
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

12-2005

“Design and Verification of a Reusable Self-
Reconfigurable Gate Array Architecture
Gabriel Cozmin Chereches
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Chereches, Gabriel Cozmin, "“Design and Verification of a Reusable Self-Reconfigurable Gate Array Architecture. " Master's Thesis,
University of Tennessee, 2005.
https://trace.tennessee.edu/utk_gradthes/1840

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Gabriel Cozmin Chereches entitled "“Design and
Verification of a Reusable Self-Reconfigurable Gate Array Architecture." I have examined the final
electronic copy of this thesis for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Master of Science, with a major in Electrical
Engineering.

Dr. Don Bouldin, Major Professor

We have read this thesis and recommend its acceptance:

Dr. Gregory Peterson, Dr. Itamar Elhanany

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Gabriel Cozmin Chereches entitled
“Design and Verification of a Reusable Self-Reconfigurable Gate Array
Architecture”. I have examined the final electronic copy of this thesis for form
and content and recommend that it be accepted in partial fulfillment of the
requirement for the degree of Master of Science, with a major in Electrical
Engineering.

 Dr. Don Bouldin

 Major Professor

We have read this thesis
and recommend its acceptance:

 Dr. Gregory Peterson

 Dr. Itamar Elhanany

Accepted for the Council:

 Anne Mayhew

Vice Chancellor and Dean of
Graduate Studies

(Original signatures are on file with official student records.)

Design and Verification o a Reusable Self-Reconfigurable

Gate Array Architecture

f

A Thesis
Presented for the

Master of Science Degree

University of Tennessee, Knoxville

Gabriel Cozmin Chereches

December 2005

to titu (my father) and to ron

 ii

Acknowledgments

I would like to thank my academic and thesis advisor Dr. Donald W. Bouldin for
his support and guidance throughout my graduate school and for taking an
interest in me pursuing this research and providing me with the facilities in the
Microelectronic System Research Lab at the University of Tennessee. I would
like to thank Dr. Gregory D. Peterson and Dr. Itamar Elhanany for their interest
in this work and for serving on my thesis committee.

I would like to acknowledge the University of Southern California and the
University of Trento (Italy) for coming up with such an innovative Self-
Reconfigurable device which caught our attention (Dr. Bouldin and I) – thanks to
R. Sidhu, A. Mei, and V. Prasanna.

I would like to thank Dr. Roger Parsons, Director of the Engage Engineering
Fundamentals Program at the University of Tennessee, for offering me the
Graduate Teaching Assistant position and allowing me to be part of one of the
nation’s most innovative freshman engineering programs. I also would like to
thank Dr. Fred Gilliam, the former Associate Dean of the College of Engineering,
for his guidance throughout my education.

I would like to thank the Athletic Department at the University of Tennessee for
supporting me while in graduate school by awarding me the Herman Hickman
Memorial Scholarship. Dave, JT, Joe, and all my coaches, have made a
difference and I would like to express my appreciation.

I would like to thank the Environmental Systems Corporation, especially Adam
Engle, for offering me a great job while being tied up with my academic goals.

I am very thankful for having a great family – Magdalena (my mother), Anca (my
sister), Lucian (my brother), and Jim Hoyle, thanks for believing in me.

I would like to thank the class of ECE 652 (spring 2003) for sharing their
knowledge and support. And I would like to express my appreciation for those
that have been there for me – and in no particular order: Lee Blask, Bree, Joel,
Bird, M. Burton, Wei, Akila, Scott, Kay Shanahan, and Tyler Johnson.

 iii

Abstract

This thesis presents the design and verification of a Self-Reconfigurable Gate

Array architecture (SRGA-UT) created for reuse, and available with a step-by-

step tutorial and comprehensive documentation.

The original SRGA [1], created at the University of Southern California, is an

innovative architecture for a reconfigurable device that allows single cycle

context switching and single cycle random access to a unified on-chip

configuration/data memory. The key architecture that enables the above two

features is the use of a mesh of trees based interconnect with logic cells and

memory blocks at the leaf nodes and identical switches at the parent nodes.

The SRGA-UT was adapted by making necessary modifications to the original

design, to be implemented using the available University of Tennessee electronic

design automation tools. An 8x8 array of PEs (Processing Elements) was

synthesized and routed targeting a standard cell library for a 0.18 µm process.

The synthesized design can store eight configuration contexts in each PE (this

number can be modified by editing the Verilog files). The place and route

generated a core-chip size of 5,413,300 µm2, and contains 354,053 number of

gates. The step-by-step tutorial demonstrates that the SRGA-UT design is

capable to switch context and perform memory access operations in a single

clock cycle.

ModelSim tools were used for verification and simulation at all levels, Design

Compiler executed the synthesis and created the netlist design, and First

Encounter SoC performed the place and route and created the delay constraints.

 iv

Table of Contents

Chapter 1 Introduction 1

1.1 Thesis Goals 1

1.2 Outline of Thesis 2

Chapter 2 Background 4

2.1 Reconfigurable Technology 4

2.2 Design Reuse 5

2.3 SRGA-USC 6

Chapter 3 Component Background 10

3.1 Components Overview 10

3.2 Registers 10

3.3 Configuration Word 13

3.4 Logic Cell 16

3.5 Memory Cell 20

3.6 Switch Structure 23

3.7 PE Structure 25

3.8 2x2 Array 27

3.9 8x8 Array 27

Chapter 4 SRGA-UT Implementation 29

4.1 SRGA-UT Overview 29

4.2 EDA Tools 29

4.3 Setting up Files 31

4.4 8x8 Array Step-by-Step Tutorial 32

Array 8x8 Pre-Synthesis 36

Array 8x8 Synthesis 40

First Encounter Tools 43

Step 1: Setting up the files 43

 v

Step 2: Import the Design 43

Step 3: Specify the Chip Size 44

Step 4: Power Planning 44

Step 5: Global Net Connections 46

Step 6: Standard Cell Placement 46

Step 7: Add Filler Cells 48

Step 8: Route Power 48

Step 9: Final Route 48

Step 10: Extract RC 50

Step 11: Calculate Delay 50

Step 12: Results, Save, and Restore Design 51

Final Layouts 51

Array 8x8 Post Layout Simulation 51

Chapter 5 Implementing the SRGA-UT Sub-Designs 55

5.1 Logic Cell Implementation 55

Logic Cell Pre-Synthesis 56

Logic Cell Synthesis 57

Logic Cell Place and Route 59

5.2 Memory Cell Implementation 63

5.3 Switch Implementation 66

5.4 PE Implementation 68

5.5 2x2 Array Implementation 72

Chapter 6 SRGA-UT Results, Conclusion and Future

Possibilities 76

6.1 Results 76

6.2 Conclusion and Future Possibilities 78

Reference 79

VITA 81

 vi

List of Figures

Figure 2.2.1: Design for Reuse Diagram [5] ... 6

Figure 2.3.1: SRGA Architecture .. 7

Figure 3.2.1: OR and MOR Registers ... 11

Figure 3.2.2: Periphery Registers (a) N x N Array of PEs [1] (b) PE 12

Figure 3.3.1: Configuration Word Format (a) Diagram and (b) From

Configuration File.. 14

Figure 3.3.2: Full Add Configuration (a) Truth Table (b) LUT 15

Figure 3.3.3: Full Subtract Configuration (a) Truth Table (b) LUT................... 15

Figure 3.4.1: (a) LUT Structure and (b) Flip-Flop Structure........................... 16

Figure 3.4.2: Logic cell Structure [1].. 17

Figure 3.4.3: Internal Functions of the LUT .. 18

Figure 3.4.4: Input and Output Set of Wires for the Logic Cell Muxes 19

Figure 3.5.1: Memory Block Structure [1]... 21

Figure 3.5.2: Defining the Size of the Memory Array 21

Figure 3.6.1: Switch Structure... 24

Figure 3.7.1: PE Structure [1] ... 26

Figure 3.8.1: Structure of the 2x2 Array... 28

Figure 3.9.1: Structure of the 8x8 Array... 28

Figure 4.2.1: SRGA-UT Design Flow... 31

Figure 4.4.1: Configuration Word Format for the 8x8 Array 33

Figure 4.4.2: Importing Configuration Word Section of test_array8x8.v 35

Figure 4.4.3: Assigning Inputs to the 8x8 Array .. 35

Figure 4.4.4: Array 8x8 Pre-Synthesis - Loading Memory Blocks..................... 37

Figure 4.4.5: Array 8x8 Full Add Demo Schematic... 38

Figure 4.4.6: Array 8x8 Pre-Synthesis - Applications 39

Figure 4.4.7: Array 8x8 Pre Synthesis Workspace ... 40

 vii

Figure 4.4.8: Array 8x8 Synthesis - Loading Memory Blocks........................... 42

Figure 4.4.9: Array 8x8 Pre-Synthesis - Applications 42

Figure 4.4.11: Encounter Tools - Importing Design 44

Figure 4.4.12: Encounter Tools - Specify Chip Size.. 45

Figure 4.4.13: Encounter Tools - Power Planning.. 45

Figure 4.4.14: Encounter Tools - Global Net Connections 46

Figure 4.4.15: Encounter Tools - Standard Cell Placement 47

Figure 4.4.16: Encounter Tools - Cell Placement Views.................................. 47

Figure 4.4.17: Encounter Tools - Add Filler Cells ... 48

Figure 4.4.18: Encounter Tools - Route Power.. 49

Figure 4.4.19: Encounter Tools - Final Route.. 49

Figure 4.4.20: Encounter Tools - (1) Extract RC and (2) Calculate Delay......... 50

Figure 4.4.21: Encounter Tools - Final Pace and Route of 8x8 Array............... 52

Figure 4.4.22: Array 8x8 Post Layout - Loading Memory Blocks...................... 53

Figure 4.4.23: Array 8x8 Post Layout – Applications...................................... 54

Figure 5.1.1: Section of Test-bench for Logic Cell Block................................. 56

