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ABSTRACT 

 

Throughout the years Hybrid Electric Vehicles (HEV) require an electric motor 

which has high power density and wide constant power operating region as well as low 

manufacturing cost. For these purposes, a new concept permanent magnet motor is 

designed and analyzed with the basic theories about Interior Permanent Magnet 

Synchronous Motor (IPMSM). 

This new motor has DC excitation coils and flux paths, which can increase the 

output torque and be controlled for field weakening operating. The analysis has been 

conducted by three-dimensional Finite Element Analysis. The results show the possibility 

of the new motor for HEV applications. The new motor has several advantages: low 

manufacturing cost, low inertia of the rotor, and the direct controllability of air-gap flux. 
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CHAPTER 1 

Introduction 

 

1.1 Background 

 

Throughout the years hybrid electric vehicles (HEVs) have proved themselves 

worthy to replace a conventional vehicle with an internal combustion engine (ICE). 

Recently, the commercial HEVs developed by Toyota and Honda have proven about 50% 

fuel saving in urban driving in comparison with an equivalent ICE vehicle [1]. This is 

great progress, but the fuel saving still cannot compensate for the extra cost of an HEV in 

initial purchase and maintenance. Thus, the price and reliability of the traction motor is 

one of the most critical issues in developing an HEV system. 

Various types of electric motors have been investigated for use in an HEV system 

in the fields of output power, maximum speed, efficiency, manufacturing cost, and 

durability. Figure 1.1 shows the motor requirements of an HEV in the different vehicle 

running modes. The maximum motor torque is determined by acceleration at low speed 

and hill climbing capability of a vehicle, the maximum motor RPM by the maximum 

speed of a vehicle, and the constant power by vehicle acceleration from the base speed to 

the maximum speed of a vehicle. The shaded areas indicate the ranges frequently used for 

a vehicle; so, high efficiency is required. In a conventional ICE powered vehicle, the 

wide constant power is accomplished by a multi-gear transmission. When a vehicle is 

operated with start-go driving pattern, such as the urban cycle in Figure 1.1, the average  
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Figure 1.1 Required characteristics of traction motor in a vehicle running mode 
 
 
 
 

operating efficiency of the traction system is very low [2]. Additionally, the gearbox 

needs extra space in a vehicle and increases the total weight of the vehicle. Therefore, the 

necessity of multi-gear transmission system is unfavorable for vehicles. However, an 

electric motor powered vehicle can be operated efficiently in an urban area with a single-

gear transmission to meet the requirement of vehicle performance. Then, the structure of 

the traction system will be significantly simplified. But the problem of an electric motor 

lies in the high-speed region, since increasing motor speed while holding constant power 

cannot be realized easily. Thus, recently the wider constant power region in the high-

speed range is the key point of the research about the traction motor for HEV.  

TORQUE 

POWER 

Urban 
cycle 

Highway 
cycle 

Base speed 
SPEED



 3

1.2 Comparison of Electric Motors  

 

Until a decade ago, DC motor systems were popularly used for driving an EV 

(Electric Vehicle) or an HEV, because they could be used with direct current supplied 

from batteries without AC conversion. However, in reality DC motors cannot be 

attractive for EV or HEV systems anymore because of their low efficiency and frequent 

need of maintenance. Therefore, thanks to the rapid development of large scale integrated 

(LSI) circuits and powerful switching devices such as IGBT (insulated gated bipolar 

transistor), the Induction Motor (IM), Permanent Magnet Synchronous Motor (PMSM)*, 

and Switched Reluctance Motor (SRM) have replaced the traction system of EV or HEV.  

 

1.2.1 Induction Motor 

The advancement of power semiconductors allows the IM to be used in the 

application where widely varying speed or precision control of speed is required. The 

torque control of an IM is achieved through PWM control of the current. To hold the 

current control capability beyond base speed with constant power, the IM should be 

operated in the field weakening region. However, the presence of breakdown torque of 

IM limits its extended constant power operation as shown Figure 1.2. Above a critical 

speed, ωc, the IM cannot sustain its constant power. Any attempt to operate the machine 

beyond this critical speed with maximum current will stall the IM. Typically, a properly 

designed IM can achieve field weakening range of 3~5 times its base speed. This  

                                                 
* Sometimes PMSM is also called BDCM (Brushless DC Motor, BLDC). However, in general PMSM has 
sinusoidal or quasi-sinusoidal distribution of flux in the air-gap and BDCM has rectangular distribution. 
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Figure 1.2 Speed-Torque curves for variable frequency control of IM 
 
 

 

approach, however, results in increased breakdown torque, and thereby the motor size 

also is increased [2].  

 

1.2.2 Permanent Magnet Synchronous Motor 

Since a PMSM has the magnetic field excited by permanent magnets, it has many 

advantages compared with an IM. The high energy permanent magnet, such as rare earth 

or samarium cobalt, enables the PMSM to be significantly smaller than the IM in size and 

weight by increasing available field strength. Correspondingly, The PMSM has 

outstanding capability in torque or power density. The PMSM also has better efficiency 

Motor Speed ωcωb 

Increasing frequency  

Constant Torque Locus  

Constant Power Locus  

0 

Tmax 

Air-gap 
Torque 



 5

and power factor because of the absence of a rotor winding and the small size of the rotor 

[3]. Additionally, since the PMSM is efficient at low speed, the HEV using a PMSM is 

attractive in the city mode in which the vehicle is required to frequently start and stop.  

However, the PMSM has a problem with operating in the constant power region. 

The presence of the permanent magnetic field limits its field weakening capability 

because the air-gap magnetic field can only be weakened through production of a stator 

field component that opposes the rotor field.  

Recently, there is research about an additional field winding of PMSM* to control 

the field current for increasing field weakening region, and the maximum speed with the 

constant power is achieved up to 4 times of the base speed, such as conventional phase 

advance [2]. But the low inductance value of PMSM still limits its constant power 

operation by increasing the phase current rating [4]. Thus, the speed ratio is still not 

enough to meet the vehicle requirement, and the complex rotor structure increases the 

cost of the motor with the high price of permanent magnets. The high cost is a critical 

drawback of PMSM. 

 

1.2.3 Switched Reluctance Motor 

Recently, an SRM has gained considerable attention as a candidate of electric 

propulsion for EV and HEV. Its simple and rugged construction and simple stator 

winding can reduce the manufacturing cost of the SRM significantly. Above all things, 

the capability of extremely high speed operation make the SRM highly favorable for a 

                                                 
* It is called a PM hybrid motor. 
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vehicle traction application. Because there is no fixed magnet flux, the maximum speed 

with constant power is not as restricted by controller voltage as it is in PMSM.  

