trajectory was created to simulate the  
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Figure 6-15. Simulation of Titan II manipulator 
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new inverse kinematics based on a multilayer perceptrons network, as shown Figure 6-15. 

The trajectory was more intricate than the previous one because the simulation was tested 

in 3-D space. New input/output data sets were generated as shown in Figure 6-16.  The 

training data sets were made as 15,000 input/output pairs. The inputs were all possible 

joint angles of the Titan II, and from the inputs, the outputs were calculated as elements 

of the pseudo-inverse Jacobian matrix. The architecture of the artificial neural network 

has four hidden layers with tansig activation functions. For optimizing weights and biases, 

the LM method was used to train quickly, and when memory was insufficient for the 

large amount of data, memory reduction was used. 
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Figure 6-17. Four groups of outputs 

 

The number of elements of the inverse Jacobian matrix is 36, so that the number 

of outputs is also 36 if one network is used. Since there are many outputs in a network, 

many neurons were required to meet acceptable SSE. To avoid this, the elements of the 

inverse Jacobian matrix were divided into four groups as shown in Figure 6-17. The first 

group is the half of the matrix, which is a position part, and the second to fourth groups 

are the other half of the matrix, which are rotation parts. Therefore, a total of four 

networks were used as shown in Figure 6-18. The main reason for this structure is that 

these groups reduced the total number of neurons in each network, so that memory usage 

and training time can be reduced greatly. This segmentation method was based on the 

required training time and the number of neurons. After several experiments, it was found 

that the position part, which is the first group, is easier to train with less number of 

neurons than the orientation parts, which are from the second to fourth groups.  
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Figure 6-18. Structure of outputs for the MLP network 

 

Furthermore, each element of the pseudo-inverse Jacobian matrix is independent 

from the other elements due to the fact that the Jacobian depends only on joint angles. 

Therefore, the structure of Jacobian affects the training time and the execution time by 

increasing one and decreasing the other. At each hidden layer of the first group, 18 

neurons were employed, and at each hidden layer of the last groups, 30 neurons were 

applied. Consequently, 6 inputs and 18 outputs for the first group and 6 inputs and 6 

outputs for the other groups were used. 

6.4.3. Results 
 

The final simulation was performed as shown in Figure 6-18. The initial positions 

of the Titan II were 0  from joint 1 to joint 6. The end effector  , 60 , -110 , 30 , 0 , 0° ° ° ° ° °
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Figure 6-19. RoboWorks simulation for Titan II 
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followed the trajectory, which carried out position commands only. The unit of the 

simulation is inches rather than meters. Figure 6-19 shows the Jacobian pseudo-inverse 

error, and the maximum error was 0.03 . As shown in Figure 6-20 and Figure 6-21, the 

maximum error of the joint velocity and Cartesian velocity are   

and 0 . The maximum position error is 1.3 inches as shown in Figure 6-22. This 

inverse kinematics based on artificial neural networks was successfully adapted to the 

real teleoperation system with the RoboWorks simulation. The MATLAB codes were 

converted into C programming language as shown in the Appendix E, and the weight and 

biases were saved to text files. This C code was customized for existing High Level 

Controller (HLC) of the WAM-Titan II teleoperation system. The C code performs the 
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Figure 6-20. Pseudo-inverse Jacobian error for Titan II 
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Figure 6-21. Joint velocity error for Titan II 
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Figure 6-22. Cartesian velocity error for Titan II 
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Figure 6-23. Cartesian error for Titan II 

 
algorithm of the MLP and executes the inverse kinematics independently from other 

applications. In order to improve the execution time of the compile code, every weight 

and bias of the MLP are stored in 3 dimensional array pointers. Furthermore, a number of 

for statements and if statements are reduced to optimize the code. The steps of the main 

algorithm of the new inverse kinematics shown in Figure 6-24 are 

1. Load the weight and bias files. 

2. Get joint angles of Titan II from resolvers. 

3. Generate a Jacobian pseudo-inverse matrix by ANN-MLP. 

4. Perform inverse kinematics with Jacobian pseudo-inverse matrix and 

Cartesian velocity from WAM forward kinematics. 

