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DISCLAIMER 
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unclassified sources.  The Project to incorporate GPS-Guided Weapons onto the F-14B 

Upgrade aircraft was accomplished under the direction of the Naval Air Systems 

Command and the F-14 Program Office.   

Data and conclusions were gathered from laboratory, ground and flight-testing in 

support of this official Department of Defense Test and Evaluation project.  Although the 

author played a significant role in the laboratory, ground and flight tests, this project was 

not undertaken for the purpose of this thesis.   

The views and observations expressed during this thesis were the authors own and 

do not necessarily reflect the official policy or positions of the Naval Air Systems 

Command, the Department of the Navy or the Department of Defense.  This thesis has 
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ABSTRACT 

 

Leading up to and including most of the Vietnam War, the U.S. military�s air-to-

ground weapons consisted mainly of unguided freefall bombs.  Their accuracy was 

limited and therefore required multiple aircraft to attack the same target, sometimes over 

and over again.  The costs were high in effort, aircraft and lives.  In May 1972, a flight of 

F-4 Phantom aircraft employed new weapons, called laser-guided bombs, against a 

seemingly indestructible bridge.  When the smoke cleared, the bridge that had taken 

seven years and almost 900 dedicated attack flights was destroyed and the age of smart 

weapons had begun.     

During the 1990�s the US Military's Strike Warfare requirements had to be 

adjusted to overcome the limitations of the present generation of weapons, including the 

laser guided bomb.  As evident by lessons learned from both the Operation Desert Storm 

air campaign in 1991 and the Kosovo conflict air campaign in 1999, a "through the 

weather" weapon capability would be a key factor in the success of any further military 

action.  To accomplish this, a new generation of airborne weapons, deemed GPS-Guided 

Weapons, had been developed.  GPS-Guided Weapons were built based on the 

requirement to hit within 13 meters of their intended target and be capable of being 

delivered in any weather conditions, day or night.    

After Operation Desert Storm in 1991, the single mission air-to-air only F-14 

fighter, was becoming obsolete.  The integration of a precision air-to-ground capability 

with smart weapons was a great accomplishment since they increased its lethality and 

worth in the Strike-Fighter arena and solidified its future into the next decade.   



v 

During the period from Spring 1992 to Winter 2000, the integration of a GPS-

Guided weapon, called the Joint Direct Attack Munition (JDAM), had been conceived, 

planned and flight tested on the F-14B Upgrade Naval Strike-Fighter aircraft.  The testing 

occurred from November 1999 to September 2000 and provided integration challenges 

during this major modification to the F-14B Tomcat.  Limited flexibility in the weapons 

controls and displays led to multiple system deficiencies and human factors issues.  

Proposed recommendations for improvements, discussed in detail in this study, included 

incorporation of dynamic launch acceptability regions, full airborne editing options to the 

weapons terminal impact parameters, a reduction from three data entry points to one 

cockpit keypad for navigation and weapon inputs, and an accurate weapon/navigation 

status display to prevent unintentional delivery of the JDAM with a degraded or no GPS 

solution.   

This study summarizes the evolution of precision guided weapons, the 

transformation of the F-14 Tomcat to employ modern weapons technology, and the 

testing of JDAM on the aircraft. 
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GLOSSARY 
 

Circular Error Probable (CEP).   The radius of a circle that contains 50 percent of the 
statistical samples in a two dimensional region.  A bomb CEP of 13 meters would 
indicate that half the bombs fell within a 13 meter radius of the intended target and the 
other half fell outside of the 13 meter radius from the intended target. 
 
Developmental Test (DT).  Testing including initial design, laboratory and flight testing, 
accomplished by software designers, aircraft and flight engineers and test aircrew.  Test 
objectives measured against specific parameters and detailed system specifications.  At 
completion of satisfactory DT, test items begin Operational Testing. 
 
Ephemeris.  Ephemeris data parameters describe GPS satellite orbits for short sections of 
the satellite orbits.  The ephemeris parameters are used with an algorithm that computes 
the satellites position for any time within the period of the orbit described by the 
ephemeris parameter set.  Normally, a receiver gathers new ephemeris data each hour, but 
can use old data for up to four hours without much error.   
 
Kalman Filter.  Mathematical technique for combining and smoothing a sequence of 
navigational solutions to obtain the best real-time estimate of the current position.   
 
Operational Test (OT).  Testing accomplished with the objectives on meeting operation 
requirements, conducted by fleet experienced aircrews.  Passing grades are provided 
according to the test items operational effectiveness and operational suitability.  At the 
completion of OT, the tested item is introduced to the Fleet. 
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CHAPTER I 

INTRODUCTION 

"In World War II it could take 9,000 bombs to hit a target the size of an aircraft shelter.  
In Vietnam, 300.  Today we can do it with one laser-guided munition from an F-117." 

-USAF Gulf War Report, Sept 1991 [1] 
 

Background 

In 1991 major events took place that would change the future of the F-14 Tomcat.  

One event was the cancellation of the Navy�s deep strike attack aircraft, the A-12 

Avenger II, in January 1991.  The A-12 was to be the replacement for the aging and 

retirement slated A-6 Intruder, which debuted in 1963 and was used as the Navy�s 

primary platform for the night/all-weather precision attack mission.  With the A-12 

cancellation and A-6 retirement, the Navy was faced with the possibility of a fleet of 

aircraft carriers without a viable deep-strike all-weather attack platform.  To fill the 

impending gap of strike aircraft, the Navy would upgrade its present fleet of light attack 

F/A-18 Hornets and F-14 Tomcats to cover the strike mission, while a new development 

program, called the F/A-18E Super Hornet, began [2].  Additionally, through the lessons 

of Desert Storm in 1991, precision guided weapons, like Laser Guided Bomb�s (LGB�s), 

were credited with achieving 75% of the damage done to strategic and operational 

targets.  This was especially noteworthy since these precision weapons only accounted 

for 9% of all the munitions dropped in the war.  Highly desired attributes of these 

precision-guided weapons included their accuracy and the associated low collateral 

damage [3].  



2 

During the period from Spring 1992 to Winter 2000, the upgrading of the F-14 

Tomcat avionics was under way in order to support the aircraft�s transition into a strike-

fighter and permit integration of developing weapons and systems.  Specifically during 

the later part of this period, the Global Positioning System (GPS) guided weapon called 

the Joint Direct Attack Muntion (JDAM), had been conceived, planned and flight-tested 

on the Navy�s F-14B Upgrade Strike-Fighter aircraft.  The successful developmental 

testing of the JDAM on the aircraft occurred from November 1999 to December 2000 

under the author�s direct involvement as a flight test Naval Flight Officer (NFO) and the 

F-14B Upgrade Project Officer, at Naval Air Station Pt. Mugu, California.  Never before 

had the Tomcat undergone such modification that allowed two-way communications 

between aircraft systems and weapons, which in turn increased the platform�s lethality in 

the Strike-Fighter arena.  The integration of JDAM was a great accomplishment, 

especially since the F-14 Tomcat was only employed as an air-to-air fighter from initial 

operational capability in 1974 through Operation Desert Storm in 1991, and thereafter 

only began to employ freefall weapons and partially integrated LGB�s [4].  

Purpose 

 This thesis will: (a) review the U.S military�s combat lessons learned from the 

past three decades with respect to the technological transformation of air-to-ground 

ordnance, (b) describe the evolution of the F-14 Tomcat from the introduction as a 

strictly fighter aircraft to a multi-mission digitally transformed strike-fighter, (c) explain 

the Global Positioning System and the key role it plays in the military�s air warfare, (d) 

explain the fundamentals of the Joint Direct Attack Muntion including targeting and 

aircraft interface requirements, and (e) present the results, conclusions and 
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recommendations of the integration of the JDAM on the F-14B.  The purpose of this 

thesis is to provide analysis of the software modifications, system deficiencies discovered 

during testing and the corrections implemented or recommended for future upgrades.  

Human machine interface and human factors of the integration in the areas of cockpit 

controls and displays are also examined. 
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CHAPTER II 

TRANSFORMATION OF THE WEAPONS OF AIR WARFARE 

�During the Iran war, my tank was my friend because I could sleep in it and know I was 
safe ... During this war my tank became my enemy ... none of my troops would get near a 
tank at night because they just kept blowing up.�  [5] 

- Iraqi General, on the 1991 Gulf War 
 

Combat Employment Lessons Learned 

During the Vietnam War, wave after wave of aircraft delivered America�s full 

array of air-to-surface weapons at strategic targets with limited success.  One of those 

targets was a bridge seventy miles south of Hanoi, called the Thanh Hoa Bridge.  For 

seven years, American air power flew 869 bombing sorties at this bridge, which kept a 

vital North Vietnamese line of communication open across the Song Ma River.  After 

each raid, the bridge remained standing and the North Vietnamese gained another small 

victory against America�s superior air power.  In return, America lost another opportunity 

to further the war effort and from 1965 to 1972 lost 11 aircraft in the process.  

