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Abstract

This thesis presents the design and verification of a Self-Reconfigurable Gate
Array architecture (SRGA-UT) created for reuse, and available with a step-by-

step tutorial and comprehensive documentation.

The original SRGA [1], created at the University of Southern California, is an
innovative architecture for a reconfigurable device that allows single cycle
context switching and single cycle random access to a unified on-chip
configuration/data memory. The key architecture that enables the above two
features is the use of a mesh of trees based interconnect with logic cells and

memory blocks at the leaf nodes and identical switches at the parent nodes.

The SRGA-UT was adapted by making necessary modifications to the original
design, to be implemented using the available University of Tennessee electronic
design automation tools. An 8x8 array of PEs (Processing Elements) was
synthesized and routed targeting a standard cell library for a 0.18 um process.
The synthesized design can store eight configuration contexts in each PE (this
number can be modified by editing the Verilog files). The place and route
generated a core-chip size of 5,413,300 pym?, and contains 354,053 number of
gates. The step-by-step tutorial demonstrates that the SRGA-UT design is
capable to switch context and perform memory access operations in a single

clock cycle.

ModelSim tools were used for verification and simulation at all levels, Design
Compiler executed the synthesis and created the netlist design, and First

Encounter SoC performed the place and route and created the delay constraints.
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Chapter 1: Introduction

1.1 Thesis Goals

The objective of this thesis was to use the open code of the Self-
Reconfigurable Gate Array (SRGA) architecture, created by the Department of
EE-Systems at University of Southern California and the Department of
Mathematics at the University of Trento (Italy), and make the minimum
adjustments necessary to adapt and implement using the available EDA
(electronic design automation) tools at the Department of ECE at the University
of Tennessee. The outcome of this thesis was to end up with a SRGA-UT design
for reuse, accessible with a step-by-step tutorial and comprehensive

documentation.

To achieve this goal, a great deal of knowledge of the SRGA-USC architecture
was required. The first step was to examine the RTL (register transfer level)
design, make the appropriate adjustments and pass the pre-synthesis verification
stage. The second challenge was to synthesize the RTL design, create the netlist
and pass the synthesis verification stage. And the last step was to generate the
place and route from the netlist design, produce the timing delay files, and test

the final design for proper functionality.

The EDA tools used to implement the SRGA were: ModelSim for verification and
simulation at all stages, Design Compiler for synthesis and creating the netlist,
and First Encounter for performing the place and route and creating the delay

files.



1.2 Outline of Thesis

The introduction states the thesis goals. An open self-reconfigurable design,
SRGA-USC, developed at the University of Southern California was taken and
implemented using the available EDA tools at the University of Tennessee. The
intent was to make the minimum changes, while the focus was to develop a
SRGA-UT design for reuse with complete documentation and a step-by-step

implementation tutorial.

The second chapter will present a background of the IC (integrated circuit)
technology — focusing on the reconfigurable devices such as the SRGA-USC, an
innovative architecture for a self-reconfigurable device that allows single cycle
context switching and single cycle random access to the on-chip configuration
memory. This chapter also describes the importance of the design for reuse
techniques which can greatly decrease the time-to-market by reducing the

design cycle and the manufacturing cycle.

The third chapter illustrates the background of each component of the SRGA
architecture including the changes made to the original SRGA-USC design to
adapt and implement it at the University of Tennessee. The SRGA-UT design
retains the overall original architecture but was mostly adjusted to be able to

pass the verification stages of synthesis and place and route.

The fourth chapter provides a step-by-step tutorial of an 8x8 SRGA-UT array.
The steps will confirm the pre-synthesis RTL verification (using ModelSim), the
synthesis process (using Design Compiler) and verification of the netlist (using
ModelSim), and the place and route process (using First Encounter) and

verification of the delay constraints (using ModelSim).



The fifth chapter shows the implementation of the 8x8 array sub-blocks in the
same manner as the tutorial. Some blocks were small enough to be proven just

by verifying the pre-synthesis RTL step.

The sixth chapter will describe the results of the SRGA-UT implementation and
followed by the conclusion remarks and suggestions for future possibilities. The

overall thesis provides a detailed documentation for a reusable design.



Chapter 2: Background

2.1 Reconfigurable Technology

Reconfigurability denotes the potential of a system to dynamically change its
behavior usually in response to changes in its environment. In the computing
world, the Field Programmable Gate Arrays (FPGAs) are the most popular means
of accomplishing reconfigurability. An FPGA consists of an array of
programmable logic elements and programmable interconnects. The logic
elements can be logic gates (AND, OR, XOR, Invert), lookup tables (memory
usually RAM), or flip-flops [2]. The interconnects allow the logic elements to be

connected as needed by the design.

The logic elements and interconnects can be programmed by the customer so
that the FPGA can perform a certain functionality. This functionality can be
reconfigured to suit new application requirements desired by the customer by
writing appropriate bits into the configuration memory. The challenges with
most FPGAs however, whether they are reconfigured at compile time or runtime,

is that they require an external source to execute the reconfiguration.

A device, that is capable to generate configuration bits at runtime and use them
to modify its own configuration, exhibits self-reconfiguration. A self-
reconfigurable device needs to be able to store multiple contexts of configuration
information and context switch between them. The configured logic should be
able to access any of the contexts of information stored and perform self-
reconfiguration by modifying the contents of the information stored. When the
configured logic has made the modifications to the configuration information, the
device should be able to switch context to any of the contexts of configuration
stored. For an efficient self-reconfiguration to occur, the device should be able
4



to configure logic to perform: (1) fast context switching and (2) fast random
access of the configuration information stored. The SRGA-USC[1] was designed
to perform the fast context switching and fast random access of the
configuration stored in one clock cycle. The SRGA-USC is capable of storing

eight contexts of configuration information (this number is editable).

Another device that is capable of storing four contexts of configuration
information on-chip and switch between them on a clock cycle basis is the
Sanders CSRC [3]. This device can also load configurations while other contexts
are active. Despite the fast switching and loading capabilities, it only provides
serial configuration memory access which can take hundreds of clock cycles to
access a particular location. The Berkeley HSRA [4] is capable of accessing the
configuration information in a fast manner but it takes hundreds of clock cycles

to switch context.

2.2 Design Reuse

Time-to-market is a crucial aspect for the survival of many IC manufacturing
companies in such a competitive environment. Time-to-market may be
optimized by reducing the design cycle and by reducing manufacturing cycle.
The design cycle may be greatly reduced and the quality of the designs may be
increased by providing designs with reuse [5]. IP (intellectual property) blocks
such as configurable I/O (input/output), power and ground grids, block RAMs
(random access memories), and timing generators were some of the first blocks
created for reuse as sub-designs in larger projects such as SoCs (system-on-
chips). If a sub-design were to be developed from scratch, it would take a lot
more time than to adapt the reusable block. Figure 2.2.1 shows that without

planned design reuse, the total time for development is proportional to the



<
S 1.8

Design #2 Design #3
WITHIP WITHIP
———— & s .

Design # 1 For Reuse

Figure 2.2.1: Design for Reuse Diagram [5]

number of sub-designs, given that each module has the same complexity.
During development with planned design reuse, the designer will spend more
time in creating a reusable block by providing comprehensive documentation and

more adaptable interface.

The design for reuse techniques are closely studied in today’s SoC development.
A basic combination of such reusable features is known as a platform. The
platform used to implement a SoC greatly impacts all of the issues and is the
fundamental decision the hardware designers must make at the start of each
new project. By 2010 the percentage of IP contained in a System-on-Chip

application is predicted to grow to 95% [6].

One of the goals for this thesis is to end up with a SRGA-UT design for reuse,

accessible with a step-by-step tutorial and comprehensive documentation.

2.3 SRGA-USC

The original Self-Reconfigurable Gate Array Architecture [1] is an open core
design implemented by the Department of EE-Systems at University of Southern

California and the Department of Mathematics at the University of Trento (Italy).

6



The reconfigurable device allows single cycle context switching and single cycle
random access to the unified on-chip memory which stores the configuration
data. Both features are necessary for efficient self-reconfiguration. The context
switching feature permits arbitrary regions of the chip to selectively switch
context. The memory access feature allows data transfer between logic cells and
memory locations as well as between memory locations. A mesh of trees based
interconnects with logic cells and memory blocks at the leaf nodes and identical
switches at the other nodes make it possible to perform the above features.

Figure 2.3.1 shows the basic SRGA architecture of a 4x4 array of PEs.

The architecture can be of any N x N array of PEs. The PE sits at the leaf node
of the mesh of trees interconnects and is composed of a logic cell, memory
block, and memory interface. Each switch is identical except that some switches
are connected in a column mesh network and some are connected in a row mesh

network. Each PE is connected to a row switch and a column switch.

PE and owned switches

0
m

| e——

.||“

i i | A h

..|||
-
N0 i M = S

B
il

B

[

Local interconnect

Figure 2.3.1: SRGA Architecture
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The connection between the PEs through the switches is configured using two
methods. The first method serves the same purpose as the interconnection
network in a typical FPGA, connecting together the logic cells as specified by the
configuration bits controlling the network switches. The second method is used
for performing data transfer during the memory access operations. For this
method, only one wire that carries signals in either direction is used for each

connection.

The logic cell of each PE can connect directly to the four neighbor’s logic cells.
Fore example, the south output of a PE will become the north input of the
neighbor PE directly to the south of the original PE — and/or — the east output of
a PE will become the west input of the neighbor PE directly to the east of the

original PE.

The SRGA contains three global registers — their contents are broadcast to all
PEs, and four periphery registers — located along the boundary of the N x N PE
array. The purpose of the global registers is to specify — the operation to be
initiated, the source and destination of the data, and the context to switch to or
the memory address to be accessed. The purpose of the periphery registers is to
control which rows or columns will be the source or destination during the
different functionalities. See section 3.2 for a more detailed description of the

registers.

The Memory block stores the different configuration words which are 77 bits long
each. During a memory access operation, the contents of the configuration
words can be transferred between rows or between columns. All memory access
operations complete in a single clock cycle. The operation can be a memory
read (memory to logic cells), memory write (logic cells to memory), or memory

transfer (memory to memory) depending on the contents of the global registers.

8



The memory interface generates the proper inputs to the memory block and to
some extent to the logic cell by taking the register signals and combining them

through basic logic gates to create the appropriate signals.



Chapter 3: Component Background

3.1 Components Overview

This chapter will describe in details the structure of each component of the
SRGA-UT, which includes the changes made to the original SRGA-USC design.
The changes, which will be pointed out throughout the next three chapters, were
necessary for the design to be adapted and able to implement using the
available EDA tools. The SRGA-UT design retains the overall original architecture
but was mostly adjusted to be able to pass the verification stages of pre-

synthesis, synthesis and place and route.

The SRGA-UT architecture consists of an array of N x N array of PEs. The PE sits
at the leaf node of the mesh of trees interconnects and is composed of a logic
cell, memory block, and memory interface (described later in this chapter). Each
switch is identical except that some switches are connected in a column mesh
network and some are connected in a row mesh network. Each PE is connected

to a row switch and a column switch.

The N x N array of PEs is configured by inputting configuration contexts
(described in section 3.3) into the memory array of each PE — which can store
eight contexts of configuration. Once the memory is loaded, the SRGA-UT can
switch context and perform memory operations in a single clock cycle. This is

done through a number of global and periphery registers.

3.2 Registers

The SRGA-USC contains three global registers and four periphery registers.

The memory interface module takes signals from the registers and creates the

10



internal signals wrMem, WrLog, switchContext, data_In, Rmi, and Cmi. These

signals are used to perform context switching and memory operations.

