
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2007

Inverse Kinematics Based on Fuzzy Logic and Neural Networks Inverse Kinematics Based on Fuzzy Logic and Neural Networks

for the WAM-Titan II Teleoperation System for the WAM-Titan II Teleoperation System

Joong-kyoo Park
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Park, Joong-kyoo, "Inverse Kinematics Based on Fuzzy Logic and Neural Networks for the WAM-Titan II
Teleoperation System. " Master's Thesis, University of Tennessee, 2007.
https://trace.tennessee.edu/utk_gradthes/186

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=trace.tennessee.edu%2Futk_gradthes%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Joong-kyoo Park entitled "Inverse Kinematics

Based on Fuzzy Logic and Neural Networks for the WAM-Titan II Teleoperation System." I have

examined the final electronic copy of this thesis for form and content and recommend that it be

accepted in partial fulfillment of the requirements for the degree of Master of Science, with a

major in Mechanical Engineering.

William R. Hamel, Major Professor

We have read this thesis and recommend its acceptance:

Dongjun Lee, J. Wesley Hines

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Joong-kyoo Park entitled “Inverse
Kinematics Based on Fuzzy Logic and Neural Networks for the WAM-Titan II
Teleoperation System.” I have examined the final electronic copy of this thesis for form
and content and recommend that it be accepted in partial fulfillment of the requirements
for the degree of Master of Science, with a major in Mechanical Engineering.

 William R. Hamel

Major Professor

We have read this thesis
and recommend its acceptance:

Dongjun Lee

J. Wesley Hines

Accepted for the Council:

 Carolyn R. Hodges

 Vice Provost and Dean of the

Graduate School

(Original signatures are on file with official student records.)

Inverse Kinematics Based on Fuzzy Logic and
Neural Networks for the WAM-Titan II

Teleoperation System

A Thesis Presented for
the Master of Science Degree

The University of Tennessee, Knoxville

Joong-kyoo Park
December 2007

Copyright © 2007 by Joong-kyoo Park
All rights reserved.

 ii

Dedicated to my parents, wife, and
two babies!

 iii

ACKNOWLEDGEMENTS

I would like to thank Dr. W. R. Hamel who was the academic advisor and the

major professor for this thesis. Also I would like to thank Dr. D. Lee and Dr. J. W. Hines

for their support and encouragement. In specially, I would like to thank Heather

Humphreys who has supported my thesis works and her good friendship. Andrzej Nycz is

a good friend and has always given me good advice and suggestion. I would like to thank

Mark Noakes who has helped me with his broad knowledge.

I would like to thank my father who has supported me with encouragement and

finance. I thank my wife and our two babies who give me love and support.

 iv

ABSTRACT

The inverse kinematic problem is crucial for robotics. In this paper, a solution

algorithm is presented using artificial intelligence to improve the pseudo-inverse Jacobian

calculation for the 7-DOF Whole Arm Manipulator (WAM) and 6-DOF Titan II

teleoperation system. An investigation of the inverse kinematics based on fuzzy logic and

artificial neural networks for the teleoperation system was undertaken. Various methods

such as Adaptive Neural-Fuzzy Inference System (ANFIS), Genetic Algorithms (GA),

Multilayer Perceptrons (MLP) Feedforward Networks, Radial Basis Function Networks

(RBF) and Generalized Regression Neural Networks (GRNN) were tested and simulated

using MATLAB. Each method for identification of the pseudo-inverse problem was

tested, and the best method was selected from the simulation results and the error

analysis.

 From the results, the Multilayer Perceptrons with Levenberg-Marquardt (MLP-

LM) method had the smallest error and the fastest computation among the other methods.

For the WAM-Titan II teleoperation system, the new inverse kinematics calculations for

the Titan II were simulated and analyzed using MATLAB. Finally, extensive C code for

the alternative algorithm was developed, and the inverse kinematics based on the

artificial neural network with LM method is implemented in the real system. The

maximum error of Cartesian position was 1.3 inches, and from several trajectories, 75 %

of time implementation was achieved compared to the conventional method. Because fast

performance of a real time system in the teleoperation is vital, these results show that the

 v

new inverse kinematics method based on the MLP-LM is very successful with the

acceptable error.

 vi

TABLE OF CONTENTS

Chapter Page

CHAPTER 1: Introduction... 1

1.1. Overview.. 1
1.2. Background.. 2
1.3. Motivation.. 8
1.4. Thesis Outline .. 9

CHAPTER 2: Kinematics .. 11
2.1. Introduction.. 11
2.2. Homogeneous Transformation... 12
2.3. Denavit-Hartenberg Parameters... 14
2.4. Forward Kinematics... 16

2.4.1. Jacobian matrix ... 17
2.5. Inverse Kinematics... 19

2.5.1. Pseudo-inverse method ... 20
2.5.2. Singular value decomposition... 21
2.5.3. Damped Least Square (DLS) .. 23

CHAPTER 3: WAM-Titan II Teleoperation System... 25
3.1. Whole-Arm-Manipulation (WAM) ... 25

3.1.1. DH parameters and joint ranges for WAM... 28
3.2. Titan II ... 30

3.2.1. DH parameters and joint ranges for Titan II... 32
3.3. Teleoperation ... 35

CHAPTER 4: Fuzzy Logic and Artificial Neural Networks.. 38
4.1. Fuzzy Logic ... 38

4.1.1. Overview... 38
4.1.2. Adaptive Neuro-Fuzzy Inference System (ANFIS).. 42
4.1.3. Genetic Algorithms (GA) ... 44

4.2. Artificial Neural Networks .. 46
4.2.1. Overview... 46
4.2.2. Multilayer Perceptrons Network (MLP)... 49
4.2.3. Radial Basis Function Network (RBF) ... 51
4.2.4. Generalized Regression Neural Network (GRNN)... 52

CHAPTER 5: Simulation Approach .. 53
5.1. Introduction.. 53
5.2. Fuzzy Logic ... 60

5.2.1. ANFIS... 60
5.2.2. Genetic Algorithm .. 62

5.3. Artificial Neural Network .. 65
CHAPTER 6: Simulation Results .. 68

6.1. Introduction.. 68
6.2. Fuzzy Logic Results... 70

 vii

6.2.1. ANFIS... 70
6.2.2. Genetic Algorithm .. 73

6.3. Neural Network Results... 79
6.3.1. Multilayer perceptrons network.. 79
6.3.2. RBF and GRNN.. 80

6.4. Results and Final Simulation ... 83
6.4.1. Results... 83
6.4.2. Final simulation .. 85
6.4.3. Results... 89

CHAPTER 7: Summary ... 96
7.1. Overall Conclusions... 96
7.2. Future Work ... 97

LIST OF REFERENCES.. 99
APPENDIX... 104
Vita.. 122

 viii

LIST OF TABLES

Table Page

Table 3-1. DH Parameters for WAM .. 30
Table 3-2. Joint Ranges .. 31
Table 3-3. DH Parameters for Titan II ... 33
Table 3-4. Joint Ranges for Titan II.. 34
Table 5-1. DH Parameter for the 3-DOF Manipulator ... 58
Table 6-1. Parameters Used for Training and Errors ... 71
Table 6-2. Parameters Used for Encoding .. 76
Table 6-3. Results of the 3-DOF Manipulator.. 84
Table 6-4. Time Results .. 95

 ix

LIST OF FIGURES

Figure Page

Figure 1-1. WAM-Titan II Teleoperation System ... 2
Figure 1-2. The Barrett’s three fingered hand ... 5
Figure 1-3. WAM-Titan II Teleoperation system .. 6
Figure 2-1. Homogeneous transformation .. 13
Figure 2-2. DH parameters .. 15
Figure 3-1. WAM and Titan II .. 26
Figure 3-2. WAM DH parameters... 29
Figure 3-3. DH parameters for Schilling Titan II .. 33
Figure 4-1. Fuzzy inference system ... 40
Figure 4-2. Example of fuzzy inference engine .. 42
Figure 4-3. ANFIS structure .. 44
Figure 4-4. Activation functions .. 47
Figure 4-5. Structure of a basic neuron .. 50
Figure 5-1. 3-DOF planar manipulator .. 54
Figure 5-2. General block diagram of a manipulator.. 57
Figure 5-3. Workspace of the 3-DOF manipulator.. 59
Figure 5-4. Inverse Kinematics system for ANFIS .. 60
Figure 5-5. Membership functions for fuzzy inputs () ... 62 †

11J
Figure 5-6. Chromosome .. 63
Figure 6-1. A circle trajectory for a 3-DOF manipulator ... 69
Figure 6-2. Output surfaces for the fuzzy inference system.. 72
Figure 6-3. ANFIS Pseudo-inverse Jacobian error.. 74
Figure 6-4. ANFIS Joint velocity error ... 74
Figure 6-5. ANFIS Cartesian velocity error ... 75
Figure 6-6. ANFIS Cartesian error ... 75
Figure 6-7. Fuzzy-GA Pseudo-inverse Jacobian error .. 77
Figure 6-8. Fuzzy-GA Joint velocity error ... 77
Figure 6-9. Fuzzy-GA Cartesian velocity error ... 78
Figure 6-10. Fuzzy-GA Cartesian error.. 78
Figure 6-11. Pseudo-inverse Jacobian error for MLP... 81
Figure 6-12. Joint velocity error for MLP .. 81
Figure 6-13. Cartesian velocity error for MLP .. 82
Figure 6-14. Cartesian error for MLP .. 82
Figure 6-15. Simulation of Titan II manipulator ... 86
Figure 6-16. Architecture of generating training data sets ... 87
Figure 6-17. Four groups of outputs ... 88
Figure 6-18. Structure of outputs for the MLP network... 89
Figure 6-19. RoboWorks simulation for Titan II... 90
Figure 6-20. Pseudo-inverse Jacobian error for Titan II .. 91

 x

Figure 6-21. Joint velocity error for Titan II ... 92
Figure 6-22. Cartesian velocity error for Titan II ... 92
Figure 6-23. Cartesian error for Titan II.. 93
Figure 6-24. Steps of the main algorithm.. 94

 xi

CHAPTER 1: Introduction

1.1. Overview

This thesis focuses on an investigation of inverse kinematics based on fuzzy logic

and artificial neural network for the WAM-Titan II telerobotic system. The teleoperation

system has a redundant mechanical manipulator, which serves as the master controller,

and a non-redundant mechanical manipulator, which is the slave manipulator. This non-

replica test bed was developed in the Robotics and Electro-Mechanical System

Laboratory (REMSL) at the University of Tennessee. The system includes a 7 degree-of-

freedom (DOF) Barrett WAM manipulator as a master controller and a 6-DOF Schilling

Titan II salve manipulator as shown in Figure 1-1. Because of their difference in numbers

of degrees of freedom, Cartesian space control is needed instead of joint space control.

In particular, this research addresses an alternative inverse kinematics design of

the manipulators to reduce computations and to improve general performance. First, an

investigation was performed to find identification of inverse kinematics for a 3-DOF

planar redundant manipulator using a fuzzy logic with Adaptive Neuro-Fuzzy Inference

System (ANFIS) and Genetic Algorithm (GA). Using a circle trajectory, the errors

between desired outputs and actual outputs were compared. Second, similarly, an

artificial neural network was used for finding a substitute inverse kinematics solution,

using Multilayer Perceptrons - Back Propagation (MLP-BP) with a Levenberg Marquardt

 1

Slave
(Titan II)

Mater
(WAM)

Figure 1-1. WAM-Titan II Teleoperation System

optimization method Radial Basis Function Network (RBF), and Generalized Regression

Neural Network (GRNN). The optimal inverse kinematics solution, which was the MLP-

BP, was compared with the results found from the experiments. An inverse kinematics

solution for the Titan II based on the MLP-BP was tested and analyzed with current

system. In the next section, background of teleoperation and artificial intelligence is

discussed.

1.2. Background

From the ancient era, humans have discovered and invented tools to overcome

their physical inability, and they have desired the existence of intelligent machines which

can perform as human slaves. This led to the field of robotics, which has developed

rapidly after development of computer technology. Various robots are built for the

 2

purpose of physical aids, and they have been used in many areas. For instance, robotic

manipulators have been used in manufacturing industry, hazardous material handling, and

applications in dangerous environments such as oceans and space. However, due to the

limitations in the current technology for sensing and controlling, human supervision is

required in environments of unknown structure. In addition, in dangerous environments,

humans cannot be present physically to perform work together with a robot. As a result,

in the above cases and in many other applications, teleoperation is an interesting method

to be achieved without position of an operator near the manipulator, where autonomous

operation is not feasible. Traditionally, the term teleoperation refers to a human

operator’s use of a master controller to operate a slave manipulator at a distance.

Therefore, many researchers have worked in the teleoperation field these days. It is likely

that teleoperation will spread widely in the future.

An ideal teleoperation system for real situations should be capable of human-like

performance of dedicated tasks with remote human assistance. The operator should have

intelligent vision and tactile/kinesthetic feedback. This allows for efficient interaction

without direct contact between the operator and the manipulator. Since this technology is

not yet developed enough, performance of remote tasks like a real human is always

limited in current era. Therefore, still many researchers are working on haptic

telepresence, which involves transfer of feeling operation to the operator. There is a

variety of other issues for teleoperation such as performance, stability, communication,

and time delay between a slave and a master [1].

In teleoperation, two different approaches are used for achieving mapping: joint-

to-joint mapping and Cartesian space mapping. In joint-to-joint mapping, an operator is

 3

able to control each joint directly with the complete slave manipulator configuration. In

Cartesian space mapping, however, position and orientation or force and moment of the

end-effector are controlled by the operator. Joint-to-joint mapping, in general, requires a

system with similar kinematic structure of the master and the slave. Both should be either

identical or scaled to each other. In the system, the slave joint actuator responds directly

to the kinematically corresponding master joint actuator. Because transformations from

joint space to Cartesian space and vice versa are not needed in this case, a fast and

reliable response is obtained easily. Cartesian space mapping has some benefits; it allows

the referencing of the positions of the manipulators, and it provides the ability to operate

a redundant manipulator. However, because it involves coordinate transformations,

Cartesian space mapping is computationally intensive and has singularity problems.

Computational complexities result in time delays and instability from the delays.

The master manipulator of the WAM-Titan II teleoperation system is a Barrett

WAM, which is a 7-DOF cable-driven back-drivable arm. This manipulator has

centralized cables to transmit power to every joint; this feature provides no backlash and

low friction [12]. It has built-in sensors to measure angles, forces, and torques of each

joint. The WAM also has other features like back-drivability, gravity compensation, and

force feedback capability. The back-drivability allows the WAM joints to be actuated by

external forces, and it makes the WAM suitable for a master. The force feedback uses the

back-drivability to measure force applied at the arm. In addition, the gravity

compensation gives the operator the ability to move the arm smoothly. The standard

WAM has 4-DOF, and, for the WAM-Titan II teleoperation, 3-DOF gimbals are attached

at the end of the arm. This allows the master to be a dexterous redundant manipulator.

 4

For a redundant manipulator, redundancy resolution can be undertaken to use the benefits

of the extra DOF. The WAM is attached to the Compact Remote Console (CRC)

platform in the teleoperation system. The CRC is an integrated vision assist system,

which has four LCD video monitors, two LCD computer monitors, and video control

units to achieve a broad range of remote operations. The CRC provides an ergonomic

teleoperation workstation for viewing and controlling manipulators.

The slave manipulator is a 6-DOF Schilling Titan II manipulator. This slave was

originally designed and manufactured for underwater applications. This hydraulic

manipulator originally had a parallel jaw gripper at the end, but the gripper was replaced

with Barrett’s three fingered hand, called the Wraptor, shown in Figure 1-2. At each joint,

a resolver is used for measuring the rotation. It is a non-back-drivable manipulator, unlike

the WAM, due to its hydraulic characteristics. The slave arm’s six joints are azimuth,

yaw, shoulder pitch, elbow pitch, wrist pitch, wrist yaw, and wrist rotation.

Figure 1-2. The Barrett’s three fingered hand
 5

In the WAM-Titan II teleoperation system, for achieving spatial association

between the two manipulators, a Cartesian space mapping technique is used to control the

slave robot following the same trajectory of the master controller, due to the kinematic

dissimilarity between these two devices [2, 3]. The mapping technique uses two

differential kinematic methods: forward kinematics and inverse kinematics. This mapping

is described by a Jacobian matrix. The Jacobian is useful for finding singular

configurations, analyzing redundancy, and determining inverse kinematics algorithms.

As shown in Figure 1-3, the WAM-Titan II teleoperation system uses forward

kinematics followed by inverse kinematics. The forward kinematics calculate the

Cartesian space velocities of its end-effector from the measurement of the WAM joint

angles, and then the velocities are used as command inputs to the Titan II inverse

FK IK

High Level Controller
(Linux)

WAM
PC

(RTAI)

WAM
(Joint

Angles &
Velocities)

TITAN
(Joint

Velocities &
Angles)

Cartesian
Space

(Velocities)

WAM
(Redundant)

Titan II
(Non-

redundant)

PC-104
Low
Level

Controll
er

(QNX)

Figure 1-3. WAM-Titan II Teleoperation system

 6

kinematics, thereby producing the joint velocities. The joint angles are finally used as

Titan II command inputs.

Artificial intelligence is a research area that seeks to implant human-like

intelligence. The artificial intelligence research is generally required in many areas like

robotics, image and voice recognition, decision-making, non-linear controls, and

uncertain or complex systems. Recently the field of artificial intelligence covers a

number of technologies, including artificial neural networks, fuzzy logic, genetic

algorithms, Bayesian networks, and chaotic theory [4]. Most of these technologies have

developed significantly in recent years, gaining well-known use due to showing

significant promise in several engineering applications. However, artificial intelligence is

still limited in terms of general purpose applications, and more research is needed to

solve many problems.