On the morning of May 13th, 1972, ten U.S. Air Force F-4 Phantoms raced 

toward the Thanh Hoa Bridge, armed with LGB�s.  As each jet delivered its ordnance, 

these �smart bombs� locked onto the laser energy illuminating the bridge.  Now when the 

smoke cleared, the bridge had been knocked off of its foundation.  The Dragon�s Jaw, as 

the North Vietnamese had called the bridge, had fallen and the transformation of aerial 

warfare had begun.  Figure 2-1 shows the Thanh Hoa Bridge Pre and Post-Strike.  Smart 

weapons like those LGB�s, would change warfare forever.  The basic facts were that 

precision strikes using smart weapons could shorten wars, reduce or limit collateral 

damage and save lives, both civilian and military [3]. 
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Figure 2-1 [6] , [7 inset]    

Thanh Hoa Bridge, Vietnam Pre-Strike and Post-Strike (inset)  
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  Two decades later, America was again at war.  This time in Iraq for Operation 

Desert Storm.  The technology of the LGB had evolved, but not quite proliferated 

throughout the U.S. inventory of Air Force and Navy aircraft.  This was technology that 

few air platforms could afford to implement and limited stockpiles of this ordnance 

existed.  LGB�s were mainly employed from aircraft like the F-117A Nighthawk stealth 

bomber and the F-111F Aardvark fighter-bomber.  Starting on the night of January 17th, 

1991 and lasting the next 37 days, these aircraft with their smart weapons were assigned 

the hardest and most well defended targets.  In Operation Desert Storm, precision 

weapons were responsible for 75% of the damage done to strategic and operational 

targets.  Command bunkers and air defense sites were classified as strategic targets.  The 

F-111F was particularly effective using LGB�s against operational battlefield targets.  

F-111F�s were credited with the destruction of 1,500 tanks and mechanized vehicles [5].  

Of the 84,200 tons of total weapons dropped during the campaign, only 7,400 tons (9%) 

were precision weapons.  The small percentage was mainly due to limited stockpiles, as 

well as a lack of capable platforms.  In contrast, a raid on the Yawata steel factory in 

Japan in 1944 with 47 B-29 Superfortress� resulted in only a single bomb from one plane 

hitting the factory.  By comparison, in the Gulf War, a single F-117 with just two LGB�s 

could produce twice the destructive force of that entire fleet of B-29�s [3]. 

The Gulf War was a success for air power, and some credit it with winning the 

war based on the fact that the ground war lasted just four days.  The war was not perfect 

and revealed flaws with America�s smartest weapons.  LGB�s, in all their glory, stopped 

Saddam Hussein�s air force, obliterated his air defense systems, shattered the will of the 

bunkered ground forces and took out key infrastructure.  Yet, simple cloud cover would 
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prevent American jets from dropping their LGB�s.  Also, smoke and dust � typical 

battlefield environmental conditions, would obstruct the LGB�s seeker or break the laser 

beams line-of-sight, even for just a few seconds, which would send the bomb off on an 

unguided path away from its intended target.  In May 1991, the Pentagon directed the war 

planners and the scientific and engineering community to develop a new weapon that 

could overcome these limitations.  The requirements were rather simple.  The new 

weapon had to be: 

1. All-Weather.  Not inhibited by clouds, and day and night capable. 

2. Autonomous.  It could guide itself, known as �launch and leave�.  This would 

reduce aircrew exposure to surface-to-air defenses and reduce the need for 

onboard support, like a laser, throughout the flight of the weapon.  

3. Accurate.  In the class of LGB accuracy. 

4. Low Cost.  It had to be affordable to avoid quick exhaustion of the inventory like 

that experienced in Iraq [8].  

 In 1985 military scientists were looking into the idea of an inertial guided bomb.  

This bomb would have an onboard inertial navigation system (INS) that would use the 

forces of gravity and acceleration to guide itself to a target.  They imagined a bomb with 

a computer that would be pre-programmed with a target�s latitude and longitude 

coordinates.  It would have the ability to accept an INS updated location from the host 

aircraft prior to release and during the bomb�s flight make its own navigation corrections 

with gyroscopes and accelerometers.  The accuracy of an INS bomb would put it within 

30 meters of a target, which is outside of the LGB�s accuracy, but when dropping a 2000 

lb bomb with a 250-meter blast radius, it was close enough to destroy the intended target.  
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Further, they believed that a kit could be produced and added to existing dumb bomb 

bodies, like that done for the LGB, to keep costs low.  It would be all-weather due to its 

inertial guidance, and a single aircraft could carry multiple bombs with different targets 

for each weapon, increasing the lethality of one aircraft.   

  After the Pentagon�s requirements went out in the spring of 1991, it did not take 

long for this INS bomb to be presented to the Pentagon chiefs.  Soon after, the program 

for the new weapon, named JDAM, began.   

 A boost to the JDAM program was a system that started in 1973, named the 

Navigation Satellite and Timing and Ranging / Global Positioning System (NAVSTAR / 

GPS), better known as GPS.  The system consisted of satellites in orbit around the earth, 

which would transmit radio signals to receivers on earth.  Receivers that acquired 

multiple satellites could determine precise latitude and longitude coordinates of their 

location on the earth�s surface.  GPS had been used by the military in the Gulf War for 

rather simple navigational tasks, such as a tank�s location in the desert, to the complicated 

task of navigating air-launched cruise missiles.  Now the military scientists knew with 

GPS they had a way to increase their JDAM�s accuracy, by reducing the inertial guided 

bomb�s biggest weakness, INS drift.  With the JDAM�s GPS receiver, the INS would still 

guide the bomb, but now use periodic GPS positional updates.  Using the JDAM 

computer, which was powered by a computer chip developed for an Apple computer, 

GPS data and INS data were integrated to improve the bombs accuracy to 13 meters or 

less[3].  Additionally, due to commercial practices and the use of commercially available 

hardware, a JDAM kit cost under $20,000 (FY 2000 dollars) [9].  This was inexpensive for 
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the military when compared to 30-40 million dollar strike-fighter aircraft, million-dollar 

cruise missiles and the latest laser guided bombs, which cost around $60,000 each [3]. 

 In 1999, America entered into NATO�s War on Serbia, called Operation Allied 

Force and the Kosovo War.  The weather was a major factor; where there was greater 

than 50% cloud cover over 70% of the time, hampering the use of LGB�s.  Weather 

conditions only allowed unhindered air strikes on 24 of 78 days of the air campaign [10].  

However, when bad weather barred the use of LGB�s against the Zezeljev Bridge, over 

the Danube in Novi Sad, the bridge was retargeted and destroyed with a JDAM [3] (Figure 

2-2).  For this war, JDAM were used for the exact reason they were developed and their 

employment was highly successful.  However, the B-2 Spirit stealth bomber was still the 

only JDAM capable aircraft in the war, and limited supplies of this fledgling weapon 

were available.  For the Kosovo War, a total of 656 JDAM were expended from B-2�s, 

and at nearly the same rate that they were being produced.   

 Out of the Kosovo War, a few related lessons were learned.  The JDAM was now 

one of the Pentagon�s primary weapons, due to its accuracy and all-weather capability.  

This resulted in further funding, specifically $306 million for 11,000 additional JDAM 

kits and $3.5 billion for war enhancements, including funding for precision strike onto 

other air platforms [10].  A less positive lesson was that JDAM�s were only as good as the 

target coordinates programmed into them.  During a B-2 strike against a suspected 

Yugoslav arms agency in Belgrade, five JDAM�s were delivered and hit their input 

coordinates, which was actually the Chinese Embassy [3].  

