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Abstract 
 

 
 
 
In this thesis, we present the Curvature Variation Measure (CVM) as our 

informational approach to shape description. We base our algorithm on shape 
curvature, and extract shape information as the entropic measure of the curvature. We 
present definitions to estimate curvature for both discrete 2D curves and 3D surfaces 
and then formulate our theory of shape information from these definitions.  

 
With focus on reverse engineering and under vehicle inspection, we document our 

research efforts in constructing a scanning mechanism to model real world objects. We 
use a laser-based range sensor for the data collection and discuss view-fusion and 
integration to model real world objects as triangle meshes. With the triangle mesh as 
the digitized representation of the object, we segment the mesh into smooth surface 
patches based on the curvedness of the surface. We perform region-growing to obtain 
the patch adjacency and apply the definition of our CVM as a descriptor of surface 
complexity on each of these patches. We output the real world object as a graph 
network of patches with our CVM at the nodes describing the patch complexity. We 
demonstrate this algorithm with results on automotive components.�
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1 INTRODUCTION 

Have we ever realized how easy it has been for us to locate a friend at the shopping 
center? How quickly we recollect something by looking at a photograph, and how 
accurately we approximate distance? It is indeed amazing to realize the design of 126 
million receptors compactly packed into nerve endings and muscles that coordinate so 
impeccably well to process visual information that would require a bandwidth of 600 
terahertz and processing capability of 2 terabytes per second. We are just measuring the 
sensing capability of the eye; not to forget the extremely fast and meticulous brain that 
does the processing at that bandwidth and with incredible accuracy and precision.  
 
As computer vision researchers, we acknowledge the uncanny ability of our human 
visual system in object detection and recognition, to address the complexities involved 
in imparting this intelligence to a computer.  The first and foremost computational 
hurdle is that of variability. A vision system needs to generalize across huge variations 
of an object to viewpoint, illumination, occlusions and many such factors and still be 
very specific. For more than two decades researchers have been fighting such factors 
and the lack of important depth information with intensity images. With increase in 
computational speed and capabilities of the electronic world, we now deal with 3D data. 
The 3D sensors, in addition to having the capabilities of traditional cameras, require 
processing resources to extract depth information. By 3D data, we mean digitized 
representations of the real world objects that we can visualize and understand using a 
computer. Computers can be programmed to understand a specific domain of objects by 
extracting features from their digital representation. An important feature used for image 
understanding is shape. Shape is interpreted as the geometric description of an object, 
and shape analysis refers to the process of feature extraction followed by feature 
matching. In this thesis we present the pipeline for 3D data collection and discuss a new 
shape analysis algorithm that we have developed. We base our algorithm on a feature 
that we define as the Curvature Variation Measure (CVM). We have implemented the 
algorithm in an application to reverse engineering and vehicle inspection that we 
elaborate in Section 1.1.  
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1.1 Motivation 

Computer aided design (CAD) combined with computer aided manufacturing (CAM) 
has revolutionized many engineering disciplines since the 1980’s. In particular, CAD 
and CAM technologies have catered to the needs of the automobile manufacturers. A 
designer can now rapidly fabricate a real-world tangible object from a conceptual CAD 
description. The process of designing and manufacturing components using a computer 
is often referred to as computer aided engineering. In this context, we would like to 
introduce the idea of reverse engineering that begins with the product and works through 
the design process in the opposite direction to arrive at a product definition statement. In 
doing so, it uncovers as much information as possible about the design ideas that were 
used to produce that particular product. By design ideas, we mean the shape and 
topology of the surfaces used at the time of modeling. At this point, we would like to 
emphasize that our focus is only on the geometric aspect of reverse engineering and not 
on the functional aspect of these mechanical components.  
 
Reverse engineering aids the electronic dissemination and archival of information in 
addition to the prospect of re-creating an out-of-production component. More recently, 
reverse engineering techniques play a significant role in real-time rapid inspection and 
validation in the production line. The traditional approach to reverse engineering has 
been the use of coordinate measuring machines (CMM) that require a probe in contact 
with the object at the time of digitization. Though CMMs are accurate some applications 
demand non-contact digitization.  
 
In Figure 1.1 we illustrate the process of reverse engineering as the reversal of CAM. 
We show that the reverse engineering of the disc brake involves acquiring 3D position 
data in the point cloud. We then represent geometry of the object in terms of surface 
points and tessellated piecewise smooth surfaces. We now need to represent the point 
cloud in a form that the CAM system can interpret and manufacture.  

 
 
 
 
 

 
 

Figure 1.1: Engineering and reverse engineering. 

 

 

Engineering 

Reverse Engineering 
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Another application that our research efforts target is that of under vehicle inspection. 
Vehicle inspection has been traditionally accomplished through security personnel 
walking around a vehicle with a mirror at the end of a stick. The inspection personnel 
are able to view underneath a vehicle to identify weapons, bombs and other security 
threats. The mirror-on-the-stick system allows only partial coverage under a vehicle and 
is restricted by ambient lighting. The inspecting personnel are also at risk. As part of the 
Security Automation and Future Electromotive Robotics (SAFER) program we aim at 
developing a robotic platform that deploys “sixth sense” sensors for threat assessment. 
We propose the idea of incorporating a 3D range sensor on the robotic platform. The 
idea is to be able to extract the 3D geometry of the undercarriage of automobiles. With 
prior manufacturer’s information on the components that make the undercarriage of the 
vehicle, we believe that it will be possible to identify foreign objects in the scene. For 
example in Figure 1.2 we show the robotic platform and the 3D geometry of the scene 
containing the muffler, shaft and the catalytic converter. It will not be possible to extract 
complete geometry of the undercarriage without dismantling the automobile. We hence 
need a representation scheme that maps the shape sensed from the scene to the CAD 
description and that is robust with occluded data. 

 
Though vehicle inspection and reverse engineering appear as different applications, 
they share the same processing pipeline as a computer vision task of designing a 
system that can capture the geometric structure of an object and store the subsequent 
shape and topology information. We discuss the use of laser-based range scanners for 
the extraction of 3D geometry and a curvature-based shape analysis algorithm based 
on our CVM to interpret surface topology.  
 
 
 
  

 
 

Figure 1.2: Under vehicle inspection and surveillance. 

 
 

Robotic Platform Under Vehicle Scene 3D Geometry 
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1.2 Proposed Approach 

Shape analysis is an age-old research topic and has been pursued since the dawn of 
image processing and computer vision. Literature on shape extraction from intensity 
images is vast and gives good insight into why vision research with intensity images 
has not been very successful. Most of the methods we have studied show promise with 
more and almost complete information with 3D data. Though 3D data acquisition and 
processing is relatively new, there are a few important contributions in our context of 
shape similarity and shape description all motivated by the challenge of object 
recognition. We survey the literature on shape analysis applied to intensity images and 
also summarize recent and ongoing work in 3D computer vision. 
 
Computer vision systems seek to develop computer models of the real world through 
processing of image data from sensors. In Figure 1.3(a) we present the flow diagram 
of our proposed approach. We begin with the data acquisition (Figure 1.3 (b)) using 
laser-based range scanners and the process of creating CAD models using these 
scanners. We acquire range images using the laser-illuminated active range sensor 
from the Integrated Vision Products Inc. (IVP). A range image is a 2D matrix with 
values proportional to the distance between the sensor and the object. We acquire 
range information from multiple views of the object to make sure that we have 
sufficient data to represent the object completely. We then transform the range data 
from the camera coordinate frame to the real world and integrate the multi-view point 
clouds into a single global reference frame. We reconstruct triangle meshes from the 
point clouds and use it as our input for the shape analysis.  
 
We base our shape analysis algorithm on the part-based perception model 
[Stankiewicz, 2002]. With automotive components, our task is simplified because the 
components are man-made and manufacturing limitations restrict us to smooth (mostly 
planar and cylindrical) patches. We hence propose that surface shape description of 
each of the parts and the connectivity of parts can uniquely describe the object. In 
describing surfaces and surface complexity we chose curvature to extract “shape 
information”. We chose curvature because it is an information preserving feature, 
invariant to rotation and possesses an intuitively pleasing correspondence to the 
perceptive property of “simplicity”. We decompose the object of interest into a set of 
patches and assign a Curvature Variation Measure (CVM) to each of these patches and 
represent the object as a patch adjacency graph. Our graph representation when 
extended to scenes with occlusions can still yield satisfactory results.   
 
Consider the example in Figure 1.3 again. We first decompose the triangle mesh 
model into smooth patches. We show the disc brake model and decompose it into four 
parts. We have shaded each of these parts with a different color. We base our surface 
patch decomposition on the definition of curvedness in [Dorai, 1996]. Curvedness 
identifies sharp edges and creases.  
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(a)  

 
(b)  

 
 
 
 
 
 
 
 

(c)  
 
 
 
 
 
 
 
 
 

(d) 

Figure 1.3:  Proposed approach. (a) Shape analysis based on our curvature variation 
measure - flow diagram. (b) Data acquisition and modeling. (c) Surface patch 
decomposition. (d) Curvature variation measure. 

 

Multi-View 
Range Images 

Multi-View 
Registration 

View  
Integration 

Mesh 
Modeling 

Data Acquisition  
and Modeling 

Surface Patch 
Decomposition 

Curvature  
Variation Measure 

Graph 
Representation 

Real World 
Object 

0.01 0.11 

0.11 0.001 

Compute  
Curvedness 

Segment by  
Region Growing 

Connectivity of 
Surface Patches 

Curvature 
Computation 

Density 
 Estimation 

Information 
Measure 

CVM = 0.001 



Chapter 1: Introduction 
 

6 

We then perform region-growing segmentation and save the patch adjacency 
information as illustrated in Figure 1.3(c). 
 
Now that we have segmented surface patches that make the object, we compute the 
curvature variation measure on each of these patches (Figure 1.3(d)). We have 
borrowed concepts from Shannon’s idea [Shannon, 1948] of measuring information on 
a probabilistic framework. We hence define the curvature variation measure as the 
entropy of curvature along that surface. We present a brief analysis on various 
curvature estimation methods on triangle meshes and reiterate the importance of 
bandwidth optimized density estimation to stabilize the information measure. Our 
modification of Shannon’s definition of entropy is normalized and invariant to scale. 
The normalized resolution invariant measure attempts to quantify the complexity of 
the surface by a single number. Similar shapes at different scales will have equal 
measures. 

1.3 Document Organization 

The remainder of this thesis documents the theory and results of our data collection 
and CVM algorithm. Chapter 2 presents a survey of the literature on the shape analysis 
and description of 2D images and 3D models. Here we explain why methods in 2D 
cannot be extended to 3D and discuss the scope for extending the state of the art. 
Then, we present our experience with the data acquisition using a laser-based scanner 
for creating 3D models of automotive components and scenes under the vehicle in 
Chapter 3. Chapter 4 documents the theory that supports our shape analysis algorithm. 
We test our algorithm on the acquired data and present our results in Chapter 5. These 
experimental results demonstrate capabilities of our algorithm and its scope as an 
object recognition system. Finally, we conclude with possible extensions in Chapter 6. 
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2 LITERATURE REVIEW 

In this chapter we present a review of the research literature.  In Section 2.1 we 
introduce the reader to shape and its implication to computer vision and briefly review 
some key methods on 2D images in Section 2.2. We discuss contemporary research in 
3D computer vision for shape analysis in Section 2.3 and summarize our survey in 
Section 2.4. 

2.1 Cognition and Computer Vision 

The human cognitive system is designed to interpret sensory data with such 
remarkable speed and accuracy that we fail to appreciate millions of computations 
involved in a common event of identifying an object. An impressive component in 
human perception is our ability to recognize 3D objects from their 2D retinal 
projections. Stankiewicz outlines human visual perception into three possible 
hypotheses, namely the feature model approach, alignment model approach and the 
part-based approach [Stankiewicz, 2002]. Feature models propose that the visual 
system does not match a precise numerical array of an object with another but 
remembers a collection of features in memory. According to this approach the location 
of the features in a particular image is less significant than its presence in the image. 
The feature model approach fails with increasing occlusions and is less reliable when 
the spatial relationship between the features and the image are vital in recognizing the 
object. Alignment models make use of the spatial information to compensate for 
viewpoint changes but do not consider occlusions. They can handle Euclidean 
transformations such as the rotation, translation and scaling and are accepted to be 
robust in comparison with the feature models. Part-based models operate by 
decomposing an object into its constituent parts. The approach uses image features to 
describe the shape of parts in addition to documenting relationships between parts. 
The part-based model has not met with great success in computer vision because of 
the insufficiency in intensity images to segment objects as parts, but with the 
increasing computational capabilities and improvements in sensor technology towards 
3D imaging, part-based models are a good prospect. 
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Shape is the geometric information invariant to a particular class of transformations 
such as affine, translation, rotation and scaling and is considered to be the “words” of 
the visual language. Shape analysis is an important aspect in image understanding. 
Since so many objects in our world are strongly determined by geometric properties, 
the applications of shape analysis extend over a broad spectrum of science and 
technology. Indeed, when properly and carefully applied shape analysis provides rich 
potential for applications in diverse areas, spanning computer vision, graphics, 
material sciences, biology and even neuroscience. 

2.2 Shape Analysis on 2D Images 

Shape description looks for effective and perceptually important shape features based 
on either shape boundary information or interior content. By perceptually similar 
shapes we are referring to shapes that are rotated, translated, scaled and are affine 
transformed. Many shape representation techniques have been developed in the past 
and shape analysis still remains as an interesting field of research. A few such 
representation techniques are the shape signatures, shape histograms, moments, 
curvature, shape context and shape matrix. We would like to direct the reader to 
[Zhang and Lu, 2004] for a recent and comprehensive survey on 2D shape 
representation for various applications. 

 

2.2.1 Classification of Methods 

Shape representation techniques are generally classified into two classes based on 
whether shape features are extracted from the contour only or from the whole region. 
Zhang and Lu [Zhang and Lu, 2004] subdivide each of these classes further into 
structural and global approaches based on the primitives used to describe the shape. 
They discuss methods that operate on the space domain and transform domain to 
extract shape information and classify shape description methods as shown in Figure 
2.1. 
 
Contour-based approaches are more popular in computer vision literature. Such 
methods assume that human beings discriminate shapes mainly by their feature 
contours. The contour-based approach is limited by noise and by data that do not have 
sufficient information (occlusions) in the boundary contour. Region-based methods 
are considered to be more robust and are dependable for accurate retrieval as they 
attempt to extract shape information from the entire region and not just its boundary.  
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Figure 2.1: Classification of shape description and representation adapted from 
[Zhang, 2004]. 
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2.2.2 Contour-Based Description 

Contour-based shape representation techniques extract shape information from the 
boundary. There are generally two approaches for contour shape modeling: the 
continuous global approach and discrete structural approach. The global approach 
makes use of feature vectors derived from the boundary to describe shape. The 
measure of shape similarity is the metric distance between feature vectors. The 
discrete approach to shape analysis represents the shape into a graph or tree of 
segments (primitives). The shape similarity is deduced by string or graph matching. 
 
We begin our analysis with the contour-based global shape description methods. The 
most commonly used global shape descriptors are surface area, circularity, 
eccentricity, convexity, bending energy, ratio of principle axis, circular variance and 
elliptic variance and orientation. These simple descriptors are not suitable standalone 
descriptors but are usually used to discriminate shapes with large differences or to 
filter false hits. Some of these are also used in combination with the other descriptors 
for shape description. The efficiency of such descriptors is discussed in [Peura and 
Ivarinen, 1997]. 
 
A few space-domain techniques compute correspondence-based shape measures using 
the point-point match where each point on the boundary is considered to be a 
contributor to shape. Hausdorff distance is a classical correspondence-based shape 
matching method, often used to locate objects in an image and measure similarity 
between shapes as discussed in [Huttenlocher, 1992].  
 