The majority of current applications are supported by fuzzy logic and artificial

neural networks. Both methods are commonly used to control complex and uncertain

systems. Fuzzy logic is the theory to adapt a rule-and-inference based reasoning approach

to represent fuzzy sets, rather than crisp sets, of input and output numbers in linguistic

forms [4, 5]. The advantages of fuzzy logic are robustness from noise or uncertain

failures and the ability to handle nonlinear systems. However, the main disadvantage is

the lack of a formal process to define a rule base, especially in unknown system.

Artificial neural network theory represents a system by training exact input and output

data, and formulates an approximation model of the system. This method is very effective

when the data sets are exact and collected from all possible ranges of the system. Also,

artificial neural networks require long training time to optimize weights and biases. These

 7

two methods can be combined as integrated systems to aid each other mutually. In this

paper, fuzzy logic systems and neural networks are introduced to solve inverse

kinematics. Additionally, a hybrid system like ANFIS and Fuzzy-GA is proposed to

define fuzzy rules numerically. In the next section, motivation of this thesis is presented.

1.3. Motivation

The main issue which should be addressed is the inverse kinematics. The solution

of the inverse kinematics is complex because of the nonlinearities; as a result, a closed

form solution may not be found. Multiple or infinite solutions may exist when the

Jacobian matrices are rank deficient or manipulators are kinematically redundant. Even if

the inverse kinematics has a closed form solution, unstable movements may happen near

the singularities.

In inverse kinematics of redundant manipulators, the extra degrees of freedom can

be effectively used to improve the manipulator’s ability to avoid obstacles or singular

points. On the other hand, inverse kinematics of redundant manipulators is more complex

than non-redundant manipulators. Mapping between position space and joint space has

always been difficult for redundant manipulators because of the presence of a non-square

Jacobian matrix. Therefore, some constraints are needed to make the Jacobian a square

and non-singular matrix.

To solve the inverse kinematics problems, various computational schemes have

been developed. However, a major difficulty in solving inverse kinematics is associated

with demanding computations required to solve pseudo-inverse calculations. To reduce

 8

the computational complexity of inverse kinematics and redundant resolution, fuzzy and

neural network methods are used in this paper. The next section outlines the structure of

this thesis.

1.4. Thesis Outline

Chapter 2 discusses a general concept of the kinematics. Homogeneous

transformation matrices and Denavit-Hartenberg parameters are introduced. The forward

kinematics is formulated using the transformation matrix, and differential kinematics is

presented with the Jacobian matrix. The inverse kinematics is also analyzed and its

differential kinematics is described by the geometric Jacobian matrix. Singular

configurations are characterized, and several methods are discussed to avoid the

singularities.

Chapter 3 introduces the WAM-Titan II teleoperation, and the specifications are

discussed. DH parameters for the WAM and Titan II manipulators are developed, and

kinematic transformations for both manipulators and the formulation of the

corresponding Jacobian are provided. Moreover, the architecture of the teleoperation

system is explained.

Chapter 4 presents the fuzzy logic and the artificial neural network. Brief reviews

of the fuzzy logic and the artificial neural network are provided. For the fuzzy logic,

ANFIS and GA are introduced. For the artificial neural networks, MLP-BP with LM,

RBF, and GRNN are discussed.

 9

Chapter 5 describes the simulation approach for inverse kinematics of a 3-DOF

planar manipulator using the methods explained in Chapter 4. Kinematics of the planar

manipulator is analyzed, and details for the each method are explained.

Chapter 6 discusses the simulation results for the planar manipulator, and they are

analyzed to find the best method. The MLP-BP is chosen for the real teleoperation

system, and the final simulation experiments for the Titan II manipulator are performed

using MLP-BP. The results are discussed in detail. A summary and suggestions for future

work are given in Chapter 7.

 10

CHAPTER 2: Kinematics

2.1. Introduction

This chapter is devoted to the kinematics of serial type robotic manipulators. The

study is general, but is focused in the WAM-Titan II Teleoperation System manipulators

in Chapter 3. Kinematics is the study of dynamics and generally deals with the motion of

bodies. Therefore, the kinematics of robotic manipulators involves the geometric or time-

based properties of the motion, such as position, velocity, acceleration, or higher order

derivatives [6]. A robotic manipulator is considered as a set of chain links connected by

joints, and a joint appears between adjacent links. One end of the kinematic chain is fixed

to a base, and the other end, called an end-effector generally is positioned. The links are

numbered from the base to the end of the chain. The joints also are numbered in same

manner. Generally, manipulators have revolute joints or prismatic joints. The revolute

joint is usually considered as one axis of rotation of connected links. The prismatic joint,

which can slide, is considered as one axis of translation of connected links. Therefore,

generally a joint has a single degree of freedom, and n joints of a manipulator have n

degrees of freedom.

Typically, a manipulator needs 6-DOF to operate in three-dimensional space.

Therefore, at least six joints are required in order to manipulate: three for position and

three for orientation. In particular, a planar manipulator needs at least three joints: two for

 11

position and one for orientation. Therefore, a function in terms of joint angles

characterizes the position and the orientation of the end-effector. If a manipulator has

more degrees of freedom than those required to operate, then the manipulator is

kinematically redundant, and it is called a redundant manipulator. Redundant

manipulators easily achieve more dexterous motions.

Forward kinematics determines position and orientation from joint angles. In

contrast to forward kinematics, inverse kinematics determines joint angles from position

and orientation. Forward kinematics always has a unique solution, but inverse kinematics

may have infinite solutions. The relationship between the joint velocities and the

linear/angular velocity of the end-effector is given by differential or velocity kinematics.

This can be described by a Jacobian matrix. The Jacobian matrix has the current

manipulator configuration, and it can be computed by differentiating the forward

kinematics with respect to the joint variables. From the velocity relationship with the

Jacobian matrix, the forward and inverse kinematics can be also described instead of

position and orientation. Indeed, the differential kinematics is useful when the

manipulator characteristics need to be analyzed. Especially, in the inverse kinematics, the

Jacobian matrix is the main tool to perform and determine inverse kinematics algorithms.

Calculation of kinematics using homogeneous transformations is introduced in the next

section.

2.2. Homogeneous Transformation

To determine the kinematic relationship between joint angles and

position/orientation, a transformation from a base to an end-effector is necessary. For this,

 12

a homogeneous transformation is defined in [6~8]. Typically a position of any joint is

expressed with respect to a base reference frame, and the orientation is also expressed in

terms of the three unit vectors with respect to the same reference frame. This expression

is presented by the relationship between the coordinates of the same point in two different

fames, o and a. If is the vector of coordinates of an arbitrary point x with respect to

the reference frame o, then it can be expressed as

ox

 (2.1) o o o
a a= +x x R xa

where is the vector which describes the origin of frame a with respect to the reference

frame o, and R is a rotational matrix of frame a with respect to the reference frame o.

 is the vector of coordinates of the point

o
ax

o
a

ax x with respect to frame a. It is shown in

Figure 2-1.

ox o

oz

oy

ay

ax

az

a

x

ox

ax

o
ax

Figure 2-1. Homogeneous transformation

 13

The equation (2.1) can be represented as

1

o o
o a a

T
a⎡ ⎤

= ⎢ ⎥
⎣ ⎦

R x
x

0
x (2.2)

where the
1

o
o ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x
x and the

1

a
a ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x
x . This representation is called as the homogeneous

representation, and the (4x4) matrix is called as homogeneous transformation .

Therefore, the equation (2.2) can be rewritten as

o
aA

 (2.3) o o
a=x A xa

a

a

For more analysis of the equation (2.1), it is differentiated with respect to time as

 (2.4) o o o a o
a a a= + +x x R x R x

This expression can be rewritten with skew-symmetric matrix and constant as ax

 (2.5)
0

0

()o o o
a a a
o o a
a a a

= +

= + ×

x x S ω R x

x ω R x

where and =R SR ()ωS is a skew-symmetric matrix in term of angular velocities. This

result is useful later for the Jacobian matrix [6, 8], and Denavit-Hartenberg parameters

are shown in the next section.

2.3. Denavit-Hartenberg Parameters

From the homogeneous transformation, a general method is required to describe

link connections for a specific manipulator. The basic idea is that every manipulator can

be described by Denavit-Hartenberg parameters with a kinematic link relationship. The

DH parameters are the link length (), the link twist (a α), the link offset (), and the d

 14

joint angles (θ). From the link relationship, the homogeneous transformation matrix is

obtained to define the position/orientation of the current joint with respect to the previous

joint. If every homogeneous transformation matrix of a manipulator can be defined from

the DH parameters, then the position/orientation of the end-effector can be also defined

with respect to the reference frame, which is generally its base.

As shown in Figure 2-2, the basic concept of defining the DH parameters is

described follows [6~8]. The angle iα is the distance between and , and the

distance is the coordinate of ' along axis

io 'io

id io 1i−z as shown in Figure 2-1. The link twist,

iα , is the angle between axis 1i−z and axis about axis . The joint angle, iz ix iθ , is the

angle between axis and axis about axis 1i−x ix 1i−z . Counter-clockwise rotation is

positive for iα , and iθ . The link length and the link twist are always constant at each

Link i-1 Link i
Joint i

iα 'i

Figure 2-2. DH parameters

y

1i−y
1i−z

1i−x

1−ia

iθ
'ix

'iz

ix
iy

io
iz

1−io

'io
ia

id

 15

joint, but the other two parameters are variable depending on the joint type. If joint is

revolute, then iθ is variable. If joint is prismatic, then is variable. From [8], there are

two constrains for uniqueness of the DH parameters. The first is that axis is

perpendicular to axis , and the second is that axis intersects axis . These two

constrains give a unique homogeneous transformation matrix.

id

ix

1i−z ix 1i−z

Form the DH parameters, the final homogeneous transformation matrix between

two joints is

cos() sin() cos() sin()sin() cos()
sin() cos()cos() cos()sin() sin()

0 sin() cos()
0 0 0 1

i i i i i i

i i i i i i
i

i i

a
a

d

i

i

i

θ θ α θ α θ
θ θ α θ α θ

α α

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A (2.6)

Therefore, the forward kinematics is provided by matrix multiplication of the

homogeneous transformation calculated by the DH parameters. The coordinate

transformation of an n-DOF manipulator is given by

 0 0 1 2
1 2 3 ... n

n
1

n
−=T A A A A (2.7)

where is a (4x4) homogeneous transformation matrix from the base to joint n. From

the calculation of the coordinate transformation, the forward kinematics can be

determined and is described in the next section.

0
nT

2.4. Forward Kinematics

Forward kinematics determines position and orientation of the end-effector from

joint values as a variable parameter. By the above the DH parameters and the

 16

homogeneous transformation matrices, the position and orientation of an n-DOF

manipulator with respect to the base are expressed by

0 0

0 () ()
()

1
n n

n T

q q
q

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

R x
T

0
 (2.8)

where is a rotation matrix and is a position vector. In the rotation matrix, the

column vectors should be orthogonal each other, and the three column vectors form the

reference frame of the end-effector. The third column vector is in the direction of

approach of the end-effector, the second column vector is normal to the third vector in the

sliding direction, and the first vector is normal to the other two vectors in right-hand rule

[6, 8].

0
nR 0

nx

2.4.1. Jacobian matrix

Another method to describe the forward kinematics is using a velocity

relationship. This differential or velocity kinematics is presented by Jacobian matrix

which is computed by differentiation of the forward kinematics function with respect to

the joint variables. The velocity relationship can be written as

 ()θ=x J θ (2.9)

where ,
linear velociy
angular velocity
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x ()θJ is a (6)m× Jacobian matrix in terms of joint angles,

and is joint velocities. There are two types of Jacobian matrices: geometric and

analytical Jacobian. Generally, the Jacobian matrix is considered to be the geometric

Jacobian, which is slightly different from the analytical Jacobian. The main difference

between these two Jacobian matrices is that they use different velocities of rotation. The

θ

 17

rotational velocities, the Euler angles for instance, rather than the angular velocities, are

considered in the analytical Jacobian matrix. The analytical Jacobian is defined and the

relationship between the geometric and analytical Jacobian matrices is described in [6, 8].

The Jacobian can be divided by two parts. The first three rows of the Jacobian matrix are

related to linear velocity. The last three rows are related to angular velocity. Therefore,

the Jacobian matrix can be rewritten as

 v

ω

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

J
J

J
 (2.10)

In order to compute the Jacobian, it is necessary to distinguish each joint as

prismatic or revolute. In the case of a prismatic joint i, the Jacobian matrix can be written

as

 , 1

,

v i i

iω

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

J z
J 0

 (2.11)

and in case of the revolute joint i, it can be written as

 , 1

, 1

()v i i i

i iω

−

−

× −⎡ ⎤ 1−⎡ ⎤
=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

J z x x
J z

 (2.12)

where is the rotation axis of joint i , is the position vector of end-effector with

respect to the base, and is the position vector of joint i with respect to the base. The

axis can be obtained from the third column of the rotation matrix of joint i with

respect to the base frame. The vectors x and

1i−z x

1i−x

1i−z

1i−x can be obtained from the

transformation matrix [6~8]. Inverse kinematics, as a more complex problem than the

forward kinematics, is analyzed in the next section.

 18

2.5. Inverse Kinematics

Inverse kinematics determines joint values from position and orientation of the

end-effector as a variable parameter. Inverse kinematics is a useful method for

commanding position and orientation or for teleoperation between different DOF

manipulators. In addition, because controlling a manipulator is naturally executed in joint

space, inverse kinematics is used in controls [9]. However, inverse kinematics is not as

simple as the forward kinematics. Its solution may not have a closed form. Therefore,

only simple manipulator geometries allow analytical inverse kinematics solutions to be

computed. Furthermore, multiple solutions or infinite solutions may exist because of the

nonlinear characteristics. The typical example of inverse kinematics with multiple

solutions is an elbow up/down position in a planar manipulator which has three revolute

joints. At a certain given position and orientation in operational space (or Cartesian

space), the inverse kinematics of the manipulator determines two solutions: the elbow up

position and the elbow down position. In this case, the more degrees of freedom a

manipulator has, the more solutions it has. In order to overcome this problem, it is

necessary to analyze manipulators in motion. Therefore, differential or velocity inverse

kinematics with the Jacobian is required. If position and angular velocity are used as

variables instead of position and orientation, static positioning is possible, where the

Jacobian matrix has full rank. However, at certain points, the Jacobian matrix is not

invertible. These points are called as singularities. When the Jacobian is rank deficient,

one or more degrees of freedom of the manipulator are lost. Therefore, its end-effector

can move only in a certain linear or angular directions. However, in real operation of a

 19

manipulator, singularities can be avoided by the operator or software by avoiding

configurations where the links are aligned. Another problem with inverse kinematics is

approaching singularities. If an end-effector is moved close to its singularity, the Jacobian

matrix still has full rank, but its condition number becomes a high number. Therefore,

from the small velocity inputs, the large output is produced. In this case, the manipulator

has jumps or the controller shuts down the operation because it cannot drive beyond the

capabilities of the actuators. Therefore, it is also important to avoid this problem, but it is

not easy. To avoid this, Principal Component Regression (PCR) or Damped Least Square

(DLS) is used. To invert the Jacobian matrix, a pseudo-inverse method is used. Even

though the end-effector reaches singularities, the solution of the inverse kinematics is

attained from the pseudo-inverse method. If a manipulator is redundant, then its Jacobian

matrix is not invertible because it is not a square matrix. Therefore, the pseudo-inverse is

required to solve the inverse kinematics of a redundant manipulator. Singular Value

Decomposition (SVD) is another method that is used to perform the pseudo-inverse and

the PCR [22, 23].

2.5.1. Pseudo-inverse method

The pseudo-inverse is a common way to find the solution for an inverse problem.

The equation (2.9) can be written as

 (2.13) †=θ J x

 where the matrix is the pseudo-inverse, and this matrix is unique. The pseudo-inverse

has the following properties. If the Jacobian matrix is square and full rank, then

†J

† 1−=J J .

 20

If the Jacobian matrix is not full rank, then two types of the pseudo-inverse can be

considered. For the first type, the Jacobian matrix has more rows than columns. In this

case, a manipulator is kinematically insufficient, and there are more constraints than joint

velocity variables. Therefore, normally no solution exists. The solution of the pseudo-

inverse minimizes −x Jθ , and gives the closest to the desired solution, which is a least

square method. The second type is that the Jacobian matrix has more columns than rows.

In this case, the manipulator is kinematically redundant, and there are less constraints

than joint velocity variables. Therefore, generally infinite solutions exist. The pseudo-

inverse minimizes the norm of θ in this case, and its solution is the particular solution

[10]. If the Jacobian matrix is full rank, the pseudo-inverse can be calculated as

 † ()T T 1−=J J J J , (2.14)

and it is called as the right pseudo-inverse. The pseudo-inverse can be generally

calculated by the Singular Value Decomposition method explained below.