The JDAM�s combat successes now solidified the requirement for JDAM on
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Figure 2-2 (DOD photograph) 
Zezeljev Bridge during Kosovo War Before and After JDAM Attack  
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strike platforms that would be operating in the next war.  At the time, integration of 

JDAM onto Navy aircraft, including the F/A-18 Hornet and F-14 Tomcat, were underway 

in various stages.   
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CHAPTER III 

TRANSFORMATION OF THE F-14 TOMCAT STRIKE-FIGHTER 

�The F-14 was a single-mission aircraft that was not going to be used much anymore 
because it was a Cold War relic.  If we didn�t expand our role, the future of the F-14 was 
in question.�  [11] 

Capt. Ted Carson, U.S. Navy 
F-14 Program Manager  

 
Introduction 

 The U.S. Navy�s F-14 Tomcat fighter first flew on December 21st, 1970.  The 

F-14 was the winning design from the Grumman Corporation as the Navy�s newest 

aircraft carrier based fighter.  Just 20 months earlier, the contract had been awarded to 

Grumman for the research, development, test and evaluation plan.  The Grumman 

proposal was designed around the Navy�s aerial combat lessons learned from the 

Vietnam War and this new fighter would add significant improvements to the air-to-air 

arena.  The technologically advanced F-14 Tomcat was the replacement for the combat-

proven F-4 Phantom II.  Though the F-14 was designed to have conventional air-to-

ground weapons capabilities, the Navy would embrace the Tomcat as their finest high-

performance fighter aircraft.  One most notable improvement was the F-14�s weapon 

systems with the capability to track 24 airborne targets simultaneously and shoot radar 

missiles at six targets, compared to the F-4�s ability to track and shoot only one.  

Additional improvements included; variable geometry wings, making it a very efficient 

aerodynamic aircraft at high speeds (> Mach 2.0); a large fuel capacity for long range and 

endurance flights and; a weapons system developed around the long range Phoenix air-to-

air missile system [4]. 
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Basic Aircraft 

The F-14 Tomcat is a supersonic, twin-engine, air-superiority, swing-wing fighter 

that accommodates a crew of two, a Pilot and a Radar Intercept Officer (RIO), in a 

tandem seat arrangement.  Variants of the aircraft include; the original F-14A aircraft, 

equipped with Pratt and Whitney TF-30 engines and older avionics; and the F-14B, 

equipped with General Electric F110 engines and older avionics.  Additionally, the 

F-14D, introduced in 1992, was a new production aircraft equipped with the General 

Electric F110 engines and an advanced digital architecture with modern avionics.  The 

fighter missions of the aircraft are fleet air defense, fighter sweep/escort, and 

reconnaissance (RECON).  The F-14 is capable of employing the AIM-54 Phoenix, 

AIM-7 Sparrow, and AIM-9 Sidewinder air-to-air (A/A) missiles and is equipped with an 

internal 20-millimeter M-61A1 Vulcan cannon.  In the 1990�s, after Operation Desert 

Storm, the Navy funded the F-14 as a Strike-Fighter multi-mission aircraft and began to 

exploit its capabilities in the air-to-ground (A/G) role.  The F-14 was adapted to employ 

general-purpose free-fall MK-80 series bombs (500, 1000 and 2000 lb.) and Paveway II 

/III LGB�s, with the latter aided by the Low-Altitude Navigation Targeting Infrared for 

Night (LANTIRN) laser designation pod.  The strike missions of the aircraft included 

ground attack and close air support (CAS).  The Weapons Control System (WCS) is an 

integrated, multi-mode fire control system designed to operate in the A/A, A/G, or 

RECON modes [12].  Figure 3-1 depicts the F-14 Tomcat.  Appendix A provides 

additional depictions of the F-14 cockpits in figures A-1 through A-4. 
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Figure 3-1 [4]   
F-14 Tomcat 3-View 
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The Digital Transformation of the F-14B 

In 1978, the Department of Defense (DOD) adopted a new aircraft architecture 

that would allow modern aircraft the growth potential and flexibility to incorporate new 

avionics and weapons as they were developed.  This was called the MIL-STD 1553B data 

bus.  In the spring of 1992, the F-14B Upgrade (F-14B(U)) program was started to 

replace the F-14B�s old architecture with this modern digital bus system.  The main 

objectives of the F-14B Upgrade program were to incorporate digital technology to gain 

computing, growth, reliably and maintainability improvements to this still capable, 20 

year old aircraft design.  The F-14B(U) Weapons Control System would consist of the 

following hardware additions and improvements over the F-14A/F-14B: F-14 Mission 

Computer (FMC), AN/AWG-15H Fire Control Set (FCS), Programmable Tactical 

Information Display (PTID), and the Programmable Multi-Display Group (PMDIG).   

Operational Flight Program 317 

The hardware and software configuration for the first phase of the upgrade 

program would be called Operational Flight Program 317 (OFP 317).  The F-14B(U) was 

created with three new digital data buses: Avionics, Armament, and Electronic Warfare 

(EW).   The basic foundation of the MIL-STD-1553B data bus was the requirement for a 

bus controller (BC) to run the bus.  The new F-14 Mission Computer would accomplish 

this task.  The FMC, the 5400B computer, contained two subsystems with a common 

memory.  These were the Weapons Control Processor (WCP) and the Mission Data 

Processor (MDP).  The WCP, interfaced with the other subsystems and correlated the 

information, and it had twice the speed and about three times as much memory compared 
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to the old 5400 computer.  The MDP incorporated a very high speed-processing module 

and provided the bus control for the avionics bus.  Next, to display information in the 

cockpit, the aircraft needed new displays, which would act as remote terminals (RT�s) on 

the bus.  The new displays included: the RIO�s main tactical display, the 8 inch by 8 inch 

PTID; the PMDIG components of the pilot�s Vertical Display Indicator (VDI); and the 

Electronic Counter Measures Display (ECMD) in each cockpit.  To integrate with the 

armament bus, hardware was required to accomplish two roles, one as an RT on the 

avionics bus and another to act as a BC on the armament bus.  The new weapons 

computer, the AWG-15H FCS, provided control and interface for the selection, 

preparation, release, firing and jettisoning of all weapons.  The AWG-15H would be the 

key to future weapons expansion in the F-14, as it would provide the functions and 

distribution processing for the weapons system and weapons stations.  To tie all of these 

systems together, each piece of new hardware had to be programmed with it�s own 

software and then integrated to function on the bus.  The F-14B(U) digital architecture is 

shown in Figure 3-2, with new hardware highlighted and the data buses in bold. 

In June 1997, testing was complete on OFP 317 and delivered to the fleet [14].  On 

a separate test and evaluation path, precision strike on the F-14 was now being provided 

through the LANTIRN targeting pod.  Previously the F-14 could deliver LGB�s, but only 

with the aid of a ground based laser or a laser emitted by another aircraft.  Now the F-14 

could autonomously deliver LGB�s and it had a digital backbone to allow for future 

expansion.
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Figure 3-2  [14]   
F-14B Upgrade Digital Architecture  
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Operational Flight Program 320 

Prior to the completion of OFP 317, planning began for the next hardware and 

software configuration, called OFP 320.  The next cycle in the upgrade of the F-14B, 

would outfit the aircraft with GPS navigation and expand the digital architecture to the 

aircraft weapons stations.  Building on the MIL-STD-1553B data bus structure, an 

Embedded GPS / Inertial Navigation System (INS), called EGI, replaced the unreliable 

F-14 navigation system.  The EGI was a strap-down navigation system that combined a 

ring laser gyro INS with GPS capability.  The three selectable navigation solutions were 

GPS and INS information blended through a Kalman filter, an INS-only solution, and a 

GPS-only solution.  Additionally, the Controls and Displays Navigation Unit (CDNU), 

was added to the bus and was the RIO�s main EGI input keypad for navigation control 

and display.  The CDNU acted as the BC for the MIL-STD-1553B Navigation Bus 

(NAVBUS), linking the EGI, Computer Signal Data Converter (Replacement) 

(CSDC(R)), and CDNU.  The CSDC(R) provided the interface between the Navigation 

System and the F-14 Mission Computer [15].  In addition, the F-14 was modified to 

provide aircraft data bus information to the aircraft�s four underbelly weapons stations 

through a common MIL-STD-1760 interface.  This alteration, known as Engineering 

Change Proposal (ECP) 329, would also provide GPS satellite signal information to both 

the new navigation system and to the LANTIRN targeting pod, through the use of a 

splitter/amplifier [16].  For OFP 320, the weapons stations wiring was installed then 

capped and stowed, for future use in the next phase of the upgrade program.  The F-14 

Weapons Station Interface due to ECP 329 is depicted on Figure 3-3.  The addition of 
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Figure 3-3 [16] 
F-14 Weapons Station Interface (ECP 329) 
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GPS navigation was a significant improvement over F-14�s previous system.  �It was 

amazing.  Having GPS available to you in the airplane takes a tremendous burden off the 

aircrew.  Now they can spend much more time tactically on weapons employment,� 

stated Capt Garrett, the F-14 Wing Commander at Virginia�s main F-14 base [11].  