5. Integrate joint velocities from step 4 and send to Titan II. 
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Table 6-4. Time Results 

Trajectory Type Method Original Circle Rectangular 

Conventional  64 ms 45 ms 37 ms 

ANN 15.6 ms 11 ms 9.06 ms 

 

6. Repeat from step 2 until the operation is finished. 

To measure the time performance for the new inverse kinematics, several 

trajectories were tested. First, the trajectory used in the above simulation was measured. 

Only the inverse kinematics time was measured for both the conventional method and the 

new method during the trajectory tracking. After that, the circular and rectangular 

trajectories were measured.  The Table 6-4 shows the results. About 75 percent of the 

calculation time was improved. In the next chapter, final conclusions and the future work 

are discussed. 
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CHAPTER 7: Summary 

 

7.1. Overall Conclusions 
 
 

Inverse kinematics based on fuzzy logic and an artificial neural network was 

designed and implemented for the WAM-Titan II teleoperation system. This inverse 

kinematics design was based on the pseudo-inverse with SVD and DLS. This strategy 

automatically reduces the problem of singularities and sudden movements of the slave 

manipulator while eliminating the weak dimensions by gradually replacing the weak 

singular value with zero. From the inverse kinematics design, five methods were tested:  

ANFIS, GA, MLP-LM, RBF, and GRNN. From the simulation of the 3-DOF planar 

manipulator, MLP-LM was found to be the best method for the inverse kinematics. For 

the final simulation of the Titan II, MLP-LM was tested, and the results were successful. 

The maximum error of Cartesian position was 1.3 inches, and this error is acceptable for 

teleoperation. The computation time of the new inverse kinematics was also faster than 

that of the normal method. From several trajectory tests, the time was improved about 75 

percent. 

The downside of the MLP-LM was the computation time for training weights and 

biases. Normally the LM method is faster than other training methods; however, because 

of the large input/output data sets and many neurons, abundant computation time was 

required to meet the acceptable SEE. This negative aspect will be improved as computer 
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platforms with faster processing speeds are developed in the future. The future work is 

discussed in the next section. 

 

7.2. Future Work 
 
  

Although the inverse kinematics using artificial neural networks shows good 

results, more reliable and accurate results are be desired before performing real 

teleoperation tasks. For these, more experiments and investigations are required. Because 

only kinematics was considered in this thesis, analysis of the dynamics of the Titan II are 

also is needed for simulation of physical motion and design of control strategies. 

An important enhancement to the WAM-Titan II teleoperation is an extension to 

bilateral operation. Force feedback is essential for a teleoperation system to feel the 

interaction with the remote environment, and it improves the ability of teleoperation. 

Since the WAM-Titan II teleoperation is ready to move to this stage, extended research 

of telepresence or haptics with performance control, stability control, and time delay 

control is required [47]. 

In inverse kinematics of redundant manipulators, the extra degrees of freedom can 

be effectively used to improve the manipulator’s ability to avoid obstacles or singular 

points. Since the WAM has seven degrees of freedom, this redundant manipulator can 

provide a comfortable operational space to a human operator. Therefore, the inverse 

kinematics of WAM with redundancy resolution based on artificial intelligence methods 

is another recommended future investigation. 

 97



 

In order to reduce the number of neurons in neural networks, method like 

Bayesian regularization [45, 46] can be adapted to determine the optimal number of 

weights and biases automatically. This method modifies the regular performance function 

such as the mean sum of squared errors by adding the sum of squares of the network 

weights. Each term of the modified performance function is multiplied by regularization 

parameters, and the parameters are optimized by the Bayesian regularization. This 

method provides an optimal number of network parameters, which can be used by the 

MLP effectively. 