2.5.2. Singular value decomposition

Singular value decomposition (SVD) is a powerful tool for computing and

analyzing the pseudo-inverse and damped least squares methods. Let J be the Jacobian

matrix. A singular value decomposition of the Jacobian matrix consists of expressing J

in the form [21]

 (2.15) T=J UΣV

 21

where and are orthogonal matrices and is a diagonal matrix. If is (U V Σ J)m n× , then

 is (, Σ is (, and V is (U)m m×)m n×)m n× . The singular value decomposition of any

matrix exists even if the matrix is not full rank. The pseudo inverse of is equal to J

 (2.16) † † T=J VΣ U

where is the inverse of a diagonal matrix whose diagonal entries are non-zero, and it

takes the form

†Σ

1

†
2

1 0 0

10 0

10 0
r

σ

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ (2.17)

If any of the singular values is zero, then a zero is replaced in the corresponding entry of

. If the Jacobian matrix is not full rank like the above first case, then one or more

singular values will be zero. Finally the equation (2.16) can be rewritten as

†Σ

 (2.18) † 1

1

r
T

i i i
i
σ −

=

=∑J v u

where is the ith column vector of V , is the column vector of , is the rank

of the Jacobian matrix. From the maximum singular value and the minimum singular

values, the condition number can be calculated as

iv iu ith U r

 max

min

()Con σ
σ

=J . (2.19)

If condition number is high, such that the Jacobian matrix is ill conditioned, then the

Principal Component Regression (PCR) can be performed to reduce sensitivity of the

 22

Jacobian matrix. The PCR method performs SVD of the Jacobian, and it examines its

condition number. If the condition number is higher than a certain number, which is

depends on the system, then its weak or smallest singular value is replaced with zero to

eliminate the least square problem.

2.5.3. Damped Least Square (DLS)

The DLS solves inverse kinematics problems when target positions are near a

singularity area or unreachable area. In this situation, it is not easy to handle robustly, and

normal inverse methods will oscillate badly because the Jacobian is very sensitive to

small changes in joint angles. The PCR method also can solve the singularity problem,

but the DLS solves a discontinuity of the PCR when the condition number is high. The

method performs the inverse kinematics, and optimizes the joint velocities to give the

minimum position tracking error. The DLS is defined as follows [10, 11]. The joint

velocities θ are found to minimize this value

2 2λ− +x Jθ

2
θ (2.20)

where λ is the damping constant, which is not zero, and the first term shows the actual

error. The equation is equivalent to

λ
⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

J x
θ

I 0
 (2.21)

The normal of this equation is

 (2.22)
T T

λ λ λ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛

=⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝

J J J x
θ

I I I 0
⎞
⎟
⎠

 23

Therefore, this can be rewritten as

 ()2T λ+ =J J I θ J xT

)λ −

1)

 (2.23)

Because the is cannot be singular, the damped least square solution is TJ J

 (2.24) 2 1 2 1() (T T T Tλ −= + = +θ J J I J x J JJ I x

From the above equation, and 2 1()T Tλ −+J J I J 2(T T λ −+J JJ I are identical. However,

the size of is larger than if the Jacobian matrix is a redundant manipulator.

This equation can be rewritten by SVD as

TJ J TJJ

 2 1 2 1
2 2

1
() (())

r
T T T T T i

i i
i i

σλ λ
σ λ

− −

=

+ = + =
+∑J JJ I VΣ ΣΣ I U v uT (2.25)

From the equation, equation (2.18) and (2.25), the only difference is the singular value

term, which is commonly called as a filter factor. If the singular value σ is much larger

than the damping constantλ , then the DLS method is identical to the pseudo-inverse.

However, if the singular value is smaller, then the singular value term gradually goes to

zero as σ goes to zero. Therefore, the DLS method acts like the pseudo-inverse method

if an end-effector is away from singularities, and acts like PCR if an end-effector is close

to singularities. In Chapter 3, the WAM-Titan II teleoperation system is introduced, and

the specifications are presented. Moreover, the architecture of the teleoperation system is

discussed.

 24

CHAPTER 3: WAM-Titan II Teleoperation System

In teleoperation, tasks are performed by a slave manipulator while controlled by a

master manipulator remotely. Controlling the slave manipulator by the master

manipulator can be achieved by either joint-to-joint control or Cartesian space control. In

this chapter, the master and slave manipulators are introduced, and the issues with the

kinematic coordination of the end-effector in Cartesian space are investigated.

3.1. Whole-Arm-Manipulation (WAM)

The master manipulator is a 7-DOF WAM which is consisted of 4-DOF arm and

an attached 3-DOF gimbals as shown in Figure 3-1. Every joint is a revolute joint, and

the first four joints are driven by cables. Since this robot arm is cable-driven, it does not

use any gears for manipulating the joints. The gears are replaced by a cable drive,

eliminating any backlash problems and allowing for improved speed and stiffness. The

gimbals are attached to the end of the arm, and three potentiometers are put together to

measure each joint angle. However, these joints are not drivable. The gimbals’ three

revolute joint axes intersect at the middle of a handle. This spherical wrist can decouple

the position and orientation of the end-effector, which is the handle of the WAM arm.

Because it is a 7-DOF manipulator, the WAM arm is a kinematically redundant

manipulator, and this gives a benefit of more dexterous motion of the arm. As a master

 25

Figure 3-1. WAM and Titan II

 26

arm, the redundancy provides more controllable handling to the operator. The main

features of the WAM arm are back-drivability and gravity compensation. The back-

drivability is given by its advanced cable-drive system. Unlike other manipulators, for

example the Titan II, it can be operated passively by an operator. The gravity

compensation feature assists the operator to reduce fatigue. Gravity affects the whole arm,

including the joints and links, and it causes them to drop under the arm’s own weight.

The gravity compensator is able to balance the effects of gravity, so that the master

manipulator feels weightless to the operator during operation.

As mentioned previously, the WAM is a redundant manipulator, meaning that it

has more degrees of freedom than the number of degrees of freedom required to define

the position and orientation of the end-effector. In general, six degrees of freedom are

required in 3D space. The extra degree of freedom of the WAM manipulator can by

effectively used to improve the ability of the manipulator. On the other hand, this

redundant manipulator is more complex to control than a non-redundant manipulator.

Mapping between operational space and joint space has always been difficult for

redundant manipulators because of the presence of a non-square Jacobian matrix. Since a

direct pseudo-inverse does not work at all times, an additional optimization algorithm is

required along with the Jacobian calculation. Namely, some constraints need to be

implemented, which would make the Jacobian square and non-singular. Since the WAM

has seven degrees of freedom, the redundant manipulator does not have a unique solution.

Therefore, functional constraints like joint limit avoidance and obstacle avoidance

constraints can be adapted to solve the redundancy.

 27

 The WAM comes with a PC with a Linux operating system, which is patched by

the Real-Time Application Interface (RTAI). The PC includes the WAM controller

software. This performs a 500Hz position/torque control closed-loop over CAN bus

between the WAM and the PC, where the final controller commands to the WAM are the

motor torques. Therefore, the WAM itself is entirely motor torque controlled [12]. The

arm's weight ranges from 25.4 to 27.2 kg, and its payload varies from 3 to 4.5 kg

depending on the configuration.

3.1.1. DH parameters and joint ranges for WAM

The WAM can be divided by three parts: shoulder, elbow, and wrist. This

structure of the WAM is similar to a human arm. The first three joints intersect each other

at the base frame, which is the WAM reference frame. The fourth joint is the elbow, and

the last three joints also intersect each other at the middle of the handle. Therefore, the

end-effector is located at the handle. This configuration and the dimensions are shown in

Figure 3-2. The DH parameters for the WAM can be defined from the configuration and

dimensions as shown in Table 3-1.

From the DH parameters, the homogeneous transformation matrix can be

generated by the equation (2.6) and (2.7). Using the parameters in the Table 3-1, the

transformation matrix from the base frame to frame 1 is

1 1

1 10
1

cos() 0 sin() 0
sin() 0 cos() 0

0 1 0
0 0 0

θ θ
θ θ

−

0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

A , (3.1)

 28

Figure 3-2. WAM DH parameters

550 mm

400 mm
45 mm

200 mm
Gimbals

Shoulder

Elbow

Base

 29

Table 3-1. DH Parameters for WAM

i ia (m) iα (rad) id (m) iθ (rad)

1 0
2
π

− 0 1θ

2 0
2
π 0 2θ

3 0.045
2
π

− 0.55 3θ

4 0.4
2
π

− 0 4θ

5 0
2
π 0 5 2

πθ −

6 0
2
π

− 0.1514 6 2
πθ −

7 0 0 0 7θ

and other transformation matrices are shown in the Appendix A. Therefore, the final

homogeneous transformation matrix is

 . (3.2) 0 0 1 2 3 4 5
7 1 2 3 4 5 6 7=T A A A A A A A6

The calculation of Jacobian matrix is based on each of the homogeneous transformation

matrix relations. The joint ranges of the WAM are shown in Table 3-2. In the next section,

the Titan II manipulator is discussed in detail.

3.2. Titan II

The Schilling Titan II is a 6-DOF manipulator and a slave in the WAM-Titan II

teleoperation system. Its material is titanium, so that this hydraulic manipulator is durable

and versatile from precise operations to heavy duty industrial operations. Because it is

 30

Table 3-2. Joint Ranges

Joint Minimum Maximum

1 150 (2.6)rad− ° − 150 (2.6)rad°

2 113 (2.0)rad− ° − 113 (2.0)rad°

3 157 (2.8)rad− ° − 157 (2.8)rad°

4 50 (0.9)rad− ° − 180 (3.1)rad°

5 160 (2.8)rad− ° − 160 (2.8)rad°

6 160 (2.8)rad− ° − 160 (2.8)rad°

7 150 (2.6)rad− ° − 150 (2.6)rad°

driven by hydraulic power, it is possible not only to operate under water, but also to

handle large payloads. The pressure of oil supplied into the arm is 300 psi, and the

maximum lift capacity is 240 lb. The actuators of the Titan II are hydraulic linear or

rotary actuators. Each joint has a servo valve to control the oil flow though the joint’s

chambers and a resolver to measure joint angles.

The Titan II has six revolute joints: azimuth, shoulder, elbow, pitch, yaw, and roll.

The azimuth joint contains a hydraulic rotary vane actuator which rotates the arm

horizontally. The shoulder joint has a linear actuator which is connected between the

azimuth and the first link. It moves the arm vertically. The third joint, elbow, has the

same type of hydraulic actuator as the azimuth. This joint moves the second link up and

down. The pitch and yaw joints also have hydraulic rotary vane actuators, but they are

located at 90 from each other. The pitch joint moves vertically, and the yaw joint moves °

 31

horizontally. The last joint has a hydraulic rotary vane actuator, which can continuously

rotate in both directions.

The hydraulically actuated slave arm originally utilized a master controller called

a Mini-Master. This small controller is kinematically similar to the slave arm, so that an

operator controls the slave arm by joint-to-joint operation. It has a control panel and

sends signals between the Mini-Master and the Titan II via RS232 serial communication.

These signals activate a solenoid valve, and drive the hydraulic actuator. For this

teleoperation system, this master is only used for diagnostic operation.

 For the WAM-Titan teleoperation, PC/104, which is a small embedded computer,

is used to host for a low level control. The low level controller is provided by Oak Ridge

National Laboratory (ORNL), and it communicates with the Titan II via Ethernet. The

low lever control is developed by QNX, which is a real time operating system, and closes

200Hz control loop with the Titan II. The controller receives joint angle commands, and

executes low level servo control of the actuators.

3.2.1. DH parameters and joint ranges for Titan II

The dimensional and configuration diagram is shown in Figure 3-3. Each joint is

revolute, and the base frame is located on the bottom of the azimuth. The shoulder joint

connects the azimuth and the upper arm, but the joints do not intersect each other.

Furthermore, the last three joints, pitch, yaw, and wrist, also do not intersect, so they do

not form a spherical wrist. One reason for this configuration is that the Titan II is

designed for joint-to-joint teleoperation. The DH parameters for the Titan II can be

defined from the configuration as shown in Table 3-3.

 32

7.67 in

33.19 in 4.77 in

33.5 in 19.00 in 5.25 in 7.61 in

Figure 3-3. DH parameters for Schilling Titan II

Table 3-3. DH Parameters for Titan II

i ia (inch) iα (rad) id (inch) iθ (rad)

1 4.77
2
π 7.67 1θ

2 33.5 0 0 2θ

3 19 0 0 3θ

4 5.25
2
π

− 0 4θ

5 0
2
π 0 5 2

πθ +

6 0 0 7.61 6θ

 33

From the DH parameters, the homogeneous transformation matrix is calculated

like the WAM transformation matrix. Using the parameters in the Table 3-3, the

transformation matrix from the base frame to frame 1 is

1 1 1

1 1 10
1

1

cos() 0 sin() cos()
sin() 0 cos() sin()

0 1 0
0 0 0 1

a
a

d

1

1

θ θ θ
θ θ θ

⎡ ⎤
⎢ ⎥−⎢=
⎢
⎢ ⎥
⎣ ⎦

A ⎥
⎥

5

, (3.3)

and other transformation matrices are shown in Appendix B. Therefore, the final

homogeneous transformation matrix is

 . (3.4) 0 0 1 2 3 4
6 1 2 3 4 5 6=T A A A A A A

The joint ranges of the Titan II are shown in Table 3-4. In the next section, the

architecture of the WAM-Titan II teleoperation system is described.

Table 3-4. Joint Ranges for Titan II

Joint Minimum Maximum

1 135 (2.4)rad− ° − 135 (2.4)rad°

2 41.4 (0.7)rad− ° − 78.8 (1.4)rad°

3 180 (3.1)rad− ° − 90 (1.6)rad°

4 90 (1.6)rad− ° − 90 (1.6)rad°

5 90 (1.6)rad− ° − 90 (1.6)rad°

6 continuous continuous

 34

3.3. Teleoperation

The current WAM-Titan II teleoperation system is a unilateral teleoperation

system. This means that there is no force feedback between the master controller and the

slave manipulator. The WAM manipulator has capabilities for force feedback, and the

Titan II manipulator can provide end-effector force data, but the current system is not

fully developed, and does not use these features yet.

The existing teleoperation system between the WAM master and the Titan II slave

mainly runs on three computers: two for the low level controller of each manipulator and

one High Level Controller (HLC) to perform the coordinate mapping. The three

computers are connected by a local area network (LAN). Other computers are used for

simulating the slave manipulator using a commercial program, RoboWorks, developing

the Titan II low level software, and controlling with the HLC program remotely.

The HLC software is designed by REMSL, and the main function of this

controller is to perform Cartesian space mapping and to improve the control strategy. The

high level control software has been developed primarily to perform 1) the WAM

forward kinematics, 2) the Titan II inverse kinematics, and 3) the Ethernet

communication for the WAM PC, the PC/104, and the other computers. The simulation

PC operates under a Windows OS and is used to simulate the Titan II using RoboWorks.

There are two operation modes. The first is a simulation without actual operation of the

Titan II. The second mode is used for monitoring the slave during actual operation.

Therefore, an operator can easily test and observe the status of the Titan by its 3D model.

 35

The development PC is based on QNX, which is a real-time OS and is used to program

and upload to the PC/104 through the network. To control with the high level controller

remotely, a touch screen PC is used. The PC is mounted in the Compact Remote Console

(CRC) unit. The CRC was manufactured by Agile Engineering, Inc., and provides an

ergonomic teleoperation workstation for viewing and controlling manipulators. A

Windows/C++ based GUI was developed in order to select the control mode for the

teleoperation system, and also to control the camera displays on the CRC monitors. The

GUI is displayed on the touch screen computer in the CRC, along with the GUI for the

Wraptor controls. The GUI is used to control the teleoperation system remotely. This

interface allows the operator select from several operation modes, such as the orientation

modes, the Cartesian position mode, etc. The interface is based on Ethernet TCP/IP

communication between two different operating systems: the HLC uses Linux and the

touch screen uses Windows 2000. This interface can also accept keyboard inputs to the

HLC PC. The keyboard inputs have higher priority than that of the touch screen inputs.

The CRC video devices are a Pelco MX4000 Multiplexer and a CM6700 Switcher.

The CRC has the capability to connect with up to eight cameras and display on four

monitors. The Pelco Multiplexer can display a group of four or nine cameras on a single

monitor, as well as display a picture-in-picture. Therefore, an operator sitting on the CRC

can watch eight camera views at once and can change the monitor views at any time

during operation. The communication between the interface and the video devices uses

RS-232 with a Pelco ASCII protocol.

The main architecture of the WAM-Titan II teleoperation system involves the

forward kinematics transformation of the WAM master joint angles to its end-effector

 36

positions. At this phase, coordinate mapping is performed from the velocities of the

WAM to the velocities of the Titan II. The Titan II inverse kinematics then transforms the

end-effector position of the WAM to joint angles of the Titan II. For these algorithms of

the HLC, in the first step, the WAM low level control program sends the measured joint

angles of the WAM with time steps to the HLC, via Ethernet. The Titan II low level

controller also sends current Titan II joint angles to the HLC via Ethernet. The HLC

calculates the homogeneous transformation matrices and Jacobian matrices for the WAM

and the Titan II. The linear and angular velocities of the WAM end-effector are generated

by the forward kinematics, based on the WAM Jacobian. To execute the Titan II inverse

kinematics, the HLC performs the SVD and calculates the pseudo-inverse. The joint

velocities of the Titan II are calculated by the inverse kinematics with the Cartesian

velocities of the WAM and the time steps. The HLC sends the joint velocities to the Titan

low level controller, and the controller sends signals to the Titan hydraulic actuators,

which move the joints. These steps comprise one cycle of the teleoperation control loop.

In Chapter 4, brief reviews of fuzzy logic and artificial neural network are

presented. For fuzzy logic, ANFIS and GA are introduced, and for artificial neural

networks, multilayer perceptrons, RBF and GRNN are presented.

 37

CHAPTER 4: Fuzzy Logic and Artificial Neural

Networks

4.1. Fuzzy Logic

4.1.1. Overview

Much recent research has focused on development for precision and accuracy, and

the concept of fuzziness has been rejected by many scientists. However, this attitude does

not reflect the human natural reasoning process. Humans use ambiguous linguistic

meanings, and these meanings provide a big picture without a series of complex

mathematical data which have unnecessary details. Therefore, fuzzy logic gives this

conventional way of natural language to understand and to infer uncertain facts and their

relationships. Fuzzy set theory was developed by Zadeh first in 1965, and the first fuzzy

inference system was proposed by Mamdani in 1974 [28, 29]. Fuzzy logic uses this

concept with if-then rules to interpret and apply humans’ expert knowledge. Fuzzy logic

is useful where [30]

1) Mathematical models are difficult to specify.