Figure 5.1.2: Logic Cell - Pre-Synthesis Simulation.. 58

Figure 5.1.3: Logic Cell - Post-Synthesis Simulation 60

Figure 5.1.4: Logic Cell Layout after WRoute.. 61

Figure 5.1.5: Logic Cell - Post-Layout Simulation .. 62

Figure 5.2.1: Section of Test Bench for Memory Cell Block 64

Figure 5.2.2: Memory Cell Testing ... 65

Figure 5.3.1: Section of Test Bench for Switch Module 67

Figure 5.3.2: Switch Testing ... 67

Figure 5.4.1: PE Testing – Loading Configuration.. 69

Figure 5.4.2: PE Testing – Operations.. 70

Figure 5.5.1: 2x2 Array Testing – Loading Configuration 73

Figure 5.5.2: 2x2 Array Testing – Operations ... 74

Figure 6.1.1: 8x8 SRGA-UT Results.. 77

 viii

List of Acronyms

CCR – Current Context Register

CMAR – Context and Memory Address Register

CMR – Column Mask Register

CSMR – Context Switch Mask Register

DCR – Destination Column Register

DRMR – Data Restore Mask Register

DRR – Destination Row Register

ECE – Electrical and Computer Engineering

EDA – Electronic Design Automation

FF – Flip-Flop

FPGA – Field Programmable Gate Array

GDS – Graphic Design System

HDL – Hardware Description Language

IC – Integrated Circuit

IP – Intellectual Property

I/O – Input/Output

LIN – Logic Interconnection Network

LUT – Lookup Table

MIN – Memory Interconnection Network

MOR – Memory Operation Register

OR – Operation Register

PE – Processing Element

RAM – Random Access Memory

RMR – Row Mask Register

RTL – Register Transfer Level

SCR – Source Column Register

SDF – Standard Delay Format

 ix

SoC – System on Chip

SRGA – Self-Reconfigurable Gate Array

SRGA-USC – Self-Reconfigurable Gate Array - University of Southern California

SRGA-UT – Self-Reconfigurable Gate Array - University of Tennessee

SRR – Source Row Register

 x

Chapter 1: Introduction

1.1 Thesis Goals

The objective of this thesis was to use the open code of the Self-

Reconfigurable Gate Array (SRGA) architecture, created by the Department of

EE-Systems at University of Southern California and the Department of

Mathematics at the University of Trento (Italy), and make the minimum

adjustments necessary to adapt and implement using the available EDA

(electronic design automation) tools at the Department of ECE at the University

of Tennessee. The outcome of this thesis was to end up with a SRGA-UT design

for reuse, accessible with a step-by-step tutorial and comprehensive

documentation.

To achieve this goal, a great deal of knowledge of the SRGA-USC architecture

was required. The first step was to examine the RTL (register transfer level)

design, make the appropriate adjustments and pass the pre-synthesis verification

stage. The second challenge was to synthesize the RTL design, create the netlist

and pass the synthesis verification stage. And the last step was to generate the

place and route from the netlist design, produce the timing delay files, and test

the final design for proper functionality.

The EDA tools used to implement the SRGA were: ModelSim for verification and

simulation at all stages, Design Compiler for synthesis and creating the netlist,

and First Encounter for performing the place and route and creating the delay

files.

 1

1.2 Outline of Thesis

The introduction states the thesis goals. An open self-reconfigurable design,

SRGA-USC, developed at the University of Southern California was taken and

implemented using the available EDA tools at the University of Tennessee. The

intent was to make the minimum changes, while the focus was to develop a

SRGA-UT design for reuse with complete documentation and a step-by-step

implementation tutorial.

The second chapter will present a background of the IC (integrated circuit)

technology – focusing on the reconfigurable devices such as the SRGA-USC, an

innovative architecture for a self-reconfigurable device that allows single cycle

context switching and single cycle random access to the on-chip configuration

memory. This chapter also describes the importance of the design for reuse

techniques which can greatly decrease the time-to-market by reducing the

design cycle and the manufacturing cycle.

The third chapter illustrates the background of each component of the SRGA

architecture including the changes made to the original SRGA-USC design to

adapt and implement it at the University of Tennessee. The SRGA-UT design

retains the overall original architecture but was mostly adjusted to be able to

pass the verification stages of synthesis and place and route.

The fourth chapter provides a step-by-step tutorial of an 8x8 SRGA-UT array.

The steps will confirm the pre-synthesis RTL verification (using ModelSim), the

synthesis process (using Design Compiler) and verification of the netlist (using

ModelSim), and the place and route process (using First Encounter) and

verification of the delay constraints (using ModelSim).

 2

The fifth chapter shows the implementation of the 8x8 array sub-blocks in the

same manner as the tutorial. Some blocks were small enough to be proven just

by verifying the pre-synthesis RTL step.

The sixth chapter will describe the results of the SRGA-UT implementation and

followed by the conclusion remarks and suggestions for future possibilities. The

overall thesis provides a detailed documentation for a reusable design.

 3

Chapter 2: Background

2.1 Reconfigurable Technology

Reconfigurability denotes the potential of a system to dynamically change its

behavior usually in response to changes in its environment. In the computing

world, the Field Programmable Gate Arrays (FPGAs) are the most popular means

of accomplishing reconfigurability. An FPGA consists of an array of

programmable logic elements and programmable interconnects. The logic

elements can be logic gates (AND, OR, XOR, Invert), lookup tables (memory

usually RAM), or flip-flops [2]. The interconnects allow the logic elements to be

connected as needed by the design.

The logic elements and interconnects can be programmed by the customer so

that the FPGA can perform a certain functionality. This functionality can be

reconfigured to suit new application requirements desired by the customer by

writing appropriate bits into the configuration memory. The challenges with

most FPGAs however, whether they are reconfigured at compile time or runtime,

is that they require an external source to execute the reconfiguration.

A device, that is capable to generate configuration bits at runtime and use them

to modify its own configuration, exhibits self-reconfiguration. A self-

reconfigurable device needs to be able to store multiple contexts of configuration

information and context switch between them. The configured logic should be

able to access any of the contexts of information stored and perform self-

reconfiguration by modifying the contents of the information stored. When the

configured logic has made the modifications to the configuration information, the

device should be able to switch context to any of the contexts of configuration

stored. For an efficient self-reconfiguration to occur, the device should be able

 4

to configure logic to perform: (1) fast context switching and (2) fast random

access of the configuration information stored. The SRGA-USC [1] was designed

to perform the fast context switching and fast random access of the

configuration stored in one clock cycle. The SRGA-USC is capable of storing

eight contexts of configuration information (this number is editable).

Another device that is capable of storing four contexts of configuration

information on-chip and switch between them on a clock cycle basis is the

Sanders CSRC [3]. This device can also load configurations while other contexts

are active. Despite the fast switching and loading capabilities, it only provides

serial configuration memory access which can take hundreds of clock cycles to

access a particular location. The Berkeley HSRA [4] is capable of accessing the

configuration information in a fast manner but it takes hundreds of clock cycles

to switch context.

2.2 Design Reuse

Time-to-market is a crucial aspect for the survival of many IC manufacturing

companies in such a competitive environment. Time-to-market may be

optimized by reducing the design cycle and by reducing manufacturing cycle.

The design cycle may be greatly reduced and the quality of the designs may be

increased by providing designs with reuse [5]. IP (intellectual property) blocks

such as configurable I/O (input/output), power and ground grids, block RAMs

(random access memories), and timing generators were some of the first blocks

created for reuse as sub-designs in larger projects such as SoCs (system-on-

chips). If a sub-design were to be developed from scratch, it would take a lot

more time than to adapt the reusable block. Figure 2.2.1 shows that without

planned design reuse, the total time for development is proportional to the

 5

Figure 2.2.1: Design for Reuse Diagram [5]

number of sub-designs, given that each module has the same complexity.

During development with planned design reuse, the designer will spend more

time in creating a reusable block by providing comprehensive documentation and

more adaptable interface.

The design for reuse techniques are closely studied in today’s SoC development.

A basic combination of such reusable features is known as a platform. The

platform used to implement a SoC greatly impacts all of the issues and is the

fundamental decision the hardware designers must make at the start of each

new project. By 2010 the percentage of IP contained in a System-on-Chip

application is predicted to grow to 95% [6].

One of the goals for this thesis is to end up with a SRGA UT design for reuse,

accessible with a step-by-step tutorial and comprehensive documentation.

-

2.3 SRGA-USC

The original Self-Reconfigurable Gate Array Architecture [1] is an open core

design implemented by the Department of EE-Systems at University of Southern

California and the Department of Mathematics at the University of Trento (Italy).

 6

The reconfigurable device allows single cycle context switching and single cycle

random access to the unified on-chip memory which stores the configuration

data. Both features are necessary for efficient self-reconfiguration. The context

switching feature permits arbitrary regions of the chip to selectively switch

context. The memory access feature allows data transfer between logic cells and

memory locations as well as between memory locations. A mesh of trees based

interconnects with logic cells and memory blocks at the leaf nodes and identical

switches at the other nodes make it possible to perform the above features.

Figure 2.3.1 shows the basic SRGA architecture of a 4x4 array of PEs.

The architecture can be of any N x N array of PEs. The PE sits at the leaf node

of the mesh of trees interconnects and is composed of a logic cell, memory

block, and memory interface. Each switch is identical except that some switches

are connected in a column mesh network and some are connected in a row mesh

network. Each PE is connected to a row switch and a column switch.

Figure 2.3.1: SRGA Architecture

 7

The connection between the PEs through the switches is configured using two

methods. The first method serves the same purpose as the interconnection

network in a typical FPGA, connecting together the logic cells as specified by the

configuration bits controlling the network switches. The second method is used

for performing data transfer during the memory access operations. For this

method, only one wire that carries signals in either direction is used for each

connection.

The logic cell of each PE can connect directly to the four neighbor’s logic cells.

Fore example, the south output of a PE will become the north input of the

neighbor PE directly to the south of the original PE – and/or – the east output of

a PE will become the west input of the neighbor PE directly to the east of the

original PE.

