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ABSTRACT 

For over three decades, amphibian populations have been declining across the globe.  

Emerging infectious diseases are responsible for some of these declines.  Ranaviruses have 

caused die-offs in wild amphibian populations on 4 continents, in 5 Canadian provinces, and in 

over 25 U.S. states.  In order to understand host-pathogen dynamics, it is critical to establish 

baseline information on species susceptibility and the effects of natural stressors.  The goal of my 

thesis research was to quantify the effects of anuran development and exposure to invertebrate 

predators on species-specific susceptibility to ranavirus.  My experiments were designed in 

factorial arrangements, and consisted of exposure to ranavirus during different developmental 

stages or with and without predator cues in a controlled environment.  I found that exposure to 

invertebrate predator cues did not increase susceptibility to ranavirus for 4 anuran species tested.  

Susceptibility differed among embryo, hatchling, larval and metamorph stages, but trends 

differed among species and did not follow predictions based on Xenopus laevis immune function.  

Low susceptibility during the embryo stage was the only consistent development result among 

species, perhaps owing to protective qualities of the vitelline membrane or mucoidal capsules 

surrounding the embryo.  Across 7 anuran species tested, mean mortality rates ranged from 5 – 

100%, with Lithobates sylvaticus and Scaphiopus holbrookii most susceptible.  I found that 

infection rates and viral load were correlated with mortality rates, thus these variables are good 

indicators of susceptibility to ranavirus.  My results indicate that ranaviruses can cause 

catastrophic natural mortality in some anuran species, and likely play a significant role in local 

population dynamics.  For highly susceptible species, ranaviruses could cause local extirpations 

that lead to species declines.  More information is needed on the role of natural (e.g., co-

infection, competition) and anthropogenic stressors in driving ranavirus epizootic events.  I 

encourage natural resource agencies to initiate ranavirus surveillance programs, especially for 

rare species and fragmented populations.  Future studies should take an immunogenetic approach 

to identifying mechanisms driving susceptibility.  Identifying mechanisms associated with 

ranavirus emergence is fundamental to developing science-based conservation strategies. 
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CHAPTER I 

INTRODUCTION 

Since the 1970s, mass mortality events of amphibians have been reported and recent 

evidence suggests that 43% of amphibian species are in decline, with 32% of species listed in 

threat of extinction (Carey 2000, Stuart et al. 2004).  In the 1990s, two pathogens, 

Batrachochytrium dendrobatidis (Bd) and Iridoviruses in the genus Ranavirus, emerged as 

considerable threats to amphibian populations (Cunningham et al. 1993, Longcore et al. 1999).  

While both pathogens have been linked to mortality events in North America, Central America, 

South America, Europe, and Asia (Carey et al. 2003a), the majority of reported mortality events 

in the United States have been associated with ranaviruses (Green et al. 2002, Muths et al. 2006).  

In 96% of these reports, larvae and recently metamorphosed individuals experienced the greatest 

mortality, although substantial loss of adult amphibians in the wild has been reported in the 

United Kingdom and Denmark (Cunningham et al. 1993, Drury et al. 1995, Ariel et al. 2009, 

Teacher et al. 2010).   

Relatively few studies have been conducted to determine the effects of ranavirus in 

combination with natural or anthropogenic stressors.  Amphibians are exposed to a variety of 

ecological stressors, which can decrease immune function.  For example, Denver (1997) 

demonstrated that Scaphiopus couchii tadpoles accelerated development in response to habitat 

desiccation, which was mediated through endogenous production of a corticotropin-releasing 

hormone that stimulated glucocorticoid production.  Belden and Kiesecker (2005) found that 

tadpoles exposed to exogenous corticosterone (i.e., a glucocorticoid) were infected by trematodes 

at 3X the rate of control tadpoles.  Thus, amphibians exposed to stressors may be more 

susceptible to pathogens.   
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In Chapter II, I focus on determining the effects of predatory stress on host susceptibility 

to ranavirus.  Amphibians respond to predators by altering their behavior, morphology, and life 

history characteristics, which often enhances survival (Lima and Dill 1990).  However, predators 

also induce stress in amphibians, which may compromise immune function and increase their 

susceptibility to pathogens.  The objective of this study was to determine if the chronic stress 

associated with the threat of predation increased the susceptibility of anuran larvae to ranavirus.  

To accomplish this goal, I exposed tadpoles of 4 anuran species to ranavirus and predator cues 

from 2 species of aquatic insects that differed in the level of risk posed to amphibians.  Chemical 

cues associated with predation were generated by feeding non-experimental tadpoles to the 

aquatic insects.  I hypothesized that: 1) the combination of predator cues and ranavirus would 

reduce activity and growth to a greater degree than either factor alone, 2) as predator risk 

increased tadpole susceptibility to ranavirus (as indexed by viral load and mortality rates) would 

increase, and 3) anuran species that exhibited stronger stress responses to predation would 

experience greater susceptibility to ranavirus infection when exposed to both factors. 