OFP320 entered the Fleet in 1999, after an expeditious operational test and evaluation in 

order to support the Navy�s involvement in the conflict in Kosovo [17].    

Operational Flight Program 321 

Before OFP320 testing was completed in 1999, planning was underway for the 

next round of improvements to the F-14B(U).  These hardware and software upgrades 

would be called OFP 321, and included the GPS-guided weapon, JDAM, and a new Head 

Up Display (HUD) for the pilot.  The modifications were: new software in eight of the 16 

processors and new MIL-STD-1760 wiring to four of the F-14�s four weapons stations - 

those used to carry and support JDAM.  

OFP 321 and JDAM testing began in 1999 with the developmental flight-testing 

complete by December 2000.  In 2001, dedicated operational testing began and by the 

end of year, the F-14B(U) with JDAM was introduced into the fleet.   
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CHAPTER IV 

GLOBAL POSITIONING SYSTEM 

�Lighthouses in the sky serving all mankind.�  [18] 
Dr. Ivan Getting 

GPS System Visionary and Co-Inventor 

Overview 

 A discussion on the Global Positioning System (GPS) is required to fully 

understand how the military uses GPS and how it is used by JDAM to create a �smart 

weapon�.  The GPS system is a constellation of 21 satellites with 3 active spare satellites, 

positioned in 6 orbital planes at greater than 10,900 miles above the earth.  There are 

often more than 24 satellites in operation as new ones are launched to replace older 

satellites.  Satellites complete an orbit every 12 hours and are programmed to pass over 

the same location on earth every 24 hours.  Each satellite transmits radio signals to 

ground receivers at specified times.  The difference between the sent time and the 

received time is used to determine the position and distance of the receiver from the 

satellite.  If a ground receiver picks up four satellites it can precisely locate itself by 

triangulation.  Signals from the fourth satellite are used to adjust for clock inaccuracies.  

The earth receiver can then convert this position information into latitude, longitude and 

altitude.  

 There are three main segments that make up the Global Positioning System: 

Space, Control and User.  The first segment is the Space segment and is made up of the 

24 satellites which transmit on two carrier L-band frequencies centered on 1575.42 MHz 

and 1,227.60 MHz, called the L1 and L2 navigation frequencies, respectively.  The 

Coarse Acquisition (C/A) code is carried on L1 and allows any receiver access to the 
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Standard Position Service (SPS), used for civil navigation.  SPS users can achieve 

horizontal position accuracy within 100 meters and vertical position accuracy within 145 

meters, 95% of the time.  Additionally, a Precision code (P-Code) is transmitted on both 

L1 and L2 and is the basis for the Precision Positioning Service (PPS), which is only 

available to authorized users.  PPS users can achieve a horizontal accuracy of 

approximately 21meters, and vertical accuracy of 28 meters, 95% of the time [19].   

 Two techniques are used to prevent common users from receiving access to the 

Precision Positioning System.  The first is called Selective / Availability (S/A), which 

intentionally introduces controlled errors into the satellites signals.  The intentional errors 

were originally justified in order to reserve the GPS systems highly accurate signals for 

U.S. military users, while providing the global civil sectors with a fairly accurate 

navigation system.  On May 1, 2000, S/A was turned off to allow civil and commercial 

use of un-altered GPS signals.  This was done with the understanding that the U.S. 

military could selectively deny or degrade GPS signals on a global or regional basis when 

national security was threatened, such as in a time of crisis or war.  Figure 4-1 depicts a 

sample of the positional accuracy of GPS on May 1st, 2000 and after May 1st, 2000.  

Elimination of S/A now enabled SPS users to achieve as low as 16-meter CEP 

accuracies, compared to 12-meter CEP of the PPS users.  The difference in CEP�s is due 

to the ability of PPS to compare L1 and L2 and correct for errors associated with 

atmospherics delays.  The second method for preventing PPS use is through an Anti-

Spoofing (A-S) feature.  This alters the P-Code into a code known as Y-code, to negate 

the potential imitation of the PPS signals.  Through the use of cryptographic codes, 

sometimes known as encryptions keys or crypto keys, PPS users remove the effects of  
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Figure 4-1 [19] 
Positional Accuracy of GPS Before and After Selective Availability 
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S/A, if used, and A-S [20].    

 The second segment of the GPS system is called the Control Segment.  This is 

comprised of the Master Control Station, operated by the U.S. Air Force in Colorado 

Springs, Colorado, and globally separated monitoring stations throughout the world.  The 

purpose of the Control segment is to track all satellites and determine the validity of their 

output signals and the general health of the satellites.  Through the multiple monitoring 

stations, inaccuracies from satellites signals, including reported satellite locations and 

time, can be determined.  If significant errors are noted for a certain satellite, corrections 

can be uplinked to the satellite to correct the problem.  The Master Control Station is also 

the controlling agency for introduction of GPS errors like S/A.  

The User Segment is the final segment in the GPS system.  This segment consists 

of all the receivers that use the satellite information to determine their earth position.  

These receivers reside in places including military aircraft and weapons, like the JDAM, 

and are also used by the civil, scientific and commercial entities globally.  Military GPS 

receivers may employ Kalman filtering techniques to quantify navigational quality 

through the use of a single digit Figure of Merit (FOM).  A FOM of 1 would indicate a 

properly operating GPS in the PPS mode with errors less than 25 meters, while a FOM of 

3 would indicate an error of 50 to 75 meters.  A FOM of 4 may indicate activation of S/A 

in the SPS mode and accuracy in the area of 100 meters.  A FOM of 9 indicates no GPS 

reception [21].   

GPS Positioning Errors 

 GPS positioning errors are the result of two major factors called User Equivalent 

Range Error (UERE) and Geometric Dilution of Precision (GDOP).  UERE can be the 
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result of satellite clock and ephemeris deviations, signal delays due to atmospheric 

conditions and inherent receiver faults like noise.  All three segments of the GPS system 

contribute to UERE.  GDOP errors are based on the geometric configuration of the 

satellites as seen by the receivers.  GPS receivers are supplied with the best satellite 

ranging information when satellites are widely spaced in the viewable sky.  A receiver 

using satellites directly overhead or within a small field of view result in a larger 

horizontal uncertainly area and therefore larger GDOP.  Figure 4-2 illustrates how the 

geometric orientation of satellites contributes to GDOP [20]. 
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Figure 4-2 [20] 
Global Positioning System Geometric Dilution of Precision (GDOP) 
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CHAPTER V 

JOINT DIRECT ATTACK MUNITION 

�Shrinking force structure, increased tasking, improved threats and the need to conserve 
lives and assets drive a demand for a low cost, autonomous, and accurate weapon for use 
by the warfighter in the 21st Century.�  [22] 

- Combat Air Forces Concept of Operations for JDAM  
 

Weapon Design 

 As stated in Chapter II, the JDAM had to be deployable under adverse weather 

conditions, guide autonomously, achieve a 13 meter CEP, and at the same time it had to 

be affordable. The basic concept of JDAM�s design joins a tail section, containing the 

weapons own INS/GPS guidance system and control fins, with existing bombs bodies.  

Mid-body aerodynamic surfaces, called strakes, provide the weapon in-flight stability and 

lift for executing the desired flight profile and impact conditions.  Optimal guidance is 

through the use of a combined INS/GPS guidance solution, to achieve a 13-meter CEP at 

impact angles greater than 60degrees.  However the weapon may also be used in an INS-

only mode when employed in a GPS-denied environment.  The accuracy of the weapon 

in the INS-only mode would be reduced to a 30 meter CEP at impact angles greater than 

60 degrees and a weapon time of flight less than 100 seconds.  JDAM interfaces with the 

aircraft through mechanical and electrical connections consistent with the MIL-STD-

1760 specifications.  JDAM is integrated with the MIL-STD-1553 data bus to allow 

transfer of weapons commands and the required mission information to control, monitor 

and release the weapon.  The weapon guides to the target coordinates, input during pre-

flight planning or in-flight by aircrew.  The available bomb bodies include the general-

purpose MK-83 (1000 lbs) and MK-84 (2000 lbs) bomb bodies.  The other options 



28 

include the penetrator warheads, the BLU-110 (1000 lbs) and the BLU-109 (2000 lbs) 

bodies.  The JDAM components including the Guidance Control Unit (GBU), tail 

assembly, body-mounted strakes and bomb bodies, are shown in figure 5-1. 

JDAM System Accuracy 

There are four elements that contribute to JDAM system accuracy:  1) the JDAM 

system components, including guidance hardware and software; 2) the delivery aircraft 

transfer alignment time hand-off accuracy, including location and velocities; 3) the GPS 

satellite error; and 4) the target location error (TLE) and the associated coordinate format.  

