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Abstract 

 
 
This thesis presents the design and verification of a Self-Reconfigurable Gate 

Array architecture (SRGA-UT) created for reuse, and available with a step-by-

step tutorial and comprehensive documentation.   

 

The original SRGA [1], created at the University of Southern California, is an 

innovative architecture for a reconfigurable device that allows single cycle 

context switching and single cycle random access to a unified on-chip 

configuration/data memory.  The key architecture that enables the above two 

features is the use of a mesh of trees based interconnect with logic cells and 

memory blocks at the leaf nodes and identical switches at the parent nodes. 

 
The SRGA-UT was adapted by making necessary modifications to the original 

design, to be implemented using the available University of Tennessee electronic 

design automation tools.  An 8x8 array of PEs (Processing Elements) was 

synthesized and routed targeting a standard cell library for a 0.18 µm process. 

The synthesized design can store eight configuration contexts in each PE (this 

number can be modified by editing the Verilog files). The place and route 

generated a core-chip size of 5,413,300 µm2, and contains 354,053 number of 

gates.  The step-by-step tutorial demonstrates that the SRGA-UT design is 

capable to switch context and perform memory access operations in a single 

clock cycle. 

 

ModelSim tools were used for verification and simulation at all levels, Design 

Compiler executed the synthesis and created the netlist design, and First 

Encounter SoC performed the place and route and created the delay constraints. 
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Chapter 1: Introduction  
 

 

1.1 Thesis Goals 
 

The objective of this thesis was to use the open code of the Self-

Reconfigurable Gate Array (SRGA) architecture, created by the Department of 

EE-Systems at University of Southern California and the Department of 

Mathematics at the University of Trento (Italy), and make the minimum 

adjustments necessary to adapt and implement using the available EDA 

(electronic design automation) tools at the Department of ECE at the University 

of Tennessee.  The outcome of this thesis was to end up with a SRGA-UT design 

for reuse, accessible with a step-by-step tutorial and comprehensive 

documentation. 

 

To achieve this goal, a great deal of knowledge of the SRGA-USC architecture 

was required.  The first step was to examine the RTL (register transfer level) 

design, make the appropriate adjustments and pass the pre-synthesis verification 

stage.  The second challenge was to synthesize the RTL design, create the netlist 

and pass the synthesis verification stage.  And the last step was to generate the 

place and route from the netlist design, produce the timing delay files, and test 

the final design for proper functionality. 

 

The EDA tools used to implement the SRGA were: ModelSim for verification and 

simulation at all stages, Design Compiler for synthesis and creating the netlist, 

and First Encounter for performing the place and route and creating the delay 

files. 
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1.2 Outline of Thesis 
 

The introduction states the thesis goals.  An open self-reconfigurable design, 

SRGA-USC, developed at the University of Southern California was taken and 

implemented using the available EDA tools at the University of Tennessee.  The 

intent was to make the minimum changes, while the focus was to develop a 

SRGA-UT design for reuse with complete documentation and a step-by-step 

implementation tutorial. 

 

The second chapter will present a background of the IC (integrated circuit) 

technology – focusing on the reconfigurable devices such as the SRGA-USC, an 

innovative architecture for a self-reconfigurable device that allows single cycle 

context switching and single cycle random access to the on-chip configuration 

memory.  This chapter also describes the importance of the design for reuse 

techniques which can greatly decrease the time-to-market by reducing the 

design cycle and the manufacturing cycle. 

 

The third chapter illustrates the background of each component of the SRGA 

architecture including the changes made to the original SRGA-USC design to 

adapt and implement it at the University of Tennessee.  The SRGA-UT design 

retains the overall original architecture but was mostly adjusted to be able to 

pass the verification stages of synthesis and place and route. 

 

The fourth chapter provides a step-by-step tutorial of an 8x8 SRGA-UT array.  

The steps will confirm the pre-synthesis RTL verification (using ModelSim), the 

synthesis process (using Design Compiler) and verification of the netlist (using 

ModelSim), and the place and route process (using First Encounter) and 

verification of the delay constraints (using ModelSim). 
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The fifth chapter shows the implementation of the 8x8 array sub-blocks in the 

same manner as the tutorial.  Some blocks were small enough to be proven just 

by verifying the pre-synthesis RTL step. 

 

The sixth chapter will describe the results of the SRGA-UT implementation and 

followed by the conclusion remarks and suggestions for future possibilities.  The 

overall thesis provides a detailed documentation for a reusable design. 
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Chapter 2: Background  
 
 

2.1 Reconfigurable Technology 
 

Reconfigurability denotes the potential of a system to dynamically change its 

behavior usually in response to changes in its environment.  In the computing 

world, the Field Programmable Gate Arrays (FPGAs) are the most popular means 

of accomplishing reconfigurability.  An FPGA consists of an array of 

programmable logic elements and programmable interconnects.  The logic 

elements can be logic gates (AND, OR, XOR, Invert), lookup tables (memory 

usually RAM), or flip-flops [2].  The interconnects allow the logic elements to be 

connected as needed by the design. 

 

The logic elements and interconnects can be programmed by the customer so 

that the FPGA can perform a certain functionality.  This functionality can be 

reconfigured to suit new application requirements desired by the customer by 

writing appropriate bits into the configuration memory.   The challenges with 

most FPGAs however, whether they are reconfigured at compile time or runtime, 

is that they require an external source to execute the reconfiguration. 

 

A device, that is capable to generate configuration bits at runtime and use them 

to modify its own configuration, exhibits self-reconfiguration.  A self-

reconfigurable device needs to be able to store multiple contexts of configuration 

information and context switch between them.  The configured logic should be 

able to access any of the contexts of information stored and perform self-

reconfiguration by modifying the contents of the information stored.  When the 

configured logic has made the modifications to the configuration information, the 

device should be able to switch context to any of the contexts of configuration 

stored.  For an efficient self-reconfiguration to occur, the device should be able 
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to configure logic to perform: (1) fast context switching and (2) fast random 

access of the configuration information stored.  The SRGA-USC [1] was designed 

to perform the fast context switching and fast random access of the 

configuration stored in one clock cycle.  The SRGA-USC is capable of storing 

eight contexts of configuration information (this number is editable). 

 

Another device that is capable of storing four contexts of configuration 

information on-chip and switch between them on a clock cycle basis is the 

Sanders CSRC [3].  This device can also load configurations while other contexts 

are active.  Despite the fast switching and loading capabilities, it only provides 

serial configuration memory access which can take hundreds of clock cycles to 

access a particular location.  The Berkeley HSRA [4] is capable of accessing the 

configuration information in a fast manner but it takes hundreds of clock cycles 

to switch context. 

 
 

2.2 Design Reuse 
 

Time-to-market is a crucial aspect for the survival of many IC manufacturing 

companies in such a competitive environment.  Time-to-market may be 

optimized by reducing the design cycle and by reducing manufacturing cycle.  

The design cycle may be greatly reduced and the quality of the designs may be 

increased by providing designs with reuse [5].  IP (intellectual property) blocks 

such as configurable I/O (input/output), power and ground grids, block RAMs 

(random access memories), and timing generators were some of the first blocks 

created for reuse as sub-designs in larger projects such as SoCs (system-on-

chips).  If a sub-design were to be developed from scratch, it would take a lot 

more time than to adapt the reusable block.  Figure 2.2.1 shows that without 

planned design reuse, the total time for development is proportional to the  
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Figure 2.2.1:  Design for Reuse Diagram [5] 
 

number of sub-designs, given that each module has the same complexity.  

During development with planned design reuse, the designer will spend more 

time in creating a reusable block by providing comprehensive documentation and 

more adaptable interface. 

 

The design for reuse techniques are closely studied in today’s SoC development. 

A basic combination of such reusable features is known as a platform. The 

platform used to implement a SoC greatly impacts all of the issues and is the 

fundamental decision the hardware designers must make at the start of each 

new project.  By 2010 the percentage of IP contained in a System-on-Chip 

application is predicted to grow to 95% [6]. 

 

One of the goals for this thesis is to end up with a SRGA UT design for reuse, 

accessible with a step-by-step tutorial and comprehensive documentation. 

-

 
 

2.3 SRGA-USC 
 

The original Self-Reconfigurable Gate Array Architecture [1] is an open core 

design implemented by the Department of EE-Systems at University of Southern 

California and the Department of Mathematics at the University of Trento (Italy). 
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The reconfigurable device allows single cycle context switching and single cycle 

random access to the unified on-chip memory which stores the configuration 

data.  Both features are necessary for efficient self-reconfiguration.  The context 

switching feature permits arbitrary regions of the chip to selectively switch 

context.  The memory access feature allows data transfer between logic cells and 

memory locations as well as between memory locations.  A mesh of trees based 

interconnects with logic cells and memory blocks at the leaf nodes and identical 

switches at the other nodes make it possible to perform the above features. 