In Chapter III, I focus on quantifying the effects of larval development on the 

susceptibility to ranavirus.  Extensive literature exists on the development of the immune system 

in anuran larvae (Fox 1963, Manning and Horton 1969, Du Pasquier and Weiss 1973, Du 

Pasquier et al. 1989, Hansen and Zapata 1998, Rollins-Smith 1998). These studies indicate that 

immune system function increases through the embryo and hatchling stages (Gosner [1960] 

stages 0-25), peaks during the larval stages (Gosner stages 26-41), and decreases during 

metamorphosis (Gosner stages 42-46).  Field evidence at die-off sites suggests that later 

developmental stages are most susceptible (Green et al. 2002, Carey et al. 2003b); however, 

these results may be confounded by differences in detecting dead individuals.  For example, it is 
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easier to see a die-off of larvae or metamorphs due to their larger size compared to hatchlings or 

embryos.  Most experimental challenges with ranavirus have focused on larval or metamorph 

stages (e.g, Gantress et al. 2003, Pearman and Garner 2005, Brunner et al. 2007, Hoverman et al. 

2010), although there are a couple studies that exposed embryos to ranavirus (Granoff et al. 

1965, Tweedell and Granoff 1968).  However, none of these studies compared all 4 

developmental stages simultaneously, thus it is unknown if certain stages are more susceptible to 

ranavirus infection and morbidity.  Identifying developmental stages that are most susceptible to 

ranavirus can help guide pathogen surveillance and population monitoring initiatives.   The 

objective of this study was to determine how susceptibility to ranavirus differed among 

developmental stages and whether any trends were consistent among species.  To accomplish 

this goal, I exposed tadpoles of 7 anuran species to ranavirus during the 4 aforementioned 

developmental stages.  Based on previous studies, I hypothesized that susceptibility (as indexed 

by infection rates, mortality rates, and viral load) would be higher at stages 11 and 41 (i.e., 

embryos and metamorphs) due to early development and suppression of the amphibian immune 

system during metamorphosis, respectively, compared to stages 21 and 30 (i.e., hatchlings and 

larvae).   

A secondary goal was to determine if species-specific differences existed in susceptibility 

to ranavirus.  There is little information to date on the relative susceptibility of amphibian species 

to ranaviruses under controlled laboratory conditions (Hoverman et al. 2010).  Amphibians in the 

anuran family Ranidae and caudate family Ambystomatidae often are reported in die-off events 

(Jancovich et al. 1997, Bollinger et al. 1999, Green et al. 2002, Docherty et al. 2003, Schock and 

Bollinger 2005), totaling 96% of reported ranavirus-associated mortality events processed by the 

United States National Wildlife Health Center from 1996 – 2001 (Green et al. 2002).  This report 
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suggests that other amphibian families may have low susceptibility to ranaviral infection, but 

differences in the likelihood of detecting a die-off among species may be a confounding factor.  I 

hypothesized that differences in susceptibility to ranavirus would vary among species and be 

related to life history characteristics such as type of breeding habitat or duration of pre-

metamorphic development.  For example, species that inhabit more permanent wetlands 

probably have a greater likelihood of exposure to ranavirus virions, because water is an excellent 

transmission media, environmental persistence of virions in water may exceed 2 weeks, and 

there are typically a greater number of ectothermic vertebrate reservoirs such as fish and turtles 

(Gray et al. 2009).  If amphibian species in more permanent wetlands have been exposed to 

ranavirus more frequently over evolutionary time, their innate immune system (e.g., 

macrophages, neutrophils, natural killer cells) should be more capable of destroying ranavirus 

virions compared to species that inhabit ephemeral habitats.  Additionally, species inhabiting 

more ephemeral habitats often exhibit shorter larval durations than those of permanent systems.  

It is possible that anurans in temporary habitats may devote more physiological resources to 

rapid growth and metamorphosis at the cost of immune function.  I discuss species-specific 

trends in susceptibility in both chapters.   

My thesis is written in manuscript style.  Thus, each chapter contains Introduction, 

Methods, Results and Discussion sections at a minimum.  I intend to submit Chapter II to Oikos 

or Oecologia and Chapter III to Ecology.   
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CHAPTER II  

COMBINED EFFECTS OF PREDATION RISK AND RANAVIRUS ON FOUR ANURAN 

SPECIES  

INTRODUCTION 

Emerging infectious diseases (EIDs) have sparked concern throughout the scientific 

community due to the threats posed to global biodiversity (Fowler and Miller 2007, Greger 

2007) and, consequently, their impact on the structure and function of ecological communities 

(Whiles et al. 2006).  Numerous EIDs have been linked to anthropogenic factors such as 

production agriculture, habitat destruction, and global climate change (Greger 2007).  Moreover, 

zoonotic outbreaks such as SARS, influenza, bovine spongiform encephalopathy, and HIV/AIDS 

have resulted in substantial monetary losses associated with human health expenses, reduced 

livestock production, and costs of disease prevention and surveillance programs.  Given the 

threats posed by EIDs, studies are needed that address the mechanisms that lead to host 

susceptibility so that intervention strategies can be implemented to reduce their impacts. 