 98



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LIST OF REFERENCES 

 99



 

LIST OF REFERENCES 
 
 
 
[1] L. I. Slutski, “Remote Manipulation Systems,” Kluwer Academic Publishers, 1998. 
 
[2] W. R. Hamel, M. W. Noakes, “Recent Telerobotics Systems Developments at the 

University of Tennessee,” Proceedings of the ANS 2006 International Joint 
Topical Meeting, Salt Lake City, Utah, February 12–15, 2006. 

 
[3] R. Zhou, W. R. Hamel, A. S. Hariharan, M. W. Noakes, “Using the WAM as a 

Master Controller,” Proceedings of the ANS 2006 International Joint Topical 
Meeting, Salt Lake City, Utah, February 12–15, 2006. 

 
[4] L. H. Tsoukalas, R. E. Uhrig, “Fuzzy and Neural Approaches in Engineering,” 

John Wiley & Sons, Inc. 1997. 
 
[5]  “Fuzzy Logic Toolbox user’s guide,” The MathWorks, Inc., 2006. 
 
[6] L. Sciavicco, B. Siciliano, “Modeling and Control of Robot Manipulators,” 

McGraw Hill Pnublications, 1996. 
 
[7] J. J. Craig, “Introduction to Robotics Mechanics and Control,” 3rd Edition, 

Pearson Prentice-Hall, 2005. 
 
[8]  M. W. Spong, S. Hutchinson, M. Vidyasagar, “Robot Modeling and Control,” 

John Wiley & Sons, Inc., 2006. 
 
[9] W.A. Wolovich, H. Elliott, “A computational technique for inverse kinematics,” 

The 23rd IEEE Conference on Decision and Control, Vol. 23,  pp. 1359-1363.  
Dec 1984. 

 
[10] S. R. Buss and J. Kim, “Selectively Damped Least Squares for Inverse 

Kinematics," In Journal of Graphics Tools, vol. 10, no. 3 (2005) 37-49. 
 
[11] C. W. Wampler, “Manipulator inverse kinematic solutions based on vector 

formulations and damped least-squares methods,” IEEE Trans. on Syst., Man, 
Cyber., vol. 16, pp. 93-101, 1986. 

 
[12] “WAM arm User Guide,” Barrett Technology, Inc., 2006. 
 
[13] D. W. Howard, A. Zilouchian, “Application of Fuzzy Logic for the Solution of 

Inverse Kinematics and Hierarchical Controls of Robotic Manipulators,” Journal 
of Intelligent and Robotic Systems, vol. 23, No. 2-4, pp. 217 – 247, October 1998. 

 

 100



 

[14] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine 
Learning,” Addison-Wesley, 1989. 

 
[15] F. Herrera, M. Lozano, J. L. Verdegay, “Tuning Fuzzy Logic Controllers by 

Genetic Algorithms,” International Journal of Approximate Reasoning,” vol. 12, 
pp. 299-315, 1995. 

 
[16] M. A. Lee, Takagi, “Integrating Design Stages of Fuzzy Systems Using Genetic 

Algorithms,” Proc. 2nd IEEE Int. conf. Fuzzy systems, San Francisco, 1993. 
 
[17] Y. J. Park, H. S. Cho, D. H. Cha, “Genetic Algorithm-Based Optimization of 

Fuzzy Logic Controller Using Characteristic Parameters,” Proceedings of the 
IEEE ICEC, pp. 831-836, 1995. 

 
[18]  “Neural Network toolbox user’s guide,” The MathWorks, Inc., 2006. 
 
[19] G. A. Bekey, K. Y. Goldberg, “Neural Networks in Robotics,” Kluwer Academic 

Publishers, 1993. 
 
[20] J. L. Meriam, J. M. Henderson, “Engineering Mechanics Dynamics,” 4th Edition, 

John Wiley & Sons, Inc., 1997. 
 
[21]  Gilbert Strang, “Linear Algebra and its Application,” 4th Edition, Academic Press, 

New York, 2006. 
 