The three global registers are the Operation Register (OR), the Memory
Operation Register (MOR), and Context and Memory Address Register (CMAR).
OR seen in figure 3.2.1 () is a 2-bit register that specifies what operation will be
initiated in the next clock cycle. MOR seen in figure 3.2.1 (b) is a 2-bit register
that specifies the source and destination of the data transfer for the next clock
cycle when OR indicates memory access. Note: The order of the OR and MOR
bits were changed in the figure bellow for consistency with the verilog code.
CMAR, depending on the OR contents, specifies the context to switch to or the
memory address to be accessed in the next clock cycle. CMAR consists of two
fields: (1) the context field and (2) the offset field. The context field points to
the memory column to be accessed. In testing this design, nc equals eight (8),
the number of memory columns for the memory array. ncis defined and can be

edited in the memory verilog files found in the /srga/tools/rtl/mem/ directory.

|OR[0]|OR[1]|Operation \
0 0 |No operation

0 1 |Context switch

| 0 |Row memory access

1 1 |Column memory access

(a)
MOR[0]|[MOR[1]|Source and destination

0 0  [Memory to memory

1 [Memory to logic (read)
0 [Logic to memory (write)
1 |Logic to logic

(b)

Figure 3.2.1: OR and MOR Registers

el B B
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The size of the context field can be calculated as: (2¥ = nc) where X is the
context field number of bits which equals to 3 (2° = 8). The offset field points to
the memory row to be accessed. In the design, ¢s equals eighty (80), the
number of output bits from the Row Demux (see memory cell section 3.5). The
first seventy-seven (77) bits of c¢s are the number of rows for the memory array.
¢s can also be defined as the number of bits required to configure a logic cell

and its two owned switches. Each memory array block consists of ncx cs bits.

The four periphery registers are SCR, SRR, DCR/RMR, and DRR/CMR, shown in
figure 3.2.2 (a) and (b). All the periphery registers are N bits long to match the

size of the N x N array of PEs.

SCR (Source Column Register), a set bit implies that the corresponding PE

column will be the source for the next column memory access.

SRR (Source Row Register), a set bit implies that the corresponding PE row will

be the source for the next row memory access.

[ItTee ofx] [n-1]

<] SCR “x” bit
=
B SRR “y” bit
— = > v
—PE(x.y) -,
@ - —CSMR PE (x,y)
7}
: —DRMR ':
3
- o & r -
B = A
— DRR/CMR “y” bit
PE array Al
=l DCR/RMR “x” bit
[oft]eee]x] [n-1]
DCR/RMR
(a) (b)

Figure 3.2.2: Periphery Registers (a) N x N Array of PEs [1] (b) PE
12



DCR/RMR (Destination Column Register)/(Row Mask Register), a set bit implies
that the corresponding PE column will be the destination for the next memory
access — or — during a row memory access, no data will be transferred for the

corresponding column.

DRR/CMR (Destination Row Register)/(Column Mask Register), a set bit implies
that the corresponding PE row will be the destination for the next memory
access — or — during a column memory access, no data will be transferred for the

corresponding row.

Each PE also contains two memory mapped registers CSMR and DRMR to give
the design more flexibility. CSMR (Context Switch Mask Register), a set bit will
not allow the corresponding PE to switch context even when a context switch
operation occurs. DRMR (Data Restore Mask Register), a set bit prevents the
corresponding flip-flop contents from being restored when a context switch

operation occurs.

3.3 Configuration Word

The configuration word that is loaded to the memory array is 80-bit long.
Figure 3.3.1 (a) and (b) shows the format of the configuration word. The word
is composed of: select 4-bit input for five input muxes (MOi to M4i), configuration
16-bit input for the LUT, select 4-bit input for eight output muxes (MOo to M70),
select 4-bit input for the row switch (Sg), select 4-bit input for the column switch
(Sc), and four bit contents of the FF.

For testing, different configuration word files were created and stored in the

/srga/config_files/ directory, and called by the test-bench of each module.
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0 4 8 12 16 20 36 40 44 48 52 56 60 64 68 72 6 7
MOi | M1i | M2i [ M3i | M4i LUT MOo ll\l’l1o M2o IM3O lM4o M50 lNIGo M70 | Sg | S¢

|
FF contents J

(a)

1|Full adder

2] 1 2 3 4 5 6 7
3]101234567890123456789012345678901234567890123456789012345678901234567890123456789
4|00000011010000010010111010001001011010101011010000110000110011010010000000000000

6]100001111222233334444ttttttttttEttEtt00001111222233334444555566667777errrecececef

(b)

Figure 3.3.1: Configuration Word Format (a) Diagram and (b) From
Configuration File

Note: Only three bits Sz/69:71] and S /73:75] are used for the switches, and
only one bit FF/79] is used for the flip-flop. Part (a) of the figure 3.3.1 was

edited to be consistent with the configuration word format from the verilog code.

The four input muxes MOi to M3i generate the select bits for the LUT. For a
detailed illustration of how the LUT works, refer to section 3.4. To test this
design, 16-bit configuration words were created for a full adder and a full
subtractor. The format of the LUT configuration is demonstrated in figure 3.3.2
and figure 3.3.3. It can be seen that the output of the truth table forms the
configuration bits for the LUT.

The LUT can perform two boolean functions of three inputs and one output each
and one boolean function of four inputs and one output. The truth tables are
color coded to show how the configuration for the LUT must be applied. A
binary and hexadecimal number format is shown which will be useful when

generating the ModelSim simulations.
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Carry-In | Input bit | Input bit | Carry- Sum bit
bit Qut bit
L2i L1i LOi L1o Loo
0 0 0 0 0
0 0 1 0 1 Carry-Outbit | Sum bit
0 1 0 0 1 L1o LOo
0 1 1 1 0 Binary
Format 1110 | 1000 | 1001 | 0110
1 0 0 0 1
- : > 1 0 Hex Format 2 8 9 6
LUT
1 1 0 1 0 Configuration | lutconfig[15:8] | Iutconfig[7:0]
1 1 1 1 1 word
(a) (b)
Figure 3.3.2: Full Add Configuration (a) Truth Table (b) LUT
Borrow- Input bit Input bit Borrow- | Difference
In bit Out bit bit
L2i L1i LOi L1o L0o
0 0 0 0 0
0 0 1 0 1 Borrow-Out Difference
0 1 0 1 1 L1o LOo
0 1 1 0 0 Binary
Format 1101 | 0100 | 1001 | 0110
1 0 0 1 1
1 0 1 0 0 Hex Format d 4 9 6
LUT
1 L L . L Configuration | lutconfig[15:8] | Iutconfig[7:0]
1 1 1 1 1 word
(a) (b)
Figure 3.3.3: Full Subtract Configuration (a) Truth Table (b) LUT
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3.4 Logic Cell

The logic cell block shown in figure 3.4.2 consists of a 16-bit LUT, a Flip-Flop
(FF), five input muxes (M0Oi, M1i, M2i, M3i, and M4i), and eight output muxes
(MOo, M1o, M20o, M30, M40, M50, M6o, and M70). The input muxes (M0i, M1i,
M2i, and M3i) are used to generate the four control bits (L0j, L1 L2j, and L3i)
for the LUT. See also figure 3.4.1 (a). The input mux M4i generates the signal
(L4i), the input to the Flip-Flip when the Switch_context signal is ‘0’. When the
Switch_context signal is ‘1’, the context_state is the input to the Flip-Flop. See
also figure 3.4.1 (b).

The LUT can perform two boolean functions of three inputs and two outputs or
one boolean function of four inputs and one output. As can be seen from the
logiccell.v section in figure 3.4.3, the mux8 «_/wt0 and u_/utl instances will

perform the two boolean functions of three inputs and two outputs.

F(LO;, L1}, 12) = LOO
F(LO, L1}, 12) = L1o

LOi
m J(w-b'rts

LUT

LOo L1o L2o
L3i
Switch_context
L4i
(b) m B D! FE @ FFoutput
|_ context_state

Figure 3.4.1: (a) LUT Structure and (b) Flip-Flop Structure
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(from LIN and BMIN)
Rmi

iEiSiWiRIiCi Cmi . . .
} Centrol bits for input muxes

MO, M0, 820 and M3

LDi

bADi

LUT cenfiguration bits

g

L
. - LUT
idgngcal muxes connect

fo|L1i, L2i, L3i and L4i) |

Control bits for
input mue M4i
switch_context
L4i
M —o FF FF {from memory block
# C_out ragister)
ok | Treset - ;
context_state
I% .

Control bits for output muess
N MOz, M1c, M2o, Mo, Méo
* M5o, Mo and MTo

MioMZoM3alEons oS ohTTo

= Mo Eo S0 WoRo CoRmo Cmo
]
{identical muzes connect
c o on W
toEo, So, Wo, Ro. ©o. 45 1IN and MIN)
Rmo and Cma)

Figure 3.4.2: Logic cell Structure [1]

17




assign sel lut0 {1i2,14i1,1i0};
assign sel lutl {1i2,1il1,1i0};
assign sel lut2 = 1i3;

assign lutconfigl lutconfig([7:0];
assign lutconfigl lutconfig[15:8];

muxB u lut0 (.sel (sel_lut0),
.datalIn (lutconfig0) ,
.dataocut (le0));

muxB u lutl (.sel (sel_lutl),
.datalIn (lutconfigl) ,
.dataocut (lel));

mux2 u lut2 (.Y (lo2) ,
A (1c0) ,
.B (lel),
.50 (sel_lut2));

Figure 3.4.3: Internal Functions of the LUT

The instance u_/ut2 of mux2 takes the signals LOo and LIo and generates the
output L2o depending on the state of L/3. This is the internal function of the LUT

that performs the one boolean function of four inputs and one output.

FLO, L1 12 L3) = L20

The signal L0/ from figure 3.4.2 is equivalent to li0 from figure 3.4.3. The same
applies to L1/, L2i, L3j, LOo, L1o, and L2o.

The inputs to the PE (W, £j, Si, Wi, Ri, Ci, Rmi, Cmi) are grouped together in the
logiccell.v module to form the 8-bits /nBus set of wires. See figure 3.4.4. The
16-bits inMuxBus is the set of wires which groups together the /nBus, /o3 (the

output Q from the Flip-Flop), and other strategically placed ones and zeros.

inMuxBus[15:0] = {1, 0, I03, 0, 0, 0, 0, 0, inBus)
inMuxBus[15:0] = {1, 0, 103, 0, 0, 0, 0, 0, Cmi, Rmi, C, R, Wi, Si, Ei, N}
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assign inBus = {cmi, rmi, ci, ri, wi, si, ei, ni};
assign inMuxBus = {1'bl, 1'b0, lo3, 5'b0, inBus};
assign outBus = {lo2, lol, 100, 2'b0, inBus};
assign outMuxBus ={1'bl, 1'b0, lo3, outBus};

(a)

Binary and 1111{1110/1101|1100{1011|1010|1001(1000{0111|0110{0101{0100|0011|0010{0001|0000
Decimal number
for the control
bits ofeachmux | 15| 14 | 13 |12 | 11 [ 10 | 9 8 7 6 5 4 3 2 1 0

inMuxBus[15:0] | 1 0 [lo3| 0 0 0 0 0 [Cmi|Rmi| Ci | Ri | Wi | Si | Ei [ Ni

outMuxBus[15:0] | 1 0 (lo3 |L20|L10|L0O0o| O 0 |Cmi|Rmi| Ci | Ri | Wi | Si | Ei | Ni

(b)

Figure 3.4.4: Input and Output Set of Wires for the Logic Cell Muxes

The inMuxBus is the input to each of the four input muxes MO0i, M1i, M2i, and
M3i. This architecture allows the flexibility to use any of the signals in the
inMuxBus to become the control bits L0j, L1/, L2], and L3/ for the LUT. This is
done by the control bits for the input muxes which come from the configuration
words. For example, the input A/ can be the output for all the muxes (including
output muxes discussed later in this section) if the control bits from the

configuration word for each mux are set to ‘0000’

The 13-bits outBus is the set of wires which groups together the /nBus, the

outputs from the LUT (L0o, L10, and L20), and other strategically placed zeros.

outBus[12:0] = {L20, L1o, LOo, 0, 0, inBus}

The 16-bits outMuxBus is the set of wires which groups together the outBus, /o3

(the output Q from the Flip-Flop), and other strategically placed ones and zeros.

outMuxBus[15:0] = {1, 0, /03, outBus}
outMuxBus[15:0]= {1, 0, lo3, L2o0, L1o, LOo, 0, 0, Cmi, Rmi, C, Ri, Wi, Si, Ei, Nj}
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The outMuxBus is the input to the input mux M4i and to the output muxes (MOo,
M1o, M2o, M30, M40, M50, M60o, and M70). In this manner any of the signals in
the outMuxBus can become the output for the muxes depending on the control

bits from the configuration word.

