
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

5-2004

CFD Modeling of Dynamic Inlet Flow Distortion
Generation
Keith Patrick Savage
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Savage, Keith Patrick, "CFD Modeling of Dynamic Inlet Flow Distortion Generation. " Master's Thesis, University of Tennessee, 2004.
https://trace.tennessee.edu/utk_gradthes/2179

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Keith Patrick Savage entitled "CFD Modeling of Dynamic
Inlet Flow Distortion Generation." I have examined the final electronic copy of this thesis for form and
content and recommend that it be accepted in partial fulfillment of the requirements for the degree of
Master of Science, with a major in Aerospace Engineering.

Dr. Gary Flandro, Major Professor

We have read this thesis and recommend its acceptance:

Dr. Frank Collins, Dr. Joseph Majdalani

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Keith Patrick Savage entitled “CFD
Modeling of Dynamic Inlet Flow Distortion Generation.” I have examined the final
electronic copy of this thesis for form and content and recommend that it be accepted in
partial fulfillment of the requirements for the degree of Master of Science, with a major in
Aerospace Engineering.

We have read this dissertation and
recommend its acceptance:

Dr. Frank Collins

Dr. Joseph Majdalani

Dr. Gary Flandro
Major Professor

Acceptance for the Council:

Anne Mayhew
Vice Provost and Dean of Graduate
Studies

(Original signatures are on file with official student records.)

CFD Modeling of Dynamic Inlet Flow Distortion
Generation

A Thesis Presented
for the Master of Science Degree

The University of Tennessee, Knoxville

Keith Patrick Savage
May 2004

ii

Acknowledgments

I would like to thank my advisory committee for their support and advice in the

course of this study, particularly for Dr. Gary Flandro for putting me on this path and

keeping me on track. His curiosity and enthusiasm kept me from getting discouraged

during the more challenging periods.

Dr. Charles Merkle improved my understanding of CFD and gave me a great deal

of ideas, suggestions and advice on the development of the grid itself and the

interpretation of the results.

The nameless, faceless “nparc-support@info.arnold.af.mil” helped me past an

insurmountable problem of my own doing with patience and understanding.

The CFD software being used was developed to run on *nix systems, but my prior

experience with Linux was minimal. Dr. Ken Kimble’s knowledge and enthusiasm made

a believer of me.

Many others contributed to this, however indirectly. Dr. Stephen Liu offered me a

great deal of good advice during my four years of undergraduate work, not least of which

was the idea of post-graduate education, and Dr. Chester Van Tyne pushed me over the

edge with my Senior Thesis project. My parents, family and friends have all been very

supportive, encouraging me and keeping me going. I couldn’t have done this without

them.

iii

Abstract

Integrating a jet engine into an airframe involves many design and testing steps.

The development of high performance fighter aircraft has added new requirements to this

process. Ground test facilities are used to simulate the effect of inlet shape on the

performance of an engine for cruise flight or other fixed conditions. While a static

simulation of the inlet shape is adequate for most circumstance, military fighter craft are

highly maneuverable, altering the inlet airflow intensely and briefly. These transient

distortions can have a significant impact on performance as well as having the potential

of causing structural problems. In addition to airflow changes caused by flight maneuvers,

the release of weapons stores into the airstream can introduce transient turbulence and

add exhaust gas contaminants. Currently, none of these transient effects are evaluated in

wind tunnel ground tests.

One solution that has been proposed to address this issue is an array of

individually controlled wedges placed in the wind tunnel ahead of the test engine. The

wedges could be opened and closed, not only to simulate the given inlet shape, but also

transient distortions. Coupled with a system to introduce contaminants into the flow, all

manner of transient and static inlet flow distortions could be simulated in a controlled

environment.

Some investigations have already developed mathematical models of variable

angle wedges in a free stream and validated those models with experimental data. If these

real world experimental results can be duplicated in a CFD model then ultimately the

entire wedge array can be developed virtually to arrive at an optimum design with a

relatively small investment. To that end, this study focused on developing a two

dimensional CFD model to provide solution data to compare with experimental results in

order to determine the feasibility of a more elaborate CFD model as a development tool

for the wedge array distortion generator.

iv

Table of Contents

1 Introduction . 1

2 Literature Review and Previous Work . 2

2.1 Transient Distortion Generator . 2

2.2 Wake Characteristics . 3

3 CFD Model Setup . 4

3.1 Wedge Geometry . 4

3.2 Grid Design . 6

3.3 Turbulence Model . 10

3.4 Running Wind . 10

4 Test Results . 11

4.1 Stability Analysis . 11

4.2 Development of the Solution . 13

4.3 Comparison with Prior Test Data . 13

5 Conclusions and Recommendations . 18

5.1 Conclusions . 18

5.2 Recommendations . 18

References . 24

Appendices . 26

A Grid Development . 27

A.1 Wedge Geometry . 27

A.2 Wind Tunnel Test Section Geometry . 28

A.3 Boundary Layer Thickness . 28

v

A.4 Geometric Progression . 29

A.5 Plot-3D Grid File Format . 30

A.6 Other Concerns . 31

B Sample Code and Parameters . 32

B.1 Generating the Grid (MatLab m-file) . 32

B.2 Sample Run Parms (wind dat file) . 39

B.3 Running Wind Multiple Times (REXX script) . 40

B.4 Pressure and Velocity Data Extraction (REXX script) 41

B.5 Clean-up Cfpost Output (REXX script) . 42

B.6 Displaying “Surfaces” (MatLab m-file) . 43

C Tools . 51

C.1 Cfcnvt (version 1.45) . 51

C.2 Gman (version 6.153) . 51

C.3 Wind (version 5.193) . 51

C.4 Resplt (version unknown) . 52

C.5 Cfpost (version 3.163) . 52

D Results . 53

D.1 Solution and Convergence, 30° Wedge . 54

D.2 Solution and Convergence, 60° Wedge . 57

D.3 Solution and Convergence, 90° Wedge . 60

D.4 Solution and Convergence, 120° Wedge . 63

D.5 Solution and Convergence, 150° Wedge . 66

Vita . 69

vi

List of Tables

4.1 A comparison of results from each test case . 14

5.1 Summary of recommendations for future work . 23

vii

List of Figures

2.1 Proposed transient distortion generator . 2

3.1 Photo of actual “wedge” used in the Eddy study . 5

3.2 Comparison of the experimental wedge and the computer model 5

3.3 The first multi-zone grid with a very simple 90° wedge geometry 8

3.4 A grid with wedge chimera overlay . 9

3.5 The final grid format . 9

4.1 Sample output from wind . 11

4.2 Navier-Stokes L convergence for 90° wedge run . 122

4.3 L convergence for the SST calculations . 122

4.4 Total pressure calculated at different iterations . 15

4.5 Original pressure coefficient contour data from the Eddy study 16

4.6 A comparison of measured and calculated pressure coefficient values 17

5.1 Close-up of the lower wedge tip . 19

5.2 A contour plot of the average velocity . 20

5.3 Sections needed to evaluate flow coupling for wedge pairs 22

A.1 The modified door hinge used by Eddy . 27

A.2 The Lexan test section used in the Eddy study . 28

D.1.1 Convergence data for Navier-Stokes calculations for the 30° wedge run 54

D.1.2 Convergence data for Shear Stress Transport calculations, 30° wedge run 54

D.1.3 Total pressure values for 30° wedge after 10,000 iterations 55

D.1.4 Average velocity values for 30° wedge after 10,000 iterations 55

D.1.5 Comparison of pressure coefficient data for 30° wedge 56

D.2.1 Convergence data for Navier-Stokes calculations for the 60° wedge run 57

D.2.2 Convergence data for Shear Stress Transport calculations, 60° wedge run 57

D.2.3 Total pressure values for 60° wedge after 10,000 iterations 58

D.2.4 Average velocity values for 60° wedge after 10,000 iterations 58

D.2.5 Comparison of pressure coefficient data for 60° wedge 59

viii

D.3.1 Convergence data for Navier-Stokes calculations for the 90° wedge run 60

D.3.2 Convergence data for Shear Stress Transport calculations, 90° wedge run 60

D.3.3 Total pressure values for 90° wedge after 10,000 iterations 61

D.3.4 Average velocity values for 90° wedge after 10,000 iterations 61

D.3.5 Comparison of pressure coefficient data for 90° wedge 62

D.4.1 Convergence data for Navier-Stokes calculations for the 120° wedge run 63

D.4.2 Convergence data for Shear Stress Transport calculations, 120° wedge run . . . 63

D.4.3 Total pressure values for 120° wedge after 10,000 iterations 64

D.4.4 Average velocity values for 120° wedge after 10,000 iterations 64

D.4.5 Comparison of pressure coefficient data for 120° wedge 65

D.5.1 Convergence data for Navier-Stokes calculations for the 150° wedge run 66

D.5.2 Convergence data for Shear Stress Transport calculations, 150° wedge run . . . 66

D.5.3 Total pressure values for 150° wedge after 10,000 iterations 67

D.5.4 Average velocity values for 150° wedge after 10,000 iterations 67

D.5.5 Comparison of pressure coefficient data for 150° wedge 68

1

1 Introduction

Jet engines go through many development and testing steps before actually being

installed in an aircraft. Once a bare engine is optimized for ideal operating conditions, it

is submitted to ground tests to evaluate its performance after it is placed in an airframe.

Various methodologies are used in wind tunnel tests to cause distorted flow upstream of

the compressor face to simulate a particular inlet shape. These simulated inlet flow

distortions, at present, only simulate a fixed inlet form over a range of flow velocities.

This is more than adequate for conventional aircraft engines, but high performance

systems like those in military fighter craft have a much broader operating envelope that is

not sufficiently tested with current approaches. Fighter craft are necessarily more

powerful and maneuverable and the latest generation supplements control surfaces with

vectored thrust to enhance that maneuverability even further. These dramatic changes in

orientation distort the inlet flow drastically and briefly, disrupting engine performance

and possibly even damaging components. An additional concern is the transient

disruptions that occur when weapons are released and they and their exhaust gases pass

through the inlet stream. Currently, there is no single, comprehensive and robust

methodology to simulate these situations during wind tunnel testing.

One possible solution to this is the use of an array of individually controlled

wedges placed in the wind tunnel ahead of the engine being tested. This array could

replace existing methods for static testing and allow for more complicated testing as well.

The wedges could be closed completely, causing no significant distortions, then

selectively opened and closed to simulate a transient distortion. Simulated contaminants

could also be introduced to the stream as well, with the wedges providing mixing like the

v-gutters in an afterburner. Taken all together, this wedge array system could replace

existing methodologies while providing an immensely broader range of simulation

possibilities.

Many studies of air flow around bluff bodies have provided a starting point for

mathematical models of wedges, and wind tunnel experiments have corroborated those

results. An obvious next step is to determine if a CFD model can be used to develop the

array.