2) Rules which express knowledge and facts are linguistic in nature.

3) Classes of objects are more fuzzy than crisp in categorical data analysis.

4) Observations are expressed in linguistic terms to implement human control

strategies in robotics.

 38

Therefore, the fuzzy logic is another intelligent tool to understand and express a non-

linear or complex system without massive mathematical forms. However, a disadvantage

of fuzzy logic is the lack of a formal procedure to describe the fuzzy sets and membership

functions of the control rules. Furthermore, for an unknown system without expert human

knowledge, it is difficult to define rules with an ordinary fuzzy logic method.

The fuzzy logic concept uses mapping between input space and output space like

other artificial intelligence methods. The input and output are described by if-then rules

involving linguistic variables. The fuzzy rules may be derived from a mathematical

model, expert knowledge, or an algorithm which automatically generates the fuzzy model.

One of the significant differences of fuzzy logic is the fuzzy set and membership function

(MF) represented by membership values. The fuzzy set contains elements with a partial

degree of membership, unlike a crisp set, and the membership function maps the values

of the universe of discourse onto the degrees of membership between 0 and 1 [4, 13].

The fuzzy inference system consists of five steps as shown in Figure 4-1. These

process steps are explained in [5, 24, 30], and they are

Step 1: Fuzzifying input variables using membership functions.

In this step, the inputs are taken, and determined by the degree where they belong to each

of the appropriate fuzzy sets via membership functions. The inputs are always crisp

numerical values limited to the universe of discourse of the input variables. The output is

a fuzzy degree of membership in the qualifying linguistic set, and always the interval

between 0 and 1. The mapping can be written as

 : [0,X 1]μ → (4.1)

 39

Fuzzification Implication Defuzzification

Fuzzy
Operation

Input Output

Inference
Engine

Aggregation

Figure 4-1. Fuzzy inference system

Step2: Applying the fuzzy operator.

The fuzzy operator is applied to resolve the antecedent if there are multiple inputs. For

instance, the if-then rules are formed as

 1 2() () ()If input x AND input y THEN output z= = = , (4.2)

where , input , and output represent fuzzy variables, and 1input 2 x , y and are fuzzy

values. There are two parts of the antecedent, and in this case, two parts of the antecedent

are calculated together and produce a single number using the logical operators like AND

or OR operation. The AND operator is usually min (minimum) or prod (product). The OR

operator is either the max (maximum) or the probor (probabilistic OR), which is the

algebraic sum .

z

(,)a b a b= + ab−

 40

Step3: Applying the implication method.

The implication reshapes and evaluates the consequent of the rule using the result of the

antecedent of the rule. The input of implication is one single value and the output of

implication is fuzzy sets. There are two commonly used methods: the AND method and

the prod method. The AND method, which is min (minimum), truncates the output fuzzy

set, and prod (product) scales the output fuzzy set.

Step 4: Aggregating all outputs.

Aggregation combines the fuzzy outputs, which represent the outputs of each rule, to

result in a final fuzzy output set. The inputs of the aggregation process are the list of

truncated or scaled output membership functions, and the output is one fuzzy set for each

output variable. Commonly used methods are Max (maximum), probor (probabilistic

OR), and sum (simply the sum of each rule’s output set). An example of the fuzzy

operation, the implication, and the aggregation is shown in Figure 4-2.

Step 5: Defuzzifying.

In this step, the fuzzy output set is converted to crisp output. There are several methods

for defuzzification, such as (1) centroid, which finds the geometric center of area or

gravity of the fuzzy set, (2) bisector, (3) middle of maximum, which is the average of the

maximum value of the output set, (4) largest of maximum, and (5) smallest of maximum.

 41

OR THEN

5. Defuzzify
 (centroid) 2. Fuzzy

 operation
 (max)

3. Implication
 (min)

4. Aggregation
 (max)

1. Fuzzify
 inputs

Figure 4-2. Example of fuzzy inference engine

4.1.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a hybrid system with the best aspects of fuzzy logic and artificial neural

networks, and was originally proposed by Jang in 1993 [31]. From the fuzzy logic,

ANFIS represents past knowledge in a set of constrains to reduce the optimization

process of the artificial neural network. From the artificial neural network, it adapts

backpropagation to tune fuzzy logic parameters automatically to the network. Therefore,

the model of ANFIS can be explained by past data and predicted for future behaviors.

ANFIS has proven to be an excellent function approximation tool. It implements first or

zeroth order Sugeno-type systems where output membership functions are either linear or

 42

constant. The ANFIS constructs a fuzzy inference system, while membership parameters

are adjusted by a backpropagation algorithm. Thus, before the optimization processes for

the membership parameters, input and output data sets are required to be given [5].

There are some constrains of ANFIS because of its complexity, and the

constraints are mainly associated with the Sugeno-type systems. The output membership

function should be linear or constant. Therefore, the Sugeno-type system is either first

order or zeroth order. The output of ANFIS is obtained by weighted average

defuzzification, and the output should be single. Another constraint is that one rule

connects only one output membership function. Rules cannot be shared. Therefore, the

number of output membership functions is equal to the number of rules. The last

constraint is that each rule has a single weight which is updated from backpropagation [4].

An example of an ANFIS structure is shown in Figure 4-3. There are two inputs

and one output. The first input has three membership functions, and the other input has

fifteen membership functions. The membership function can be any type, but it should be

same for every input. The number of rules is equal to the number of all possible cases,

which is fourteen. Each node in the first layer generates the membership of inputs. The

second layer implements the fuzzy AND operator, and calculates the firing strength of

each rule. The third layer calculates the ratio of the rule’s firing strength to the sum of all

the firing strengths at each node. The fourth layer generates the output level with the

consequent parameters, and the output level is multiplied by the output of the third layer.

The last layer aggregates the overall output by summing all the outputs of the fourth layer

[4, 31, 33]. The tuning of adjustable parameters is a two-step procedure [31, 33]. In the

first step, information is estimated in the network until the third layer, and the parameters

 43

Figure 4-3. ANFIS structure

are determined by a least-squares method. Subsequently the parameters in the input

membership functions are altered using the gradient descent method.

4.1.3. Genetic Algorithms (GA)

Genetic Algorithms are another type of artificial intelligence method, which is

reliable and robust for optimizing and solving solutions. GA were proposed by Holland in

1975 [32]. This method originated from the biological concept of genetics and evolution

theory [14]. As regarding that the most complete controllers are the human brain and

other several astonishing natural controllers, natural selection, which is the process of

evolution, is a highly successful design procedure. Genetic Algorithms use this scheme to

 44

process and expand complex problems in which parameters interact. Individuals

characterize potential solutions, and they are selected according to their fitness. They pass

on their characteristics to following generations. Mating takes place between these

individuals with sharing the characteristics of winning individuals, even fitter individuals

can be created. Mutation also occurs to add new genes into a population. As in nature,

most mutations are bad, but the infrequent valuable one can help improve the fitness of

the individuals finding a better solution.

The basic ideas of Genetic Algorithms are chromosomes, population, inheritance,

mutation, selection, and crossover. The chromosome is an encoded string map to be

optimized. It can hold a float value or binary value. The population is a group of

individuals. Each individual is evaluated by decoding the chromosome values. After the

fitness of each individual is evaluated, the selection procedure is performed. Individuals

are selected to create the next generation. The probability of the selection procedure is

related to the fitness function. A popular selection algorithm is the Roulette Wheel

algorithm. The crossover takes place between pairs of individuals. The strings, which are

float values or binary values, are mixed. The most basic crossover algorithm is Single

Point Crossover. The mutation changes bits or individuals randomly. This procedure is

performed with a low probability. Mutation guarantees that the probability of searching a

given part of the solution space is never zero [14]. The basic procedure of genetic

algorithms is

1. Randomly generate an initial population.

2. Evaluate all individuals using a fitness function, or evaluation function.

3. Select a new population using a selection algorithm.

 45

4. Perform crossover and mutation.

5. Evaluate the new population using the fitness function.

6. Repeat the above procedure until it reaches a goal error, or reaches the maximum

number of a population.

Many researchers have applied GA theory to finding optimized fuzzy inference

systems. For example, the GA method is applied to optimize an if-then rule base of fuzzy

logic, where the membership functions are already created [15]. In another approach, a

GA is used for determining the number of membership functions, the number of fuzzy

rules, and the rule base [16]. In a third approach in [17], GA is implemented by

characteristic parameters to automate fuzzy logic design. This method is applied in this

thesis. In this case, the GA can design fuzzy logic flexibly, with the numbers and

positions of membership functions determined by the GA as well as the rule base. In the

next section, artificial neural networks are discussed for the last three methods which are

MLP, RBF, and GRNN.

4.2. Artificial Neural Networks

4.2.1. Overview

Artificial neural networks are a method of computation and information

processing that takes advantage of the structure of human brain. The human brain is

embodied with neurons, and these neurons are linked each other through dendrites and

axons. Signals transfer by chemical and electrical process in a synapse. The synaptic gap

and its adjustment lead to the storage of information or learning [33, 35]. Mimicking

these processes of biological neurons, the perceptron which is a mathematical model of

 46

the neuron was developed by Rosenblatt in 1959 [37]. Artificial neural networks are used

to predict and learn from a given set of data, and are a mapping process from input space

to output space. All inputs are added with weights and biases, and passed to an activation

function, which introduces nonlinearity to the network. The activation function, or a

transfer function, makes networks capable of representing nonlinear characteristics. As

shown in Figure 4-4, hard limit functions, linear functions and sigmoidal functions are

common. The output from the activation function can be connected to another neuron’s

input. The weights and biases are trained to minimize errors between desired outputs and

actual outputs. The training is a learning process to update weights and biases. The

weights and the biases have important roles in artificial neural networks. The weights

determine the position in the input space, and without biases, inputs are constrained to

pass through the origin of the input space [33].

-5 0 5

-1

0

1

a) Hard limit function
-5 0 5

-1

0

1

b) Linear function

-5 0 5

-1

0

1

c) Sigmoidal (logsig) function
-5 0 5

-1

0

1

d) Sigmoidal (tansig) function

Figure 4-4. Activation functions

 47

Important characteristics of an artificial neural network are the ability to perform

nonlinear mapping, and less sensitivity to noise. Because any failure of neurons or

weights will slightly affect the performance, it is fault tolerant. Furthermore, it is easily

implemented in other systems. However, artificial neural networks have the some

drawbacks. They require extensive training data for training, and the training process is

very time consuming according to the task. In addition, their characteristics prevent

heuristic knowledge, so that the reason why they reach the results can not be explained.

[19]

The architecture of neural networks consists of neurons, layers, activation

functions, and connections between layers. A single neuron may perform in certain cases,

but several neurons are more effective. More than one neuron can be merged together in a

layer, and a neural network can have multiple layers. Moreover, a single layer neural

network may solve a simple problem, but multiple layers can solve more complex

problems. In multiple layers, each neuron in each layer has an individual weight and bias,

yet it has a common activation function. Multilayer feedforward networks are commonly

used. This network type has three kinds of layers: an input layer, hidden layers, and an

output layer. The input layer does not have any neuron which contains a weight, a bias,

and an activation function. Therefore, the input layer may not be called a layer. The

neurons in the input layer accept inputs and distribute them to a subsequent hidden layer.

Each hidden layer produces summations of weighted inputs and biases, and sends them to

a transfer function. The result of the transfer function becomes inputs to the next layer.

Finally, the last output layer produces outputs. The number of neurons in input and output

layers is already decided by the respective problem statement. Therefore, only hidden

 48

layers are considered in designing the architecture of the neural network. The number of

hidden layers is not easy to decide, and it depends on training data and complexity of the

problem. There is no straightforward rule to determine the number of hidden layers and

the nodes in the hidden layer.

4.2.2. Multilayer Perceptrons Network (MLP)

A multilayer perceptrons network is a feedforward network with nonlinear

activation functions and a linear output layer. This type of network can approximate any

function between input and output association with enough neurons. For a training

method, the MLP generally uses backpropagation to optimize network error. The MLP

may be trapped in local minima instead of global minima. In this case, the best ways to

avoid local minima are to repeat the training until acceptable error is found or to increase

the number of neurons. For the basic procedure of the MLP, weights are initialized to

random small values and inputs are weighted by these weight matrices, added with the

biases, and acted upon by the activation function. The final outputs are compared with the

desired output, and the error is calculated. This error is back propagated through the

network, and weights and biases are adjusted to minimize the error. This is repeated until

the error goal is met. A structure of a basic neuron with multiple inputs is shown in

Figure 4-5. It shows the weights w(n), the bias b, the summation of weighted incoming

signals, and the activation function F(). The cell inputs are n times signals p, and the

output is the scalar a. They can be expressed as

1

(
n

j j
j

a w p
=

)b= +∑F (4.3)

 49

Sum F()

b

Output
Input

w1

w2

w3

wn

⋅F(w p + b)

pn

p3

p2

p1

Weights

Activation
Function

Bias

Figure 4-5. Structure of a basic neuron

 Levenberg Marquardt (LM)

The Levenberg Marquardt (LM) method is one of optimization or nonlinear least

squares solution, and it is the fastest training method in the backpropagation training

method. Levenberg [26] and later Marquardt [27] suggested a damped Gauss-Newton

method. LM searches the minimum of a multivariable function which is a performance

function and the sum of the squares of the error in artificial neural network. LM is

iterative like other nonlinear optimization methods, and it does not require computation

of the Hessian matrix. The performance function can be expressed with the Jacobian

gradient and the Hessian matrix. If the Jacobian gradient is zero at a stationary point or a

saddle point and the Hessian matrix is positive definite, then the input variables, which

 50

are weights and biases in artificial neural networks, are in local minima. LM can be

computed as

 1[]Tμ −Δ = − +x I J J g (4.4)

where μ is scalar, T e=g J , is the Jacobian matrix, and is an approximate

Hessian matrix. From the equation, the value of

J TJ J

μ is decreased or increased depending

on how the performance function changes. Therefore, LM can be thought of as a

combination of steepest descent and the Gauss-Newton method. When the current

solution is far from the correct one, μ is increased, and the algorithm behaves like a

steepest descent method, which is slow but guaranteed to converge. When the current

solution is close to the correct solution, μ is decreased, and LM becomes a Gauss-

Newton method. The μ can be regarded as a learning rate [34].

 The main disadvantage of the LM method is that it requires storage memory for

some matrices which is quite large for certain problems. A memory reduction method can

reduce the memory usage, but there is a drawback to using memory reduction. The

memory deduction method performs that a large matrix is broken up into submatrices,

and a significant computational overhead is associated with computing the large matrix in

submatrices [18].

4.2.3. Radial Basis Function Network (RBF)

A Radial Basis Function (RBF) is another type of artificial neural networks. RBF

has a similar architecture of multilayer networks, but it uses a distance between weights

and inputs instead of weighted inputs. The distance is multiplied by biases. RBF has two

 51

layers, a hidden layer and an output layer. For the hidden layer, a Gaussian nonlinear

transfer function is used. The outer layer neurons are activated by a standard linear

function like a multilayer perceptrons method. If the distance is close to zero, the

nonlinear function at the hidden layer has maximum output, and the hidden layer neuron

is activated. A spread constant value is used for RBF, and the value is related to the bias

in the hidden layer. RBF is good for identifying a function with less training time.

However, it requires more neurons than other methods [36, 38].

4.2.4. Generalized Regression Neural Network (GRNN)

Generalized Regression Neural Network (GRNN) is a kind of RBF, but has a

special linear layer. The first hidden layer is a radial basis layer, which is the same as

RBF. The special linear layer is the summation layer, which consists of the summation

neurons and one division neuron. The summation neuron calculates the sum of the

weighted outputs of the pattern layer, and the division neuron calculates the sum of the

un-weighted outputs of the pattern layer. The output layer divides the output of the

summation neuron by the output of the division neuron. This method also has good

results with appropriate spread constants outside of its training range, and it has the

fastest training method [39].

In Chapter 5, the simulation approach for inverse kinematics of a 3-DOF planar

manipulator using the five methods explained in this chapter is described. Kinematics of

the planar manipulator is analyzed, and details for the each method are explained.

 52

CHAPTER 5: Simulation Approach

5.1. Introduction

In order to choose an appropriate and efficient algorithm to execute the inverse

kinematics, a series of simulations were conducted using a 3-DOF planar manipulator as

shown in Figure 5-1. The purpose of the inverse kinematics is to determine the values of

joint variables given in Cartesian space. The differential kinematics is described by a

Jacobian matrix. The Jacobian is useful for finding singular configurations, analyzing

redundancy, and determining inverse kinematics algorithms. The main issue which

should be addressed is the complexity of the inverse kinematics solution that results from

the nonlinearities; as a result, a closed form solution may not be found. Multiple or

infinite solutions may exist when the Jacobian matrices are rank deficient or the

manipulators are kinematically redundant. Even when the inverse kinematics has a closed

form solution, unstable movements may happen near the singularities.

This simulation introduces several techniques based on fuzzy logic and artificial

neural network systems, like ANFIS, Fuzzy-GA, MLP-LM, RBF, and GRNN, to solve

for the inverse kinematics solution of the 3-DOF planar manipulator. Computing the

inverse kinematics using fuzzy logic and artificial neural networks overcomes the

disadvantage of the large amount of calculations, so that the real-time performance can be

improved to suitable accuracy. The methods also may solve singularity problems.