The SRGA contains three global registers – their contents are broadcast to all

PEs, and four periphery registers – located along the boundary of the N x N PE

array. The purpose of the global registers is to specify – the operation to be

initiated, the source and destination of the data, and the context to switch to or

the memory address to be accessed. The purpose of the periphery registers is to

control which rows or columns will be the source or destination during the

different functionalities. See section 3.2 for a more detailed description of the

registers.

The Memory block stores the different configuration words which are 77 bits long

each. During a memory access operation, the contents of the configuration

words can be transferred between rows or between columns. All memory access

operations complete in a single clock cycle. The operation can be a memory

read (memory to logic cells), memory write (logic cells to memory), or memory

transfer (memory to memory) depending on the contents of the global registers.

 8

The memory interface generates the proper inputs to the memory block and to

some extent to the logic cell by taking the register signals and combining them

through basic logic gates to create the appropriate signals.

 9

Chapter 3: Component Background

3.1 Components Overview

This chapter will describe in details the structure of each component of the

SRGA-UT, which includes the changes made to the original SRGA-USC design.

The changes, which will be pointed out throughout the next three chapters, were

necessary for the design to be adapted and able to implement using the

available EDA tools. The SRGA-UT design retains the overall original architecture

but was mostly adjusted to be able to pass the verification stages of pre-

synthesis, synthesis and place and route.

The SRGA-UT architecture consists of an array of N x N array of PEs. The PE sits

at the leaf node of the mesh of trees interconnects and is composed of a logic

cell, memory block, and memory interface (described later in this chapter). Each

switch is identical except that some switches are connected in a column mesh

network and some are connected in a row mesh network. Each PE is connected

to a row switch and a column switch.

The N x N array of PEs is configured by inputting configuration contexts

(described in section 3.3) into the memory array of each PE – which can store

eight contexts of configuration. Once the memory is loaded, the SRGA-UT can

switch context and perform memory operations in a single clock cycle. This is

done through a number of global and periphery registers.

3.2 Registers

The SRGA-USC contains three global registers and four periphery registers.

The memory, interface, module takes signals from the registers and creates the

 10

internal signals wrMem, WrLog, switchContext, data_ n, Rmi, and Cmi. These

signals are used to perform context switching and memory operations.

I

The three global registers are the Operation Register (OR), the Memory

Operation Register (MOR), and Context and Memory Address Register (CMAR).

OR seen in figure 3.2.1 (a) is a 2-bit register that specifies what operation will be

initiated in the next clock cycle. MOR seen in figure 3.2.1 (b) is a 2-bit register

that specifies the source and destination of the data transfer for the next clock

cycle when OR indicates memory access. Note: The order of the OR and MOR

bits were changed in the figure bellow for consistency with the verilog code.

CMAR, depending on the OR contents, specifies the context to switch to or the

memory address to be accessed in the next clock cycle. CMAR consists of two

fields: (1) the context field and (2) the offset field. The context field points to

the memory column to be accessed. In testing this design, nc equals eight (8),

the number of memory columns for the memory array. nc is defined and can be

edited in the memory verilog files found in the /srga/tools/rtl/mem/ directory.

Figure 3.2.1: OR and MOR Registers

 11

The size of the context field can be calculated as: (2X = nc) where X is the

context field number of bits which equals to 3 (23 = 8). The offset field points to

the memory row to be accessed. In the design, cs equals eighty (80), the

number of output bits from the Row Demux (see memory cell section 3.5). The

first seventy-seven (77) bits of cs are the number of rows for the memory array.

cs can also be defined as the number of bits required to configure a logic cell

and its two owned switches. Each memory array block consists of nc x cs bits.

The four periphery registers are SCR, SRR, DCR/RMR, and DRR/CMR, shown in

figure 3.2.2 (a) and (b). All the periphery registers are N bits long to match the

size of the N x N array of PEs.

SCR (Source Column Register), a set bit implies that the corresponding PE

column will be the source for the next column memory access.

SRR (Source Row Register), a set bit implies that the corresponding PE row will

be the source for the next row memory access.

Figure 3.2.2: Periphery Registers (a) N x N Array of PEs [1] (b) PE

 12

DCR/RMR (Destination Column Register)/(Row Mask Register), a set bit implies

that the corresponding PE column will be the destination for the next memory

access – or – during a row memory access, no data will be transferred for the

corresponding column.

DRR/CMR (Destination Row Register)/(Column Mask Register), a set bit implies

that the corresponding PE row will be the destination for the next memory

access – or – during a column memory access, no data will be transferred for the

corresponding row.

Each PE also contains two memory mapped registers CSMR and DRMR to give

the design more flexibility. CSMR (Context Switch Mask Register), a set bit will

not allow the corresponding PE to switch context even when a context switch

operation occurs. DRMR (Data Restore Mask Register), a set bit prevents the

corresponding flip-flop contents from being restored when a context switch

operation occurs.

3.3 Configuration Word

The configuration word that is loaded to the memory array is 80-bit long.

Figure 3.3.1 (a) and (b) shows the format of the configuration word. The word

is composed of: select 4-bit input for five input muxes (M0i to M4i), configuration

16-bit input for the LUT, select 4-bit input for eight output muxes (M0o to M7o),

select 4-bit input for the row switch (SR), select 4-bit input for the column switch

(SC), and four bit contents of the FF.

For testing, different configuration word files were created and stored in the

/srga/config_files/ directory, and called by the test-bench of each module.

 13

(a)

(b)

Figure 3.3.1: Configuration Word Format (a) Diagram and (b) From

Configuration File

Note: Only three bits SR[69:71] and SC[73:75] are used for the switches, and

only one bit FF[79] is used for the flip-flop. Part (a) of the figure 3.3.1 was

edited to be consistent with the configuration word format from the verilog code.

The four input muxes M0i to M3i generate the select bits for the LUT. For a

detailed illustration of how the LUT works, refer to section 3.4. To test this

design, 16-bit configuration words were created for a full adder and a full

subtractor. The format of the LUT configuration is demonstrated in figure 3.3.2

and figure 3.3.3. It can be seen that the output of the truth table forms the

configuration bits for the LUT.

The LUT can perform two boolean functions of three inputs and one output each

and one boolean function of four inputs and one output. The truth tables are

color coded to show how the configuration for the LUT must be applied. A

binary and hexadecimal number format is shown which will be useful when

generating the ModelSim simulations.

 14

Figure 3.3.2: Full Add Configuration (a) Truth Table (b) LUT

Figure 3.3.3: Full Subtract Configuration (a) Truth Table (b) LUT

 15

3.4 Logic Cell

The logic cell block shown in figure 3.4.2 consists of a 16-bit LUT, a Flip-Flop

(FF), five input muxes (M0i, M1i, M2i, M3i, and M4i), and eight output muxes

(M0o, M1o, M2o, M3o, M4o, M5o, M6o, and M7o). The input muxes (M0i, M1i,

M2i, and M3i) are used to generate the four control bits (L0i, L1i, L2i, and L3i)

for the LUT. See also figure 3.4.1 (a). The input mux M4i generates the signal

(L4i), the input to the Flip-Flip when the Switch_context signal is ‘0’. When the

Switch_context signal is ‘1’, the context_state is the input to the Flip-Flop. See

also figure 3.4.1 (b).

The LUT can perform two boolean functions of three inputs and two outputs or

one boolean function of four inputs and one output. As can be seen from the

logiccell.v section in figure 3.4.3, the mux8 u_lut0 and u_lut1 instances will

perform the two boolean functions of three inputs and two outputs.

f L0i, L1i L2i) = L0o (,

(,f L0i, L1i L2i) = L1o

Figure 3.4.1: (a) LUT Structure and (b) Flip-Flop Structure

 16

Figure 3.4.2: Logic cell Structure [1]

 17

Figure 3.4.3: Internal Functions of the LUT

The instance u_lut2 of mux2 takes the signals L0o and L1o and generates the

output L2o depending on the state of Li3. This is the internal function of the LUT

that performs the one boolean function of four inputs and one output.

f L0i, L1i L2i, L3i = L2o (,)

The signal L0i from figure 3.4.2 is equivalent to li0 from figure 3.4.3. The same

applies to L1i, L2i, L3i, L0o, L1o, and L2o.

The inputs to the PE (Ni, Ei, Si, Wi, Ri, Ci, Rmi, Cmi) are grouped together in the

logiccell.v module to form the 8-bits inBus set of wires. See figure 3.4.4. The

16-bits inMuxBus is the set of wires which groups together the inBus, lo3 (the

output Q from the Flip-Flop), and other strategically placed ones and zeros.

inMuxBus[15:0] = {1, 0, lo3, 0, 0, 0, 0, 0, inBus}

inMuxBus[15:0] = {1, 0, lo3, 0, 0, 0, 0, 0, Cmi, Rmi, Ci, Ri, Wi, Si, Ei, Ni}

 18

Figure 3.4.4: Input and Output Set of Wires for the Logic Cell Muxes

The inMuxBus is the input to each of the four input muxes M0i, M1i, M2i, and

M3i. This architecture allows the flexibility to use any of the signals in the

inMuxBus to become the control bits L0i, L1i, L2i, and L3i for the LUT. This is

done by the control bits for the input muxes which come from the configuration

words. For example, the input Ni can be the output for all the muxes (including

output muxes discussed later in this section) if the control bits from the

configuration word for each mux are set to ‘0000’.

The 13-bits outBus is the set of wires which groups together the inBus, the

outputs from the LUT (L0o, L1o, and L2o), and other strategically placed zeros.

outBus[12:0] = {L2o, L1o, L0o 0 0, inBus} , ,

[

[,

The 16-bits outMuxBus is the set of wires which groups together the outBus, lo3

(the output Q from the Flip-Flop), and other strategically placed ones and zeros.

outMuxBus 15:0] = {1, 0, lo3, outBus}

outMuxBus 15:0] = {1, 0, lo3, L2o, L1o, L0o 0, 0, Cmi, Rmi, Ci, Ri, Wi, Si, Ei, Ni}

 19

The outMuxBus is the input to the input mux M4i and to the output muxes (M0o,

M1o, M2o, M3o, M4o, M5o, M6o, and M7o). In this manner any of the signals in

the outMuxBus can become the output for the muxes depending on the control

bits from the configuration word.