The JDAM component errors are associated with the inertial measurement unit 

(IMU), GPS receiver and peripherals, weapon software, and guidance and control unit.  

The errors related to these items can only be reduced by improvements to the basic 

JDAM design.  Future improvements through technology advancements are planned to 

lessen these errors, however affordability must always be considered.  Once JDAM is 

released, it initially uses INS only guidance, and then upon GPS-acquisition, the system 

uses a combined INS/GPS solution.  Once GPS-aiding is accomplished, the aircraft hand-

off error is removed and is not a factor in system accuracy.  Planning can reduce some 

GPS errors, while others are beyond the control of the aircrew.  GPS errors like UERE, 

can not be reduced by aircrew planning or operational procedures.  The GPS Space 

Command�s control and space segments of GPS are mainly responsible for the UERE 

and only through improvements in these areas can errors be reduced.  Planning to a 

certain mission time for more favorable satellite geometry can reduce the GDOP.  Most 

mission planning systems provide GDOP predication tools to allow this item to be  
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Figure 5-1 [23] 
Joint Direct Attack Muntion Components 
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considered during strike planning.  Also, GPS measurements are less accurate in the 

vertical dimension, therefore weapons delivery at terminal impact angles greater than 60 

degrees reduce the vertical error.  Impact angles of 90 degrees will eliminate the vertical 

error, but reduce release range and standoff from enemy defenses. 

JDAM is a bomb-on-coordinates weapon; therefore extremely accurate target 

locations are required.  Taking target coordinates directly from a map are not accurate 

enough for achieving the required CEP.  Instead target coordinates are provided by 

intelligence agencies with very specific coordinate deriving systems and methods.  

Precise target coordinates can come from the National Imagery and Mapping Agency 

(NIMA) Digital Point Positioning Database (DPPDB), NIMA Points Program, or the 

Joint Service Imagery Processor-Navy (JSIPS-N).  Additionally, some aircraft systems 

can produce highly accurate locations through their on-board sensors, such as radar or 

laser designation systems.  The coordinate accuracy parameter is called Target Location 

Errors (TLE) and is defined as the difference between an actual location and the derived 

location coordinates.  The JDAM system TLE allocation is an error of 7.2 meter CEP and 

most of the approved coordinate derivation systems meet this requirement.  TLE that 

exceeds this threshold will adversely affect the accuracy of JDAM, and most likely 

exceed JDAM�s overall 13-meter CEP goal.   

One additional factor of target coordinates is the format.  Target coordinate 

formats must conform to a desired precision in order to be considered accurate enough 

for JDAM.  JDAM requires coordinates in the format of degrees, minutes, and at least 

1000th of minutes (DD° MM.MMM).  Use of the DD° MM.MMM format would provide 

a worst-case tolerance window of +3 feet, based on a degree of latitude and longitude 
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equaling 60 square nautical miles.  As an example, an unacceptable format would be a 

latitude and longitude entry in degrees, minutes, and 10th of minutes (DD° MM.M).  This 

DD° MM.M format has an error window of +300 ft from the intended target coordinates.   

Overall, the TLE is the biggest error associated with JDAM, with GPS satellite error a 

close second.  For the non-GPS-aided case, the major error source is the aircraft 

navigation hand-off.  JDAM accuracy is listed in Table 5-1. 

Data Requirements 

 JDAM requires mission target data and navigation data, including GPS and INS 

parameters, from the host aircraft.  The mission data is the detailed targeting information, 

called the Target Data Set (TDS), which provides extremely accurate target coordinates, 

as well as the desired flight profile and impact conditions to the weapon.  The TDS can 

be created during the mission- planning phase before flight on computer workstations.   

This planning not only creates and formats the JDAM targeting data, but also provides 

data that is used to present aircrew with weapon management and delivery displays.  GPS 

crypto keys, almanac and configuration data are also part of the JDAM mission planning 

data load.  The TDS and other support information are loaded onto a portable storage 

drive, called a Mission Data Loader (MDL), for use in the aircraft.  Also, targeting data 

can be manually entered into the aircraft weapons controls system by aircrew via cockpit 

keypads to adjust target and weapon delivery information.  Table 5-2, includes a list of 

required and optional information in a JDAM Target Data Set. 

Launch Acceptability Region 

A Launch Acceptability Region (LAR) is a two-dimensional surface area or 

region where JDAM could be released from and impact the desired target.  The LAR is 
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Table 5-1 [22] 
Joint Direct Attack Muntion Accuracy 

 
CEP  
(m) 

Target 
Orientation 

Conditions 

13 Horizontal When impact angle is greater than 60o & weapon GPS is 
available. 

17 Vertical When impact angle is greater than 60o & weapon GPS is 
available. 

19 Horizontal When impact angle is between 35 and 60o & weapon GPS is 
available. 

30 Horizontal When impact angle is 60o or greater & no GPS updates are 
received by weapon after release, & flight times are 100 
seconds or less for on-axis trajectories or 90 seconds or less 
for off-axis trajectories. 

32 Vertical When impact angle is 60o or greater & no GPS updates are 
received by weapon after release, & flight times are 100 
seconds or less for on-axis trajectories or 90 seconds or less 
for off-axis trajectories. 

Notes:  All CEP�s assume a GPS-quality handoff from the aircraft, and a target location 
error of 7.2 meters CEP.  All impact angles are measured relative to the target face. 



33 

    

Table 5-2  [22] 
Joint Direct Attack Muntion Target Data Set 

 
Target Data Target Data Set* 

 Required Optional 
Target Hardness  X 
Target Orientation  X 
Attack Mode  X 
Target Altitude Reference X  
Target Name  X 
Target Location - Latitude X  
Target Location - Longitude X  
Target Location - Altitude X  
Target Impact Azimuth  X 
Target Impact Angle  X 
Target Minimum Impact Velocity  X 
Target Offset - North  X 
Target Offset - East   X 
Target Offset - Down  X 
JPF Control Source  X 
JPF Mode  X 
JPF Arm Time From Release  X 
JPF Function Time From Impact  X 
*The parameters identified as �Required� in the TDS column constitute the minimum 
parameters required by the JDAM weapon to complete its mission.  The �Optional� 
data provide enhancements to the weapon operation and performance.   
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based on release conditions, including aircraft heading, speed, altitude, and flight angle 

(level, dive or loft) and is centered on a release point.  The LAR may become 

constrained, or shrink in size, by forcing the weapon to meet specific terminal impact 

conditions such as impact angle, impact azimuth and minimum impact velocity.  If 

specific terminal impact parameters are undefined, such as if no certain impact heading is 

required, then a bigger envelope for delivery can be provided, known as an unconstrained 

LAR�s.  Figure 5-2 depicts Unconstrained and Constrained LAR�s displayed against a 

map.  LAR�s are constructed during the mission planning process, loaded to the aircraft 

with the TDS and are displayed in the cockpit to the aircrew.  One of the major 

advantages between JDAM and previous weapons is that the target itself does not have to 

be acquired visually or by onboard systems.  Aircrews simply fly and navigate into the 

displayed LAR and release the JDAM.  The weapon is programmed to do the rest.   

Flight Characteristics 

 While JDAM is powered and being carried by the aircraft before release, critical 

processes take place between aircraft and weapon.  These include the transfer alignment, 

targeting data and GPS data from the aircraft (Figure 5-3).  Before JDAM is ready for 

release, the Inertial Measuring Unit (IMU) section of JDAM�s navigation system must be 

aligned, calibrated and initialized.  This process, called transfer alignment provides high 

quality navigational information from the aircraft to the lower cost, lower quality weapon 

IMU.  With power applied to weapon, the JDAM INS will update position and velocity 

information based on the comparison of its internal IMU measurements and the 

navigation data from the aircraft.  The aircraft�s higher quality INS is assumed to be the 
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Figure 5-2 [22] 
JDAM Unconstrained and Constrained Launch Acceptability Regions 
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Figure 5-3 [22] 
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most accurate system of the two and is used to update the JDAM INS, accordingly.  

Transfer alignment is a continuous and automatic process.  Transfer alignment cues are 

provided to the aircrew via cockpit displays and are critical parameters that are checked 

before weapons delivery.   

Additionally, GPS information transfer is critical to JDAM success.  When JDAM 

is attached to the aircraft, it does not process GPS information directly.  Therefore, the 

aircraft provides an INS/GPS-aided position, velocity, time, ephemeris and almanac data 

to the bomb.  The handoff of high quality GPS information to the bomb, allows the 

JDAM to achieve full position and velocity acquisition within a maximum of 27 seconds 

and full GPS navigation within 28 seconds after release. 