Amphibians are a group of vertebrates that is experiencing population declines and 

species extinctions (Daszak et al. 1999, Carey 2000, Collins and Storfer 2003).  While there are 

many hypotheses for amphibian die-offs, EIDs are certainly playing a role (Wake and 

Vredenburg 2008, Collins and Crump 2009).  Ranaviruses have caused amphibian die-offs in 

wild populations on 4 continents (Gray et al. 2009).  In North America, known ranavirus-

associated die-offs have occurred in over 25 U.S. states and 5 Canadian provinces since 1996 

(Gray et al. 2009; Schock et al. 2010; D. E. Green, U.S. Geological Survey, unpublished data; 

M. K. Gahl, University of New Brunswick, unpublished data).  This pathogen has been 

associated with nearly 50% of all reported mortality events in North America (Green et al. 2002, 
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Muths et al. 2006).  Mortality rates at die-off sites frequently exceed 90% and often involve 

larvae or recently metamorphosed individuals (Green et al. 2002).  Although ranaviruses have 

been linked to numerous die-off events, the mechanisms responsible for disease emergence in 

wild populations remain unclear.  

Ecological stressors may be important factors contributing to the emergence of infectious 

diseases.  Stressors are stimuli that activate physiological or behavioral coping mechanisms in 

organisms that increase survival in the short term (Romero 2004).  Despite enhancing short-term 

survival, stress responses can negatively impact immune functions if they persist in an organism 

(i.e., chronic stressors; Griffin 1989, Martin 2009).  Consequently, persistent ecological stressors 

that suppress immune function may drive disease outbreaks in wild populations.  One common 

ecological stressor is the threat of predation, which causes prey to adaptively alter their behavior, 

morphology, and life history traits (Lima and Dill 1990).  Research across a diversity of taxa 

(e.g., invertebates, vertebrates) suggests that predators can negatively impact prey immune 

function (Boonstra et al. 1998, Rigby and Jokela 2000, Stoks et al. 2006).  Thus, a constant threat 

of predation could increase the susceptibility of an organism to pathogen infection and contribute 

to the emergence of infectious diseases.  If this hypothesis is true, predator-rich environments 

may be hotspots for pathogen outbreaks.     

 Amphibians have been used as a model system to describe the ecology and evolution of 

predator-prey interactions (Wilbur 1972, Morin 1983, Werner 1986).  Many species of 

amphibian larvae have the capability of detecting aquatic predators from chemical cues released 

during predation and food digestion (Schoeppner and Relyea 2005).  These cues can affect 

activity levels, growth and morphology of larval amphibians (Lawler 1989; Werner and Anholt 

1996; Relyea and Werner 1999; Van Buskirk 2001; Relyea 2002a, b).  The strength of the 
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response is often positively correlated with the amount of risk posed (e.g., capture likelihood) by 

a particular predator species (Relyea 2001a, b).   

The specific stress responses of amphibians to predators have not been thoroughly 

examined.  However, in response to other environmental stressors (e.g., habitat desiccation), 

larval amphibian stress responses are mediated through endogenous production of a 

corticotropin-releasing hormone that stimulates glucocorticoid production (Denver 1997).  

Glucocorticoids are known to have immunosuppressive effects in amphibians such as decreasing 

lymphocyte production and destroying T-cell lymphocytes (Tournefier 1982, Ducoroy et al. 

1999), and have been shown to increase susceptibility to trematode infections (Belden and 

Kiesecker 2005).  Thus, it is possible that amphibian responses to aquatic insect predators have 

immunosuppressive effects that may increase susceptibility to ranavirus infections.  To date, no 

studies have investigated the impacts of the threat of predation on amphibian susceptibility to 

ranavirus.  

The objective of this study was to determine if the chronic stress of predation increases 

the susceptibility of amphibian larvae to ranavirus.  To accomplish this goal, I exposed tadpoles 

of 4 anuran species to ranavirus and chemical cues generated from 2 species of aquatic insect 

predators that differed in their level of risk posed to amphibians.  I hypothesized that: 1) the 

combination of predator cues and ranavirus would reduce activity and growth to a greater degree 

than either factor alone, 2) as predator risk increased, tadpole susceptibility to ranavirus (as 

indexed by viral load and mortality rate) would increase, and 3) anuran species that exhibited 

stronger stress responses to predation would experience greater susceptibility to ranavirus 

infection when exposed to both factors. 
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METHODS 

Study Animals and Virus Isolate 

For my experiments, I used 4 species of larval anurans (Lithobates [Rana] clamitans, L. 

sylvaticus, Pseudacris feriarum, and Hyla chrysoscelis).  These species were chosen because 

they have wide distributions in the eastern United States and they represent the 2 most common 

families of North American anurans (i.e., Ranidae and Hylidae).  Consequently, the results from 

these species should provide general insights into the effects of predation risk on susceptibility to 

ranavirus for several closely related species.  Additionally, these species vary in their degree of 

anti-predator responses (Relyea 2001a).  For example, H. chrysoscelis and L. sylvaticus respond 

more strongly to predators compared to L. clamitans (Relyea 2001a), which may equate to 

differences in predator-induced immunosuppression.  No studies have examined the responses of 

P. feriarum to aquatic predators; however, larvae of other Pseudacris species are known to 

respond intermediately to aquatic predators (Skelly 1995, Van Buskirk et al. 1997).    