 
[22] J. –J E. Slotine, “Putting physics in control-the example of robotics,” Control 

Systems Magazine, IEEE, Vol. 8, No 6, pp. 12-18, Dec 1988. 
 
 
[23]  Y. Nakamura, H. Hanafusa, “Inverse kinematic solution with singularity 

robustness for robot manipulator control,” ASME J. Dyn. Syst., Meus., Control, 
vol. 108, pp. 163-171, 1986. 

  
 
[24] S. W. Kim, J. J. Lee, “Inverse Kinematics Solution Based on Fuzzy Logic for 

Redundant Manipulators,” Proceedings of the 1993 IEEE/RSJ International 
Conference on, Vol. 2, No. 26-30, pp. 904 – 910, Jul 1993. 

 
 
[25] C. R. Houck, J. Joines, M. Kay, “A Genetic Algorithm for Function optimization: 

A MATLAB Implementation,” ACM Transactions on Mathematical Software, 
1996. 

 

 101



 

[26] K. Levenberg, “A Method for the Solution of Certain Non-Linear Problems in 
Least Squares,” Quart. Appl. Math. 2, pp. 164-168, 1944. 

 
[27] D. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear 

Parameters,” SIAM J. Appl. Math. 11, pp. 431-441, 1963. 
 
[28] L. A. Zadeh, “Information and Control,” Vol. 8, pp. 338-353, 1965. 
 
[29] M. Mamdani, “Application of Fuzzy Algorithm for Control of Simple Dynamic 

Plant,” Proc. IEE, Vol. 121, No. 12, pp. 1585-1588, 1974. 
 
[30] H. T. Nguyen, E. A. Walker, “A First Course in Fuzzy Logic,” 3rd Edition, 

Chapman & Hall/CRC, Boca Raton, 2006. 
 
[31] J.-S. Roger Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference Systems,” 

IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 03, pp. 665-
685, May 1993. 

 
[32] J. H. Holland, “Adaptation in Natural and Artificial Systems,” University of 

Michigan Press, Ann Arbor, 1975. 
 
[33] D. Nauck, F. Klawonn, R. Kruse, “Foundations of Neuro-Fuzzy Systems,” John 

Wiley & Sons Ltd, 1997. 
 
[34] F. L. Lewis, S. Jagannathan, A. Yeşildirek, “Neural Network Control of Robot 

Manipulators and Nonlinear Systems,” Taylor & Francis, 1999. 
 
[35] G. A. Korn, “Neural Networks and Fuzzy-Logic Control on Personal Computers 

and Workstations,” Massachusetts Institute of Technology, 1995. 
 
[36] A. M. S. Zalzala, A. S. Morris, “Neural Networks for Robotic Control,” Ellis 

Horwood, 1996. 
 
[37] S. Haykin, “Neural Networks,” IEEE Press and Macmillan, New York, 1994. 
 
[38] F. Girosi, T. Poggio, “Neural Networks and the Best Approximation Property,” 

Biol. Cybernetics, 63, pp. 169-176, 1990. 
 
[39] P. D. Wasserman, “Advanced Methods in Neural Computing,” New York, 1993. 
 
[40] A. Nedungadi, “A Fuzzy Robot Controller – Hardware Implementation,” Fuzzy 

Systems, IEEE International Conference on, pp. 1325-1331, Mar 1992.  
 

 102



 

[41] L. Wei, H. Wang, Y. Li, “A New Solution for Inverse Kinematics of Manipulator 
Based on Neural Network,” Machine Learning and Cybernetics, International 
Conference on, Vol. 2, No. 2-5, pp. 1201 – 1203, Nov. 2003. 

 
[42] A. M. Eydgahi, S. Ganesan, “Genetic-Based fuzzy Model for Inverse Kinematics 

Solution of Robotic Manipulators,” Systems, Man, and Cybernetics, IEEE 
International Conference on, Vol. 3, pp. 2196 – 2201, Oct 1998. 