The complete flexibility in configuring connections allows the LUT and Flip-Flop

to be used while other signals are routed through the logic cell – to perform

operations as inputs for other PEs.

3.5 Memory Cell

The memory block shown in figure 3.5.1 consists of a memory cell array, a

row decoder, a column decoder, three current context registers (CCR) with three

context field muxes, a configuration word register, and a data-out row mux. The

memory cell array block (memArray.vhd) was redesigned to reduce the number

of instances. The original memory array block (memArray.v) instantiated

seventy-seven (77) sub-blocks of storageCellRow. The storageCellRow block

then instantiated eight (8) storageCell sub-blocks which also contains other

instances. When used with the 8x8 array of PEs, the large number of instances

for the design would surpass the allocated amount of files allowed in a folder.

This happens when running the synthesis of the 8x8 array. The new

memArray.vhd block was created with one instance memArray, and also by using

the mixed compile method, the design was successfully synthesized.

The memory cell array is internally arranged as a nc columns of cs storage cell

rows. The nc and cs can be edited in the module memArray.vhd to become any

memory array size as seen in figure 3.5.2. In this design the size of nc = 8

[colSelWidth to 0] and the size of cs = 77 [rowSelWid h to 0]. t

 20

Figure 3.5.1: Memory Block Structure [1]

Figure 3.5.2: Defining the Size of the Memory Array

 21

Each column can store a configuration word in this case 77-bits long, thus the

memory array can store eight different configuration words. In testing the 8x8

array, only four (4) configuration contexts are used thus leaving the last four

columns of memory vacant in each PE. By editing this in the future, the number

of gates in each PE will be reduces by about one third.

The row decoder u_rowdecode is instantiated in the memcell.v and it selects the

row to write the data to. The column decoder u_coldecode is instantiated in the

memcell.v and it selects the column to write data to. The row decoder and

column decoder together select a specific memory cell to be accessed.

The three CCRs, u_10EDFFTRX1, u_11EDFFTRX1, u_12EDFFTRX1, and the three

context field muxes u31_MX2X1, u32_MX2X1, u33_MX2X1; are instantiated in

the memcell.v. Their functionality is to perform a context switch operation in a

single clock cycle. This is done as follows: At the positive edge which marks the

beginning of the next clock cycle, the CMAR and OR contents are registered and

broadcast to all the memory blocks. In each memory block, in the first half of

the clock cycle, the new configuration is loaded into the configuration word

register (for details refer to figure 3.5.1 above) when switch_context is “1” and

switch_context_2 is “0” (swith_context_2 is switchContextHalf in memcell.v). In

this manner, the context field of CMAR gets applied to the column decoder thus

selecting the memory column to place the new configuration. At the negative

edge of the clock cycle, the new configuration word gets loaded into the

configuration word register and ready to be used.

The configuration word register u_reg_77bnlr is instantiated in the memcell.v

and it loads and stores the configuration word from the memory array that is

selected by the column decoder. This is done internally in the memArray.vhd.

 22

When a switch context occurs, the load signal to the configuration word register

will enable the new selected memory column to be loaded in a single clock cycle.

The output of the configuration word register sends the 16-bit configuration to

the LUT, the control 4-bit configuration to each of the logic cell muxes, the

configuration bits for the switches, and the signal to the Flip-Flop for the

generation of the context state.

The data-out row mux u_mux80 is instantiated in memcell.v and it performs the

bit transfers during memory operations. The offset field signal will select the

memory bit (row) of the currently used configuration word (memory column). In

this manner a single memory cell can be transmitted to another memory block to

change its configuration. The signals CSMR and DRMR are inputs to the data-out

row mux and can also be accessed through memory operations.

3.6 Switch Structure

The switch is the most important part of the mesh of trees network because

the switches together with connecting wires create the mesh network. Each PE

is connected to one row and one column switch. The row and column switches

are identical. Each switch is connected to two child nodes and a parent node

where the child nodes can be other switches or PEs. The switch shown in figure

3.6.1 is composed of two parts: (1) the Logic Interconnection Network (LIN) and

(2) the Memory Interconnection Network (MIN).

The LIN is composed of three muxes with select inputs (c_out[68], c_out[69],

and c_out[70] for the row switch, and c_out[72], c_out[73], and c_out[74] for

the column switch) coming from the configuration word.

 23

Figure 3.6.1: Switch Structure

This setup allows any input to be connected to any output without restrictions

except connecting an input to its output pair. This way a signal is not routed

back where it came from.

The MIN part is composed of a bidirectional tri-state circuit where the wires

connected to it can flow signals in both directions. In this manner, by opening

all switches at a particular network level, a memory tree can be divided into

multiple smaller trees. The wires from the child connections RLm and RRm are

connected together thus any signal coming from any parent or child node will be

transmitted to all nodes. The tri-state circuit will determine which way the signal

flows.

Note: The schematic connections to the LIN muxes were changed in the

schematic above (from the original) to be consistent with the verilog code.

 24

3.7 PE Structure

The PE block shown in figure 3.7.1 consists of a logic cell, a memory cell, a

memory interface, a row switch, and a column switch. At this level all the

modules are connected together and all the inputs and outputs to all the

modules, including registers will go through the PE. The register signals are

processed by the memory interface which will create the internal signals wrMem,

WrLog, switchContext, data_In, Rmi, and Cmi. These signals are used to

perform context switching and memory operations.

The logic cell connections through the PE are: The LIN nearest neighbors’

connections (inputs Ni, Ei, Si, Wi, and outputs No, Eo, So, Wo). The mesh

network connections (inputs Ri, Ci, Rmi, Cmi, and outputs Ro, Co, Rmo, Cmo).

Configuration bits from the memory cell (configuration word register) are

connected through c_out (cOut in the RTL code) to the select bits for the logic

cell’s muxes and input to the LUT. Also, configuration bits are passed to the row

and column switches.

The inputs and outputs Cm or Rm are connected together. This setup indicates

the bidirectional connectivity with the MIN part of the switch. If the direction is

input to PE, the Cm or Rm will be input signals shown on the upper left-hand

side of figure 3.7.1. If the direction is output from PE, the Cm or Rm will be

output signals shown on the lower right-hand side of figure 3.7.1. The test-

bench inputs data for the configuration word file to the PE (logic cell and

memory cell) through one of the inputs Cm or Rm depending whether a column

or row operation is expected.

 25

Figure 3.7.1: PE Structure [1]

 26

3.8 2x2 Array

The 2x2 array module shown in figure 3.8.1 consists of four instances of the

PE block. Note: Only one column switch is shown for a clearer diagram. The

four instances are u00_pe, u01_pe, u10_pe, and u11_pe, which are joined

together in the array2x2.v file. Each PE is connected to one row switch and one

column switch. The external connections such as No00, Wi01, Rpm, will become

the inputs and outputs to the 2x2 array while the internal interconnects such as

Wo00 will become Ei01. The other I/O to the design are the three global

registers (OR, MOR, CMAR), and four periphery registers.

3.9 8x8 Array

The 8x8 array block shown in figure 3.9.1 consists of four instances of the

4x4 array. The four instances are u00_array4x4, u01_array4x4, u10_array4x4,

and u11_array4x4, which are joined together in the array8x8.v file. The local

interconnects for each of the 4x4 arrays are connected in the same manner that

four PEs are connected together to form a 2x2 array. The same way that Eo for

PE00 connects to the Wi for PE01 in a 2x2 array, Eo for PE00_0101 connects to

the Wi for PE01_0000. For more details see the local interconnections in the

array8x8.v file located in the /srga/tools/rtl/ directory. There are also eight row

and eight column switches added to the design. In figure 3.9.1 only switches in

rows one and five and columns four and eight are shown for a clearer schematic.

These switches are the parent switches in the 8x8 array design. The inputs and

outputs of the 8x8 array are connected to the outer PEs, parent switches, three

global registers (OR, MOR, CMAR), and four periphery registers.

 27

Figure 3.8.1: Structure of the 2x2 Array

Figure 3.9.1: Structure of the 8x8 Array

 28

Chapter 4: SRGA-UT Implementation

4.1 SRGA-UT Overview

This chapter provides a step-by-step tutorial of an 8x8 SRGA-UT array. The

steps will confirm the pre-synthesis RTL verification (using ModelSim), the

synthesis process (using Design Compiler) and verification of the netlist (using

ModelSim), and the place and route process (using First Encounter) and

verification of the delay constraints (using ModelSim).

There are several new RTL designs that were created to simplify the testing of

the design. The synchronous D Flip-Flip dffsync.vhd file, located in the

/tools/rtl/logiccell/ directory, was created to replace the tsmc18 version to

eliminate timing errors. The memory array memArray.vhd file, located in the

/tools/rtl/mem/ directory, was created to replace the memArray.v to reduce the

number of instances when synthesizing the memory cell.

In chapter 5 the implementation of the SRGA-UT sub-designs is described.

4.2 EDA Tools

For the 8x8 array SRGA-UT design some of the EDA tools available at the

ECE Department at University of Tennessee will be utilized to explore design

alternative and enhance productivity. The EDA tools used are ModelSim from

Mentor Graphics, Design Compiler from Synopsys, and First Encounter from

Cadence.

 29

The ModelSim tools were used for design testing and verification done at the

pre-synthesis level (HDL designs), post-synthesis level (gate-level netlist), and

post place and route level (SDF timing) [7].

The Design Compiler (dc_shell) was used for logic synthesis, which is the process

of converting a design description written in a hardware description language

such as Verilog and VHDL into an optimized gate-level netlist targeting the

tsmc18 libraries. The mixed compile method was used, where the top-down and

bottom-up strategies are simultaneously applied [8]. The top-down compile is

the most used strategy where the top-level design and all its sub-designs are

compiled together. The bottom-up compile strategy compiles the sub-designs

separately and then incorporates them in the top-level design. The top-level

constraints are applied, and the design is checked for violations.