Given two shapes S1 = {a1, a2,,……. ,ap} and  S2 = {b1, b2,,……. ,bp} represented as 
two sets of points, the Hausdorff distance is defined as  
 

||ba||min  max)S,h(S   )},S,h(S),S,max(h(S)S,(SH
21 SbSa

21122121d −==
∈∈

 
(2.1) 

where ||.|| refers to the Euclidean distance. 
 
The Hausdorff distance measure is too sensitive to noise and is useful for partial 
matching invariant to rotation, scale and translation. Rucklidge improves it with a new 
measure between two datasets using a prohibitively expensive matching procedure 
that tackles different orientations, positions and scales [Rucklidge, 1997]. A more 
recent but similar kind of approach to shape matching was introduced by the name of 
“shape contexts” in [Belongie et al., 2002].Shape contexts claim to extract global 
feature at every point reducing the point-point matching into a matrix matching of 
contexts. To extract the shape context at a point p on the boundary, the vectors that 
connect p and each of the other points on the boundary are computed. The length and 
orientation of these vectors are quantized into a log-space histogram map for that point 
p to account for additional sensitivity to neighboring points. These histograms are 
flattened and concatenated to form the context of the shape as shown in Figure 2.2.  
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(a) (b) (c) (d) (e) 

Figure 2.2: [Reproduced from Belongie, 2003] Shape Contexts. (a) A character 
shape. (b) Edge image of (a). (c) The histogram is the context of the point p. (d) The 
log-space histogram. (e) Each row of the context map is the flattened histogram of 
each point context, the number of rows is the number of sampled points. 

 
 
Davies [Davies, 1997] describes shape signatures as a one-dimensional function 
derived from the shape boundary points. Some shape signatures that can be found in 
the literature are the centroidal profile, complex coordinates, tangent angle, cumulative 
angle, chord length and curvature. Shape signatures are usually normalized in scale. 
Translational and rotational invariance is achieved by a shift search procedure of the 
one dimensional function extracted from the shape boundary. Shape signatures require 
further processing in addition to the high matching cost to overcome their sensitivity 
and improve robustness. Autoregressive models [Chellappa and Bagdazian, 1984] are 
stochastically defined predictor-based methods dependent on modeling the shape into 
a 1D function. 
 
Boundary moments are extensions of shape signatures to reduce the dimensionality of 
the boundary representation. If z(i) is an extracted shape signature of a boundary, the 
rth moment and the central moment �µ can be estimated as shown in Equation 2.2 and 
2.3. 
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where N is the number of points representing the boundary. The normalized moments 
are invariant to shape translation, rotation and scaling. As discussed in [Gonzalez, 
2002] the amplitude of the shape signature can be treated as a random variable and its 
moments computed using its histogram. These moments are easily computable but 
have no physical significance. 
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Bimbo [Bimbo, 1997] implements elastic matching for shape-based image retrieval. A 
deformed template is generated as the sum of the original template and a warping 
deformation. The similarity between the original shape of the template and the object 
is obtained by minimizing the compound function, which is the sum of the strain 
energy, bending energy and the deviation measure of the deformed template with the 
object. He defines shape complexity as the number of curvature zero crossings and a 
correlation between curvature functions of the template and the object. The 
classification is performed by a back propagation algorithm neural network.  
 
Most of the space-domain techniques discussed in literature are sensitive to noise and 
boundary deviations. Spectral-domain techniques resolve the noise issues. The 
simplest of the spectral domain descriptors are the Fourier descriptors [Zhang and Lu, 
2002] and the wavelet descriptors [Yang et al., 1998]. They are derived from the one- 
dimensional shape signatures of the shape function. They are easy to compute, 
normalize and bypass the complex matching stages of the shape signature based 
methods. Zhang and Lu [Zhang and Lu, 2002] argue that the centroidal profile is the 
most efficient shape descriptor to be used in combination with Fourier descriptors. 
 
Structural shape representation is yet another approach to analysis of shape description 
as shown in Figure 2.1. With the structural approach, shapes are broken down into 
segments called shape primitives. Structural methods differ in the selection of 
primitives and organization of primitives for shape representation. Some of the 
common methods of boundary decomposition are based on polygonal approximation, 
curvature decomposition and curve fitting. The result of the decomposition is encoded 
in a general string form that can be used with a high-level syntactic analyzer for shape 
comparison tasks. 
 
Chain code described by [Freeman and Saghri, 1978] is a sequence of unit-size line 
segments with a given orientation. The unit vector method describes any arbitrary 
curve as a sequence of small vectors of unit length in a set of directions. The chain 
codes need to be independent of the starting boundary pixel. The independence is 
achieved by a good scheme that defines the characteristics of a starting pixel or by 
representing the chain code as differences in successive directions. Chain codes used 
for object recognition and matching are not scale invariant though they are rotation 
invariant. Polygonal decomposition methods discussed in [Groskey et al., 1992] break 
a given boundary into line segments by using polygon vertices as primitives. Feature 
strings are created with four elements such as the internal angle, distance from the next 
vertex and the coordinates of the vertex. The similarity of shapes is the editing 
distance between two feature strings representing the shape. Mehrotra and Gary in 
[Mehrotra and Gary, 1995] represent shape as a series of interest points from the 
polygonal boundary approximation. These points are mapped onto a new scale and 
rotation invariant basis to represent shape in a new coordinate system. Berretti et al. 
[Berretti et al., 2000] extend [Groskey and Mehrotra, 1990] for shape retrieval by 
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defining tokens as the zero crossings of Gaussian curvature and shape similarity is the 
Euclidean distance between primitives. Dudek and Tsotsos [Dudek and Tsotsos, 1997] 
use curvature scale spaces for shape matching. In this approach, shape primitives are 
first obtained from a curvature-tuned smoothing technique. A segment descriptor 
consists of the segment’s length, ordinal position, and curvature turning value 
extracted from each of these primitives. A string of segment descriptors is then created 
to describe the shape. For two shapes A and B represented by their string descriptors, a 
model-by-model match using dynamic programming is exploited to obtain the 
similarity score of the two shapes. To increase robustness and to save matching 
computation, the shape features are put into a curvature scale space so that shapes can 
be matched even in different scales. However, due to the inclusion of length in the 
segment descriptors, the descriptors are not scale invariant.  
 
Another interesting approach to the analysis of shape is syntactic analysis in [Fu, 
1974] that attempts to simulate the structural and hierarchical nature of the human 
vision system. In syntactic methods, shape is represented by a set of predefined 
primitives. The set of predefined primitives is called the codebook and the primitives 
are called code words. The matching between shapes can use string matching by 
finding the minimal number of edit operations in trying to convert one string to 
another However, it is not practical in general applications due to the fact that it is not 
possible to infer a pattern of grammar which can generate only the valid patterns. In 
addition, this method needs a priori knowledge for the database in order to define 
codeword or alphabets. Shape invariants make use of simple shape descriptors such as 
the cross ratio, length and area to derive a multi-valued signature. Kliot and Rivlin 
[Kliot and Rivlin, 1998] propose a multi valued matrix that can be used for matching 
two curves. This method can be improved with a histogram matching stage before the 
matrix matching. Squire and Caelli in [Squire and Caelli, 2000] use the density 
function of piecewise linear curves for their shape invariant. The histogram of the 
shape invariant signature is fed into a neural network for classification. 

2.2.3 Region-Based Description 

Region-based techniques take into account all the pixels within a shape region to 
obtain the shape representation, rather than only use boundary information as in 
contour-based methods. Common region-based methods use moment descriptors to 
describe shapes. Structural methods include grid method, shape matrix, convex hull 
and medial axis. Global methods treat shape as a whole; the resultant representation is 
a numeric feature vector which can be used for shape description while structural 
methods break down the shape into segments. Similarity between global shape 
descriptors is simply the metric distance between their feature vectors. Some of the 
global descriptors are the geometric moment invariants and the algebraic moment 
invariants. One of the oldest global methods implemented for region-based description 
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is from Hu [Hu, 1962]. He used the work of nineteenth century mathematicians on 
images for pattern recognition. 
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Lower-order geometric moments from Equation 2.4 are easy to compute and are 
sufficient for representing simple shapes. Algebraic moments [Taubin and Cooper, 
1991] and [Taubin and Cooper, 1992] on the other hand are based on the central 
moments of predetermined matrices that can be constructed for any order and are 
invariant to affine transformations. Teague [Teague, 1980] defines orthogonal 
moments by replacing the xp yq term by the Zernike polynomials. Moment shape 
descriptors are concise, robust, and easy to compute and match. The disadvantage of 
moment methods is that it is difficult to correlate higher-order moments with the 
shape’s physical features.  
 
Among the many moment shape descriptors, Zernike moments [Jeannin, 2000] are the 
most desirable for shape description. Due to the incorporation of a sinusoid function 
into the kernel, they have similar properties of spectral features, which are well 
understood. Although Zernike moment descriptors have a robust performance, they 
have several shortcomings. First, the kernel of Zernike moments is complex to 
compute, and the shape has to be normalized into a unit disk before deriving the 
moment features. Second, the radial features and circular features captured by Zernike 
moments are not consistent, one is in the spatial domain and the other is in spectral 
domain. This approach does not allow multi-resolution analysis of a shape in the radial 
direction. Third, the circular spectral features are not captured evenly at each other and 
can result in loss of significant features which are useful for shape description.  
 
To overcome these shortcomings, a generic Fourier descriptor (GFD) has been 
proposed by Zhang and Lu [Zhang and Lu, 2002]. The GFD is acquired by applying a 
2D Fourier transform on a polar-raster sampled image using the Equation 2.5. 
 

�� �	



��

 +=
r i T

i
R
r

(jexp)i,r(f),(PF ϕπρπθφρ 2
22  

(2.5) 
 
Zhang and Lu show that GFD outperforms contour shape descriptors such as curvature 
scale spaces, Fourier descriptors and moment-based descriptors.  
 
The grid shape descriptor proposed by [Lu and Sajjanhar, 1999] has been used in 
[Chakrabarti et al., 2000] and [Safar et al., 2000]. Basically, a grid of cells is overlaid 
on a shape; the grid is then scanned from left to right and top to bottom. The result is 
saved as a bitmap. The cells covered by the shape are assigned one and those not 
covered by the shape are assigned zero. The shape can then be represented as a binary 
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feature vector. The binary Hamming distance is used to measure the similarity 
between two shapes. To account for the invariance to Euclidean transformations the 
shape needs to be normalized. Chakrabarti et al. [Chakrabarti et al., 2000] improve the 
grid descriptor by using an adaptive resolution (AR) representation acquired by 
applying quad-tree decomposition on the bitmap representation of the shape.  
 
Typically, shape methods use rectangular-grid sampling to acquire shape information. 
The shape representation so derived is usually not translation, rotation and scaling 
invariant. Extra normalization is therefore required. Goshtasby [Goshtasby, 1985] 
proposes the use of a shape matrix which is derived from a circular raster sampling 
technique. The idea is similar to normal raster sampling. However, rather than overlay 
the normal square grid on a shape image, a polar raster of concentric circles and radial 
lines is overlaid in the center of the mass. The binary value of the shape is sampled at 
the intersections of the circles and radial lines. The shape matrix is formed such that 
the circles correspond to the matrix columns and the radial lines correspond to the 
matrix rows. Prior to the sampling, the shape is scale normalized using the maximum 
radius of the shape. The resultant matrix representation is invariant to translation, 
rotation, and scaling. Since the sampling density is not constant with the polar 
sampling raster, Taza et al. represent shape using a weighed shape matrix, which gives 
more weight to peripheral samples in [Taza et al., 1989]. However, since a shape 
matrix is a sparse sampling of shape, it is easily affected by noise. Besides, shape 
matching using a shape matrix is expensive. Parui et al. propose a shape description 
based on the relative areas of the shape contained in concentric rings located in the 
shape center of the mass in [Parui et al., 1986]. 
 
Structural methods for region-based shape description usually involve the convex 
hulls and medial axis described in [Davies,1997], [Blum,1967] and [Morse,1994]. A 
region R is convex if and only if for any two points x1; x2  R, the whole line 
segment x1x2 is inside the region. The convex hull of a region is the smallest convex 
region H which satisfies the condition R  H. The difference H − R is called the 
convex deficiency D of the region R. The extraction of the convex hull can be 
achieved either using the boundary-tracing method from [Sonka et al., 1993] or by 
using morphological methods from [Gonzalez and Woods, 1992]. Since shape 
boundaries tend to be irregular because of digitization noise and variations in 
segmentation result in a convex deficiency that has small, meaningless components 
scattered throughout the boundary. Common practice is to first smooth a boundary 
prior to partitioning. The polygon approximation is particularly attractive because it 
can reduce the computation time taken for extracting the convex hull from O (n2) to O 
(n) (n being the number of points in the shape). The extraction of convex hull can be a 
single process which finds significant convex deficiencies along the boundary. A 
fuller representation of the shape is obtained by a recursive process which results in a 
concavity tree. Here the convex hull of an object is first obtained with its convex 
deficiencies, then the convex hulls and deficiencies of the convex deficiencies are 
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found, and the recursion follows until all the derived convex deficiencies are convex. 
The shape can then be represented by a string of concavities (concavity tree). Each 
concavity can be described by its area, bridge (the line that connects the cut of the 
concavity) length, maximum curvature, distance from maximum curvature point to the 
bridge. The matching between shapes becomes a string or a graph matching. 
 
Like the convex hull, a region skeleton is also employed for shape representation. A 
skeleton may be defined as a connected set of medial lines along the limbs. The basic 
idea of the skeleton is to eliminate redundant information while retaining only the 
topological information concerning the structure of the object that can help with 
recognition. The skeleton methods are represented by Blum’s medial axis transform 
(MAT) [Blum, 1967]. The medial axis is the locus of centers of maximal disks that fit 
within the shape. The bold line in the figure is the skeleton of the shaded rectangular 
shape. The skeleton can then be decomposed into segments and represented as a graph 
according to a certain criteria. The matching between shapes becomes a graph 
matching. The computation of the medial axis is a rather challenging problem. In 
addition, medial axis tends to be very sensitive to boundary noise and variations. 
Preprocessing the contour of the shape and finding its polygonal approximation has 
been suggested as a way of overcoming these problems. But, as has been pointed out 
by Pavlidis [Pavlidis, 1982] obtaining such polygonal approximations can be quite 
sufficient in itself for shape description. Morse [Morse, 1994] computes the core of a 
shape from medial axis in scale space. 
 
We conclude this section with a note that shape description from intensity images have 
to deal with view occlusions and lack of sufficient information. We now study some 
important methods used for shape analysis on 3D mesh models in Section 2.3. 

2.3 Shape Analysis on 3D Models 

In Section 2.2, we have reviewed techniques implemented for shape extraction in 2D 
intensity images. In the following section we present a classification of methods in the 
literature on digitized 3D representations. We follow the classification with a brief 
description of some interesting methods. 

2.3.1 Classification of Methods 

There is a multitude of techniques to assess the similarity among 2D shapes as discussed 
in the Section 2.2. Most of the techniques do not extend to 3D models because of the 
difficulty of extending parameterization of the boundary curve extracted from 2D to 3D. 
In simple words, given a 2D shape, its parameterization is a straightforward 1D curve. 
With a 3D real world object it is difficult because when it is projected onto a 2D image 
plane, one dimension of object information is lost. The 3D domain requires dealing with 
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objects of different genus which makes it impossible for most of the 2D similarity 
assessment methods extendable to 3D. The challenge in 3D computer vision is more 
than just the lack of information as in the 2D case and needs to address the 
computational effort and descriptive representation. The 3D data usually are represented 
as meshes or assemblies of simple primitives. The representation scheme is suitable for 
visualization but not for recognition and computer vision tasks. The process of shape 
assessment hence becomes a two step process: (1) the shape signature extraction and (2) 
the comparison of shape signatures with distance functions. Based on how the shape is 
extracted from the 3D model representation techniques can be classified as shown in 
Figure 2.3. 
 