However, the absence of excitation from a permanent magnet imposes the burden 

of excitation on the stator windings and the controller; thus the overall efficiency 

decreases with the increasing copper loss [5]. In addition, the clear disadvantages of the 

SRM are torque ripple and acoustic noise caused by its non-uniform air-gap structure [6]. 

Also, the torque density is much smaller than the PMSM [3]. 

 

 

1.3 Research Objective 

 

The importance of high efficiency at low speed and high torque/power density 

make many manufacturing companies select a traction motor using permanent magnets.* 

Especially, interior permanent magnet synchronous motor (IPMSM) or permanent 

magnet assisted reluctance synchronous motor (PM-RSM)† appeal to the makers with 

developing various control strategies. Actually, these two types of motors have almost the 

same operating principal in using both permanent magnet generated torque and 

reluctance torque. The difference is that in PM-RSM the amount of magnet and the 

magnet flux linkage are small in comparison with the conventional IPMSM [7], but there 

is no clear boundary between two kinds of motor. Thus, in this paper IPMSM includes 

PM-RSM. 

                                                 
* Mostly Neodymium-Iron-Boron (NdFeB)  
† Reluctance Synchronous Motor without permanent magnet shows similar behavior and characteristic with 
Switched Reluctance Motor as a traction application. 
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Many researchers have presented results that suggest the IPMSM or PM-RSM is a 

better solution for HEV than IM [1], and there is already a commercial HEV adopting 

this kind of motor*. However, the high price of high-energy permanent magnets and the 

complexity of the controller for field weakening are still major problems of IPMSM.  

Therefore, the main objective of this research is to design a new concept motor, 

which is based on IPMSM for the application of HEV propulsion system with low price. 

To reduce the manufacturing cost of a high-performance PM machine, the motor must 

use less magnet material and be easily controllable in the constant power region.  

For this purpose, the new concept motor uses a DC excitation coil, which can 

increase flux in the air-gap and also control the flux for field weakening; because DC 

current is easy to control, and the conductors (copper) are much cheaper than permanent 

magnet material.  

The excitation coils are wound around radial direction of the motor; thus, the flux 

by DC excitation current has the axial direction, which comes into the rotor and combines 

with the PM flux. As an excitation flux path, the frame is used. The frame is attached to 

the stator and makes axial air-gap with the rotor to make closed flux path with the rotor 

which is rotating continuously.  

Three-dimensional (3D) finite element analysis (FEA)† is used for this research to 

get the optimal design parameters of the motor.  

 

 

                                                 
* Toyota Prius 
† It is also called finite element method (FEM). 
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1.4 Thesis Organization 

 

This thesis is organized in the following manner: 

• Chapter 2 organizes the equations of IPMSM for generating torque using 

steady-state phasor diagram and magnetic field energy, and a FEA 

computing procedure for torque is briefly explained in the latter part of 

chapter 2.   

• The base concept of the novel machine in this research is introduced in 

chapter 3. 

• Chapter 4 describes the design objective and process with FEA and shows 

the results from FEA simulations.  

•  For conclusion, chapter 5 briefly summarizes the research in this thesis 

and addresses future works. 
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CHAPTER 2 

Analysis of Interior Permanent Magnet Synchronous 

Motor (IPMSM) 

 

2.1 Background 

 

As it is mentioned in chapter 1, the main characteristic of IPMSM is generating its 

output torque by both permanent magnet alignment and reluctance. IPMSM has the 

following useful properties when compared to traditional surface mounted PMSM [5]: 

 

• Field weakening capability with high inductance  

• Under-excited operation for most load conditions 

• High resistance from demagnetization  

• High temperature capability 

 

There are several types of IPMSM, and each type has its own advantages and 

specific applications. Figure 2.1 shows some examples of IPMSM rotor configurations. If 

there are no magnets in each rotor configuration, the motor is to be a pure reluctance 

synchronous motor. Most IPMSM have some empty spaces, called flux barriers, inside 

the rotor for increasing its reluctance torque.  
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Much research has been conducted to determine the PM portion in the flux 

barriers in the same rotor structure and concluded that more PM increases the torque and 

efficiency but decreases the constant power region [7], [8]. Also, the double layer 

configuration in Figure 2.1 (b) has a higher torque and wider efficiency operating range 

than the single layer [9], but it cannot avoid the increased PM cost. The arrangement of 

Figure 2.1 (c) is known as a ‘flux-concentrating’ design because the magnet pole area at 

the air-gap produces an air-gap flux density higher than that in the magnet [5]. 

In this chapter, the basic theory for generating torque of an IPMSM is analyzed in 

detail. And then, the relationship between output torque and energy is described with 

analyses of Maxwell equations. Finally, basic FEA concepts for computing machine 

torque are presented. 

 

 

2.2 Torque Equation from Steady-State Phasor Diagram 

 

The steady-state phasor diagram of IPMSM can be constructed in the same way 

like general PMSM. The open-circuit phase emf (electromotive force) is  

 

aqf jjEE Ψ== ω       (2.1) 

 

where, ω is synchronous speed (rotor speed) and Ψa is the flux linkage due to the 

fundamental component of d-axis flux produced by the permanent magnet. Although 
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there exists some d-axis emf associated with the leakage flux [5]*, in most cases it is 

negligible.  

From the phasor diagram shown in Figure 2.2,  

 

dqqd RIIXV +−=       (2.2) 

qddqq RIIXEV ++=       (2.3) 

 

The angles δ and γ are defined as shown in Figure 2.2; then, the voltage and 

current in the motor is defined by  

  

δδ cos,sin VVVV qd =−=      (2.4) 

γγ cos,sin IIII qd =±=      (2.5) 

 

In a large capacity motor, the armature resistance, R, is negligible, and from (2.2) 

and (2.3)†, 

d

qq
d X

EV
I

−
=        (2.6) 

q

d
q X

V
I −=        (2.7) 

 

                                                 
* actually, 11 dqqdf jjEEE Ψ+Ψ=+= ωω  

† with the resistance  
qXdXR

qEqVqXdRV

dI
+




 −+
= 2 ,  

qXdXR

dVdXqEqVR

qI +

−


 −
= 2  
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        (a)                 (b) 

 

Figure 2.2 Phasor diagram for IPMSM: 

 (a) magnetizing armature current in the d-axis. 

     (b) demagnetizing armature current in the d-axis. 