The Mixed compile or bottom-up methods must be used to synthesize the SRGA-

UT design. This is because of the large number of instances present in the

memory cell module. By running only the top-down approach for a design of

2x2 array and higher, the available number of files (~32,000) that can be used in

a folder or the amount of memory (~4000M) allocated by the internal CPU for

each user, will be surpassed and the synthesis will crash. The synthesis scripts

can be found in the /synthesis/synopsys/ directory of each module.

First Encounter was used to generate the place and route steps, targeting the

TSMC 0.18-micron technology, and extract the SDF file which contains net delays

and cell delays [9]. This is done by going through a series of steps, described in

section 4.4, where the netlist is transformed into the graphic design system

(GDS) format for 2D layout display.

The design flow for implementing the SRGA-UT is shown in figure 4.2.1.

 30

Figure 4.2.1: SRGA-UT Design Flow

4.3 Setting up Files

There are two files needed to setup the SRGA-UT: (1) the script start-SRGA-UT

and (2) the zipped file srga-ut.tar.gz. The files can be obtained from Dr.

Bouldin at the ECE department of the University of Tennessee. The first step is

to copy the two files to the directory where the SRGA-UT is going to be initiated.

The second step is to run the script start-SRGA-UT.

» start-SRGA-UT

The script will unzip the srga-ut tar.gz which will setup the folders and files in the

following format.

.

/srga/ main directory

/srga/documentation/USC/ original project and files from USC

 31

 32

/srga/documentation/UT/ SRGA-UT documentation and libraries

/srga/config_files/ configuration word files

/srga/tools/rtl/ RTL designs (verilog and vhdl)

/srga/tools/simulator/lib/ tsmc18, synopsys, and encounter library files

/srga/tools/simulator/logiccell/ logic cell testing folders, scripts, and files

/srga/tools/simulator/memcell/ memory cell testing folders, scripts, and files

/srga/tools/simulator/switch/ switch testing folders, scripts, and files

/srga/tools/simulator/PE/ PE testing folders, scripts, and files

/srga/tools/simulator/2x2/ array 2x2 testing folders, scripts, and files

/srga/tools/simulator/8x8/ array 8x8 testing folders, scripts, and files

4.4 8x8 Array Step-by-Step Tutorial

The file for testing the functionality of the 8x8 array block is the verilog file

test_array8x8.v which is located in the /srga/tools/simulator/8x8/ directory. A

number of predefined configuration words are provided by the configuration file

8x8_config_words.cnf located in the /srga/config_files/ directory. Line number

five in figure 4.4.1 is a configuration word taken from the configuration file and

can be described as follows:

x – Eight bits from 0 to 7 are the horizontal periphery bit registers for the 8x8

array. A bit “1” selects the specific column.

y – Eight bits from 8 to 15 are the vertical periphery bit registers for the 8x8

array. A bit “1” selects the specific row.

c – Three bits from 17 to 19 are the context field from the CMAR register.

The context field selects the memory column to perform a memory access

operation.

Figure 4.4.1: Configuration Word Format for the 8x8 Array

33

e – Indicates an extra bit.

f – Seven bits from 21 to 27 are the offset field from the CMAR register. The

offset field selects the memory row to perform a memory access

operation.

i – The five sets of four bits each from 28 to 47 are the select bits for the

input muxes M0i to M4i. The first four sets of four bits from 28 to 43,

select the four select bit inputs, L0i to L3i, to the LUT. The fifth set of

four bits from 44 to 47, select the first input to the switch_context mux.

t – Sixteen bits from 48 to 63 are the input bits for the LUT. In this case

“1110100010010110” in binary or “e896” in hex is the configuration for a

full adder.

o – The eight sets of four bits each from 64 to 97 are the select bits for the

output muxes M0o to M7o. The outputs from these muxes are No, Eo,

So, Wo, Ro, Co, Rmo, and Cmo respectively. The No, Eo, So, and Wo are

connected to the neighbor PEs while Ro, Co, Rmo, and Cmo are

connected to the logic and memory interconnects of the owned switches.

r – Three bits from 97 to 99 are the configuration bits for the row owned

switch.

c – Three bits from 101 to 103 are the configuration bits for the column

owned switch.

f – One bit 107. Only bit 0 is used to configure the content of the Flip-Flop.

On line eight of the test-bench test_array8x8.v the number of configuration

words is defined (`define CONFIGWORDS 5). In this case, the number of

CONFIGWORDS comes from the configuration file (8x8_config_words.cnf).

Figure 4.4.2 is the section of the test-bench that takes the configuration words

and distributes the different sections of each word to the 8x8 memory array and

registers. Figure 4.4.3 shows the method of assigning the truth table inputs ni,

wi, and ri, to perform the full addition and subtraction operations.

 34

Figure 4.4.2: Importing Configuration Word Section of test_array8x8.v

Figure 4.4.3: Assigning Inputs to the 8x8 Array

 35

 36

Line seventy-seven stores the configuration words into a temporary system

memory. The OR, MOR, and SRR registers are then setup to allow memory

write. The FOR loop creates a counter for the number of configuration words

and a counter for the amount of bits in a configuration word.

Array 8x8 Pre-Synthesis

To test the RTL design using ModelSim simulation, run the script 1-presynth-8x8

by following the next steps:

» cd /simulator/8x8/presynth/

» 1-presynth-8x8

This will bring up the ModelSim main and wave windows. After reviewing the

test_array8x8.v signals in the wave window, other signals such as the array8x8

signals can be added to the wave from the main window by highlighting the

u_array8x8 in the Workspace area, then right click and Add to Wave.

When the signals appear in the wave window, at the main window prompt type

restart, then click Restart on the next window. To simulate all the signals, at

the main window prompt type run 15000000. To load the signals from figure

4.4.4, open presynthesis_8x8_load_TB.do from the ModelSim wave window,

located in /8x8/presynth/modelsim/ directory.

Bits “1” in the DRR registers and bits “0” in the RMR register, indicate the array

8x8 rows that are allowed to have a memory operation. Section A of figure 4.4.4

illustrates the first configuration word being loaded into the memory of the PEs

allowed by DRR and RMR. The first configuration word is no operation (all bits

are zeros) and it is stored in column address “000” of the memory array block

shown by the contextAdr signal.

37

Figure 4.4.4: Array 8x8 Pre-Synthesis - Loading Memory Blocks

Sections D and E of figure 4.4.4 illustrate the fourth and fifth configuration words

being loaded. This is a unique test case since PE0 and PE1 in the first row of the

8x8 array are configured to perform two-bit full adder also illustrated in figure

4.4.5. The fourth word is loaded only into the memory address “011” of PE0

which is controlled by the DRR, RMR and wrMem signals. The configuration

word selects the Ni and Wi of PE0 to be the addition bits and Ri to be the Carry-

In bit, while No is the Sum and Eo is the Carry-Out. The fifth word is loaded

only into the memory address “011” of PE1. The configuration word selects the

Ni and Ri to be the addition bits and Wi becomes the Carry-In bit which is

connected to the Eo Carry-Out of PE0. No is the Sum bit and Eo is the Carry-Out

bit which will connect to the west input of PE2. Note: ni (from code) and Ni

(from schematic) are identical signals; and the same applies to all other signals.

Section B and C illustrate the second and third configuration words being loaded

in the same manner as the first word. The second word is configured for a full

adder and stored in column address “001” of the memory array block. The test

behavior is shown in figure 4.4.6 section X with ni, wi, and ri being the truth

table inputs, while the orange signals no and eo being the sum and carry-out

respectively. The third word is configured for a full subtract operation and it is

stored in address “010”. The behavior of the waves can be examined in section

Y of figure 4.4.6 with the same inputs and outputs as part X where and eo being

the difference and borrow-out respectively.

Figure 4.4.5: Array 8x8 Full Add Demo Schematic

38

39

Figure 4.4.6: Array 8x8 Pre-Synthesis - Applications

To load the signals from figure 4.4.6, open presynthesis_8x8_application.do from

/8x8/presynth/modelsim/ directory. When the contextAddr changes, in this case

from full add to subtract and back to add, it takes one clock cycle for the device

to switch to each context.

Figure 4.4.7 shows the filenames and their full-path, and the instances and their

design modules for the array 8x8 design.

Array 8x8 Synthesis

To create the gate-level netlist design, follow the next steps:

» cd /simulator/8x8/synthesis/

» 2-synth-array8x8

Figure 4.4.7: Array 8x8 Pre Synthesis Workspace

 40

At first, the script will copy the necessary library files to the

/8x8/synthesis/synopsys/ directory and then the dc_shell synthesis tool from

Synopsys [8] is initiated. The dc_shell executes the script synth-array8x8.scr

located in the /synopsys/ directory. The details from this step are written to the

file info_8x8_synthesis.txt also located in the /synopsys/ directory. The

synthesis tools will create the verilog netlist file array8x8-synth.v and the

delay file array8x8-synth.sdf which are written in the /synopsys/ folder.

The next step is to edit the verilog netlist file. At lines 407 change from

rpm00(1’b0) to rpm00(rpm0000) and at line 408 change from rpm10(1’b0) to

rpm00(rpm0010).

The netlist is used to test the post synthesis design using ModelSim simulation by

following the next steps:

» cd /simulator/8x8/synthesis/

» 3-post-synth-sim-array8x8

This will bring up the ModelSim main and wave windows. To test and review the

behavior of the signals, follow some of the steps described in the pre-synthesis

section. To load the signals from figure 4.4.8 and 4.4.9, open the wave file

synthesis_8x8_final.do from the /8x8/synthesis/modelsim/ directory. To review

the behavior of the waves, follow the instructions in the pre-synthesis

simulations.

Note: It is a good idea to go into the /modelsim/ folders after testing the design

and delete the work/ directory and the transcript, vsim.wlf, and

workingExclude.cov files. This will save space to be able to run other tests.