2.3.2 Feature Extraction 

Feature extraction techniques usually attempt to represent the shape of the 3D object 
by a combination of one-dimensional feature vectors. A common approach for 
similarity models is based on the paradigm of feature vectors. A feature transform 
maps a complex object onto a feature vector in a multidimensional space. The 
similarity of two objects is then defined as the vicinity of their feature vectors in the 
feature space. Geometric parameters and ratios such as the surface area, volume ratio, 
compactness, Euler numbers and crinkliness have been used with limited 
discrimination capabilities. 
 
 
 

 
 
 
 
 
 

Figure 2.3: Classification of methods on 3D data. 
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Kortgen et al. [Kortgen et al., 2003] achieves shape matching by extending the 2D 
shape contexts [Belongie, 2003] to 3D. They use the shape context at a point on the 
surface as the summary of the global shape characteristics invariant to rotation, 
translation and scaling. Vranic and Saupe [Vranic and Saupe, 2001] propose a new 
method for shape similarity search on polygonal meshes. They characterize spatial 
properties of 3D objects such that similar objects are mapped as close points in the 
feature space. They then perform a coarse voxelization of the object in the canonical 
coordinate frame and compute the absolute value of the 3D Fourier coefficients as the 
feature vector. Vranic improves it further in [Vranic, 2003]. Ohbuchi et al. [Obhuchi et 
al., 2003] describe a multi-resolution analysis technique for the task of shape 
similarity comparison. They use 3D alpha shapes to generate a multi-resolution 
hierarchy of shapes of a given query object. They then follow that by applying a 
simple shape descriptor such as the D2 shape function introduced by [Osada et al., 
2002] on each of the multi-resolution representations and call it the multi-resolution 
shape descriptor.  
 
Automated feature recognition has also been attempted by extracting instances of 
manufactured features from engineering designs. Henderson [Henderson et al., 1993] 
is an extensive survey of such methods that make use of a library of machining 
features for description. With the assumption of primitives, procedural methods 
proposed by Elinson et al. [Elinson et al., 1997] and Mukai et al. [Mukai et al., 2002] 
have applied constructive solid geometry (CSG’s) to classify CAD models of 
mechanical parts. Their methods however cannot be extended to a more general class 
of shapes represented as point sets and meshes. Biermann et al. in [Biermann et al., 
2001] propose Boolean operations of primitives for shape description. However, direct 
assessment of similarity between 3D models using Boolean operations is 
computationally slow due to the difficulty in aligning the models before performing 
the operation. With a large database, it is not a pragmatic solution. Zhang and Chen 
[Zhang and Chen, 2001] discuss efficient global feature extraction methods from the 
mesh representation.  
 
Duda and Hart [Duda and Hart, 1973] have been extended by Khotanzad et al. 
[Khotanzad et al., 1980] to a subset of 3D moments that are invariant to rotation, 
translation and scaling that can be used as feature vectors for shapes as shown in 
Equation 2.6. 
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where ρ (x, y, z) represents the point cloud of the model. (2.6) 
 
Cybenko et al. [Cybenko et al., 1997] use second-order moments, spherical kernel 
moment invariants, bounding-box dimensions, object centroid and surface area along 
with a correlation metric for shape-similarity measurement. Elad et al. [Elad et al., 
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2001] implement support vector machines for adaptively selecting weights for 
distance measurements between moments for shape similarity. Corney et al. [Corney 
et al., 2002] compute the Euclidean distance between simple geometric ratios for a 
shape similarity measure. Cyr and Kimia [Cyr and Kimia, 2001] use a shock graph-
based shape similarity metric to assess the similarity between 3D models. Adjacent 
views are clustered in, thus generating the aspect using a seeded-region growing 
technique that satisfies the local monotonicity and specific distinctiveness of the 
aspect view criteria. The comparison of two 3D models is achieved by matching the 
2D aspect views. 
 

2.3.3 Descriptive Representation 

In this category of methods, shape matching is achieved through an intermediate 
representation that aides a matching stage. These methods are usually robust but are 
computationally expensive. Usually the 3D information is broken down into a stack of 
2D descriptors on which robust 2D shape matching techniques can be applied. 
 
Dorai presents COSMOS (Curvedness-Orientation-Shape Map on Sphere) [Dorai, 
1996] as a representation scheme for 3D free form objects from range data without 
occlusions. According to this scheme, the object is represented concisely in terms of 
maximal surface patches of constant shape index. The shape index is a quantitative 
measure of shape complexity of the surface and is based on the principle curvatures at 
a point on the surface. The patches are mapped onto a sphere based on the orientations 
and aggregated using shape spectral functions. Surface area, curvedness and 
connectivity are utilized to capture global shape information.  She derives a shape 
spectrum and experiments on its efficiency of recognition. 
 
Johnson and Hebert [Johnson and Hebert, 1999] introduce spin images for a 3D shape- 
based object recognition system towards simultaneous recognition of multiple objects 
in scenes containing clutter and occlusion. The spin image is a data level descriptor 
that is used to match surfaces represented as surface meshes. They describe surface 
shape as a dense collection of points and surface normals and associate a descriptive 
image with each surface point that encodes global properties of the surface using an 
object centered coordinate system. The spin image is created by constructing a local 
basis at an oriented point on the surface of the object and accumulates geometric 
parameters in a 2D histogram. In simple words, the spin image can be visualized as a 
sheet spinning about the normal at that point. The image is descriptive because it 
accounts for all the points on the surface and is invariant to rigid transformations.  
 
Kazhdan et al. [Kazhdan et al., 2003] outline an algorithm for 3D shape matching 
using a harmonic representation of 3D polygonal meshes. They rasterize the 3D mesh 
into 64 x 64 x 64 voxel grids and center the object as the center of the grids so that the 
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bounding sphere is of radius 32 voxels. They then treat the object as the function in 3D 
space and decompose it into 32 spherical functions by considering spheres of radii 1 
through 32. They further decompose each of the functions into 16 harmonic 
components and the 32 x 16 harmonics constitute the harmonic representation of the 
3D model. They compare two harmonic representations with the Euclidean distance. 
Zhang and Hebert propose the harmonic shape images as a 2D representation of 
surface patches [Zhang and Hebert, 1999]. The theory of harmonic maps studies the 
mapping between different metric manifolds from the energy minimization point of 
view. With the application of harmonic maps, a surface representation called harmonic 
shape images is generated to represent and match 3D freeform surfaces. The basic idea 
of harmonic shape images is to map a 3D surface patch with disc topology to a 2D 
domain and encode the shape information of the surface patch into the 2D image. This 
simplifies the surface-matching problem to a 2D image-matching problem.  
 
Shum et al. address the problem of 3D shape similarity between closed surfaces in 
[Shum et al., 1996]. He defines a shape similarity metric as the L2 distance between 
the local curvature distributions over the spherical mesh representations of the two 
objects. He achieves the similarity measure in O (n2) complexity where n is the 
number of tessellations in the object mesh. Their experiments on simple shapes show 
good shape similarity measurements. 
 

2.3.4 Shape Histograms 

The histogram-based methods reduce the cost of complex matching schemes but 
sacrifice efficiency and robustness to the methods discussed in Section 2.3.2. These 
methods compare shapes on the basis of their statistical properties. 
 
Ankerst et al. [Ankerst et al., 1999] introduce 3D shape histograms as an intuitive 
powerful approach to structural classification of proteins. They decompose a 3D 
object into three models (shell model, sector model and spider web) around an object’s 
centroid and process model similarity queries based on a filter refinement architecture. 
A similar search technique for mechanical parts using histograms was proposed in 
[Kriegel et al., 2003]. The models are normalized into a canonical form and voxelized 
into axis parallel equal partitions. Each of these partitions is assigned to one or several 
bins in a histogram depending on the specific similarity model.  
 
Besl et al. [Besl et al., 1995] consider histograms of crease angles for all edges in a 
triangle mesh to describe shape. Their method does not match non-manifold surfaces 
and is not invariant to changes in mesh tessellation. Osada et al. in [Osada et al., 2002] 
presents Shape Distributions for a shape similarity search engine by extending Besl’s 
approach. According to his technique, random points from the surface of a model are 
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extracted. Shape functions D1, D2, D3, D4, and A3 are computed at each of these 
random points. 
 
•D1:  Distance between a fixed point (centroid) and a random point.  
•D2:  Distance between two random points.  
•D3:  Square root of the area of triangle formed by three random points.  
•D4:  Cube root volume of the tetrahedron of four random points.  
•A3:  Angle between three random points.  
 
They suggest the use of D2 shape function for computing Shape Distributions due to 
its robustness and efficiency along with invariance to rotation and translation. The D2 
distances between random points are normalized using the mean distance. The shape 
distribution is the histogram that measures the frequency of occurrence of distances 
within a specified range of distance values. Once the Shape Distributions are 
generated the distance between the two solid shapes is computed using LN norm. 
Usually L2 norm is used for comparison, though other distances such as Earth Mover’s 
distance or match distances can also be used. 
 
This technique is robust and efficient for simple objects and gross shape similarity. As 
the resolution of the 3D model increases the comparison becomes more robust, but the 
computational time increases. Furthermore as objects become more and more 
complex, the Shape Distributions tend to assume similar shape resulting in inaccurate 
comparison of solid models. Shape Distributions have been experimented with limited 
success on mechanical parts and real laser scanned data. Ohbuchi et al. in [Ohbuchi et 
al., 2003] improve the performance of Shape Distributions with a 2D histogram of 
angle-distance and absolute angle distance that can be computed from the D2 shape 
distribution. Page et al. [Page et al., 2003b] define shape information as the entropy of 
the curvature density. They use it to describe the complexity of the 3D shape. Hetzel et 
al. [Hetzel et al., 2001] present an occlusion robust algorithm for 3D object 
recognition that makes use of local features such as the shape index, pixel depth and 
the surface normal characteristics in a multidimensional histogram. Histograms of two 
objects are matched and verified using the chi–squared hypothesis test to achieve 
shape recognition. 
 

2.3.5 Topology Description 

The topology of a 3D model is an important property for measuring similarity between 
different models. Topology of models is typically represented in the form of a 
relational data structure such as trees or directed acyclic graphs. Subsequently, the 
similarity estimation problem is reduced to a graph or tree comparison problem.  
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Gotsman et al. describe the fundamentals of spherical parameterization for 3D meshes 
[Gotsman et al., 2003]. They argue that closed manifold genus-zero meshes are 
topologically equivalent to a sphere and assign a 3D position on the unit sphere to 
each of the mesh vertices. They use barycentric coordinates for the planar 
parameterization. Leibowitz et al. [Leibowitz et al., 1999] share their memory 
intensive experience in implementing geometric hashing for the comparison of protein 
molecules represented as 3D atomic structures. 
 
In [McWherter et al., 2001] model signature graphs have been proposed for 
topological comparison of solid models. They extend attribute adjacency graphs, 
mentioned in [Joshi and Chang, 1998], to consider curved surfaces. Model signature 
graphs are constructed from boundary representation of the solid. This graph forms the 
shape signature of the solid model. Once a model signature graph is constructed, the 
solid models are compared using spectral graph theory [Chung, 1997]. The eigen 
values of the Laplacian matrix are used in the comparison. The eigen values of the 
Laplacian are strongly related to other graph properties such as the graph diameter. 
The graph diameter is the largest number of vertices, which must be traversed, to 
travel from one vertex to another in the graph. Another technique proposed for 
comparing the graphs is the use of graph invariance vectors [McWherter et al., 2001]. 
The vectors are then compared using L2 norm to determine similarity between the 
graphs and hence the solid models. The graph invariants that form the graph 
invariance vectors include node and edge count, minimum and maximum degree of 
the nodes, median and mode degree of the nodes, and diameter of the graph. The use 
of graph invariance vectors improves the efficiency of the method. However it results 
in decrease in the accuracy of comparison. This technique has been applied to 
mechanical parts and is applicable to product design and manufacturing domain. The 
paper [Cardone et al., 2003] is a comprehensive survey on shape-similarity based 
assessment for product design applications. 
 
Multi-Resolution Reeb Graphs presented in [Hilaga et al., 2001] have been used for 
modeling 3D shapes. The Reeb graph is derived from the triangle mesh models by 
defining a suitable function such as the geodesic curvature. The choice of the function 
depends on the topological properties selected. The range of the function over the 
object is split into smaller bins. The number of bins is the resolution of the Reeb 
graph. Each connected region in the bin will map into a node of the Reeb graph, and 
the adjacent nodes will be connected by edges. The Reeb graph construction has a 
time complexity of O (N log N), N being the number of vertices in the mesh. The Reeb 
graphs of two objects can be used for maximizing a similarity function at 
corresponding nodes. This technique is not invariant to Euclidean transformations. 
 
We have very briefly described some of the key methods for shape analysis on 2D 
intensity images and 3D mesh models. In the next section we present two tables that 
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contain a qualitative comparison based on algorithm efficiency and descriptive 
capability of the key methods presented in Section 2.3. 

2.4 Summary 

We would like to summarize the literature review in this section. We have presented 
3D shape searching as applied in diverse fields such as computer vision, mechanical 
engineering, bio-informatics and bio-medical imaging. In Tables 2.1 and 2.2 we 
compare the description and search efficiency of a few key methods before concluding 
our summary. 
 
Shape signatures are abstractions of 3D shapes and have limited discrimination 
capabilities. They are application specific and hence the complexity involved in 
matching and computation cannot be compared on the same domain for effectiveness. 
Therefore a good strategy to shape analysis would be the choice of a signature that is 
computationally efficient producing lesser false positives followed by another one that 
needs computational effort to remove those false positives. With the popularity of 3D 
scanning and CAD models we emphasize the necessity of a quick and information 
preserving shape representation than a time consuming exact isomorphic 
representation. 
 
Shape analysis has been pursued by researchers for the task of multi-modal data fusion 
(registration), object recognition, object visualization and compression. Most of the 
methods developed are bounded by an application specific heuristic constraint that 
bridges the user’s notion and the computer’s notion of shape similarity. We would like 
to conclude the literature survey as our knowledge base for further research and 
development.  
 
We discuss range data acquisition and solid modeling of mechanical parts and 
automotive scenes in the next chapter with illustrative examples. We emphasize that it 
is important to understand and interpret the data before analysis and so introduce range 
acquisition systems and the process of 3D model creation using a range sensor. 
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Table 2.1: Qualitative comparison of 3D shape search methods with focus on 
algorithm efficiency. 

Searching 
Technique 

Computational 
Cost 

Comparison 
Cost Test Data Key Methods 

Feature (Global) 

)N(O  where 
N is the number 
of voxels under 
consideration. 

)F(O  where F 
is the number of 

features 
extracted. 

Methods span 
synthetic 

mesh datasets 
to complex 

real datasets. 

 
[Elad et al., 2001] 

[Zhang, and 
Hebert,1999] 

 

Intermediate 
Description 

)VlogV(O  
in the worst case 
where V is the 

number of 
vertices. 

)R(O 2  where 
R is the 

resolution of the 
intermediate 

representation. 

Range and 
Triangle 

Mesh real 
world data 

sets of scenes 
and objects. 

[Johnson and 
Hebert,1999] 
[Dorai,1996] 

Manufacturing and 
Product based 
Description 

)P(O  where P 
is the number of 

primitives. 

)F(O 2  where 
F is the number 

of features 
extracted. 

CAD models 
of 

mechanical 
components. 