2

Figure 2.1 Proposed transient distortion generator. The design uses
and array of individually operated wedges to vary flow through a
wind tunnel [1].

2 Literature Review and Previous Work

Current inlet flow simulations are static, and inadequate for highly maneuverable

fighter craft. Development of a method for generating dynamic distortions in the inlet

flow during ground tests would greatly enhance the usefulness of wind tunnel testing.

2.1 Transient Distortion Generator

One possible solution to the problem of generating a transient flow distortion in a

wind tunnel is through the use of an array of wedges (Figure 2.1) which could be

controlled individually. This would allow a large variety of configurations and could

generate both transient and static patterns to simulate virtually any flow distortion

imaginable. Supplemented with a system to feed “contaminated” air from the wedges

could not only simulate the turbulence of stores release, but also the effects of weapon

exhaust gases introduced into the inlet stream.

3

2.2 Wake Characteristics

Flow past wedges and other bluff bodies has been well characterized [2-4], as has

flow around aircraft inlets [5, 6]; the ultimate goal is to use the former to simulate the

latter. To verify the basic concept, a study at Virginia Polytechnic Institute developed

mathematical models to represent the wake characteristics of airflow around a wedge.

Then those models were verified with wind tunnel tests, first of a splitter plate, then a

series of individual solid wedges [1]. This was followed by a second study focusing on

more complex arrangements and more measurements being taken closer to the wedge [7].

Using a modified door hinge for the wedges, simple arrays were easily set up and

modified, ultimately showing that wedges could be used to generate consistent and

predictable results.

4

3 CFD Model Setup

A computer-based simulation of the wedge array, based on previous work, that

could be modified and reconfigured “virtually” would greatly assist in developing an

optimal design. To ensure that a CFD model can provide the required results, it should be

shown that a CFD model can re-create the experimental results achieved at Virginia

Polytechnic. Wind was selected as the CFD modeling tool, owing to its flexibility,

applicability and easy access to developers and support. Wind is built from the code of

three older CFD systems; NASTD from McDonnell Douglas, NPARC from the NPARC

Alliance, and NXAIR from AEDC. Taken together, these parts combine to form a very

powerful and comprehensive tool.

Before running wind, a grid must be supplied that includes the relevant wedge

geometry and boundary conditions. Wind allows for a number of different turbulence

models, so an optimal one must be selected. Finally, execution parameters must be set to

mimic the experimental conditions being simulated.

3.1 Wedge Geometry

The wedge used by Eddy started out as a stock steel door hinge [7]. The sixteenth

inch thick hinge was trimmed down to one and an eight inches long and two inches wide

when fully open (see Figure 3.1). The hinge was mounted in the twelve by twelve inch

wind tunnel on a one eighth inch diameter rod (replacing the hinge pin) and then set to a

specific angle and locked into place with set screws on the downwind side of the hinge.

For this study, the wedge model geometry was simplified. The hinge itself was

treated as a smooth, continuous surface on the front and back, and the back of the hinge

merges directly into the “flap” at right angles (see Figure 3.2).

5

Figure 3.1 Photo of the actual “wedge” used in the Eddy
study. Note that multiple wedges can be mounted on the
support rod which spans the width of the wind tunnel [7].

Figure 3.2 Comparison of the experimental wedge and the
computer model. The complexity of the hinge area was
greatly simplified.

6

Because the hinge axis is offset by an eighth of an inch from the upwind surface,

the model must also allow for the hinge area to “shift” from back to front as the wedge

angle decreases. In other words, when the wedge is fully open, the hinge is only exposed

on the back. But as the wedge closes, an increasing part of the hinge is exposed on the

upwind side, while the exposed hinge decreases on the downwind side, e.g. the quarter

cylinder area of the hinge exposed on the upwind edge of the 90° wedge in Figure 3.2.

3.2 Grid Design

At the heart of a CFD model is the grid; an array of points that represent position,

pressure, velocity, and other related data. While tools are available to generate grids, it

seemed more appropriate to build one from scratch for such a relatively simple geometry.

This would provide a good fit and improve the understanding of the results. The wind

reference included an example of Fortran code that would build a three zone Cartesian

structured grid representing a simple 2-D expanding duct [8]. While Fortran is powerful,

it is also a compiled language which can make development of new code time consuming

and visualization and debugging difficult. MatLab is a software product well suited for

computation and visualization with an interpreted programming language designed to

easily handle matrices. This made it an obvious choice for prototyping a grid, while still

leaving the option of later translation to Fortran as needed.

Once a grid is created and saved into an appropriate format, it must be converted

to the “common grid format” used by wind with the cfcnvt tool provided. Then gman is

used to define the boundaries of each zone and preparing the grid for input into wind.

Boundaries that are shared between zones are coupled, while each of the outer boundaries

are defined as freestream, inlet, or outflow and the boundaries of the wedge itself are

defined as viscous walls.

The grid concept went through many changes in the course of development. The

first, simplest grid was just drawn around an angled line, with the grid drawn either

7

parallel or perpendicular to the wedge surface. This was easy to set up, but the wedge

geometry was unrealistically simple and the grid size would change dramatically over the

range of wedge angles to be studied. This approach was quickly abandoned, but the

geometric series approach used to alter the grid size near the surface of the wedge

survived through the final grid code (see section A.4 and Figure 3.3).

The next grid attempted to describe a more realistic wedge and attempted to make

use of the “cut” option in gman; the intent was to stretch a grid around a wedge shaped

hole, then use gman to define the hole as a viscous boundary. Unfortunately, the “cutting”

tool in gman is intended to remove a portion of an existing grid to make room for an

overlain chimera (a c-type grid wrapped around a complex geometry) and was unsuitable

for the intended purpose. The third iteration used the existing grid and a simple chimera

(see Figure 3.4). This actually generated a seemingly usable grid, but a test run with wind

showed that there were still problems. Initially, the grid seemed to be at fault since wind

failed when it calculated a negative pressure at the lower wedge tip. Eventually it was

determined that the problem was in the actual format of the grid file, but by the time this

became clear, a new grid code had already been written.

The final approach used ten zones in all, with individual zone edges defining the

viscous boundary surfaces of the wedge and additional zones filling the gaps. This also

made it simple to define additional downwind zones that were coarser where less detail

was needed (see Figure 3.5).

In addition to describing the wedge, the grid also needed to provide data for

comparison to the Eddy study. The seven slots used for testing in that study, the first one

inch behind the wedge and the remaining every two inches thereafter, dictated the length

of the grid, while the height captures the five inch test area plus a one inch buffer on

either side.

8

Figure 3.3 The first multi-zone grid with a very simple 90° wedge
geometry. The geometric progression routine that shrinks the grid near the
surface remained in use for all the following codes.

9

Figure 3.4 A grid with wedge chimera overlay. Errors in the test run led to this being
abandoned, but the problem was later determined to be with the file writing routine rather
than the grid.

Figure 3.5 The final grid format. Ten zones were created, four with faces defining the
wedge surface, four to fill the resulting corners, and two downwind grids of progressively
coarser size to reduce the number of points to calculate. (Note: the two zones defining the
wedge tip boundaries are obscured by grid lines at this resolution. One extends from the
upper wedge tip to the top boundary, the other from the lower tip to the bottom
boundary.)

10

3.3 Turbulence Model

Wind can be run with a number of different turbulence models, from simple

(inviscid or laminar) or algebraic (Cebici-Smith or Baldwin-Lomax) to energy equation

models like Spalart-Allmaras or Chien. Because of the geometry of the wedge and the

unsteady nature of the simulation (due to shedding), the two equation Shear Stress

Transport (SST) model was selected. This option incorporates the k-& model (where k is

the specific kinetic energy of the turbulence flux and & is the dissipation per unit of

turbulent kinetic energy) described by Wilcox [9].

3.4 Running Wind

Wind is invoked from the command line, either interactively or in a batch mode.

The interactive mode can be invoked either as a prompted command line or as a crude

graphical interface. Either of the interactive modes serve well enough for development,

but once the appropriate options are identified, the batch mode can be used with scripts to

simplify execution. For this study a script was used not only to simplify execution, but to

take “snapshots” of the solution during execution (see section B.3). The script invoked

wind multiple times for short runs, copying the solution file between runs. This made it

possible to view the solution as it developed, as well as the final results, which greatly

simplified the attendant analysis.

In addition to a properly formatted grid file, wind must be provided a set of

execution parameters in a simple text file. This “dat” file is used to specify values for free

stream conditions, turbulence models, and many other options designed to cover a very

broad range of simulated conditions (see section B.2 and the Wind Users Guide chapter

10). For this study, free stream values were set to ambient temperature and pressure air,

flowing at Mach 0.125 (~42 m/s to match the wind tunnel used in the Virginia Tech

studies [1,7]). Downstream values were set to match the free stream and the turbulence

model set to SST.

11

 Beginning flow solution

 Zone work memory requirements:
 Single precision Double precision Integer
 zone --global-- ---local-- --global-- ---local-- --global-- ---local--
 1 71318 419870 8568 28560 4178 5712
 ZONE 1 (42x68)
 CYCLE ITER ZONE IERR JERR KERR NERR BIG L2 CFL|DT
 RES 421 2101 1 37 2 1 5 -4.211E-04 3.592E-05 1.300E+00
 SST 421 2101 1 41 14 1 1 8.362E-07 4.996E-08 sst
 RES 421 2102 1 40 2 1 5 -2.028E-04 3.319E-05 1.300E+00
 SST 421 2102 1 41 14 1 1 8.374E-07 5.040E-08 sst
 RES 421 2103 1 41 9 1 5 -1.524E-04 3.292E-05 1.300E+00
 SST 421 2103 1 41 15 1 1 8.383E-07 5.068E-08 sst
 RES 421 2104 1 41 10 1 5 -1.585E-04 3.339E-05 1.300E+00
 SST 421 2104 1 41 15 1 1 8.409E-07 5.081E-08 sst
 RES 421 2105 1 41 10 1 5 -1.637E-04 3.413E-05 1.300E+00
 SST 421 2105 1 41 15 1 1 8.417E-07 5.079E-08 sst
ZONE 1:Min/Max CFL = 1.300E+00 1.300E+00 Min/Max DT = 6.643E-08 5.628E-06 sec

Figure 4.1 Sample output from wind. The residual data displayed here is extracted by the
tool resplt. The output also includes ranges of CFL and dt used along with other data for
each zone processed.

4 Test Results

Test runs of 10,000 iterations each were carried out at five different wedge angles,

from 30° to 150° in 30° steps, corresponding to the data provided in Eddy’s work.

4.1 Stability Analysis

The tool resplt is used to extract convergence data from the output generated by

each wind run. The convergence data is then saved in a “genplot” format which can be

read and displayed by cfpost. The output from wind includes “big” and L norms of the2

residual for each type of calculation; Navier-Stokes for all flows, and the specified

turbulence model (Shear Stress Transport in this study). A sample of this output can be

seen in Figure 4.1.