 
[43] R. V. Mayorga, P. Sanongboon, “Inverse Kinematics and Geometrically Bounded 

Singularities Prevention of Redundant Manipulators: An Artificial Neural 
Network Approach,” Robotics and Autonomous Systems, 53, pp. 164-176, 2005. 

 
[44] J. Guo, V. Cherkassky, “A Solution to the Inverse Kinematic Problem in Robotics 

Using Neural Network Processing,” Neural Networks, IJCNN., International Joint 
Conference on, Vol. 2, pp. 299 – 304, Jun 1989. 

 
[45] D.J.C. MacKay, “Bayesian interpolation,” Neural Computation, Vol. 4, No. 3, pp. 

415–447, 1992. 
 
[46] D.J.C. MacKay, “A Practical Bayesian Framework for Backpropagation 

Networks,” Neural Computation, Vol. 4, No. 3, pp. 448-472, 1992. 
 
[47] D. A. Lawrence, “Stability and Transparency in Bilateral Teleoperation,” IEEE 

Transactions on Robotics and Automation, Vol. 9, No. 5, pp.624~637, 1993. 
 
 
 
 
 
 
 
 
 
 

 103



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX 

 104



 

Appendix A: Transformation Matrix for WAM 

 

From frame 1 to frame 2 

2 2
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cos( ) 0 sin( ) 0
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From frame 2 to frame 3 
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From frame 3 to frame 4 
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From frame 4 to frame 5 
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From frame 5 to frame 6 

6 6
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6

cos( ) 0 sin( ) 0
sin( ) 0 cos( ) 0
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From frame 6 to frame 7 
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Appendix B: Transformation Matrix for Titan II  

 

From frame 1 to frame 2 

2 2 2 2 2

2 2 2 2 21
2

cos( ) sin( ) 0 sin( ) cos( )
sin( ) cos( ) 0 cos( ) sin( )

0 0 1 0
0 0 0 1

d a
d a

θ θ θ θ2

2θ θ θ
− +⎡ ⎤

⎢ ⎥− +⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A
θ

3

3

 

 

From frame 2 to frame 3 

3 3 3

3 3 32
3

cos( ) sin( ) 0 cos( )
sin( ) cos( ) 0 sin( )

0 0 1 0
0 0 0 1

a
a

θ θ θ
θ θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  

 

From frame 3 to frame 4 

4 4 4

4 4 43
4

cos( ) 0 sin( ) cos( )
sin( ) 0 cos( ) sin( )

0 1 0 0
0 0 0 1

a
a

4

4

θ θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

A
θ

 

 

From frame 4 to frame 5 

5 5

5 54
5

cos( ) 0 sin( ) 0
sin( ) 0 cos( ) 0

0 1 0 0
0 0 0 1

θ θ
θ θ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  
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From frame 5 to frame 6 

6 6

6 65
6

6

cos( ) sin( ) 0 0
sin( ) cos( ) 0 0

0 0 1
0 0 0

d

θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  

1
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Appendix C: 3-DOF Planar Manipulator Simulation - RBF 
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Figure C-1 RBF Pseudo-inverse Jacobian error 
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Figure C-2 RBF Joint velocity error 
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Figure C-3 RBF Cartesian velocity error 
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Figure C-4 RBF Cartesian error  
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Appendix D: 3-DOF Planar Manipulator Simulation - GRNN 
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Figure D-1 GRNN Pseudo-inverse Jacobian error 
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Figure D-2 GRNN Joint velocity error 
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Figure D-3 GRNN Cartesian velocity error 
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Figure D-4 GRNN Cartesian error 
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Appendix E: Programming Code of MLP for Titan II 

 