 

 

 

The complex power per phase per pole-pair into the motor is 

 

( )( )

jQP
IVIVjIVIV

jIIjVV
IVS

qddqqqdd

qdqd

+=

−++=

−+=
⋅=

)(

*

    (2.8) 

 

Substitute (2.4), (2.6) and (2.7) into (2.8); the real power is  

q 

d 

Eq

RI

Xq Iq 

Xd Id
V 

I γ δ

d

Eq 

RI 
Xq Iq 

Xd Id 

V
I 

γ 
δ 

q 



 14
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d
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X
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X
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−
+=
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+

−
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−
−

=
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   (2.9) 

 

where,    

  22
qdt VVV +=  

 

Assume that there is no loss, then the total output torque for three phases with p 

pole-pairs is  

 

( )










 −
+== )2sin(

2
sin33

2

δδ
ωω qd

tqd

d

qt

XX
VXX

X
EVpPpT  (2.10) 

 

 

In a pure reluctance synchronous motor,  

 

0=qE  

( )
)2sin(

2
33

2

δ
ωω qd

tqd

XX
VXXpPpT

−
==    (2.11) 

 

 

The first term of (2.10) is the PM generated torque, and the second term is the 

reluctance torque which is proportional to the difference in stator inductance, Ld -Lq. For a 
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general PMSM, Ld is almost the same as Lq, thus the reluctance torque term is canceled. 

In IPMSM, Ld is lower than Lq because the magnet flux flowing along the d-axis has to 

cross through the magnet cavities in addition to the rotor air-gap, while the magnet flux 

of the q-axis only crosses the air-gap [5]. 

Equation (2.10) shows that the period of the reluctance torque is one half of that 

of the PM generated torque. Figure 2.3 illustrates that the IPMSM can achieve higher 

torque than a surface mounted PMSM which does not have any reluctance torque 

component. However, the appearance of the reluctance torque does not mean that 

IPMSM can have higher power density than surface mounted PMSM because the magnet 

flux linkage in IPMSM is not the same as that in the surface mounted PMSM with the 

same magnet volume.  

Equation (2.12) is another form of the torque equation (2.10), and (2.13) 

suggested by Phil Mellor shows that the total torque of an IPMSM is increased with the 

saliency of the rotor [10]. 

 

( )[ ]qdqdqa IILLIpT −+Ψ=
2

3    (2.12) 

)2sin(
2

1cos δξδ
base

S

base I
I

T
T −−=    (2.13) 

 

  where, 

  =baseT  PM generated torque at baseI  

d

q
L

L=ξ = saliency ratio 

Is = Input current  
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                     Figure 2.3 Torque-angle characteristic of IPMSM 
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The ξ term is called the saliency factor and generally cannot be more than 3 [10]. 

Figure 2.3 also indicates the optimum commutation angle may have been advanced from 

90° (the optimum commutation angle for PMSM). 

 

 

2.3 Torque Equation from Magnetic Field Energy 

 

For electric machinery, the torque acting on the rotor can be found by 

differentiating the total system energy with respect to rotor position. Theoretically, this 

energy calculation can be simplified if the inductance L(θ) of the machine is known as a 

function of rotor angle θ. The energy stored in the inductor is well known as shown 

following equation [11]: 

 

2

2
1 LIW m=        (2.14) 

 

The relationship between flux linkage and inductance makes it possible to obtain 

inductance from the flux density or magnetic field.  

 

LIsdBNN
s

=⋅=Φ= ∫λ      (2.15) 

 

where N is the number of turns in the excitation coils circling the area s of the stator; and 

assuming that the flux (Φ) linked in the stator approximately equals that at the rotor 

poles. 
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To find the torque on the rotor in Figure 2.4, the magnetic fields must first be 

found. The high permeability of the core confines the magnetic field produced by the N-

turn coil and guides the flux to the pole faces where the small air gaps between core and 

PM rotor to close on itself to make the loop. From Gauss’ law in Maxwell’s equation, the 

flux density, B, must be continuous across the two air-gaps [11]. 

Equation (2.16) means that the flux density is the same everywhere in the loop. In 

other words,  

 

0=⋅∇ B        (2.16) 

rotorairgapcore BBB ==       (2.17) 

 

 

Figure 2.4 A simple rotating machine 

 

I, N turns 

θ
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Since the magnetic field intensity*, H, is defined as (2.18) and the permeability, µ, 

of the core and rotor have very high permeability (for ideal case, µ is assumed as infinity 

in soft magnetic materials [12]), the total magnetic field intensity concentrated on the two 

air-gaps is  

 

µµµ
BBH

ro

==       (2.18) 

 

where,    

µo = permeability of free space (= 4π×10-7) 

 µr = relative permeability 

 

thus, 

  gg
o

stator HHH <<=
µ
µ

     

 gHH 2=∴∑       (2.19) 

 

Therefore, using Ampere’s law (2.20), the magnetic field intensity of the air-gap, 

Hg, can be represented by input current, I, as  

  

∫ ∫ =⋅=⋅
c s

NIsdJldH      (2.20) 

ggggrotorrotorcorecore lHlHlHlHNI 22 ≅++=     

g
g l

NIH
2

=→        (2.21) 

 

                                                 
* It is also called just ‘magnetic field’ 



 20

where lg is the length of the air-gap and the depth of air-gap, D, should be sufficiently 

larger than lg. Next relate equation (2.21) with the flux linkage, λ,  

 

ggogg
s

AHNANBsdBNN µλ ==⋅=Φ= ∫   

g

go

l
IAN

2

2µ
=        (2.22) 

 

using (2.14) and (2.15), 

 
g

go

l
AN

I
L

2

2µλ ==       (2.23) 

 
θµ

λ
µ

λλ
RDN
l

AN
l

L
LIW

o

g

go

g
m 2

2
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Faraday’s law in Maxwell’s Equations shows the flux linkage is constant with 

time when the coil is short circuited as follows: 

 

 01 =−=⋅−=⋅ ∫∫ dt
d

N
sdB
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dld

sc

λε      (2.25) 

 

Equation (2.25) means that the flux linkage is time-constant. Under constant flux 

linkage, the torque equation is given by [13]: 
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* for constant current condition,  
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therefore, 
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Using (2.22) to substitute for λ,  
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In this section we found that the torque of electric machine can be obtained from 

its magnetic field energy.  In other words, if we can compute the energy of an electric 

machine, we can also calculate the machine torque and winding inductance. Based on this 

energy-torque relationship, we can calculate a machine torque using Finite Element 

Analysis (FEA). 

 

 

2.4 Finite Element Analysis – Maxwell 3D 

 

Obtaining the correct value of flux density and magnetic field remains an 

important issue for designing an electric machine in verifying the magnetic flux loop and 

checking the saturation of flux density in each part of the machine.  For this purpose, 

FEA is used extensively for the design and performance prediction of all types of electric 

machines. It is a numerical technique based on the determination of the distribution of the 
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electric or magnetic fields inside the machine structure, by means of the solution of 

Maxwell’s equations. FEA could answer the value of torque or force, winding 

inductances, field distributions, back-emf waveforms, demagnetization withstand of 

magnets, etc [15].    

To present electric or magnetic fields over a large, irregularly shaped region, each 

region of the modeled machine is divided into many hexahedral or tetrahedral elements.* 

The collection of elements is referred to as the finite element mesh. 