[Mukhai et al.,2002] 
  

Histogram-based 

)SB(O  where 
S is the number 
of sample points 

and B is the 
number of bins. 

)B(O  where B 
is the number of 

bins. 

Simple and 
low 

resolution 
synthetic 
models. 

[Ankerst et al., 1999] 
[Osada et al.,2002] 

Topological Graph 
Methods 

)N(O  where 
N is the number 

of voxels 
considered. 

Worst case 

)N(O 3 where 
N is the number 
of nodes in the 

graph. 

Low 
resolution 

synthetic data 
sets. 

[Hilaga et al.,2001] 
[Leibowitz et al., 

1999] 
[McWherter et al., 

2001]  
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Table 2.2: Qualitative comparison of 3D shape search methods with focus on 
effective description. 

 Comparison Criterion 
Shape 

Category Method  Scale 
Invariance 

Local 
Saliency Advantages Disadvantages 

Moments No No Computationally 
fast 

Different shapes 
can have same 

moments. Feature 
(Global) 

Spherical 
Harmonics No No 

Used in general 
shape 

classification. 
Low stability 

COSMOS Yes Yes Curvature-based Assumes ideal 
data. 

Spin  
Images 

  
No Yes Robust to 

occlusions 

Storage of spin 
images and 2D 

image matching. 
Intermediate 
Description 

Gaussian  
Images 

  
No No Useful for 

pruning 

Low 
computational 

efficiency. 

Feature  
Graphs 

  
No No Useful for 

mechanical parts. 

Shape recovery is 
difficult with 

more primitives. 

Manufacturi-
ng and 
Product 
based 

Description 
String 

Description 
  

No No Useful for 
mechanical parts. 

Cannot be 
automated. 

Shape  
histograms 

  
Yes No Simple and easy 

description. Not very robust 
Histogram 

based Shape 
Distributions 

  
Yes No Good for 

clustering 

Uniqueness of the 
distribution is not 

justified 

Skeletal  
Graph 

  
Yes Yes 

Topologically 
correct with local 
saliency support. 

Important local 
feature extraction 

stage 
Reeb  
Graph 

  
Yes  No Multi-resolution 

Analysis 
Choice of Reeb 

function 

Topological 
Graph 

Methods 
Geometric 
Hashing 

  
No  No Exact matching High storage 

requirements  
 
 
 



Chapter 3: Data Collection and Modeling 
 

26 

3 DATA COLLECTION AND 
MODELING  

The computer vision approach to reverse engineering and under vehicle inspection 
requires digitized data. We hence require a system that can automatically (or with 
minimal manual intervention) capture geometric structure of an object and store the 
subsequent shape and topology information as a digitized model. We make use of 3D 
range scanners for this task. We introduce in this chapter the process of range data 
acquisition and solid modeling geared towards generating mesh models using a sheet-
of-light laser scanning mechanism and share our experience with the IVP range sensor 
to create 3D models of automotive parts and automotive scenes.  

3.1 Range Data Acquisition 

Range images are a special class of digital images. Each pixel of a range image 
expresses the distance between a known reference frame and a visible point in the 
scene. Therefore, a range image produces the 3D structure (though not completely) of 
a scene and can be best understood as a sampled surface in 3D. Range images (often 
referred as depth maps, depth images, xyz maps, surface profiles and 2.5D images) are 
obtained using range sensors. Range sensors are devices that make use of optical 
phenomena to measure range. In general range image acquisition systems are 
classified into one of the following types based on their principle of operation:  
triangulation (passive or active), time of flight, focusing, holography and diffraction. 
We discuss each of these methods very briefly in Section 3.1.1 and document the 
principle of operation and calibration details of our range sensor in Section 3.1.2. 

3.1.1 Range Acquisition Systems 

We begin our discussion with triangulation-based techniques. Passive triangulation 
(stereo) is the way humans perceive depth. It involves two cameras taking a picture of 
the same scene from two different locations at the same instant of time. Depth cues are 
extracted by matching correspondences in the two images and using epipolar 
geometry. Passive triangulation is however challenged by the ill-posed problem of 
correspondence in stereo matching. The correspondence problem is eliminated by 
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replacing one of the cameras by a moving light source (preferably a laser light source). 
This technique is called active triangulation where a pattern of light (energy) is 
projected on the scene and is detected to obtain range measurements. Time of flight 
range finders determine range by measuring the time required for a signal to travel, 
reflect and return. Holographic interferometry uses split beam interference to produce 
an image which when processed further, yields the range image. A moiré interference 
pattern is created when two gratings with regularly spaced patterns are superimposed 
on each other. “Moiré” sensors project such gratings onto surfaces, and measure the 
phase differences of the observed interference pattern. Distance hence becomes a 
function of such phase differences. Focusing and defocusing have also been used to 
derive range information.  These methods infer range from two or more images of the 
same scene, acquired under varying focus settings. For example, shape from focus 
sensors vary the focus of a motorized lens continuously, and measure the amount of 
blur for each focus value. Once the best focused image is determined, a model linking 
focus values and distance is used to approximate distance. The decision model makes 
use of the law of thin lenses and computes range based on the focal length of the 
camera and the image plane distance from the lens’ center. While triangulation 
methods and time of flight methods have been extensively used for computer vision 
tasks, methods based on holography, focusing and diffraction are sidelined because of 
their fundamental performance limitations and their inability to meet real-time 
imaging requirements of speed and accuracy. We direct the reader to [Besl, 1988] and 
[Trucco and Verri, 1998] for further reading on range image acquisition and 
processing. 
 
We concentrate on triangulation-based range sensors. The main reason behind this 
choice is that such sensors are based on intensity cameras, giving us a chance to 
exploit the concepts that we know on intensity imaging. They also give accurate 3D 
coordinate maps and are easy to understand and build for real-time imaging. 

3.1.2 Range Sensing Using the IVP Range Scanner 

The IVP RANGER system as shown in Figure 3.1 consists of two different 
subsystems; the Smart Camera and the PC Interface. Each Smart Camera contains a 
Smart Vision sensor, a control processor (Intel 386) and an IVP HSSI (High speed 
serial interface). The Smart Camera is connected to the system PC via a COM port and 
an HSSI Interface on a PCI board called the SC adapter. The IVP Ranger is 
implemented on the MAPP2200 (MAPP stands for Matrix Array Picture Processor), 
MAPP 2500 and LAPP1530 (Linear Array Picture Processor) Smart Vision Sensors 
from the IVP. The total integration of the sensor, A/D converter and the processor on 
the same parallel architecture allows image processing at a very high speed. The Smart 
Camera acquires the range profiles autonomously and outputs the profiles to the host 
via the HSSI interface. The host PC can then manipulate these profiles.  
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Figure 3.1:  IVP Ranger SC-386 range acquisition system. 

 
 
The IVP Ranger uses an active triangulation scheme where the scene is illuminated 
from one direction and viewed from another. The illumination angle, the viewing 
angle, and the baseline between the illuminator and the viewer (sensor in this case) are 
the triangulation parameters. 
 
The Ranger consists of a special 512 x 512 pixel camera and a low-power stripe laser. 
The design of the Ranger is specifically tailored for the camera and the supporting 
electronics to integrate image processing functions onto a single parallel-architecture 
chip. This chip contained within the camera housing has a dedicated range processing 
function that allows for high-speed acquisition of nearly one million points per second. 
The most common arrangement of the system is to mount the camera and the laser 
source relative to the proposed target area to form a triangle where the camera, laser, 
and target are each corners of the triangle. The angle where the laser forms a corner is 
typically a right angle such that the laser stripe projects along one side of the triangle. 
The angle, α, at the camera corner is typically 30-60 degrees. The baseline distance 
between the camera and the laser, denoted by B, specifies the right triangle completely 
(see dotted line in Figure 3.1). We would like to summarize our experience of the IVP 
Ranger as a sensor that outputs range values as a function of illumination, relative 
motion, temperature and surface reflectance as shown in Equation 3.1.  
 

),,,T,B,,,j,i(Fr µχηβα=  (3.1) 
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where i and j respectively are the horizontal and vertical pixel positions, β (= 90 
degrees)  and α is the illumination angle and the camera view angle respectively, and 
B is the base line distance between camera and the laser source. These are the 
important design parameters that decide the field of view of the scanning mechanism. 
External parameters such as temperature (T), environmental light (η), surface 
reflectance and color of the objects (χ) and the trajectory of the relative motion (µ) 
also influence the quality of range scans. We have characterized the scanner to 
minimize the effect of such external factors. We have deduced that the warm up time 
of 40-50 minutes yielded stable and reliable data. We ignore effects of environmental 
temperature. We also realize that the Ranger is sensitive to light and tends to introduce 
significant error when the ambient illumination is strong. Most of the scanning that we 
do inside the lab is performed with minimal lighting. We have learned that the effect 
of illumination can be compensated by the use of a powerful laser (> 100mW and 
wavelength 685nm) that we propose to use for scanning under the vehicle. We have 
performed a simple experiment to characterize the sensor’s behavior to the color and 
reflectance of the objects. We have tried to image wooden and metal rectangular 
blocks of the same size and compared the range measurements. We have concluded 
that the IVP range sensor is not influenced by surface reflectance but black objects 
because of their laser beam reflectance characteristics need modification. We have 
simply painted the object with a lighter color to work around this sensitivity. We have 
simulated the triangulation geometry of the Ranger system in MATLAB to understand 
the effect of different sensor parameters that influence the scanning mechanism and 
the process of calibration. 
 
In Figure 3.2 we demonstrate the principle behind range acquisition using the IVP 
Range scanner. We show the sheet-of-the-light laser falling on a target object. The 
laser line that provides cues about the surface shape of the object is called a surface 
profile. By traversing the entire object either by moving the sensor setup or the scene, 
a sequence of surface profiles is accumulated as a range image. 
 
Equation 3.2 is the reduced form of range r as a function of the geometry, focal length 
(b0 is the distance between the lens and the sensor approximated as the focal length of 
the lens) and sensor offset position in the 512 x 512 CCD chip assuming that we have 
compensated for the external sensor sensitivity parameters.  
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Figure 3.2:  Triangulation and range image acquisition. 

 
 
The differential of the range equation in Equation 3.2 is the resolution of the sensor as 
shown in Equation 3.3 
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(3.3) 

 
The maximum range that a particular sensor arrangement with a baseline B and angle 
α (Equation 3.4) can measure is obtained by maximizing the function for range 
(Equation 3.2) in terms of the sensor size N and resolving capability ∆x. 
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(3.4) 

 
These equations are important when the decision between field of view and resolution 
has to be made. We make use of these equations for the design of our scanning 
mechanism but not for range measurements. We follow a much more robust 
calibration procedure that models the world to sensor coordinate transformation as a 
combination of translation (of the world coordinate system to the optical coordinate 
system), a rotation (to align optical axis with real world axis) and a projection from 
world to sensor coordinate system. Equation 3.5 is the transformation from the world 
to the sensor coordinate system where wp is the sensor coordinate system scale factor 
proportional to the baseline distance B, (u, v) refers to the position in the sensor 
coordinates; (X, Y, Z) are the real world position coordinates, f is the focal length of 
the optics. (u0 , vo) is the position where the optical axis meets the sensor, and kv, ku 
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and θ are the skew and tilt compensation factors. The sii matrix takes care of the 
rotation in the three rectangular axes while (x0, y0, z0) compensates for the translation. 
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(3.5) 
 
Equation 3.5 can be simplified into Equation 3.6 with 12 unknown parameters that can 
be determined with at least 6 points positioned in the world coordinate system 
projected into the sensor coordinates. 
 

�
�
�
�

	




�
�
�
�

�



�
�
�

	




�
�
�

�



=
�
�
�

	




�
�
�

�



134333231

24232221

14131211

Z

Y

X

 

aaaa

aaaa

aaaa

 

w

vw

uw

p

p

p

 

(3.6) 
 
After calibration we know the equation for all rays hitting the sensor plane. However, 
we still do not know from which point along the ray that it started. To find out where 
our sheet-of-light rays start we introduce a simple calibration step (Figure 3.3 (b)) 
using the sheet-of-light to calibrate a single profile. By finding the sensor positions 
where the light sheet hits the calibration target we can compute the world coordinates 
for the laser plane. Thus, calibration gives us the rays for each sensor coordinate, and 
the laser plane equation, using which we can find the world coordinates for each point. 
 
This process of calibration can be better understood with the help of Figure 3.3. Figure 
3.3(a) is the status of the CCD when it is viewing the laser line (white line on CCD 
shown in Figure 3.3(b)). The sensor position is detected with sub pixel accuracy 
(based on the intensity on the CCD because of the laser line) for the range 
measurement. We solve for the 12 unknown parameters as a system of linear 
equations. Theoretically, for the system described in Equation 3.6 we need six 
equations to compute the parameters. We increase the reliability and reduce possible 
error by using 40 points on the calibration target. With the 40 real-world coordinates 
as in Figure 3.3(c) known we compute a transformation matrix that maps the sensor 
coordinates to the real world in 3D. We use this transformation matrix for our future 
scans without disturbing the geometry of the scanning mechanism. 
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(a) (b) 

 
(c) 

 

Figure 3.3:  The process of calibration. (a) Single profile calibration. (b) The 
physical calibration target designed to compute the 12 unknown parameters using 40 
points. (c) The transformation from the sensor projection coordinates to the real 
world. 
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The IVP range scanner is capable of acquiring 2000 profiles in one second. We have 
controlled the relative motion of the sensor arrangement with a precise smart motor. 
The collection of profiles spanning that particular view of the object is represented as 
a range image. We have built a graphical user interface (GUI) for visualizing range 
images and their corresponding 3D triangle meshes acquired using the scanner. Figure 
3.4(a) is the acquisition and control interface provided by the IVP and Figure 3.4(b) is 
the snapshot of our visualization GUI in action. 

3.2 Solid Modeling from Range Images 

Range data acquisition is a digitization process and is only the first step towards model 
generation. We now need to process the range information for better visualization and 
representation. In Section 3.2.1 we explain the processing pipeline for creating mesh 
models of objects for the task of reverse engineering and extend our implementation to 
a more challenging task of modeling automotive scenes in Section 3.2.2. 

3.2.1 Modeling Automotive Components for Reverse Engineering 

Reverse engineering is the ability to create computer aided design models of existing 
objects. It is often considered as a feedback path for inspection and validation in a rapid 
manufacturing system. Bernardini et al. in [Bernardini et al., 1999] stress on the promise 
and impact of computer aided reverse engineering in the process of system design while 
 
 
 
 

 

  
(a) (b) 

Figure 3.4:  Graphical User Interface. (a) Snapshot of the GUI for acquisition from 
the IVP. (b) Snapshot of the GUI for visualization. 
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Thompson et al. [Thompson et al., 1999] apply reverse engineering as a process that will 
enable the recreation of objects that are out of production.  
 
With the emergence of high speed accurate laser scanners reverse engineering is moving 
away from the traditional tedious but accurate coordinate measuring machines (CMM). 
As discussed in the previous section, we use an active range sensor to acquire an 
ensemble of range images to reconstruct a CAD-like model of the object. We begin 
reverse engineering with acquisition of range images using the IVP sensor, which 
provides speed and accuracy. We would like to summarize the process of model 
creation as a block diagram in Figure 3.5. 
 
After data acquisition we have a set of range images representing multiple view points 
around an object. The task is now to reconstruct the CAD model from these range 
images. The fundamental challenge in modeling the range images is that of 
reconstruction as discussed in [Hoppe et al., 1992]. The challenge lies in aligning 
multiple views into a global coordinate frame (also called as the process of registration) 
and integrating and merging aligned views into a CAD representation. As discussed 
earlier, multiple views of an object are necessary to overcome occlusions. As the camera 
moves to the new view, the resulting data is relative to the new view position.  
 