 41

Figure 4.4.8: Array 8x8 Synthesis - Loading Memory Blocks

Figure 4.4.9: Array 8x8 Pre-Synthesis - Applications

 42

First Encounter Tools

This Section is the tutorial to generate the automatic place and route of the

design. The process itself is very elaborate and to discuss the details of

developing each step is out of the scope of this project. However a generalized

step by step tutorial of using the encounter tools to crate the place and route is

provided bellow.

Step 1: Setting up the files

Initiate the Encounter tools:

» cd /simulator/8x8/asic/

» 4-start-encounter

The script 4-start-encounter will copy the necessary encounter libraries to the

/8x8/asic/encounter/ directory and will bring up the encounter window.

Step 2: Import the Design

From the encounter window (see figure 4.4.11), select Design -> Design

Import… Complete the Design and Power sections from the Design Import

window. In the Design section, to choose the files click on the dotted tab to the

right of the text boxes. For the Top Cell you can check the Auto Assign or you

can enter your own name. In the Power section, name the Power Nets as VDD

and Ground Nets as VSS. At this point you can save the initial setup. Click OK

After the design is imported, the core area of the chip should be seen and if

zoomed out (shift-z), the top level module (four instances of the 4x4 array)

should be seen in purple objects. A single module can be selected by single

clicking the object. By using "shift-g" the object can be ungroup and all the

modules that belong to the object should be seen. You can use the “shift-g”

procedure further to another layer of hierarchy.

 43

Figure 4.4.11: Encounter Tools - Importing Design

To re-group the hierarchy, select one of the child modules and press "g". The

refresh button can redraw the design at any time.

Step 3: Specify the Chip Size

From the encounter window (see figure 4.4.12), select Floorplan -> Specify

Floorplan… Change the Margins “Core to IO Boundary” to 40 for all directions.

Click OK to apply the change.

Step 4: Power Planning

From the encounter window (see figure 4.4.13), select Floorplan -> Power

Planning -> Add Rings… The width and the spacing for the rings are an

option that could be changed. Everything else stays as default. Click OK.

 44

Figure 4.4.12: Encounter Tools - Specify Chip Size

Figure 4.4.13: Encounter Tools - Power Planning

 45

Step 5: Global Net Connections

From the encounter window (see figure 4.4.14), select Floorplan -> Global

Net Connections… This connects the VDD and VSS pins to the global power

nets. Fill out the form of part 2 and click Add to List. After the pins VDD and

VSS are seen in the Connection List, click Apply and then Close.

Step 6: Standard Cell Placement

From the encounter window (see figure 4.4.15), select Place -> Place..., use

the default of Medium Effort and click OK. This step takes some time (~8min).

At this point the three different placement views can be seen from figure 4.4.16.

The first view is the Floorplan view. The blue lines show the connections

between the different modules and the connections to the I/O pins of the

floorplan. The second view is the Amoeba view. This shows the outlines of the

different modules. Any module can be selected and use “shift-g” to view the

next layer hierarchy. The third view is the Physical view. This is where the

standard cells can be seen by zooming.

Figure 4.4.14: Encounter Tools - Global Net Connections

 46

Figure 4.4.15: Encounter Tools - Standard Cell Placement

Figure 4.4.16: Encounter Tools - Cell Placement Views

 47

Step 7: Add Filler Cells

From the encounter window (see figure 4.4.17), select Place -> Filler -> Add

Filler… In the Add Filler window (part 2) change the Cell Name to FILL1, and

the Prefix to fill. Click OK.

Step 8: Route Power

From the encounter window (see figure 4.4.18), select Route -> SRoute…

When the SRoute window comes up, uncheck Block pins, Pad pins, and Pad

rings. Click OK. The power strips should be seen in the layout.

Step 9: Final Route

From the encounter window (see figure 4.4.19), select Route -> WRoute…

Leave everything as default. Click OK. This part may take some time (~20 to

30min).

Figure 4.4.17: Encounter Tools - Add Filler Cells

 48

Figure 4.4.18: Encounter Tools - Route Power

Figure 4.4.19: Encounter Tools - Final Route

 49

Step 10: Extract RC

From the encounter window (see figure 4.4.20 1a and 1b), select Timing ->

Extract RC… You can check any of the boxes to save any file then click OK.

Step 11: Calculate Delay

From the encounter window (see figure 4.4.20 2a and 2b), select Timing ->

Calculate Delay… In the Calculate Delay window change the name for the

SDF Output File to array8x8-encounter.sdf. Click OK. This file will be stored

in the /8x8/asic/encounter/ directory and it is the final file that includes the

timing delay for the place and route design.

Figure 4.4.20: Encounter Tools - (1) Extract RC and (2) Calculate Delay

 50

 51

Step 12: Results, Save, and Restore Design

This step is optional although it will save a lot of time. From the encounter

window select Tools -> Gate Count Report… – and – Summary Report…

Save the reports and view the results. The gate count report will provide the

number of gates, number of cells, and the area of the gate for each module.

The summary report will provide design statistics, chip utilization, module

information, and wire information. The chip utilization will indicate the core size,

the chip size, and the number of cell rows.

From the encounter window select Design -> Save Design… This will save

the design by default as array8x8.enc. To load the place and route design in the

future, select Design -> Restore Design… and select array8x8.enc.

Final Layouts

The final layouts can be seen in figure 4.4.21. The floorplan view shows the

individual blocks connected by the blue lines to the left and the core to place all

the individual blocks to the right. The Amoeba view shows the individual

modules placed in the core. Here you can see the four instances of the 4x4

array, where instance u01_array4x4 further shows the different modules. The

Physical view shows the final layout with the place and route.

Array 8x8 Post Layout Simulation

Before using the ModelSim tools to test the place and route timing behavior, the

timing file array8x8-encounter.sdf must be edited on line 15 from (CELLTYPE " ")

to (CELLTYPE "array8x8"). One simple way to open the file is to rename it with

a .txt extension.

Figure 4.4.21: Encounter Tools - Final Pace and Route of 8x8 Array

52

The script 5-post-layout-sim-array8x8 copies the timing file array8x8-

encounter.sdf from the /encounter/ to the /modelsim/ directory and simulates

the netlist design array8x8-synth.v created by the synthesis tools. To test and

review the behavior of the signals, follow some of the steps described in the pre-

synthesis section.

To load the signals in figure 4.4.22 and 4.4.23, from the wave window, open the

wave file post-layout-array8x8_final.do.

To test the timing generated by the pace and route, follow the next steps to

initiate the ModelSim tools:

» 5-post-layout-sim-array8x8

» cd /simulator/8x8/asic/

53

Figure 4.4.22: Array 8x8 Post Layout - Loading Memory Blocks

54

Figure 4.4.23: Array 8x8 Post Layout – Applications

Chapter 5: Implementing the SRGA-UT Sub-Designs

5.1 Logic Cell Implementation

The file for testing the functionality of the logic block is test_logiccell.v and it

is located in the /srga/tools/simulator/logiccell/ directory. The testing objective

is to assign inputs to the logic block as if they were coming through the

corresponding PE and view the behavior of the internal logic. The applications to

be tested are the full addition and full subtraction discussed in section 3.3. By

knowing the location of the input bits from the inMuxBus[15:0] and

outMuxBus 15:0], the configuration bits are selected strategically (see also figure

5.1.1).

[

t

Sel_mi0 will select ni to be the first input L0i for the LUT. Sel_mi1 will select wi

to be the second input L1i for the LUT. Sel_mi2 will select ri to be the third input

L2i for the LUT.

At line 120 of the est_logiccell.v, the configuration word for a full adder is

passed to the lutconifig which will be the application for the truth table inputs in

lines 128 to 135. The outputs for the full adder are given by sel_mo0 which

selects Lo0 (sum) to be the output for M0o mux, and sel_mo1 which selects Lo1

(carry-out) to be the output for M1o mux. These outputs will be the North

output No and East output Eo for the corresponding PE.

At line 141, the configuration context is switched to full subtraction. The inputs

and outputs for the full subtraction operation are utilized in the same manner as

in the addition part. In this case ni becomes input bit one, wi becomes input bit

two, ri becomes the borrow-in, No becomes Lo0 the difference bit, and Eo

becomes Lo1 the borrow-out bit.

 55

Figure 5.1.1: Section of Test-bench for Logic Cell Block

Logic Cell Pre-Synthesis

To test the RTL design using ModelSim simulation, run the script 1-presynth-

logiccell by following the next steps:

» cd /simulator/logiccell/presynth/

» 1-presynth-logiccell

This will bring up the ModelSim main and wave windows. After reviewing the

test_logiccell.v signals in the wave window, the logic cell signals can be added to

the wave from the main window by highlighting the u_logiccell in the Workspace

area, then right click and choose Add and Add to Wave. When the signals

appear in the wave window, at the main window prompt type restart, then click

Restart on the next window. To simulate all the signals, at the main window

prompt type run 5000.

 56

 57

In the wave window select the signals sel_mi0 to sel_mo7, right click to select

Radix and Unsigned. This will allow you to see the decimal values for each mux

select signals to be consistent with the test_logiccell.v file. Also, right click and

select Radix and Hexadecimal for the lutconfig, lutconfig0, and lutconfig1 signal.

The wave that is being edited at this point can be saved and then opened in the

future testing. From the wave window, select File and click Save and Format.

To load the saved wave format, first select all the signals in the wave window

and delete them. Then, choose File and click Open and Format, and select the

filename.do (filename being the name of the saved file). Then redo the restart

and run 5000 steps to view the behavior of the waves.

To load the signals from figure 5.1.2, open and run presynthesis_logiccell.do

from /logiccell/presynth/modelsim/ directory. Section A tests the full addition

with the orange waves eo and no being the carry-out and sum bits. Section B

tests the full subtraction with the orange waves eo and no being the borrow-out

and difference bits. In the logic cell, when the lutconfig signal changes, the

context switches from add to subtract instantaneously. One clock cycle is

needed for the context switch when the new configuration is loaded from the

memory (described in the PE implementation section).