 Once the JDAM is released, shown in figure 5-4, its autopilot takes over to 

provide the optimum delivery profile.  A GPS search is initiated at 3 seconds after 

release, and using the aircraft provided GPS handoff information it attempts to achieve 

full GPS�aided guidance by 28 seconds post-release.  During the weapon time of flight, 

the path from the weapon�s current position to the target is continually computed and 

adjusted to achieve the pre-planned attack parameters.  If the planned impact parameters 

are unattainable, due to release outside of the planned launch region for example, the 

guidance laws of the autopilot will make compensations to the target data set.  Impact 

velocity will be reduced to a minimum set value first, then impact angle and impact 

azimuth will be adjusted, respectively, giving the weapon the greatest chance of hitting 

the target [22]. 
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Figure 5-4 [22] 
Joint Direct Attack Muntion after Release
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CHAPTER VI 

SUMMARY OF TESTS 

�Test everything.  Hold on to the good.�  [24] 

- Thessalonians 5:21  
 

Purpose of Test 

The purpose of the test was to evaluate the functionality of OFP 321, including 

the software and hardware changes required to support the JDAM weapon.  Tests were 

conducted to assess design and operational requirements and to ensure no degradation of 

the baseline system performance (OFP 320).  Specific JDAM evaluation objectives 

included the capability to: identify and power aircraft carried weapons; test the aircraft 

and weapons critical systems; perform transfer alignment between the aircraft and 

weapon navigation systems; download targeting information from mission planning 

system and access it in the aircraft; edit weapon targeting and employment parameters; 

and evaluate the accuracy and utility of the added JDAM controls and displays.    

Method of Test 

  During development, the new F-14 software underwent laboratory, ground and 

flight testing, providing both quantitative and qualitative results.  Initially, the software 

designers performed unit level testing exclusively in the laboratory environment.  The 

designers ensured individual program modules were stable and achieved their specific 

design objectives.  Then the software designers performed inter-subsystem testing which 

ensured the software modules supported the overall function of the system.  The System 

Test Team (STT), made up of the test engineers and aircrew, performed system level 

testing in the laboratory, as well as in the ground and flight environments.  System level 
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tests supported the test team by refining the designs, verified that functions performed as 

intended, provided an assessment of mission utility and operational capability, and 

ensured retention of previous baseline performance.   

 Testing in the F-14B laboratory, called the Systems Integration Test Station 

(SITS) Lab, allowed the test team to reduce both safety risk and technical risk, by 

evaluating the JDAM modifications with the weapons system prior to the first flight.  It 

also provided a first look at the OFP from a human factors and ergonomics standpoint.  

Additionally, SITS Lab testing was used to practice planned test profiles and to validate 

problems uncovered in flight.  Ground testing was used to verify that the software 

operated as expected in the actual test aircraft and that it was safe for flight.  Moreover, 

ground tests were used to verify hardware/aircraft interface/communications that could 

not be accomplished in the SITS Lab.  While the laboratory was an effective tool, it was 

limited in its ability to model the dynamic flight environment.  So flight-testing was used 

to verify system performance in an operationally realistic flight environment.   

 Flight tests were built upon SITS Lab and ground test results, and included actual 

carriage of production JDAM, as well as two JDAM weapons deliveries.  Although all 

the interface functions for JDAM could be verified without dropping an actual weapon in 

flight, a successful release was the ultimate demonstration that the weapons had been 

properly integrated onto the F-14B Upgrade aircraft.  Initial flight test results also were 

used to validate SITS Lab test results using similar flight profiles.  Once the laboratory 

model was validated, flight test requirements could be reduced.  Deficiencies, including 

recommendations for improvements, noted during any phase of testing were tracked via 

problem reports and given a priority rating of 1 (critical) through 5 (minor).  Deficiencies 
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were then either corrected in the next iteration of the system software or were slated for 

correction in the follow-on OFP [25].  

Controls and Displays Evaluation 

Static Launch Acceptability Regions 

 In order to meet a program goal of incorporation of JDAM onto the F-14 within a 

12-18 month developmental test cycle, a decision was made to only provide aircrew with 

pre-planned static Launch Acceptability Regions (LAR�s).  The LAR�s could only be 

created during pre-flight planning, and transferred to the aircraft for display in the 

cockpits.  Figure 6-1 depicts a LAR as displayed in on the F-14�s cockpit displays.  In the 

F-14, up to eight different TDS could be created for each JDAM weapon.  The ability to 

create up to eight TDS with various parameters, such as release altitude and headings 

would in theory provide some targeting flexibility while airborne.  When changing the 

target location in the aircraft, the LAR would move to the new input location.  However, 

there was no way to edit the other parameters, like release altitude or release airspeed � 

that would change the LAR envelope, or edit release heading � that would change the 

LAR orientation.  For example, if the release profile of 35,000 ft on a north heading has 

to be changed, due to weather or threats, to 20,000 ft on a west heading, the displayed 

LAR becomes useless.  This is because the release altitude is lower and the release 

heading orientation is now 90 degrees off of that planned and depicted.  A properly 

displayed LAR would be smaller.  The software would not display a new LAR to reflect 

the new launch envelope.  In testing, it became evident that the Static LAR�s were too 

constraining, especially when performing multiple simulated delivery runs which needed 
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Figure 6-1 [26] 
F-14B Tactical Display with JDAM Launch Acceptability Region 
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To be tested at various airspeeds, altitudes and headings.  Operationally, the requirement 

to allow weapons delivery only at certain altitudes and headings, according to the pre-

flight planning, could seriously handicap aircrew during strike missions and increase their 

vulnerability to surface-to-air threats.  It would be very common for the delivery aircraft 

to be out of the preplanned LAR, since airspeed, altitude and heading would all be 

changed simultaneously during threat avoidance maneuvers.   

The interim solution for this deficiency was to use a manual delivery mode, 

without the use of a pre-planned LAR, and release the weapon according to the 

numerically displayed aircraft to target range readout.  This provided the aircrew with 

some flexibility, as it allowed them to release the weapon according to a �manual release 

table�, which could be carried into and referenced in the cockpit.  Optimally, the delivery 

would be programmed in pre-fight planning, but in the situation where none of the eight 

TDS applied, aircrew could use the �manual release tables�.  A recommendation was 

submitted to incorporate a dynamic LAR that would change as the aircraft airspeed, 

altitude and heading changed.  This upgrade would be incorporated a future software 

release.   

Terminal Parameter Editing 

 In a related deficiency, aircrew had no method of editing any of the JDAM 

terminal impact parameters.  Impact parameters included terminal heading, terminal dive 

angle, and terminal impact velocity.  These parameters would be critical during in-flight 

targeting in order to generate the greatest target destruction.  For instance, a cave entrance 

would have to be attacked with a low impact angle profile to allow bomb flight into the 

tunnel entrance for maximum destruction.  If none of the pre-flight planned TDS included 
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a low impact angle, then that target could not be properly prosecuted.  JDAM was 

designed to accept in-cockpit changes to these terminal parameters.  Other aircraft like 

the Navy�s F/A-18 Hornet have this capability.  As shown in table 6-1, this functionality 

was not provided in the F-14 and a recommendation was submitted to incorporate in-

cockpit terminal parameter editing in future software releases.   