The complete flexibility in configuring connections allows the LUT and Flip-Flop
to be used while other signals are routed through the logic cell — to perform

operations as inputs for other PEs.

3.5 Memory Cell

The memory block shown in figure 3.5.1 consists of a memory cell array, a
row decoder, a column decoder, three current context registers (CCR) with three
context field muxes, a configuration word register, and a data-out row mux. The
memory cell array block (memArray.vhd) was redesigned to reduce the number
of instances. The original memory array block (memArray.v) instantiated
seventy-seven (77) sub-blocks of storageCellRow. The storageCellRow block
then instantiated eight (8) storageCell sub-blocks which also contains other
instances. When used with the 8x8 array of PEs, the large number of instances
for the design would surpass the allocated amount of files allowed in a folder.
This happens when running the synthesis of the 8x8 array. The new
memArray.vhd block was created with one instance memArray, and also by using

the mixed compile method, the design was successfully synthesized.

The memory cell array is internally arranged as a nc columns of c¢s storage cell
rows. The nc and c¢s can be edited in the module memArray.vhd to become any
memory array size as seen in figure 3.5.2. In this design the size of nc = 8
[ colSe/lWidth to 0] and the size of ¢s = 77 [rowSelWidth to 0].
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switch_context LCD—‘
oad
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Figure 3.5.1: Memory Block Structure [1]

‘"define colSelWidth 7
"define rowSelWidth 76
wire [ “colselWidth:0] colsel;

wire [ 'rowSelWidth:0] rowsSel;

Figure 3.5.2: Defining the Size of the Memory Array
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Each column can store a configuration word in this case 77-bits long, thus the
memory array can store eight different configuration words. In testing the 8x8
array, only four (4) configuration contexts are used thus leaving the last four
columns of memory vacant in each PE. By editing this in the future, the number

of gates in each PE will be reduces by about one third.

The row decoder u_rowdecode is instantiated in the memcell.v and it selects the
row to write the data to. The column decoder v _coldecode is instantiated in the
memcell.v and it selects the column to write data to. The row decoder and

column decoder together select a specific memory cell to be accessed.

The three CCRs, u_I10EDFFTRX1, u_11EDFFTRX1, u_12EDFFTRX1, and the three
context field muxes u31_MX2X1, u32_MX2X1, u33_MX2X1;, are instantiated in
the memcell.v. Their functionality is to perform a context switch operation in a
single clock cycle. This is done as follows: At the positive edge which marks the
beginning of the next clock cycle, the CMAR and OR contents are registered and
broadcast to all the memory blocks. In each memory block, in the first half of
the clock cycle, the new configuration is loaded into the configuration word
register (for details refer to figure 3.5.1 above) when switch_context is “1” and
switch_context 2is “0" (swith_context_2is switchContextHalf in memcell.v). In
this manner, the context field of CMAR gets applied to the column decoder thus
selecting the memory column to place the new configuration. At the negative
edge of the clock cycle, the new configuration word gets loaded into the

configuration word register and ready to be used.
The configuration word register v _reg 77bnir is instantiated in the memcell.v

and it loads and stores the configuration word from the memory array that is

selected by the column decoder. This is done internally in the memArray.vhd.
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When a switch context occurs, the load signal to the configuration word register

will enable the new selected memory column to be loaded in a single clock cycle.

The output of the configuration word register sends the 16-bit configuration to
the LUT, the control 4-bit configuration to each of the logic cell muxes, the
configuration bits for the switches, and the signal to the Flip-Flop for the

generation of the context state.

The data-out row mux uv_mux80 is instantiated in memcell.v and it performs the
bit transfers during memory operations. The offset field signal will select the
memory bit (row) of the currently used configuration word (memory column). In
this manner a single memory cell can be transmitted to another memory block to
change its configuration. The signals CSMR and DRMR are inputs to the data-out

row mux and can also be accessed through memory operations.

3.6 Switch Structure

The switch is the most important part of the mesh of trees network because
the switches together with connecting wires create the mesh network. Each PE
is connected to one row and one column switch. The row and column switches
are identical. Each switch is connected to two child nodes and a parent node
where the child nodes can be other switches or PEs. The switch shown in figure
3.6.1 is composed of two parts: (1) the Logic Interconnection Network (LIN) and

(2) the Memory Interconnection Network (MIN).

The LIN is composed of three muxes with select inputs (¢ _outf68], ¢ out/69],
and ¢ out/70] for the row switch, and ¢ out/72], ¢ outf73], and c¢_out{74] for

the column switch) coming from the configuration word.
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Figure 3.6.1: Switch Structure

This setup allows any input to be connected to any output without restrictions
except connecting an input to its output pair. This way a signal is not routed

back where it came from.

The MIN part is composed of a bidirectional tri-state circuit where the wires
connected to it can flow signals in both directions. In this manner, by opening
all switches at a particular network level, a memory tree can be divided into
multiple smaller trees. The wires from the child connections R;, and Rg, are
connected together thus any signal coming from any parent or child node will be
transmitted to all nodes. The tri-state circuit will determine which way the signal

flows.

Note: The schematic connections to the LIN muxes were changed in the

schematic above (from the original) to be consistent with the verilog code.
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3.7 PE Structure

The PE block shown in figure 3.7.1 consists of a logic cell, a memory cell, a
memory interface, a row switch, and a column switch. At this level all the
modules are connected together and all the inputs and outputs to all the
modules, including registers will go through the PE. The register signals are
processed by the memory interface which will create the internal signals wrMem,
WrlLog, switchContext, data_In, Rmi, and Cmi. These signals are used to
perform context switching and memory operations.

The logic cell connections through the PE are: The LIN nearest neighbors’
connections (inputs A, Ei, Si, Wi, and outputs Ao, Eo, So, Wo). The mesh

network connections (inputs Rj, G, Rmi, Cmi, and outputs Ro, Co, Rmo, Cmo).

Configuration bits from the memory cell (configuration word register) are
connected through ¢ out (cOut in the RTL code) to the select bits for the logic
cell’'s muxes and input to the LUT. Also, configuration bits are passed to the row

and column switches.

The inputs and outputs Cm or Rm are connected together. This setup indicates
the bidirectional connectivity with the MIN part of the switch. If the direction is
input to PE, the Gm or Rm will be input signals shown on the upper left-hand
side of figure 3.7.1. If the direction is output from PE, the Cm or Rm will be
output signals shown on the lower right-hand side of figure 3.7.1. The test-
bench inputs data for the configuration word file to the PE (logic cell and
memory cell) through one of the inputs Cm or Rm depending whether a column

or row operation is expected.
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Figure 3.7.1: PE Structure [1]
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3.8 2x2 Array

The 2x2 array module shown in figure 3.8.1 consists of four instances of the
PE block. Note: Only one column switch is shown for a clearer diagram. The
four instances are w00 pe, w01 pe, ul0 pe, and w1l pe, which are joined
together in the array2x2.v file. Each PE is connected to one row switch and one
column switch. The external connections such as No00d, Wi01, Rpm, will become
the inputs and outputs to the 2x2 array while the internal interconnects such as
Wo00 will become E£i0I. The other I/O to the design are the three global
registers (OR, MOR, CMAR), and four periphery registers.

3.9 8x8 Array

The 8x8 array block shown in figure 3.9.1 consists of four instances of the
4x4 array. The four instances are w00 _array4x4, u01_array4x4, ulQ_array4x4,
and wul11_array4x4, which are joined together in the array&x8.v file. The local
interconnects for each of the 4x4 arrays are connected in the same manner that
four PEs are connected together to form a 2x2 array. The same way that £o for
PEOO connects to the Wi for PEO1 in a 2x2 array, £o for PEOO_0101 connects to
the Wi for PEO1_0000. For more details see the local interconnections in the
array8x8.v file located in the /srga/tools/rtl/ directory. There are also eight row
and eight column switches added to the design. In figure 3.9.1 only switches in
rows one and five and columns four and eight are shown for a clearer schematic.
These switches are the parent switches in the 8x8 array design. The inputs and
outputs of the 8x8 array are connected to the outer PEs, parent switches, three

global registers (OR, MOR, CMAR), and four periphery registers.
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Figure 3.9.1: Structure of the 8x8 Array
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Chapter 4: SRGA-UT Implementation

4.1 SRGA-UTOverview

This chapter provides a step-by-step tutorial of an 8x8 SRGA-UT array. The
steps will confirm the pre-synthesis RTL verification (using ModelSim), the
synthesis process (using Design Compiler) and verification of the netlist (using
ModelSim), and the place and route process (using First Encounter) and

verification of the delay constraints (using ModelSim).

There are several new RTL designs that were created to simplify the testing of
the design. The synchronous D Flip-Flip dffsync.vhd file, located in the
/tools/rtl/logiccell/ directory, was created to replace the tsmcl8 version to
eliminate timing errors. The memory array memArray.vhd file, located in the
/tools/rtl/mem/ directory, was created to replace the memArray.v to reduce the

number of instances when synthesizing the memory cell.

In chapter 5 the implementation of the SRGA-UT sub-designs is described.

4.2 EDA Tools

For the 8x8 array SRGA-UT design some of the EDA tools available at the
ECE Department at University of Tennessee will be utilized to explore design
alternative and enhance productivity. The EDA tools used are ModelSim from
Mentor Graphics, Design Compiler from Synopsys, and First Encounter from

Cadence.
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The ModelSim tools were used for design testing and verification done at the
pre-synthesis level (HDL designs), post-synthesis level (gate-level netlist), and

post place and route level (SDF timing) [7].

The Design Compiler (dc_shell) was used for logic synthesis, which is the process
of converting a design description written in a hardware description language
such as Verilog and VHDL into an optimized gate-level netlist targeting the
tsmc18 libraries. The mixed compile method was used, where the top-down and
bottom-up strategies are simultaneously applied [8]. The top-down compile is
the most used strategy where the top-level design and all its sub-designs are
compiled together. The bottom-up compile strategy compiles the sub-designs
separately and then incorporates them in the top-level design. The top-level

constraints are applied, and the design is checked for violations.

The Mixed compile or bottom-up methods must be used to synthesize the SRGA-
UT design. This is because of the large number of instances present in the
memory cell module. By running only the top-down approach for a design of
2x2 array and higher, the available number of files (~32,000) that can be used in
a folder or the amount of memory (~4000M) allocated by the internal CPU for
each user, will be surpassed and the synthesis will crash. The synthesis scripts

can be found in the /synthesis/synopsys/ directory of each module.

First Encounter was used to generate the place and route steps, targeting the
TSMC 0.18-micron technology, and extract the SDF file which contains net delays
and cell delays [9]. This is done by going through a series of steps, described in
section 4.4, where the netlist is transformed into the graphic design system
(GDS) format for 2D layout display.

The design flow for implementing the SRGA-UT is shown in figure 4.2.1.
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Figure 4.2.1: SRGA-UT Design Flow

4.3 Setting up Files

There are two files needed to setup the SRGA-UT: (1) the script start-SRGA-UT
and (2) the zipped file srga-ut.tar.gz. The files can be obtained from Dr.
Bouldin at the ECE department of the University of Tennessee. The first step is
to copy the two files to the directory where the SRGA-UT is going to be initiated.
The second step is to run the script start-SRGA-UT.

» start-SRGA-UT

The script will unzip the srga-ut.tar.gz which will setup the folders and files in the

following format.

/srga/ main directory

/srga/documentation/USC/ original project and files from USC
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/srga/documentation/UT/ SRGA-UT documentation and libraries

/srga/config_files/ configuration word files
/srga/tools/rtl/ RTL designs (verilog and vhdl)
/srga/tools/simulator/lib/ tsmc18, synopsys, and encounter library files

/srga/tools/simulator/logiccell/  logic cell testing folders, scripts, and files
/srga/tools/simulator/memcell/  memory cell testing folders, scripts, and files

/srga/tools/simulator/switch/ switch testing folders, scripts, and files

/srga/tools/simulator/PE/ PE testing folders, scripts, and files
/srga/tools/simulator/2x2/ array 2x2 testing folders, scripts, and files
/srga/tools/simulator/8x8/ array 8x8 testing folders, scripts, and files

4.4 8x8 Array Step-by-Step Tutorial

The file for testing the functionality of the 8x8 array block is the verilog file
test_array8x8.v which is located in the /srga/tools/simulator/8x8/ directory. A
number of predefined configuration words are provided by the configuration file
8x8_config_words.cnf located in the /srga/config_files/ directory. Line number
five in figure 4.4.1 is a configuration word taken from the configuration file and

can be described as follows:

x — Eight bits from 0 to 7 are the horizontal periphery bit registers for the 8x8
array. A bit “1” selects the specific column.

y — Eight bits from 8 to 15 are the vertical periphery bit registers for the 8x8
array. A bit “1” selects the specific row.