The plots in Figures 4.2 and 4.3 show typical results. After a period of around

4000 iterations both the Navier-Stokes and SST calculations settle down. The

SST convergence for the different zones then starts drifting back up for some zones for

the next 2500 iterations or so as the vortices are shed and travel downwind. Zones 3 and 4

12

Figure 4.3 L convergence for the SST calculations. These2

values reflect the complexity of the calculations. Zones 1, 3 and
4 (upstream of the wedge) are clearly unaffected by
downstream turbulence.

Figure 4.2 Navier-Stokes L convergence for the 90° wedge2

run. The calculations settle down after 4000 iterations, but
converge only to an order ranging from -4 to -6 depending on
the zone.

13

have the smallest L norm value since they are upwind of the wedge and only “see” a2

small amount of turbulence at the corner of the wedge tip. Zone 1 has the next smallest L2

since only the upwind surface of the wedge will generate turbulence. This will probably

change at higher velocities as the flow will shift from more laminar to more turbulent.

Zones 5 and 6 also “see” only small part of the wedge tip, but it is also the grid that

captures the flow separation. Zones 2, 7 and 8 are where the vortices develop,

complicating the calculation, and zones 9 and 10 lag behind until the initial vortices travel

into them.

4.2 Development of the Solution

Blunt bodies in a freestream typically develop an oscillating flow behavior known

as vortex shedding. It was expected that the solution calculated by wind would exhibit

this phenomena once the computations stabilized. This left the question of how many

calculations it would take to reach that point.

From the “snapshots” and the convergence data (as seen in Table 4.1 and Figure

4.4) the answer is clear. It took roughly a thousand iterations for vortices to clearly form,

depending on wedge angle, then another three thousand for the remaining flow to

stabilize, then another twenty-five hundred for the shedding behavior to take shape. Once

the shedding began in earnest and the vortices moved into the trailing regions, the

convergence settled down and was consistent for the remaining iterations that were run.

4.3 Comparison with Prior Test Data

Since the original data from Eddy’s work was unavailable, it was necessary to

extract values from the figures provided in his appendix (Figure 4.5 is typical). The

contour plots of pressure coefficient were scanned, enlarged and printed so values could

be determined by eye.

14

Table 4.1 A comparison of results from each test case. The iteration counts are extracted
from the convergence data and pressure images. Test cases were all run on a 1.3 GHz
AMD Duron processor with 384 MB RAM, running Linux 2.4.

Wedge angle Run time Stable vortices form Shedding begins
[minutes] [iterations] [iterations]

30° 284 3300 4500

60° 273 3400 5000

90° 253 3600 5500

120° 264 3800 6000

150° 267 4000 6500

15

Figure 4.4 Total pressures calculated at different iterations. The convergence data can be
seen to “follow” the formation and shedding of the vortices.

16

Figure 4.5 Original pressure coefficient contour data from the Eddy study
[7]. This example is from the 90° wedge test, slot 2 (3" behind the wedge).

For comparison, pressure values at the appropriate distances were extracted from

the pressure data of the CFD model for the last 30 runs and averaged. This encompassed a

total of three thousand iterations taken from well after the solution had fully developed.

Since the maximum pressure used to determine the pressure coefficient in Eddy’s work

was unknown, the experimental results were normalized with the largest value found in

the Eddy data.

The results (as seen in Figure 4.6) are compelling. The shape, characteristic of

shedding flow, is clear in both the measured and calculated values. Downstream

measurements showed the same form, but the computed values were greater in magnitude

owing to the faster dissipation in three dimensions.

17

Figure 4.6 A comparison of measured and calculated pressure
coefficient values. The calculated values were averaged spanning
3000 iterations (30 samples), then normalized to the largest
measured value (since the measured maximum pressure was
unavailable). The position is the y-axis distance from the bottom of
the wind tunnel at test slot 2, three inches downstream of the
wedge.

18

5 Conclusions and Recommendations

While this study has focused on 2-D, single wedge simulations, it has

demonstrated that the modeling concept is sound and also revealed some possible

limitations of the wedge-as-distortion-generator concept.

5.1 Conclusions

Placing a wedge in a free stream is essentially a bluff-body problem and the CFD

solution showed the classic time dependent vortex shedding behavior expected [2, 10].

Comparing the calculated values to those measured by Eddy showed a good match, right

down to the classic “dimple” in the center.

Because this study only modeled a single wedge in two dimensions, it did not

answer all questions, but it has shown that the model is sound and will prove useful in the

development of a comprehensive and robust simulation of a dynamic distortion generator.

5.2 Recommendations

It may be possible to improve the grid (and achieve better convergence values) by

altering the grid geometry at the wedge tips to curve towards the corners so that the grid

“lines” at the tips are perpendicular, rather than angled (see Figure 5.1). This “body

fitted” approach would help concentrate grid points where the flow separation occurs, at

the leading wedge tip, rather than being spread more uniformly across the upwind surface.

Alternately, the use of chimeras could be re-evaluated, improving the grid at the wedge

tips as well as collapsing zones one through eight into a single background zone and the

chimera. Finally, this study relied on a structured Cartesian grid, but an unstructured

“mesh” grid could well prove to be as effective and more scalable when the work extends

to three dimensions.

Zone 4 Zone 6

Zone 1

Wedge surfaces

19

Figure 5.1 Close-up of the lower wedge tip. This reveals the two sets of grid lines
which run either parallel or intersect at an angle to the wedge surface.

20

Figure 5.2 A contour plot of the average velocity. This sample for the 30° wedge run
shows that the size of the grid used does have an impact on the solution. The leftmost
edge is the inflow boundary and should be the free stream velocity across the entire
length. In a similar manner, the top and bottom edges are free stream boundaries and can
clearly be seen influencing the movement of the vortices downstream.

One issue that appeared in the final analysis and should be addressed before the

next phase of investigation is the grid size. Examining the average velocity profiles, it is

clear that the velocity entering the grid is being “forced” to a lower speed across the

boundary in front of the wedge (see Figure 5.2). While this may be a result of the low

speed used, it is clear that a larger grid could better capture the transition from free stream

to flow around the wedge. A similar problem can be seen in both the pressure and

velocity profiles on the top and bottom boundaries; as the shedding vortices approach the

boundaries, they are forced to the free stream conditions. Both situations may be an

artifact of the two dimensional nature of the model; having a third dimension will allow

the flow to dissipate more quickly (as seen in the comparison of C values). When thisp

study moves into the three dimensional realm, the need for widening the boundaries may

be obviated.

Another area that would be worth additional study is the run-time parameters. The

solutions shown here were generated using the default values for all the parameters (e.g.

CFL, k and &) and the SST turbulence model. It may be that some analysis of the model

may show more appropriate values to use, or that a different turbulence model may be

appropriate. Wind provides the option to combine SST with “Large Eddy Simulation”

21

which can “...improve predictions of complex flows in a real-world engineering

environment...” [8] and may provide better results than SST alone. On the other hand,

SST may be more sophisticated than is needed for this simulation and a one-equation or

algebraic model might achieve the same results with less processing requirements.

Eddy also studied the turbulence coupling effects of pairs of wedges [7] which

could provide another point of comparison, as well as help determine how multiple

wedges will interact. While the study of spanwise coupling will require a 3D model,

streamwise coupling can be modeled by modifying the grid generation code to include

two edges, one above the other (see Figure 5.3).

In order to produce values for comparison, the wedge geometry and testing

conditions for this study were set to duplicate those in Eddy’s work. This fixed the wedge

size and shape, as well as the free stream velocity, pressure and temperature. Since this

study has shown that the modeling concept is sound, the next step should be to determine

the requirements for the dynamic distortion generator wedge array. These should include

specifications for the range of operating conditions, as well as any constraints that might

influence the wedge design (e.g. the size of available actuators will affect the size of the

wedge and its range of motion).

These recommendations are summarized in Table 5.1.

Streamwise Spanwise

22

Figure 5.3 Sections needed to evaluate flow coupling for wedge
pairs. These two dimensional sections will provide streamwise and
spanwise flow coupling data for wedge pairs.

23

Table 5.1 Summary of recommendations for future work

Task Purpose Comment

Expand grid Capture entire By adding at least one inch of grid to the upwind
airflow boundary, distortion across the boundary will be

minimized. Expansion of the upper and lower
boundaries will be helpful, but may not be
necessary for the 3-D version and its increased
dissipation.

Curve the grid Improve A “body fit” grid should achieve better results,
at the wedge convergence especially in the wedge tip area where separation
surface begins.

Switch to Simplify grid A chimera based grid would require less zones
chimera and be easier to alter and may improve

convergence for the same reasons as the curved
grid suggested above.

Multiple Further The current two dimensional model could be
wedges verification, modified to evaluate streamwise coupling effects

determine by modeling two (or more) wedges mounted one
effects of over the other. This could be compared to the
coupling tests run by Eddy as well as demonstrating the

coupling effects. (Spanwise coupling will require
a 3D model.)

Evaluate Improve results, The keyword LESB may be used to combine the
turbulence minimize run SST model with “Large Eddy Simulation” for
models, time selected zones and may improve the quality of
parameters results. Alternately, the Spalart one-equation

model, combined with the DES (Detached Eddy
Simulation) option may provide comparable
solutions in less time.

Determine Ensure the Determine the range of operating conditions that
requirements correct problem must be simulated, such as flow velocity,

is being solved pressure and temperature, to make sure that the
model can accommodate all the possible
conditions.

24

References

25

List of References

[1] Jumel, J., King, P.S., and O’Brien, W.F., “Transient Total Distortion Generator

Development, Phase II,” Final Technical Rept. F40600-94-K-0018, Arnold

Engineering Development Center, Tullahoma, TN, July 1999.

[2] Yang, J., Tsai, G., and Wang, W., “Near-Wake Characteristics of Various V-

Shaped Bluff Bodies.” Journal of Propulsion and Power, Vol. 10, No. 1, Jan.-Feb.

1994, pp. 47-55.

[3] Parkinson, G.V. and Jandali, T., “A Wake Source Model for Bluff Body Potential

Flow,” Journal of Fluid Mechanics, Vol. 40, No. 3, 1970, pp.577-594.

[4] Gerrard, J.H., The Mechanics of the Formation Regions of Vortices Behind Bluff

Bodies,” Journal of Fluid Mechanics, Vol. 25, No. 2, 1966, pp.401-413.

[5] Bruns, J.E. and Smith, C.F., “Installed F/A-18 Inlet Flow Calculations at a High

Angle of Attack,” Journal of Propulsion and Power, Vol. 10, No. 1, Jan.-Feb.

1994, pp. 110-115.

[6] Beale, D.K., “Improving Information Productivity ad Quality in Turbine Engine

Ground Testing,” AIAA Paper 2001-0163, 2001.

[7] Eddy, G.L. Jr., “Study of Steady State Wake Characteristics of Variable Angle

Wedges,” M.S. Dissertation, Virginia Polytechnic Institute and State University,

Blacksburg, VA, 2001.