For each species, breeding populations were identified in counties surrounding Knoxville, 

Tennessee, from January – July 2009.  Egg masses were collected for each species (except H. 

chrysoscelis) within 48 hours of deposition, rinsed with sterile water, and transported in 19-L 

buckets filled with aged tap water to the University of Tennessee Joe Johnson Animal Research 

and Teaching Unit (JARTU, Table A.4).  For H. chrysoscelis, amplexed breeding pairs were 

collected and transported to JARTU for oviposition in covered 11.7-L tub containing 7 L of aged 

tap water.  Breeding pairs remained in containers <24 hrs before oviposition occurred.  The day 

after collection, egg masses were placed outdoors in 300-L wading pools filled with aged tap 

water to develop.  These pools were covered with 60% shade cloth to prevent the colonization of 

aquatic insects or other amphibians.  After hatching, the tadpoles were fed rabbit chow (Purina, 
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St. Louis, Missouri) and ground TetraMin® (Tetra, Blacksburg, Virginia) ad libitum until they 

were used in the experiments.  While vertical transmission of ranaviruses is not known to occur 

(Gray et al. 2009), we used a random sample of 10 tadpoles from each species to confirm the 

absence of ranavirus (see Molecular Analyses section); all pre-experiment tadpoles tested 

negative. 

I used larval Aeshnid dragonflies (Anax sp.) and adult water bugs (Belostoma flumineum) 

as predators in the experiments.  These were collected from farm ponds within 10 km of 

Knoxville.  Once collected, invertebrates were rinsed with sterile water and placed into tubs 

containing aged tap water in JARTU.  These predators are common tadpole predators that 

represented two different degrees of risk (Relyea 2001a).  Aeshnid dragonflies are generally 

high-risk predators for tadpoles because they have a high prey capture efficiency and short 

handling time.  In contrast, water bugs pose a lower risk due to their poor capture efficiency and 

long handling time.  Consequently, tadpoles tend to exhibit stronger anti-predator responses to 

chemical cues released during predation by dragonflies compared to water bugs (Relyea 2001b).  

Before the start of the experiment, the predators were housed individually in 2-L plastic tubs 

filled with 1 L of aged tap water and fed 1 tadpole per week.  Once per week, I conducted water 

changes to maintain water quality in the tubs.  In general, aquatic insect predators were housed 

and fed for approximately 5 weeks prior to experiments.  Similar predator-exposure experiments 

have maintained and fed aquatic insect predators in captivity for extended durations (Relyea and 

Auld 2005).       

For my experiments, I used a ranavirus that was isolated by the University of Georgia 

Veterinary Diagnostic and Investigational Laboratory (VDIL) in 2006 from morbid juvenile L. 

catesbeianus housed at a ranaculture facility in southern Georgia (Miller et al. 2007).  
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Preliminary molecular analyses suggest that the isolate is similar to Frog virus 3 (FV3; GenBank 

accession no. EF101698, Miller et al. 2007).  Concurrent research found that the tadpoles species 

used in my experiments can display signs of disease from this isolate within 1 – 5 days post-

exposure (PE) and experience mortality within 5 – 21 days PE, suggesting that the isolate is 

highly virulent (Hoverman et al. 2010; J. Hoverman, unpublished data).  The isolate was cultured 

at the VDIL using the same protocol described in Hoverman et al. (2010).  An aliquot of the 

stock viral solution was titrated at the VDIL to determine the number of plaque forming units 

(PFUs).  Following titration, the virus was sent overnight to the University of Tennessee and 

stored at -80°C until used in the experiments.  When I received the virus, it was on the third 

passage since original isolation.   

Experimental Trials 

A separate experiment was conducted for each of the 4 species and all experiments were 

conducted under identical laboratory conditions (23°C and a 12:12 day:night photoperiod) in  

JARTU.  Each experiment was a factorial combination of 2 virus treatments crossed with 3 

predator treatments.  The virus treatments included a no-virus control and a virus exposure of 10
3 

PFUs mL
-1

.  The predator treatments were a no-predator control and predator cues from either 

Anax or Belostoma.  Each treatment was replicated 5 times for a total of 30 experimental units.  

All experiments were conducted at a common shelf height in JARTU.  The experimental units 

were 11.7-L plastic tubs filled with 7 L of aged tap water.  Tadpoles that were at Gosner (1960) 

stage 30 were used to reduce possible confounding effects of development on response variables 

(see Chapter III).  I randomly assigned 10 tadpoles to each experimental unit.   An additional 

random sample of 10 tadpoles was humanely euthanized in benzocaine hydrochloride (1 g L
-1

) 
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and weighed to the nearest 0.1 mg.  The average mass of these tadpoles was used to calculate 

growth of all tadpoles surviving at the end of the experiment (discussed later).     