¢ — Three bits from 17 to 19 are the context field from the CMAR register.
The context field selects the memory column to perform a memory access

operation.
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1 2 3 4 5 6 7 B 9 10
012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567
XXXXXXXXYYYYYYYvecccefffff££00001111222233334444EEEEEEEEEEEEEEEE0000111122223333444455556666777 Terrreccceecef
Full adder
000000111111110000010000000000000011010000010010111010001001011010101011010000110000110011010010000000000000
| REGISTER'S CONFIGURATION || MEMORY ARRAY CONFIGURATION |

01234567890123456789012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5 6 1

Figure 4.4.1: Configuration Word Format for the 8x8 Array
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words
CONFIGWORDS comes from the configuration file (8x& config words.cnf).

Figure 4.4.2 is the section of the test-bench that takes the configuration words

Indicates an extra bit.

Seven bits from 21 to 27 are the offset field from the CMAR register. The
offset field selects the memory row to perform a memory access
operation.

The five sets of four bits each from 28 to 47 are the select bits for the
input muxes MOi to M4i. The first four sets of four bits from 28 to 43,
select the four select bit inputs, LOi to L3i, to the LUT. The fifth set of
four bits from 44 to 47, select the first input to the switch_context mux.
Sixteen bits from 48 to 63 are the input bits for the LUT. In this case
“1110100010010110" in binary or “e896"” in hex is the configuration for a
full adder.

The eight sets of four bits each from 64 to 97 are the select bits for the
output muxes M0o to M70. The outputs from these muxes are No, Eo,
So, Wo, Ro, Co, Rmo, and Cmo respectively. The No, Eo, So, and Wo are
connected to the neighbor PEs while Ro, Co, Rmo, and Cmo are
connected to the logic and memory interconnects of the owned switches.
Three bits from 97 to 99 are the configuration bits for the row owned
switch.

Three bits from 101 to 103 are the configuration bits for the column
owned switch.

One bit 107. Only bit 0 is used to configure the content of the Flip-Flop.

On line eight of the test-bench test array8x8.v the number of configuration

is defined ('define CONFIGWORDS 5). 1In this case, the number of

and distributes the different sections of each word to the 8x8 memory array and
registers. Figure 4.4.3 shows the method of assigning the truth table inputs 7j

wi, and ri, to perform the full addition and subtraction operations.
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'?6 f*****************l.oad config *****************'{
77 (" ./ S S feconfig files/Bx8_config_words.onf", mem);
'_II‘B /***k**************************k***************/
79
a0 OR<= ;
g1 MOR<=
52 SRR==" array side’ b
83 for(i=0; i< CONFIGWORDS; 1= 1+ )]
g4 begin
85 tmp= mem[i],
15T DRE=" array_ side’b
a7 XXDRR[ array_side—tmp[8: 15] -11=1"b1; fithis will foroe bit 0 to be 1
a8 DEE[* array side— ] tmp[ 1:
89 RME= array side'k
90 //RMR[ array_side-—tmp[0: ?] —1]1=1"k0; Fithis will force kit 0 to be O
91 RME[ *array_side-— ]=tmp[ 1:
92 CHMAR [ ]=tmg[ 1;
=} CHMAR [ ]=tmg[ 1;
94 ifitmpe[ 1l== : 4
95 begin
=12} CHM[O]<=tmp[ 1:
97 CHM[1 ]J<=tmp[ 1;
98 CHM[2 ]<=tmp[ 1;
=1=] CHM[ 3 ]<=tmp[ 1:
100 CM[4]<=tmp[ 1:
101 CHM[L]<=tmp[ 1;
102 CHM[ o ]<=tmp[ 1;
103 CM[ 7 ]<=tmp[ 13:
104 repeat (1) & (posedge <lk);
105 end
108 for (J=1;3<79;3=3+1)
107 begin
108 CHMAR [ 1 =CMaR[ 1+1;
109 if(tmp[2o+j]! == 2]
110 begin
111 CM[O]<=tmp[ +3]1;:
112 CM[1J<=tmp[ +31;:
113 CM[ 2 ]<=tmp[ +31;:
114 CM[ 3 ]=<=tmp[ +31;
115 CHM[4]==tmp[ +3]1;
116 CHM[ o] <=tmp[ +31;
117 CHM[0]<=tmp[ +31;
118 CHM[ 7 ]<=tmp[Z0+3];
119 repeat (1] @ (posedge <lk);
120 and
121 and
122 end 7/ for (i=0;i<*CONFIGWORDZ;i=1i+1)

Figure 4.4.2: Importing Configuration Word Section of test_array8x8.v

£

I FULL SUEBTRACTOR
CHMAR [ ]<= A7 memory aolumn "010" has LUT config for full adder
repsat (1) @ (posedge alkd;

force test_arrayizd.u_arrayizf.ull_arrayd=zd . ull_arrayZz2.ull0_pe.u_logiccell.ni
force test_arravizl.u_arravyizf.uldd_arravdxd . ull_array2z2 . ul0_pe.u_logicoell.w
force test_arrayizi.u_arravizf.ull_arrayd=zd . ul0_arrayZ2xz2.ul0_pe.u_logicaell.
repeat (1) @ (posedgs olk);

force test_arrayizi.u_arrayizi.ull_arraydzd . ul0_arrayZz2 . ul0_pe.u_logicaell.
force test_arravizd.u_arravizd.ull_arravydxd w0 _arrayZxz . ul0_pe.u_logiccell.
force test_arrayizi.u_arravizi.ul0_arraydxzd . ul0_array2z=2.ul0_pe.u_logicaell.
repsat (1) @ (posedgs <lk);

force test_arravixzf.u_arravizd.ull_arraydxd . ul0_arrayZxz2 . ul0_pe.u_logicoell.
force test_arrayizd.u_arravizi.ull_arrayd=zd . ull_arrayZz2.ul0_pe.u_logiccell.
force test_arravizi.u_arrayizg.u0d_arravydxzd . ul0_arravéxz .u00_pe.u_logiccell.
repsat (1) @ (posedgs clk);

force test_arrayizl.u_arravizf.uldd_arravydxd . ull_array2z2 . ull_pe.u_logicoell.
force test_arrayizi.u_arravizf.ull_arrayd=zd . ul0_arrayZz2.ul0_pe.u_logicoell.
force test_arravizl.u_arravizf.ull_arravdxd . ull_array2z2 . ul0_pe.u_logicoell.
repsat (1) @ (possdgs alk);

force test_arrayizd.u_arravizd.uldl_arraydxd . ul0_array2z2 . ul0_pe.u_logiccoell.
force test_arrayixzi.u_arravizd.ul0_arraydxzd . ul0_arrayZz=2.ul0_pe.u_logicaell.
force test_arravizd.u_arravizi.ud0_ arraydxd . ul0_arrayizi.ul0_pe.u_logiccoell.
repeat (1) & (posedge <lk);

force test_arrayizd.u_arrayizi.uldl_arrayd=zd . ull_arrayZz2.ul0_pe.u_logiccell.
force test_arravixzf.u_arravizd.ull_arraydxd . ul0_arrayZz2 . ul0_pe.u_logicoell.
force test_arrayizd.u_arravizi.uwdl_arrayd=zd . ul0_array2z2.ul0_pe.u_logiccell.
repeat (1) & (posedgs olk);

force test_arrayizi.u_arrayizf.ull_arrayd=zd . ul0_arrayZz2.ull0_pe.u_logicoell.
foroe test_arravizl.u_arravizf.ull_arravydxd . ull_array2z2 . ull0_pe.u_logicoell.
force test_arrayizi.u_arravizi.ull_arraydzd . ul0_arrayZz2 . ull0_pe.u_logicaell.
repeat (1) @ (posedge clk);

force test_arrayixzi.u_arravizi.ul0_arraydxzd . ul0_arrayZz=2.ul0_pe.u_logicaell.
force test_arravizd.u_arravizf.uwl0_ arraydxd ., ul0_arrayizi.ul0_pe.u_logiccoell.
force test_arravixzf.u_arravizd.uwll_arravydxd . ul0_arrayZxz2 . ul0_pe.u_logicoell.

£

£ FULL ADDER — TESTING PEOOOOOOO0  AND PEOOOQOOOOL
CMAR[ J== A4 memory column "011" has LUT config for full adder
repeat (1) & (posedge <lkd;

force test_arrayizd.u_arravizd.ull_arraydxd . ul0_array2z2 . ul0_pe.u_logiccoell.
force test_arrayixzi.u_arravizi.ul0_arraydzd . ul0_arrayzZz2.ul0_pe.u_logicaell.
force test_arravizd.u_arravizi.uwl0 arraydxzxd . w0 _arrayizi.ul0_pe.u_logiccoell.
force test_arravixzf.u_arravizd.ull_arraydxd . ul0_arrayZz2.ull_pe.u_logicoell.
force test_arrayizd.u_arravizi.udl_arrayd=zd . ul0_arrayZz2.ull_pe.u_logiccell.
repeat (1) & (posedge <lk);

3 03 00 00 04 03 00 B3 03 0 03 1D 03 B9 B3 03 03 00 B 03 03 03 1D B30I 03 0D 03 00 B3 B3 T3 B3R 00 03 03 RS RS b b e b b b e s
LWL WWWNNNMNNNNNNMNP R R RRR R R RRO00 0000 00O WD W0 W0 L0 WD D WD 0 o
LN G T O 0D 00~ LA L0 B2 O D 0~ O L s Lo B 00D 00 -0 6 LA s 00 B0 <D 20 - O L s Lo B9 - O D o -

Figure 4.4.3: Assigning Inputs to the 8x8 Array
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Line seventy-seven stores the configuration words into a temporary system
memory. The OR, MOR, and SRR registers are then setup to allow memory
write. The FOR loop creates a counter for the number of configuration words

and a counter for the amount of bits in a configuration word.

Array 8x8 Pre-Synthesis

To test the RTL design using ModelSim simulation, run the script 1-presynth-8x8

by following the next steps:

» cd /simulator/8x8/presynth/
» 1-presynth-8x8

This will bring up the ModelSim main and wave windows. After reviewing the
test_array8x8.v signals in the wave window, other signals such as the array8x8
signals can be added to the wave from the main window by highlighting the

u_array8x8in the Workspace area, then right click and Add to Wave.

When the signals appear in the wave window, at the main window prompt type
restart, then click Restart on the next window. To simulate all the signals, at
the main window prompt type run 15000000. To load the signals from figure
4.4.4, open presynthesis 8x8 load TB.do from the ModelSim wave window,

located in /8x8/presynth/modelsim/ directory.

Bits “1” in the DRR registers and bits “0” in the RMR register, indicate the array
8x8 rows that are allowed to have a memory operation. Section A of figure 4.4.4
illustrates the first configuration word being loaded into the memory of the PEs
allowed by DRR and RMR. The first configuration word is no operation (all bits
are zeros) and it is stored in column address “000” of the memory array block

shown by the contextAdr signal.
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TEST_ARRAY8x8 - PRESYNTHESIS

# Nest_arrayBx8iclk
# hest_arrayBx@hardReset_n

B fest_amayB/OMAR

B flest_arayBxB/OR i

B flest_array8x8MOR (T

&4 flest_array@x8/SRR {DooDg0o0D

B ftest_arrayBx8/DRR {1111100

B Nlest_array8x8/RMR [D0000011

B flest_array8x8/CM
*. Nest_array8x8fi (I | | | | I 2 _ B . , 3 1 1 5 |
# flest_arrayBx8/) R A F S ' iz
PE 00000000
" rray2x2/ul0_pefswitchContext

¥\ ._array2x2/ul0_pe/contextAddr ] | 1001 [ oo | | 101
., 4u00_array2x2A00_pe/RMRx
¥ . Jul0_array2x2/ul0_peiviMem
¥ yaxdiu00_array2x2/u00_pe/din
L. 4x4/u00_array2x2/u00_pe/dOut

' Lrray2x2hd01_pe/switchContext
1 .._array2x2/ud1_pe/contextAddr
1 .AD0_array2x2/ud1_pe/RMRx
1 .ul0_array?x2/u1_pefwrvem
¥) L ydxdiu00_array2x2/u01_pefdin
400 _array2x2/uD1_pe/dOut

Figure 4.4.4: Array 8x8 Pre-Synthesis - Loading Memory Blocks
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Section B and C illustrate the second and third configuration words being loaded
in the same manner as the first word. The second word is configured for a full
adder and stored in column address “001” of the memory array block. The test
behavior is shown in figure 4.4.6 section X with n;, wi, and r/ being the truth
table inputs, while the orange signals no and eo being the sum and carry-out
respectively. The third word is configured for a full subtract operation and it is
stored in address “010”. The behavior of the waves can be examined in section
Y of figure 4.4.6 with the same inputs and outputs as part X where and eo being

the difference and borrow-out respectively.