Multiple Point Editing 

Background 

 Originally the F-14�s only cockpit tactical data entry keypad was the Computer 

Address Panel (CAP) and was located at the RIO�s aft cockpit station.  The CAP had a 

six position rotary knob covering the range of input categories available, including 

Navigation, Waypoint, Built-In Test, and Data-Link.  Each rotary selection enabled ten 

pushbuttons keys for activation of sub-options in the selected category.  The CAP also 

had 10 hard keys, which allowed numerical entries of zero through nine, with some keys 

having a secondary North, West, South, and East function to allow for navigational 

latitude and longitude entry.  With the incorporation of OFP 320 and the EGI, a second 

keypad was added to the RIO�s station.  This keypad was called the CDNU and was now 

the main navigation input and control system.  The CDNU was now critical in the 

F-14B�s digital architecture, in that it acted as a Bus Controller for the MIL-STD-1553B 

Navigation Bus (NAVBUS), linking the EGI and Computer Signal Data Converter 

(Replacement) (CSDC(R)).  Appendix A details the RIO�s cockpit station, and figures 

A-3 through A-7 shows the various data entry controls. 
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Table 6-1 [22] 
Joint Direct Attack Muntion Target Data Set 

With F-14 In-Flight Changeable Options 
Target Data Target Data Set* F-14 In-Flight 

Changeable 
 Required Optional  
Target Hardness  X  
Target Orientation  X  
Attack Mode  X X 
Target Altitude Reference X  X 
Target Name  X  
Target Location - Latitude X  X 
Target Location - Longitude X  X 
Target Location - Altitude X  X 
Target Impact Azimuth  X  
Target Impact Angle  X  
Target Minimum Impact Velocity  X  
Target Offset - North  X X 
Target Offset - East   X X 
Target Offset - Down  X X 
JPF Fuze Control Source  X X 
JPF Fuze Mode  X X 
JPF Arm Time From Release  X X 
JPF Function Time From Impact  X X 
*The parameters identified as �Required� in the TDS column constitute the minimum 
parameters required by the JDAM weapon to complete its mission.  The �Optional� 
data provide enhancements to the weapon operation and performance.   
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JDAM Editing 

 With the F-14�s integration of JDAM through OFP 321, aircrews were required to 

have the ability to edit the weapons target parameters.  Editable target parameters 

included latitude, longitude, altitude, offset bearing and offset heading.  JDAM required 

very accurate coordinates, with the required format in degrees, minutes, 1000th of minutes 

(DD° MM.MMM).  A problem arose in that the CAP data entry keypad would only allow 

latitude and longitude entry in degrees, minutes, and 10th of minutes (DD° MM.M).  

Three options were available to enable entry in the proper format; modify the F-14 

Mission Computer for CAP entries; modify the CDNU software; or create an additional 

data entry point.  For programmatic and schedule reasons, the option to increase software 

modifications to the F-14 Mission Computer to allow the required target format was not 

selected.  The CDNU did use the proper DD° MM.MMM format for navigation purposes, 

but the CDNU software was not being modified for OFP 321.  To solve the problem 

software designers created a third data entry location.  A numerical keypad was created 

on the RIO�s main tactical display, the 8 inch by 8 inch Programmable Tactical 

Information Display (PTID).   The PTID JDAM target entry became the source for 

JDAM latitude and longitude entry and the CAP retained the entry location for altitude, 

bearing and range entries.    

 During JDAM employment all three displays; the CAP, CDNU and PTID would 

be used for JDAM administrative operations.  Though use of these three controls and 

displays were part of the original JDAM integration design, actual cockpit manipulation 

proved to be inefficient.  Three different entry locations were cumbersome and awkward 

for the RIO, especially for the critical tasks of editing precise targeting and navigation 
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data.  These tasks required excessive heads down time.  A trouble report was written with 

a recommendation to locate the JDAM entry functions and navigation entries onto a 

single control in future software upgrades. 

Target Data Update Confirmation 

 One design feature that became an issue was the method by which aircrew 

confirmed new target data.  After entering target data through both the CAP and the PTID 

entry points, that information was saved to the F-14 Mission Computer.  However, in 

order to pass that information to the weapon, a pushtile on the RIO�s main tactical 

display, the PTID, had to be selected.  The pushtile was labeled with the word �update�. 

The PTID had 20 pushtiles with various functions and the pushtile lettering on the 8� by 

8� PTID was approximately 1/4� tall.  The �update� option only appeared after target 

data was changed, but was not highlighted to alert the aircrew that changes had not yet 

been downloaded to the weapon.  Figure 6-2 depicts the PTID JDAM Mission Page with 

the �update� option.  During testing it became apparent that aircrew would be required to 

change target data often and would overlook this final step of downloading targeting 

changes to the weapon.  The recommendation was made to highlight the �update� option 

during this cycle of testing.  It was concluded that highlighting, through the use of 

flashing near the pushtile would be required.  In general, aircrews had asked that limited 

items flash at them and then only for emergency or critical situations.  It was determined 

that a flashing box around the word �Update� would be a good solution.  This was 

desirable in two ways.  First, when aircrew selected any of the PTID pushtiles, a �box� 

around that selection would appear and the next screen, option or menu would then 
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Figure 6-2 [26] 
F-14B JDAM Mission Page with Update Option (Lower Left Pushtile) 
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come up or that function would be enabled.  This was a standard convention used by F-14 

aircrew, commonly called �boxing�, meaning to turn on or select to reach another menu 

level.  Secondly, flashing was a method already used in the F-14 for providing warning, 

cautions or advisories.  Human factors guidance recommended flashing items at 3 to 10 

cycles per seconds to attract attention in a 'warning' type of situation.  A study found that 

a flashing streetlight at 1 to 2 cycles per seconds was effective in attracting attention (in 

the context of being associated with a non-flashing background) [27].  Since this 

"UPDATE" pushtile did not require an immediate emergency type response, but was 

critical for mission accomplishment, a flash of 1 cycle per second was deemed 

appropriate.  This worked well and was different than most other flashing used in the 

F-14.  A few of the F-14�s other flashing items were (1) Built in Test (BIT), performed at 

2 Hz, and (2) when an air-to-air weapon was within a launch zone, at 2 to 4 Hz.   

Weapon Delivery Flight Test Results 

Two actual weapons deliveries were flown and the test weapons were production 

JDAM tailkits installed with data transmitting telemetry kits.  For safety purposes the two 

guided and fully integrated deliveries were tested with inert 2000 lb. warheads.  The first 

delivery was the more significant of the two during the testing phase.  The flight occurred 

on May 5th, 2000 at the Naval Test Ranges, China Lake, CA.  The delivery profile 

required the aircraft be at an altitude of 35,000 ft MSL and a speed of 0.95 IMN.  During 

the flight from the F-14 test facilities at NAS Pt. Mugu to the ranges, all systems 

appeared normal.  While in the target range in preparation for delivery an F-14 navigation 

system advisory, called the �NAVCOMP� light, appeared.  The advisory light, standing 

for Navigation Computer, was an indication that a fault was detected in the EGI, CDNU 
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or Signal Data Converter (SDC), which could degrade the navigation solution.  

Additionally, the light could indicate that a tolerance from one of the EGI parameters was 

out of limits.  Per the EGI Navigation Pocket Guide, aircrew shall treat the NAVCOMP 

advisory light as a cue to check the status indications and navigation pages of the CDNU.   

The F-14 flight test engineers at the range were informed of the system advisory 

by the aircrew.  In the cockpit the systems were checked.  The JDAM was not displaying 

any faults during periodic BIT or during aircrew run IBIT.  Additionally, the CDNU 

status displays for both the primary Blended (GPS/INS) navigation solution and the 

backup GPS-only navigation, indicated a FOM of 1, the highest navigation quality.  

According to the EGI Navigation Pocket Guide, a correctly operating GPS receiver with 

properly loaded crypto keys in the Precision Positioning System (PPS) mode would 

display a FOM of 1.  A FOM of 4 or greater would indicate that the GPS receiver was 

operating in the less accurate Standard Positioning System (SPS), usually a sign of no or 

incorrect GPS keys installed [28].  Other than the NAVCOMP advisory, all indications in 

the aircraft were normal. 

System checks at the flight engineers ground station location, using the telemetry 

data from the aircraft and the weapon, were not indicating any problems either.  After 

much discussion between the aircrew and engineers, the event was given the go ahead.  

The profile was flown per the plan and at 8.5 nautical miles from the target the JDAM 

was released.  The result was a 9 ft miss (3 meter) from a direct hit, well within the 

JDAM advertised 13 meter CEP.  Figure 6-3 depicts the first F-14B weapon release and 

impact.
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Figure 6-3 [29] 
F-14B JDAM Release and Impact  
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Post-Flight analysis uncovered multiple software and procedural deficiencies.  

The flight on May 5th was unknowingly flown without the GPS crypto-keys properly 

loaded into the aircraft�s EGI and the weapon was released without any GPS navigation 

information in the transfer alignment from the aircraft.  Both the aircraft INS and the 

weapon IMU, matched, drifting equally, and therefore no transfer alignment or JDAM 

faults were displayed.  Once released, the JDAM acquired GPS data based on ephemeris 

data, which was passed to it separately from the transfer alignment, and the JDAM 

successfully guided to the target.  