I used the addition of predator cues, generated during tadpole predation, to simulate 

predator presence in my experimental units (Fraker 2008).  Predator cues consist of kairomones 

that are released by the predator during prey digestion as well as alarm cues produced by the 

prey during predation (Schoeppner and Relyea 2005).  For each predator species, cues were 

generated in six 11.7-L tubs filled with 10 L of aged tap water.  One day before the start of the 

experiment, 1 predator was placed into each tub.  The predator was housed within a cage 

constructed of a 250-mL plastic cup with window screen covering the opening.  The cage was 

inverted prior to placing it in the tub so that an air pocket formed, allowing the predator access to 

surface oxygen.  Tadpoles were placed in the cage with the predator to increase the likelihood of 

consumption and cue generation.  The porous screen allowed cues to pass from the cage into the 

tub.      

Predator cues were generated by feeding each predator 400 – 500 mg (1 – 3 individuals) 

of live tadpoles every day of the same anuran species being tested.  The tadpoles were blotted 

dry and their total biomass recorded prior to addition to the predator cage.  Of the 6 tubs per 

predator species used to generate predator cues, I randomly selected 4 tubs where the predators 

consumed all offered prey.  The 2 extra tubs were maintained to ensure that I had at least 4 

predator tubs available for cue generation if some of the predators did not consume prey.  I 

replaced predators that did not eat for 2 consecutive days with new individuals.  Also, new 

individual predators were used between experiments.  Predator cue presence was verified by 

comparing activity levels (discussed below) between cue-exposed and -unexposed tadpoles. 
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Because the mass of prey consumed by each predator varied, I calculated the predator-

cue concentration in each predator tub, which was the ratio of consumed tadpole mass per 10 L 

of water.  I used this value to standardize the cue concentration among predator tubs, with a 

target cue concentration of 40 mg of tadpole L
-1

.  If the calculated cue concentration was greater 

than the target, I conducted a dilution by mixing together the appropriate amount of aged tap 

water with the predator-cue water.  For example, if the amount of prey consumed by a predator 

was 500 mg, I added 8 L of predator cue water to 2 L of aged tap water to obtain a final 

concentration of 40 mg of consumed prey L
-1

.  Once the concentrations were adjusted, the 10 L 

of water from each of the 4 tubs was combined.  The mixture was stirred to evenly distribute the 

cues, and 100 mL distributed to the appropriate predator-cue experimental units.  Prior to the cue 

addition, I removed 100 mL from each experimental unit to compensate for the additional water 

added to the tub.  This resulted in a final concentration of 0.57 mg of consumed tadpole biomass 

L
-1

 (40 mg L
-1

  100 mL = 4 mg added to 7 L = 0.57 mg L
-1

), which was within the cue range 

(0.071 – 3 mg liter
-1

) known to elicit anti-predator responses in anuran larvae (Van Buskirk 

2001, Relyea 2002a, Schoeppner and Relyea 2008).  I removed 100 mL of water from each no-

predator treatment and added 100 mL of aged tap water to equalize disturbance among 

experimental units.  The cues were added daily to the experimental tubs 24 hours after predators 

had consumed tadpoles.  It has been shown that predator cues aged for 24 – 96 hours retained 

their ability to induce behavioral responses in prey (Turner and Montgomery 2003, Peacor 

2006). 

The virus treatment was applied after 8 days of predator treatment application to allow 

adequate time for possible immune suppression associated with predatory stress.  This duration 

was reasonable considering that morphological and behavioral responses from predator cues 



 

 13 

have been observed as early as 6 days following exposure (Relyea 2003).  Also, suppression of 

the hypothalamo-pituitary-adrenal axis has been documented in tadpoles within hours of 

exposure to alarm pheromones (Fraker et al. 2009).  For the no-virus treatments, I added 411 μL 

of virus free media (Eagle’s Minimal Essential Media [MEM]) to the tubs.  The virus treatments 

received 411 μL of MEM containing ranavirus, which resulted in a final concentration of 10
3
 

PFUs mL
-1

.  This concentration is within the range of doses used in other studies (10
2
-10

6
 PFUs 

mL
-1

; Bollinger et al. 1999, Brunner et al. 2005, Pearman and Garner 2005) and is an 

environmentally relevant concentration (Rojas et al. 2005, Schock et al. 2008).  The exposure 

duration lasted 4 days, which has been shown to initiate infection in the species used in my study 

(Hoverman et al. 2010; J. Hoverman, unpublished data).  After 4 days, the water was changed 

and virus was not added again. 

Every 2 days, I fed tadpoles ground TetraMin® at a ration of 6% of their body mass.  A 

6% ration of TetraMin® has been shown to be sufficient for normal growth and development and 

minimizes competitor-induced stress (Relyea 2002c).  The food ration was calculated from 10 

tadpoles that were independent of the experiment but reared under identical conditions as the 

control treatment (i.e., without virus and predators).  This approach avoided possible stress on 

experimental tadpoles associated with handling and weighing.  Before each feeding, the non-

experimental tadpoles were blotted dry on a paper towel and weighed.  The average mass of the 

tadpoles was used to calculate the 6% food ration.  During the experiment, I adjusted the food 

ration to compensate for mortality by calculating the rations needed according to how many 

tadpoles were present in each experimental unit. 