 53

3θ

2θ

y

x
1θ

1a

2a

3a

3y
3x

2x

2y

1x

1y

0x

0y

Figure 5-1. 3-DOF planar manipulator

The 3-DOF planar manipulator was chosen to perform the simulation because it

has a simpler architecture and less number of degree of freedom compared to the real 6-

DOF manipulator. With the 3-DOF manipulator, it is possible to simulate several

artificial intelligent methods in less time and easily to modify the artificial intelligent

methods to improve their performance. If a greater number of DOF is chosen, then this

manipulator requires complicated architecture of each artificial method. Therefore, more

training or modification time is required. If a smaller number of DOF manipulator is

chosen, then it is possible to simulate easily and quickly, but it may not adaptable to

move on the real simulation due to its small number of DOF. Furthermore, the 3-DOF

manipulator is a redundant manipulator in 2-D work space because the simulation is only

concerned in a position operation. Therefore, the Jacobian matrix of the 3-DOF

 54

manipulator is not square due to its extra degree of freedom, so that the simulation of the

3-DOF manipulator can be adapted to a redundant manipulator simulation too.

In order to solve the inverse kinematics problems, much research has been

pursued in artificial intelligence. For instance, many researchers applied fuzzy logic in

1990’s. For example, fuzzy logic was applied for the inverse kinematics solution of a 3-

DOF planar manipulator based on the gradient method. The outputs of a fuzzy logic

system are joint velocities, and the inputs are a transpose of Jacobian matrix with current

errors [24]. In another approach in [40], Fuzzy Associative Memory (FAM) is used as a

regular fuzzy logic rule-base, and applied to a 4-DOF planar manipulator. The outputs are

joint velocities, and the inputs are Jacobian and Cartesian velocities. For hybrid fuzzy

logic which is combined with other artificial intelligence, [41] uses ANFIS for a 2-DOF

planar manipulator, and [42] uses GA for Stanford and puma 260 robots. For another

instance for the artificial neural networks, inverse kinematics and geometrically bounded

singularities prevention are applied for a 3-DOF planar manipulator [43]. This approach

uses two neural networks to perform redundancy resolution. The outputs are joint

velocities and inputs are Cartesian velocity and current joint angles. [44] uses a Hopfield

network, a recurrent network, to perform inverse kinematics for 4-DOF planar

manipulator. The outputs are joint accelerations from an energy function, and inputs are

Cartesian velocity and current joint angles.

From the above work, it is easily seen that many kinds of investigations were

performed by artificial intelligence for inverse kinematics calculations. However, these

artificial intelligence methods were mostly applied to low number of DOF planar

manipulators. Especially, Cartesian velocities and current joint angles were used as inputs

 55

to perform inverse kinematics. However, if an artificial intelligence method computes an

inverse Jacobian matrix instead of Cartesian velocities and joint angles, then the inverse

kinematics can be performed simpler and faster. In this case, inputs of the new artificial

intelligence are current joint angles only, and the inverse kinematics is performed

separately. This method allows fast execution time and fewer number of inputs.

Furthermore, this novel method can be implemented by other inverse techniques such as

pseudo-inverse, DLS, and redundancy resolution.

The planar manipulator is a combination of three links and three joints with one

end fixed and the other end free. The joints are all revolute and are driven by actuators. In

order to move the free end, called the end-effector, along a certain path, the joints are to

be moved to track the desired path. It is necessary to know the displacements of the joints

at each instant of time. In terms of robotics, kinematics is the study of motion of

manipulators with position, velocity and acceleration of each link and the end-effector

without consideration of masses and torques/moments [20]. The forward kinematics

approach determines the position and orientation of the end-effector in a Cartesian space,

given the joint displacements and the link parameters. This approach always has a unique

solution. The other approach, called the inverse kinematics, deals with finding the joint

displacements for a given position and orientation of the end-effector. The inverse

kinematics approach in robotics is essential to robot motion panning and control. While

forward kinematics is simple, straightforward, and has a unique solution, the inverse

kinematics can be complex depending on the structure of the robot and its number of

degrees of freedom. The inverse kinematics of the 3-DOF manipulator normally has

multiple or even infinite possible solutions and it is not always obvious which set of joint

 56

angles to choose. This makes it difficult for the manipulators to track the Cartesian

commands in real-time.

Figure 5-2 shows a typical block diagram of an industrial robot, which has two

phases, a planning phase and an execution phase. In the planning phase, a desired

trajectory is represented by inverse kinematics. The error between the outputs of the

inverse kinematics and actual joint angles is delivered to the controller in the execution

phase. The controller drives the manipulator to track the converted joint movements. In

the simulation, only the planning phase is considered.

DH parameters for the 3-DOF planar manipulator are shown in Table 5-1. From the DH

parameters, the homogeneous transformation matrix from base frame to the end- effector

frame is calculated as

 (5.1)

123 123 1 1 2 12 3 123

123 123 1 1 2 12 3 1230
3

c s 0 c c c
s c 0 s s s
0 0 1 0
0 0 0 1

a a a
a a a

− + +⎡ ⎤
⎢ ⎥+ +⎢=
⎢
⎢ ⎥
⎣ ⎦

T ⎥
⎥

x θ e θ
Inverse

Kinematics Controller Manipulator
+ -

Planning Execution

τ

Figure 5-2. General block diagram of a manipulator

 57

Table 5-1. DH Parameter for the 3-DOF Manipulator

i ia (m) iα (rad) id (inch) iθ (rad)

1 1a 0 0 1θ

2 2a 0 0 2θ

3 3a 0 0 3θ

where is the end-effector Jacobian of the manipulator. The Jacobian matrix is

calculated as

2 3×∈J R

 11 12 13

21 22 23

J J J
J J J
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

J (5.3)

where 11 1 1 2 1 2 3 1 2 3sin() sin() sin()J a a aθ θ θ θ θ θ= − − + − + +

21 1 1 2 1 2 3 1 2 3cos() cos() cos()J a a aθ θ θ θ θ θ= + + + + +

12 2 1 2 3 1 2 3sin() sin()J a aθ θ θ θ= − + − + +θ

22 2 1 2 3 1 2 3cos() cos()J a aθ θ θ θ= + + + +θ

13 3 1 2 3sin()J a θ θ θ= − + +

23 3 1 2 3cos()J a θ θ θ= + + .

The above equation can be solved for by means of the pseudo-inverse as q †J

 † ()θ=θ J x (5.4)

 58

where is the pseudo-inverse of J . If the rank of the Jacobian matrix is 2, then the

right pseudo-inverse is

†J

† (1T)T −=J J JJ . The right pseudo-inverse of J can also be found

using singular value decomposition. If the rank is less than 2, the pseudo-inverse can be

solved as using SVD. In the redundancy resolution, it is crucial to compute

 for each of the relevant joint space configuration. However, it is very difficult to

achieve the desired real-time operation with conventional digital and sequential

computational methods.

† † T=J VΣ U

†J x

 The Figure 5-3 shows the workspace of the 3-DOF planar manipulator. The home

position of the manipulator is 1 18θ = ° , 2 70θ = ° , and 3 70θ = ° which is an elbow up

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 5-3. Workspace of the 3-DOF manipulator
 59

configuration. Joint limit ranges are arbitrarily chosen as 130 130iθ− ≤ ≤ where

 each revolute joint. A length of one meter is selected for all the links. The

next section discusses the fuzzy logic for the 3-DOF planar manipulator simulation.

1, 2, 3i and=

5.2. Fuzzy Logic

5.2.1. ANFIS

As shown in Figure 5-4, the fuzzy logic inference system takes as inputs the

elements of the Jacobian matrix, which is calculated from the current joint variable values.

From these inputs, the fuzzy logic inference system generates as outputs the elements of

the Jacobian pseudo-inverse matrix, so that the inverse kinematic system calculates the

† ()θJ x

Inverse Kinematics

θ x θ

†J

∫

Fuzzy
Logic Inference

System

θ

Figure 5-4. Inverse Kinematics system for ANFIS

 60

necessary trajectories for the joint variables based on the location of the end-effector.

Instead of performing inverse kinematics, the fuzzy inference system generates the

Jacobian pseudo-inverse matrix first, and then performs the inverse kinematics

calculations, so that the number of inputs can be reduced. If the inference system

performs inverse kinematics, generally eight inputs are required: two for the location of

the end-effector and six for the elements of the Jacobian matrix. The number of inputs

strongly influences the training and performance time.

As mentioned in Chapter 4, ANFIS has some constraints, unlike a regular fuzzy

logic method. The most critical one is that ANFIS can accept only one output. Therefore,

the inverse kinematic system needs six fuzzy logic inference systems for each element of

the Jacobian pseudo-inverse matrix. As the number of degrees of freedom of the

manipulator increases, the number of required inference systems also increases. The

number of membership functions is nine at each input, and triangular membership

functions are chosen as shown in Figure 5-5. For the output membership, a linear

function is chosen as the first order Sugeno-type fuzzy model. To apply the fuzzy

operators, prod is selected for the AND operator, and probor is selected for the OR

operator. The final output of the system is the weighted average of all rule outputs for

defuzzification.

To train the weights for the rule-base, first 10,000 data sets of joint angles are

generated randomly. The data set is large enough to cover all possible joint angles, even

though they are randomly collected. However, for the exact universe of discourse, the

maximum and minimum joint angles are also added manually. From the data set, the

 61

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

Joint1

D
eg

re
e

of
 m

em
be

rs
hi

p in1mf1 in1mf2 in1mf3 in1mf4 in1mf5 in1mf6 in1mf7 in1mf8 in1mf9

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

Joint2

D
eg

re
e

of
 m

em
be

rs
hi

p in2mf1 in2mf2 in2mf3 in2mf4 in2mf5 in2mf6 in2mf7 in2mf8 in2mf9

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

Joint3

D
eg

re
e

of
 m

em
be

rs
hi

p in3mf1 in3mf2 in3mf3 in3mf4 in3mf5 in3mf6 in3mf7 in3mf8 in3mf9

Figure 5-5. Membership functions for fuzzy inputs () †
11J

fuzzy input / output sets are calculated. The fuzzy inference system needs six inputs,

which are elements of the Jacobian matrix, as well as a single output, which is an element

of the Jacobian pseudo-inverse matrix.

5.2.2. Genetic Algorithm

For an alternate method of generating and adjusting fuzzy membership functions

and the fuzzy rule-base automatically, a Genetic Algorithms (GA) method is used in the

inverse kinematics solution. The main structure of the fuzzy inference system used has

the same configuration as shown in Figure 5-4. The inputs of the fuzzy inference system

are elements of the Jacobian matrix, which are calculated from the current manipulator

 62

joint angles, and the output is the pseudo-inverse matrix. Therefore, without mass

computation of the Jacobin matrix, the pseudo-inverse and SVD, this system can perform

inverse kinematics.

To apply a Genetic Algorithm to the fuzzy inference system, a means of

evaluating different designs is required. This evaluation or fitness needs to be performed

relatively quickly as a GA needs to be able to process large numbers of different

combinations of parameters. The evaluation function is a function called by a GA to

calculate the fitness of parameters from a chromosome, as shown in Figure 5-6. The

parameters are passed to the evaluation function, which processes and returns a value

corresponding to how well the parameters performed. For this, an evaluation function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1~4 Number of input/output membership functions for each variable

5~12 Spacing for how the membership functions are spread for each variable

13~20 Spacing for how the rule-base is formed

21~22 Angles for the slope of a plane for how the rule-base space is partitioned

Figure 5-6. Chromosome

 63

program is written, and the evaluation function of a rule is expressed as

N

error
Fitness

∑
+

=

1

1
 (5.5)

where error is , and N is the total number of the error. After performing

error checking, the parameters are used for creating fuzzy inference system files, and

setting the appropriate scaling factors.

†
desired fuzzyJ J− †

To run a GA, a suitable encoding for each of the parameters and bounds for each

of them must be selected. Binary encoding is used to allow the GA algorithm to search

the solution more precisely. The numbers of membership functions are limited to the odd

integers between three and nine. Therefore, the information can be captured in two bits

per variable. The spacing parameters specify how the memberships are spaced out across

the universe of discourse. The value of the parameters indicates whether the membership

functions are close together at the center of the range or spread out at the limits. The rule-

base also needs to be specified. Characteristic spacing parameters for each variable and

characteristic angles for each input variable are used to construct the rules. The spacing

parameters use a spacing method similar to the one used in the membership functions.

The angle parameters determine the slope of a line through the origin on which seed

points are placed. From those parameters, the membership functions and the rule-base

can be generated by the GA. In the next section, the artificial neural network is presented

in similar approach as the fuzzy logic.

 64

5.3. Artificial Neural Network

Multilayer neural perceptrons (MLP) networks are applied to the inverse

kinematics problem, and the networks are trained with mapping between elements of the

Jacobian matrix and elements of the Jacobian pseudo-inverse matrix, as shown in Figure

5-4. The Jacobian matrix is calculated from the DH parameters and the homogeneous

transformation matrix. The set of all possible training data is acquired randomly, like the

fuzzy logic inference system. To cover the entire workspace, 15,000 data are generated

for inputs / outputs. Unlike ANFIS, a neural network can have more than one output, but

if the number of outputs is increased, the training time and error are also increased.

Therefore, it is important to find an optimal number of outputs while comparing to the

training time and overall error. After training, the performance of the system is tested by

having the network generate joint angles for arbitrary end-effector trajectories.

Neural networks have been applied for a variety of applications which involve

non-linear relations between the input and output patterns. The inverse kinematics

application is highly nonlinear, as it involves the inverse of the Jacobian matrix. Neural

networks are more precise for the inverse kinematic system than other artificial

intelligence methods if given data set is well collected and exact. Therefore, it is

important to collect all possible and general data without noise or disturbances. For this,

overcoming singularities by several methods are required even though most data are

calculated rather than collected from simulation experiments. The DLS method is chosen

in the simulation. DLS is a powerful method not only to approximate a rank deficient

matrix, but also to prevent sudden jumps of a manipulator.

 65

In order to reduce performance time, six outputs from the artificial neural network

are used. This allows for only one network to be required to execute the inverse

kinematics. However, the training time is longer and more neurons are required to reduce

the sum of the squared errors. For the 3-DOF planar manipulator, 48 neurons are used for

six outputs. If the number of outputs is reduced, the number of neurons can be reduced,

but more networks are needed, which results in slower performance. The number of

hidden layers is also essential to increase performance. If the number of hidden layers is

raised, the calculation of the inverse kinematics will be extended. However, especially in

order to identify a nonlinear system, increasing hidden layers helps to reduce errors.

Because there are no formal processes to decide the number of neurons and hidden layers,

several experiments are necessary.

Another consideration in artificial neural network design is the activation

functions. A specific activation function is required for a certain neural network. For

instance, a perceptron network uses a hard limit function, and a linear network requires a

linear activation function. LM also needs a linear activation function for the output layer.

However, for other layers, LM does not require specific activation functions. In general,

if the inputs and outputs have nonlinear relationships, then nonlinear activation functions

are used like sigmoidal functions. MATLAB has two kinds of sigmoidal functions: logsig

and tansig. For the simulation, tansig functions are used, though they are not significantly

different.

LM uses an approximate Hessian matrix, and this allows for fast searching for

local or global minima. However, if many neurons or large training data sets are used, the

Hessian matrix becomes very large, which requires large memory space in order to

 66

perform the LM method. Therefore, there is a limitation on increasing neurons and

training data sets. In MATLAB, a memory reduction parameter can be used for reducing

memory usage. However, the training time will be slower if that parameter is used. The

basic idea of the memory reduction option is that the Hessian matrix can be calculated by

dividing into submatrices. Therefore, the whole Hessian matrix cannot be stored in

memory, but the calculation time is increased.

RBF and GRNN are similar to MLP, but they use a spread constant. The larger

spread constant the function approximation is smoother. If the smaller spread constant

than the normal distance between inputs and weights, then data are fit too closely. In

Chapter 6, the simulation results for the 3-DOF planar manipulator are discussed and

analyzed to find the best method. The MLP is chosen for the real teleoperation system,

and the final simulation for the Titan II manipulator is performed using the MLP method.

 67

CHAPTER 6: Simulation Results

6.1. Introduction

The previous chapters provided a variety of simulation approaches for each

artificial method to perform inverse kinematics to obtain Cartesian space and joint space

mapping. The ultimate goal of this simulation is to manipulate the Titan II by using the

inverse kinematics. In this chapter, the simulation results will be presented and discussed

for each of the methods that were proposed to perform the inverse kinematics for the 3-

DOF manipulator. Based on performance and error, the best of these methods will be

identified, and that method will be adopted for the 6-DOF Titan II manipulator.

Using MATLAB, a circle trajectory is generated and simulated for each method

as shown in Figure 6-1. For each method, the generated trajectory will be performed by

the 3-DOF manipulator, and the results will be analyzed. After finding the best method, a

more complex trajectory will be simulated in MATLAB and RoboWorks for the Titan II

manipulator. It is important that the final simulation is as similar to the real system as

possible, so that eventually the best method can perform as part of the WAM-Titan II

teleoperation system.

MATLAB, which uses a matrix computing environment, has powerful tools for

fuzzy logic and artificial neural networks. Its programming language is easy to

manipulate and plot any numerical calculation compared to other languages. However,

 68

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Simulation of 3DOF manipulator

Cartesian x

C
ar

te
si

an
 y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Simulation of 3DOF manipulator

Cartesian x

C
ar

te
si

an
 y

Figure 6-1. A circle trajectory for a 3-DOF manipulator

 69

symbolic calculations are not easy to perform using MATLAB. MATLAB has many

useful toolboxes, such as the Signal Processing Toolbox, the Control System Toolbox,

the Fuzzy Logic Toolbox, and the Neural Network Toolbox. For this simulation, the

Fuzzy Logic Toolbox and the Neural Network Toolbox will be used.