Figure 2.3.1 shows the basic SRGA architecture of a 4x4 array of PEs.   

 

The architecture can be of any N x N array of PEs.  The PE sits at the leaf node 

of the mesh of trees interconnects and is composed of a logic cell, memory 

block, and memory interface.  Each switch is identical except that some switches 

are connected in a column mesh network and some are connected in a row mesh 

network.  Each PE is connected to a row switch and a column switch.   

 

 
 

Figure 2.3.1:  SRGA Architecture 
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The connection between the PEs through the switches is configured using two 

methods.  The first method serves the same purpose as the interconnection 

network in a typical FPGA, connecting together the logic cells as specified by the 

configuration bits controlling the network switches.   The second method is used 

for performing data transfer during the memory access operations.  For this 

method, only one wire that carries signals in either direction is used for each 

connection. 

 

The logic cell of each PE can connect directly to the four neighbor’s logic cells.  

Fore example, the south output of a PE will become the north input of the 

neighbor PE directly to the south of the original PE – and/or – the east output of 

a PE will become the west input of the neighbor PE directly to the east of the 

original PE. 

 

The SRGA contains three global registers – their contents are broadcast to all 

PEs, and four periphery registers – located along the boundary of the N x N PE 

array.  The purpose of the global registers is to specify – the operation to be 

initiated, the source and destination of the data, and the context to switch to or 

the memory address to be accessed.  The purpose of the periphery registers is to 

control which rows or columns will be the source or destination during the 

different functionalities.  See section 3.2 for a more detailed description of the 

registers. 

 

The Memory block stores the different configuration words which are 77 bits long 

each.  During a memory access operation, the contents of the configuration 

words can be transferred between rows or between columns.  All memory access 

operations complete in a single clock cycle.  The operation can be a memory 

read (memory to logic cells), memory write (logic cells to memory), or memory 

transfer (memory to memory) depending on the contents of the global registers.  
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The memory interface generates the proper inputs to the memory block and to 

some extent to the logic cell by taking the register signals and combining them 

through basic logic gates to create the appropriate signals. 
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Chapter 3:  Component Background 
 

 

3.1 Components Overview 
 

This chapter will describe in details the structure of each component of the 

SRGA-UT, which includes the changes made to the original SRGA-USC design.  

The changes, which will be pointed out throughout the next three chapters, were 

necessary for the design to be adapted and able to implement using the 

available EDA tools.  The SRGA-UT design retains the overall original architecture 

but was mostly adjusted to be able to pass the verification stages of pre-

synthesis, synthesis and place and route. 

 
The SRGA-UT architecture consists of an array of N x N array of PEs.  The PE sits 

at the leaf node of the mesh of trees interconnects and is composed of a logic 

cell, memory block, and memory interface (described later in this chapter).  Each 

switch is identical except that some switches are connected in a column mesh 

network and some are connected in a row mesh network.  Each PE is connected 

to a row switch and a column switch.   

 
The N x N array of PEs is configured by inputting configuration contexts 

(described in section 3.3) into the memory array of each PE – which can store 

eight contexts of configuration.  Once the memory is loaded, the SRGA-UT can 

switch context and perform memory operations in a single clock cycle.  This is 

done through a number of global and periphery registers. 

 
 
3.2 Registers 
 

The SRGA-USC contains three global registers and four periphery registers. 

The memory, interface, module takes signals from the registers and creates the  
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internal signals wrMem, WrLog, switchContext, data_ n, Rmi, and Cmi.  These 

signals are used to perform context switching and memory operations.  

I

 

The three global registers are the Operation Register (OR), the Memory 

Operation Register (MOR), and Context and Memory Address Register (CMAR).  

OR seen in figure 3.2.1 (a) is a 2-bit register that specifies what operation will be 

initiated in the next clock cycle.  MOR seen in figure 3.2.1 (b) is a 2-bit register 

that specifies the source and destination of the data transfer for the next clock 

cycle when OR indicates memory access.  Note:  The order of the OR and MOR 

bits were changed in the figure bellow for consistency with the verilog code.  

CMAR, depending on the OR contents, specifies the context to switch to or the 

memory address to be accessed in the next clock cycle.  CMAR consists of two 

fields: (1) the context field and (2) the offset field.  The context field points to 

the memory column to be accessed.  In testing this design, nc equals eight (8), 

the number of memory columns for the memory array.  nc is defined and can be 

edited in the memory verilog files found in the /srga/tools/rtl/mem/ directory. 

 

 

Figure 3.2.1:  OR and MOR Registers 

 11



The size of the context field can be calculated as: (2X = nc) where X is the 

context field number of bits which equals to 3 (23 = 8).  The offset field points to 

the memory row to be accessed.  In the design, cs equals eighty (80), the 

number of output bits from the Row Demux (see memory cell section 3.5).  The 

first seventy-seven (77) bits of cs are the number of rows for the memory array.  

cs can also be defined as the number of bits required to configure a logic cell 

and its two owned switches.  Each memory array block consists of nc x cs bits. 

 

The four periphery registers are SCR, SRR, DCR/RMR, and DRR/CMR, shown in 

figure 3.2.2 (a) and (b).  All the periphery registers are N bits long to match the 

size of the N x N array of PEs. 

 
SCR (Source Column Register), a set bit implies that the corresponding PE 

column will be the source for the next column memory access. 

 
SRR (Source Row Register), a set bit implies that the corresponding PE row will 

be the source for the next row memory access. 

 

 
 

Figure 3.2.2:  Periphery Registers (a) N x N Array of PEs [1] (b) PE 
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DCR/RMR (Destination Column Register)/(Row Mask Register), a set bit implies 

that the corresponding PE column will be the destination for the next memory 

access – or – during a row memory access, no data will be transferred for the 

corresponding column. 

 
DRR/CMR (Destination Row Register)/(Column Mask Register), a set bit implies 

that the corresponding PE row will be the destination for the next memory 

access – or – during a column memory access, no data will be transferred for the 

corresponding row. 

 

Each PE also contains two memory mapped registers CSMR and DRMR to give 

the design more flexibility.  CSMR (Context Switch Mask Register), a set bit will 

not allow the corresponding PE to switch context even when a context switch 

operation occurs.  DRMR (Data Restore Mask Register), a set bit prevents the 

corresponding flip-flop contents from being restored when a context switch 

operation occurs. 

 
 

3.3 Configuration Word 
 

The configuration word that is loaded to the memory array is 80-bit long.  

Figure 3.3.1 (a) and (b) shows the format of the configuration word.  The word 

is composed of: select 4-bit input for five input muxes (M0i to M4i), configuration 

16-bit input for the LUT, select 4-bit input for eight output muxes (M0o to M7o), 

select 4-bit input for the row switch (SR), select 4-bit input for the column switch 

(SC), and four bit contents of the FF.   

 

For testing, different configuration word files were created and stored in the 

/srga/config_files/ directory, and called by the test-bench of each module.   
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(a) 

 

 
(b) 

 
Figure 3.3.1:  Configuration Word Format (a) Diagram and (b) From 

Configuration File 

 

 
Note: Only three bits SR[69:71] and SC[73:75] are used for the switches, and 

only one bit FF[79] is used for the flip-flop. Part (a) of the figure 3.3.1 was 

edited to be consistent with the configuration word format from the verilog code. 

 

The four input muxes M0i to M3i generate the select bits for the LUT. For a 

detailed illustration of how the LUT works, refer to section 3.4.  To test this 

design, 16-bit configuration words were created for a full adder and a full 

subtractor.  The format of the LUT configuration is demonstrated in figure 3.3.2 

and figure 3.3.3.  It can be seen that the output of the truth table forms the 

configuration bits for the LUT. 

 

The LUT can perform two boolean functions of three inputs and one output each 

and one boolean function of four inputs and one output.  The truth tables are 

color coded to show how the configuration for the LUT must be applied.  A 

binary and hexadecimal number format is shown which will be useful when 

generating the ModelSim simulations. 
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Figure 3.3.2:  Full Add Configuration (a) Truth Table (b) LUT 

 
 
 
 

 
 

Figure 3.3.3:  Full Subtract Configuration (a) Truth Table (b) LUT 
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3.4 Logic Cell 

 

The logic cell block shown in figure 3.4.2 consists of a 16-bit LUT, a Flip-Flop 

(FF), five input muxes (M0i, M1i, M2i, M3i, and M4i), and eight output muxes 

(M0o, M1o, M2o, M3o, M4o, M5o, M6o, and M7o).  The input muxes (M0i, M1i, 

M2i, and M3i) are used to generate the four control bits (L0i, L1i, L2i, and L3i) 

for the LUT.  See also figure 3.4.1 (a).  The input mux M4i generates the signal 

(L4i), the input to the Flip-Flip when the Switch_context signal is ‘0’.  When the 

Switch_context signal is ‘1’, the context_state is the input to the Flip-Flop. See 

also figure 3.4.1 (b). 