Registration is the process where we align these multiple views and their associated 
coordinated frames into a single global coordinate frame. The registration problem is 
essentially recovering the rigid transformation from the new range data. We define rigid 
transformation as  
 

tRxy +=  (3.7) 
 
 
 
 

 
 

Figure 3.5:  Block diagram of a laser-based reverse engineering system. 
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where R represents the rotation matrix and t is the translation vector. The point y is the 
same as x but in the global coordinate frame. Registration is the process of finding R and 
t. The registration process tries to interpret common geometric information from two 
calibrated range images at two different poses (views).  
 
According to [Horn et al.,1988], given three or more pairs of non-coplanar 
corresponding 3D points between views, the unknown rigid transformation of rotation 
and translation has a closed form solution. The registration problem can hence be 
approached as a point matching problem. The most popular of registration algorithms is 
the Iterative Closest Point (ICP) algorithm [Besl and McKay, 1992]. We have used the 
implementation of ICP in Rapidform (a reverse modeler software package) for the task 
of surface registration. It allows us to initialize the ICP algorithm by manual point 
picking. The three pairs of corresponding points so picked are iteratively refined up to a 
particular threshold before merging the two point clouds. 
 
Having overcome the problem of occlusions by registering multiple views, we now need 
to integrate these views into a single surface representation. We consider the registered 
range data as a cloud of points and reconstruct the topology of that object from its range 
samples. A simple shape may require just a few views while a complicated object may 
require significantly more. Page et al. [Page et al., 2003a] document this systematic 
procedure in the literature as a method of reconstructing mechanical components. 
Figure 3.6(a) shows a part that we would like to reverse engineer. We present results 
of multiple view range image acquisition process in Figure 3.6(b). The point cloud in 
Figure 3.6(c) is the result of reconstruction that we triangulate to represent as a CAD 
model in Figure 3.6(d). We use polygonal meshes to represent the CAD model.  
 
 
 
 

 

 
 

 

(a) (b) (c) (d) 

Figure 3.6:  Model creation. (a) Photograph of the object. (b) Multiple-view range 
maps. (c) View integrated point cloud. (d) Rendered triangle mesh model. 
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A polygonal mesh is a piece-wise linear surface that comprises vertices, edges and 
faces. A vertex is a 3D point on the surface, edges are the connections between two 
vertices, and a face is a closed sequence of edges. In a polygonal surface mesh, an 
edge can be shared by, at most, two adjacent polygons and a vertex is shared by at 
least two edges. We use triangle meshes to represent the discrete approximations to 
3D surfaces. A triangle mesh is a pair T=<ν,τ > where ν={ν1,ν2,ν3,….,νn}  is a set of 
vertices, and τ ={τ1,τ2,…,τm}is the set of triangles that approximate the surface. 
 

3.2.2 Modeling Automotive Scenes for Under Vehicle Inspection 

Under ideal laboratory conditions, data collection with a range scanner is 
straightforward. Underneath a vehicle however, we address several challenges. The 
most significant of those is the design of the scanning mechanism. The field of view is 
limited by the ground clearance and the huge variation in size of the components that 
make up the scene under the vehicle. The distance (range) is too small for the use of 
time-of-flight scanners and laser triangulation scanners but too large for 
photogrammetric measurements.  
 
Real-time 3D data acquisition is a research challenge in computer vision. Before we 
start thinking of a robot mountable design for vehicle inspection, we would like to 
briefly survey 3D data acquisition systems that optimize the process of digitization of 
real world scenes and objects for speed and accuracy. One such expensive effort is the 
digitization of statues in the “Digital Michelangelo” project that involves the close 
scanning of statues for cultural heritage recording. Levoy et al. in [Levoy et al., 2000] 
suggest a configuration for high speed laser triangulation that involves a light 
projector recording video, that is processed later to fill holes and registered using the 
ICP algorithm for the complete 3D model. The paper [Takatsuka et al., 1999] proposes 
a low cost interactive active monocular range finder. Davis and Chen [Davis and 
Chen, 2001] present the design of a laser range scanner designed for minimum 
calibration complexity. They specifically state that despite the simple geometry and 
components, laser scanners must be engineered and calibrated with extremely high 
precision. Champleboux et al. [Champleboux et al., 1992] examine the process of 
registration of multiple 3D data sets obtained with a laser range finder. They propose a 
new sensor calibration technique based on the conjunction of a mathematical camera 
model and further discuss an algorithm based on octree splines for recovering rigid 
transformation, for rotational and translational rectification between two 3D data sets 
obtained from the range sensor. Having considered so many options and as a tradeoff 
between resolution and field of view we decided to jack the vehicle up by a meter and 
use the inverted triangle mechanism for scanning. We calibrated the sensor 
arrangement as discussed in Section 3.1.2 and without disturbing it we inverted it and 
moved the sensor arrangement on a conveyer belt to reconstruct the 3D scene. 
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Although a powerful laser was used to counter ambient lighting, we could not 
compensate for spectral reflections since the metallic surfaces under a vehicle exhibit 
strong spectral reflection properties. A laser further complicates this problem as 
internal reflections lead to significant errors in range estimation. A promising 
approach for this problem involves the use of an optical filter tuned to the frequency of 
the powerful laser. The filter allows the data collection to isolate the initial reflection 
of the laser and thus improve the range sensing capabilities. The other noise issue that 
we would like to discuss involves the jerks in trajectory of the scanning mechanism. 
We have assumed a linear and smooth trajectory under the vehicle in the data that we 
have presented. 
 
Another significant problem in range scanning underneath a vehicle is that of view 
occlusions. The obvious occlusion is that the camera can only view one side of a 
component (the bottom side facing straight down towards the ground). The muffler for 
example in the Figure 3.7(d) is a one-sided view. Without dismantling the car, range 
scanner cannot extract geometry of the other side of the muffler. Such an occlusion 
should illustrate the potential of other occlusions such as one object partially covering 
another object from the range sensor. The objects underneath a vehicle have various 
shapes and scales located at different depths. For example in Figure 3.7(b), the bent 
pipe that connects the muffler and the catalytic converter is occluded by the muffler at 
the time of scanning. The solution to this problem is to use multiple scans to fill as 
much as possible the areas without information. This solution is a laborious one 
because multiple fields of view imply multiple calibration procedure iterations. The 
different views and scanning angles are extremely restricted by the low ground 
clearance under a vehicle. Thus an integration and fusion of multiple scans only 
partially fills the occlusion holes, but significantly enhances the data. As a result, we 
scan underneath a vehicle with multiple passes and at different angles. The final 
challenge that we consider with the data collection is the data redundancy inherent to 
laser range scanning. A single range image with 512 x 512 pixels yields over 250,000 
data points. With additional scans to overcome occlusions and to achieve full coverage 
under a vehicle, this number quickly grows to several million data points. This large 
data set allows high fidelity geometry that other 3D sensors do not offer, but the price 
is that of data redundancy and a potential data overload. The data that we present in 
Figure 3.7(d) is a 40 megabyte VRML model with 10 million vertices and 15 million 
triangles. 
 
We have presented the procedure and capability of data collection using a 3D range 
scanner in this chapter. We now have real world objects in a format that computers 
can attempt to understand. In Chapter 4, we would like to outline our approach to 
shape description and discuss the building blocks of our algorithm in detail. 
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(a) 
 

(b) 
 

  
(c) (d) 

Figure 3.7:  Data acquisition for under vehicle inspection. (a) A pre-calibrated 
scanning mechanism in action. (b) The mosaic of range images as the output from the 
scanner. (c) Close-up color image of the scene. (d) Snapshot of the registered 3D 
model. 
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4 ALGORITHM OVERVIEW 

In this chapter, we describe our CVM algorithm as the informational approach to shape 
description. We first discuss CVM for 2D in the context of intensity and range images 
and extend it with modifications to 3D models. We also explain in detail each of the 
building blocks of the algorithm.  

4.1 Algorithm Description 

Before we discuss the details of the algorithm we would like to introduce some of the 
key papers that have influenced our work. Arman and Aggarwal present a survey on 
model based object recognition strategies on dense range images in [Arman and 
Aggarwal, 1993]. More recently, Campbell and Flynn survey free form object 
representation and recognition in [Campbell and Flynn, 2001]. We focus our algorithm 
development with these surveys as our knowledge base on object representation and 
recognition.  
 
We are inspired by the COSMOS framework for free form object representation 
[Dorai, 1996] for the development of our CVM algorithm. Dorai defines shape index 
and curvedness as indicators of shape and constructs a shape spectrum for object 
analysis. She models range images as a combination of maximally sized surface 
patches of constant shape index to get around segmentation issues and uses a graph 
representation on her range data. She assumes that there are no occlusions in her 
image. Her method of computing curvature that assumes the uniform grid structure 
however is not suited for mesh models. With CVM, we hence analyze various 
curvature estimation methods for triangle meshes and propose a graph representation 
based on curvedness segmentation and a normalized surface variation measure based 
on curvature. Our approach is analogous to the shape index that Dorai uses for 
segmentation on the range image and the curvedness map on the sphere for shape 
analysis. We chose surface representation because it directly corresponds to the 
features that will aid recognition even with view occlusions in the sensed data. To 
illustrate the CVM better, we introduce in Section 4.1.1 the idea of using information 
theory for shape complexity description on 2D contours. We discuss the algorithm 
with a block diagram and describe how we extend it to the description of 3D mesh 
models in Section 4.1.2. 



Chapter 4: Algorithm Overview 
 

40 

4.1.1 Informational Approach to Shape Description – Curvature Variation 
Measure 

We would like to formulate our algorithm on the basis that shape information is 
directly proportional to the variation in curvature (curvature of the boundary for 2D 
curves and curvature of surfaces on 3D surfaces) and inversely proportional to 
symmetry. We propose to extract shape information from the images and analyze a 
procedure to discriminate objects based on a single number that is a measure of its 
visual complexity. 
 
To understand the basis of our algorithm better, let us start with a small and simple 
example. In Figure 4.1, we show a circle and an arbitrary contour. Visually, the more 
appealing of the two is the circle while the complex of the two contours is the arbitrary 
contour. We propose that smoothly varying curvature conveys very little information 
while sharp variation in curvature increases the complexity for shape description. In 
this context, we would like to refresh the fact that more likely an event is, lesser the 
information it conveys. The circle has uniformly varying curvature; that is there is no 
uncertainty involved in the variation of its curvature, which means it has the least 
shape information. Figure 4.2 is the block diagram of our algorithm for 2D silhouettes 
and segmented boundary contours. The block diagram represents the CVM algorithm 
for 2D contours. We get back to the example of the circle again. The curvature of a 
circle is uniformly distributed. The density of curvature hence is a Kronecker delta 
function of strength one. The entropy of a Kronecker delta function is zero. This result 
implies that circular and linear contours convey no significant shape information. We 
note that circles of different radii will also have zero shape information. We argue that 
change in scale (radius) adds no extra shape information. On the other hand, the broader 
the curvature density, the higher the entropy and more complex the shape is. The most 
complex shape hence would be the one that has randomly varying curvature at every 
point on the boundary. 
 
 
 
  

 

Figure 4.1: A circle and an arbitrary object. 
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Figure 4.2:  Block diagram of our CVM as the informational approach to shape 
description. 

 
 
 
We use curvature because it is an information preserving feature, invariant to rotation 
and possesses an intuitively pleasing correspondence to the perceptive property of 
simplicity. Curvature completely parameterizes the boundary contour for efficient 
shape description of 2D curves and boundary contours. We counter the inverse 
relation to symmetry by using information theory. Symmetry does not contribute to 
more shape information (entropy) but rather reduces it. 
 

4.1.2 Curvature-Based Automotive Component Description 

Our CVM measure of shape on geometric curves is the entropy of curvature along the 
boundary contour. Curvature along the boundary provides us with sufficient detail in 
the 2D case but with 3D models and surfaces, it is not enough. We extend our idea of 
shape information on 3D meshes to describe surface variation of the smooth surface 
patches that make up the object and store the list of connected patches. We assume 
that we can reasonably describe most objects as a unique network of smooth patches. 
Then, the uniqueness of our description is to measure the variation in curvature across 
each of these patches. 
 
We describe the algorithm in a pictorial fashion with a block diagram in Figure 4.3. 
Our description which could be used for purposes such as reverse engineering and 
inspection takes triangle meshes as the input. We take the example of the disc brake 
again. We break down the triangle mesh into surface patches based on the Dorai’s 
[Dorai, 1997] definition of curvedness. Curvedness identifies sharp edges and abrupt 
surface changes. We perform a simple region growing segmentation by identifying a 
point and collecting the vertices whose face normal deviation is less than a particular 
angle. This angle is a free parameter. We have used 85 degrees as the maximum 
threshold angle before we meet an edge in the growing procedure. We save the 
connectivity information of each of these surface patches. Our segmentation is a crude  
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Figure 4.3:  Block diagram of curvature-based vehicle component description 
algorithm including path decomposition and CVM computation. 
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implementation of Guillaume’s algorithm [Guillaume, 2004]. He presents a more 
efficient algorithm for the decomposition of 3D arbitrary triangle meshes into surface 
patches. The algorithm is based on the curvature tensor field analysis and presents two 
distinct complementary steps: a region-based segmentation, which decomposes the 
object into known and near constant curvature patches and a boundary rectification 
based on curvature tensor directions, which correct boundaries by suppressing their 
artifacts and discontinuities. 
 
We then analyze each surface patch individually to compute the CVM, which is the 
entropy of curvature. We compute the Gaussian curvature on each of those surface 
patches.  The kernel density of the Gaussian curvature is estimated. We optimize the 
bandwidth of the kernel density using the plug-in method to ensure stability in the 
resolution normalized entropy. This log scale measure from the curvature density is 
the curvature variation measure (CVM). We then combine the surface connectivity 
information and the curvature variation measure into a single graph representation. 
 
We call our CVM algorithm a curvature-based approach because the segmentation and 
the description require computation of curvature. (Curvedness is a function of 
principal curvatures.) However, the surface variation measure that we describe is not 
invariant to scale. We would like to emphasize that our algorithm can be used for 
describing occluded scenes as well but at the cost of partial graph matching if we have 
to attempt object recognition. 

4.2 Building Blocks of the CVM algorithm 

As background, we first present a brief overview of surface curvature in the important 
context of differential geometry. We in particular deal with curvature of a surface in 
Section 4.2.1 because we have assumed that curvature intrinsically describes the local 
shape of that surface. The differential geometry section helps us understand curvature 
estimation on triangle meshes. We present a brief survey on curvature estimation 
techniques in Section 4.2.2 and then discuss the theory behind the other building 
blocks of the algorithm in Section 4.2.3 and Section 4.2.4. 

4.2.1 Differential Geometry of Curves and Surfaces 

First, let us consider the continuous case for 2D curves. Using [Carmo, 1976], we 
arbitrarily define a planar curve α: I � R2 parameterized by arc length s such that we 
have α(s). We carefully choose, without loss of generality, this parameterization such 
that the vector field T = α’ has unit length. With this construction, the derivative T’ = 
α" measures the way the curve is turning in R2 and we term T’ the curvature vector 
field. Since T’ is always orthogonal to T, that is normal to, we can write that T’=κN 
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where N is the normal vector field. The real valued function κ where κ(s) = || α''(s) ||, 
s the curvature function of α and completely describes the shape of α in R2, up to a 
translation and rotation. This curvature function is what we would like to exploit to 
define shape information of a curve. We would like to formulate the task of curvature 
estimation on discrete samples of such curves. For a planar curve α, we have samples 
αj=α(sj). We assume that uniform sampling across the arc length of the curve such 
that ∆s = sj - sj-1 is a constant. This approach leads to N samples over the curve α. 
Since we have uniform sampling along the curve κj is directly proportional to the 
turning angle θj formed by the line segments from end point αj-1 to αj and from αj to 
αj+1.With 2D curves the definition and hence the computation of curvature is 
straightforward while its extension to 3D surfaces require some concepts in 
differential geometry. 
 