Sections D and E of figure 4.4.4 illustrate the fourth and fifth configuration words
being loaded. This is a unique test case since PEO and PE1 in the first row of the
8x8 array are configured to perform two-bit full adder also illustrated in figure
4.4.5. The fourth word is loaded only into the memory address “011” of PEO
which is controlled by the DRR, RMR and wrMem signals. The configuration
word selects the Aiand Wi of PEO to be the addition bits and R/to be the Carry-
In bit, while Mo is the Sum and £o is the Carry-Out. The fifth word is loaded
only into the memory address “"011” of PE1. The configuration word selects the
Ni and R/ to be the addition bits and W/ becomes the Carry-In bit which is
connected to the £o Carry-Out of PEO. Mo is the Sum bit and £ois the Carry-Out
bit which will connect to the west input of PE2. Note: n/ (from code) and N/

(from schematic) are identical signals; and the same applies to all other signals.

"‘No" SumQ 'Ni" Bit1_0 'Ri’ Carry-In0 ‘No" Suml1 'Ni" Bitl_1 'Ri"Bit2_1

\ / \ /
\ | / \ | / Array periphery

‘Wi’ Bit2_0 ‘Eo” Carry-Out0 'Eo’ Carry-Outl

> —
‘Wi’ Carry-Inl
PE 00000000 PE 00000001

Figure 4.4.5: Array 8x8 Full Add Demo Schematic
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TEST_ARRAYBx8 - PRESYNTHESIS

# Rest_arrayBxB/clk
# fest_arrayBxB/MhardResel_n

0101001110 |

" ..00_array2x2/ul0_pe/switchContext
B . Ju00_array2x2/ud0_pelcontextAddr
_..0_arraydxdaiu00_array2x2/uD0_pe/r
| ..._araydx4/u00_array2x2/u00_pefwi
) .._arraydxd/u0_array2x2/u00_pelni
| arraydxdfu00_array2x2/ul0_pe/no
© arraydxd/ul0_array2x2/ul0_pe/eo
* .arrayded/u00_array2x2/ul0_pe/so
_arraydxdiu00_array2x2/ul0_pe/wo

# ..00_array2x2/ud1_pe/switchContext
B-* /D0 _array2x2/ul1_pe/contextAddr
1 ..._arraydxd/u00_array2x2/u01_pe/ni
_..0_arraydxdaiu00_array2x2/ul1_pe/r
' ._araydxdful0_array?x2/u01_pefwi
" .arraydxd/u00_array2x2/ul1_pe/no
_ arraydxdiu00_array2x2/ul1_peleo
-4 . rraydxd/ul0_array2x2/ul1_pefcOut

Figure 4.4.6: Array 8x8 Pre-Synthesis - Applications
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To load the signals from figure 4.4.6, open presynthesis_8x8_application.do from
/8x8/presynth/modelsim/ directory. When the contextAddr changes, in this case
from full add to subtract and back to add, it takes one clock cycle for the device

to switch to each context.

Figure 4.4.7 shows the filenames and their full-path, and the instances and their

design modules for the array 8x8 design.

Array 8x8 Synthesis

To create the gate-level netlist design, follow the next steps:

» cd /simulator/8x8/synthesis/

» 2-synth-array8x8

Workspace - x| Workspace |
| Instance | Design unit ¥|Filename | Fulpath
test_arrayB8x8 test_arrayBx8 h] array2yy LA larrayfarray@x2.y
u_arrayBx8 arraydxg |h] arraydxdy LA Iilfarrayfarraydxd.y
u00_array4xd arraydxd |h] arrayBxBy LA IlfarrayfarrayBxBy
wll_array2x2 arrayzxe h] dffnr_mx2 v JA LI dffnr_mxE v
ulo_pe pe h] muZy AL Il v
& ul0_INVX1 INVX1 |h] My S4 4 Il mud
- u_logiccell logiceell th] mu1By JA LI M By
e u_memcell memcell h] muecB0v AL I8 0.
e u_memcelllnterface  memcellinterface H] dFFsyncvhd L4 flogicoellfdFFsyncavhd
- u_delayHalfClk delayHalfClk |h] logiccelly 44 Iflogiceelllogiceelly
- u_rowswilch switch Ih] coldecodey 44 Ifmem/icoldecode
e-d u_colswitch switch h] delayHalfClkv JA4 Iilfmem/delayHalfClk v
-9 ull_pe pe H] memArraywvhd S ImemdmemArray.vhd
& ull_pe pe [h] memcelly S tlimemimemeelly
w9 ull_pe pe h] memeellinterfacey /4L MVmem/memcellinterface.v
uD1_array2x2 arrayzxz |h) reg_77bniry JA4 Ifmemdreg_7 7bnlry
- ull_array?x2 arrayzxZ |h] rowdecodey AL Ilfmemirowdecode.w
ul1_array2x2 array2x2 h] pev S ilipelpey
B+ ul1_arraydxd arraydxd Ih] pre_switchyv JA4 Itlfswitchipre_switchv
e ul0_arraydxd arraydwd |h] tsmc18w S ibtsme18v
B9 ull_arraydxd arraydxd H) stdlegicvhd fmnt/swimentorMadelSim_SES.Bdfmodeltech/sunosS/. vhdl_srel...
M std_logic_1164 std_logic_1164 H) standardvhd fmnt/sw/mentorModelSim_SES.Bd/modeltech/sunosS/.vhd|_sre...
M standard standard |h] test_arrayBxBv finfsthome/gabifthesis/srgaltools/simulator/8xB/itest_arrayBxBy
~| N -
| Library | sim | Files | [Lbrary [ sim ] Files |

Figure 4.4.7: Array 8x8 Pre Synthesis Workspace
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At first, the script will copy the necessary library files to the
/8x8/synthesis/synopsys/ directory and then the dc_shell synthesis tool from
Synopsys [8] is initiated. The dc_shell executes the script synth-array8x8.scr
located in the /synopsys/ directory. The details from this step are written to the
file info_8x8 synthesis.txt also located in the /synopsys/ directory. The
synthesis tools will create the verilog netlist file array8x8-synth.v and the

delay file array8x8-synth.sdf which are written in the /synopsys/ folder.

The next step is to edit the verilog netlist file. At lines 407 change from
rom00(160) to rom00(rpm0000) and at line 408 change from romi10(160) to
rom00(rpm0010).

The netlist is used to test the post synthesis design using ModelSim simulation by

following the next steps:

» cd /simulator/8x8/synthesis/

» 3-post-synth-sim-array8x8

This will bring up the ModelSim main and wave windows. To test and review the
behavior of the signals, follow some of the steps described in the pre-synthesis
section. To load the signals from figure 4.4.8 and 4.4.9, open the wave file
synthesis_8x8_final.do from the /8x8/synthesis/modelsim/ directory. To review
the behavior of the waves, follow the instructions in the pre-synthesis

simulations.
Note: It is a good idea to go into the /modelsim/ folders after testing the design

and delete the work/ directory and the transcript, vsim.wlf, and

workingExclude.cov files. This will save space to be able to run other tests.
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TEST_ARRAYEXE - POST SYNTHESIS
clk
hardReset_n

(ERNEE] 11111100 1 0

11100 I I I
00000011 | | JOA1111d {RRENI IRRNNE NI

A

- arr

y
PE 00000000

L
2
»
2
P
»
2
R
9
P
R
'

»
2
P
9
P
R
9
2
»

001 110007007110 0101001110 01110011710

est_ar

¢ Y
PE 00000000

ns

Figure 4.4.9: Array 8x8 Pre-Synthesis - Applications
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First Encounter Tools

This Section is the tutorial to generate the automatic place and route of the
design. The process itself is very elaborate and to discuss the details of
developing each step is out of the scope of this project. However a generalized
step by step tutorial of using the encounter tools to crate the place and route is

provided bellow.

Step 1: Setting up the files
Initiate the Encounter tools:

» cd /simulator/8x8/asic/

» 4-start-encounter

The script 4-start-encounter will copy the necessary encounter libraries to the

/8x8/asic/encounter/ directory and will bring up the encounter window.

Step 2: Import the Design

From the encounter window (see figure 4.4.11), select Design -> Design
Import... Complete the Design and Power sections from the Design Import
window. In the Design section, to choose the files click on the dotted tab to the
right of the text boxes. For the Top Cell you can check the Auto Assign or you
can enter your own name. In the Power section, name the Power Nets as VDD

and Ground Nets as VSS. At this point you can save the initial setup. Click OK

After the design is imported, the core area of the chip should be seen and if
zoomed out (shift-z), the top level module (four instances of the 4x4 array)
should be seen in purple objects. A single module can be selected by single
clicking the object. By using "shift-g" the object can be ungroup and all the
modules that belong to the object should be seen. You can use the “shift-g”

procedure further to another layer of hierarchy.
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bid - fenfs/h -151% 5 Design Import - |Of %
Design  Edit  FipCip  Partiion  Poorplan  Place  Cock  foule Timing S| Power Verily Tools  Help =
pe gl Ea I EREEEEEERE Designis: _ Not inMemory Design | Core Spec Defaults | Timing | Power | Misc. |
Restore Design... /8 Calors
Saye Design — Metlist:
Restore QA Design... Modue  _| @ Verilog Files: |array8x8-synth.v o
Save QA Desigr Black Box: [l S
= o |LM Files:
oa : 1
s @ Bl .J Top Cell: +- Auto Assign ~ By User: |arrayBx8
Regh : ¢ S
Preferences... gl J Technology Information/Physical Libraries:
SHomiioe Instance I T LEF Files: |tsmc18_Blm.lef
E?E_- e r OA Reference Libraries:
|—‘|_ Dﬂ L Abstract View Names:
= Veangest Ml Layolt View Names:
s HCongest Il
%” Timing Libraries:
;'.\" Max Timing Libraries: |
[ Min Timing Libraries: Jecel
Common Timing Libraries: |typical tif e
Stamp Model Definitions: |
l ‘ Stamp Model Data: e
| Buffer Name/Footprint:
o] (O Delay NamefFootprint:
5 Design Import (= Irverter Name/Footprint:
Design | Core Spec Defaults \ Timing | Power | Misc. ] I~ (Generate Footprint Based on Functional Equivalence
Power/Ground Nets: 1C Information:
Power Nets: VDD 10 Assignment File:
Ground Nets: |VSS
Paower Analysis Scaling
Toggle Rate Scale Factar: 10 OK Save... | Load... | B | telp |

Figure 4.4.11: Encounter Tools - Importing Design

To re-group the hierarchy, select one of the child modules and press "g". The

refresh button can redraw the design at any time.

Step 3: Specify the Chip Size

From the encounter window (see figure 4.4.12), select Floorplan -> Specify
Floorplan... Change the Margins “Core to IO Boundary” to 40 for all directions.

Click OK to apply the change.

Step 4: Power Planning

From the encounter window (see figure 4.4.13), select Floorplan -> Power
Planning -> Add Rings... The width and the spacing for the rings are an

option that could be changed. Everything else stays as default. Click OK.
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}“( Encounter - /tnfs/home/gabi/thesis/srga/tools/simul.

Design  Edit  FipChip  Partition  Foorplan  Place

E @Q@@&g ﬂg_gpecify Floorplan ...

Tools Place Blocks/Modules

,: @ Relative Floorplan...