 

The LUT can perform two boolean functions of three inputs and two outputs or 

one boolean function of four inputs and one output.  As can be seen from the 

logiccell.v section in figure 3.4.3, the mux8 u_lut0 and u_lut1 instances will 

perform the two boolean functions of three inputs and two outputs. 

f L0i, L1i  L2i) = L0o ( ,

( ,f L0i, L1i  L2i) = L1o 

 

 

Figure 3.4.1:  (a) LUT Structure and  (b) Flip-Flop Structure 
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Figure 3.4.2:  Logic cell Structure [1] 
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Figure 3.4.3:  Internal Functions of the LUT 

 

The instance u_lut2 of mux2 takes the signals L0o and L1o and generates the 

output L2o depending on the state of Li3.  This is the internal function of the LUT 

that performs the one boolean function of four inputs and one output. 

f L0i, L1i  L2i, L3i  = L2o ( , )

 

The signal L0i from figure 3.4.2 is equivalent to li0 from figure 3.4.3.  The same 

applies to L1i, L2i, L3i, L0o, L1o, and L2o. 

 

The inputs to the PE (Ni, Ei, Si, Wi, Ri, Ci, Rmi, Cmi) are grouped together in the 

logiccell.v module to form the 8-bits inBus set of wires.  See figure 3.4.4.  The 

16-bits inMuxBus is the set of wires which groups together the inBus, lo3 (the 

output Q from the Flip-Flop), and other strategically placed ones and zeros. 

 

inMuxBus[15:0] = {1, 0, lo3, 0, 0, 0, 0, 0, inBus} 

inMuxBus[15:0] = {1, 0, lo3, 0, 0, 0, 0, 0, Cmi, Rmi, Ci, Ri, Wi, Si, Ei, Ni} 
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Figure 3.4.4:  Input and Output Set of Wires for the Logic Cell Muxes 

 

The inMuxBus is the input to each of the four input muxes M0i, M1i, M2i, and 

M3i.  This architecture allows the flexibility to use any of the signals in the 

inMuxBus to become the control bits L0i, L1i, L2i, and L3i for the LUT.  This is 

done by the control bits for the input muxes which come from the configuration 

words.  For example, the input Ni can be the output for all the muxes (including 

output muxes discussed later in this section) if the control bits from the 

configuration word for each mux are set to ‘0000’. 

 

The 13-bits outBus is the set of wires which groups together the inBus, the 

outputs from the LUT (L0o, L1o, and L2o), and other strategically placed zeros. 

outBus[12:0] = {L2o, L1o, L0o  0  0, inBus} , ,

[

[ ,

 
The 16-bits outMuxBus is the set of wires which groups together the outBus, lo3 

(the output Q from the Flip-Flop), and other strategically placed ones and zeros. 

outMuxBus 15:0] = {1, 0, lo3, outBus} 

outMuxBus 15:0] = {1, 0, lo3, L2o, L1o, L0o  0, 0, Cmi, Rmi, Ci, Ri, Wi, Si, Ei, Ni} 

 19



The outMuxBus is the input to the input mux M4i and to the output muxes (M0o, 

M1o, M2o, M3o, M4o, M5o, M6o, and M7o).  In this manner any of the signals in 

the outMuxBus can become the output for the muxes depending on the control 

bits from the configuration word. 

 

The complete flexibility in configuring connections allows the LUT and Flip-Flop 

to be used while other signals are routed through the logic cell – to perform 

operations as inputs for other PEs. 

 
 

3.5 Memory Cell 

 

The memory block shown in figure 3.5.1 consists of a memory cell array, a 

row decoder, a column decoder, three current context registers (CCR) with three 

context field muxes, a configuration word register, and a data-out row mux.  The 

memory cell array block (memArray.vhd) was redesigned to reduce the number 

of instances.  The original memory array block (memArray.v) instantiated 

seventy-seven (77) sub-blocks of storageCellRow.  The storageCellRow block 

then instantiated eight (8) storageCell sub-blocks which also contains other 

instances.  When used with the 8x8 array of PEs, the large number of instances 

for the design would surpass the allocated amount of files allowed in a folder.  

This happens when running the synthesis of the 8x8 array.  The new 

memArray.vhd block was created with one instance memArray, and also by using 

the mixed compile method, the design was successfully synthesized. 

 

The memory cell array is internally arranged as a nc columns of cs storage cell 

rows. The nc and cs can be edited in the module memArray.vhd to become any 

memory array size as seen in figure 3.5.2.  In this design the size of nc = 8 

[colSelWidth to 0] and the size of cs = 77 [rowSelWid h to 0]. t
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Figure 3.5.1:  Memory Block Structure [1] 

 

 

 

 
Figure 3.5.2:  Defining the Size of the Memory Array 
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Each column can store a configuration word in this case 77-bits long, thus the 

memory array can store eight different configuration words.  In testing the 8x8 

array, only four (4) configuration contexts are used thus leaving the last four 

columns of memory vacant in each PE.  By editing this in the future, the number 

of gates in each PE will be reduces by about one third.  

 

The row decoder u_rowdecode is instantiated in the memcell.v and it selects the 

row to write the data to.  The column decoder u_coldecode is instantiated in the 

memcell.v and it selects the column to write data to.  The row decoder and 

column decoder together select a specific memory cell to be accessed.   

 

The three CCRs, u_10EDFFTRX1, u_11EDFFTRX1, u_12EDFFTRX1, and the three 

context field muxes u31_MX2X1, u32_MX2X1, u33_MX2X1; are instantiated in 

the memcell.v. Their functionality is to perform a context switch operation in a 

single clock cycle.  This is done as follows:  At the positive edge which marks the 

beginning of the next clock cycle, the CMAR and OR contents are registered and 

broadcast to all the memory blocks.  In each memory block, in the first half of 

the clock cycle, the new configuration is loaded into the configuration word 

register (for details refer to figure 3.5.1 above) when switch_context is “1” and 

switch_context_2 is “0” (swith_context_2 is switchContextHalf  in memcell.v).  In 

this manner, the context field of CMAR gets applied to the column decoder thus 

selecting the memory column to place the new configuration.  At the negative 

edge of the clock cycle, the new configuration word gets loaded into the 

configuration word register and ready to be used. 

 

The configuration word register u_reg_77bnlr is instantiated in the memcell.v 

and it loads and stores the configuration word from the memory array that is 

selected by the column decoder.  This is done internally in the memArray.vhd. 
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When a switch context occurs, the load signal to the configuration word register 

will enable the new selected memory column to be loaded in a single clock cycle.   

 

The output of the configuration word register sends the 16-bit configuration to 

the LUT, the control 4-bit configuration to each of the logic cell muxes, the 

configuration bits for the switches, and the signal to the Flip-Flop for the 

generation of the context state. 

 

The data-out row mux u_mux80 is instantiated in memcell.v and it performs the 

bit transfers during memory operations.  The offset field signal will select the 

memory bit (row) of the currently used configuration word (memory column).  In 

this manner a single memory cell can be transmitted to another memory block to 

change its configuration.  The signals CSMR and DRMR are inputs to the data-out 

row mux and can also be accessed through memory operations. 

 
 

3.6 Switch Structure 

 

The switch is the most important part of the mesh of trees network because 

the switches together with connecting wires create the mesh network.  Each PE 

is connected to one row and one column switch.  The row and column switches 

are identical.  Each switch is connected to two child nodes and a parent node 

where the child nodes can be other switches or PEs.  The switch shown in figure 

3.6.1 is composed of two parts: (1) the Logic Interconnection Network (LIN) and 

(2) the Memory Interconnection Network (MIN). 

 

The LIN is composed of three muxes with select inputs (c_out[68], c_out[69], 

and c_out[70] for the row switch, and c_out[72], c_out[73], and c_out[74] for 

the column switch) coming from the configuration word.   
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Figure 3.6.1:  Switch Structure 

 

This setup allows any input to be connected to any output without restrictions 

except connecting an input to its output pair.  This way a signal is not routed 

back where it came from. 

 

The MIN part is composed of a bidirectional tri-state circuit where the wires 

connected to it can flow signals in both directions.  In this manner, by opening 

all switches at a particular network level, a memory tree can be divided into 

multiple smaller trees.  The wires from the child connections RLm and RRm are 

connected together thus any signal coming from any parent or child node will be 

transmitted to all nodes.  The tri-state circuit will determine which way the signal 

flows. 

 

Note: The schematic connections to the LIN muxes were changed in the 

schematic above (from the original) to be consistent with the verilog code. 
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3.7 PE Structure 

 

The PE block shown in figure 3.7.1 consists of a logic cell, a memory cell, a 

memory interface, a row switch, and a column switch.  At this level all the 

modules are connected together and all the inputs and outputs to all the 

modules, including registers will go through the PE.  The register signals are 

processed by the memory interface which will create the internal signals wrMem, 

WrLog, switchContext, data_In, Rmi, and Cmi.  These signals are used to 

perform context switching and memory operations. 