/* File name: ANN_math.h  */ 
/* Header file for ANN_math.c  */ 
 
 
#ifndef _ANN_MATH_ 
#define _ANN_MATH_ 
 
double ***ANNnew3dMatrix(int num, int nor, int noc); 
void free_3dmatrix(double ***pMatrix, int num, int nor); 
void ANNprintMatrix(double **a, int rows, int cols,int flag); 
void ANNprintVector(double *a, int length,int flag); 
void ANNmvDotProduct(double **a,double *b, int row, int col,int length, double *c); 
void ANNtansig(double *pResult, double *pMatrix, int length); 
void ANNint_matrix(double **pMatrix, int nor, int noc); 
void ANNint_vector(double *pVector, int length); 
void ANNvectorAddition(double *a,double *b,int length1,int length2,double *c); 
void ANNvectorCopy(double *a, double *b, int length); 
void ANNload_wb_files(double ***pmW,double **pmB); 
void ANNbp_simul(double *p, double ***w, double **b,int non, int nout, int nlayer, double *ans, int z); 
void ANNmain_simul(double *p, double ***pmW, double **pmB, double **pPseudo); 
 
#endif 
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/* File name: ANN_math.c  */ 
 
 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "ANN_math.h" 
#include "titanmath.h" 
 
double ***ANNnew3dMatrix(int num, int nor, int noc) 
{ 
     
 double ***p3dMatrix; 
 int i, j, k; 
 
 if ((p3dMatrix=(double ***)malloc(num*sizeof(int **)))==NULL) { 
  printf("malloc error\n"); 
  exit(-1); 
 } 
 for (i=0;i<num;i++) 
  if ((p3dMatrix[i]=(double **)malloc(nor*sizeof(int *)))==NULL) { 
   printf("malloc error\n"); 
   exit(-1); 
  } 
 for (i=0;i<num;i++) 
  for (j=0;j<nor;j++) 
   if ((p3dMatrix[i][j]=(double *)malloc(noc*sizeof(double)))==NULL) { 
    fprintf(stderr, "out of memory\n"); 
    exit(-1); 
   } 
 
 for (i=0;i<num;i++) 
  for (j=0;j<nor;j++) 
   for (k=0;k<noc;k++) 
    p3dMatrix[i][j][k]=0; 
 
 return p3dMatrix; 
} 
 
void free_3dmatrix(double ***pMatrix, int num, int nor) 
{ 
 
 int i, j; 
 
 for(i=0;i<num;i++){ 
  for(j=0;j<nor;j++){ 
   if(pMatrix[i][j]!= NULL) 
    free(pMatrix[i][j]); 
  } 
 } 
 
 for(i=0;i<num;i++){ 
          if(pMatrix[i]!= NULL) 
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   free(pMatrix[i]); 
 } 
 if(pMatrix!=NULL) 
  free(pMatrix); 
 
} 
 
void ANNprintMatrix(double **a, int rows, int cols,int flag) 
{ 
  
 int i,j; 
  
 if(flag) { 
  printf("[row column\n"); 
  for(i=0;i<rows;i++) { 
   for(j=0;j<cols;j++) 
    printf("%3d %3d %12.8lf\n",i+1,j+1,a[i][j]); 
   getchar(); 
   
  } 
  printf("]\n"); 
 } 
   
 else{ 
  printf("[\n"); 
  for(i=0;i<rows;i++) { 
   for(j=0;j<cols;j++) 
    printf("%7.4lf, ",a[i][j]); 
   printf("\n"); 
  } 
  printf("]\n"); 
 } 
} 
 
void ANNprintVector(double *a, int length,int flag) 
{ 
  
 int i; 
  
 if(flag) { 
  printf("[\n"); 
  for(i=0;i<length;i++) 
   printf("%lf",a[i]); 
  printf("]\n"); 
 } 
   
 else{ 
  printf("[\n"); 
  for(i=0;i<length;i++) 
   printf("%d %12.8lf\n",i+1,a[i]); 
  printf("]\n"); 
 } 
} 
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void ANNmvDotProduct(double **a,double *b, int row, int col,int length, double *c) 
{ 
 int i,j; 
 if(col!=length){ 
  printf("check the matrix and the vector length!\n"); 
  exit(1); 
 } 
 for(i=0;i<row;i++){ 
  c[i]=0.0; 
  for(j=0;j<col;j++){ 
   c[i]=c[i]+a[i][j]*b[j]; 
  } 
 } 
} 
 
 
void ANNtansig(double *pResult, double *pMatrix, int length) 
{ 
 int i; 
 
 for(i=0;i<length;i++) 
  pResult[i]=2/(1+exp(-2*pMatrix[i]))-1; 
   