In FEA computation, the value of a vector field at a location within an element is 

interpolated from its nodal value of the field. For magnetic field calculation, Maxwell 3D 

solver divides the H-field into a homogeneous and a particular solution. The solver stores 

a scalar potential at each node for the homogeneous solution of magnetic field density, H, 

and stores the components of H that are tangential to the element edges [14]. Thus, to 

obtain a precise description of the field, each element of the model is small enough for 

the field to be adequately interpolated from the nodal values. 

However, there is a trade-off between the number of the elements and the amount 

of computing resources required for the computation. The accuracy of the solution also 

depends on how small each of the individual elements is. Thus, a user should choose an 

adequate mesh size for fitting his computer capability.  

The computing procedure is as follows. First, the current density, J, is calculated 

by input current condition. Using Ohm’s law (2.29), the J of all elements in the model is 

obtained and stored.  

 

                                                 
* Maxwell 3D uses tetrahedral elements. 
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VEJ ∇−== σσ        (2.29) 

 

where, 

E is the electric field 

σ is the conductivity of the material 

V is the electric potential 

 

Under steady state conditions, the charge density, ρ, in any region of the model 

does not change with time [14]. That is 

 

0=
∂
∂=⋅∇

t
J ρ        (2.30) 

 

Substituting (2.29) into (2.30): 

 

( ) 0=∇⋅∇ Vσ       (2.31) 

 

The differential equation (2.31) is solved to get the J for all elements. After 

computing the current density, the FEA solver computes the magnetic field using 

Ampere’s law and Maxwell’s equation describing the continuity of flux, 

 

JH =×∇         (2.32) 

0=⋅∇ B         (2.33) 

 

Next, the energy is calculated. In a linear material, the energy, W, is the same as 

its coenergy, Wc, as 
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( ) dvHBdvHBdW
vv
∫∫ ⋅=⋅=

2
1      (2.34) 

( ) WdvHBdvHdBW
vv

c =⋅=⋅= ∫∫ 2
1      (2.35) 

However, in a nonlinear material, the coenergy is different from its energy like 

shown in Figure 2.5. Energy and coenergy in the figure indicate the area above and below 

the B-H curve.  

If the motion of a material has occurred under constant current conditions (steady-

state), the mechanical work done can be represented by increasing its coenergy [13]. FEA 

solver is computing H under constant input current condition, thus, it uses 

coenergy differentiation over a given angle instead of energy differentiation for torque 

calculation with nonlinear data of the materials. 

 

            (a) Linear material             (b) Nonlinear material 
   - µ is constant     - µ is not constant 
 - energy is equal to coenergy   - energy is less than coenergy 

 

       Figure 2.5 Comparing B-H curve between linear and nonlinear material 
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Energy
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θd
dWT c=         (2.36) 

 

Computing inductance of conductors from the flux linkage is an additional 

function of FEA, and these calculated inductance values can be used for dynamic analysis 

of the designed machine combined with its controller circuits. 

 

 

2.5 Summary 

 

This chapter describes the basic theories analyzing the generating torque in 

IPMSM for steady-state; using phasor diagrams. Equations (2.10) and (2.12) present that 

IPMSM has two torque components: permanent magnet torque and reluctance torque. By 

the existence of reluctance torque, the torque of IPMSM is not linearly proportional to the 

stator phase current amplitude.  

Therefore, FEA is an effective method to predict the value of output torque of 

IPMSM. This chapter introduces how the energy of a machine can convert to its output 

torque; and then shows the basic theories about FEA for calculation of machine torque. 

 

 



 26

CHAPTER 3 

FEA Simulation of the Concept of a New IPMSM  

 

 

3.1 Introduction 

 

The basic idea is simple; use DC excitation current to control air-gap flux. 

Conventional electric machines are constructed from the following parts: a rotor 

assembly, laminated stator material, phase current-carrying conductors, and a physical 

structure to support the entire machine. When a current-carrying conductor is placed in a 

magnetic field from the rotor, the conductor experiences a mechanical force or torque. 

This force or torque is directly proportional to the intensity of the magnetic field. Thus, 

generating a magnetic field from permanent magnets enables a machine to have high 

power density and efficiency. However, the fixed magnetic field limits its field 

weakening capability for wide constant power operation.  

If a controllable magnetic field can be added to the field of a permanent magnet, 

we can vary the field intensity while still maintaining the advantages of PM machines. 

DC current is a good source for this purpose, because it is easily increased and decreased. 

Moreover, the flux generated by DC current is linearly proportional to the amount of the 

current flow until it reaches the saturation region of the flux-carrying material. 

FEA is a useful method to check this idea. A simple model is constructed for trial 

simulation, and the results are used for the actual design. 
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3.2 Modeling 

 

Figure 3.1 shows the basic model which needs to increase air gap flux. The 

permanent magnet used in this model is a ferrite magnet of which the residual flux 

density, Br, is 0.4 T and the relative permeability, µr, is 0.25. The steel is a kind of cast 

steel of which the µr  is about 900 in the linear region.  

The flux from the left side of the PM travels through the left upper core, air gap, 

top core, air gap again, right upper core, and then returns to the right side of PM. After 

FEA simulation, the calculated air-gap flux density of this simple model is about 0.28 T 

(Figure 3.2). The object is to increase this air-gap flux density by DC excitation current.  

 

                      

Figure 3.1 Simulation concept model to increase air gap flux 
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Right 
Upper Core 
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Left 
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Figure 3.2 FEA simulation result of air-gap flux density of the concept model 

 

 

To use excitation current, an additional flux path is needed. For this purpose, two 

side cores are attached to the original model as shown in Figure 3.3. Each side core is 

directly contacted with half of the top core and makes another air-gap (side air-gap) with 

an upper core on both sides. The reason to make the side air-gap between side core and 

upper core is that the upper cores are considered as parts of rotor assembly for the 

rotating machine. Two coils are wound on each side core to carry DC excitation current.  

The direction of the flux from excitation current is perpendicular to that from PM, 

and the two fluxes will be combined in the main air-gap between the upper core and the 

top core. Actually, there are several methods to attach a side core, but the arrangement in  
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Figure 3.3 Simulation model with side cores and wound coils 
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Figure 3.3 is the best position from the results of FEA simulations about various 

configurations.   

 

 

3.3 Numerical Analysis 

 

Assume that the excited flux from each side core flows through just one half of 

the top core with the x-axis direction in Figure 3.3. Then, the new flux path for excitation 

current can be simplified as Figure 3.4. The dimensions of the simulation model are 

indicated in Figure 3.4. The depth of each part is 40 mm for side core, 50 mm for top 

core, and 45 mm for upper core. Suppose that the flux flows only at the center of each 

core and air-gap, then the path can be divided with 7 parts: 1, 2*, 3, 4, 5, g1, and g2.  