[8] The NPARC Alliance, “WIND Users Guide,”

http://www.grc.nasa.gov/WWW/wind/winddocs/user/user.pdf.

[9] Wilcox, D.C., Turbulence Modeling for CFD, DCW Industries, 1994, pp. 84-87.

[10] White, F.M., Fluid Mechanics, WCB/McGraw-Hill, 1999, pp. 295-296.

[11] White, F.M., ibid, pp. 427-430.

26

Appendices

27

Figure A.1 The modified door hinge used by Eddy. The
computer model wedge was simplified in the hinge area.

A Grid Development

In spite of the simplicity of the model, care must be taken to arrive at a grid that

will be adequately capture the behavior of the airflow. This must include an accurate

representation of the wedge and a grid points that capture information within the

boundary layer.

A.1 Wedge Geometry

The wedges used in Eddy’s work were the basis of the model used in this study

(see Figure A.1). These wedges started as stock steel door hinges which were trimmed to

1" long by 1.125" wide on each side of the 0.25" diameter hinge. These were then

mounted on a 0.125" rod, replacing the hinge pin, that spanned the 12" by 12" wind

tunnel. Set screws were mounted on the downwind side of the hinge to fix the angle for

each test.

28

Figure A.2 The Lexan test section used in the Eddy study.
The seven test slots are used for measuring pressure in
cross section [7].

A.2 Wind Tunnel Test Section Geometry

The wind tunnel used in both the Jumel and Eddy studies pumps ambient air

through honeycomb screens to smooth out turbulence before the nozzle accelerates the

flow to 42 m/s in the 12" by 12" test section as seen in Figure A.2 [7]. The wedges are

mounted on an eighth inch rod that spans the test section one inch upwind of the first

measurement slot. A total of seven measurement slots allows for measurements from one

to thirteen inches downwind of the wedge.

A.3 Boundary Layer Thickness

For the operating conditions of this study, a rough estimate of the Reynold’s

number was calculated using 42 m/s for the characteristic velocity, the 1 inch (0.0254 m)

length of a single side of the hinge as a characteristic length, and STP value of 1.5x10-5

m /s for the kinematic viscosity. A value of approximately 7x10 resulted, which2 4

suggested laminar flow and a worst case displacement thickness of approximately

/
x
�

5.0

Rex

a�ar�ar 2
�ar 3

�á�ar n � 1

a(1	r n)
1	r

a	rl
1	r

/max�
1
2

/max	r#/min

1	r

29

(A.1)

(A.2)

(A.3)

1.9x10 inches, using the flat plate laminar flow formula seen in equation A.1 [11]. This-2

calculation provides a value to base the minimum grid thickness at the wedge surface.

A.4 Geometric Progression

In order to model the behavior of the airflow around the wedge, the grid must be

fine enough to capture information within the boundary layer. However, making the

entire grid that fine is wasteful as it is unnecessary. To compromise, a scheme is needed

to reduce the grid size as the grid approaches the surface of the wedge. To accomplish

this, a simple geometric series is used. This will reduce the grid in a consistent manner, as

well as allowing for adjustments to be made without major coding changes. The series is

described mathematically thus;

Where l=ar and rg1. The grid can now be defined by three different schemes.n-1

The first is a simple uniform spacing for the regions that are relatively distant from the

surface. The second is a spacing that reduces from the fixed size to less than the boundary

layer thickness. The third is the reverse of the second, growing from smaller than the

boundary layer thickness to the fixed size. In programming terms, a maximum spacing is

defined that corresponds to a, a minimum spacing l, and an arbitrary distance from the

surface equals the sum. To simplify the coding, measurements are defined in terms of a

unit length based on the length of a single “wing” of the wedge, and each of these

schemes is set to half that length. The end result is that the sum works out to;

r
 1
1�2/max	2/min

30

(A.3)

Which, after solving for r, becomes;

The end result is a value for r that can be used to calculate progressively smaller

grid spacing down to the specified minimum size. This way, all that is required to alter

the grid spacing (for instance, when the free stream velocity is changed) is to change the

maximum and/or minimum spacing values, then re-running the code.

A.5 Plot-3D Grid File Format

The user guide for wind provided sample Fortran code for a simple demonstration

grid. MatLab’s superior matrix manipulation made it a more practical solution for

developing the more complex grid, but MatLab’s I/O routines do not map exactly to

Fortran’s. After some reverse engineering, it was determined that files needed to be

written in the following format;

& Zone count: [int size] [int number of zones] [int size] (size is four bytes per int or

4).

& Zone sizes: [int size] [int zone (imax jmax),á,zone (imax jmax)] [int size] (size is1 n

four bytes per int, two ints per zone, and n zones or 4*2*n)

& Zones 1 to n: [int size] [float x , x ,á,x] [float y , y ,á,y] [int size] (size is four11 12 ij 11 12 ij

bytes per float, two floats per point, and i by j points or 4*2*i*j)

The end result is a structured Cartesian grid in Plot-3D multi-zone, 2D, single

precision, binary (or unformatted) file with no “iblank” or “intout/xintout”. This can be

altered to 3D by adding jmax values to the zone sizes, z values to the zones, and adjusting

the sizes accordingly.

31

A.6 Other Concerns

The geometry of the wedge is such that the exposed hinge surface “shifts” from

back to front as the wedge angle decreases. In other words, when the wedge is fully

opened (i.e. �=180°), the two flaps form the entire upwind surface, while the hinge is only

exposed in the back, but when the hinge is closed (�=0°), then the leading edge of the

wedge is a half cylinder surface. In order to compensate for this in the grid, it is necessary

to code for the number of points on the front and back of the hinge to vary as the wedge

angle changes.

32

B Sample Code and Parameters

The following samples include the grid generating MatLab “m-file”, as well as

some additional MatLab utilities and REXX scripts.

This study was executed almost entirely on a desktop PC; a 1.3 GHz AMD Duron

processor, 384 MB RAM, running the Red Hat 7.3 distribution of Linux (2.4.18 kernel),

MatLab Student Edition release 12 (MatLab version 6), and ObjectREXX version 2.0.

Wind and its supporting utilities are described in detail in appendix C.

Note: REXX is a very common “procedures” (or “scripting” in *nix parlance)

language on IBM mainframes and is also available in some form on very nearly every PC

operating system. While it is not commonly used on Linux, it is powerful, flexible and

easy to code. The decision to write these utilities in REXX was based on more pragmatic

reasons; the author is fairly fluent in REXX so it was much more expedient to code

utilities with it, rather than spend time learning a more common scripting language.

B.1 Generating the Grid (MatLab m-file)

The following is the MatLab m-file that creates and writes the structured

Cartesian grid.

%== 10-zone grid builder, 2-D, V4 =========================
%==
clc; %== clear the command window
%==
%== Note to self: ===
%== MatLab matrix notation is done in R,C format, so x ===
%== values correspond to rows and y values columns. ======
%==
%== "Fixed" values ==
%==
L = 1; %= length (of one butterfly "wing") [inches]
 %= note: this fixes the units and dimensions
t = 0.060; %= thickness of "wing" [unitless]
r = 0.125; %= radius of hinge [unitless]
theta = 090*(pi/180); %= angle of "wings" [rad]
filename = '2d090.grid'; %= for later use...
phi = (pi-theta)/2; %= useful angle [rad]
beta = pi/2-phi; %= angle on back of hinge
max = 0.1; %= largest/ fixed division [unitless]
min = 0.001; %= smalllest division [unitless]

33

zones = 10; %= number of zones
%==
%== Calculated values =====================================
%==
dec = 1/(1+2*max-2*min); %= geometric-prog. decrement
%==
%== Base sections ===
%==
A = [0:max:0.5]; %= fixed width area
size_A = numel(A);
B(1) = 0; %= start at 0
delta = max;
i = 1; %= start adding to second
while B(i) < 0.5
 delta = delta*dec;
 i = i + 1;
 B(i) = B(i-1) + delta;
 if delta < min
 B(i) = 0.5;
 end %= if..then
end
size_B = i;
for i = 1:size_B
 C(i) = 0.5 - B(size_B-i+1);
end
size_C = size_B;

%== pick how many points go on which side of the hinge ======
if theta > 150*(pi/180) | theta < 30*(pi/180)
 bogus_angle;

elseif theta >= 120*(pi/180)
 fore = 2;
elseif theta >= 90*(pi/180)
 fore = 4;
elseif theta >= 60*(pi/180)
 fore = 6;
else
 fore = 8;
end %=if..elseif..elseif..else
aft = 10-fore;
%== pick how many divisions on the wingtip ==================
tip = 10;

%== grids ===
%== zone 1 - ahead of wing ===============================
max1 = [(size_A + 2*(size_A-1) + size_B-1) ...
 (2*size_A + 2*(size_B-1) + fore)];
X1 = zeros(max1(1),max1(2));
Y1 = X1;
%== zone 2 - behind wing =================================
max2 = [(size_C + 7*(size_A-1)) (2*size_A + 2*(size_B-1) + aft)];
X2 = zeros(max2(1),max2(2));
Y2 = X2;
%== zone 3 - below wing, upwind ==========================
max3 = [(size_A + 2*(size_A-1) + (size_B-1)) ...
 (size_C + 4*(size_A-1))];
X3 = zeros(max3(1),max3(2));

34

Y3 = X3;
%== zone 4 - above wing, upwind ==========================
max4 = max3;
X4 = X3;
Y4 = X4;
%== zone 5 - below wingtip ===============================
max5 = [(tip+1) ...
 (size_C + 4*(size_A-1))];
X5 = zeros(max5(1),max5(2));
Y5 = X5;
%== zone 6 - above wingtip ===============================
max6 = max5;
X6 = X5;
Y6 = X6;
%== zone 7 - below wing, downwind ========================
max7 = [(size_C + 7*(size_A-1)) ...
 (size_C + 4*(size_A-1))];
X7 = zeros(max7(1),max7(2));
Y7 = X7;
%== zone 8 - above wing, downwind ========================
max8 = max7;
X8 = X7;
Y8 = X8;
%== zone 9 - middle section == (inc~=0.0625) ==============
max9 = [55 90];
X9 = zeros(max9(1),max9(2));
Y9 = X9;

%== zone 10 - downwind section == (inc~=0.125) ============
max0 = [57 57];
X0 = zeros(max0(1),max0(2));
Y0 = X0;