The RoboWorks robot simulator, created by Newtonium, can be used for

modeling and animating 3D mechanical objects. This simulator has several tools for

creating and modifying 3D objects. There is a hierarchy of objects that allows for a lower

rank object to inherit position and orientation from a higher rank object. For example, if

the higher rank object is moved or rotated, all lower rank objects are moved or rotated

together, like a manipulator’s links. Therefore, this program makes it easy to model and

simulate manipulators. Furthermore, it has a communication tool called RoboTalk that

allows for communication via a keyboard, a data file, or the Ethernet. RoboTalk allows

for precise simulations and communication between different platforms. However, the

program does not have any function to simulate physical interaction or other phenomena.

It only accepts kinematic situations which are suitable for this simulation. In the next

section, results of fuzzy logic for the 3-DOF manipulator are presented.

6.2. Fuzzy Logic Results

6.2.1. ANFIS

For simulating the fuzzy inference system using ANFIS, nine triangular

membership functions were defined at each fuzzy inference system. The total number of

 70

inference systems was six for each element of Jacobian pseudo-inverse matrix. After

training for several epochs, ANFIS optimized the weights of the Sugeno-type fuzzy

system. The sum of squared errors is shown in Table 6-1, and the output surfaces are

shown in Figure 6-2.

The range of the training data set was selected to be the range from (-2.27

radian) to 130 (2.27 radian), for every joint, which means that the 3-DOF manipulator

can easily reach a singularity. Therefore, the number of membership functions should be

increased until each fuzzy inference system meets an acceptable sum of squared error

(SSE). The maximum and minimum joint angles were added to the training data, so that

the universe of disclosure covered all possible joint angles. Therefore, the number of

training data points was 10,002 instead of 10,000.

130− °

°

Table 6-1. Parameters Used for Training and Errors

FIS Pseudo-inverse of
J

Training
data

Membership
function Type of MF SSE

1 †
11J 10002 9-9-9 triangular

/linear
0.04437

2 †
12J 10002 9-9-9 triangular

/linear
0.05827

3 †
21J 10002 9-9-9 triangular

/linear
0.05450

4 †
22J 10002 9-9-9 triangular

/linear
0.06546

5 †
31J 10002 9-9-9 triangular

/linear
0.07233

6 †
32J 10002 9-9-9 triangular

/linear 0.08914

 71

-2
0

2
-2

0
2

-2

0

2

Joint1Joint2

pi
nv

J1
1

-2
0

2
-2

0
2

-2

0

2

Joint1Joint2

pi
nv

J1
2

-2
0

2
-2

0
2

-2
0
2

Joint1Joint2

pi
nv

J2
1

-2
0

2
-2

0
2

-2
0
2

Joint1Joint2

pi
nv

J2
2

-2
0

2
-2

0
2

-1

0

1

Joint1Joint2

pi
nv

J3
1

-2
0

2
-2

0
2

-1
0
1

Joint1Joint2

pi
nv

J3
2

Figure 6-2. Output surfaces for the fuzzy inference system

 72

After training all the fuzzy inference systems, the 3-DOF manipulator was again

simulated with a circle trajectory. The error of the Jacobian pseudo-inverse is shown in

Figure 6-3. The error was defined as , and the maximum error was 0.04 for

. Two-norm of errors is also calculated.

† †
desired fuzzy−J J

†
21J

Figure 6-4 and Figure 6-5 show the joint velocity error and Cartesian velocity

error of the 3-DOF manipulator end effector. The largest error generally occurs at the

middle of the iteration time because of the shift that occurs there. It increases until the

end effector passes the halfway point through the circle trajectory; after that point, it

decreases. Another possible reason for the error is that the fuzzy inference systems may

not have been trained enough near singularities. The maximum error of the joint velocity

was at joint two, and the maximum error of the Cartesian velocity was

 in the y direction. Figure 6-6 depicts the Cartesian position error between

the desired trajectory position and the actual trajectory position. The maximum error was

0.03 meters.

41.9 10 / srad−×

43.3 10 / sm−×

6.2.2. Genetic Algorithm

To perform the simulation of the fuzzy inference system using GA, MATLAB

was used with the open source Genetic Algorithm Optimization Toolbox (GAOT), which

is provided by Houck et al. [25]. The evaluation function has to be provided for the

toolbox, and equation (5.5) was applied. The encoding for each of the parameters and

bounds for each of them were selected and used as discussed in Chapter 5.The numbers

 73

0 100 200 300 400 500 600 700
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time

P
se

ud
o

in
ve

rs
e

Ja
co

bi
an

 e
rro

r

J11
J12
J21
J22
J31
J32
norm

Maximum
 error
() †

21J
0.04

Figure 6-3. ANFIS Pseudo-inverse Jacobian error

0 100 200 300 400 500 600 700
-2

-1

0

1

2

3

4

5

6
x 10

-4

Time

Jo
in

t v
el

oc
ity

 e
rro

r (
ra

d/
s)

dq1
dq2
dq3
norm

Maximum
Joint velocity

error (2θ)
1.9x10-4 rad/s

Figure 6-4. ANFIS Joint velocity error
 74

0 100 200 300 400 500 600 700
-2

-1

0

1

2

3

4
x 10

-4

Time

C
ar

te
si

an
 v

el
oc

ity
 e

rro
r (

m
/s

)

dx
dy
norm

Figure 6-5. ANFIS Cartesian velocity error

0 100 200 300 400 500 600 700
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Time

C
ar

te
si

an
 e

rro
r (

m
)

x
y
norm

Maximum
Cartesian
error (y)
0.03 m

Maximum
Velocity

error (y)
3.3x10-4 m/s

Figure 6-6. ANFIS Cartesian error

 75

of membership functions are limited to the odd integers, and this requires just two bits per

variable. The other parameters, along with their ranges and precisions, were selected as

given in Table 6-2.

The same architecture of the fuzzy inference system was used for GA. The total

number of the inference system was also six for each element of Jacobian pseudo-inverse

matrix. 10002 data sets of inputs and outputs were used for running the GA. Several runs

of the GA were performed for a hundred generations each. A plot of the Jacobian pseudo-

inverse error is shown in Figure 6-7. The maximum error was 0.05, and the shapes of the

curves are generally smoother than those from ANFIS. The joint velocity and Cartesian

errors are shown in Figure 6-8 and Figure 6-9. Unlike ANFIS, there is no large error at

the middle of the iteration time. However, the overall error of the GA is bigger than that

of ANFIS. The maximum error of the joint velocity was at joint one, and

the maximum error of the Cartesian velocity was in the x direction. The

maximum Cartesian position error was 0.035 meters, which is slightly bigger than that of

ANFIS, as shown in Figure 6-10.

42.8 10 / srad−×

45 10 / sm−×

Table 6-2. Parameters Used for Encoding

Parameter Range Precision Number of Bits
Number of MF 3~9 2 2

MF Spacing 0.1 ~ 1.0 0.01 7
MF Spacing (exponent) -1 ~ 1 2 1

Rule-base spacing 0.1 ~ 1.0 0.01 7
Rule-base spacing

(exponent) -1 ~ 1 2 1

Rule-base angle 0 ~ 2π π /512 11

 76

0 100 200 300 400 500 600 700
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time

P
se

ud
o

in
ve

rs
e

Ja
co

bi
an

 e
rro

r

J11
J12
J21
J22
J31
J32
norm

Maximum
 error
() †

12J
0.05

Figure 6-7. Fuzzy-GA Pseudo-inverse Jacobian error

0 100 200 300 400 500 600 700
-3

-2

-1

0

1

2

3

4

5

6
x 10-4

Time

Jo
in

t v
el

oc
ity

 e
rro

r (
ra

d/
s)

dq1
dq2
dq3
norm

Maximum
Joint velocity

error (1θ)
2.8x10-4 rad/s

Figure 6-8. Fuzzy-GA Joint velocity error

 77

0 100 200 300 400 500 600 700
-6

-4

-2

0

2

4

6
x 10-4

Time

C
ar

te
si

an
 v

el
oc

ity
 e

rro
r (

m
/s

)

dx
dy
norm

Maximum
Velocity

error (x)
5x10-4 m/s

Figure 6-9. Fuzzy-GA Cartesian velocity error

0 100 200 300 400 500 600 700
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Time

C
ar

te
si

an
 e

rro
r (

m
)

x
y
norm

Maximum
Cartesian
error (x)
0.035 m

Figure 6-10. Fuzzy-GA Cartesian error

 78

The next section shows results of the artificial neural network for the 3-DOF manipulator

by each proposed method.

6.3. Neural Network Results

6.3.1. Multilayer perceptrons network

The simulation for the artificial neural network with the multilayer perceptrons

network was performed with an architecture similar to that of the fuzzy inference system.

The network identified the pseudo-inverse Jacobian matrix with current joint values as

inputs. Multilayer Perceptrons were used for the structure of the network, and an LM

optimization method was adopted for training. The greatest benefit of the artificial neural

network is that the number of outputs is not constrained, so that the six elements of the

Jacobian pseudo-inverse matrix could be used for one output. Therefore, only one

artificial neural network system was required to achieve the simulation of the 3-DOF

planar manipulator.

The same numbers of input/output data were collected, like fuzzy logic and GA,

and they were trained with four hidden layers. At each hidden layer, thirty neurons were

used to meet the acceptable SSE. However, due to the large number of neurons, a

tremendous amount of memory was required for the computations needed to train the

network. To solve the problem, the memory reduction parameter was setup as fourteen in

MATLAB. However, the memory reduction resulted in very long computational time.

After training the network, the simulation time of the ANN was fastest among the other

 79

methods. For the four hidden layers and one output layer, the tansig and purelin

activation functions as shown in Figure 4-4 were chosen.

 Figure 6-11 shows the Jacobian pseudo-inverse error of the circle trajectory; the

maximum error was . The maximum error of the joint velocity and the Cartesian

velocity are and , as shown in Figure 6-12 and Figure 6-13.

The maximum position error is 0.013 meters, as shown in Figure 6-14. It is clear from the

graphs that the end effector tracking with the 3-DOF manipulator was very good with

small errors compared to the previous methods. It is also evident from the graphs that the

two-norm errors do not have high peaks like the fuzzy logic results and are smoother

curves than the GA results. The errors could have been smaller if the ANN was trained

with more time, or if the number of neurons in the hidden layers was increased. However,

it was sufficient to show that the ANN is a better method for the inverse kinematics.

35 10−×

52.7 10 / srad−× 40.7 10 / sm−×

6.3.2. RBF and GRNN

For the Radial Basis Function Networks (RBF), the newrbe function was used for

the simulation in MATLAB. The function designed an exact RBF quickly. The spread

constant was chosen as 1.0, which is a default value, and the networks were trained with

5,000 input/output data sets. The data sets were smaller than other methods because the

MATLAB function required large memory space. Therefore, the data sets should have

been reduced to meet the memory requirement. As shown in the Appendix C, the

maximum error of the Cartesian position was , which is the largest error for the 3-

DOF manipulator. Furthermore, the number of neurons of RBF was too high. The newrbe

0.070m

 80

0 100 200 300 400 500 600 700
-6

-4

-2

0

2

4

6

8

10

12

14
x 10-3

Time

P
se

ud
o

in
ve

rs
e

Ja
co

bi
an

 e
rro

r

J11
J12
J21
J22
J31
J32
norm

Maximum
 error
() †

21J
0.005

Figure 6-11. Pseudo-inverse Jacobian error for MLP

0 100 200 300 400 500 600 700
-3

-2

-1

0

1

2

3

4

5
x 10-5

Time

Jo
in

t v
el

oc
ity

 e
rro

r (
ra

d/
s)

dq1
dq2
dq3
norm

Maximum
Joint velocity

error (2θ)
2.7x10-5 rad/s

Figure 6-12. Joint velocity error for MLP

 81

0 100 200 300 400 500 600 700
-8

-6

-4

-2

0

2

4

6

8

10

12
x 10-5

Time

C
ar

te
si

an
 v

el
oc

ity
 e

rro
r (

m
/s

)

dx
dy
norm

Maximum
Velocity

error (y)
0.7x10-4 m/s

Figure 6-13. Cartesian velocity error for MLP

0 100 200 300 400 500 600 700
-0.01

-0.005

0

0.005

0.01

0.015

0.02

Time

C
ar

te
si

an
 e

rro
r (

m
)

x
y
norm

Maximum
Cartesian
error (y)
0.013 m

Figure 6-14. Cartesian error for MLP

 82

function generated 5,002 neurons for the simulation. Another RBF function, newrb, was

used in an effort to reduce the number of neurons, but this function generated nearly

5,000 neurons with poor performance.

For the generalized regression neural network (GRNN), the newgrnn function was

used with 10,002 data sets. This function designed a GRNN faster than RBF. GRNN is a

kind of RBF, so that spread constant was required. The spread has an important role in

the design of a GRNN and significantly affects the results. The spread of the GRNN was

0.2, and the results were shown in the Appendix D. The maximum error of the Cartesian

position was , and the overall errors were small enough to apply to the

teleoperation system. However, the number of neurons is the same as the number of the

training data set, which was 10,002 neurons. The number of neurons is important for the

teleoperation system because the computation time normally depends on the number of

neurons. If too many neurons are used, the overall performance is slower. The next

section presents results of the five methods which are ANFIS, Fuzzy-GA, MLP, RBF,

and GRNN for the 3-DOF manipulator, and discusses approaches and results of final

simulation for the 6-DOF Titan II manipulator.

0.020 m

6.4. Results and Final Simulation

6.4.1. Results

In the simulation of the 3-DOF planar manipulator, five artificial intelligent methods

were investigated, and the results are shown in Table 6-3. First, the results of the fuzzy

logic method with ANFIS and GA showed that it successfully identified the complex

 83

Table 6-3. Results of the 3-DOF Manipulator

Maximum Error

Type Pseudo-
inverse

Jacobian
Joint Velocity Cartesian

Velocity
Cartesian
Position

 Fuzzy – ANFIS 0.04 41.9 10 / srad−× 43.3 10 / sm−× 0.030m

 Fuzzy – GA 0.05 42.8 10 / srad−× 45 10 / sm−× 0.035m

 ANN – MLP 0.005 52.7 10 / srad−× 40.7 10 / sm−× 0.013m

 ANN – RBF 0.15 46 10 / srad−× 48 10 / sm−× 0.070m

0.020m 41.2 10 / srad−× 41.8 10 / sm−× ANN – GRNN 0.025

nonlinear inverse kinematics. The overall position and velocity error was minimal.

However, the fuzzy logic showed slower performance, which is not sufficient for

application in a real system. Furthermore, the artificial neural network method shows

better accuracy. The most important reason why the fuzzy logic is not suitable for inverse

kinematics is that it was too complicated to apply the fuzzy rule-base to the real

teleoperation system.

Second, the results of RBF and GRNN show that the accuracy was not better than

MLP, and the networks required many neurons. The number of neurons was same as the

number of the input/output data sets. Therefore, RBF and GRNN are not appropriate for

the real system. However, RBF and GRNN require less time to build a network than the

LM optimization method. They work well if fast computation is not needed or if many

data sets are required for training. Therefore, it is a good technique to use RBF or GRNN

first for training with many data sets before standard multilayer perceptrons network is

trained.

 84

 Last, from the above results, a multilayer perceptrons network with LM was

determined to be the best solution for the WAM-Titan II teleoperation system. The

maximum errors were the smallest among the others, and due to its simple architecture, it

is easy to substitute the new inverse kinematics into the current system. However, one

drawback of the multilayer feedforward perceptrons network is time consumption. A

multilayer perceptrons network needs abundant time to train a network with many data

sets, even though LM is used for optimization. Furthermore, LM needs a large amount of

memory for approximate Hessian matrix to optimize.

 In summary, the multilayer perceptrons method is chosen for a final simulation,

which is inverse kinematics of the Titan II manipulator, and the other four methods are

excluded due to the above reasons. However, the four methods may have better

performance for the Titan II manipulator than the MLP method. On the other hand,

because the 6-DOF manipulator for the final simulation is more complicated and has

higher dimension for its workspace than the 3-DOF manipulator cases, the chances of this

are slight.

6.4.2. Final simulation

For the application of the inverse kinematics for the Titan II based on a multilayer

perceptrons - backpropagation artificial neural network, a 6-DOF revolute manipulator

was created in MATLAB as shown in Figure 6-15. The manipulator has the same

dimensions as that of the Titan II, so that it has same DH parameters. Unlike the 3-DOF

manipulator, a new workspace was created in 3-D space. Each joint limit of the Titan II

was set for generating training data sets. A new trajectory was created to simulate the

 85

0 10 20 30 40 50 60 70 -30 -20 -10 0 10 20 30
0

5

10

15

20

25

30

35

40

45

50

Cartesian y (inch)

Simulation of Titan II Manipulator

Cartesian x (inch)

C
ar

te
si

an
 z

 (i
nc

h)

0 10 20 30 40 50 60 70 -30 -20 -10 0 10 20 30
0

5

10

15

20

25

30

35

40

45

50

Cartesian y (inch)

Simulation of Titan II Manipulator

Cartesian x (inch)

C
ar

te
si

an
 z

 (i
nc

h)

Figure 6-15. Simulation of Titan II manipulator

 86

nθ †
DLSJ

† TVΣ U ()n

Figure 6-16. Architecture of generating training data sets

new inverse kinematics based on a multilayer perceptrons network, as shown Figure 6-15.

The trajectory was more intricate than the previous one because the simulation was tested

in 3-D space. New input/output data sets were generated as shown in Figure 6-16. The

training data sets were made as 15,000 input/output pairs. The inputs were all possible

joint angles of the Titan II, and from the inputs, the outputs were calculated as elements

of the pseudo-inverse Jacobian matrix. The architecture of the artificial neural network

has four hidden layers with tansig activation functions. For optimizing weights and biases,

the LM method was used to train quickly, and when memory was insufficient for the

large amount of data, memory reduction was used.