For each part of the path, the length and cross-sectional area are 

 

l1 = 144 mm 

l2 = 50 mm 

l3 = 30 mm 

l4 = 10 mm 

l5 = 50 mm   

lg1 = lg2 = 2 mm 

 

 

                                                 
* For this part, assume that the flux flows in only the top portion of the top core. 
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Figure 3.4 Simplified model for excited flux path 

 

 

A1 = 20×40 = 800 mm2 

A2 = 20×50 = 1000 mm2 

A3 = 100×50 = 5000 mm2 

A4 = 100×45 = 4500 mm2 

Ag1 = 100×50 = 5000 mm2 

Ag2 = 20×45 = 900 mm2 

 

Since the reluctance of the magnetic path is defined as 
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and the relative permeability of the core is 900, the total reluctance is  

 

5
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2 10442.0 ×=R   [At/Wb] 

5
3 10052.0 ×=R   [At/Wb] 

5
4 10020.0 ×=R   [At/Wb] 

5
5 10491.0 ×=R   [At/Wb] 

5
1 1018.3 ×=gR   [At/Wb] 

5
2 1068.17 ×=gR [At/Wb] 

51046.23 ×≅= ∑ RRtotal  [At/Wb] 

 

 

If the input current is 1000 At, then the flux and main air-gap flux density are   
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Therefore, we can expect that the main air-gap flux density reaches about 0.37 T 

with the PM. 
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3.4 Simulation Results 

 

FEA simulations have been conducted under four different input current 

conditions: 1000 At, 500 At, 0 At, and -500 At. The negative value means that the current 

flows the reverse way and the direction of excited flux also changes.  

The calculated values of the main air-gap flux density are shown in Figure 3.5. 

The value at 1000 At is about 0.35 T and is a little lower than the expected value, 0.37 T. 

The reason is that the additional flux path, side core, increases the total reluctance, and 

then decreases the flux from the PM in the air-gap.  The simulation result also shows that 

the flux density is about 0.26 T with side core and no current, and this value is lower by 

about 0.02 T than the result without side core. Considering this situation, the main air-gap 

flux density increases about 0.09 T. This result totally agrees with the numerical analysis. 

Additionally, Figure 3.5 shows that the main air-gap flux density could be greatly 

reduced by changing the DC current direction. Comparing Figure 3.6 (a) and (b), the flux 

in the side core changes its direction and the air-gap flux is reduced. The arrows in the 

air-gap hold their direction but the size of the arrows is shrunk.  

This chapter validates the effectiveness of the design concept for a new IPMSM. 

As a consequence of the results of the simulations in this chapter, DC excitation current 

can be used for increasing and controlling air-gap flux of the electric machine. However, 

constructing an adequate flux path for the excited flux is a difficult task in the actual 

machine design. An inadequate flux path can increase the total reluctance of PM and the 

leakage flux of the machine.  
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    Figure 3.5 Simulation results of air-gap flux density for different excitation conditions  
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(a) Excitation current source is 1000 At 

 

(b) Excitation current source -500 At 

 

 

  Figure 3.6 B vector on three cut-planes in the simulation model  

Positive air-gap B vector on each cut-plane 
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CHAPTER 4 

Design a New Concept Motor 

 

4.1 Design Procedure  

 

As mentioned in the previous chapter, the objective of this research is to design an 

electric machine which has high torque density and has controllable air-gap flux directly 

for the application of HEV systems. For this purpose, the design procedure is as follows: 

 

1) analysis of pre-developed machine by FEA 

- without DC excitation parts 

- calculating output torque and air-gap flux density 

2)  analysis of draft-design machine by FEA 

- attaching DC excitation parts 

- checking flux saturation and leakage parts 

3) fixing design parameters of the new machine by FEA 

- reforming flux saturation and leakage parts 

- comparing output torque and air-gap flux density with the results of 

the pre-developed machine 
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4.2 Pre-developed Motor  

 

4.2.1 Geometries and materials of pre-developed motor  

Figure 4.1 shows a quarter part of a pre-developed motor which has been 

designed at National Transportation Research Center of Oak Ridge National Laboratory. 

The dimensions of the stator and rotor are given in Table 4.1. This IPMSM is a three-

phase and eight-pole (four-pole pair) machine which means that the number of stator 

slots per pole per phase is 2. The winding pattern is a single-layer winding with 9 turns 

and the winding span is full-pitch as shown in Figure 4.1.  

The permanent magnet material used in this motor is ferrite of which remanence 

flux density (Br) is 0.4 T, coercive field (Hc) is 1273240 A/m, and relative permeability 

(µr) is 0.25. The location of the PM in the rotor is indicated in Figure 4.2.  

Laminated silicon steel is used for stator and rotor core to reduce hysteresis and 

eddy current loss, and the shaft is made of mild-steel. These two materials have a non-

linear magnetic characteristic, which is shown in Figure 4.3.  

 

                      Table 4.1 Specifications of stator and rotor  

parameters value parameters value

Number of stator slots 48 Air-gap length 0.029 in

Outer stator diameter 10. 6 in Outer rotor diameter 6.317 in 

Inner stator diameter 6.375 in Inner rotor diameter 3.3125 in 

Stator tooth width 0.349 in Rotor rib thickness 0.05 in 

Slot opening width 0.076 in Rotor axial length 2.75 in 

Stator axial length 2.5 in PM thickness 0.25 in 
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    Figure 4.1 A quarter model of pre-developed motor for FEA 
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Figure 4.2 The location of PMs in the rotor 
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(a) Silicon steel 

 

 

(b) Mild steel 

Figure 4.3 B-H curves for non-linear materials 
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4.2.2 Simulation results of pre-developed motor 

The no-load simulation is implemented to check the distribution of the air-gap 

flux. Figure 4.4 is a flux density curve for no-load condition along the line which places 

on the middle of the air-gap at the center of the rotor in an axial direction. In the figure, it 

is observed that the slot openings affect the flux density distribution and the flux wave is 

well balanced between north (positive) and south (negative) poles. The average value of 

the magnitude of the flux density is 0.1826 T but the effective value coming through the 

stator teeth is about 0.3 T as shown in Figure 4.4.  

 

 

         Figure 4.4 Air-gap flux density distribution of pre-developed motor 
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Figure 4.5 shows the current phase angle versus output torque characteristic at 

which the maximum phase current is 200 A with a 3.75° phase angle step. It is obvious 

that the torque is composed of the magnet torque and the reluctance torque as shown in 

Figure 2.3.  The maximum torque is 225.15 Nm at 131.25° of phase angle, which means 

that the reluctance torque is very large. If the reluctance torque is significantly larger than 

the magnet torque, the maximum torque will be placed at 135°. The pure magnet torque 

is 117.45 Nm at 90°. With high salient ratio (Lq/Ld >3), the output torque of IPMSM is 

composed of a larger portion of reluctance torque than magnet torque [16]. 