Logic Cell Synthesis

To create the gate-level netlist design, follow the next steps:

» cd /simulator/logiccell/synthesis/

» 2-synth-logiccell

At first, the script will copy the necessary library files to the

/logiccell/synthesis/synopsys/ directory and then the dc_shell synthesis tool from

Synopsys [8] is initiated.

Figure 5.1.2: Logic Cell - Pre-Synthesis Simulation

58

 59

The dc_shell executes the script synth-logiccell.scr located in the /synopsys/

directory. The details from this step are written to the file

info_logiccell_synthesis.txt also located in the /synopsys/ directory. The

synthesis tools will create the verilog netlist file logiccell-synth.v and the delay

file logiccell-synth.sdf which are written in the /synopsys/ folder. These two files

are used to test the netlist design using ModelSim simulation by following the

next steps:

» cd /simulator/logiccell/synthesis/

» 3-post-synth-sim-logiccell

This will bring up the ModelSim main and wave windows. To test and review the

behavior of the signals, follow some of the steps described in the pre synthesis

section. To load the signals from figure 5.1.3, open the wave file synthesis-

logiccell.do from the /logiccell/synthesis/modelsim/ directory.

Section A from figure 5.1.3 tests the full addition with the orange waves eo and

no being the carry-out and sum bits. Section B tests the full subtraction with the

orange waves eo and no being the borrow-out and difference bits.

Logic Cell Place and Route

The First Encounter tools are used to generate the placement and routing of the

netlist. To initiate the Encounter tools, follow the next steps:

» cd /simulator/logiccell/asic/

» 4-start-encounter

The script 4-start-encounter will copy the necessary encounter libraries to the

/logiccell/asic/encounter/ directory and will bring up the encounter window.

60

Figure 5.1.3: Logic Cell - Post-Synthesis Simulation

Follow the step by step tutorial in section 4.4, except when necessary enter

“logiccell” instead of “array8x8”. A generalized procedure for generating the

logic cell placement and routing is listed bellow:

• Import Design – Design: netlist, LEF file, and timing library

• Import Design – Power Nets: VDD, VSS

• Floorplan – Specify Floorplan

• Floorplan – Power Planning – Add Rings

• Floorplan – Global Net Connections

• Place – Place

• Place – Filler – Add Filler

• Route – SRoute

• Route – WRoute

• Timing – Extract RC

• Timing – Calculate Delay – edit SDF Output File: logiccell-encounter.sdf

Figure 5.1.4 shows the logic cell layout after placement and routing.

Figure 5.1.4: Logic Cell Layout after WRoute

 61

The timing file created by place and route is logiccell-encounter.sdf and it is

written in the logiccell/asic/encounter/ directory. The next step is to edit line 15

of the logiccell-encounter.sdf file from (CELLTYPE " ") to (CELLTYPE "logiccell").

To test the timing generated by the pace and route, follow the next steps to

initiate the ModelSim tools:

» cd /simulator/logiccell/asic/

» 5-post-layout-sim-logiccell

The script 5-post-layout-sim-logiccell copies the timing file from the /encounter/

to the /modelsim/ directory and simulates the netlist design created by the

synthesis tools. To test and review the behavior of the signals, follow some of

the steps described in the pre-synthesis section. The inputs and outputs are the

same as in the pre-synthesis and synthesis sections. To load the signals in figure

5.1.5, from the wave window, open the wave file encounter-logiccell.do.

Figure 5.1.5: Logic Cell - Post-Layout Simulation

 62

5.2 Memory Cell Implementation

Implementing the Memory Block follows the same format as the tutorial

section 4.4. For this section, only a brief description will be demonstrated.

The memory array block was redesigned in the memArray.vhd to be

synthesizable. The original memArray.v instantiates 77 rows of the sub-block

storageCellRow. The storageCellRow block then instantiates 8 storageCell which

also contains other sub-blocks. When used with the 8x8 array of PEs, the large

number of instances for the design would surpass the allocated amount of files

allowed in a folder. This happens when running the synthesis of the 8x8 array.

The new memArray.vhd block was created with one instance memArray, and

together with using the mixed compile method, the design was synthesized.

The file for testing the functionality of the memory block is test_memcell.v and it

is located in the /srga/tools/simulator/memcell/ directory. The operations loaded

to the memory array are the full addition and full subtraction discussed in section

3.3. In the test-bench figure 5.2.1 the configuration file memcell.cnf is loaded

on line 70. After the configuration contexts were loaded into the memory, the

C_out and d_out outputs were verified for proper functionality – illustrated from

line 100 in figure 5.2.1.

To test the RTL design using ModelSim simulation, run the script 1-presynth-

memcell by following the next steps:

» cd /simulator/memcell/presynth/

» 1-presynth-memcell

 63

The dc_shell executes the script synth-memcell.scr located in the /synopsys/

directory. The details from this step are written to the file

info_memcell_synthesis.txt also located in the /synopsys/ directory. The

synthesis tools will create the verilog netlist file memcell-synth.v and the delay

file memcell-synth.sdf which are written in the /synopsys/ folder.

The behavior of the memory cell is shown in figure 5.2.2. The output cOut and

dOut (in the code) are the same as C_out and d_out (in the schematic). C_out

output the 77-bit configuration word when the MOR register becomes “0” and

the switchContext signal becomes “1”. The d_out signal will output the memory

1-bit that the offset signal (memory row) points to.

To create the gate-level netlist design, follow the next steps:

» 2-synth-memcell

» cd /simulator/memcell/synthesis/

Figure 5.2.1: Section of Test Bench for Memory Cell Block

64

Figure 5.2.2: Memory Cell Testing

65

The netlist design is tested using ModelSim by following the next steps:

» cd /simulator/memcell/synthesis/

» 3-post-synth-sim-memcell

To initiate the Encounter tools, follow the next steps:

» cd /simulator/memcell/asic/

» 4-start-encounter

Follow the encounter section of the tutorial, except when necessary enter

“memcell” instead of “array8x8” to generate the place and route and output the

timing file memcell-encounter.sdf. The next step is to edit line 15 of the

memcell-encounter.sdf file from (CELLTYPE " ") to (CELLTYPE "memcell"). To

test the timing generated by the pace and route, follow the next steps to initiate

the ModelSim tools:

» cd /simulator/memcell/asic/

» 5-post-layout-sim-memcell

5.3 Switch Implementation

The switch is tested only at the RTL level because the block is very small – it

only consists of three 2-bit muxes and a bidirectional switch. The test file for the

switch module test_switch.v was designed to test the truth table illustrated in

figure 5.3.1. The results can be seen in figure 5.3.2 from ModelSim simulations.

To load the signals in figure 5.3.2, open the file presynthesis_switch.do in the

/simulator/switch/presynth/modelsim/ directory. To test the RTL design using

ModelSim simulation, run the script 1-presynth-memcell by following the next

steps:

» cd /simulator/switch/presynth/

» 1-presynth-switch

 66

Figure 5.3.1: Section of Test Bench for Switch Module

Figure 5.3.2: Switch Testing

 67

 68

5.4 PE Implementation

The PE block consists of a logic cell, a memory cell, a memory interface, a

row switch, and a column switch. At this level all the modules are connected

together and all the inputs and outputs to all the modules, including registers will

go through the PE. The register signals are processed by the memory interface

which will create the internal signals wrMem, WrLog, switchContext, data_In,

Rmi, and Cmi. These signals are used to perform context switching and memory

operations.

The file for testing the functionality of the PE block is test_pe.v and it is located

in the /srga/tools/simulator/pe/ directory. The test-bench inputs data for the

configuration word file to the PE (logic cell and memory cell) through one of the

inputs Cm or Rm depending whether a column or row operation is expected.

The PE is using the same format configuration file as the 8x8 tutorial for

consistency; except that the registers are set up only for one PE instead of eight.

The operations that are being tested are the full add and full subtract. The PE

verifies the functionality of all the sub-blocks which is illustrated in figure 5.4.1

and figure 5.4.2.

To test the RTL design using ModelSim simulation, run the script 1-presynth-pe

by following the next steps:

» cd /simulator/pe/presynth/

» 1-presynth-pe

The wave windows that can be viewed at this stage from ModelSim are

pe_load_mem.do and pe_operation.do.

Figure 5.4.1: PE Testing – Loading Configuration

 69

Figure 5.4.2: PE Testing – Operations

70

To create the gate-level netlist design, follow the next steps:

» cd /simulator/pe/synthesis/

» 2-synth-pe

The dc_shell executes the script synth-pe.scr located in the /synopsys/ directory.

The details from this step are written to the file info_pe_synthesis.txt also

located in the /synopsys/ directory. The synthesis tools will create the netlist

file pe-synth.v, and using ModelSim it can be tested by following the next steps:

» cd /simulator/pe/synthesis/

» 3-post-synth-sim-pe

The wave window that can be viewed at this stage from ModelSim is pe.do.

To initiate the Encounter tools, follow the next steps:

» cd /simulator/pe/asic/

» 4-start-encounter

The necessary encounter libraries will be copied to the /pe/asic/encounter/

directory and will bring up the encounter window. Follow the step by step

tutorial in section 4.4, except when necessary enter “pe” instead of “array8x8” to

generate the place and route and output the timing file pe-encounter.sdf.

The next step is to edit line 15 of the pe-encounter.sdf file from (CELLTYPE " ")

to (CELLTYPE "pe").

To test the timing generated by the pace and route, follow the next steps to

initiate the ModelSim tools:

» cd /simulator/pe/asic/

» 5-post-layout-sim-pe

The wave window that can be viewed at this stage from ModelSim is pe.do.

 71

 72

5.5 2x2 Array Implementation

The 2x2 array module consists of four instances of the PE block. Each PE is

connected to one row switch and one column switch. The file for testing the

functionality of the 2x2 array block is test_array2x2.v and it is located in the

/srga/tools/simulator/2x2/ directory. The configuration word file for the 2x2

array is 2x2_config_words.cnf located in the /srga/config_files/ directory. The

format of the configuration word is the same as the PE’s except there are 2-bis

for the registers DRR and RMR instead of one bit.