θJ

TUΣV

Input Data
Set

Output Data
Set

† T
DLSVΣ U

Jacobian DLS

Pseudo
Inverse SVD

 87

† † † † † †
11 12 13 14 15 16
† † † † † †
21 22 23 24 25 26
† † † † † †

† 31 32 33 34 35 36
† † † † † †
41 42 43 44 45 46
† † † † † †
51 52 53 54 55 56
† † † † † †
61 62 63 64 65 66

J J J J J J
J J J J J J
J J J J J J
J J J J J J
J J J J J J
J J J J J J

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

J

1st Group 2nd Group 3rd Group 4th Group

Figure 6-17. Four groups of outputs

The number of elements of the inverse Jacobian matrix is 36, so that the number

of outputs is also 36 if one network is used. Since there are many outputs in a network,

many neurons were required to meet acceptable SSE. To avoid this, the elements of the

inverse Jacobian matrix were divided into four groups as shown in Figure 6-17. The first

group is the half of the matrix, which is a position part, and the second to fourth groups

are the other half of the matrix, which are rotation parts. Therefore, a total of four

networks were used as shown in Figure 6-18. The main reason for this structure is that

these groups reduced the total number of neurons in each network, so that memory usage

and training time can be reduced greatly. This segmentation method was based on the

required training time and the number of neurons. After several experiments, it was found

that the position part, which is the first group, is easier to train with less number of

neurons than the orientation parts, which are from the second to fourth groups.

 88

Figure 6-18. Structure of outputs for the MLP network

Furthermore, each element of the pseudo-inverse Jacobian matrix is independent

from the other elements due to the fact that the Jacobian depends only on joint angles.

Therefore, the structure of Jacobian affects the training time and the execution time by

increasing one and decreasing the other. At each hidden layer of the first group, 18

neurons were employed, and at each hidden layer of the last groups, 30 neurons were

applied. Consequently, 6 inputs and 18 outputs for the first group and 6 inputs and 6

outputs for the other groups were used.

6.4.3. Results

The final simulation was performed as shown in Figure 6-18. The initial positions

of the Titan II were 0 from joint 1 to joint 6. The end effector , 60 , -110 , 30 , 0 , 0° ° ° ° ° °

4th Network

6 inputs

† † † † † †
11 12 13 14 15 16
† † † † † †
21 22 23 24 25 26
† † † † † †

† 31 32 33 34 35 36
† † † † † †
41 42 43 44 45 46
† † † † † †
51 52 53 54 55 56
† † † † † †
61 62 63 64 65 66

J J J J J J
J J J J J J
J J J J J J
J J J J J J
J J J J J J
J J J J J J

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

J

18 outputs

6 outputs

6 outputs

6 outputs

1st Network

6 inputs

2nd Network

6 inputs

3rd Network

6 inputs

 89

Figure 6-19. RoboWorks simulation for Titan II

 90

followed the trajectory, which carried out position commands only. The unit of the

simulation is inches rather than meters. Figure 6-19 shows the Jacobian pseudo-inverse

error, and the maximum error was 0.03 . As shown in Figure 6-20 and Figure 6-21, the

maximum error of the joint velocity and Cartesian velocity are

and 0 . The maximum position error is 1.3 inches as shown in Figure 6-22. This

inverse kinematics based on artificial neural networks was successfully adapted to the

real teleoperation system with the RoboWorks simulation. The MATLAB codes were

converted into C programming language as shown in the Appendix E, and the weight and

biases were saved to text files. This C code was customized for existing High Level

Controller (HLC) of the WAM-Titan II teleoperation system. The C code performs the

42.9 10 / srad−×

.01 / sinch

0 100 200 300 400 500 600 700
-0.05

0

0.05

0.1

0.15

0.2

Time

P
se

ud
o

in
ve

rs
e

Ja
co

bi
an

 e
rro

r

Maximum
 error
() †

45J
0.03

Figure 6-20. Pseudo-inverse Jacobian error for Titan II

 91

0 100 200 300 400 500 600 700
-3

-2

-1

0

1

2

3

4

5

6

7
x 10-4

Time

Jo
in

t v
el

oc
ity

 e
rro

r (
ra

d/
s)

dq1
dq2
dq3
dq4
dq5
dq6
norm

Maximum
Joint velocity

error (4θ)
2.9x10-4 rad/s

Figure 6-21. Joint velocity error for Titan II

0 100 200 300 400 500 600 700
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Time

C
ar

te
si

an
 v

el
oc

ity
 e

rro
r (

in
ch

/s
)

dx
dy
dz
norm

Maximum
Velocity error

() z
0.01 inch/s

Figure 6-22. Cartesian velocity error for Titan II

 92

0 100 200 300 400 500 600 700
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time

C
ar

te
si

an
 e

rro
r (

in
ch

)

x
y
z
norm

Maximum
Cartesian
error (z)
1.3 inch

Figure 6-23. Cartesian error for Titan II

algorithm of the MLP and executes the inverse kinematics independently from other

applications. In order to improve the execution time of the compile code, every weight

and bias of the MLP are stored in 3 dimensional array pointers. Furthermore, a number of

for statements and if statements are reduced to optimize the code. The steps of the main

algorithm of the new inverse kinematics shown in Figure 6-24 are

1. Load the weight and bias files.

2. Get joint angles of Titan II from resolvers.

3. Generate a Jacobian pseudo-inverse matrix by ANN-MLP.

4. Perform inverse kinematics with Jacobian pseudo-inverse matrix and

Cartesian velocity from WAM forward kinematics.

5. Integrate joint velocities from step 4 and send to Titan II.

 93

Load weighs & biases

Get Oldθ

Figure 6-24. Steps of the main algorithm

Generate †
DLS OLdJ (θ)

= ⋅†
DLSθ J x

∫Newθ = θ

Finish?

Titan II

Newθ

Oldθ

No

Yes

End

 94

Table 6-4. Time Results

Trajectory Type Method Original Circle Rectangular

Conventional 64 ms 45 ms 37 ms

ANN 15.6 ms 11 ms 9.06 ms

6. Repeat from step 2 until the operation is finished.

To measure the time performance for the new inverse kinematics, several

trajectories were tested. First, the trajectory used in the above simulation was measured.

Only the inverse kinematics time was measured for both the conventional method and the

new method during the trajectory tracking. After that, the circular and rectangular

trajectories were measured. The Table 6-4 shows the results. About 75 percent of the

calculation time was improved. In the next chapter, final conclusions and the future work

are discussed.

 95

CHAPTER 7: Summary

7.1. Overall Conclusions

Inverse kinematics based on fuzzy logic and an artificial neural network was

designed and implemented for the WAM-Titan II teleoperation system. This inverse

kinematics design was based on the pseudo-inverse with SVD and DLS. This strategy

automatically reduces the problem of singularities and sudden movements of the slave

manipulator while eliminating the weak dimensions by gradually replacing the weak

singular value with zero. From the inverse kinematics design, five methods were tested:

ANFIS, GA, MLP-LM, RBF, and GRNN. From the simulation of the 3-DOF planar

manipulator, MLP-LM was found to be the best method for the inverse kinematics. For

the final simulation of the Titan II, MLP-LM was tested, and the results were successful.

The maximum error of Cartesian position was 1.3 inches, and this error is acceptable for

teleoperation. The computation time of the new inverse kinematics was also faster than

that of the normal method. From several trajectory tests, the time was improved about 75

percent.

The downside of the MLP-LM was the computation time for training weights and

biases. Normally the LM method is faster than other training methods; however, because

of the large input/output data sets and many neurons, abundant computation time was

required to meet the acceptable SEE. This negative aspect will be improved as computer

 96

platforms with faster processing speeds are developed in the future. The future work is

discussed in the next section.

7.2. Future Work

Although the inverse kinematics using artificial neural networks shows good

results, more reliable and accurate results are be desired before performing real

teleoperation tasks. For these, more experiments and investigations are required. Because

only kinematics was considered in this thesis, analysis of the dynamics of the Titan II are

also is needed for simulation of physical motion and design of control strategies.

An important enhancement to the WAM-Titan II teleoperation is an extension to

bilateral operation. Force feedback is essential for a teleoperation system to feel the

interaction with the remote environment, and it improves the ability of teleoperation.

Since the WAM-Titan II teleoperation is ready to move to this stage, extended research

of telepresence or haptics with performance control, stability control, and time delay

control is required [47].

In inverse kinematics of redundant manipulators, the extra degrees of freedom can

be effectively used to improve the manipulator’s ability to avoid obstacles or singular

points. Since the WAM has seven degrees of freedom, this redundant manipulator can

provide a comfortable operational space to a human operator. Therefore, the inverse

kinematics of WAM with redundancy resolution based on artificial intelligence methods

is another recommended future investigation.

 97

In order to reduce the number of neurons in neural networks, method like

Bayesian regularization [45, 46] can be adapted to determine the optimal number of

weights and biases automatically. This method modifies the regular performance function

such as the mean sum of squared errors by adding the sum of squares of the network

weights. Each term of the modified performance function is multiplied by regularization

parameters, and the parameters are optimized by the Bayesian regularization. This

method provides an optimal number of network parameters, which can be used by the

MLP effectively.

 98

LIST OF REFERENCES

 99

LIST OF REFERENCES

[1] L. I. Slutski, “Remote Manipulation Systems,” Kluwer Academic Publishers, 1998.

[2] W. R. Hamel, M. W. Noakes, “Recent Telerobotics Systems Developments at the

University of Tennessee,” Proceedings of the ANS 2006 International Joint
Topical Meeting, Salt Lake City, Utah, February 12–15, 2006.

[3] R. Zhou, W. R. Hamel, A. S. Hariharan, M. W. Noakes, “Using the WAM as a

Master Controller,” Proceedings of the ANS 2006 International Joint Topical
Meeting, Salt Lake City, Utah, February 12–15, 2006.

[4] L. H. Tsoukalas, R. E. Uhrig, “Fuzzy and Neural Approaches in Engineering,”

John Wiley & Sons, Inc. 1997.

[5] “Fuzzy Logic Toolbox user’s guide,” The MathWorks, Inc., 2006.

[6] L. Sciavicco, B. Siciliano, “Modeling and Control of Robot Manipulators,”

McGraw Hill Pnublications, 1996.

[7] J. J. Craig, “Introduction to Robotics Mechanics and Control,” 3rd Edition,

Pearson Prentice-Hall, 2005.

[8] M. W. Spong, S. Hutchinson, M. Vidyasagar, “Robot Modeling and Control,”

John Wiley & Sons, Inc., 2006.

[9] W.A. Wolovich, H. Elliott, “A computational technique for inverse kinematics,”

The 23rd IEEE Conference on Decision and Control, Vol. 23, pp. 1359-1363.
Dec 1984.

[10] S. R. Buss and J. Kim, “Selectively Damped Least Squares for Inverse

Kinematics," In Journal of Graphics Tools, vol. 10, no. 3 (2005) 37-49.

[11] C. W. Wampler, “Manipulator inverse kinematic solutions based on vector

formulations and damped least-squares methods,” IEEE Trans. on Syst., Man,
Cyber., vol. 16, pp. 93-101, 1986.

[12] “WAM arm User Guide,” Barrett Technology, Inc., 2006.

[13] D. W. Howard, A. Zilouchian, “Application of Fuzzy Logic for the Solution of

Inverse Kinematics and Hierarchical Controls of Robotic Manipulators,” Journal
of Intelligent and Robotic Systems, vol. 23, No. 2-4, pp. 217 – 247, October 1998.

 100

[14] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine
Learning,” Addison-Wesley, 1989.

[15] F. Herrera, M. Lozano, J. L. Verdegay, “Tuning Fuzzy Logic Controllers by

Genetic Algorithms,” International Journal of Approximate Reasoning,” vol. 12,
pp. 299-315, 1995.

[16] M. A. Lee, Takagi, “Integrating Design Stages of Fuzzy Systems Using Genetic

Algorithms,” Proc. 2nd IEEE Int. conf. Fuzzy systems, San Francisco, 1993.

[17] Y. J. Park, H. S. Cho, D. H. Cha, “Genetic Algorithm-Based Optimization of

Fuzzy Logic Controller Using Characteristic Parameters,” Proceedings of the
IEEE ICEC, pp. 831-836, 1995.

[18] “Neural Network toolbox user’s guide,” The MathWorks, Inc., 2006.

[19] G. A. Bekey, K. Y. Goldberg, “Neural Networks in Robotics,” Kluwer Academic

Publishers, 1993.

[20] J. L. Meriam, J. M. Henderson, “Engineering Mechanics Dynamics,” 4th Edition,

John Wiley & Sons, Inc., 1997.

[21] Gilbert Strang, “Linear Algebra and its Application,” 4th Edition, Academic Press,

New York, 2006.

[22] J. –J E. Slotine, “Putting physics in control-the example of robotics,” Control

Systems Magazine, IEEE, Vol. 8, No 6, pp. 12-18, Dec 1988.

[23] Y. Nakamura, H. Hanafusa, “Inverse kinematic solution with singularity

robustness for robot manipulator control,” ASME J. Dyn. Syst., Meus., Control,
vol. 108, pp. 163-171, 1986.

[24] S. W. Kim, J. J. Lee, “Inverse Kinematics Solution Based on Fuzzy Logic for

Redundant Manipulators,” Proceedings of the 1993 IEEE/RSJ International
Conference on, Vol. 2, No. 26-30, pp. 904 – 910, Jul 1993.

[25] C. R. Houck, J. Joines, M. Kay, “A Genetic Algorithm for Function optimization:

A MATLAB Implementation,” ACM Transactions on Mathematical Software,
1996.

 101

[26] K. Levenberg, “A Method for the Solution of Certain Non-Linear Problems in
Least Squares,” Quart. Appl. Math. 2, pp. 164-168, 1944.

[27] D. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear

Parameters,” SIAM J. Appl. Math. 11, pp. 431-441, 1963.

[28] L. A. Zadeh, “Information and Control,” Vol. 8, pp. 338-353, 1965.

[29] M. Mamdani, “Application of Fuzzy Algorithm for Control of Simple Dynamic

Plant,” Proc. IEE, Vol. 121, No. 12, pp. 1585-1588, 1974.

[30] H. T. Nguyen, E. A. Walker, “A First Course in Fuzzy Logic,” 3rd Edition,

Chapman & Hall/CRC, Boca Raton, 2006.

[31] J.-S. Roger Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference Systems,”

IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 03, pp. 665-
685, May 1993.

[32] J. H. Holland, “Adaptation in Natural and Artificial Systems,” University of

Michigan Press, Ann Arbor, 1975.

[33] D. Nauck, F. Klawonn, R. Kruse, “Foundations of Neuro-Fuzzy Systems,” John

Wiley & Sons Ltd, 1997.

[34] F. L. Lewis, S. Jagannathan, A. Yeşildirek, “Neural Network Control of Robot

Manipulators and Nonlinear Systems,” Taylor & Francis, 1999.

[35] G. A. Korn, “Neural Networks and Fuzzy-Logic Control on Personal Computers

and Workstations,” Massachusetts Institute of Technology, 1995.

[36] A. M. S. Zalzala, A. S. Morris, “Neural Networks for Robotic Control,” Ellis

Horwood, 1996.

[37] S. Haykin, “Neural Networks,” IEEE Press and Macmillan, New York, 1994.

[38] F. Girosi, T. Poggio, “Neural Networks and the Best Approximation Property,”

Biol. Cybernetics, 63, pp. 169-176, 1990.

[39] P. D. Wasserman, “Advanced Methods in Neural Computing,” New York, 1993.

[40] A. Nedungadi, “A Fuzzy Robot Controller – Hardware Implementation,” Fuzzy

Systems, IEEE International Conference on, pp. 1325-1331, Mar 1992.

 102

[41] L. Wei, H. Wang, Y. Li, “A New Solution for Inverse Kinematics of Manipulator
Based on Neural Network,” Machine Learning and Cybernetics, International
Conference on, Vol. 2, No. 2-5, pp. 1201 – 1203, Nov. 2003.

[42] A. M. Eydgahi, S. Ganesan, “Genetic-Based fuzzy Model for Inverse Kinematics

Solution of Robotic Manipulators,” Systems, Man, and Cybernetics, IEEE
International Conference on, Vol. 3, pp. 2196 – 2201, Oct 1998.

[43] R. V. Mayorga, P. Sanongboon, “Inverse Kinematics and Geometrically Bounded

Singularities Prevention of Redundant Manipulators: An Artificial Neural
Network Approach,” Robotics and Autonomous Systems, 53, pp. 164-176, 2005.

[44] J. Guo, V. Cherkassky, “A Solution to the Inverse Kinematic Problem in Robotics

Using Neural Network Processing,” Neural Networks, IJCNN., International Joint
Conference on, Vol. 2, pp. 299 – 304, Jun 1989.

[45] D.J.C. MacKay, “Bayesian interpolation,” Neural Computation, Vol. 4, No. 3, pp.

415–447, 1992.

[46] D.J.C. MacKay, “A Practical Bayesian Framework for Backpropagation

Networks,” Neural Computation, Vol. 4, No. 3, pp. 448-472, 1992.

[47] D. A. Lawrence, “Stability and Transparency in Bilateral Teleoperation,” IEEE

Transactions on Robotics and Automation, Vol. 9, No. 5, pp.624~637, 1993.