%==
%== Baselines ===
%==
%== baseline 1 - y-values for zones 3, 4 ===================
baseline1 = [A (A(2:size_A)+0.5) (A(2:size_A)+1.0) (A(2:size_A)+1.5)
(B(2:size_B)+2.0)]/2.5;
%== baseline 2 - y-values for zones 1, 2 (wing front/back) =
baseline2 = [C (A(2:size_A)+0.5)]/1;
%== baseline 3 - x-values for zones 1, 3, 4 ================
baseline3 = [A ...
 (A(2:size_A)+0.5) ...
 (A(2:size_A)+1.0) ...
 (B(2:size_B)+1.5) ...
 (C(2:size_C)+2.0) ...
 (A(2:size_A)+2.5) ...
 (A(2:size_A)+3.0) ...
 (A(2:size_A)+3.5) ...
 (A(2:size_A)+4.0) ...
 (A(2:size_A)+4.5) ...
 (A(2:size_A)+5.0) ...
 (A(2:size_A)+5.5)]';
%== baseline 4 - x-values for zone 2 ======================
baseline4 = (baseline3(max1(1):numel(baseline3))-baseline3(max1(1)))/4;

35

%== baseline 5 - x-values for zones 5,6 ===================
baseline5 = [0:(1/tip):1];
%== "origin" - x-y coords for center of rod ===============
origin = [2 3.5];
%== "corner" - x-y coords for leading wingtip =============
corner = [origin(1)-r*cos(phi)+sin(phi) ...
 origin(2)-r*sin(phi)-cos(phi)];

%==
%== Zone 1 - upwind of wing ================================
%==
X1(1,:) = 0;
Y1(1,:) = (2.5:2/(max1(2)-1):4.5);
X1(max1(1),1:((max1(2)-fore)/2)) = [-baseline2*sin(phi)+corner(1)];
Y1(max1(1),1:((max1(2)-fore)/2)) = [baseline2*cos(phi)+corner(2)];
for j = ((max1(2)-fore+2)/2):(max1(2)/2)
 k = j - (max1(2)-fore+2)/2 + 1;
 alpha = (fore+1-2*k)*phi/(fore+1);
 X1(max1(1),j) = (origin(1)-r*cos(alpha));
 Y1(max1(1),j) = (origin(2)-r*sin(alpha));
end %= for..j
%== fill it up ===
for j = 1:(max1(2)/2)
 opp = X1(max1(1),j)-X1(1,j);
 adj = Y1(max1(1),j)-Y1(1,j);
 hyp = sqrt(opp^2+adj^2);
 X1(1:max1(1),j) = X1(1,j) + opp*baseline3(1:max1(1))/2;
 X1(1:max1(1),(max1(2)+1-j)) = X1(1:max1(1),j);
 Y1(1:max1(1),j) = Y1(1,j) + adj*baseline3(1:max1(1))/2;
 Y1(1:max1(1),(max1(2)+1-j)) = 7-Y1(1:max1(1),j);
end %== for..j

%==
%== Zone 2 - immediately downwind of wing ==================
%==
X2(max2(1),:) = 6;
Y2(max2(1),:) = (2.5:2/(max2(2)-1):4.5);
X2(1,1:((max2(2)-aft)/2)) =
[-(1-r)*baseline2*sin(phi)+corner(1)+t*cos(phi)];
Y2(1,1:((max2(2)-aft)/2)) =
[(1-r)*baseline2*cos(phi)+corner(2)+t*sin(phi)];
for j = ((max2(2)-aft+2)/2):(max2(2)/2)
 k = j - (max2(2)-aft+2)/2;
 alpha = (aft-1-2*k)*beta/(aft-1);
 X2(1,j) = (origin(1)+r*cos(alpha));
 Y2(1,j) = (origin(2)-r*sin(alpha));
end %= for..j
%== fill it up ===
for j = 1:(max2(2)/2)
 opp = X2(max2(1),j)-X2(1,j);
 adj = Y2(max2(1),j)-Y2(1,j);
 hyp = sqrt(opp^2+adj^2);
 X2(1:max2(1),j) = X2(1,j) + opp*baseline4;
 X2(1:max2(1),(max2(2)+1-j)) = X2(1:max2(1),j);
 Y2(1:max2(1),j) = Y2(1,j) + adj*baseline4;
 Y2(1:max2(1),(max2(2)+1-j)) = 7-Y2(1:max2(1),j);
end %== for..j

36

%==
%== Zone 3,4 - below/above wing, upwind ====================
%==
X3(1,:) = 0;
Y3(1,:) = [0:(2.5/(max3(2)-1)):2.5];
X3(max3(1),:) = corner(1);
Y3(max3(1),:) = corner(2)*baseline1;
%== fill it up ===
for j = 1:max3(2)
 opp = X3(max3(1),j)-X3(1,j);
 adj = Y3(max3(1),j)-Y3(1,j);
 X3(:,j) = corner(1)*baseline3(1:max3(1))/2;
 X4(:,(max3(2)+1-j)) = X3(:,j);
 Y3(:,j) = Y3(1,j) + adj*baseline3(1:max1(1))/2;
 Y4(:,(max3(2)+1-j)) = 7-Y3(:,j);
end %== for..j

%==
%== Zone 5,6 - below/above wingtip =========================
%==
X5(1,:) = X3(max3(1),:);
Y5(1,:) = Y3(max3(1),:);
X5(max5(1),:) = corner(1)+t*cos(phi);
Y5(max5(1),:) = (corner(2)+t*sin(phi))*baseline1;
%== fill it up ===
for j = 1:max5(2)
 opp = X5(max5(1),j)-X5(1,j);
 adj = Y5(max5(1),j)-Y5(1,j);
 X5(:,j) = [corner(1):(opp/tip):(corner(1)+t*cos(phi))]';
 X6(:,(max5(2)+1-j)) = X5(:,j);
 Y5(:,j) = Y5(1,j) + adj*baseline5';
 Y6(:,(max5(2)+1-j)) = 7-Y5(:,j);
end %== for..j

%==
%== Zone 7,8 - below/above wing, downwind ==================
%==
X7(1,:) = X5(max5(1),:);
Y7(1,:) = Y5(max5(1),:);
X7(max7(1),:) = 6;
Y7(max7(1),:) = [0:(2.5/(max7(2)-1)):2.5];
%== fill it up ===
for j = 1:max7(2)
 opp = X7(max7(1),j)-X7(1,j);
 adj = Y7(max7(1),j)-Y7(1,j);
 X7(:,j) = X7(1,j)+opp*baseline4;
 X8(:,(max7(2)+1-j)) = X7(:,j);
 Y7(:,j) = Y7(1,j) + adj*baseline4;
 Y8(:,(max7(2)+1-j)) = 7-Y7(:,j);
end %== for..j

%==
%== Zone 9 - downwind, close ===============================
%==
X9(:,1) = [6:((10-6)/(max9(1)-1)):10]';
Y9(:,1) = 0;
Y9(1,:) = [0:((7-0)/(max9(2)-1)):7];
%== fill it up ===

37

for j = 2:max9(2)
 X9(:,j) = X9(:,1);
 Y9(:,j) = Y9(1,j);
end %== for..j

%==
%== Zone 10 - downwind, far ================================
%==
X0(:,1) = [10:((17-10)/(max0(1)-1)):17]';
Y0(:,1) = 0;
Y0(1,:) = [0:((7-0)/(max0(2)-1)):7];
%== fill it up ===
for j = 2:max0(2)
 X0(:,j) = X0(:,1);
 Y0(:,j) = Y0(1,j);
end %== for..j

%== "resize" as needed =====================================
%== - this doesn't do anything now, since L=1 inch, but =====
%== this will make conversion easy (say, to cm or ft). ====
%== - OTOH, caution required since WIND uses the units ======
%== defined in GMAN which default to inches... ============
X1 = L*X1;
Y1 = L*Y1;
X2 = L*X2;
Y2 = L*Y2;
X3 = L*X3;
Y3 = L*Y3;
X4 = L*X4;
Y4 = L*Y4;
X5 = L*X5;
Y5 = L*Y5;
X6 = L*X6;
Y6 = L*Y6;
X7 = L*X7;
Y7 = L*Y7;
X8 = L*X8;
Y8 = L*Y8;
X9 = L*X9;
Y9 = L*Y9;
X0 = L*X0;
Y0 = L*Y0;

%== display that puppy =====================================
hold off;
surf(X1,Y1,zeros(max1(1),max1(2)),'facecolor',[0.6 0.6 0.6])
hold on;
surf(X2,Y2,zeros(max2(1),max2(2)),'facecolor',[1.0 0.6 0.6])
surf(X3,Y3,zeros(max3(1),max3(2)),'facecolor',[0.6 1.0 0.6])
surf(X4,Y4,zeros(max4(1),max4(2)),'facecolor',[0.6 1.0 0.6])
surf(X5,Y5,zeros(max5(1),max5(2)),'facecolor',[1.0 1.0 0.6])
surf(X6,Y6,zeros(max6(1),max6(2)),'facecolor',[0.6 1.0 1.0])
surf(X7,Y7,zeros(max7(1),max7(2)),'facecolor',[0.6 0.6 1.0])
surf(X8,Y8,zeros(max8(1),max8(2)),'facecolor',[0.6 0.6 1.0])
surf(X9,Y9,zeros(max9(1),max9(2)),'facecolor',[1.0 0.6 1.0])
surf(X0,Y0,zeros(max0(1),max0(2)),'facecolor',[0.6 1.0 1.0])
axis equal;
set(gca,'view',[0 90]);

38

set(gca,'XLim',[0 17]);
set(gca,'YLim',[0 7]);
hold off;

%== write it in Plot3D format ==============================
fileout = fopen(filename,'w');
%== first, write the number of zones =========================
wrtzone = fwrite(fileout,[4 zones 4],'int');
%== then, write the (2) dimensions ===========================
dims = [max1 max2 max3 max4 max5 max6 max7 max8 max9 max0];
dimbytes = 4*numel(dims);
wrtdims = fwrite(fileout,[dimbytes dims dimbytes],'int');
%== finally, write the good stuff ============================
%== - note that single precision floats are 4 bytes, just ====
%== like ints. ===
zbytes1 = 4*2*numel(X1);
wrtpref = fwrite(fileout,[zbytes1],'int');
wrtX = fwrite(fileout,X1,'float');
wrtY = fwrite(fileout,Y1,'float');
wrtsuff = fwrite(fileout,[zbytes1],'int');
zbytes2 = 4*2*numel(X2);
wrtpref = fwrite(fileout,[zbytes2],'int');
wrtX = fwrite(fileout,X2,'float');
wrtY = fwrite(fileout,Y2,'float');
wrtsuff = fwrite(fileout,[zbytes2],'int');
zbytes3 = 4*2*numel(X3);
wrtpref = fwrite(fileout,[zbytes3],'int');
wrtX = fwrite(fileout,X3,'float');
wrtY = fwrite(fileout,Y3,'float');
wrtsuff = fwrite(fileout,[zbytes3],'int');
zbytes4 = 4*2*numel(X4);
wrtpref = fwrite(fileout,[zbytes4],'int');
wrtX = fwrite(fileout,X4,'float');
wrtY = fwrite(fileout,Y4,'float');
wrtsuff = fwrite(fileout,[zbytes4],'int');
zbytes5 = 4*2*numel(X5);
wrtpref = fwrite(fileout,[zbytes5],'int');
wrtX = fwrite(fileout,X5,'float');
wrtY = fwrite(fileout,Y5,'float');
wrtsuff = fwrite(fileout,[zbytes5],'int');
zbytes6 = 4*2*numel(X6);
wrtpref = fwrite(fileout,[zbytes6],'int');
wrtX = fwrite(fileout,X6,'float');
wrtY = fwrite(fileout,Y6,'float');
wrtsuff = fwrite(fileout,[zbytes6],'int');
zbytes7 = 4*2*numel(X7);
wrtpref = fwrite(fileout,[zbytes7],'int');
wrtX = fwrite(fileout,X7,'float');
wrtY = fwrite(fileout,Y7,'float');
wrtsuff = fwrite(fileout,[zbytes7],'int');
zbytes8 = 4*2*numel(X8);
wrtpref = fwrite(fileout,[zbytes8],'int');
wrtX = fwrite(fileout,X8,'float');
wrtY = fwrite(fileout,Y8,'float');
wrtsuff = fwrite(fileout,[zbytes8],'int');
zbytes9 = 4*2*numel(X9);
wrtpref = fwrite(fileout,[zbytes9],'int');
wrtX = fwrite(fileout,X9,'float');