Water in tadpole and predator tubs was changed every 4 days to maintain water quality.  

To reduce the likelihood of virus contamination during the water changes, no-virus treatments 
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were handled first followed by virus treatments.  Also, I used new nets, changed gloves and 

rinsed all surfaces with 0.75% Nolvasan® (2% chlorhexidine diacetate; Fort Dodge Animal 

Health, Fort Dodge, Iowa, USA) for at least 1 minute to prevent cross contamination (Bryan et 

al. 2009).  Predator cues were added after each water change.  

Data Collection and Tadpole Observations 

To quantify tadpole behavioral responses to the treatments, I observed tadpole activity 

every day during the experiment using scan sampling (Altmann 1974).  After slowly approaching 

the tubs, I scanned each tub (<5 sec) and recorded the number of tadpoles that were active and 

the total number of tadpoles in the tub.  Tadpoles were considered active if they were moving in 

the water column or displaying tail movement.  Percent activity was calculated as the total 

number of active tadpoles divided by the number of total tadpoles present in the tub.  Percent 

activity was measured 10 times per tub on each observation day, with tub observations separated 

by <5 minutes.  The mean of the 10 observations was used as the response variable for each tub.  

Tubs were observed between 0800 – 1000 hrs every day to reduce possible variation associated 

with diel patterns in activity.  After the activity observations ended, an external stimulus (i.e., 

tapping) was applied once to the bottom of each tub, and I recorded the number of responsive 

tadpoles.  Percent responsive was calculated identically to percent activity.  Given that exposure 

to ranaviral disease can result in behavioral changes (Gray et al. 2009), this external stimulus 

provided an additional assessment of tadpole behavior that may not be captured with activity 

observations. 

I monitored tadpole survival daily in each experimental unit and dead individuals were 

removed.  I terminated the experiment after 3 wks PE, which is sufficient duration to observe 

mortality following ranavirus exposure for the species used in my study (Hoverman et al. 2010; 



 

 15 

J. Hoverman, unpublished data), and calculated percent survival for each experimental unit.  All 

surviving individuals were euthanized, weighed, and growth calculated as the difference between 

mean mass at the beginning of the experiment (based on the initial sample of 10 tadpoles) and 

the mass of each individual.  Growth was averaged across individuals within an experimental 

unit prior to analysis.  Two tadpoles that survived to the end of the experiment were randomly 

selected and necropsied to estimate viral load.  Sections of the pronephros (kidneys) and liver 

were removed, placed in a 1.5-mL microcentrifuge tube, and frozen at -80°C until processing.  

Gloves were changed and a different set of sterile instruments was used for necropsy between 

each individual to prevent cross-contamination.  Individuals that metamorphosed prior to the end 

of the experiment were deemed survivors and removed from the experimental unit.  Metamorphs 

were removed after approximately 20% tail resorption, because a pilot study that I performed 

indicated that drowning occurred after this point due to simultaneous gill resorption.  Because 

metamorphs were not included for the full duration of the experiment, they were not used in the 

analysis of growth or viral load.  Also, none of the L. sylvaticus tadpoles exposed to ranavirus 

survived to the end of the experiment, thus growth and viral load were not analyzed for this 

species.  All animal husbandry and euthanasia procedures followed an approved University of 

Tennessee IACUC protocol (#1816).  Collection of egg masses was approved by the Tennessee 

Wildlife Resources Agency (Scientific Collection Permit #1990). 

Molecular Analyses 

 Viral load has been used as an index of susceptibility to iridoviruses (e.g., Goldberg et al. 

2003, Inendino et al. 2005), and was estimated using real-time PCR (qPCR).  I pooled the liver 

and kidney sample from a given individual and extracted genomic DNA (gDNA) using the 

DNeasy Blood and Tissue Kit (Qiagen Inc., Valencia, CA).  I used the Qubit
TM

 fluorometer and 
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the Quant-iT
TM

 dsDNA BR Assay Kit to quantify the concentration of gDNA in each sample 

(Invitrogen Corp., Carlsbad, CA, USA).  

I used the TaqMan qPCR assay following the methods of Picco et al. (2007).  For each 

sample, I combined 12.5 μL of TaqMan Universal PCR Master Mix (Applied Biosystems, Foster 

City, California, USA), 1.5 µL of each primer (rtMCP-F [5’ – ACA CCA CCG CCC AAA AGT 

AC – 3’] and rtMCP-R [5’ – CCG TTC ATG ATG CGG ATA ATG – 3’]), and 1.5 μL of 

rtMCP-probe (5’-CCT CAT CGT TCT GGC CAT CAA CCA-3’).  I added 0.25 μg of gDNA 

from each sample to standardize the total amount of gDNA added to the tubes.  Because the 

volume containing this amount of gDNA varied depending on the gDNA concentration of the 

sample, I used the values from the fluorometer to calculate how much of the sample to add.  I 

then added DNA grade water to the sample to bring the total volume to 30 μL.  A SmartCycler® 

(Cepheid, Sunnyvale, California) thermal cycler was used for the qPCR.  In each run of the 

qPCR, I included 4 controls, which were a ranavirus-negative tadpole sample, a negative DNA 

grade water sample, a ranavirus-positive tadpole sample, and a cultured virus sample.  For each 

sample, I recorded the cycle number at which the sample crossed the fluorescent threshold level 

(i.e., CT value).  I used a standard curve obtained from a qPCR conducted with a concentration 

gradient of ranavirus and the CT value of each sample to calculate viral load.  Viral load was 

averaged within each experimental unit prior to analyses. 