On a smooth surface S, we can define normal curvature as a starting point. Consider 
Figure 4.4, the point p lies on a smooth surface S, and we specify the orientation of S 
at p with the unit-length normal N. We define S as a manifold embedded in R3. We can 
construct a plane Πp that contains p and N such that the intersection of Πp with S 
forms a contour α. As before, we can arbitrarily parameterize α(s) by arc length s 
where α(0) = p and α’(0)= T. The normal curvature κp(T) in the direction of T is thus 
α’’ (0) = κp(T)N .This single κp(T) does not specify the surface curvature of S at p 
since Πp is not a unique plane. If we rotate Πp around N, we form a new contour on S 
with its own normal curvature. We can see that we actually have an infinite set of 
these normal curvatures around p in every direction. Fortunately, herein enters the 
elegance of surface curvature. For this infinite set, we can construct an orthonormal 
basis {T1, T2} that completely describes the set. The natural choice for this basis is the 
tangent vectors associated with the maximum and minimum normal curvatures at p 
since the directions of these curvatures are always orthogonal. 
 
 
 
 

 
 

(a) (b) 

Figure 4.4: Illustration to understand curvature of a surface. 
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These maximum and minimum directions {T1, T2} are the principal directions. The 
added benefit of choosing the principal directions as the basis set is that the curvatures 
κ1 = κp(T1) and κ2 = κp(T2) associated with these directions lead to the following 
relationship for any normal curvature at p: 
 

),(sin)(cos)T(p θκθκκ θ
2

2
2

1 +=  (4.1) 
 
where Tθ = cos(θ)T1+ sin(θ)T2  and -π ≤ θ ≤ π is the angle to vector T1 in the tangent 
plane. The maximum and minimum curvatures are known as the principal curvatures. 
The principal directions along with the principal curvatures completely specify the 
surface curvature of S at p and thus describe the shape of S. Combinations of the 
principal curvatures lead to other common definitions of surface curvature. The most 
commonly used is the Gaussian curvature, and is the product of the principal 
curvatures as shown in Equation 4.2. 
 

21κκ=pK  (4.2) 
 
This definition highlights that negative surface curvature that occurs at hyperbolic 
occur where only one principal curvature is negative. The second definition of 
curvature is mean curvature. We specify mean curvature as the average of both 
principal curvatures (Equation 4.3). Mean curvature gives insight to the degree of 
flatness of the surface. 
 

221 /)(H p κκ +=  (4.3) 
 

4.2.2 Curvature Estimation  

Curvature estimation is a challenging problem on digitized representations of curves 
and surfaces. Consider a 2D function y=f(x).The curvature of the continuous function 
y is mathematically defined as shown in Equation 4.4. 
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Equation 4.4 assumes the rectangular coordinate system. If we parameterize y = f(x) in 
the polar coordinate system the curvature equation can be rewritten as in Equation 4.5. 
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These equations for continuous functions of x can be extended to contours of images 
without much error by using the difference operator. We identified two key methods 
of computing curvature for 2D contours from [Oddo, 1992] and [Abidi, 1995]. Oddo 
follows the strict definition of curvature in the continuous case and extends it to the 
digitized curves. He argues that the turning angle at every pixel on the boundary with 
two other points at a fixed pixel distance is proportional to the curvature at that pixel. 
Abidi [Abidi, 1995] uses a method based on polar coordinates to estimate curvature. 
We have used a second order differential operator on the boundary contour to 
approximate curvature which is also proportional to the second derivative of a 
function for our implementation. 
 
Curvature estimation on surfaces is a more challenging research area. After a detailed 
survey of the literature we would like to emphasize the fact that most of the research 
on curvature estimation is in the context of range images with very little of it suited for 
the general problem on surface meshes. Flynn et al. [Flynn and Jain, 1989] and Suk et 
al. [Suk and Bhandarkar, 1992] offer us with surveys on curvature from range 
methods. These methods give an insight of the fundamental problems that we might 
encounter with surface meshes. One of the major assumptions that we make with 
range images that prevents us from extending them to triangle meshes is that of a 
regular grid structure and consistent topology that might not be always the case with 
polygonal meshes. In the next few paragraphs, we present a brief survey on different 
curvature measures on triangle meshes. Triangle meshes are the most common output 
of 3D scanners and is assumed as a piecewise approximation to a surface. 
 
Surface fitting methods try to apply concepts of differential geometry on surface 
approximations. An analytic surface is fit to the region of interest and curvature is 
computed from that functional approximation. Surface fitting methods do not differ 
much from the curvature-from-range methods because of the planar topology of fitted 
surfaces and range images. Surface fitting aside, researchers have tried to estimate 
curvature using curve fitting methods as well. A family of curves is fit around a point 
on the surface and the ensemble is used to compute principal curvatures. Besl and Jain 
[Besl and Jain, 1986] construct a local parameterization of the surface and estimate 
curvature by fitting orthogonal polynomials followed by a series of convolution 
operations. Stokely and Wu [Stokely and Wu, 1992] present five practical solutions, 
the characterized Sander-Zucker approach, two novel methods based on direct surface 
mapping, a piecewise linear manifold technique, and a turtle geometry method. One of 
the new methods, called the cross patch (CP) method, is shown to be very fast, robust 
in the presence of noise, and is based on a proper surface parameterization, provided 
the perturbations of the surface over the patch neighborhood are isotropically 
distributed. Kresk et al. [Kresk et al., 1998] summarize their experience with circle 
fitting, paraboloid fitting and the Dupin cyclide method. These three methods do not 
assume that the sample points be on a regular grid. They accept the speed and 
accuracy of the circle fitting method but doubt the robustness on dense polygonal 



Chapter 4: Algorithm Overview 
 

47 

meshes. With paraboloid fitting which is slower than the circle fitting method, they 
point out the systematic error that is introduced by the procedure in estimating 
curvature of smooth and uniformly varying surfaces such as spheres and cylinders.  
The Dupin Cyclide method turns out slower and inaccurate compared to the 
paraboloid fitting method.  
 
Another approach to curvature estimation is to use the geometry and topology of the 
surface approximation to estimate curvature. These methods compute total curvature 
as a global feature at each of the vertices of the triangle mesh though theoretically 
each sample point on the mesh is a singularity. Lin and Perry [Lin and Perry, 1982] 
use the angle excess around a vertex and extend the Gauss-Bonnet Theorem in 
differential geometry to define a total curvature measure. They relate it to the 
Gaussian curvature of the surface. Desbrun et al. in [Desbrun et al., 1999] derive an 
estimate of mean curvature on a triangle mesh based on the loss of angle approach.  
Delingette [Delingette, 1999] lays out a framework called simplex meshes as a dual of 
triangle meshes for surface representation and formulates curvature measures on the 
surface very similar to the angle excess method on the triangle mesh. Gourley in 
[Gourley,1998] attempts to approximate a curvature metric based on the dispersion of 
face normals around a vertex while Mangan and Whitaker [Mangan and 
Whitaker,1999] refine a curvature measure further as the norm of a covariance matrix 
for the face normals. Chen and Schmitt [Chen and Schmitt, 1992] formulate a 
quadratic representation of curvature at each vertex to derive principal curvatures by 
minimizing least squares. Taubin [Taubin, 1995] enhances Chen’s approach into an 
elegant algorithm that defines a symmetric matrix that has the same Eigen vectors as 
the principal directions and Eigen values that are related by a homogenous linear 
transformation to principal curvatures. Talking of Eigen analysis [Page, 2001] 
proposes the idea of normal vector voting that selects a geodesic neighborhood around 
each vertex. The triangles in this neighborhood vote to estimate the curvature at the 
specified vertex. He collects these votes in a covariance matrix and uses Eigen 
analysis of the matrix to estimate curvature. The relative size of the neighborhood 
controls the trade-off between algorithm robustness and accuracy.  
 
We would like to summarize by saying that the surface fitting methods require the 
most computational effort since they typically employ optimization in the fitting 
process. They are robust to noise but cannot deal with discontinuities. Curve fitting 
methods on triangle meshes are extremely sensitive to noise yet very simple. Of the 
methods discussed in the previous paragraphs, we have decided to perform an analysis 
as to which of these would help us in characterizing surfaces and their complexity. We 
chose to compare Gaussian curvature estimates using the paraboloid fitting method, 
Taubin’s method, angle deficit as curvature and the Gauss-Bonnet’s extension to 
curvature estimation. Our comparison differs from [Surazhsky,2003] and 
[Meyer,2000] because we not only focus on the absolute error in the estimation of 
curvature, but also the effect of resolution on the same surface and how well each one 
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of these methods can be exploited as surface shape complexity descriptors. We present 
the implementation issues and the results of analysis in the next chapter and justify the 
use of Gauss-Bonnets method of computing curvature. 
 

4.2.3 Density Estimation 

Probability density functions are ubiquitous when it comes to intelligent decision 
making and modeling. In this section of the document, we survey some of the key 
density estimation techniques. Research in this field of density estimation dates back to 
the early 1950’s and was proposed by Fix and Hodges in 1951 [Fix and Hodges, 1951] 
as a breakthrough of freeing discriminant analysis from rigid distributional assumptions. 
Since then it has undergone application oriented metamorphosis. Rosenblatt introduces 
the concept of non-parametric density estimation as an advanced statistical method 
[Rosenblatt, 1956]. Parzen follows that up with remarks on a model that aims at non-
parametric estimation of a density function [Parzen, 1962].  
 
Density estimation is generally approached in two different ways. One of them is the 
parametric approach that assumes that the data has been drawn from one of the 
established parametric family of distributions such as the Gaussian and Rayleigh with 
a particular mean, variance and other well defined statistical parameters. The density f 
underlying the data could then be estimated by finding the estimates of the mean and 
the variance from the data and then substituting these values into the formula of the 
assumed density. The parametric approach to density estimation is bounded by the 
rigid assumption of the shape of the density function independent of the observed data. 
The non-parametric approach however is less rigid in its assumptions. The data speak 
for themselves in determining the estimate of f. Silverman [Silverman, 1986] traces 
the evolution of density estimation techniques for a uni-variate dataset represented as a 
sample of n observations of a data set X ={x1, x2, x3, x4,…., xn}. We briefly survey such 
techniques in the next few paragraphs. 
 
The oldest and probably the most widely used non-parametric density estimate is the 
histogram. A histogram is constructed by dividing the real line into equally sized 
intervals, often called bins. The histogram is then a step function with heights being 
the proportion of the sample contained in that bin divided by the width of the bin. If h 
denotes the width of the bins (bin width) and n represents the number of samples in 
the dataset then the histogram estimate at a point x is given by 
 

h n
x) as bin  samethe in X of (number

)x(f̂ i=  
(4.6) 

 
The construction of the histogram depends on the origin and bin width, the choice of the 
bin width primarily controlling the inherent smoothing of the density estimate. 
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Histograms are good representation tools but not efficient density estimates. We discuss 
the effect of bin width on the histogram with a simple example in Figure 4.5. It is 
important to note the significant change in shape and the density of the estimate. 
 
Another method that is an improvement on the histogram used to estimate the density 
is the naïve estimator. It is based on the fact that if the random variable y has density f 
then  
 

).hxXhx(P
h

lim)x(f
h

+<<−=
→ 2

1
0
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Thus a natural estimator f of the density can be obtained by choosing a small number h 
as shown in Equation 4.6. 
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The naïve estimator can also be mathematically expressed as follows 
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where w(x) represents a rectangle function of height 0.5 and width of 2. 
 
It is easy to generalize the naive estimator to overcome its rugged nature of the density 
by replacing the weight function w by a kernel function K which satisfies the 
condition described in Equation 4.10. 
 
 
 
  

 

 

Figure 4.5: Illustration that shows the effect of bin width on density estimation 
using a histogram. 
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Analogous to the definition of the naive estimator, the kernel estimator with kernel K 
is defined by 
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While the naive estimator can be considered as a sum of boxes centered at the 
observations, the kernel estimator is a sum of bumps placed at the observations. The 
kernel function K determines the shape of the bumps while the window width h 
determines their width. It suffers inaccuracy with long tailed distributions because of 
the fixed bandwidth throughout the process of density estimation. 
 
The nearest neighbor class of estimators represents an attempt to adapt the amount of 
smoothing to the `local' density of data. The degree of smoothing is controlled by an 
integer k, chosen to be considerably smaller than the sample size; typically k � n1/2. 
Define the distance d(x, y) between two points on the line to be |x - y| in the usual way, 
and for each t define )t(d...)t(d)t(d n≤≤≤ 21  to be the distances, arranged in ascending 
order, from t to the points of the sample. 

The kth nearest neighbor density estimate is then defined by  

.
)t(nd

k
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k2
=  

(4.12) 
 
While the naive estimator is based on the number of observations falling in a box of 
fixed width centered at the point of interest, the nearest neighbor estimate is inversely 
proportional to the size of the box needed to contain a given number of observations. 
In the tails of the distribution, the distance dk (t) will be larger than in the main part of 
the distribution, and so the problem of under smoothing in the tails is reduced. Like 
the naive estimator, to which it is related, the nearest choice neighbor estimate as 
defined is not a smooth curve. The function dk(t) can easily be seen to be continuous, 
but its derivative will have a discontinuity. We would like to achieve stability with the 
information measure and since most of the surfaces that we are interested in have 
smooth analytical parameterization, we are inclined to chose the continuous and 
smooth looking kernel density estimate. We show how each of these methods estimate 
the density of the same dataset in Figure 4.6. We have reproduced Figure 4.6 from 
[Silverman, 1986]. 
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Method used to compute density Plot of the density function 

 

Histograms 
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The Kernel Density Estimator 
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Figure 4.6: Different methods used to estimate the density of the same dataset. 
Adapted from [Silverman, 1986]. 
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There is a plethora of research in automating the process of bandwidth estimation that 
will give us the best estimate of the density as possible. Recollecting Equation 4.9, the 
parameters that influence the density estimate are the kernel function, density span and 
the kernel bandwidth. We ignore the effect of kernel function and density span 
because of the assumption that we have represented the digitized surface with enough 
points to represent a continuous surface. We hence assume that our dataset is too large 
to react to the effect of the different kernel functions listed in Table 4.1. We have 
decided to use the Gaussian kernel for our implementation for its continuity though the 
Epanechnikov kernel is considered to be the most efficient of kernel functions. 
 
We have performed a simple experiment on a normally distributed pseudo random 
data set with zero mean and unit variance at 512 points to study the effect of the 
bandwidth parameter on density estimation. In Figure 4.7, the red curves represent the 
ground truth Gaussian density function and the blue ones represent the estimated 
density. Figures 4.7(a-f) portray the amount of smoothing that the bandwidth 
parameter imposes on the estimated density. Figure 4.7 illustrates the importance of the 
bin width parameter in density estimation with a simple example. Though the figures 
represent the density of the same dataset, we are able to anticipate the instability of its 
information measure. 
 
The paper [Turlach, 1996] is an excellent survey on bandwidth selection in kernel 
density estimation. The books [Silverman, 1986] and [Wand, 1995] are classics in the 
field of kernel estimation and kernel smoothing and have detailed descriptions of kernel  
 
 
 
 

Table 4.1: Kernel functions. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.7: Effect of bandwidth parameter on kernel density. (a) KDE for h =  
0.01. (b) KDE for h = 0.1. (c) KDE for h = 0.3. (d) KDE for h = 0.5. (e) KDE for h = 
0.328(optimal). (f) KDE for h = 1. 
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smoothing as applied to uni-variate and multi-variate datasets. Papers that discuss the 
information bound bandwidth selection methods are [Wu and Lin, 1996] and [Jones et 
al., 1996]. 
 