39

wrtY = fwrite(fileout,Y9,'float');
wrtsuff = fwrite(fileout,[zbytes9],'int');
zbytes0 = 4*2*numel(X0);
wrtpref = fwrite(fileout,[zbytes0],'int');
wrtX = fwrite(fileout,X0,'float');
wrtY = fwrite(fileout,Y0,'float');
wrtsuff = fwrite(fileout,[zbytes0],'int');
%== close the file ===
closeit = fclose(fileout);
%== all done... ==

B.2 Sample Run Parms (wind dat-file)

Wind requires a parameter file to execute. The following sample was used for one

of the test runs;

2D, 90 degree flap, SST, M=0.125
/ Inlet conditions - mach, pressure, temp, attack, yaw
Freestream total 0.125 14.7 530.0 0.0 0.0

/ Boundary conditions - based on freestream
Downstream pressure freestream zone 10

/ Viscous terms - Shear Stress Transport 2 eqn model
Turbulence SST

/ Numerics - 5 iterations per cycle
Cycles 20

End

The first line(s) is a freeform title that is included in later output files. The “/”

character indicates a comment. The “freestream” keyword is followed by “static” or

“total”, then the Mach number of the freestream, the pressure (in psi), the temperature (in

degrees Rankine), the angle of attack and then angle of yaw (in degrees). For these

conditions, the Mach number of 0.125 translates to 42.5 m/s which is slightly higher than

the maximum sustainable velocity of 42 m/s managed in the Eddy study’s wind tunnel.

The “turbulence” keyword is followed by one of nine different turbulence models

available in wind. In this case, the SST (Shear Stress Transport) two equation model was

selected as most appropriate for the calculations being done (see section 3.3). The

“cycles” keyword is used to specify the number of 5-iteration cycles to run. Selecting 20

cycles and running multiple times allowed the automation of “snapshots” of the solution

as it developed.

40

B.3 Running Wind Multiple Times (REXX script)

In order to capture data as the solution evolved, it was necessary to run wind

multiple times, stopping in between to “snapshot” the results. Wind is designed to default

to continuing where it left off when interrupted, making this a straightforward set up. The

parameters (see B.2) were set to 100 iterations (20 five-iteration cycles) to allow a

reasonable number of calculations between each stop.

#!/usr/bin/rexx
/* run_many.cmd - REXX exec to execute WIND multiple times **********/
trace 'O'

/* read in the filename for .dat, .lis, .cfl files ******************/
/* note: file_names ARE case sensitive. use "parse arg" instead... **/
parse arg angle suffix .
if \datatype(angle,'N') then do /* angle is not numeric; use default */
 file_name = '2d120'
 grid_name = '2d120'
end /* if..then..do */
else do
 angle = right(angle,3,'0') /* force zero-padding, 3 digits ****/
 file_name = '2d'angle||suffix
 grid_name = '2d'angle
end /* else..do */

/* copy the grid file for use with CFPOST ***************************/
"cp" grid_name".cgd temp.cgd"

say "Executing wind for input file" file_name".dat"

/* 5 iterations per cycle, 20 cycles per run = 10000 iterations. ****/
do i = 1 to 100
 fu = i-1 /* just a "before" variable ******************************/
 say "=============== Iteration" fu"01 to" i"00 =============" time()
 "wind -runinplace", /* force to run locally ******************/
 "-runque REAL", /* run in the "real" queue ***************/
 "-dat" file_name, /* specify the dat file ******************/
 "-list" file_name,
 "-grid" grid_name,
 "-flow" file_name,
 "-program wind5", /* specify which version to run ***********/
 "-batch", /* force batch (no prompting) *************/
 "-nobg" /* force foreground ***********************/

 /* Theoretically, rc is set to the exit return code from the */
 /* command issued. However, a bad grid file during a test run */
 /* demonstrated that WIND (or perhaps Linux commands in general) */
 /* does not set the rc properly; use "tail -f <filename.lis> to */
 /* ensure that things are running correctly... ********************/
 if rc = 0 then do
 /* set up the flow-file for use with CFPOST *********************/
 "cp" file_name".cfl temp.cfl"

41

 "cfpost < mkplot.jou >" file_name"."right(i,3,'0')".log"
 "cp temp.q" file_name"."right(i,3,'0')".q"
 "cp" file_name".cfl" file_name"."right(i,3,'0')".cfl"
 end /* if..then..do */
 else do
 say "** failed around" i"00 iterations with rc="rc
 leave
 end /* else..do */
end /* do..i */

exit

B.4 Pressure and Velocity Data Extraction (REXX script)

The cfpost utility provides the facility to extract different data from the “common

flow file” generated by wind. With the right supporting software (e.g. Visual3), this data

can be displayed directly from cfpost. As an alternative, data can be extracted as space-

delimited text for processing less directly; this utility executes a script in cfpost that does

just that, for each “snapshot” taken during the wind run.

#!/usr/bin/rexx
/* smee.cmd - REXX kludge to generate output for "clean_list.cmd" */
trace 'O'

/* read in the filename for .dat, .lis, .cfl files ******************/
/* note: file_names ARE case sensitive. use "parse arg" instead... **/
parse arg angle suffix .
if \datatype(angle,'N') then do /* if angle is not numeric, default */
 file_name = '2d120'
 grid_name = '2d120'
end /* if..then..do */
else do
 angle = right(angle,3,'0') /* force zero-padding, 3 digits ****/
 file_name = '2d'angle||suffix
 grid_name = '2d'angle
end /* else..do */

/* copy the grid file for use with CFPOST ***************************/
"cp" grid_name".cgd temp.cgd"

/* set up the flow-file for use with CFPOST *************************/
do i = 1 to 100
 "cp" file_name"."right(i,3,'0')".cfl temp.cfl"
 "cfpost < p_plot.jou > p_plot.log"
 "cfpost < v_plot.jou > v_plot.log"
 "clean_list.cmd >"file_name"."right(i,3,'0')".csv"
end /* do..i */

exit

42

B.5 Clean-up Cfpost Output (REXX script)

The output from the previous step is not easily readable with any of MatLab’s

standard routines, so another utility was written to strip headers and extra spaces from the

output and add commas between values. This allows the results to be read directly in to

MatLab with a CSVREAD (Comma Separated Values read) routine.

#!/usr/bin/rexx
/* REXX exec to clean up output from CFPOST *************************/
trace 'N'

/* set a signal ("goto") to close files after interupt **************/
signal on halt

/* identify files with pressure and velocity values *****************/
file1 = "p_temp.lis"
file2 = "v_temp.lis"

/* open output files from CFPOST ************************************/
void = stream(file1,"C","OPEN")
void = stream(file2,"C","OPEN")
curzone = 0

/* read through the output files which should be the same length...**/
do while lines(file1) > 0
 /* parse around the "ZONE" header: if it's there, then get the **/
 /* zone dimensions, otherwise build the output string which will **/
 /* include i, j, k, x, y, p. p0, v, u, V and W ********************/
 parse upper value linein(file1) with before "ZONE" after .
 parse upper value linein(file2) with . . . v_data
 if datatype(after,"N") then do /* ignore non-numeric "zones" ******/
 if after > 0 & curzone \= after then do
 if curzone > 0 then
 call write_zone
 else
 nop
 curzone = after
 big_i = 0
 big_j = 0
 big_k = 0
 end /* if..do */
 else
 nop
 end /* if..do */
 else do /* "ZONE" not found, but is it data or header? ************/
 parse var before i j k p_data
 if \datatype(i,"N") then /* if i is not numeric, then skip it ***/
 iterate
 else do /* step up the max i, j, k values to find dimensions ****/
 if big_i < i then
 big_i = i

43

 if big_j < j then
 big_j = j
 if big_k < k then
 big_k = k
 /* it's a data line: parse out the desired values *************/
 parse var p_data x y p p0 .
 p_data = x','y','p','p0 /* we need commas for CSVREAD to work */
 parse var v_data u v big_V big_W .
 v_data = u','v','big_V','big_W
 queue i','j','k','p_data','v_data /* "stack" the output rec ***/
 end /* else..do */
 end /* else..do */
end /* do..while */

call write_zone /* the very last zone is still in the stack *********/

/* interupted or finished; close the input files ********************/
halt:
void = stream(file1,"C","CLOSE")
void = stream(file2,"C","CLOSE")

exit

write_zone: /**/
/*********** */
/* this subroutine pulls a single zone's info off the stack and */
/* writes it to STDOUT. When everything works, just use the ">" */
/* redirection operator to pipe the output to a file... */
/**/
 say big_i','big_j','big_k /* write the zone dimensions ************/
 do queued()
 pull stuff
 say stuff
 end /* do..queued() */
return

B.6 Displaying “Surfaces” (MatLab m-file)

The previous two utilities result in a file with data (static and total pressure,

velocity in x and y and an average, and vorticity in this case, though other data can be

extracted) in an array that can be read into arrays for each zone and then displayed with

the following code and, optionally, saved in different formats. There is a lot of

redundancy in the code, but the arrays vary in size from zone to zone, and zones 1 and 2

vary in size for different wedge angles.