- Create Physical Hierarchy
i 7]
=

Global Net Connections...

Power Planning

m Power Domain @
3|3

ki

Edit Block Halo...
Edit Floorplan
Clear Floorplan...

Generate FP Guide...

/8x8/asic/ - Top Cell: (arr... ;lgﬂ
Qock  Route  Timing E

Generate Regrouped Metlist...

34 specify Floorplan

Design Dimensions
Specify Dimensions by:

HEE

Power Verify Tools  Help |

Design is: In Memory ~ size by:
All Colors “* Core Size by: * Aspect Ralio: Ratio (HW): |0.9365860€

e < Core Utilization: 0.700169
_‘! i @ ~ Std. Utilization: 07
s - Width and Height: 2242.8
- r 2250483
_[7 r ~ Die Size by: Width and Height 22428
o 2250.483
(= a Core Margins by: ~ Core to 10 Boundary

I r - Core to Die Boundary
—[: L Core to Left: 40.0 Core to Top: 400
., If Core to Right Core to Bottom: 40.0
| Die Size Calcuation Use: s Max 10 Height ~ Min 10 Height

Floorplan Origin at: “ Lower Left Comer .. Center

~- DieflOiCore Coordinates:

I
VCongest 1l

HCongest I 00 00 2250483 22428
Text r 00 00 2250.483 22428
00 00 2250483 22428

unit: micron

Standard Cell Rows

Double-back rows: E;

Bottom row orient: [ —|

Row Spacing: [0.0 un ForEvery 2 — | Row
Row height: |5.04
10 Specifications
Bottom |0 Pad Orientation: [Im —
a 4( -1262218, 4912.806) oK tovly_ | Cancel el
- . - - -
Figure 4.4.12: Encounter Tools - Specify Chip Size
Is/si ics - Top Cell: (array8x8) — || [P Add Rings -10x]
Partition  Foorplan  Place  Clock  Route  Timing I Power Verly  Tools Help | Basir.‘ ‘ ey
|c| BE RS T Designis:  InMemory
Place Blocks/Modules s
Relative Floorplan... I Neifs): [VSSVDD
Create Physical Hierarchy ViS Ring Type
Global Net Connections... =3  Core Ring(s) contouring:
Bower P'W‘“i"ﬂ " Edit Template... E “ Around core boundary - Along 170 boundary
Poyer Domain Synthesize Power Plan... rr I Exclude selected objects
Edit Block Halo... Optimize Power Plan - Block ri a
Edit Floorplan @ s nr . e
Clear Floorplan... Add Rings... arT
Add Stripes... AT r &
Generate FP Guide... Connect Ring Pins... o r v
Generate Regrouped Netlist... Repair Power Stripes... l; & v
Edit Power Via... =F F v b
Check DRC Lt
User defined coordinates Mousedick
Check DRC In Visible Area [“Congest Ml s ]
Clear DRC = R
Ring Configuration
Top: Bottom: Left: Right:
Layer: METALL | mETau | mETAL2 | METALz |
width: |1 1 1 1
Spacing 1 1 1 Update
Offset: - Center mchannel  ~ Specify
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Figure 4.4.13:

Encounter Tools - Power Planning
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Step 5: Global Net Connections

From the encounter window (see figure 4.4.14), select Floorplan -> Global
Net Connections... This connects the VDD and VSS pins to the global power
nets. Fill out the form of part 2 and click Add to List. After the pins VDD and

VSS are seen in the Connection List, click Apply and then Close.

Step 6: Standard Cell Placement

From the encounter window (see figure 4.4.15), select Place -> Place..., use
the default of Medium Effort and click OK. This step takes some time (~8min).

At this point the three different placement views can be seen from figure 4.4.16.
The first view is the Floorplan view. The blue lines show the connections
between the different modules and the connections to the I/O pins of the
floorplan. The second view is the Amoeba view. This shows the outlines of the
different modules. Any module can be selected and use “shift-g” to view the
next layer hierarchy. The third view is the Physical view. This is where the

standard cells can be seen by zooming.
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Chp  Fartiton  Posrpln  Pace Qock Boste Thming  §1  Power Vary  Tooks e }‘( Global Net Connections -0/
@) & G| B [ Spect Floorian ..
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Relative Floorplan... COnnEl‘i
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Global Net Connections... o * Pins: VS5 In Instances |*
Global & s B r .
7 o + Nets: |
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Edit Floorplan i o
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= £
i Generate FP Guide... H-r
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z
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Figure 4.4.14: Encounter Tools - Global Net Connections
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Figure 4.4.15: Encounter Tools - Standard Cell Placement
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Figure 4.4.16: Encounter Tools - Cell Placement Views
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Step 7: Add Filler Cells

From the encounter window (see figure 4.4.17), select Place -> Filler -> Add
Filler... In the Add Filler window (part 2) change the Cell Name to FILL1, and
the Prefix to fill. Click OK.

Step 8: Route Power

From the encounter window (see figure 4.4.18), select Route -> SRoute...
When the SRoute window comes up, uncheck Block pins, Pad pins, and Pad

rings. Click OK. The power strips should be seen in the layout.

Step 9: Final Route

From the encounter window (see figure 4.4.19), select Route -> WRoute...
Leave everything as default. Click OK. This part may take some time (~20 to
30min).

5 Encounter - /tnfs/home/gabi/thesis/srg: 1 il - Top Cell: (arrayBx8) JE!
Design  EGit Fiphip  Partiion  Poorplan Pace GOock Route Timing S Power Verify Tools Help I
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Figure 4.4.17: Encounter Tools - Add Filler Cells
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Figure 4.4.18: Encounter Tools - Route Power
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Figure 4.4.19: Encounter Tools - Final Route
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Step 10: Extract RC

From the encounter window (see figure 4.4.20 1a and 1b), select Timing ->

Extract RC... You can check any of the boxes to save any file then click OK.

Step 11: Calculate Delay

From the encounter window (see figure 4.4.20 2a and 2b),

Calculate Delay...

select Timing ->

In the Calculate Delay window change the name for the

SDF Output File to array8x8-encounter.sdf. Click OK. This file will be stored

in the /8x8/asic/encounter/ directory and it is the final file that includes the

timing delay for the place and route design.
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Figure 4.4.20: Encounter Tools - (1) Extract RC and (2) Calculate Delay
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Step 12: Results, Save, and Restore Design

This step is optional although it will save a lot of time. From the encounter
window select Tools -> Gate Count Report... — and — Summary Report...
Save the reports and view the results. The gate count report will provide the
number of gates, number of cells, and the area of the gate for each module.
The summary report will provide design statistics, chip utilization, module
information, and wire information. The chip utilization will indicate the core size,

the chip size, and the number of cell rows.

From the encounter window select Design -> Save Design... This will save
the design by default as array&x8.enc. To load the place and route design in the

future, select Design -> Restore Design... and select array8x8.enc.

Final Layouts

The final layouts can be seen in figure 4.4.21. The floorplan view shows the
individual blocks connected by the blue lines to the left and the core to place all
the individual blocks to the right. The Amoeba view shows the individual
modules placed in the core. Here you can see the four instances of the 4x4
array, where instance u01_array4x4 further shows the different modules. The

Physical view shows the final layout with the place and route.

Array 8x8 Post Layout Simulation

Before using the ModelSim tools to test the place and route timing behavior, the
timing file array8x8-encounter.sdf must be edited on line 15 from (CELLTYPE " ")
to (CELLTYPE "array8x8"). One simple way to open the file is to rename it with

a .Ixt extension.
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Figure 4.4.21: Encounter Tools - Final Pace and Route of 8x8 Array
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To test the timing generated by the pace and route, follow the next steps to

initiate the ModelSim tools:

» cd /simulator/8x8/asic/

» bB-post-layout-sim-array8x8

The script 5-post-layout-sim-array8x8 copies the timing file array8x8-
encounter.sdf from the /encounter/ to the /modelsim/ directory and simulates
the netlist design array8x8-synth.v created by the synthesis tools. To test and
review the behavior of the signals, follow some of the steps described in the pre-

synthesis section.

To load the signals in figure 4.4.22 and 4.4.23, from the wave window, open the

wave file post-layout-array8x8_final.do.

TEST_ARRAYExBw — POST LAYOUT

Figure 4.4.22: Array 8x8 Post Layout - Loading Memory Blocks
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Chapter 5: Implementing the SRGA-UT Sub-Designs

5.1 Logic Cell Implementation

The file for testing the functionality of the logic block is test /logiccell.v and it
is located in the /srga/tools/simulator/logiccell/ directory. The testing objective
is to assign inputs to the logic block as if they were coming through the
corresponding PE and view the behavior of the internal logic. The applications to
be tested are the full addition and full subtraction discussed in section 3.3. By
knowing the location of the input bits from the /nMuxBus/15:0] and
outMuxBus[15:0], the configuration bits are selected strategically (see also figure
5.1.1).

Sel_mi0 will select nito be the first input L0/ for the LUT. Se/_mil will select wi
to be the second input L1/for the LUT. Se/_mi2 will select r7to be the third input
L2i for the LUT.

At line 120 of the test /logiccell.v, the configuration word for a full adder is
passed to the /utconifig which will be the application for the truth table inputs in
lines 128 to 135. The outputs for the full adder are given by se/ mo0 which
selects Lo0 (sum) to be the output for MOo mux, and se/_mol which selects Lo1
(carry-out) to be the output for Mlo mux. These outputs will be the North

output Mo and East output £o for the corresponding PE.

At line 141, the configuration context is switched to full subtraction. The inputs
and outputs for the full subtraction operation are utilized in the same manner as
in the addition part. In this case n/becomes input bit one, w/becomes input bit
two, r7 becomes the borrow-in, Mo becomes Lo0O the difference bit, and Fo

becomes Lol the borrow-out bit.
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101 sel_mil0<=NI; //setect MOi to be input NI - this is input L0Oi to LUT

102 sel _mil<=WI; //setect Mli to be input WI - this is input L1i to LOT
103 sel_miZ<=RI; //setect MZi to be input RI - this is input LZi to LUT
104 sel_mij<=EI; //setect M3i to be input EI

108 sel_mid«=81; //setect MAi to be input 21

106

107 sel_mo0<=LO0; //select the cutput of Mlo for No to be LUT ocutput Lol
1048 sel_mol<=L01; //select the output of Mlo for Eo to be LUT output Lol
109 sel_moi<=RI; //setect the output of Mic for 8o to be input RI

110 sel_mod<=WI; //setect the output of MiIC for Wo to be input WI

111 sel_mod<=NI; //setect the output of Mdo for Ro to be input NI

112 gel _mol<=L0Z; //setect the output of MSo for Co to be LUT output Lol
113 sel_mob<=L03; //setect the cutput of Moo for Emo to be FF output lod
114 sel_moV<=81; //setect the output of Mic for Cmo to be input 51

115

116

117 7/

118 /7 configuration word of LUT for Full Adder hex: <096

119 7/

120 lutconfig<=

121

12z //f Inputs of the truth takle for Full Adder

123 7/ ni - is the input kit LOi
124 7/ wi — is the input kit L1i

125 // ri - is the Carry-In bit Lii

126

127

128 ni<=0; wi<=0; ri<=0; repeat (1) @ (posedge clk) ;
129 ni<= i ; repeat (1) @ (posedge olk) ;
130 ni<= ; repeat (1) @ (posedge olk) ;
131 ni<= ; repeat (1) @ (posedge clk) ;
132 ni<= ; repeat (1) @ (posedge clk)
133 ni<= ; repeat (1) & (posedge olk) ;
134 ni<= ; repeat (1) & (posedge olk) ;
135 ni<= ; repeat (1) @ (posedge clk) ;
136

137

138 7/

139 // configuration word of LUT for full subtractor hex: dd8e
140 7/

141 lutconfig<=

Figure 5.1.1: Section of Test-bench for Logic Cell Block

Logic Cell Pre-Synthesis

To test the RTL design using ModelSim simulation, run the script I-presynth-

logiccell by following the next steps:

» cd /simulator/logiccell/presynth/

» 1-presynth-logiccell

This will bring up the ModelSim main and wave windows. After reviewing the
test _logiccell.v signals in the wave window, the logic cell signals can be added to
the wave from the main window by highlighting the «_/ogiccel/ in the Workspace
area, then right click and choose Add and Add to Wave. When the signals
appear in the wave window, at the main window prompt type restart then click
Restart on the next window. To simulate all the signals, at the main window

prompt type run 5000.
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In the wave window select the signals se/_ mi0 to se/_mo7, right click to select
Radix and Unsigned. This will allow you to see the decimal values for each mux
select signals to be consistent with the test /logiccell.v file. Also, right click and
select Radix and Hexadecimal for the /utconfig, lutconfig0, and /utconfigl signal.
The wave that is being edited at this point can be saved and then opened in the
future testing. From the wave window, select File and click Save and Format.
To load the saved wave format, first select all the signals in the wave window
and delete them. Then, choose File and click Open and Format, and select the
filename.do (filename being the name of the saved file). Then redo the restart

and run 5000 steps to view the behavior of the waves.