 

 

 

Figure 4.5 Output torque versus current phase angle for pre-developed motor 
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4.3 Embodiment of the Concept  

 

4.3.1 Side-poles and side-magnets 

To make a flux path for the excitation current, side-poles are used. These side-

poles are attached to the rotor assembly as shown in Figure 4.6. In the figure, the right 

side-pole is arranged to meet the north pole of the PM (N-position), and the left side-

poles are placed to face the south pole of the PM (S-position).  Since the side-poles are 

made with mild steel and clamped by non-magnetic material (aluminum), the axial-

direction flux can come into or out from the rotor only through the side-poles.  

A consequence of FEA has revealed that much leakage flux flows into the rotor 

by clamping. To prevent this leakage flux, permanent magnets are used. These magnets 

are called side-magnets and placed between side-poles at S-position for right side and at 

N-position for left side of the rotor as shown in Figure 4.7. At S-position, they block the 

flux from flowing into the rotor through the side-poles because the permanent magnets 

are magnetized to have the direction from left to right. Figure 4.8 and Figure 4.9 clearly 

shows that the leakage flux is significantly reduced and more flux comes into the rotor 

through the side-poles. Correspondingly, the air-gap flux is also increased. 

The excitation flux path is indicated in Figure 4.10. The flux generated by DC 

excitation current will flow through the frame, flux collector, side air-gap, side-pole, rotor 

core, air-gap, and stator. At N-position, the side-poles will attract the axial flux, and then 

will send the flux into the rotor. As a result, the air-gap flux will be increased. In contrast, 

left side-poles will do the reverse role at S-position. The details will be explained in the 

latter part of this section. 
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          (a) 

       

       (b) left view of rotor assembly       (c) right view of rotor assembly  
      (Two side- poles place at S-position)              (One side-pole places at N-position) 

 

Figure 4.6 Configuration of side-poles 
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          (a) 

 

 

 

      (b) left view of rotor assembly     (c) right view of rotor assembly  
      (Two side- poles place at S-position)             (One side-pole places at N-position) 

 

Figure 4.7 Configuration of side-poles and side-magnets 
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    (a) with side-pole only 

 

 

      (b) with side-pole and side-magnet 

    Figure 4.8 Flux density vector distributions around side-pole at centered N-position 
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(a) with side-pole only 

 

 

  (b) with side-pole and side-magnet 

  Figure 4.9 Magnitude of the flux density on the side-pole and the clamping at centered 

N-position 
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    (a) N-position 

 

    (b) S-position 

               PM flux   Excitation flux with side-pole 

Excitation flux without side-pole           penetrating flux  

Figure 4.10 Axial flux path of the motor   
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4.3.2 Excitation flux paths 

Figure 4.10 shows how the excitation flux flows inside the motor. Figure 4.10 (a) 

is the axial cut plane at the N-position, and (b) is the plane at the S-position. For N-

position, the excitation flux from the right side in the Figure 4.10 (a) combines with the 

main PM flux in the air-gap, whereas the excitation flux from left side changes its way to 

the radial direction along the stator and combines at the flux collector.  In the same way, 

the excitation flux makes its path for S-position as shown in Figure 4.10 (b). There 

should also be some penetrating flux which flows along the outer surface of the stator and 

shaft.  

Figure 4.11 and Figure 4.12 are the simulation results showing that the excitation 

flux flows along the same way as the concept in Figure 4.10. On the left side in Figure 

4.11 and the right side of Figure 4.12, the flux density vectors make an independent open 

path separated from the main closed path. Therefore, the flux on the open path should go 

out and come in from the radial direction.  

 

4.3.3 Excitation coil resistance 

If the excitation coils absorb much real power, the operating temperature will be 

significantly increased, and the efficiency of the motor will be also decreased. Therefore, 

it is necessary to ensure the low resistance of the excitation coils.  Resistance in general is 

given by the following expression 

 

c

c

A
l

R
⋅

=
ρ

       (4.1) 
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     Figure 4.11 Flux density vector distributions on the axial cut plane at N-position 

 

               

     Figure 4.12 Flux density vector distributions on the axial cut plane at S-position 
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where lc is the conductor length, Ac is the cross sectional area of the conductor, and ρ is 

the conductor resistivity. For most conductors, including copper, resistivity is a function 

of temperature that can be linearly approximated as  

 

( )[ ]1212 1)()( TTTT −+= βρρ      (4.2) 

 

where ρ(T) is the resistivity at a temperature T and β is the temperature coefficient of 

resistivity. For annealed copper commonly used in motor windings, ρ(20°C) =1.7241×10-

8 Ωm, and β =4.3×10-3 °C -1[17].  Suppose that the excitation coil temperature increases 

up to 100 °C, then the resistivity of the excitation coils is  
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For the space of the excitation current, suppose that the axial height of each frame 

is increased 0.5 inches, then the additional space, Aspace   

 

056.15.0
2

375.66.105.0
2

,, =×−=×
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= insouts
space

DD
A   [in2]  

 

where Ds,out and Ds,in are stator outer diameter and inner diameter respectively. With the 

coil packing factor 0.5, the total space allowed for the excitation coils is 

 

528.05.0 == spaceexc AA  [in2] 6.340≅  [mm2] 
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The above result means that the excitation coils can be composed of 1mm2 coils 

with 300 turns. The length of excitation coils can be calculated with the average value of 

the outer and inner stator diameters. 

 

( ) ( ) 6.15998300375.66.10300,, =×+=×−= ππ insoutsexc DDl  [in] 

        4.406≅  [m] 

 

thus, the resistance value of the excitation coils is  
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When the maximum excitation current is 10 A, the power loss from both sides of 

the excitation coils is  

 

1883417.91022 22
, =⋅×=⋅×= excDCexcloss RIP   [W] 

 

For a high power motor (over 50 kW), the power loss is less than 4 % of its output 

power. Considering that the motor needs not to be always operating at the maximum 

output and the output power can be controlled by the excitation current, the power loss is 

not severe. 
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4.4 Simulation Results of Final Model  

 

After conducting several simulations, the model is modified by eliminating the 

saturation part of the machine. Also, the inner diameters of side-poles, side-magnets, and 

flux-collector are decreased to reduce the leakage flux in the axial direction. 

 

4.4.1 Air-gap flux   

To check the relationship between the excitation current and air-gap flux, FEA 

simulations have been conducted under several different excitation current values: 3000 

At, 2000 At, 1000 At, 0 At, and -1500 At. The simulation results are shown in Figure 

4.13. Under positive excitation current, there is a little unbalance between positive and 

negative main curves. It may be due to the leakage flux that penetrates the rotor and 

stator in the axial direction.  