%== Kludge to show pressure "surfaces" ================================
%===+====1====+====2====+====3====+====4====+====5====+====6====+====7
clc;

clear X1 X2 Y1 Y2 P1 P2 V1 V2 fu1 fu2;

44

clem = '2d090.100.csv';
p_jpeg = '2d090.p.100.jpg';
v_jpeg = '2d090.v.100.jpg';
j_flag = 0;
WoT = csvread(clem);
WoT(:,8) = WoT(:,8)/12; %== convert in/s to f/s =======================
WoT(:,9) = WoT(:,9)/12; %== convert in/s to f/s =======================
WoT(:,10) = WoT(:,10)/12; %== convert in/s to f/s =====================
WoT(:,11) = WoT(:,11)/12; %== convert in/s to f/s =====================
p_max = 14.8;
WoT(:,6) = ((p_max - WoT(:,7))/p_max)*100;

bar = 6; %== metasyntactic var to select values =======================
 %== 6: p (static pressure [psi]) =============================
 %== 7: p0 (total pressure [psi]) =============================
 %== 8: u (x-velocity [ft/s]) =================================
 %== 9: v (y-velocity [ft/s]) =================================
 %== 10: V (average velocity [ft/s]) =========================
 %== 11: W (average vorticity [??]) ==========================
color_limits = [[0 3]; ... %== for pressure [psi] ===============
 [14.2 14.9]; ... %== for total pressure [psi] =========
 [-250.0 250.0]; .%== for x-velocities [ft/s] ==========
 [-150.0 150.0]; .%== for y-velocities [ft/s] ==========
 [0.0 200.0]; ... %== for average velocity [ft/s] ======
 [0.0 500.0]]; .. %== for average vorticity [ft/s] =====

count = 1;
%== zone 1 ===
imax = WoT(count,1);
jmax = WoT(count,2);
kmax = WoT(count,3);
X1 = zeros(imax, jmax);
Y1 = zeros(imax, jmax);
fu1 = zeros(imax, jmax);
entries = imax*jmax*kmax;

for l = 1:entries;
 count = count + 1;
 i = WoT(count,1);
 j = WoT(count,2);
 x = WoT(count,4);
 y = WoT(count,5);
 P_0 = WoT(count,7);
 V = WoT(count,10);
 fu = WoT(count,bar);
 X1(i,j) = x;
 Y1(i,j) = y;
 P1(i,j) = P_0;
 V1(i,j) = V;
 fu1(i,j) = fu;
end
count = count + 1;

%== zone 2 ===
imax = WoT(count,1);
jmax = WoT(count,2);

45

kmax = WoT(count,3);
X2 = zeros(imax, jmax);
Y2 = zeros(imax, jmax);
fu2 = zeros(imax, jmax);
entries = imax*jmax*kmax;
for l = 1:entries;
 count = count + 1;
 i = WoT(count,1);
 j = WoT(count,2);
 x = WoT(count,4);
 y = WoT(count,5);
 P_0 = WoT(count,7);
 V = WoT(count,10);
 fu = WoT(count,bar);
 X2(i,j) = x;
 Y2(i,j) = y;
 P2(i,j) = P_0;
 V2(i,j) = V;
 fu2(i,j) = fu;
end
count = count + 1;

%== zone 3 ===
imax = WoT(count,1);
jmax = WoT(count,2);
kmax = WoT(count,3);
X3 = zeros(imax, jmax);
Y3 = zeros(imax, jmax);
fu3 = zeros(imax, jmax);
entries = imax*jmax*kmax;
for l = 1:entries;
 count = count + 1;
 i = WoT(count,1);
 j = WoT(count,2);
 x = WoT(count,4);
 y = WoT(count,5);
 P_0 = WoT(count,7);
 V = WoT(count,10);
 fu = WoT(count,bar);
 X3(i,j) = x;
 Y3(i,j) = y;
 P3(i,j) = P_0;
 V3(i,j) = V;
 fu3(i,j) = fu;
end

count = count + 1;
%== zone 4 ===
imax = WoT(count,1);
jmax = WoT(count,2);
kmax = WoT(count,3);
X4 = zeros(imax, jmax);
Y4 = zeros(imax, jmax);
fu4 = zeros(imax, jmax);
entries = imax*jmax*kmax;
for l = 1:entries;
 count = count + 1;
 i = WoT(count,1);

46

 j = WoT(count,2);
 x = WoT(count,4);
 y = WoT(count,5);
 P_0 = WoT(count,7);
 V = WoT(count,10);
 fu = WoT(count,bar);
 X4(i,j) = x;
 Y4(i,j) = y;
 P4(i,j) = P_0;
 V4(i,j) = V;
 fu4(i,j) = fu;
end
count = count + 1;

%== zone 5 ===
imax = WoT(count,1);
jmax = WoT(count,2);
kmax = WoT(count,3);
X5 = zeros(imax, jmax);
Y5 = zeros(imax, jmax);
fu5 = zeros(imax, jmax);
entries = imax*jmax*kmax;
for l = 1:entries;
 count = count + 1;
 i = WoT(count,1);
 j = WoT(count,2);
 x = WoT(count,4);
 y = WoT(count,5);
 P_0 = WoT(count,7);
 V = WoT(count,10);
 fu = WoT(count,bar);
 X5(i,j) = x;
 Y5(i,j) = y;
 P5(i,j) = P_0;
 V5(i,j) = V;
 fu5(i,j) = fu;
end
count = count + 1;

%== zone 6 ===
imax = WoT(count,1);
jmax = WoT(count,2);
kmax = WoT(count,3);
X6 = zeros(imax, jmax);
Y6 = zeros(imax, jmax);
fu6 = zeros(imax, jmax);
entries = imax*jmax*kmax;
for l = 1:entries;
 count = count + 1;
 i = WoT(count,1);
 j = WoT(count,2);
 x = WoT(count,4);
 y = WoT(count,5);
 P_0 = WoT(count,7);
 V = WoT(count,10);
 fu = WoT(count,bar);
 X6(i,j) = x;
 Y6(i,j) = y;

47

 P6(i,j) = P_0;
 V6(i,j) = V;
 fu6(i,j) = fu;
end
count = count + 1;

%== zone 7 ===
imax = WoT(count,1);
jmax = WoT(count,2);
kmax = WoT(count,3);
X7 = zeros(imax, jmax);
Y7 = zeros(imax, jmax);
fu7 = zeros(imax, jmax);
entries = imax*jmax*kmax;
for l = 1:entries;
 count = count + 1;
 i = WoT(count,1);
 j = WoT(count,2);
 x = WoT(count,4);
 y = WoT(count,5);
 P_0 = WoT(count,7);
 V = WoT(count,10);
 fu = WoT(count,bar);
 X7(i,j) = x;
 Y7(i,j) = y;
 P7(i,j) = P_0;
 V7(i,j) = V;
 fu7(i,j) = fu;
end
count = count + 1;

%== zone 8 ===
imax = WoT(count,1);
jmax = WoT(count,2);
kmax = WoT(count,3);
X8 = zeros(imax, jmax);
Y8 = zeros(imax, jmax);
fu8 = zeros(imax, jmax);
entries = imax*jmax*kmax;
for l = 1:entries;
 count = count + 1;
 i = WoT(count,1);
 j = WoT(count,2);
 x = WoT(count,4);
 y = WoT(count,5);
 P_0 = WoT(count,7);
 V = WoT(count,10);
 fu = WoT(count,bar);
 X8(i,j) = x;
 Y8(i,j) = y;
 P8(i,j) = P_0;
 V8(i,j) = V;
 fu8(i,j) = fu;
end
count = count + 1;

%== zone 9 ===
imax = WoT(count,1);

48

jmax = WoT(count,2);
kmax = WoT(count,3);
X9 = zeros(imax, jmax);
Y9 = zeros(imax, jmax);
fu9 = zeros(imax, jmax);
entries = imax*jmax*kmax;
for l = 1:entries;
 count = count + 1;
 i = WoT(count,1);
 j = WoT(count,2);
 x = WoT(count,4);
 y = WoT(count,5);
 P_0 = WoT(count,7);
 V = WoT(count,10);
 fu = WoT(count,bar);
 X9(i,j) = x;
 Y9(i,j) = y;
 P9(i,j) = P_0;
 V9(i,j) = V;
 fu9(i,j) = fu;
end
count = count + 1;

%== zone 10 ==
imax = WoT(count,1);
jmax = WoT(count,2);
kmax = WoT(count,3);
X0 = zeros(imax, jmax);
Y0 = zeros(imax, jmax);
fu0 = zeros(imax, jmax);
entries = imax*jmax*kmax;
for l = 1:entries;
 count = count + 1;
 i = WoT(count,1);
 j = WoT(count,2);
 x = WoT(count,4);
 y = WoT(count,5);
 P_0 = WoT(count,7);
 V = WoT(count,10);
 fu = WoT(count,bar);
 X0(i,j) = x;
 Y0(i,j) = y;
 P0(i,j) = P_0;
 V0(i,j) = V;
 fu0(i,j) = fu;
end

%== display that puppy =====================================
figure(1);
hold off;
surf(X1,Y1,fu1,'lines','none')
hold on;
surf(X2,Y2,fu2,'lines','none')
surf(X3,Y3,fu3,'lines','none')
surf(X4,Y4,fu4,'lines','none')
surf(X5,Y5,fu5,'lines','none')
surf(X6,Y6,fu6,'lines','none')
surf(X7,Y7,fu7,'lines','none')

49

surf(X8,Y8,fu8,'lines','none')
surf(X9,Y9,fu9,'lines','none')
surf(X0,Y0,fu0,'lines','none')
axis equal;
set(gca,'view',[0 90]);
set(gca,'XLim',[0 17]);
set(gca,'YLim',[0 7]);
set(gca,'CLim',color_limits((bar-5),:));
colorbar('horiz');
set(gca,'Color',[0.4 0.4 0.4])
set(gca,'Layer','top')
set(gca,'Xtick',[0:1:17])
set(gca,'XtickLabel',[0.0:1:17.0])
title('Other','fontsize',36);
hold off;

figure(2);
hold off;
surf(X1,Y1,P1,'lines','none')
hold on;
surf(X2,Y2,P2,'lines','none')
surf(X3,Y3,P3,'lines','none')
surf(X4,Y4,P4,'lines','none')
surf(X5,Y5,P5,'lines','none')
surf(X6,Y6,P6,'lines','none')
surf(X7,Y7,P7,'lines','none')
surf(X8,Y8,P8,'lines','none')
surf(X9,Y9,P9,'lines','none')
surf(X0,Y0,P0,'lines','none')
axis equal;
set(gca,'view',[0 90]);
set(gca,'XLim',[0 17]);
set(gca,'YLim',[0 7]);
set(gca,'CLim',color_limits(2,:));
colorbar('horiz');
set(gca,'Color',[0.4 0.4 0.4])
set(gca,'Layer','top')
set(gca,'Xtick',[0:1:17])
set(gca,'XtickLabel',[0.0:1:17.0])
title('Total Pressure','fontsize',36);
hold off;

if j_flag == 1
 saveas(gcf,p_jpeg);
 exit;
end %= if..then

figure(3);
hold off;
surf(X1,Y1,V1,'lines','none')
hold on;
surf(X2,Y2,V2,'lines','none')
surf(X3,Y3,V3,'lines','none')
surf(X4,Y4,V4,'lines','none')
surf(X5,Y5,V5,'lines','none')
surf(X6,Y6,V6,'lines','none')
surf(X7,Y7,V7,'lines','none')
surf(X8,Y8,V8,'lines','none')

50

surf(X9,Y9,V9,'lines','none')
surf(X0,Y0,V0,'lines','none')
axis equal;
set(gca,'view',[0 90]);
set(gca,'XLim',[0 17]);
set(gca,'YLim',[0 7]);
set(gca,'CLim',color_limits(5,:));
colorbar('horiz');
set(gca,'Color',[0.4 0.4 0.4])
set(gca,'Layer','top')
set(gca,'Xtick',[0:1:17])
set(gca,'XtickLabel',[0.0:1:17.0])
title('Average Velocity','fontsize',36);
hold off;

if j_flag == 2
 saveas(gcf,v_jpeg);
 exit;
end %= if..then

51

C Tools

Wind comes with a small suite of tools that provide for both pre- and post-

processing.