The bandwidth selection for the process of density estimation is important to assert the 
accuracy of the density estimate. The choice of the bandwidth at least theoretically can 
be derived to minimize the mean integrated square error between the actual density 
and the computed density. Some methods that are used for this purpose are 
 

� Distribution Scale Methods, 

� Cross Validation Methods, 

� Plug-In Methods, and  

� Bootstrap methods. 

 
In the next few paragraphs, we will very briefly discuss the rationale behind these 
objective methods for bandwidth selection. Assume that f is the actual density of the 
data and f̂ is the estimated density. The process of bandwidth selection is aimed at 
minimizing the integrated mean square error between the actual and the estimated 
density. The integrated mean square error is defined as the expected value of the 
integrated square error and is given by Equation 4.13. 
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The Mean Integrated Square Error ( MISE ) is the integral of the mean squared error 
that can be simplified as shown below. 
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MISE is the sum of the integrated square bias and the integrated variance and hence 
minimization of that error is effectively the tradeoff between the bias and variance. 
The closed form solution that is derived for the optimal bandwidth by minimizing the 
MISE is the hopt in Equation 4.15. 
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The problem with using this closed form solution is the dependence of the optimal 
bandwidth on the second derivative of the density function f that we are trying to 
compute. By using the Gaussian kernel for our implementation we have ensured the 
differentiability of the estimated density and also justified the reason for not choosing 
the naïve estimator or its rugged counterparts. 
 
Two popular but quick and simple bandwidth selectors are based on the normal scale 
rule and maximum smoothing principle. For example, an easy approach would be to 
make use of a standard family of distributions to assign a value to the double 
derivative term. In Equation 4.12 we assume normal density and compute the second 
derivative. This method can lead to gross errors in cases when the data is not 
distributed the way it was assumed. 
 

� �
−− ≈= 5252 212.0)(")(" σφσ dxxdxxf  (4.16) 

 
The rationale behind the principle of cross validation is to use the same dataset to 
extract data points partially as a construction set and a training set. A model is fit 
assuming the correctness of the training dataset and is tested for accuracy with the 
construction dataset. The error in the estimate is minimized by defining a cost function 
of the error. Based on the construction of the cost function, methods are named as least 
squares cross validation, biased cross validation and likelihood cross validation. More 
advanced bandwidth selectors are the plug-in and the bootstrap methods that “plug-in” 
estimates of the unknown quantities that appear in the formulae for asymptotically 
optimal bandwidth. Bootstrap methods make use of a pilot bandwidth to initialize the 
density estimation process and improve the pilot bandwidth based on the data. In 
Equation 4.15, we show the plug-in method of bandwidth selection.  Plug-in methods 
involve the estimation of the integrated squared density derivatives called functionals. 
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and ( )[ ] |XmedX|med iijj −=σ�  is the absolute deviation. (4.18) 

 
We discuss implementation issues in the next chapter. Our next building block is the 
information measure on the accurate density of curvature estimated using the 
bandwidth optimized kernel density estimators. 
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4.2.4 Information Measure 

Information theory is a relatively new branch of mathematics that began only in the 
1940’s. The term “information theory” still does not possess a unique definition but 
broadly deals with the study of problems concerning systems that involve information 
processing, information storage, information retrieval and decision making.  
 
The first studies in this direction were undertaken by Nyquist in 1924 and by Hartley 
in 1928 (Equation 4.17) that recognized the logarithmic nature of the measure of 
information. In 1948, Shannon published his seminal paper on the properties of 
information sources and of the communication channels used to transmit the outputs 
of these sources and the important definition of entropy as the measure of information 
(Equation 4.18). 
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In the past fifty years, literature on information theory has grown quite voluminous 
and apart from communication theory it has found deep applications in many social, 
physical and biological sciences, economics, statistics, accounting, language, 
psychology, ecology, pattern recognition, computer sciences and fuzzy sets. 
 
A key feature of Shannon’s information theory is the term “information” that can often 
be given a mathematical meaning as a numerically measurable quantity, on the basis 
of a probabilistic model. This important measure has a very concrete operational 
interpretation for the communication engineers. We would like to summarize the 
various definitions of entropy in the literature as Table 4.2. 
 
The list that we have presented in Table 4.2 is not an exhaustive one though we have 
spanned a few important definitions involving parameters and weights. Pap in [Pap, 
2002] briefs the history of information theory and discusses various measures of 
information while Reza [Reza, 1994] approaches information theory from the coding 
aspect of communication theory. We would like to emphasize that the difference in 
using a discrete random variable and a continuous random variable. The analogous 
definition of Shannon’s entropy in the continuous case is called the differential 
entropy (Equation 4.21). 
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Table 4.2: List of entropy type measures of the form �
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With the help of Figure 4.8 we would like to explain an issue with the Shannon type 
entropy measures. As the resolution of the data increases, the number of points in the 
density is also going to increase and ∆ tends towards zero. Using Reiman’s definition 
of integrals we can rewrite Equation 4.18 as  
 

))log()x(f))x(flog()x(f))x(flog()x(f iiiii ��� ∆∆−∆−=∆∆−  (4.22) 
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We see that as the number of points approaches the continuous random variable, there 
is a quantum jump in the amount of information measured. We needed a measure that 
is normalized and improves with resolution. The measures that we have presented in 
Table 4.2 have an upper limit that is directly proportional to the number of characters 
in a symbol.  Since we need to have the shape information quantized and independent 
of resolution, we have studied different divergence measures such as KL divergence ( 
Equation 4.24), Jenson-Shannon divergence (Equation 4.25) and Chi-Squared 
divergence measures before extending Shannon’s definition for our CVM.  
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where p is the density of the object of interest and q is the density of the 
reference. (4.25) 
 
We have discussed the supporting theory for the proposed CVM algorithm. In the next 
chapter we discuss implementation decisions for the algorithm and present the 
experimental results of our algorithm on different datasets. 
 
 
 
  

 

Figure 4.8: Resolution issue with Shannon type measures. 
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5 ANALYSIS AND RESULTS 

We begin this section with important implementation decisions on each of the building 
blocks for the proposed CVM algorithm. We discuss our algorithm and justify our 
choice of methods before we present analysis results on intensity images, range images 
and 3D mesh models.  

5.1 Implementation Decisions on the Building Blocks  

We have acquired the data and are ready for shape analysis with the CVM. We use 
triangle mesh datasets as our input. Since our algorithm is a curvature-based algorithm, 
our first task is to compute curvature at the vertices on the mesh. In Section 5.1.1 we 
discuss various curvature estimation methods with analysis results on the effectiveness 
of these measures for surface description. We use curvedness, which is a function of 
principal curvatures, to perform segmentation. We then perform “region growing” to 
identify the regions and create a mapping of the vertex and the region to which it 
belongs. We use curvature at each of these vertices in a particular region to compute the 
CVM. In short, our CVM algorithm is a three pass algorithm; the first pass is for the 
estimation of curvature and curvedness, the second one to map vertices to smooth 
patches (segmentation) and the third one to compute the surface variation measure that 
we represent in a region adjacency graph.  

5.1.1 Analysis of Curvature Estimation Methods 

We recall the mathematical definition of triangle meshes as a set of vertices and a list 
of triangles connecting these vertices. We would like to define more specific terms 
before we discuss the implementation of curvature estimation methods. A vertex vi is 
considered as an immediate neighbor of vertex v if edge vvi belongs to the mesh. We 
denote the set of neighboring vertices by [ ] 1

0
−

=
n
ii  v  and the set of the triangles containing 

the vertex v by [ ] 1
0

−
=
n
ii  T  where 
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We define Nv as the normal of surface S at a vertex v. We compute the normal at a 
vertex using the normals of the triangles that contain the vertex. The normal of a 
triangle is the normal of the plane that fits the three points and is given by Equation 
5.2. We compute the vertex normal as the average of these normals weighted by area 
of the triangles involved. 
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We show a small section of a triangle mesh in Figure 5.1 to understand the definitions 
better. The blue colored point in the middle is the vertex at which we would like to 
compute the curvature. Points in red are the neighbor points and the lines connecting 
the vertex v and its neighbors are the triangles that determine the surface. Nv is the 
normal at the vertex that we have defined in Equation 5.3. 
 
The paraboloid fitting method [Kresk, 1998] at each vertex is computed by translating 
the vertex under consideration to the origin and its neighbors are rotated so that the 
vertex normal coalesces with the z axis. The osculating paraboloid of the form z= ax2 + 
bxy + cy2 is assumed to contain these transformed points. The coefficients a, b, c are 
found by solving a least square fit to v and the neighboring vertices [ ] 1

0
−

=
n
ii  v . The total and 

mean curvatures are computed using the formula in Equation 5.4. 
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Figure 5.1: Neighborhood of a vertex in a triangle mesh. 
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Gauss-Bonnet approach [Lin, 1982] makes use of the angle αi at v and two successive 
edges. The reduced form of Gauss-Bonnet theorem for polygonal meshes is given in 
terms of the loss of angle as Equation 5.5. 
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Assuming that K is a constant in that neighborhood, Gaussian and mean curvature is 
computed as  
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where A is the accumulated area of  all the triangles that contain vertex v and ii ||e|| β  is 
the measure of angle deviation between the normal at vertex v and its neighbor. 
Desbrun et al. [Desbrun et al., 1999] reduces the normal deviation as the sum of the 
cotangents of the angle formed at the neighbor vertex. Taubin [Taubin, 1995] defines a 
symmetric matrix using the integral formula involving the normal curvature. 
Assuming that vertex normals at each vertex have been computed, a matrix Mv is 
approximated with a weighted sum over the neighbor vertices v where Ti is the unit 
length normalized projection of vector (vi –v) onto the tangent plane at v. 
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The weights wi in Equation 5.7 are selected proportional to the sum of surface areas of 
the triangles incident to both vertices v and vi. The matrix Mv is restricted to the tangent 
plane and its Eigen values correspond to the principal values of curvature. 
 
We compare different approaches to choose one of these for our CVM algorithm. We 
make our decision based on a few experiments. We have chosen a saddle surface for 
which we can compute the analytical curvature. We show the surface Gaussian 
curvature also as a 3D mesh in Figure 5.2 because the variation of curvature along the 
surface can be visualized better. We have also presented a simple multi-resolution 
experiment in Figure 5.2. We have sampled the saddle surface so that each surface mesh 
model is made up of 161 vertices, 961 vertices and 10000 vertices respectively. We 
have computed curvature based on each of the methods discussed in the previous 
paragraphs. We observe that the curvature estimate of the Gauss-Bonnets approach and  
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Figure 5.2: Curvature analysis – Multi-resolution error analysis experiment with 
four different approaches to curvature estimation on triangle meshes. 
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loss of angle approach are two methods that give us good estimates of Gaussian 
curvature in comparison with the paraboloid and Taubin methods. We also observe that 
as the resolution of the data increases Taubin’s method also improves drastically. The 
paraboloid fitting method appears to have the sampled version of the analytical 
curvature. Since we have fit an analytical surface at each vertex to compute curvature 
around it, the error in this method seems to have accumulated throughout the mesh. 
 
We next performed the curvature analysis on the unit sphere whose Gaussian curvature 
estimate should be equal to the reciprocal of the radius. We show how each one of these 
methods has behaved with the sphere at different resolutions in Figure 5.3. We would 
like to reiterate the large error in the paraboloid fitting methods at low resolutions. 
Since we are interested in a scheme that is consistent at all resolutions we need to 
make a choice between Gauss-Bonnet, loss of angle and Taubin’s methods. 
 
We have created synthetic surfaces such as the spherical cup, saddle and a monkey 
saddle. Visually and analytically the monkey saddle surface has the maximum variation 
in curvature. We decided to choose the method that categorically shows the variation. 
We call the variation as the span for curvature and plot it against each surface for the 
four methods in Figure 5.4. We conclude that Taubin and Gauss-Bonnet’s approach for 
curvature estimation yields accurate results. We have used Taubin’s method to compute 
principal curvatures and the Gauss-Bonnet approach for the Gaussian curvature for our 
implementation.  
 
We have combined the simplicity of the Harvard mesh library (written by X. Gu) and 
speed of Triangle mesh library (written by Michael Roy) for our triangle mesh 
processing. Both the libraries are open source implementations of the half-edge data 
structure in C++. We have used the Microsoft Developer Environment (Microsoft 
Visual C++7.0) as our programming platform. For graphs and plots however we have 
used MATLAB. 

5.1.2 Density Estimation for Information Measure 

We would like to document our experience with the bandwidth optimization methods. 
Before incorporating it into our algorithm we have used the MATLAB 
(implementation of Christian Beardah’s) toolbox on kernel density estimation. With 
ground truth normal density, we have concluded that cross validation methods give us 
accurate results. We have compared least squares cross validation, smoothed cross 
validation, likelihood cross validation, biased cross validation, distribution scale 
methods and the plug-in method. With large data cross validation though accurate was 
the most time consuming. Cross validation is a O (N2) complex algorithm in the worst 
case and had convergence problems with our real data. Sometimes cross validation 
methods result in monotonic cost functions that output the lower limit as the optimal 
bandwidth. We use the plug-in method. The plug-in method is a multi pass paradigm  
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Figure 5.3: Curvature analysis – Error in curvature of a sphere at multiple 
resolutions. 
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Figure 5.4: Curvature analysis – Variation in curvature for surface description. 
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that makes use of an equation involving quartiles to output a single number as the 
optimal bandwidth. We have observed that it sometimes gives us under-smoothed data 
compared to the cross validation methods. We have decided to use the plug-in method 
for bandwidth optimization because we want our algorithm to be fully automatic 
without us having to interfere. Another important parameter with the density 
distribution that decides accuracy of the estimate is the number of points at which we 
calculate the density.  
 
Another small but significant implementation issue that we would like to throw light 
upon is the difference between continuous random variables and discrete random 
variables. The discrete density function is not a sampled form of the continuous density 
function. We note that the density at each point of a discrete random variable is less than 
or equal to one and the sum of the densities is unity.  
 
Since some values of the density function estimated are possibly zero and since we are 
using a logarithmic information measure, we should get around the zero points of the 
density function. We do not compute entropy at the zero points. 
 

5.2 State-of-the-Art Shape Descriptors 

The analysis in this section is the backbone of our CVM algorithm. We have 
implemented a few state-of-the-art algorithms to better understand the process of shape 
extraction from triangle meshes and also to know about the existing curvature-based 
metrics. Now that we have accurate measures of principle curvature and Gaussian 
curvature, we are able to identify curvedness and shape index used by Dorai in her 
“COSMOS” framework for shape recognition on range images. 
 
In Figure 5.5 we show curvedness, shape index and the Gaussian curvature color coded 
models of the fan disk. (Model source of the fan disk: Hughes Hoppe, Microsoft 
Research.) By color coding we mean we have attributed color in the RGB spectrum to 
each vertex of that model. The cosine color coding is proportional to the value of the 
parameter that we have computed at that vertex. For example, in Figure 5.5(d) each 
vertex is color coded to Gaussian curvature. We have chosen the fan disk model because 
it is the one that has a combination of flat and curved surfaces and is not too simple or 
too complex. 
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Figure 5.5: Curvature-based descriptors. 