 103

APPENDIX

 104

Appendix A: Transformation Matrix for WAM

From frame 1 to frame 2

2 2

2 21
2

cos() 0 sin() 0
sin() 0 cos() 0

0 1 0 0
0 0 0 1

θ θ
θ θ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

From frame 2 to frame 3

3 3

3 32
3

cos() 0 sin() 0.045cos()
sin() 0 cos() 0.045sin()

0 1 0 0.55
0 0 0 1

3

3

θ θ θ
θ θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

A

From frame 3 to frame 4

4 4

4 43
4

cos() 0 sin() 0.4cos()
sin() 0 cos() 0.4sin()

0 1 0 0
0 0 0 1

4

4

θ θ θ
θ θ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

A
θ

From frame 4 to frame 5

5 5

5 54
5

cos() 0 sin() 0
sin() 0 cos() 0

0 1 0 0.1547
0 0 0 1

θ θ
θ θ

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

 105

From frame 5 to frame 6

6 6

6 65
6

cos() 0 sin() 0
sin() 0 cos() 0

0 1 0
0 0 0

θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

A
0
1

0
1

From frame 6 to frame 7

7 7

7 76
7

cos() sin() 0 0
sin() cos() 0 0

0 0 1
0 0 0

θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

 106

Appendix B: Transformation Matrix for Titan II

From frame 1 to frame 2

2 2 2 2 2

2 2 2 2 21
2

cos() sin() 0 sin() cos()
sin() cos() 0 cos() sin()

0 0 1 0
0 0 0 1

d a
d a

θ θ θ θ2

2θ θ θ
− +⎡ ⎤

⎢ ⎥− +⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A
θ

3

3

From frame 2 to frame 3

3 3 3

3 3 32
3

cos() sin() 0 cos()
sin() cos() 0 sin()

0 0 1 0
0 0 0 1

a
a

θ θ θ
θ θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

From frame 3 to frame 4

4 4 4

4 4 43
4

cos() 0 sin() cos()
sin() 0 cos() sin()

0 1 0 0
0 0 0 1

a
a

4

4

θ θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

A
θ

From frame 4 to frame 5

5 5

5 54
5

cos() 0 sin() 0
sin() 0 cos() 0

0 1 0 0
0 0 0 1

θ θ
θ θ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

 107

From frame 5 to frame 6

6 6

6 65
6

6

cos() sin() 0 0
sin() cos() 0 0

0 0 1
0 0 0

d

θ θ
θ θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

1

 108

Appendix C: 3-DOF Planar Manipulator Simulation - RBF

0 100 200 300 400 500 600 700
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

P
se

ud
o

in
ve

rs
e

Ja
co

bi
an

 e
rro

r

J11
J12
J21
J22
J31
J32
norm

Figure C-1 RBF Pseudo-inverse Jacobian error

0 100 200 300 400 500 600 700
-1

-0.5

0

0.5

1

1.5

2
x 10-3

Time

Jo
in

t v
el

oc
ity

 e
rro

r (
ra

d/
s)

dq1
dq2
dq3
norm

Figure C-2 RBF Joint velocity error

 109

0 100 200 300 400 500 600 700
-1

-0.5

0

0.5

1

1.5
x 10-3

Time

C
ar

te
si

an
 v

el
oc

ity
 e

rro
r (

m
/s

)

dx
dy
norm

Figure C-3 RBF Cartesian velocity error

0 100 200 300 400 500 600 700
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time

C
ar

te
si

an
 e

rro
r (

m
)

x
y
norm

Figure C-4 RBF Cartesian error

 110

Appendix D: 3-DOF Planar Manipulator Simulation - GRNN

0 100 200 300 400 500 600 700
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time

P
se

ud
o

in
ve

rs
e

Ja
co

bi
an

 e
rro

r

J11
J12
J21
J22
J31
J32
norm

Figure D-1 GRNN Pseudo-inverse Jacobian error

0 100 200 300 400 500 600 700
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10-4

Time

Jo
in

t v
el

oc
ity

 e
rro

r (
ra

d/
s)

dq1
dq2
dq3
norm

Figure D-2 GRNN Joint velocity error

 111

0 100 200 300 400 500 600 700
-2

-1

0

1

2

3

4
x 10-4

Time

C
ar

te
si

an
 v

el
oc

ity
 e

rro
r (

m
/s

)

dx
dy
norm

Figure D-3 GRNN Cartesian velocity error

0 100 200 300 400 500 600 700
-0.02

-0.01

0

0.01

0.02

0.03

0.04

Time

C
ar

te
si

an
 e

rro
r (

m
)

x
y
norm

Figure D-4 GRNN Cartesian error
 112

Appendix E: Programming Code of MLP for Titan II

/* File name: ANN_math.h */
/* Header file for ANN_math.c */

#ifndef _ANN_MATH_
#define _ANN_MATH_

double ***ANNnew3dMatrix(int num, int nor, int noc);
void free_3dmatrix(double ***pMatrix, int num, int nor);
void ANNprintMatrix(double **a, int rows, int cols,int flag);
void ANNprintVector(double *a, int length,int flag);
void ANNmvDotProduct(double **a,double *b, int row, int col,int length, double *c);
void ANNtansig(double *pResult, double *pMatrix, int length);
void ANNint_matrix(double **pMatrix, int nor, int noc);
void ANNint_vector(double *pVector, int length);
void ANNvectorAddition(double *a,double *b,int length1,int length2,double *c);
void ANNvectorCopy(double *a, double *b, int length);
void ANNload_wb_files(double ***pmW,double **pmB);
void ANNbp_simul(double *p, double ***w, double **b,int non, int nout, int nlayer, double *ans, int z);
void ANNmain_simul(double *p, double ***pmW, double **pmB, double **pPseudo);

#endif

 113

/* File name: ANN_math.c */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "ANN_math.h"
#include "titanmath.h"

double ***ANNnew3dMatrix(int num, int nor, int noc)
{

 double ***p3dMatrix;
 int i, j, k;

 if ((p3dMatrix=(double ***)malloc(num*sizeof(int **)))==NULL) {
 printf("malloc error\n");
 exit(-1);
 }
 for (i=0;i<num;i++)
 if ((p3dMatrix[i]=(double **)malloc(nor*sizeof(int *)))==NULL) {
 printf("malloc error\n");
 exit(-1);
 }
 for (i=0;i<num;i++)
 for (j=0;j<nor;j++)
 if ((p3dMatrix[i][j]=(double *)malloc(noc*sizeof(double)))==NULL) {
 fprintf(stderr, "out of memory\n");
 exit(-1);
 }

 for (i=0;i<num;i++)
 for (j=0;j<nor;j++)
 for (k=0;k<noc;k++)
 p3dMatrix[i][j][k]=0;

 return p3dMatrix;
}

void free_3dmatrix(double ***pMatrix, int num, int nor)
{

 int i, j;

 for(i=0;i<num;i++){
 for(j=0;j<nor;j++){
 if(pMatrix[i][j]!= NULL)
 free(pMatrix[i][j]);
 }
 }

 for(i=0;i<num;i++){
 if(pMatrix[i]!= NULL)

 114

 free(pMatrix[i]);
 }
 if(pMatrix!=NULL)
 free(pMatrix);

}

void ANNprintMatrix(double **a, int rows, int cols,int flag)
{

 int i,j;

 if(flag) {
 printf("[row column\n");
 for(i=0;i<rows;i++) {
 for(j=0;j<cols;j++)
 printf("%3d %3d %12.8lf\n",i+1,j+1,a[i][j]);
 getchar();

 }
 printf("]\n");
 }

 else{
 printf("[\n");
 for(i=0;i<rows;i++) {
 for(j=0;j<cols;j++)
 printf("%7.4lf, ",a[i][j]);
 printf("\n");
 }
 printf("]\n");
 }
}

void ANNprintVector(double *a, int length,int flag)
{

 int i;

 if(flag) {
 printf("[\n");
 for(i=0;i<length;i++)
 printf("%lf",a[i]);
 printf("]\n");
 }

 else{
 printf("[\n");
 for(i=0;i<length;i++)
 printf("%d %12.8lf\n",i+1,a[i]);
 printf("]\n");
 }
}

 115

void ANNmvDotProduct(double **a,double *b, int row, int col,int length, double *c)
{
 int i,j;
 if(col!=length){
 printf("check the matrix and the vector length!\n");
 exit(1);
 }
 for(i=0;i<row;i++){
 c[i]=0.0;
 for(j=0;j<col;j++){
 c[i]=c[i]+a[i][j]*b[j];
 }
 }
}

void ANNtansig(double *pResult, double *pMatrix, int length)
{
 int i;

 for(i=0;i<length;i++)
 pResult[i]=2/(1+exp(-2*pMatrix[i]))-1;

}

void ANNint_matrix(double **pMatrix, int nor, int noc)
{
 int i,j;

 for(i=0;i<nor;i++)
 for(j=0;j<noc;j++)
 pMatrix[i][j]=0;

}

void ANNint_vector(double *pVector, int length)
{
 int i;

 for(i=0;i<length;i++)
 pVector[i]=0;

}

void ANNvectorAddition(double *a,double *b,int length1,int length2,double *c)
{

 int i;
 if(length1!=length2){
 printf("check vector length!\n");
 exit(1);
 }
 for(i=0;i<length1;i++){
 c[i]=a[i]+b[i];

 116

 }
}

void ANNvectorCopy(double *a, double *b, int length)
{
 int i;
 for(i=0;i<length;i++)
 b[i]=a[i];

}

void ANNload_wb_files(double ***pmW,double **pmB)
{
 FILE *fp1, *fp2;
 double *pvW, *pvB;

 int lenw=10260;
 int lenb=450;
 int tw=0, tb=0;

 pvW=new_vector(lenw);
 pvB=new_vector(lenb);

 ANNint_vector(pvW,lenw);
 ANNint_vector(pvB,lenb);

 int i=0, j=0, k=0, h=0, l=0;

 fp1=fopen("weights.txt","r");
 if (fp1==NULL) {
 printf("I couldn't open a txt file for reading.\n");
 getchar();
 exit(0);
 }

 fp2=fopen("biases.txt","r");
 if (fp2==NULL) {
 printf("I couldn't open a txt file for reading.\n");
 getchar();
 exit(0);
 }

 while(fscanf(fp1, "%lf\n", &pvW[i]) == 1) {
 i=i+1;
 }

 while(fscanf(fp2, "%lf\n", &pvB[j]) == 1) {
 j=j+1;
 }

fclose(fp1);
 fclose(fp2);

 117

 for(j=0;j<18;j++){
 for(k=0;k<6;k++){
 pmW[0][j][k]=pvW[tw];
 tw=tw+1;
 }
 }
 for (i=1;i<4;i++){
 for(j=0;j<18;j++){
 for(k=0;k<18;k++){
 pmW[i][j][k]=pvW[tw];
 tw=tw+1;
 }
 }
 }
 i=4;
 for (h=0;h>3;h++){
 for(j=0;j<30;j++){
 for(k=0;k<6;k++){
 pmW[i][j][k]=pvW[tw];
 tw=tw+1;
 }
 }
 i=i+1;
 for (l=0;l<3;l++){
 for(j=0;j<30;j++){
 for(k=0;k<30;k++){
 pmW[i][j][k]=pvW[tw];
 tw=tw+1;
 }
 }
 i=i+1;
 }
 for(j=0;j<6;j++){
 for(k=0;k<30;k++){
 pmW[i][j][k]=pvW[tw];
 tw=tw+1;
 }
 }
 i=i+1;
 }

 for(i=0;i<4;i++){
 for(j=0;j<18;j++){
 pmB[i][j]=pvB[tb];
 tb=tb+1;
 }
 }
 i=4;
 for(h=0;h<3;h++){
 for(l=0;l<4;l++){
 for(j=0;j<30;j++){
 pmB[i][j]=pvB[tb];
 tb=tb+1;

 118

 }
 i=i+1;
 }
 for(j=0;j<6;j++){
 pmB[i][j]=pvB[tb];
 tb=tb+1;
 }
 i=i+1;
 }

 free(pvW);
 free(pvB);

}

void ANNbp_simul(double *p, double ***w, double **b,int non, int nout, int nlayer, double *ans, int z)
{

 int i=0, j=0, k=0, h=0;

 double *c, *d, *e, *e2;
 c=new_vector(non);
 d=new_vector(non);
 e=new_vector(non);
 e2=new_vector(non);
 ANNint_vector(c,non);
 ANNint_vector(d,non);
 ANNint_vector(e,non);
 ANNint_vector(e2,non);

 for(i=0;i<non;i++){
 c[i]=0.0;
 for(j=0;j<6;j++){
 c[i]=c[i]+w[z][i][j]*p[j];
 }
 d[i]=c[i]+b[z][i];
 e[i]=2/(1+exp(-2*d[i]))-1;
 }
 z=z+1;
 for(h=0;h<nlayer-1;h++){
 for(i=0;i<non;i++){
 c[i]=0.0;
 for(j=0;j<non;j++){
 c[i]=c[i]+w[z][i][j]*e[j];
 }
 d[i]=c[i]+b[z][i];
 e2[i]=2/(1+exp(-2*d[i]))-1;
 }
 z=z+1;
 for(k=0;k<non;k++)
 e[k]=e2[k];
 }
 for(i=0;i<nout;i++){

 119

 c[i]=0.0;
 for(j=0;j<non;j++){
 c[i]=c[i]+w[z][i][j]*e[j];
 }
 d[i]=c[i]+b[z][i];
 ans[i]=2/(1+exp(-2*d[i]))-1;

 }
 z=z+1;

 free(c);
 free(d);
 free(e);
 free(e2);

}

void ANNmain_simul(double *p, double ***pmW, double **pmB, double **pPseudo)
{
 int i=0, j=0, k=0, l=0;

 double *ans1, *ans2, *ans3, *ans4;
 ans1=new_vector(18);
 ans2=new_vector(6);
 ans3=new_vector(6);
 ans4=new_vector(6);

 ANNint_vector(ans1,18);
 ANNint_vector(ans2,6);
 ANNint_vector(ans3,6);
 ANNint_vector(ans4,6);

 ANNbp_simul(p, pmW, pmB, 18, 18, 3, ans1, 0);
 ANNbp_simul(p, pmW, pmB, 30, 6, 4, ans2, 4);
 ANNbp_simul(p, pmW, pmB, 30, 6, 4, ans3, 9);
 ANNbp_simul(p, pmW, pmB, 30, 6, 4, ans4, 14);

 for (j=0;j<6;j++){
 for (k=0;k<3;k++){
 pPseudo[j][k]=ans1[i];
 i=i+1;
 }
 }

 for (j=0;j<6;j++){
 pPseudo[j][3]=ans2[l];
 pPseudo[j][4]=ans3[l];
 pPseudo[j][5]=ans4[l];
 l=l+1;
 }

 120

 free(ans1);
 free(ans2);
 free(ans3);
 free(ans4);

}

 121

 Vita

Joong-kyoo Park was born in South Korea in 1971, and had lived in Seoul. He

entered Soonchunhyang University in 1991, and received his Bachelor of Science degree

in Physics 1995. In the same year he was commissioned as a second lieutenant in Korean

army. He entered the undergraduate school in Mechanical Engineering at Virginia

Polytechnic Institute and State University in 1999, and received another Bachelor of

Science degree in Mechanical Engineering. After graduation in 2002, he joined the

Daesan Metal Corporation, and had work for two years. He entered the graduate school in

Mechanical Engineering at the University of Tennessee in 2005. He is glad to receive the

master degree in 2007.

 122

	Inverse Kinematics Based on Fuzzy Logic and Neural Networks for the WAM-Titan II Teleoperation System
	Recommended Citation

	CHAPTER 1:
	CHAPTER 1: Introduction
	1.1. Overview
	1.2. Background
	1.3. Motivation
	1.4. Thesis Outline

	CHAPTER 2: Kinematics
	2.1. Introduction
	2.2. Homogeneous Transformation
	2.3. Denavit-Hartenberg Parameters
	2.4. Forward Kinematics
	2.4.1. Jacobian matrix

	2.5. Inverse Kinematics
	2.5.1. Pseudo-inverse method
	2.5.2. Singular value decomposition
	2.5.3. Damped Least Square (DLS)

	CHAPTER 3: WAM-Titan II Teleoperation System
	3.1. Whole-Arm-Manipulation (WAM)
	3.1.1. DH parameters and joint ranges for WAM

	3.2. Titan II
	3.2.1. DH parameters and joint ranges for Titan II

	3.3. Teleoperation

	CHAPTER 4: Fuzzy Logic and Artificial Neural Networks
	4.1. Fuzzy Logic
	4.1.1. Overview
	4.1.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)
	4.1.3. Genetic Algorithms (GA)

	4.2. Artificial Neural Networks
	4.2.1. Overview
	4.2.2. Multilayer Perceptrons Network (MLP)
	Levenberg Marquardt (LM)

	4.2.3. Radial Basis Function Network (RBF)
	4.2.4. Generalized Regression Neural Network (GRNN)

	CHAPTER 5: Simulation Approach
	5.1. Introduction
	5.2. Fuzzy Logic
	5.2.1. ANFIS
	5.2.2. Genetic Algorithm

	5.3. Artificial Neural Network

	CHAPTER 6: Simulation Results
	6.1. Introduction
	6.2. Fuzzy Logic Results
	6.2.1. ANFIS
	6.2.2. Genetic Algorithm

	6.3. Neural Network Results
	6.3.1. Multilayer perceptrons network
	6.3.2. RBF and GRNN

	6.4. Results and Final Simulation
	6.4.1. Results
	6.4.2. Final simulation
	6.4.3. Results

	CHAPTER 7: Summary
	7.1. Overall Conclusions
	7.2. Future Work
	Appendix A: Transformation Matrix for WAM
	Appendix B: Transformation Matrix for Titan II
	Appendix C: 3-DOF Planar Manipulator Simulation - RBF
	Appendix D: 3-DOF Planar Manipulator Simulation - GRNN
	Appendix E: Programming Code of MLP for Titan II