C.1 Cfcnvt (version 1.45)

Ultimately, wind requires that input grid files be in what it calls “common grid

format”. The utility cfcnvt is provided to (among other things) convert from popular grid

formats to the common grid format required. For this study, grids were generated in Plot-

3D format and then converted using this utility. Many other format conversions are

available.

C.2 Gman (version 6.153)

Before wind can use a common grid formatted file, the boundary conditions must

be defined for each zone within the grid. The gman utility is used to couple zones with

shared boundaries, define external and uncoupled boundaries as walls, free-stream,

inflow, etc., and even cut “holes” within a grid so chimeras can be coupled to the main

grid. Various test options can be invoked to determine that all boundaries are defined,

connected, and valid. A graphics mode is available to help development, while processing

can be automated with scripts once the process is established.

C.3 Wind (version 5.193)

Wind is a very flexible “computational platform which may be used to

numerically solve various sets of equations governing physical phenomena” [8]. In this

study, wind provides the ability to model the airflow around a wedge in a free stream. It

takes grid and parameter files as input and generates a “common flow file” of solution

52

data, as well as convergence data (either displayed on screen or written to a text file). The

outputs are then used with post-processing tools for analysis.

C.4 Resplt (version unknown)

While executing, wind generates a list of residual data values for each iteration

and zone. Once the run has ended, resplt can be used to extract the residual data and then

save the data in a format that cfpost can display as a plot of log(residual) vs. iteration for

the run.

C.5 Cfpost (version 3.163)

The utility cfpost provides a number of post-processing functions. It can be used

to display residual plot data generated by resplt, as well as save those plots in various

formats. It can also generate (in space delimited text form) lists of data for the grid points

for analysis or further processing. It can generate Plot-3D formatted solution files that can

be viewed with appropriate tools, such as TecPlot.

Cp

Pmax	P

Pmax

#100%

53

(D.1)

D Results

Overall, the results obtained encouraging. After settling down, the pressure and

velocity plots showed the vortex shedding typical of bluff bodies. The values calculated

were qualitatively similar to sample results extracted from the Eddy study.

Note: the pressure coefficient measurements were calculated using the following

equation;

 2D, 30 degree flap, SST, M=0.125

Zone 1 Zone 2
Zone 3 Zone 4
Zone 5 Zone 6
Zone 7 Zone 8
Zone 9 Zone 10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 Iterations

-12

-10

-8

-6

-4

25-Jun-2003 19:27:26

 2D, 30 degree flap, SST, M=0.125

Zone 1 Zone 2
Zone 3 Zone 4
Zone 5 Zone 6
Zone 7 Zone 8
Zone 9 Zone 10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 Iterations

-10

-8

-6

-4

-2

0

LO
G

 (
L2

)

25-Jun-2003 19:25:48

54

Figure D.1.2 Convergence data for Shear Stress Transport
calculations, 30° wedge run.

D.1 Solution and Convergence, 30° Wedge

Figure D.1.1 Convergence data for Navier-Stokes calculations for
the 30° wedge run.

55

Figure D.1.3 Total pressure values for 30° wedge after 10,000
iterations.

Figure D.1.4 Average velocity values for 30° wedge after 10,000
iterations.

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

1.5

C
P
 vs. position, 30 Wedge

Vertical Position [in]

C
P
 [%

]

Meas.
Calc.

56

Figure D.1.5 Comparison of pressure coefficient data for 30° wedge.
Values were measured at slot two (three inches downwind of the wedge)
in the Eddy study and computed by wind. The calculated values are the
average of three thousand iterations, normalized to the largest measured
value of C due to the lack of measured maximum pressure data.p

 2D, 60 degree flap, SST, M=0.125

Zone 1 Zone 2
Zone 3 Zone 4
Zone 5 Zone 6
Zone 7 Zone 8
Zone 9 Zone 10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 Iterations

-12

-10

-8

-6

-4

-2

26-Jun-2003 15:04:17

 2D, 60 degree flap, SST, M=0.125

Zone 1 Zone 2
Zone 3 Zone 4
Zone 5 Zone 6
Zone 7 Zone 8
Zone 9 Zone 10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 Iterations

-10

-8

-6

-4

-2

0

LO
G

 (
L2

)

26-Jun-2003 15:03:06

57

Figure D.2.2 Convergence data for Shear Stress Transport
calculations, 60° wedge run.

D.2 Solution and Convergence, 60° Wedge

Figure D.2.1 Convergence data for Navier-Stokes calculations for
the 60° wedge run.

58

Figure D.2.3 Total pressure values for 60° wedge after 10,000
iterations.

Figure D.2.4 Average velocity values for 60° wedge after 10,000
iterations.

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

1.5

C
P
 vs. position, 60 Wedge

Vertical Position [in]

C
P
 [%

]

Meas.
Calc.

59

Figure D.2.5 Comparison of pressure coefficient data for 60° wedge.
Values were measured at slot two (three inches downwind of the wedge)
in the Eddy study and computed by wind. The calculated values are the
average of three thousand iterations, normalized to the largest measured
value of C due to the lack of measured maximum pressure data.p

 2D, 90 degree flap, SST, M=0.125

Zone 1 Zone 2
Zone 3 Zone 4
Zone 5 Zone 6
Zone 7 Zone 8
Zone 9 Zone 10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 Iterations

-12

-10

-8

-6

-4

-2

25-Jun-2003 12:14:12

 2D, 90 degree flap, SST, M=0.125

Zone 1 Zone 2
Zone 3 Zone 4
Zone 5 Zone 6
Zone 7 Zone 8
Zone 9 Zone 10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 Iterations

-10

-8

-6

-4

-2

0

LO
G

 (
L2

)

25-Jun-2003 12:12:46

60

Figure D.3.2 Convergence data for Shear Stress Transport
calculations, 90° wedge run.

D.3 Solution and Convergence, 90° Wedge

Figure D.3.1 Convergence data for Navier-Stokes calculations for
the 90° wedge run.

61

Figure D.3.3 Total pressure values for 90° wedge after 10,000
iterations.

Figure D.3.4 Average velocity values for 90° wedge after 10,000
iterations.

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

1.5
C

P
 vs. position, 90 Wedge, slot 2

Vertical Position [in]

C
P
 [%

]

Meas.
Calc.

62

Figure D.3.5 Comparison of pressure coefficient data for 90° wedge.
Values were measured at slot two (three inches downwind of the wedge)
in the Eddy study and computed by wind. The calculated values are the
average of three thousand iterations, normalized to the largest measured
value of C due to the lack of measured maximum pressure data.p

 2D, 120 degree flap, SST, M=0.125

Zone 1 Zone 2
Zone 3 Zone 4
Zone 5 Zone 6
Zone 7 Zone 8
Zone 9 Zone 10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 Iterations

-12

-10

-8

-6

-4

-2

25-Jun-2003 19:30:41

 2D, 120 degree flap, SST, M=0.125

Zone 1 Zone 2
Zone 3 Zone 4
Zone 5 Zone 6
Zone 7 Zone 8
Zone 9 Zone 10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 Iterations

-10

-8

-6

-4

-2

0

LO
G

 (
L2

)

25-Jun-2003 19:29:58

63

Figure D.4.2 Convergence data for Shear Stress Transport
calculations, 120° wedge run.

D.4 Solution and Convergence, 120° Wedge

Figure D.4.1 Convergence data for Navier-Stokes calculations for
the 120° wedge run.

64

Figure D.4.3 Total pressure values for 120° wedge after 10,000
iterations.

Figure D.4.4 Average velocity values for 120° wedge after 10,000
iterations.

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

1.5

C
P
 vs. position, 120 Wedge

Vertical Position [in]

C
P
 [%

]

Meas.
Calc.

65

Figure D.4.5 Comparison of pressure coefficient data for 120° wedge.
Values were measured at slot two (three inches downwind of the wedge)
in the Eddy study and computed by wind. The calculated values are the
average of three thousand iterations, normalized to the largest measured
value of C due to the lack of measured maximum pressure data.p

 2D, 150 degree flap, SST, M=0.125

Zone 1 Zone 2
Zone 3 Zone 4
Zone 5 Zone 6
Zone 7 Zone 8
Zone 9 Zone 10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 Iterations

-12

-10

-8

-6

-4

-2

25-Jun-2003 19:33:48

 2D, 150 degree flap, SST, M=0.125

Zone 1 Zone 2
Zone 3 Zone 4
Zone 5 Zone 6
Zone 7 Zone 8
Zone 9 Zone 10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 Iterations

-10

-8

-6

-4

-2

0

LO
G

 (
L2

)

25-Jun-2003 19:32:55

66

Figure D.5.2 Convergence data for Shear Stress Transport
calculations, 150° wedge run.

D.5 Solution and Convergence, 150° Wedge

Figure D.5.1 Convergence data for Navier-Stokes calculations for
the 150° wedge run.

67

Figure D.5.3 Total pressure values for 150° wedge after 10,000
iterations.

Figure D.5.4 Average velocity values for 150° wedge after 10,000
iterations.

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

1.5

C
P
 vs. position, 150 Wedge

Vertical Position [in]

C
P
 [%

]

Meas.
Calc.

68

Figure D.5.5 Comparison of pressure coefficient data for 150° wedge.
Values were measured at slot two (three inches downwind of the wedge)
in the Eddy study and computed by wind. The calculated values are the
average of three thousand iterations, normalized to the largest measured
value of C due to the lack of measured maximum pressure data.p

69

Vita

Keith P Savage was born in Williams Air Force Base, Arizona, in 1961. Raised on

Air Force bases, he settled down in Colorado after graduating high school. After spending

sixteen years working on mainframe computers, he went back to school, receiving his

B.S. in Metallurgical and Materials Engineering from Colorado School of Mines in 2001.

He is currently pursuing an M.S. in Aerospace Engineering at the University of Tennessee

Space Institute.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2004

	CFD Modeling of Dynamic Inlet Flow Distortion Generation
	Keith Patrick Savage
	Recommended Citation

	C:\My Stuff\Thesis\recorrected thesis.wpd