 
 
 
We would like to make the following conclusions from Figure 5.5. Curvedness proves 
to be a good descriptor that detects abrupt change in curvature. Curvedness is consistent 
at low resolutions but with bad triangulation it produces erroneous results. We attribute 
this result however to the curvature estimation method that assumes good and uniform 
triangulation. While on the other hand, we see how shape index is colorful indicating 
surface variation along the flat surface facing us in the diagram. The definition of shape 
index assumes uniform topology of meshes as in range images. That is why the shape 
index of a spherical cap and a spherical cup which look the same visually possess 
different shape indices. We see in Figure 5.5(d) that the Gaussian curvature clearly 
shows variation in curvature in each of the surface patches and no or very little variation 
in the flat surfaces.  
 
We have also implemented a recent method for shape classification and description 
called Shape Distributions [Osada, 2002]. The approach represents shapes as 
histograms. Randomly sampled points on the surface of a triangle mesh is used to 
extract several features such as the centroidal profile, distance between two points, angle 
between three random points. These features are binned into a histogram. This 
histogram is used for object detection and classification. Results show similar shapes 
having similar feature histograms. This algorithm was implemented for shape searching 
and retrieval on the web. We have tested this algorithm with our automotive parts and 
have come to realize that several 1D features cannot represent completely the 3D 
information in an object. We show our implementation of Shape Distributions in Figure 
5.6 and our experience in representing automotive components in Figure 5.7. We 
demonstrate the lack of uniqueness in description with the fan disk, disc brake and 
muffler models. These models have the same bounding box but we see that the disc 
brake and the fan disk though extremely different in shape have a similar histogram, 
while mufflers though similar in shape have noticeable amount of variation. 
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Figure 5.6: Implementation of Shape Distributions. (a) Wire frame model of a 
cube. (b) Shape Distribution result from the paper [Osada,2002] for a cube. (c) Result 
of our implementation on the cube. (d) Wire frame model of a sphere. (e) Shape 
Distribution result from the paper [Osada, 2002] for a sphere. (f) Result of our 
implementation on the sphere. 
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Figure 5.7: Shape Distributions and its uniqueness in description. (a) Model of a 
fandisk. (b) Model of a disc brake. (c) Model of a Toyota muffler.  (d) Model of a 
Volvo muffler.  (e) Shape Distribution of model in (a). (f) Shape Distribution of 
model in (b). (g) Shape Distribution of model in (c). (h) Shape Distribution of model 
in (d). 
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5.3 Results of our Informational Approach  

In Chapter 4 we discussed our CVM algorithm that quantifies surface shape 
complexity. We compute curvature based on the method suggested by [Abidi, 1995] 
and measure boundary complexity as the Shannon’s entropy of curvature on 2D 
contours. We have presented these results in [Page et al., 2003b]. We discuss some 
important results on X-ray and range images. We also analyze some limitations of 
using Shannon entropy and the need for a normalized information measure before 
discussing the results of our graph representation on automotive components. 

5.3.1 Intensity and Range Images 

In Figure 5.8(a) we show results on simple curves. We have made a few important 
assumptions with these curves. These curves are of the same resolution and are 
uniformly sampled. We have computed the Shannon entropy of the turning angle at 
each point on the boundary as the shape complexity measure (SCM). We note that 
SCM and CVM are similar measures but are not equivalent.SCM inspired the 
development of CVM, and CVM represents the evolution of SCM from lessons 
learned on scaling and resolution We would like to emphasize in these results on how 
shape information behaves with symmetry and how important the assumption on size 
and resolution turns out to be. We would also like to note that the shape information 
from the Shannon’s measure cannot be compared if the two images are not at the same 
resolution and comparable size.  Hence for the real data we have normalized the 
segmented region of interest for size and resolution and then computed the curvature-
based measure on the normalized boundary contour. We would like to recall from 
Chapter 2 and note that our method falls under the boundary-based description 
methods. In Figure 5.8(b) we show an example with an X-ray image of a baggage. The 
bag contains a few objects that we have segmented manually. We take each of the 
segmented objects and then compute the shape information on each of these contours. 
Our measure categorizes complex objects and simple ones with satisfactory ease. 
Next, we show some results on range images in Figure 5.8(c).We believe that we will 
be able to distinguish between the man-made structures that have flat and nice edges 
like the building in Figure 5.8 (c) and natural vegetation that has rugged boundaries. 

5.3.2 Surface Ruggedness 

In terms of resolution we would like to present some results on synthetic DEMs 
(Digital Elevation Maps) of the same resolution. The Shannon’s entropy of curvature 
gives a consistent ruggedness measure of the surface. But we still face inconsistency 
with resolution. We formulate our algorithm on the heuristic that the variation in the 
shape characteristics of surfaces is mathematically the variation of curvature. We 
define shape information as the entropy of the curvature density of the surface under 
consideration. 
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X-ray image SCM = 1.227 SCM = 2.3458 SCM=3.4050 SCM = 0.891 
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Range Image SCM = 0.5 SCM = 1.7 

(c) 

Figure 5.8: Shape complexity measure– using Shannon’s definition of information. 
(a) Results on simple curves. (b) Results on segmented objects from the X-ray image 
of a baggage. (c) Results on segmented contours from a range image. 
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SCM =0.6 

 
SCM = 1.276 

 
SCM =2.2 

(a) (b) (c) 

Figure 5.9: Shape information and surface ruggedness. (a) Shape information 
measured on a DEM of a plain terrain. (c) Shape information on a plateau terrain. (d) 
Shape information on a mountainous terrain. 

 
 
 
 
In Figure 5.9  we show three surfaces. Figure 5.9(a) can be considered to represent a 
plain while Figure 5.9(b) and 5.9(c) represent a plateau and a mountainous region, 
respectively. We have color coded each of these surfaces by the scale that we show in 
the picture. In agreement to our perceptual thinking we observe that the information 
that the total curvature conveys about each of these surfaces is well quantified by 
SCM.  

5.3.3 3D Mesh Models 

We see that the CVM algorithm behaves as expected in Figure 5.9 (a) – (c) but still not 
robust because of the assumption on resolution and sampling. We counter the problem 
of resolution as lack of information. We compensate with the information that for a 
contour its circumscribing circle of the same resolution, a plane of the same resolution 
for a surface and a circumscribing sphere for 3D models would have the least shape 
information. We use the circumscribing reference because it is easy to determine from 
the characteristics of the model and we might lose an important length dimension if we 
make use of an inscribed reference. The inscribed sphere, for instance, on a cylinder 
could turn out to be too small compared to the size of the cylinder and might not be a 
good reference. We measured shape complexity as the shape information distance 
between the two datasets and used the KL divergence measure (Equation 4.24) on super 
quadrics of varying shape factors. We present those results in Figure 5.10. 
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Figure 5.10: Shape information divergence from the sphere – Experimental results 
on super quadrics. 
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We observe that the results with the super quadrics are interesting. We chose super 
quadrics to perform our experiments because they provide us a scheme of slowly 
varying shapes (that can be controlled by a parameter) and smoothly varying 
curvature. Though we are unable to cluster or classify shapes based on a single 
number, we would like to point out the success with super quadrics. We however had 
to deal with another major problem. The asymptotic behavior of the divergence 
measure as the resolution tended to infinity. We end up with an impulse function on 
the sphere in the continuous case as a reference to a curvature density of another 3D 
model. Though the divergence measures are defined for the continuous random 
variables, our shape complexity measure becomes unstable with resolution 
approaching the continuous case. We also are not able to justify what it means for two 
completely different shapes having the same measure. The magnitude of the measure 
though can be understood as the number of bits that are required to describe the shape 
complexity of the object; it is not very convincing for the application of shape 
classification or clustering.  
 
Our focus is to make the CVM independent of resolution and support it with 
theoretical consistency. We hence decided to change the reference from the sphere that 
represented the object with least information to the abstract, most complex object at 
that resolution. We have extended the Shannon’s definition to a resolution normalized 
entropy form as shown in Equation 5.9. 
 

�−=∆ )x(plog)x(p)X(H R  (5.9) 
 
where R is the resolution of the datasets under consideration and p(x) is the probability  
density of the curvature. We achieve two things with this measure of information. The 
measure is normalized. It has a minimum value of zero and a maximum value of one. 
The measure is in a logarithmic scale and is resolution independent. In Figure 5.11 we 
show how curvature on surfaces acts a descriptor with the spherical cup, saddle and 
the monkey saddle surfaces. We would like to point out that the broader the 
probability density function the higher the complexity. In Figure 5.12 we perform a 
multi-resolution experiment with our CVM shape signature. We resample the monkey 
saddle without obvious change in shape to show that our measure is now independent 
of resolution. N refers to the number of vertices in that surface and F is the number of 
faces. 
 
We recollect the experience with the curvature-based descriptors. Curvature alone is not 
a sufficient feature for shape description because we have lost more than two 
dimensions of description in trying to represent 3D into a 1D function of curvature. 
However, now that we have verified the surface description capabilities of our measure 
we propose to describe objects that can be broken down into surface patches. We make 
use of curvedness for this task. We identify the sharp edges and creases and use it for 
segmentation of the triangle meshes. 
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Figure 5.11: Surface description results - surface, curvature and density of 
curvature of (a) Spherical cap (b) Saddle (c) Monkey saddle 
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Figure 5.12: Multi resolution experiment on the monkey saddle – The surface, its 
curvature density and the measure of shape information. 
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We present the results of the shape description proposed in this thesis in Figures 5.13 
and 5.14. We start with the description of the simple cube in Figure 5.13 (a). We show 
how the six faces of a cube are interconnected in the graph and since each of these faces 
is planar they convey no shape information. We would like to emphasize that all cuboids 
will also have the same description. This can be distinguished only with scale 
information along with the graph. With the fan disk example, we show the graph 
complexity that we will face with more and more complex parts. Figure 5.13(c), 
5.14(a)–(c) are our experimental results on automotive components. Since our 
assumptions about man-made components go well with the informational signature that 
we have proposed our results are good. We show the result of applying our measure on 
the real scene that we acquired before we conclude this section in Figure 5.15. We show 
the scene, the segmented muffler from the scene and its description that looks very 
similar to the muffler results in Figure 5.13(c). We consider this as our first step towards 
object detection. However for the algorithm to be fully automated for object detection 
we need an implementation of partial graph matching. We also have to address 
occlusion problems and representation issues with more and more complex components. 
 
This section concludes our experimental results for the CVM algorithm. We have 
presented the evolution of the algorithm in this chapter with results and analysis at each 
stage of the development. We now move to the final section of this thesis where we 
draw conclusions from these results and then discuss future directions for our research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 5: Analysis and Results 
 

78 

 
 
 
 
 
 
  

Triangle Mesh 
Model 

Curvedness – Sharp 
Edges Detection 

 
Smooth Patch 
Decomposition 

 

Graph 
Representation 

    
(a) 

    
(b) 
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Figure 5.13: CVM graph results on simple mesh models: curvedness-based edge 
detection, smooth patch decomposition and graph representation. (a) Cube (b) Fan 
disk. (c) Disc Brake. 
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Figure 5.14: CVM graph results on automotive parts: curvedness-based edge 
detection, smooth patch decomposition and graph representation of (a) catalytic 
converter, (b) Volvo muffler and (c) Toyota muffler. 
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(a) (b) (c) 

Figure 5.15: CVM graph results on an under vehicle scene. (a) Under vehicle 
scene. (b) Segmented muffler model. (c) Shape description of the muffler. 
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6 CONCLUSIONS  

In this thesis, we have described a pipeline for real-time imaging and 3D modeling of 
automotive parts and a representation scheme that would simplify the task of threat 
detection for vehicle inspection. This research relies heavily on a heuristic, which we 
call CVM, which is based on curvature of surfaces and their contribution to describing 
surface complexity. In the previous chapters, we have reviewed research in the 
computer vision literature similar to our algorithm as a context for our contributions and 
presented the supporting theory along with experimental results. We have also discussed 
certain implementation issues of the algorithm. We now conclude with a brief summary 
of the contributions and a short discussion on future directions. 

6.1 Contributions 

Our research efforts were focused on the construction of a scanning mechanism that 
would be able to create 3D models of automotive components. We have used the 
sheet-of-light active range imaging technique for the data acquisition task and 
extended its capability to extract geometry of an automotive scene. We have outlined 
our design efforts towards data collection and followed it up with results on 3D model 
creation and analysis of objects. We have also presented experimental results of an 
information theory-based surface shape description algorithm on the laser scanned 3D 
models. The 3D data acquisition process to generate a dense point cloud of a particular 
view of an object, multiple view fusion and surface graph representation (comparable 
to CAD) of the models is our implementation of a pipeline that aids reverse 
engineering and inspection. 
 
Based on our survey and implementation of the state-of-the art algorithms for curvature 
estimation on triangle meshes, we have presented a rigorous analysis on key methods. 
Our comparison sheds light on the errors in magnitude of curvature and also the effect 
of factors such as resolution and effectiveness in describing visual complexity.  
 
We hence would like to summarize the quintessence of the thesis as the definition of 
CVM as the informational approach to shape description. We have used curvature 
estimates at each vertex to generate probability distribution curves. With these curves, 
we have formulated an information theoretic based on entropy to define surface shape 
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complexity. In the spirit of Claude Shannon's definition of information, this measure 
reflects the amount of shape information that an object surface possesses. Objects and 
scenes with nearly constant curvature contain relatively low values of shape 
information, while other objects and scenes with significant variation in curvature 
exhibit fairly large values. Though our idea of using curvature as a feature for 
description is not new, our attempt to quantify the perceptual complexity of a surface 
using information theory is.  Since we are describing surfaces using our approach, 
occluded scenes such as the one that was obtained real-time can also be represented with 
a good degree of confidence towards object detection. 

6.2 Directions for the Future 

We feel that the process of creating 3D models has scope for improvement. Using our 
system design, it takes nearly six hours to scan, fuse and integrate multiple views into 
its complete 3D triangle mesh model. We did not consider optimizing views for 
minimizing scan time. We can approach view planning as a sensor placement problem 
for better efficiency. The solution to the problem will also enhance the under vehicle 
scene modeling. Our system design also has a lot of scope for improvement towards 
vehicle inspection. Instead of using a conveyer belt that houses the range sensor, it 
would be better to have a calibrated setup to control the relative motion. We would 
also like to have the scanning mechanism redesigned to be robot mountable to 
automate the scanning process. 
 
In the typical context of aligning range scans of an object in order to create a complete 
model of that object we would like to point out the possibility of application of our 
algorithm to surface registration. Surface registration is a feature dependent process. 
More features improve registration. By features, here we mean unique geometric 
information. We believe that representing a range scan as a cluster of shape measures 
around a neighborhood would help us recover the rigid transformation from another 
view of the same object that has some common information (overlap). A multi-scale 
hierarchical informational approach should be a good start for this process. 
 
Object recognition is an extremely difficult task with most current solutions limited to a 
very constrained and restricted problem domain. Although we do not claim 
contributions in terms of recognition as yet, we are encouraged by the results in this 
thesis that it might serve as a first step in the recognition pipeline. Shapiro and 
Stockman [Shapiro, 2001] suggest commonly used paradigms for object recognition 
where the method chosen depends heavily on the application. They discuss two 
paradigms that use part (region) relationships to move away from a geometric definition 
of an object to a more symbolic one. Our algorithm benefits the creation of such a 
symbolic graph representation from a mesh representation. We would like to perform 
rigorous experiments on partial graph matching for threat detection and model-based 
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object matching before we claim confidence and robustness. We also would like to 
experiment the effect of segmentation on our algorithm. More robust segmentation 
methods based on the minima rule and boundary refinement can substantially enhance 
the performance when our algorithm is used for the object detection and recognition. 

6.3 Closing Remarks 

In the first chapter of this document, we proposed to use the part-based human 
perception model for shape analysis. Though our implementation does not completely 
capture the perceptual power of the human mind or its coordination with the eye, the 
concepts presented in this thesis are a first step, though a very small one towards 
extending the state of the art in 3D computer vision. 
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