To load the signals from figure 5.1.2, open and run presynthesis_logiccell.do
from /logiccell/presynth/modelsim/ directory. Section A tests the full addition
with the orange waves eo and no being the carry-out and sum bits. Section B
tests the full subtraction with the orange waves eo and no being the borrow-out
and difference bits. In the logic cell, when the /lutconfig signal changes, the
context switches from add to subtract instantaneously. One clock cycle is
needed for the context switch when the new configuration is loaded from the

memory (described in the PE implementation section).

Logic Cell Synthesis

To create the gate-level netlist design, follow the next steps:

» cd /simulator/logiccell/synthesis/

» 2-synth-logiccell

At first, the script will copy the necessary library files to the
/logiccell/synthesis/synopsys/ directory and then the dc_shell synthesis tool from

Synopsys [8] is initiated.
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TEST_LOGICCELLY

# fest_logiccelliclk

# ftest_logiccellhardReset_n

# jlest_logiccellr

#: Nest_logiccellii

# Nest_logiccellni
E-*" Aest_logiccellsel_mi0
B+ Nest_logiccell'sel_mil
B*" fest_logiccellisel_mi2
B* flest_logiccell’sel_mo0
B*" fest_logiccellisel_mo
B=*" ftest_logiccell’sel_mo2
B fest_logiccell’sel_mo3
B-* Nlest_logiccell'sel_mod
B-* fest_logiccelliutconfig

# fest_logiccelliso

# fest_logiccelliwo

LD
10
T 1o
1D

DWW hLh = = L0000 = aD
—_ 0

# fest_logiccellro
# fest_logiccellen
# hest_logiccelling

LOGICCELLY

# ftest_logiccelliu_logiccelWi2

# Nest_logicceliu_logiccellil

# Nest_logiccellu_logiccellil

* fest_logiccellu_logiccellol

# Nest_logiccellu logiccelloD
B-* flest_logicceliu_logiccellfsel_|utd
B4 Aest_logiccelliu_logiceslVsel_lutl

Figure 5.1.2: Logic Cell - Pre-Synthesis Simulation
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The dc_shell executes the script synth-logiccell.scr located in the /synopsys/
directory. The details from this step are written to the file
info_logiccell_synthesis.txt also located in the /synopsys/ directory. The
synthesis tools will create the verilog netlist file /ogiccell-synth.v and the delay
file logiccell-synth.sdf which are written in the /synopsys/ folder. These two files
are used to test the netlist design using ModelSim simulation by following the

next steps:
» cd /simulator/logiccell/synthesis/
» 3-post-synth-sim-logiccell

This will bring up the ModelSim main and wave windows. To test and review the
behavior of the signals, follow some of the steps described in the pre synthesis
section. To load the signals from figure 5.1.3, open the wave file synthesis-

logiccell.do from the /logiccell/synthesis/modelsim/ directory.

Section A from figure 5.1.3 tests the full addition with the orange waves eo and
no being the carry-out and sum bits. Section B tests the full subtraction with the

orange waves eo and no being the borrow-out and difference bits.

Logic Cell Place and Route

The First Encounter tools are used to generate the placement and routing of the

netlist. To initiate the Encounter tools, follow the next steps:

» cd /simulator/logiccell/asic/

» 4-start-encounter

The script 4-start-encounter will copy the necessary encounter libraries to the

/logiccell/asic/encounter/ directory and will bring up the encounter window.
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TEST_LOGICCELLY = POST SYNTHESIS

# flest_logiccelliclk
# ftest_|ogiccelthardReset_n
# fest_logiccellr
# jtest_|ogiccelliwi
# ftest_logiccellini
E-* ftest_logiccell/sel_mid
B fest_logiceellisel_mil
E-* ftest_|ogiccellisel_mi2
E-* ftest_logiccell/sel_mo0
E-* ftes!_logiceellisel_ma1
E-* ftest_|ogiccellisel_mo2
B-* ' ftest_logiccellisel_mo3
E-* " ftest_|ogiccellisel_mod
EB-* ftest_logicceliiutconfig 1 | | REEL | | liooon
# flest_logiceelliso
“" fest_logiceelliwo
4" jtest_|ogiccelliro
# ftest_logiccelleo
* fest_logiccellino
LOGICCELLY
# fest_logiccelliu_logiccellhsel_uwO[2]\
# ftest_logiccellfu_logiccellhsel_utO[1T\
#: ftest_logiccell/u_logiccellhsel_uO[OT
# fest_logiceelliu_logiccellhouBus[1 1]\
#" ftest_|ogicceliu_logiccellhoutBus[ 107

OWL == LoD Q = =

Figure 5.1.3: Logic Cell - Post-Synthesis Simulation
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Follow the step by step tutorial in section 4.4, except when necessary enter

“logiccell” instead of “array8x8”. A generalized procedure for generating the

logic cell placement and routing is listed bellow:

Import Design — Design: netlist, LEF file, and timing library
Import Design — Power Nets: VDD, VSS

Floorplan — Specify Floorplan

Floorplan — Power Planning — Add Rings

Floorplan — Global Net Connections

Place — Place

Place — Filler — Add Filler

Route — SRoute

Route — WRoute

Timing — Extract RC

Timing — Calculate Delay — edit SDF Output File: /ogiccell-encounter.sdf

Figure 5.1.4 shows the logic cell layout after placement and routing.

% - gabi. is/sre: il i i i enc - Top Cell:

Design  Edit  FipChip  Partition  Foorplan  Place Clock Route Timing 81  Power Verfy  Tools ﬂng

|0l @S 0)®£ ol HE oo @) &/c) o)

sssss

[=]

( 8BA36, 172.804)

Figure 5.1.4: Logic Cell Layout after WRoute
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The timing file created by place and route is /logiccell-encounter.sdf and it is
written in the logiccell/asic/encounter/ directory. The next step is to edit line 15
of the /logiccell-encounter.sdf file from (CELLTYPE " ") to (CELLTYPE "logiccell").

To test the timing generated by the pace and route, follow the next steps to
initiate the ModelSim tools:

» cd /simulator/logiccell/asic/

» 5-post-layout-sim-logiccell

The script 5-post-layout-sim-logiccell copies the timing file from the /encounter/
to the /modelsim/ directory and simulates the netlist design created by the
synthesis tools. To test and review the behavior of the signals, follow some of
the steps described in the pre-synthesis section. The inputs and outputs are the
same as in the pre-synthesis and synthesis sections. To load the signals in figure

5.1.5, from the wave window, open the wave file encounter-logiccell.do.

TEST_LOGICCELLY - POST LAYOUT
# fest_logiccellfclk
# ftest_logiccelhardReset_n
# fest_logiccelliri
# ftest_logiccellivi
# ftest_logiccellini
B-* ftest_logiccellisel_mi0
B flest_logiccellisel_mil
B-* ftest_logiccellisel_mi2
E-* ftest_logiccellsel_mo0
B-* ftest_logiccellisel_mo1l
B-* ftest_logiccellfsel_mo2
B-* ftest_logiccellisel_mo3
B-* ftest_logiccellisel_mod
B-* ftest_logiccelliuconfig
# ftest_logiccellso
# fest_logiccelliwo
# ftest_logiccellro
# fest_logiccelleo
# fest_logiccelling
LOGICCELLY
# fest_logiccellfu_logiccellisel_IWO[2]\
# fest_logiccellfu_logiccellisel O[T\
# fest_logiccellfu_logiccellisel O[O

Figure 5.1.5: Logic Cell - Post-Layout Simulation
62



5.2 Memory Cell Implementation

Implementing the Memory Block follows the same format as the tutorial

section 4.4. For this section, only a brief description will be demonstrated.

The memory array block was redesigned in the memArray.vhd to be
synthesizable. The original memArray.v instantiates 77 rows of the sub-block
storageCellRow. The storageCellRow block then instantiates 8 storageCel/ which
also contains other sub-blocks. When used with the 8x8 array of PEs, the large
number of instances for the design would surpass the allocated amount of files
allowed in a folder. This happens when running the synthesis of the 8x8 array.
The new memArray.vhd block was created with one instance memArray, and

together with using the mixed compile method, the design was synthesized.

The file for testing the functionality of the memory block is test memcell.v and it
is located in the /srga/tools/simulator/memcell/ directory. The operations loaded
to the memory array are the full addition and full subtraction discussed in section
3.3. In the test-bench figure 5.2.1 the configuration file memcell.cnf is loaded
on line 70. After the configuration contexts were loaded into the memory, the
C out and d_out outputs were verified for proper functionality — illustrated from
line 100 in figure 5.2.1.

To test the RTL design using ModelSim simulation, run the script 1-presynth-

memecell by following the next steps:

» cd /simulator/memcell/presynth/

» 1-presynth-memcell
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switchContext«<=

S fLoad config.
(MLl S A L Ffeonfig files/memesll. enf", mem);

MORQ==

SRRy<=

A4 1 eounts for the number of config words
for(i=0; i<="CONFIGWORDI;i=1i+1)
begin
tmp=mem[i];
wrData=
contextAddr[ J=tmp[ 1; //cco part in the memesll.onf
offset [ I=tmp[ 1; //fffffff part in the memcell.onf
if(tmp[ ]!==
begin
dIn<=tmp[ 1;:
repeat (1] @ (posedge clk);
end

for (j=lij<ioi=1+

begin
offset|[ ]=offset[ 1+1;
if(tmp[lo+3]t== )
begin
dIn<=tmg[ +31;
repeat (1) 2 (posedge clk);
end

end
end J/ for (1i=0;i<*CONFIGWORDS;i=1i+1)

PRERESOOO0000 SO CW WL WD WD WD 00 e0 0 00 80 60 0050 0 00 -] ~J = =]~ -] -1 -1 -] -1 0 T (1
LA T DD 0 - O O L) T O 00~ 0 U L0 6D O 0000 ] O O s Ca B3 O D oo - O O s Lo B2 D oo -

MOR (<=
1 /4 The switchContext = 1 will enakle the load for config word reg. thus ocutputs o _out
1 switchContext<=
1 contextaddr[ ]==
1 repeat | 1 2 (posedge clk)
1
1 Sf the offset fied w1ll enable d_out depending if there is a value at the offset
1 switchContext<=
1 offset[ ==
1 repeat | 1 2 (posedge clk)
1 offset[ ]==
1 repeat | 1 2 (posedge clk)
1 offset[ ]==
1 repeat | 1 2 (posedge clk)
1 offset|[ ]<= g
1

Figure 5.2.1: Section of Test Bench for Memory Cell Block

The behavior of the memory cell is shown in figure 5.2.2. The output cOut and
dOut (in the code) are the same as C out and d_out (in the schematic). C out
output the 77-bit configuration word when the MOR register becomes “0” and
the switchContext signal becomes “1”. The d_out signal will output the memory

1-bit that the offset signal (memory row) points to.

To create the gate-level netlist design, follow the next steps:

» cd /simulator/memcell/synthesis/

» 2-synth-memcell

The dc_shell executes the script synth-memecell.scr located in the /synopsys/
directory. The details from this step are written to the file
info_memecell_synthesis.txt also located in the /synopsys/ directory. The
synthesis tools will create the verilog netlist file memcell-synth.v and the delay

file memcell-synth.sdf which are written in the /synopsys/ folder.