 

The logic cell connections through the PE are: The LIN nearest neighbors’ 

connections (inputs Ni, Ei, Si, Wi, and outputs No, Eo, So, Wo).  The mesh 

network connections (inputs Ri, Ci, Rmi, Cmi, and outputs Ro, Co, Rmo, Cmo). 

 

Configuration bits from the memory cell (configuration word register) are 

connected through c_out (cOut in the RTL code) to the select bits for the logic 

cell’s muxes and input to the LUT.  Also, configuration bits are passed to the row 

and column switches.   

 

The inputs and outputs Cm or Rm are connected together.  This setup indicates 

the bidirectional connectivity with the MIN part of the switch.  If the direction is 

input to PE, the Cm or Rm will be input signals shown on the upper left-hand 

side of figure 3.7.1.  If the direction is output from PE, the Cm or Rm will be 

output signals shown on the lower right-hand side of figure 3.7.1.  The test-

bench inputs data for the configuration word file to the PE (logic cell and 

memory cell) through one of the inputs Cm or Rm depending whether a column 

or row operation is expected. 
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Figure 3.7.1:  PE Structure [1] 
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3.8 2x2 Array 

 

The 2x2 array module shown in figure 3.8.1 consists of four instances of the 

PE block.  Note: Only one column switch is shown for a clearer diagram.  The 

four instances are u00_pe, u01_pe, u10_pe, and u11_pe, which are joined 

together in the array2x2.v file.  Each PE is connected to one row switch and one 

column switch.  The external connections such as No00, Wi01, Rpm, will become 

the inputs and outputs to the 2x2 array while the internal interconnects such as 

Wo00 will become Ei01.   The other I/O to the design are the three global 

registers (OR, MOR, CMAR), and four periphery registers. 

 

3.9 8x8 Array 

 
The 8x8 array block shown in figure 3.9.1 consists of four instances of the 

4x4 array.  The four instances are u00_array4x4, u01_array4x4, u10_array4x4, 

and u11_array4x4, which are joined together in the array8x8.v file. The local 

interconnects for each of the 4x4 arrays are connected in the same manner that 

four PEs are connected together to form a 2x2 array.  The same way that Eo for 

PE00 connects to the Wi for PE01 in a 2x2 array, Eo for PE00_0101 connects to 

the Wi for PE01_0000.  For more details see the local interconnections in the 

array8x8.v file located in the /srga/tools/rtl/ directory.  There are also eight row 

and eight column switches added to the design.  In figure 3.9.1 only switches in 

rows one and five and columns four and eight are shown for a clearer schematic.  

These switches are the parent switches in the 8x8 array design.  The inputs and 

outputs of the 8x8 array are connected to the outer PEs, parent switches, three 

global registers (OR, MOR, CMAR), and four periphery registers.  
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Figure 3.8.1:  Structure of the 2x2 Array 
 

 

Figure 3.9.1:  Structure of the 8x8 Array 
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Chapter 4:  SRGA-UT Implementation 

 
 

4.1 SRGA-UT Overview 

 

This chapter provides a step-by-step tutorial of an 8x8 SRGA-UT array.  The 

steps will confirm the pre-synthesis RTL verification (using ModelSim), the 

synthesis process (using Design Compiler) and verification of the netlist (using 

ModelSim), and the place and route process (using First Encounter) and 

verification of the delay constraints (using ModelSim). 

 

There are several new RTL designs that were created to simplify the testing of 

the design.  The synchronous D Flip-Flip dffsync.vhd file, located in the 

/tools/rtl/logiccell/ directory, was created to replace the tsmc18 version to 

eliminate timing errors.  The memory array memArray.vhd file, located in the 

/tools/rtl/mem/ directory, was created to replace the memArray.v to reduce the 

number of instances when synthesizing the memory cell.   

 

In chapter 5 the implementation of the SRGA-UT sub-designs is described. 

 
 

4.2 EDA Tools 

 
For the 8x8 array SRGA-UT design some of the EDA tools available at the 

ECE Department at University of Tennessee will be utilized to explore design 

alternative and enhance productivity.  The EDA tools used are ModelSim from 

Mentor Graphics, Design Compiler from Synopsys, and First Encounter from 

Cadence.   
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The ModelSim tools were used for design testing and verification done at the 

pre-synthesis level (HDL designs), post-synthesis level (gate-level netlist), and 

post place and route level (SDF timing) [7].  

 

The Design Compiler (dc_shell) was used for logic synthesis, which is the process 

of converting a design description written in a hardware description language 

such as Verilog and VHDL into an optimized gate-level netlist targeting the 

tsmc18 libraries.  The mixed compile method was used, where the top-down and 

bottom-up strategies are simultaneously applied [8].  The top-down compile is 

the most used strategy where the top-level design and all its sub-designs are 

compiled together.  The bottom-up compile strategy compiles the sub-designs 

separately and then incorporates them in the top-level design. The top-level 

constraints are applied, and the design is checked for violations. 

 

The Mixed compile or bottom-up methods must be used to synthesize the SRGA-

UT design.  This is because of the large number of instances present in the 

memory cell module.  By running only the top-down approach for a design of 

2x2 array and higher, the available number of files (~32,000) that can be used in 

a folder or the amount of memory (~4000M) allocated by the internal CPU for 

each user, will be surpassed and the synthesis will crash.  The synthesis scripts 

can be found in the /synthesis/synopsys/ directory of each module.   

 

First Encounter was used to generate the place and route steps, targeting the 

TSMC 0.18-micron technology, and extract the SDF file which contains net delays 

and cell delays [9].  This is done by going through a series of steps, described in 

section 4.4, where the netlist is transformed into the graphic design system 

(GDS) format for 2D layout display. 

 

The design flow for implementing the SRGA-UT is shown in figure 4.2.1. 
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Figure 4.2.1:  SRGA-UT Design Flow 
 

 

4.3 Setting up Files 

 
There are two files needed to setup the SRGA-UT: (1) the script start-SRGA-UT 

and (2) the zipped file srga-ut.tar.gz.  The files can be obtained from Dr. 

Bouldin at the ECE department of the University of Tennessee.  The first step is 

to copy the two files to the directory where the SRGA-UT is going to be initiated. 

The second step is to run the script start-SRGA-UT. 

»  start-SRGA-UT 
 

The script will unzip the srga-ut tar.gz which will setup the folders and files in the 

following format. 

.

 
/srga/ main directory 

/srga/documentation/USC/ original project and files from USC 
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/srga/documentation/UT/ SRGA-UT documentation and libraries 

/srga/config_files/ configuration word files 

/srga/tools/rtl/ RTL designs (verilog and vhdl) 

/srga/tools/simulator/lib/ tsmc18, synopsys, and encounter library files 

/srga/tools/simulator/logiccell/ logic cell testing folders, scripts, and files 

/srga/tools/simulator/memcell/ memory cell testing folders, scripts, and files 

/srga/tools/simulator/switch/ switch testing folders, scripts, and files 

/srga/tools/simulator/PE/ PE testing folders, scripts, and files 

/srga/tools/simulator/2x2/ array 2x2 testing folders, scripts, and files 

/srga/tools/simulator/8x8/ array 8x8 testing folders, scripts, and files 

 

 

4.4 8x8 Array Step-by-Step Tutorial 

 

The file for testing the functionality of the 8x8 array block is the verilog file 

test_array8x8.v which is located in the /srga/tools/simulator/8x8/ directory.  A 

number of predefined configuration words are provided by the configuration file 

8x8_config_words.cnf located in the /srga/config_files/ directory.  Line number 

five in figure 4.4.1 is a configuration word taken from the configuration file and 

can be described as follows:   

 

x – Eight bits from 0 to 7 are the horizontal periphery bit registers for the 8x8 

array.  A bit “1” selects the specific column.  

y – Eight bits from 8 to 15 are the vertical periphery bit registers for the 8x8 

array.  A bit “1” selects the specific row. 

c – Three bits from 17 to 19 are the context field from the CMAR register.  

The context field selects the memory column to perform a memory access 

operation. 