Comparing Figure 4.4, the air-gap flux density significantly increases when the 

excitation current is 3000 At (from 0.1826 T to 0.4798 T in average value). Additionally, 

Figure 4.13 shows that the air-gap flux density is reduced by decreasing the excitation 

current value without changing its own shape.  

When the negative excitation current is less than -1500 At, the magnitude of the 

flux density is almost the same as when -1500 At, but it loses its own shape. Considering 

that the fundamental component of the air-gap flux is mainly related with the motor 

performance, it is meaningless to compare between the values when less than -1500 At 

and others.  
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    Figure 4.13 Simulation results of air-gap flux density for different excitation values  
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With -1500 At of excitation current, the air-gap flux can be weakened by about 

6.5% of the maximum value. In other words, the maximum speed of the motor can be 15 

times its base speed by just controlling its dc excitation current, if the entire field crossing 

the phase conducts is dependent on this air-gap flux. 

Figure 4.14 is the flux density vector distributions in the stator and rotor at no 

phase current with excitation current of 3000 At, and Figure 4.15 is the magnitude of flux 

density in the same condition with Figure 4.14.  

Figure 4.16 shows the flux density vectors in the stator and rotor at the maximum 

torque position (123.75 ° ) under the maximum phase current of 200 A and excitation 

current of 3000 At.  The corresponding magnitude of flux density distribution is shown in 

Figure 4.17. Both figures (Figure 4.16 and Figure 4.17) present that the flux lines are well 

balanced and there is no saturation part in the stator and rotor except rotor ribs. (Stator 

and rotor is saturated at about 1.8 T as indicated in Figure 4.3.)  

Although the flux flowing through the rotor ribs is also a leakage flux which 

remains inside rotor without crossing the air-gap, the ribs are necessary for mechanical 

reason: to maintain laminated rotor core shape. In normal condition, the ribs cannot avoid 

to be saturated [18].  

Figure 4.18 is the overall magnitude of the flux density with the maximum phase 

current of 200 A and excitation current of 3000 At. The circumferential area of side-poles 

is saturated as shown in the figure. That means the excitation flux is concentrated at the 

side-pole from the frame which is the main path of the excitation flux.      
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         Figure 4.14 Flux density vector distributions at no phase current (Iexc=3000At) 
 
 

 

          
 
Figure 4.15 Magnitude of flux density at no phase current (Iexc=3000At) 
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         Figure 4.16 Flux density vector distributions at maximum torque position  

(Iph,max= 200A, Iexc=3000At) 
 
 
 

 
 

         Figure 4.17 Magnitude of flux density at maximum torque position  
(Iph,max= 200A, Iexc=3000At) 



 58

 

 

 

 

         Figure 4.18 Overall magnitude of flux density at maximum torque position  
(Iph,max= 200A, Iexc=3000At) 
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4.4.2 Output torque   

Figure 4.19 shows the current phase angle versus output torque characteristic at 

which the maximum phase current is 200 A and the excitation current is 3000 At. In the 

figure, the results are compared with those of the pre-developed motor before attaching 

the excitation magnetic circuit.  

The maximum torque is increased from 225.15 Nm to 283.06 Nm (25.7 % 

increase). Since the excitation current increases the air-gap flux, the magnet torque is also 

increased; and then, the maximum torque position is shifted slightly from 131.25° 

to116.25°.  Table 4.2 presents the output torque results along the various excitation 

current values; Figure 4.20 is the graph of Table 4.2. 

 

     Figure 4.19 Comparison of output torque between pre-developed and final model 
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         Table 4.2 Calculated output torque under various excitation current values [Nm] 

Phase 
Angle 

3000 At 2000 At 1000 At 0 At -1500 At 

90° 207.08 187.33 124.99 90.93 63.87 
93.75° 219.49 195.99 131.93 101.28 79.09 
97.5° 231.49 203.33 139.71 110.65 90.53 
101.25° 242.21 208.44 147.24 115.24 101.44 
105° 253.05 214.87 154.06 124.87 110.16 
108.75° 267.97 228.06 167.42 135.00 124.73 
112.5° 276.78 235.03 170.49 147.33 132.49 
116.25° 283.06 239.24 177.2 154.78 141.81 
120° 282.99 245.04 181.56 162.04 150.24 
123.75° 281.99 249.77 186.02 168.14 156.63 
127.5° 278.78 238.26 189.89 173.71 160.00 
131.25° 271.98 228.01 187.06 174.81 161.31 
135° 263.53 222.65 184.11 174.16 160.93 

 

  Figure 4.20 Comparison of output torque under various excitation current values  
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4.5 Summary and Discussion 

 

FEA simulations have been conducted for a newly designed PM machine that 

attaches excitation coils and excitation flux path to the target model which is described in 

Section 4.2. The results of the simulations clearly show the outstanding characteristic of 

the newly designed motor as compared to that of the pre-developed motor. The maximum 

torque increases 225.15 Nm to 283.06 Nm (25.7 % increase). 

The simulations have also confirmed that the air-gap flux can be changed by the 

excitation current value. Under 3000 At, the average of the air-gap flux density is  

0.4798 T, which is about 15.3 times of the value under -1500 At (0.0313 T).  

The pure PM torque can be obtained from Table 4.2 at 90° phase angle,  

207.08 Nm under 3000 At and 63.87 Nm under -1500 At. Since the PM torque is directly 

proportional to the air-gap flux*, the pure PM torque of -1500 At is too large considering 

its air-gap flux density. When -1500 At, the calculated torque value is about 30.8 % of 

the value in case of 3000 At, but the air-gap flux is only 6.5 %. 

A comparison between the pre-developed motor and the final model with 0 At of 

excitation current reveals that there is a big difference in the air-gap flux density (0.1826 

T for the pre-developed motor and 0.1347 T for 0 At) since the excitation flux paths can 

increase the total reluctance of the motor. Correspondingly, the calculated PM torque in 

both cases is clearly different (117.45 Nm for the pre-developed motor and 90.93 Nm for 

0 At). However, the percentage of the pure PM torque is similar that of the air-gap flux 

density (77.4 % for torque and 73.8 % for flux density) because the air-gap flux and the 

                                                 
* T=KT·I, and KT ∞ Φ 
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flux linkage of the phase conductors come from only PMs when the excitation current is 

0 At.  

Therefore there must be other magnetic fields which cross the phase conductors 

without passing the air-gap.  Table 4.3 indicates PM torque and air-gap flux density ratios 

of each excitation current to the excitation current of 0 At. When the excitation current is 

positive, the torque ratio is much less than the flux density ratio; and when negative, the 

torque ratio is greater than the flux density ratio. These results suggest that positive 

excitation current decrease the flux linkage crossing the phase conductors and negative 

excitation current increase that.  