64



TEST_MEMCELLY - PRESYNTHES|S

ardReset_n

01010

100000071116

0100010010110

J01110

J1011

10aooat

t st_memcelldeut

test_memcell’cOut

010

000000o00000000001 11

HEET 0

emcellftmp

00 ns

S

—
_
_
=

Memory Cell Test

5.2.2

Figure

65



The netlist design is tested using ModelSim by following the next steps:

» cd /simulator/memcell/synthesis/

» 3-post-synth-sim-memcell
To initiate the Encounter tools, follow the next steps:

» cd /simulator/memcell/asic/

» 4-start-encounter

Follow the encounter section of the tutorial, except when necessary enter
“memcell” instead of “array8x8” to generate the place and route and output the
timing file memcell-encounter.sdf. The next step is to edit line 15 of the
memcell-encounter.sdf file from (CELLTYPE " ") to (CELLTYPE "memcell"). To
test the timing generated by the pace and route, follow the next steps to initiate
the ModelSim tools:

» cd /simulator/memcell/asic/

» 5-post-layout-sim-memcell

5.3 Switch Implementation

The switch is tested only at the RTL level because the block is very small — it
only consists of three 2-bit muxes and a bidirectional switch. The test file for the
switch module test switch.v was designed to test the truth table illustrated in
figure 5.3.1. The results can be seen in figure 5.3.2 from ModelSim simulations.
To load the signals in figure 5.3.2, open the file presynthesis_switch.do in the
/simulator/switch/presynth/modelsim/ directory. To test the RTL design using
ModelSim simulation, run the script 1-presynth-memcell by following the next

steps:

» cd /simulator/switch/presynth/

» 1-presynth-switch
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48 /4 truth takle for the LIN s[2:0]

49 ff for more details see switeh.w

50 /7 s[210] ffmmmmm outputs-——--———-
51 S<= ; pla=0; ri<=0; li«=0; Sipo=1i=0, ro=pi=0, lo=pi=0
52 repeat (1) & (posedge clk) ;

53 s[ 1== = pi<=0; ri<=0; li<=1l; Fipo=1i=0, ro=1li=1, lo=pi=0
54 repeat (1] @ (posedge clk) ;

55 =[ ]== : pi<=0; ri<=l; li<=l; fipo=ri=1, ro=li=0, lo=ri=0
14 repeat (1) @& (posedge olk) ;

57 =[ <= ; pi==1; ri<=l; li<=0; Sipo=1i=0, ro=li=1, lo=ri=l
Lo repeat (1) A (posedge <lk) ;

59 s[ == : pi<=0; ri«<=0; li<=0;

B0 repeat (1) @ (posedge <lk) ;

a1

62 /7 truth takle for MIN =[3]

683 s[3]==1; 1lr==0; Fip=0

B repeat (1) A (posedge <lk) ;

65 s[i]<==1; lr<=1; Fip=1

S]] repeat (1) @& (posedge clk) ;

677 s[2]==1; lr<=l; /ip=1

b repeat (1) @ (posedge <lk) ;

L] s[3]=<=0; 1lr<=l; Fip=0

70 repeat (1) @ (posedge <lk) ;

71 s[1]<=0; lr<=0; S ip=0

72 and

Figure 5.3.1: Section of Test Bench for Switch Module
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Figure 5.3.2: Switch Testing
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5.4 PE Implementation

The PE block consists of a logic cell, a memory cell, a memory interface, a
row switch, and a column switch. At this level all the modules are connected
together and all the inputs and outputs to all the modules, including registers will
go through the PE. The register signals are processed by the memory interface
which will create the internal signals wrMem, Wrlog, switchContext, data In,
Rmi, and Cmi. These signals are used to perform context switching and memory

operations.

The file for testing the functionality of the PE block is test pe.v and it is located
in the /srga/tools/simulator/pe/ directory. The test-bench inputs data for the
configuration word file to the PE (logic cell and memory cell) through one of the
inputs Cm or Rm depending whether a column or row operation is expected.
The PE is using the same format configuration file as the 8x8 tutorial for
consistency; except that the registers are set up only for one PE instead of eight.
The operations that are being tested are the full add and full subtract. The PE
verifies the functionality of all the sub-blocks which is illustrated in figure 5.4.1
and figure 5.4.2.

To test the RTL design using ModelSim simulation, run the script I-presynth-pe

by following the next steps:

» cd /simulator/pe/presynth/
» 1-presynth-pe

The wave windows that can be viewed at this stage from ModelSim are

pe_load_mem.do and pe_operation.do.
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To create the gate-level netlist design, follow the next steps:

» cd /simulator/pe/synthesis/

» 2-synth-pe

The dc_shell executes the script synth-pe.scrlocated in the /synopsys/ directory.
The details from this step are written to the file /info_pe synthesis.txt also
located in the /synopsys/ directory. The synthesis tools will create the netlist

file pe-synth.v, and using ModelSim it can be tested by following the next steps:
» cd /simulator/pe/synthesis/
» 3-post-synth-sim-pe

The wave window that can be viewed at this stage from ModelSim is pe.do.

To initiate the Encounter tools, follow the next steps:

» cd [simulator/pe/asic/

» 4-start-encounter

The necessary encounter libraries will be copied to the /pe/asic/encounter/
directory and will bring up the encounter window. Follow the step by step
tutorial in section 4.4, except when necessary enter “pe” instead of “array8x8” to

generate the place and route and output the timing file pe-encounter.sdf.

The next step is to edit line 15 of the pe-encounter.sdf file from (CELLTYPE " ")
to (CELLTYPE "pe").

To test the timing generated by the pace and route, follow the next steps to

initiate the ModelSim tools:

» cd /simulator/pe/asic/

» B5-post-layout-sim-pe
The wave window that can be viewed at this stage from ModelSim is pe.do.
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5.5 2x2 Array Implementation

The 2x2 array module consists of four instances of the PE block. Each PE is
connected to one row switch and one column switch. The file for testing the
functionality of the 2x2 array block is test array2x2.v and it is located in the
/srga/tools/simulator/2x2/ directory. The configuration word file for the 2x2
array is 2x2_config_words.cnf located in the /srga/config_files/ directory. The
format of the configuration word is the same as the PE’s except there are 2-bis
for the registers DRR and RMR instead of one bit.

In the test_array2x2.vfile, the signal CM transfers the bits form the configuration
word to CM_tri. The inouts ¢com10 and ¢om11 (from array2x2.v) are connected
to CM_trif0] and CM_tri[1] respectively. In array2x2.v, the signals ¢pm10 and
cpoml11 become the parent inout for each of the two column switches. Each
switch then sends the configuration word bits to the Cm signal of each PE (see
section 5.4 for the functionality of the PE). If the registers indicated a row

operation, the configuration bits would be sent to Rm of each PE.

The 2x2 array verifies the functionality of all the sub-blocks which is illustrated in
figure 5.5.1 and figure 5.5.2.

To test the RTL design using ModelSim simulation, run the script 1-presynth-2x2

by following the next steps:

» cd /simulator/2x2/presynth/
» 1-presynth-2x2

The wave windows that can be viewed at this stage from ModelSim are

2x2_load_mem.do and 2x2_application.do.
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To create the gate-level netlist design, follow the next steps:

» cd /simulator/2x2/synthesis/
» 2-synth-2x2

The dc_shell executes the script synth-2x2.scr located in the /synopsys/
directory. The details from this step are written to the file /nfo_2x2_synthesis. txt
also located in the /synopsys/ directory. The synthesis tools will create the

netlist file 2x2-synth.v, and it can be tested by following the next steps:

» cd /simulator/2x2/synthesis/
» 3-post-synth-sim-2x2

The wave window that can be viewed at this stage from ModelSim is 2x2.do.

To initiate the Encounter tools, follow the next steps:

» cd /simulator/2x2/asic/

» 4-start-encounter

The necessary encounter libraries will be copied to the /2x2/asic/encounter/
directory and will initiate the encounter window. Follow the step by step tutorial
in section 4.4, except when necessary enter “array2x2” instead of “array8x8” to

generate the place and route and output the timing file 2x2-encounter.sdf.

The next step is to edit line 15 of the 2x2-encounter.sdf file from (CELLTYPE " ")
to (CELLTYPE "array2x2").

To test the timing generated by the pace and route, follow the next steps to

initiate the ModelSim tools:

» cd /simulator/2x2/asic/

» B5-post-layout-sim-2x2
The wave window that can be viewed at this stage from ModelSim is 2x2.do.
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Chapter 6: SRGA-UT Results, Conclusion and Future
Possibilities

6.1 Results

The objective of this thesis was to use the open code of the SRGA-USC
design, created by the Department of EE-Systems at University of Southern
California and the Department of Mathematics at the University of Trento (Italy),
and implement it using the available EDA tools at the Department of ECE at the
University of Tennessee. To achieve this goal, a great deal of knowledge of the
original SRGA-USC architecture was required. The first step was to examine the
RTL design, make the appropriated adjustments and pass the pre synthesis
verification stage. The second challenge was to synthesize the RTL design,
create the netlist and pass the synthesis verification stage. And the last step was
to generate the place and route from the netlist design, produce the timing delay

files, and test the final design for proper functionality.

The EDA tools used to implementing the SRGA-UT were: ModelSim for
verification and simulation at all stages, Design Compiler for synthesis and
creating the netlist, and First Encounter for performing the place and route and

creating the delay files.

The complete SRGA architecture was describe in several thousand lines of
Verilog and VHDL code. The synthesis and place and route were done using a
standard cell library for a 0.18 um process. The synthesized design can store 8
configuration contexts in each PE (this number is editable in the memory cell
verilog files). The final implemented module has an 8x8 array of PEs. The

number of gates and area for each module are shown in figure 6.1.1.
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Module Gates | Cells |Area* (um?)
Array 8x8 354,053 |145,540, 3,533,166
Array 4x4 88,512| 36,384 883,279
Array 2x2 22,128 9,096 220,820
PE 5532 2,274 55,205
Memory Cell 5,014 2,181 50,036
Memory Array 3,810 1,828 38,021
Logic Cell 476 74 4,750
* Area based on the Gate area of 9.9792 pm®

Figure 6.1.1: 8x8 SRGA-UT Results
The place and route generated a chip size of 5,413,300 um®.

The results obtained throughout the implementation of the SRGA-UT,
demonstrated that the design was capable to switch context and perform
memory access operations in a single clock cycle. The minimum clock cycle that
was required to verify the design was 30ns. Thus the SRGA-UT design can be

expected to operate at a frequency of 33MHz.

There were other tools used/tried to implement the SRGA-UT7. The VCS
simulating tools from Synopsys [10] were also used successfully at UT. The
SRGA-USC design came with scripts to test their design using VCS tools. Since
the ModelSim tools are more frequently used in the Microelectronic System
Research Lab at the University of Tennessee, all the testing and verification was

done using ModelSim.

The Silicon Ensemble tools [11] were also used to test the SRGA-UT place and
route design. The SE tools were able to create the layout of all the modules in
the design but did not produce the timing (.sdf) files for the 2x2 and 8x8 arrays.
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6.2 Conclusion and Future Possibilities

The objective of the thesis was met, by exploring the original design,
making the necessary changes, and using the available EDA tools to generate
the results. A step-by-step tutorial was created for the 8x8 SRGA-UT using the
standard cell library for a 0.18 um process. The functionality of the SRGA-UT to
perform context switching and memory access operations in a single clock cycle
were confirmed. The SRGA-UT design has proven the importance of the design

for reuse techniques.

Following are future possibilities that could be explored:

(1) One of the disadvantages of having such a large amount of gates for the
memory array 3,810 is that it takes the most amount of space on the
layout. This is because every PE in any combination of array size contains
this number of gates for the memory array, which is implemented to store
eight (8) configuration contexts. One option is to edit the memory cell
code to store less configuration contexts, thus reducing the memory size
for each PE — and/or — another possibility could be to create a global
memory array, or a combination of global memory arrays. The global
memory could store the configuration for the applications intended to be
used. The global memory could be utilized through a network of muxes to
attach each PE in a similar way as it is connected now. This could allow
the SRGA-UT to maintain its functionality and greatly reduce the nhumber of
gates for the design. The area for each PE could be reduced by more than

half thus improving the size, frequency, and possible cost of production.
(2) A second future possibility could be to implement the 16x16 array of PEs.

(3) A third future possibility could be to incorporate the SRGA-UT with the

University of Tennessee SoC open core Volunteer SoC platform [12].
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