 

Figure 4.4.1:  Configuration Word Format for the 8x8 Array 
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e – Indicates an extra bit. 

f – Seven bits from 21 to 27 are the offset field from the CMAR register.  The 

offset field selects the memory row to perform a memory access 

operation. 

i – The five sets of four bits each from 28 to 47 are the select bits for the 

input muxes M0i to M4i.  The first four sets of four bits from 28 to 43, 

select the four select bit inputs, L0i to L3i, to the LUT.  The fifth set of 

four bits from 44 to 47, select the first input to the switch_context mux. 

t – Sixteen bits from 48 to 63 are the input bits for the LUT.  In this case 

“1110100010010110” in binary or “e896” in hex is the configuration for a 

full adder. 

o – The eight sets of four bits each from 64 to 97 are the select bits for the 

output muxes M0o to M7o.  The outputs from these muxes are No, Eo, 

So, Wo, Ro, Co, Rmo, and Cmo respectively.  The No, Eo, So, and Wo are 

connected to the neighbor PEs while Ro, Co, Rmo, and Cmo are 

connected to the logic and memory interconnects of the owned switches. 

r – Three bits from 97 to 99 are the configuration bits for the row owned 

switch. 

c – Three bits from 101 to 103 are the configuration bits for the column 

owned switch. 

f – One bit 107. Only bit 0 is used to configure the content of the Flip-Flop. 

 

On line eight of the test-bench test_array8x8.v the number of configuration 

words is defined (`define CONFIGWORDS 5).  In this case, the number of 

CONFIGWORDS comes from the configuration file (8x8_config_words.cnf).  

Figure 4.4.2 is the section of the test-bench that takes the configuration words 

and distributes the different sections of each word to the 8x8 memory array and 

registers. Figure 4.4.3 shows the method of assigning the truth table inputs ni, 

wi, and ri, to perform the full addition and subtraction operations. 
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Figure 4.4.2:  Importing Configuration Word Section of test_array8x8.v 
 

 

Figure 4.4.3:  Assigning Inputs to the 8x8 Array  
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Line seventy-seven stores the configuration words into a temporary system 

memory.  The OR, MOR, and SRR registers are then setup to allow memory 

write.  The FOR loop creates a counter for the number of configuration words 

and a counter for the amount of bits in a configuration word. 

 
 

Array 8x8 Pre-Synthesis 
 

To test the RTL design using ModelSim simulation, run the script 1-presynth-8x8 

by following the next steps: 

»  cd /simulator/8x8/presynth/ 

»  1-presynth-8x8 

This will bring up the ModelSim main and wave windows.  After reviewing the 

test_array8x8.v signals in the wave window, other signals such as the array8x8 

signals can be added to the wave from the main window by highlighting the 

u_array8x8 in the Workspace area, then right click and Add to Wave.   

 

When the signals appear in the wave window, at the main window prompt type 

restart, then click Restart on the next window.  To simulate all the signals, at 

the main window prompt type run 15000000.  To load the signals from figure 

4.4.4, open presynthesis_8x8_load_TB.do from the ModelSim wave window, 

located in /8x8/presynth/modelsim/ directory.   

 

Bits “1” in the DRR registers and bits “0” in the RMR register, indicate the array 

8x8 rows that are allowed to have a memory operation.  Section A of figure 4.4.4 

illustrates the first configuration word being loaded into the memory of the PEs 

allowed by DRR and RMR.  The first configuration word is no operation (all bits 

are zeros) and it is stored in column address “000” of the memory array block 

shown by the contextAdr signal. 
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Figure 4.4.4:  Array 8x8 Pre-Synthesis - Loading Memory Blocks 

 



 
Sections D and E of figure 4.4.4 illustrate the fourth and fifth configuration words 

being loaded. This is a unique test case since PE0 and PE1 in the first row of the 

8x8 array are configured to perform two-bit full adder also illustrated in figure 

4.4.5.  The fourth word is loaded only into the memory address “011” of PE0 

which is controlled by the DRR, RMR and wrMem signals.  The configuration 

word selects the Ni and Wi of PE0 to be the addition bits and Ri to be the Carry-

In bit, while No is the Sum and Eo is the Carry-Out.  The fifth word is loaded 

only into the memory address “011” of PE1.  The configuration word selects the 

Ni and Ri to be the addition bits and Wi becomes the Carry-In bit which is 

connected to the Eo Carry-Out of PE0.  No is the Sum bit and Eo is the Carry-Out 

bit which will connect to the west input of PE2.  Note: ni (from code) and Ni 

(from schematic) are identical signals; and the same applies to all other signals. 

Section B and C illustrate the second and third configuration words being loaded 

in the same manner as the first word.  The second word is configured for a full 

adder and stored in column address “001” of the memory array block.  The test 

behavior is shown in figure 4.4.6 section X with ni, wi, and ri being the truth 

table inputs, while the orange signals no and eo being the sum and carry-out 

respectively.  The third word is configured for a full subtract operation and it is 

stored in address “010”.  The behavior of the waves can be examined in section 

Y of figure 4.4.6 with the same inputs and outputs as part X where and eo being 

the difference and borrow-out respectively. 

 

 

Figure 4.4.5:  Array 8x8 Full Add Demo Schematic 
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Figure 4.4.6:  Array 8x8 Pre-Synthesis - Applications 

 



To load the signals from figure 4.4.6, open presynthesis_8x8_application.do from 

/8x8/presynth/modelsim/ directory.  When the contextAddr changes, in this case 

from full add to subtract and back to add, it takes one clock cycle for the device 

to switch to each context. 

 
Figure 4.4.7 shows the filenames and their full-path, and the instances and their 

design modules for the array 8x8 design. 

 
 

Array 8x8 Synthesis 

 

To create the gate-level netlist design, follow the next steps: 

»  cd /simulator/8x8/synthesis/ 

»  2-synth-array8x8 

 

 

Figure 4.4.7:  Array 8x8 Pre Synthesis Workspace 
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At first, the script will copy the necessary library files to the 

/8x8/synthesis/synopsys/ directory and then the dc_shell synthesis tool from 

Synopsys [8] is initiated.  The dc_shell executes the script synth-array8x8.scr 

located in the /synopsys/ directory.  The details from this step are written to the 

file info_8x8_synthesis.txt also located in the /synopsys/ directory.   The 

synthesis tools will create the verilog netlist file array8x8-synth.v and the 

delay file array8x8-synth.sdf which are written in the /synopsys/ folder.   

 

The next step is to edit the verilog netlist file. At lines 407 change from 

rpm00(1’b0) to rpm00(rpm0000) and at line 408 change from rpm10(1’b0) to 

rpm00(rpm0010). 

 

The netlist is used to test the post synthesis design using ModelSim simulation by 

following the next steps: 

»  cd /simulator/8x8/synthesis/ 

»  3-post-synth-sim-array8x8  

 

This will bring up the ModelSim main and wave windows.  To test and review the 

behavior of the signals, follow some of the steps described in the pre-synthesis 

section.  To load the signals from figure 4.4.8 and 4.4.9, open the wave file 

synthesis_8x8_final.do from the /8x8/synthesis/modelsim/ directory.  To review 

the behavior of the waves, follow the instructions in the pre-synthesis 

simulations. 

 

Note:  It is a good idea to go into the /modelsim/ folders after testing the design 

and delete the work/ directory and the transcript, vsim.wlf, and 

workingExclude.cov files.  This will save space to be able to run other tests. 
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Figure 4.4.8:  Array 8x8 Synthesis - Loading Memory Blocks 

 

 

Figure 4.4.9:  Array 8x8 Pre-Synthesis - Applications 
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First Encounter Tools 

 
This Section is the tutorial to generate the automatic place and route of the 

design.  The process itself is very elaborate and to discuss the details of 

developing each step is out of the scope of this project.  However a generalized 

step by step tutorial of using the encounter tools to crate the place and route is 

provided bellow. 

 
Step 1:  Setting up the files 
 
Initiate the Encounter tools: 

»  cd /simulator/8x8/asic/ 

»  4-start-encounter 

The script 4-start-encounter will copy the necessary encounter libraries to the 

/8x8/asic/encounter/ directory and will bring up the encounter window. 

 
Step 2:  Import the Design 
 
From the encounter window (see figure 4.4.11), select Design -> Design 

Import… Complete the Design and Power sections from the Design Import 

window.  In the Design section, to choose the files click on the dotted tab to the 

right of the text boxes.  For the Top Cell you can check the Auto Assign or you 

can enter your own name.  In the Power section, name the Power Nets as VDD 

and Ground Nets as VSS.  At this point you can save the initial setup.  Click OK 

 
After the design is imported, the core area of the chip should be seen and if 

zoomed out (shift-z), the top level module (four instances of the 4x4 array) 

should be seen in purple objects.  A single module can be selected by single 

clicking the object. By using "shift-g" the object can be ungroup and all the 

modules that belong to the object should be seen. You can use the “shift-g” 

procedure further to another layer of hierarchy. 
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Figure 4.4.11:  Encounter Tools - Importing Design 
 

To re-group the hierarchy, select one of the child modules and press "g".  The 

refresh button can redraw the design at any time. 

 

Step 3:  Specify the Chip Size 

 
From the encounter window (see figure 4.4.12), select Floorplan -> Specify 

Floorplan…  Change the Margins “Core to IO Boundary” to 40 for all directions. 