Data Analyses 

To test the effects of treatments on tadpole behavior, I conducted repeated-measures 

analysis-of-variance (ANOVA) for each variable (Sokal and Rohlf 1995).  Main effects were 

virus treatment, predator treatment, and time (8 or 16 – 21 days for pre- and post-exposure to 

virus, respectively).  The response variables were percent activity and percent responsiveness 
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averaged among experimental units.  The pre-exposure analysis included the first 8 days of the 

experiment and provided behavioral evidence of cue effectiveness.  The post-exposure to virus 

analysis included the remaining days of the experiment.  However, the data for the post-exposure 

analysis was truncated when mortality rates exceeded 20% to prevent an increase in sample 

variation associated with fewer individuals available for calculating activity and responsiveness 

proportions.  Whenever an interaction of main effects occurred, analyses were separated by 

predator or virus levels.  In several analyses, I detected significant time by treatment interactions.  

Inasmuch as the main-effect responses associated with predator and virus treatments were of 

greatest interest, I included results addressing time by treatment interactions in Appendix B.  

Mean percent survival, growth, and viral load were measured at the end of the experiment 

hence no repeated time effect was included in the analyses.  I used a two-way ANOVA to test for 

differences in predator and virus effects on growth.  I used a one-way ANOVA to test for the 

differences in mean viral load among predator treatments; a virus effect was not included in the 

model because all unexposed tadpoles tested negative for ranavirus.  For all tests, if a significant 

predator effect existed, I used Fisher’s least significant differences test for post-hoc comparisons 

(Westfall et al. 1999).  I tested if my data followed a normal distribution for all response 

variables using a Shapiro-Wilk test (Sokal and Rohlf 1995).  Normality was met in all cases (P > 

0.11) except for percent survival.  For H. chrysoscelis, L. clamitans, and P. feriarum, high 

survival of all controls resulted in a non-normal distribution; therefore, I used a Kruskall-Wallis 

test to determine whether percent survival differed among virus and predator treatments in these 

cases.  Mean percent survival was not tested for L. sylvaticus, because all individuals in virus-

exposed experimental units died, which resulted in no variation – an ANOVA requirement 

(Sokal and Rohlf 1995).  These results were qualitatively interpreted.  Also, given that no L. 
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sylvaticus tadpoles that were exposed to ranavirus survived until the end of the experiment, I 

could not calculate or analyze growth for the virus treatment.  However, I used a one-way 

ANOVA to test for differences in mean growth for this species among predator treatments for 

the no-exposure treatment.  Data for one-way ANOVAs were normal (P > 0.24).  All analyses 

were performed with SPSS 16.0 at α = 0.05.    

RESULTS 

Prior to virus exposure, Anax and Belostoma cues reduced tadpole activity by 4 – 18% 

and 5 – 10%, respectively, compared to the controls (Table A.1, Figure A.1a).  Activity was 

lower for tadpoles exposed to Anax cues compared to Belostoma cues for H. chrysoscelis and P. 

feriarum (Table A.1, Figure A.1a).  Thus, the predator cues in my study reduced tadpole activity.  

There was no effect of the predator treatments on responsiveness except for L. clamitans (Table 

A.1, Figure A.1b), indicating that 3 of the 4 tadpole species responded similarly to an external 

stimulus regardless of the predator treatment.  Mean responsiveness was 2% lower for L. 

clamitans tadpoles exposed to Anax cues (Table A.1, Figure A.1b).  Time interacted with the 

predator effect for some species (Table A.1); these results are presented in Appendix B.       

 Following virus exposure, tadpole activity was 4 – 24% lower in cue-exposed treatments 

compared to the control (Table A.2, Figure A.2a).  Activity levels continued to be lower for P. 

feriarum tadpoles exposed to Anax cues compared to Belostoma cues (Table A.2, Figure A.2a).  

Percent activity for H. chrysoscelis tadpoles was on average 3% lower in the virus-exposed 

treatment compared to the no-exposure treatment.  The opposite relationship existed for L. 

clamitans tadpoles, where mean percent activity was 2% higher in the virus-exposed treatment.  

Percent responsiveness was 2 – 4% lower for H. chrysoscelis and P. feriarum tadpoles exposed 

to the virus (Table A.2, Figure A.2b).  No additional significant differences were found for 
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predator and virus treatments, and these effects did not interact with each other (Table A.2, 

Figure A.2).  Time interacted with the predator and virus effect for some species (Table A.2); 

these results are presented in Appendix B.       