Prior to May 1st, 2000, NAVSTAR/GPS was operating with Selective Availability 

(S/A) enabled.  After May 1st, S/A was discontinued per a Presidential order.  Usually the 

biggest indication of Navigation/GPS problems in the F-14 was the FOM.  However 

because S/A had been disabled, the F-14�s EGI was seeing a very accurate GPS solution 

and the CDNU was properly reporting a GPS FOM of 1.  All the aircrew procedures for 

F-14 Navigation troubleshooting up to this point were written with S/A enabled.  If the 

flight had occurred May 1st or before, the aircrew would have seen a FOM of 4 on start-

up and had the system re-keyed before launch, but instead on May 5th the aircrew saw a 

FOM of 1.  Additionally, errors in the CDNU software were incorrectly posting a 

Blended FOM of 1, when in fact the aircraft INS was operating without any GPS aiding.  

Figure 6-4 depicts the CDNU�s Blended Navigation Status Display.  The blended FOM 

should have displayed 9, for no GPS information in the navigation solution.  Also, a 

confusing indicator on the Blended Navigation display was the number of GPS satellites.  

Intuitively, this number would appear to be the number of satellites being used in the 

blended solution since it was appearing on the Blended Status Page.  However, this value
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Figure 6-4 [28] 
F-14B CDNU Blended Navigation Status Page 
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was actually the number of satellites being used in the �GPS� solution.   

It was determined that a more accurate navigation quality indicator was the 

estimated horizontal error (EHE).  The EHE was a similar error estimate like the FOM, 

but was displayed as a range value in meters (1 through 999).  The EHE was correctly 

displayed on both the GPS and Blended navigation displays on the CDNU.  New 

procedures were written to utilize the EHE vice FOM as a navigation solution indicator.  

Checking EHE prior to delivery became part of the checklist prior to simulated and actual 

weapons delivery to preclude JDAM employment without GPS.  Additionally, 

procedures were written to train aircrew to check the validity of GPS keys loaded to the 

EGI through pre-existing, infrequently used, CDNU lower level status displays.   

No corrections were made to the CDNU displays since this software was not 

being modified for OFP 321.  A partial solution was to create a transfer alignment 

degrade if GPS was not being used in the navigation solution transferred from the aircraft 

to the weapon.  A �GPS DATA� caution was added and would be displayed on the 

JDAM BIT display causing a degraded weapon state on the top-level tactical display.  

Overall, the confusing and inaccurate navigation solution status presented to the aircrew 

could result in delivery of JDAM with a degraded GPS solution, causing large miss 

distances.  This was the most notable, uncorrected deficiency found during testing.  New 

procedures and the �GPS Data� caution were implemented, and will remain in affect until 

the next software upgrade.   

Summary 

From November 1999 to December 2000, the developmental testing encompassed 

1048 hours in the SITS Lab, 80 hours in ground testing and 107 hours (46 sorties) in 
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flight testing.  All testing was completed at Naval Air Station Pt. Mugu, California, 

utilizing the ranges over the Pacific Ocean and the overland test ranges at the Naval 

Weapons Station China Lake, California.  The testing included over 800 simulated 

deliveries and two actual deliveries.  Further, over the entire test program, 209 problem 

reports were filed, of which 186 were corrected or closed prior to test completion.  No 

high priority problems were open at the conclusion of developmental testing that would 

prevent mission accomplishment and commencement of operational testing.  OFP 321 

met or exceeded the performance level requirements and maintained the baseline system 

performance [29]. 

During the developmental test phases, test aircrews were challenged with 

providing a complex product, which in the end would have to be easy to use and intuitive 

for the average fleet aircrew.  Test aircrew ensured that they scrutinized all aspects of the 

new functionalities, especially in controls and displays, and identified the �gotchas� or 

potential areas of human error.  A test priority was to identify areas of the new design that 

would cause aircrew confusion or created other problems, such as the excessive input 

requirements and the limited flexibility with the LAR�s.  It became apparent that designs 

on paper did not always provide the desired level of performance once they were 

transferred to the cockpit and actually involved human interface.  These problems had to 

be fixed or documented for correction.  In the end, a key objective was for aircrew to 

make recommendations for improvements in order to minimize any aircrew errors, an 

important consideration when delivering a 2000 lb weapon. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

�The new features of the OFP 321A enhanced the operational effectiveness and 
operational suitability of the F-14B and adequately supported the F-14B mission.  There 
were no degradations in the F-14B operational effectiveness and operational suitability 
from the previous OFP.� 

 - OFP 321 Operational Test Report [30] 
 

Conclusion 

 Based on the results of the developmental flight-testing, the hardware and 

software configuration, called OFP 321, entered Operational Testing in January 2001.  

By late 2001, Operational Test Squadron Nine (VX-9) deemed OFP 321 operationally 

effective and operationally suitable [30], therefore ready for introduction into the Fleet.  

The Initial Operational Capability for the F-14B Upgrade with JDAM occurred in 2002 

with Carrier Air Wing Seven (CVW-7) aboard the USS John F. Kennedy (CV-67).  This 

deployment was in support of Operation Enduring Freedom in Afghanistan.  Air Wing 

Seven�s two F-14 Squadrons, Fighter Squadron Eleven (VF-11) and Fighter Squadron 

One-Hundred Forty Three (VF-143), entered combat operations in March 2002 with the 

new capabilities of OFP 321.  On March 12th, during a night strike in support of coalition 

forward air controllers, an F-14B from the VF-11 �Red Rippers� successfully employed 

the first JDAM in combat [31].   

Specific Conclusions 

 Although OFP 321 and JDAM met the developmental and operational   

requirements, the following deficiencies of the integration were highlighted.   
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1. Static LAR�s.  The static LAR�s incorporated with OFP were too constraining and 

did not provide enough flexibility.  The depicted Static LAR�s were inadequate 

since they would only allow JDAM delivery at certain altitudes and headings, and 

since they could only be created during pre-flight planning.  This often led to 

weapon delivery in the, aircrew intensive, manual mode. 

2. Terminal Parameter Editing.  Aircrew did not have the option in the cockpit to 

edit all the parameters of the JDAM Target Data Set.  The inability to in-flight 

edit JDAM terminal impact parameters, such as impact heading, angle and 

velocity, does not take full advantage of JDAM�s capabilities.     

3. Single Point Data Entry.  From the original F-14 configuration, to the addition of 

GPS, to the incorporation of JDAM, no real focus was given to efficient system 

integration.  In the case of data entry in the cockpit, each iteration of increased 

mission capability was implemented as a stand-alone system.  The result was a 

cockpit with multiple data entry paths and excessive aircrew workload required to 

effectively operate the systems.   

4. Navigation Status Displays.  Confusing and inaccurate navigation solution 

displays presented to the aircrew resulted in the delivery of JDAM with a 

degraded GPS solution during testing.  Although the JDAM made its own 

corrections to overcome the aircraft faults and successfully guided to the target, 

aircrew must be presented with clear and accurate information, for they bear the 

ultimate responsibility for the employment of these weapons.   
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Recommended Improvements 

 The following are presented as a summary of the recommended improvements 

based on testing the integration of JDAM on the F-14B Upgrade aircraft. 

1. Incorporate Dynamic LAR�s.  LAR�s for JDAM need to provide more flexibility 

to the aircrew.  Incorporate LAR�s that reflect the constantly changing position of 

the launch aircraft.  They will automate the process and eliminate the need for 

aircrew to manually look up release ranges.  Dynamic LAR�s will provide the 

most accurate deliveries of the weapon by reducing the chance of human error.   

2. Expand JDAM parameter editing.  Allow for full editing of target location and 

terminal impact parameters.  Impact parameters such as impact angle, heading 

and velocity must be cockpit changeable.  This will allow targeting flexibility and 

the greatest chance of mission success.   

3. Create a single point data entry.  Though increased capabilities are always 

desired, they must be integrated with the already present systems.  The CDNU 

should be the single data entry control because it has the greatest selection of data 

entry keys and has the processing required to perform all the needed functions.    

4. Navigation Status Display.  Update the software to accurately reflect a degraded 

navigation solution.  Present the aircrew with clear unambiguous displays that 

indicate when the system is degraded and when it will have adverse effects on the 

accuracy of JDAM. 
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F-14B Cockpit Diagrams
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Figure A-1 [13] 
F-14B Pilot Forward Cockpit Instrument Panel and Console 
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Figure A-2 [13] 
F-14B Pilots Instrument Panel and Console Description 
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Figure A-3 [13] 
F-14B Radar Intercept Officer Rear Cockpit Instrument Panel and Console 
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Figure A-4 [13] 
F-14B Radar Intercept Officer Instrument Panel and Console Description 
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Figure A-5 [13] 
F-14B Computer Address Panel (CAP) 
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Figure A-6 [13] 
F-14B Controls and Display Navigation Unit (CDNU) 
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Figure A-7 [26] 

F-14B Programmable Tactical Information Display (PTID) with JDAM Target Edit Page 
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