Click OK to apply the change. 

 

Step 4:  Power Planning 

 
From the encounter window (see figure 4.4.13), select Floorplan -> Power 

Planning -> Add Rings…  The width and the spacing for the rings are an 

option that could be changed.  Everything else stays as default.  Click OK. 
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Figure 4.4.12:  Encounter Tools - Specify Chip Size 

 
 

 
 

Figure 4.4.13:  Encounter Tools - Power Planning 
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Step 5:  Global Net Connections 

 
From the encounter window (see figure 4.4.14), select Floorplan -> Global 

Net Connections…  This connects the VDD and VSS pins to the global power 

nets. Fill out the form of part 2 and click Add to List.  After the pins VDD and 

VSS are seen in the Connection List, click Apply and then Close. 

 

Step 6:  Standard Cell Placement 

 
From the encounter window (see figure 4.4.15), select Place -> Place..., use 

the default of Medium Effort and click OK.  This step takes some time (~8min). 

 
At this point the three different placement views can be seen from figure 4.4.16.  

The first view is the Floorplan view. The blue lines show the connections 

between the different modules and the connections to the I/O pins of the 

floorplan.  The second view is the Amoeba view.  This shows the outlines of the 

different modules.  Any module can be selected and use “shift-g” to view the 

next layer hierarchy.  The third view is the Physical view.  This is where the 

standard cells can be seen by zooming.  

 

 

Figure 4.4.14:  Encounter Tools - Global Net Connections 

 46



 
 

 
 

Figure 4.4.15:  Encounter Tools - Standard Cell Placement 
 

 
 

Figure 4.4.16:  Encounter Tools - Cell Placement Views 
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Step 7:  Add Filler Cells 

 
From the encounter window (see figure 4.4.17), select Place -> Filler -> Add 

Filler…  In the Add Filler window (part 2) change the Cell Name to FILL1, and 

the Prefix to fill.  Click OK. 

 

Step 8:  Route Power 

 
From the encounter window (see figure 4.4.18), select Route -> SRoute…  

When the SRoute window comes up, uncheck Block pins, Pad pins, and Pad 

rings.  Click OK.  The power strips should be seen in the layout. 

 

Step 9:  Final Route 

 
From the encounter window (see figure 4.4.19), select Route -> WRoute…  

Leave everything as default.  Click OK.  This part may take some time (~20 to 

30min).  

 

Figure 4.4.17:  Encounter Tools - Add Filler Cells 
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Figure 4.4.18:  Encounter Tools - Route Power 
 
 
 

 
 

Figure 4.4.19:  Encounter Tools - Final Route 
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Step 10:  Extract RC 

 
From the encounter window (see figure 4.4.20 1a and 1b), select Timing -> 

Extract RC…  You can check any of the boxes to save any file then click OK. 

 

Step 11:  Calculate Delay 

 
From the encounter window (see figure 4.4.20 2a and 2b), select Timing -> 

Calculate Delay…  In the Calculate Delay window change the name for the 

SDF Output File to array8x8-encounter.sdf.  Click OK. This file will be stored 

in the /8x8/asic/encounter/ directory and it is the final file that includes the 

timing delay for the place and route design. 

 

 

Figure 4.4.20:  Encounter Tools - (1) Extract RC and (2) Calculate Delay 
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Step 12:  Results, Save, and Restore Design 

 
This step is optional although it will save a lot of time.  From the encounter 

window select Tools -> Gate Count Report… – and – Summary Report…  

Save the reports and view the results.  The gate count report will provide the 

number of gates, number of cells, and the area of the gate for each module.  

The summary report will provide design statistics, chip utilization, module 

information, and wire information.  The chip utilization will indicate the core size, 

the chip size, and the number of cell rows.  

 

From the encounter window select Design -> Save Design…  This will save 

the design by default as array8x8.enc.  To load the place and route design in the 

future, select Design -> Restore Design… and select array8x8.enc. 

 

Final Layouts 

 
The final layouts can be seen in figure 4.4.21.  The floorplan view shows the 

individual blocks connected by the blue lines to the left and the core to place all 

the individual blocks to the right.  The Amoeba view shows the individual 

modules placed in the core.  Here you can see the four instances of the 4x4 

array, where instance u01_array4x4 further shows the different modules.  The 

Physical view shows the final layout with the place and route. 

 
 

Array 8x8 Post Layout Simulation 

 

Before using the ModelSim tools to test the place and route timing behavior, the 

timing file array8x8-encounter.sdf must be edited on line 15 from (CELLTYPE " ") 

to (CELLTYPE "array8x8").  One simple way to open the file is to rename it with 

a .txt extension. 



 

Figure 4.4.21:  Encounter Tools - Final Pace and Route of 8x8 Array 
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The script 5-post-layout-sim-array8x8 copies the timing file array8x8-

encounter.sdf from the /encounter/ to the /modelsim/ directory and simulates 

the netlist design array8x8-synth.v created by the synthesis tools.  To test and 

review the behavior of the signals, follow some of the steps described in the pre-

synthesis section.  

 

To load the signals in figure 4.4.22 and 4.4.23, from the wave window, open the 

wave file post-layout-array8x8_final.do. 

 

 

 

To test the timing generated by the pace and route, follow the next steps to 

initiate the ModelSim tools: 

 

»  5-post-layout-sim-array8x8 

»  cd /simulator/8x8/asic/ 
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Figure 4.4.22:  Array 8x8 Post Layout - Loading Memory Blocks 
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Figure 4.4.23:  Array 8x8 Post Layout – Applications 

 



Chapter 5: Implementing the SRGA-UT Sub-Designs 
 
 

5.1 Logic Cell Implementation 
 

The file for testing the functionality of the logic block is test_logiccell.v and it 

is located in the /srga/tools/simulator/logiccell/ directory.  The testing objective 

is to assign inputs to the logic block as if they were coming through the 

corresponding PE and view the behavior of the internal logic.  The applications to 

be tested are the full addition and full subtraction discussed in section 3.3.  By 

knowing the location of the input bits from the inMuxBus[15:0] and 

outMuxBus 15:0], the configuration bits are selected strategically (see also figure 

5.1.1). 

[

t

 
Sel_mi0 will select ni to be the first input L0i for the LUT.  Sel_mi1 will select wi 

to be the second input L1i for the LUT.  Sel_mi2 will select ri to be the third input 

L2i for the LUT.   

 

At line 120 of the est_logiccell.v, the configuration word for a full adder is 

passed to the lutconifig which will be the application for the truth table inputs in 

lines 128 to 135.  The outputs for the full adder are given by sel_mo0 which 

selects Lo0 (sum) to be the output for M0o mux, and sel_mo1 which selects Lo1 

(carry-out) to be the output for M1o mux.  These outputs will be the North 

output No and East output Eo for the corresponding PE. 

 

At line 141, the configuration context is switched to full subtraction.  The inputs 

and outputs for the full subtraction operation are utilized in the same manner as 

in the addition part.  In this case ni becomes input bit one, wi becomes input bit 

two, ri becomes the borrow-in, No becomes Lo0 the difference bit, and Eo 

becomes Lo1 the borrow-out bit. 
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Figure 5.1.1:  Section of Test-bench for Logic Cell Block 
 

 

Logic Cell Pre-Synthesis 

 
To test the RTL design using ModelSim simulation, run the script 1-presynth-

logiccell by following the next steps: 

»  cd /simulator/logiccell/presynth/ 

»  1-presynth-logiccell 

This will bring up the ModelSim main and wave windows.  After reviewing the 

test_logiccell.v signals in the wave window, the logic cell signals can be added to 

the wave from the main window by highlighting the u_logiccell in the Workspace 

area, then right click and choose Add and Add to Wave.  When the signals 

appear in the wave window, at the main window prompt type restart, then click 

Restart on the next window.  To simulate all the signals, at the main window 

prompt type run 5000. 
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In the wave window select the signals sel_mi0 to sel_mo7, right click to select 

Radix and Unsigned.  This will allow you to see the decimal values for each mux 

select signals to be consistent with the test_logiccell.v file.  Also, right click and 

select Radix and Hexadecimal for the lutconfig, lutconfig0, and lutconfig1 signal.  

The wave that is being edited at this point can be saved and then opened in the 

future testing.  From the wave window, select File and click Save and Format.  

To load the saved wave format, first select all the signals in the wave window 

and delete them.  Then, choose File and click Open and Format, and select the 

filename.do (filename being the name of the saved file).  Then redo the restart 

and run 5000 steps to view the behavior of the waves. 

 

To load the signals from figure 5.1.2, open and run presynthesis_logiccell.do 

from /logiccell/presynth/modelsim/ directory.  Section A tests the full addition 

with the orange waves eo and no being the carry-out and sum bits.  Section B 

tests the full subtraction with the orange waves eo and no being the borrow-out 

and difference bits.  In the logic cell, when the lutconfig signal changes, the 

context switches from add to subtract instantaneously.  One clock cycle is 

needed for the context switch when the new configuration is loaded from the 

memory (described in the PE implementation section). 