Comparing Figure 4.21 (positive excitation current, Iexc=3000At) with Figure 4.22 

(no excitation current), the flux density in the stator teeth is not uniformly distributed 

along the axial direction. At N-position in Figure 4.21, the flux density is counter-

balanced in the middle of the left part of stator teeth, and at S-position, the right part. As 

a consequence, the effective flux crossing the phase conductor will be reduced. With 

negative excitation current, the flux density vectors change their direction in the air-gap 

(Figure 4.23, Iexc= -1500At). That means the air-gap flux in the radial direction will be  

 

   Table 4.3 Comparing PM torque and air-gap flux density in each excitation current 

Excitation 
current 

PM torque 
[Nm] ratio Average air-gap flux 

density[T] ratio 

3000 At 207.08 2.278 0.4798 3.562 
2000 At 187.33 2.06 0.4250 3.155 
1000 At 124.99 1.375 0.2866 2.128 

0 At 90.93 1 0.1347 1 
-1500 At 63.87 0.702 0.0313 0.232 
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                                                          (a) N-position 
 

         
                                                           (b) S-position 
 
                       Figure 4.21 Flux density distributions on the axial cut-plane  
                                               (Iph,max= 200A, Iexc=3000At) 
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                                                          (a) N-position 
 

         
                                                           (b) S-position 
 
                       Figure 4.22 Flux density distributions on the axial cut-plane  
                                                     (Iph,max= 200A, Iexc=0At) 
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                                                          (a) N-position 
 

         
                                                           (b) S-position 
 
                       Figure 4.23 Flux density distributions on the axial cut-plane  
                                               (Iph,max= 200A, Iexc= -1500At) 
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much smaller than the actual effective flux linkage of phase conductors. To find out the 

exact relation between excitation current and effective crossing flux linkage, additional 

research works are needed. 

For IPMSM, the speed is in inverse proportion to the PM torque or effective flux 

crossing the phase conductors [19]. Therefore, the new machine can increase its speed 

about 3.24 times of its base speed without control of the direct and quadrature axis 

current components.
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CHAPTER 5 

Conclusions and Future Works 

 

5.1  Conclusions 

 

Permanent magnet motors are desirable for applications that require high power 

density such as EV and HEV. However, they have critical disadvantages; the high price 

of high-energy permanent magnet and the complexity of the controller for field 

weakening if it is necessary to drive them at a constant power output above the base 

speed. 

To solve these undesirable properties of IPMSM, a new type of IPMSM structure 

is developed and analyzed in this thesis. The new motor has excitation coils and 

additional magnetic paths for the excitation flux which can increase the air-gap flux as 

well as the output torque. Additionally, the new motor may have the performance that its 

air-gap flux (effective flux) can be controlled directly through the magnitude and 

direction of its DC excitation current. The permanent magnets used in the new motor are 

Ferrite which are much cheaper than high energy PM materials (Samarium Cobalt and 

Neodymium Iron Boron). 

The FEA simulation works were shown, and the results presented that the 

excitation current can be used for controlling the output torque as well as air-gap flux. 

Maximum output torque is increased by about 25.7% compared with the simulation result 

of the motor without excitation coils and paths.  
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However, the discordance between PM torque and air-gap flux may be caused by 

the excitation current which reduces or increases the effective flux linkage of the phase 

conductors. Therefore, additional research must be conducted to find the exact relation 

between excitation current and effective winding flux linkage.  

The new motor is designed for the purpose of the applications of EV or HEV. The 

maximum torque (283.06 Nm) shows the possibility of the application of vehicles from 

the point of view of output torque compared to the motor used for commercial HEV*.  

The commercial motor has the maximum torque of about 350 Nm with 3.5 inches axial 

stator and rotor length [20]. Considering the possibility of increasing torque with higher 

excitation current, this research suggests a new design concept of IPMSM which has 

similar or higher power density than the commercial motor. Moreover, the new motor 

makes use of Ferrite as its permanent magnet, not Rare Earth or Samarium Cobalt.  

In the respects mentioned above, the new motor has several advantages. Firstly, 

the manufacturing cost will be significantly reduced by low price of magnets and short 

length of stator and rotor core.  Secondly, the inertia of rotor will be reduced, and it will 

allow the motor to have a fast response to load variations. Lastly, the direct controllability 

of air-gap flux will allow the motor to be operated easily above its base speed. On the 

other hand, the existence of side air-gap is the main disadvantage of the new motor 

because it can make the axial vibration or unexpected torque ripple.  

 

 

 

                                                 
* Toyota’s Prius 
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5.2 Future Works 

 

For the confirmation of this research works and better characteristics of the motor, 

following research works should be conducted. 

 

• Improving the motor characteristics to have wider speed range by 

controlling DC excitation current. 

• Clarification of the reasons for the discordance between PM torque and 

air-gap flux. 

• Expectation of dynamic behavior including the effect of side air-gap. 

• Analysis of the saturation effect on the rotor and the excitation flux paths, 

and then adjusting the geometric dimensions. 

• The possibility of irreversible demagnetization of Ferrite magnet. 

• Developing new control strategy including the excitation current variable. 

• Thermal analysis of the motor including the excitation coils to get more 

reliable results. 

• Cost analysis  

• Building a prototype sample and testing to prove the results of this 

research and predict the machine behavior. 
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Appendix A 

Flowchart of Maxwell 3D 
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Appendix B 

Park’s transformation and Reference Coordinate systems 

 

The Park’s transformation is used to transform three-phase systems into two-axis 

models, which defines the method of a transformation from the three-phase system to a 

two-axis model (d and q). For synchronous motors, especially with permanent magnets, a 

rotor-oriented coordinate system is more convenient. In the dq-system, the d-axis is along 

the magnetization of the rotor while the q-axis lies electrically perpendicular ahead in the 

direction of positive rotation. 

Figure B.1 shows the structure of the three-phase IPMSM with the reference 

angles. The a-, b-, and c-axis are fixed on the stator. d- and q-axis are fixed on the rotor, 

which define the synchronous reference frame. Any set of three-phase quantities, e.g. the 

flux linkages λa, λb, and λc can be transformed in the synchronous reference frame using 

Park’s transformation method as the following equations: 

 





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3
4cos()

3
2cos()cos(

3
2 πϑλπϑλϑλλ mcmbmad ppp  (B.1) 
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 −+−+−= )

3
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3
2sin()sin(

3
2 πϑλπϑλϑλλ mcmbmaq ppp  (B.2) 

 

where ϑm  is the mechanical angle between the reference a-phase axis and the d-axis, and 

p is the number of pole-pair. 
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The inverse transformation is then; 
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Figure B.1 A quarter IPMSM model for references of the three-phase  
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