} 
 
void ANNint_matrix(double **pMatrix, int nor, int noc) 
{ 
 int i,j; 
     
 for(i=0;i<nor;i++) 
  for(j=0;j<noc;j++) 
               pMatrix[i][j]=0; 
 
} 
 
void ANNint_vector(double *pVector, int length) 
{ 
 int i; 
     
 for(i=0;i<length;i++) 
  pVector[i]=0; 
 
} 
 
void ANNvectorAddition(double *a,double *b,int length1,int length2,double *c) 
{ 
  
 int i; 
 if(length1!=length2){ 
  printf("check vector length!\n"); 
  exit(1); 
 } 
 for(i=0;i<length1;i++){ 
  c[i]=a[i]+b[i]; 
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 } 
} 
 
void ANNvectorCopy(double *a, double *b, int length) 
{ 
 int i; 
 for(i=0;i<length;i++) 
 b[i]=a[i]; 
  
} 
 
void ANNload_wb_files(double ***pmW,double **pmB) 
{ 
 FILE *fp1, *fp2; 
 double *pvW, *pvB; 
 
 int lenw=10260; 
 int lenb=450; 
 int tw=0, tb=0; 
 
 pvW=new_vector(lenw); 
 pvB=new_vector(lenb); 
  
 ANNint_vector(pvW,lenw); 
 ANNint_vector(pvB,lenb); 
 
 int i=0, j=0, k=0, h=0, l=0; 
 
 fp1=fopen("weights.txt","r"); 
 if (fp1==NULL) { 
  printf("I couldn't open a txt file for reading.\n"); 
  getchar(); 
  exit(0); 
 } 
 
 fp2=fopen("biases.txt","r"); 
 if (fp2==NULL) { 
  printf("I couldn't open a txt file for reading.\n"); 
  getchar(); 
  exit(0); 
 } 
 
  
     while(fscanf(fp1, "%lf\n", &pvW[i]) == 1) { 
  i=i+1; 
 } 
 
 while(fscanf(fp2, "%lf\n", &pvB[j]) == 1) { 
  j=j+1; 
 } 
 
  

fclose(fp1); 
 fclose(fp2); 
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     for(j=0;j<18;j++){ 
  for(k=0;k<6;k++){ 
   pmW[0][j][k]=pvW[tw]; 
   tw=tw+1; 
  } 
 } 
 for (i=1;i<4;i++){ 
  for(j=0;j<18;j++){ 
   for(k=0;k<18;k++){ 
    pmW[i][j][k]=pvW[tw]; 
    tw=tw+1; 
   } 
  } 
 } 
 i=4; 
 for (h=0;h>3;h++){ 
          for(j=0;j<30;j++){ 
               for(k=0;k<6;k++){ 
    pmW[i][j][k]=pvW[tw]; 
    tw=tw+1; 
   } 
  } 
  i=i+1; 
  for (l=0;l<3;l++){ 
   for(j=0;j<30;j++){ 
    for(k=0;k<30;k++){ 
     pmW[i][j][k]=pvW[tw]; 
     tw=tw+1; 
    } 
   } 
   i=i+1; 
  } 
  for(j=0;j<6;j++){ 
               for(k=0;k<30;k++){ 
    pmW[i][j][k]=pvW[tw]; 
    tw=tw+1; 
   } 
  } 
  i=i+1; 
 } 
  