 
 

Logic Cell Synthesis 
 

To create the gate-level netlist design, follow the next steps: 

»  cd /simulator/logiccell/synthesis/ 

»  2-synth-logiccell 

At first, the script will copy the necessary library files to the 

/logiccell/synthesis/synopsys/ directory and then the dc_shell synthesis tool from 

Synopsys [8] is initiated.   



 

Figure 5.1.2:  Logic Cell - Pre-Synthesis Simulation 
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The dc_shell executes the script synth-logiccell.scr located in the /synopsys/ 

directory.  The details from this step are written to the file 

info_logiccell_synthesis.txt also located in the /synopsys/ directory.   The 

synthesis tools will create the verilog netlist file logiccell-synth.v and the delay 

file logiccell-synth.sdf which are written in the /synopsys/ folder.  These two files 

are used to test the netlist design using ModelSim simulation by following the 

next steps: 

»  cd /simulator/logiccell/synthesis/ 

»  3-post-synth-sim-logiccell  

This will bring up the ModelSim main and wave windows.  To test and review the 

behavior of the signals, follow some of the steps described in the pre synthesis 

section. To load the signals from figure 5.1.3, open the wave file synthesis-

logiccell.do from the /logiccell/synthesis/modelsim/ directory. 

 

Section A from figure 5.1.3 tests the full addition with the orange waves eo and 

no being the carry-out and sum bits.  Section B tests the full subtraction with the 

orange waves eo and no being the borrow-out and difference bits. 

 
 

Logic Cell Place and Route 
 

The First Encounter tools are used to generate the placement and routing of the 

netlist.  To initiate the Encounter tools, follow the next steps: 

»  cd /simulator/logiccell/asic/ 

»  4-start-encounter 

The script 4-start-encounter will copy the necessary encounter libraries to the 

/logiccell/asic/encounter/ directory and will bring up the encounter window. 
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Figure 5.1.3:  Logic Cell - Post-Synthesis Simulation 

 



Follow the step by step tutorial in section 4.4, except when necessary enter 

“logiccell” instead of “array8x8”.  A generalized procedure for generating the 

logic cell placement and routing is listed bellow: 

• Import Design – Design: netlist, LEF file, and timing library 

• Import Design – Power Nets: VDD, VSS 

• Floorplan – Specify Floorplan 

• Floorplan – Power Planning – Add Rings 

• Floorplan – Global Net Connections 

• Place – Place 

• Place – Filler – Add Filler 

• Route – SRoute 

• Route – WRoute 

• Timing – Extract RC 

• Timing – Calculate Delay – edit SDF Output File: logiccell-encounter.sdf 

 
Figure 5.1.4 shows the logic cell layout after placement and routing. 

 

 

Figure 5.1.4:  Logic Cell Layout after WRoute 
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The timing file created by place and route is logiccell-encounter.sdf and it is 

written in the logiccell/asic/encounter/ directory.  The next step is to edit line 15 

of the logiccell-encounter.sdf file from (CELLTYPE " ") to (CELLTYPE "logiccell"). 

 

To test the timing generated by the pace and route, follow the next steps to 

initiate the ModelSim tools: 

»  cd /simulator/logiccell/asic/ 

»  5-post-layout-sim-logiccell 

The script 5-post-layout-sim-logiccell copies the timing file from the /encounter/ 

to the /modelsim/ directory and simulates the netlist design created by the 

synthesis tools.  To test and review the behavior of the signals, follow some of 

the steps described in the pre-synthesis section.  The inputs and outputs are the 

same as in the pre-synthesis and synthesis sections.  To load the signals in figure 

5.1.5, from the wave window, open the wave file encounter-logiccell.do. 

 

 

Figure 5.1.5:  Logic Cell - Post-Layout Simulation 
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5.2 Memory Cell Implementation 

 

Implementing the Memory Block follows the same format as the tutorial 

section 4.4.  For this section, only a brief description will be demonstrated. 

 

The memory array block was redesigned in the memArray.vhd to be 

synthesizable.  The original memArray.v instantiates 77 rows of the sub-block 

storageCellRow.  The storageCellRow block then instantiates 8 storageCell which 

also contains other sub-blocks.  When used with the 8x8 array of PEs, the large 

number of instances for the design would surpass the allocated amount of files 

allowed in a folder.  This happens when running the synthesis of the 8x8 array.  

The new memArray.vhd block was created with one instance memArray, and 

together with using the mixed compile method, the design was synthesized.   

 

The file for testing the functionality of the memory block is test_memcell.v and it 

is located in the /srga/tools/simulator/memcell/ directory.  The operations loaded 

to the memory array are the full addition and full subtraction discussed in section 

3.3.  In the test-bench figure 5.2.1 the configuration file memcell.cnf is loaded 

on line 70.  After the configuration contexts were loaded into the memory, the 

C_out and d_out outputs were verified for proper functionality – illustrated from 

line 100 in figure 5.2.1.  

 

To test the RTL design using ModelSim simulation, run the script 1-presynth-

memcell by following the next steps: 

»  cd /simulator/memcell/presynth/ 

»  1-presynth-memcell 
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The dc_shell executes the script synth-memcell.scr located in the /synopsys/ 

directory. The details from this step are written to the file 

info_memcell_synthesis.txt also located in the /synopsys/ directory.   The 

synthesis tools will create the verilog netlist file memcell-synth.v and the delay 

file memcell-synth.sdf which are written in the /synopsys/ folder.   

The behavior of the memory cell is shown in figure 5.2.2.  The output cOut and 

dOut (in the code) are the same as C_out and d_out (in the schematic).  C_out 

output the 77-bit configuration word when the MOR register becomes “0” and 

the switchContext signal becomes “1”.  The d_out signal will output the memory 

1-bit that the offset signal (memory row) points to. 

 

To create the gate-level netlist design, follow the next steps: 

 

 

»  2-synth-memcell 

»  cd /simulator/memcell/synthesis/ 

 

Figure 5.2.1:  Section of Test Bench for Memory Cell Block 
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Figure 5.2.2:  Memory Cell Testing 
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The netlist design is tested using ModelSim by following the next steps: 

»  cd /simulator/memcell/synthesis/ 

»  3-post-synth-sim-memcell  

To initiate the Encounter tools, follow the next steps: 

»  cd /simulator/memcell/asic/ 

»  4-start-encounter 

Follow the encounter section of the tutorial, except when necessary enter 

“memcell” instead of “array8x8” to generate the place and route and output the 

timing file memcell-encounter.sdf.  The next step is to edit line 15 of the 

memcell-encounter.sdf file from (CELLTYPE " ") to (CELLTYPE "memcell"). To 

test the timing generated by the pace and route, follow the next steps to initiate 

the ModelSim tools: 

»  cd /simulator/memcell/asic/ 

»  5-post-layout-sim-memcell 

 
 

5.3 Switch Implementation 
 

The switch is tested only at the RTL level because the block is very small – it 

only consists of three 2-bit muxes and a bidirectional switch.  The test file for the 

switch module test_switch.v was designed to test the truth table illustrated in 

figure 5.3.1.  The results can be seen in figure 5.3.2 from ModelSim simulations. 

To load the signals in figure 5.3.2, open the file presynthesis_switch.do in the 

/simulator/switch/presynth/modelsim/ directory. To test the RTL design using 

ModelSim simulation, run the script 1-presynth-memcell by following the next 

steps: 

»  cd /simulator/switch/presynth/ 

»  1-presynth-switch 
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Figure 5.3.1:  Section of Test Bench for Switch Module 
 
 
 

 
 

Figure 5.3.2:  Switch Testing 
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5.4 PE Implementation 
 

The PE block consists of a logic cell, a memory cell, a memory interface, a 

row switch, and a column switch.  At this level all the modules are connected 

together and all the inputs and outputs to all the modules, including registers will 

go through the PE.  The register signals are processed by the memory interface 

which will create the internal signals wrMem, WrLog, switchContext, data_In, 

Rmi, and Cmi.  These signals are used to perform context switching and memory 

operations. 

 

The file for testing the functionality of the PE block is test_pe.v and it is located 

in the /srga/tools/simulator/pe/ directory.   The test-bench inputs data for the 

configuration word file to the PE (logic cell and memory cell) through one of the 

inputs Cm or Rm depending whether a column or row operation is expected.  

The PE is using the same format configuration file as the 8x8 tutorial for 

consistency; except that the registers are set up only for one PE instead of eight.  

The operations that are being tested are the full add and full subtract.  The PE 

verifies the functionality of all the sub-blocks which is illustrated in figure 5.4.1 

and figure 5.4.2. 