In the test_array2x2.v file, the signal CM transfers the bits form the configuration

word to CM_tri. The inouts cpm10 and cpm11 (from array2x2.v) are connected

to CM_tri[0] and CM_tri[1] respectively. In array2x2.v, the signals cpm10 and

cpm11 become the parent inout for each of the two column switches. Each

switch then sends the configuration word bits to the Cm signal of each PE (see

section 5.4 for the functionality of the PE). If the registers indicated a row

operation, the configuration bits would be sent to Rm of each PE.

The 2x2 array verifies the functionality of all the sub-blocks which is illustrated in

figure 5.5.1 and figure 5.5.2.

To test the RTL design using ModelSim simulation, run the script 1-presynth-2x2

by following the next steps:

» cd /simulator/2x2/presynth/

» 1-presynth-2x2

The wave windows that can be viewed at this stage from ModelSim are

2x2_load_mem.do and 2x2_application.do.

Figure 5.5.1: 2x2 Array Testing – Loading Configuration

 73

74

Figure 5.5.2: 2x2 Array Testing – Operations

To create the gate-level netlist design, follow the next steps:

» cd /simulator/2x2/synthesis/

» 2-synth-2x2

The dc_shell executes the script synth-2x2.scr located in the /synopsys/

directory. The details from this step are written to the file info_2x2_synthesis.txt

also located in the /synopsys/ directory. The synthesis tools will create the

netlist file 2x2-synth.v, and it can be tested by following the next steps:

» cd /simulator/2x2/synthesis/

» 3-post-synth-sim-2x2

The wave window that can be viewed at this stage from ModelSim is 2x2.do.

To initiate the Encounter tools, follow the next steps:

» cd /simulator/2x2/asic/

» 4-start-encounter

The necessary encounter libraries will be copied to the /2x2/asic/encounter/

directory and will initiate the encounter window. Follow the step by step tutorial

in section 4.4, except when necessary enter “array2x2” instead of “array8x8” to

generate the place and route and output the timing file 2x2-encounter.sdf.

The next step is to edit line 15 of the 2x2-encounter.sdf file from (CELLTYPE " ")

to (CELLTYPE "array2x2").

To test the timing generated by the pace and route, follow the next steps to

initiate the ModelSim tools:

» cd /simulator/2x2/asic/

» 5-post-layout-sim-2x2

The wave window that can be viewed at this stage from ModelSim is 2x2.do.

 75

Chapter 6: SRGA-UT Results, Conclusion and Future

Possibilities

6.1 Results

The objective of this thesis was to use the open code of the SRGA-USC

design, created by the Department of EE-Systems at University of Southern

California and the Department of Mathematics at the University of Trento (Italy),

and implement it using the available EDA tools at the Department of ECE at the

University of Tennessee. To achieve this goal, a great deal of knowledge of the

original SRGA-USC architecture was required. The first step was to examine the

RTL design, make the appropriated adjustments and pass the pre synthesis

verification stage. The second challenge was to synthesize the RTL design,

create the netlist and pass the synthesis verification stage. And the last step was

to generate the place and route from the netlist design, produce the timing delay

files, and test the final design for proper functionality.

The EDA tools used to implementing the SRGA-UT were: ModelSim for

verification and simulation at all stages, Design Compiler for synthesis and

creating the netlist, and First Encounter for performing the place and route and

creating the delay files.

The complete SRGA architecture was describe in several thousand lines of

Verilog and VHDL code. The synthesis and place and route were done using a

standard cell library for a 0.18 µm process. The synthesized design can store 8

configuration contexts in each PE (this number is editable in the memory cell

verilog files). The final implemented module has an 8x8 array of PEs. The

number of gates and area for each module are shown in figure 6.1.1.

 76

Figure 6.1.1: 8x8 SRGA-UT Results

The place and route generated a chip size of 5,413,300 µm2.

The results obtained throughout the implementation of the SRGA-UT,

demonstrated that the design was capable to switch context and perform

memory access operations in a single clock cycle. The minimum clock cycle that

was required to verify the design was 30ns. Thus the SRGA-UT design can be

expected to operate at a frequency of 33MHz.

There were other tools used/tried to implement the SRGA-UT. The VCS

simulating tools from Synopsys [10] were also used successfully at UT. The

SRGA-USC design came with scripts to test their design using VCS tools. Since

the ModelSim tools are more frequently used in the Microelectronic System

Research Lab at the University of Tennessee, all the testing and verification was

done using ModelSim.

The Silicon Ensemble tools [11] were also used to test the SRGA-UT place and

route design. The SE tools were able to create the layout of all the modules in

the design but did not produce the timing (.sdf) files for the 2x2 and 8x8 arrays.

 77

6.2 Conclusion and Future Possibilities

The objective of the thesis was met, by exploring the original design,

making the necessary changes, and using the available EDA tools to generate

the results. A step-by-step tutorial was created for the 8x8 SRGA-UT using the

standard cell library for a 0.18 µm process. The functionality of the SRGA-UT to

perform context switching and memory access operations in a single clock cycle

were confirmed. The SRGA-UT design has proven the importance of the design

for reuse techniques.

Following are future possibilities that could be explored:

(1) One of the disadvantages of having such a large amount of gates for the

memory array 3,810 is that it takes the most amount of space on the

layout. This is because every PE in any combination of array size contains

this number of gates for the memory array, which is implemented to store

eight (8) configuration contexts. One option is to edit the memory cell

code to store less configuration contexts, thus reducing the memory size

for each PE – and/or – another possibility could be to create a global

memory array, or a combination of global memory arrays. The global

memory could store the configuration for the applications intended to be

used. The global memory could be utilized through a network of muxes to

attach each PE in a similar way as it is connected now. This could allow

the SRGA-UT to maintain its functionality and greatly reduce the number of

gates for the design. The area for each PE could be reduced by more than

half thus improving the size, frequency, and possible cost of production.

(2) A second future possibility could be to implement the 16x16 array of PEs.

(3) A third future possibility could be to incorporate the SRGA-UT with the

University of Tennessee SoC open core Volunteer SoC platform [12].

 78

Reference:

 79

[1] R. Sidhu, S. Wadhwa, A. Mei, and V. K. Prasanna, “A Self-Reconfigurable
Gate Array Architecture”, in Proc. Of the International Conference on Field
Programmable Logic and Applications, Sep. 2000, pp. 106-120.

[2] Wikipedia, the Free Encyclopedia, Field-Programmable Gate Array, [Online]

Available: http://en.wikipedia.org.

[3] S. M. Scaler, and J. R. Vázquez, Sanders, A Lockheed Martin Company,

“The Design and Implementation of a Context Switching FPGA”, in Proc. of
the FPGAs in Custom Computing Machines, Apr. 1998, pp. 78-85.

[4] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V.

George, J. Wawrzynek, and A. DeHon, “High-speed, hierarchical
synchronous reconfigurable array”, In Proc. of the International
Symposium of Field Programmable Gate Array, Feb. 1999 pp.69-78.

[5] Dr. Bouldin, Don. ECE 551/552/651/652 Class Notes. [Online] Available:

http://www-ece.engr.utk.edu/ece/bouldin_courses/index.html

[6] Rick Mosher. AMI Semiconductor, Structured ASIC Based SoC Design,

[Online] Available: http://www.us.design-reuse.com/articles/article7058.

[7] Mentor Graphics Corporation, ModelSim SE Tutorial, Version 5.7a Published:

Jan. 2003.

[8] Synopsys, Design Compiler User Guide, Version W-2004.12, Dec. 2004.

[9] Cadence Design Systems, Encounter Digital IC Design Platform, [Online]

Available: http://www.cadence.com/products, Unpublished.

[10] Synopsys, VCS/VCSi User Guide, Version 7.0.1, Apr. 2003.

[11] Mississippi State University, Computational Science and Engineering,

“Design_flow_se.ppt”, [Online] Available: http://www.erc.msstate.edu/mpl
/education/cadence/standard_cell/downloads.html

[12] Bouldin, Don. and R. Srivastava. “An open System-on-Chip Platform for

Education”, in Proc. of 2004 European Workshop on Microelectronics
Education (EWME), Lausanne, Switzerland. Apr. 15-16, 2004.

 80

VITA

Gabriel Cozmin Chereches was born in Bacau, Romania. He started school at the

age of seven in Bacau. At the age of nine he started taking swimming and

diving lessons and not too long after he became the Diving National Champion.

He went to school part time while he was traveling with the national team to

compete in the international diving events. At the age of fourteen, in 1992, he

competed in his first Olympic Games in Barcelona (Spain). At the age of fifteen,

in 1993, after becoming the Junior World Champion at the ten meter platform in

London (UK), he moved to the United States to continue his training and

education. He attended high school at the Awty International School in Houston

Texas. During his high school he participated in the 1996 Olympic Games in

Atlanta (USA) on the ten meter platform. After graduating from Awty, he joined

the University of Tennessee swimming and diving team to participate in the

collegiate athletics and to receive an advanced education. As a college student

athlete, he became NCAA All-American nine times, SEC Champion five times, and

participated in the 2000 Olympic Games in Sydney (Australia). He graduated

from the University of Tennessee with a Bachelors of Science in Electrical and

Computer Engineering in the spring of 2002. In the fall of 2002, he started his

Graduate studies in Electrical and Computer Engineering at the University of

Tennessee. As a graduate student, he worked as a Graduate Teaching Assistant

for the Engage Freshman Engineering Program and also worked part time at the

Environmental Systems Corporation. In the fall of 2004 he started working full

time at the Environmental Systems Corporation and graduating with a Masters of

Science in December 2005…

 81

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2005

	“Design and Verification of a Reusable Self-Reconfigurable Gate Array Architecture
	Gabriel Cozmin Chereches
	Recommended Citation

	Dr. Itamar Elhanany
	Abstract