 for(i=0;i<4;i++){ 
  for(j=0;j<18;j++){ 
   pmB[i][j]=pvB[tb]; 
   tb=tb+1; 
  } 
 } 
 i=4; 
 for(h=0;h<3;h++){ 
  for(l=0;l<4;l++){ 
   for(j=0;j<30;j++){ 
    pmB[i][j]=pvB[tb]; 
    tb=tb+1; 
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   } 
   i=i+1; 
  } 
  for(j=0;j<6;j++){ 
   pmB[i][j]=pvB[tb]; 
   tb=tb+1; 
  } 
  i=i+1; 
 } 
  
 free(pvW); 
 free(pvB); 
 
} 
 
void ANNbp_simul(double *p, double ***w, double **b,int non, int nout, int nlayer, double *ans, int z) 
{ 
 
 int i=0, j=0, k=0, h=0; 
  
 double *c, *d, *e, *e2; 
 c=new_vector(non); 
 d=new_vector(non); 
 e=new_vector(non); 
 e2=new_vector(non); 
 ANNint_vector(c,non); 
 ANNint_vector(d,non); 
 ANNint_vector(e,non); 
 ANNint_vector(e2,non); 
 
 
 for(i=0;i<non;i++){ 
  c[i]=0.0; 
  for(j=0;j<6;j++){ 
   c[i]=c[i]+w[z][i][j]*p[j]; 
  } 
  d[i]=c[i]+b[z][i]; 
  e[i]=2/(1+exp(-2*d[i]))-1; 
 } 
 z=z+1; 
 for(h=0;h<nlayer-1;h++){ 
  for(i=0;i<non;i++){ 
   c[i]=0.0; 
   for(j=0;j<non;j++){ 
    c[i]=c[i]+w[z][i][j]*e[j]; 
   } 
   d[i]=c[i]+b[z][i]; 
   e2[i]=2/(1+exp(-2*d[i]))-1; 
  } 
  z=z+1; 
  for(k=0;k<non;k++) 
   e[k]=e2[k]; 
 } 
 for(i=0;i<nout;i++){ 
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  c[i]=0.0; 
  for(j=0;j<non;j++){ 
   c[i]=c[i]+w[z][i][j]*e[j]; 
  } 
  d[i]=c[i]+b[z][i]; 
  ans[i]=2/(1+exp(-2*d[i]))-1; 
 
 } 
 z=z+1; 
 
 free(c); 
 free(d); 
 free(e); 
 free(e2); 
 
} 
 
void ANNmain_simul(double *p, double ***pmW, double **pmB, double **pPseudo) 
{ 
 int i=0, j=0, k=0, l=0; 
    
 double *ans1, *ans2, *ans3, *ans4; 
 ans1=new_vector(18); 
 ans2=new_vector(6); 
 ans3=new_vector(6); 
 ans4=new_vector(6); 
  
 ANNint_vector(ans1,18); 
 ANNint_vector(ans2,6); 
 ANNint_vector(ans3,6); 
 ANNint_vector(ans4,6); 
  
 
 ANNbp_simul(p, pmW, pmB, 18, 18, 3, ans1, 0); 
 ANNbp_simul(p, pmW, pmB, 30, 6, 4, ans2, 4); 
 ANNbp_simul(p, pmW, pmB, 30, 6, 4, ans3, 9); 
 ANNbp_simul(p, pmW, pmB, 30, 6, 4, ans4, 14); 
 
 
 for (j=0;j<6;j++){ 
  for (k=0;k<3;k++){ 
   pPseudo[j][k]=ans1[i]; 
   i=i+1; 
  } 
 } 
 
 for (j=0;j<6;j++){ 
  pPseudo[j][3]=ans2[l]; 
  pPseudo[j][4]=ans3[l]; 
  pPseudo[j][5]=ans4[l]; 
  l=l+1; 
 } 
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 free(ans1); 
 free(ans2); 
 free(ans3); 
 free(ans4); 
  
} 
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