 

To test the RTL design using ModelSim simulation, run the script 1-presynth-pe 

by following the next steps: 

»  cd /simulator/pe/presynth/ 

»  1-presynth-pe 
 
The wave windows that can be viewed at this stage from ModelSim are 

pe_load_mem.do and pe_operation.do. 

 



 

 

 
 

Figure 5.4.1:  PE Testing – Loading Configuration 
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Figure 5.4.2:  PE Testing – Operations 
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To create the gate-level netlist design, follow the next steps: 

»  cd /simulator/pe/synthesis/ 

»  2-synth-pe 

The dc_shell executes the script synth-pe.scr located in the /synopsys/ directory. 

The details from this step are written to the file info_pe_synthesis.txt also 

located in the /synopsys/ directory.   The synthesis tools will create the netlist 

file pe-synth.v, and using ModelSim it can be tested by following the next steps: 

»  cd /simulator/pe/synthesis/ 

»  3-post-synth-sim-pe  

The wave window that can be viewed at this stage from ModelSim is pe.do. 

 

To initiate the Encounter tools, follow the next steps: 

»  cd /simulator/pe/asic/ 

»  4-start-encounter 

The necessary encounter libraries will be copied to the /pe/asic/encounter/ 

directory and will bring up the encounter window.  Follow the step by step 

tutorial in section 4.4, except when necessary enter “pe” instead of “array8x8” to 

generate the place and route and output the timing file pe-encounter.sdf. 

 

The next step is to edit line 15 of the pe-encounter.sdf file from (CELLTYPE " ") 

to (CELLTYPE "pe"). 

 

To test the timing generated by the pace and route, follow the next steps to 

initiate the ModelSim tools: 

»  cd /simulator/pe/asic/ 

»  5-post-layout-sim-pe 

The wave window that can be viewed at this stage from ModelSim is pe.do. 
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5.5 2x2 Array Implementation 
 

 
The 2x2 array module consists of four instances of the PE block.  Each PE is 

connected to one row switch and one column switch. The file for testing the 

functionality of the 2x2 array block is test_array2x2.v and it is located in the 

/srga/tools/simulator/2x2/ directory.  The configuration word file for the 2x2 

array is 2x2_config_words.cnf located in the /srga/config_files/ directory. The 

format of the configuration word is the same as the PE’s except there are 2-bis 

for the registers DRR and RMR instead of one bit.   

 

In the test_array2x2.v file, the signal CM transfers the bits form the configuration 

word to CM_tri.  The inouts cpm10 and cpm11 (from array2x2.v) are connected 

to CM_tri[0] and CM_tri[1] respectively.  In array2x2.v, the signals cpm10 and 

cpm11 become the parent inout for each of the two column switches.  Each 

switch then sends the configuration word bits to the Cm signal of each PE (see 

section 5.4 for the functionality of the PE).  If the registers indicated a row 

operation, the configuration bits would be sent to Rm of each PE. 

 

The 2x2 array verifies the functionality of all the sub-blocks which is illustrated in 

figure 5.5.1 and figure 5.5.2. 

 

To test the RTL design using ModelSim simulation, run the script 1-presynth-2x2 

by following the next steps: 

»  cd /simulator/2x2/presynth/ 

»  1-presynth-2x2 

 

The wave windows that can be viewed at this stage from ModelSim are 

2x2_load_mem.do and 2x2_application.do. 



 
 
 

 
 

Figure 5.5.1:  2x2 Array Testing – Loading Configuration 
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Figure 5.5.2:  2x2 Array Testing – Operations 

 

 
 



To create the gate-level netlist design, follow the next steps: 

»  cd /simulator/2x2/synthesis/ 

»  2-synth-2x2 

The dc_shell executes the script synth-2x2.scr located in the /synopsys/ 

directory.  The details from this step are written to the file info_2x2_synthesis.txt 

also located in the /synopsys/ directory.  The synthesis tools will create the 

netlist file 2x2-synth.v, and it can be tested by following the next steps: 

»  cd /simulator/2x2/synthesis/ 

»  3-post-synth-sim-2x2  

The wave window that can be viewed at this stage from ModelSim is 2x2.do. 

 

To initiate the Encounter tools, follow the next steps: 

»  cd /simulator/2x2/asic/ 

»  4-start-encounter 

The necessary encounter libraries will be copied to the /2x2/asic/encounter/ 

directory and will initiate the encounter window.  Follow the step by step tutorial 

in section 4.4, except when necessary enter “array2x2” instead of “array8x8” to 

generate the place and route and output the timing file 2x2-encounter.sdf. 

 

The next step is to edit line 15 of the 2x2-encounter.sdf file from (CELLTYPE " ") 

to (CELLTYPE "array2x2"). 

 

To test the timing generated by the pace and route, follow the next steps to 

initiate the ModelSim tools: 

»  cd /simulator/2x2/asic/ 

»  5-post-layout-sim-2x2 

The wave window that can be viewed at this stage from ModelSim is 2x2.do. 
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Chapter 6: SRGA-UT Results, Conclusion and Future 

Possibilities 
 
 

6.1 Results 

 
The objective of this thesis was to use the open code of the SRGA-USC 

design, created by the Department of EE-Systems at University of Southern 

California and the Department of Mathematics at the University of Trento (Italy), 

and implement it using the available EDA tools at the Department of ECE at the 

University of Tennessee.  To achieve this goal, a great deal of knowledge of the 

original SRGA-USC architecture was required.  The first step was to examine the 

RTL design, make the appropriated adjustments and pass the pre synthesis 

verification stage.  The second challenge was to synthesize the RTL design, 

create the netlist and pass the synthesis verification stage.  And the last step was 

to generate the place and route from the netlist design, produce the timing delay 

files, and test the final design for proper functionality. 

 

The EDA tools used to implementing the SRGA-UT were: ModelSim for 

verification and simulation at all stages, Design Compiler for synthesis and 

creating the netlist, and First Encounter for performing the place and route and 

creating the delay files. 

 

The complete SRGA architecture was describe in several thousand lines of 

Verilog and VHDL code.  The synthesis and place and route were done using a 

standard cell library for a 0.18 µm process.  The synthesized design can store 8 

configuration contexts in each PE (this number is editable in the memory cell 

verilog files).  The final implemented module has an 8x8 array of PEs.  The 

number of gates and area for each module are shown in figure 6.1.1.   
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Figure 6.1.1:  8x8 SRGA-UT Results 
 

The place and route generated a chip size of 5,413,300 µm2. 

 
The results obtained throughout the implementation of the SRGA-UT, 

demonstrated that the design was capable to switch context and perform 

memory access operations in a single clock cycle.  The minimum clock cycle that 

was required to verify the design was 30ns. Thus the SRGA-UT design can be 

expected to operate at a frequency of 33MHz. 

 

There were other tools used/tried to implement the SRGA-UT.  The VCS 

simulating tools from Synopsys [10] were also used successfully at UT.  The 

SRGA-USC design came with scripts to test their design using VCS tools.  Since 

the ModelSim tools are more frequently used in the Microelectronic System 

Research Lab at the University of Tennessee, all the testing and verification was 

done using ModelSim. 

 

The Silicon Ensemble tools [11] were also used to test the SRGA-UT place and 

route design.  The SE tools were able to create the layout of all the modules in 

the design but did not produce the timing (.sdf) files for the 2x2 and 8x8 arrays. 
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6.2 Conclusion and Future Possibilities 
 

The objective of the thesis was met, by exploring the original design, 

making the necessary changes, and using the available EDA tools to generate 

the results.  A step-by-step tutorial was created for the 8x8 SRGA-UT using the 

standard cell library for a 0.18 µm process.  The functionality of the SRGA-UT to 

perform context switching and memory access operations in a single clock cycle 

were confirmed.  The SRGA-UT design has proven the importance of the design 

for reuse techniques. 

 
Following are future possibilities that could be explored: 
 
(1) One of the disadvantages of having such a large amount of gates for the 

memory array 3,810 is that it takes the most amount of space on the 

layout.  This is because every PE in any combination of array size contains 

this number of gates for the memory array, which is implemented to store 

eight (8) configuration contexts.  One option is to edit the memory cell 

code to store less configuration contexts, thus reducing the memory size 

for each PE – and/or – another possibility could be to create a global 

memory array, or a combination of global memory arrays.  The global 

memory could store the configuration for the applications intended to be 

used. The global memory could be utilized through a network of muxes to 

attach each PE in a similar way as it is connected now.  This could allow 

the SRGA-UT to maintain its functionality and greatly reduce the number of 

gates for the design. The area for each PE could be reduced by more than 

half thus improving the size, frequency, and possible cost of production. 

 
(2) A second future possibility could be to implement the 16x16 array of PEs. 

 
(3) A third future possibility could be to incorporate the SRGA-UT with the 

University of Tennessee SoC open core Volunteer SoC platform [12]. 
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