Virus exposure significantly reduced survival by 17 – 100%, with survival lowest in L. 

clamitans and L. sylvaticus tadpoles (Table A.3, Figure A.3).  Virus exposure increased growth 

by 8% in surviving L. clamitans tadpoles (Table A.3, Figure A.3).  No additional differences in 

mean survival, growth or viral load were detected between predator or virus treatments, and 

these effects did not interact (Table A.3, Figure A.3).            

DISCUSSION 

Consistent with previous amphibian research, predator cues from Belostoma and Anax 

significantly reduced activity of all tadpole species (Relyea 2001a).  Across all species, the 

greatest reduction in activity from predator cues occurred in H. chrysoscelis (12 – 24%) and L. 

sylvaticus (10 – 14%) tadpoles.  Both species tend to breed in temporary or semi-permanent 

wetlands with relatively few aquatic predators and developmental constraints to metamorphose 

before pond drying (Wellborn et al. 1996).  Consequently, they typically display high activity 

levels in the absence of predators but respond strongly to the presence of predators (Relyea 

2001a, Van Buskirk 2002).  While L. clamitans also displayed reduced activity with predators, 

the magnitude of the response was lower compared to L. sylvaticus and H. chrysoscelis.  Low 

activity for L. clamitans has been reported (Theimann and Wassersug 2000, Relyea 2001a), and 

usually is attributed to their association with permanent wetlands that contain more predators 

(Werner and McPeek 1994).  Interestingly, P. feriarum displayed the lowest activity level.  This 

species typically breeds in ephemeral wetlands similar to L. sylvaticus and H. chrysoscelis where 

high activity levels are needed to facilitate developmental rates.  Previous research on the closely 
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related western chorus frog (P. triseriata) reported activity levels more than twice the magnitude 

that I observed in my experiment (Skelly 1995).  While more research is required with this 

chorus frog species to characterize its general activity levels, it was clear that they display anti-

predator behaviors that are consistent with a multitude of larval anurans.   

I found that Anax cues reduced activity more than Belostoma cues for H. chrysoscelis and 

P. feriarum before virus exposure and for P. feriarum after virus exposure.  However, there was 

no difference between the Anax and Belostoma treatments for L. sylvaticus and L. clamitans.  

Previous research has demonstrated that Anax larvae are more lethal than Belostoma and, 

consequently, tadpoles generally reduce activity level to a greater degree with more lethal 

predators (Relyea 2001b).  While I did not find a consistent reduction in activity level with 

predation risk across the tested species, research in a diversity of systems has shown substantial 

variation in predator-induced plasticity in response to a common predator across species as well 

as within species across populations (Dodson 1988, Kohler and McPeek 1989, Werner 1991, 

Azevedo-Ramos et al. 1992, Spitze 1992, Peckarsky 1996, Relyea 2001a).  Regardless of the 

mechanism driving the differences in the relative magnitude of tadpole responses to the 

predators, it was clear that the risk of predation was reducing tadpole activity level.    

I found that before and after virus exposure, predator cues had very little effect on tadpole 

responsiveness, which was the external stimulus of tapping on the container.  In general, most 

tadpoles (>70%) responded to this stimulus, despite reducing swimming activity in the presence 

of aquatic insect predators.  I found that exposure to ranavirus reduced responsiveness by 2 – 4% 

in P. feriarum and H. chrysoscelis.  Lethargy has been described as a gross sign associated with 

ranavirus infection (Gray et al. 2009), which may affect the detection rate of infected tadpoles by 

movement-stimulated predators (Lawler 1989).  Alternatively, if tadpole responsiveness to an 
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attack was reduced due to ranavirus infection, capture probability by the predator may increase.  

Parris et al. (2004) found that ranavirus infected salamanders were depredated less than 

uninfected individuals; however, others have found that tadpoles infected with pathogens were 

predated more often than uninfected individuals (Lefcort and Blaustein 1995, Pfennig et al. 

1999).  More research is needed examining the effectiveness of tadpoles infected with a 

pathogen responding to and escaping predation attempts.   

Percent activity for H. chrysoscelis tadpoles was 3% lower in the virus-exposed treatment 

compared to the control; however, the opposite relationship existed for L. clamitans tadpoles.  

Parris et al. (2004) reported that ranavirus-infected A. tigrinum that were not exposed to Anax 

predators had greater activity levels than uninfected individuals.  They surmised that the 

increased activity might be pathogen induced and help facilitate transmission by increasing the 

likelihood of contact between hosts (Parris et al. 2004).  Although I did not detect a statistical 

difference, L. sylvaticus that were exposed to ranavirus also exhibited greater activity in the no-

predator treatment.  Thus, the ranid tadpoles in my experiment appeared to respond similarly to 

ranavirus exposure as A. tigrinum (Parris et al. 2004).  The lower activity of ranavirus-exposed 

H. chrysoscelis tadpoles may be related to the pathological responses associated with infection.  

Severe edema was noted in infected H. chrysoscelis tadpoles (N. Haislip, unpublished data), 

which likely reduced their mobility.  Alternatively, it is possible that reduced movement was a 

host response to decrease the likelihood of infection.  Several studies have shown that anuran 

larvae can recognize pathogens present in the aquatic environment and reduce activity to 

presumably decrease encounter rate with the pathogen (Lefcort and Blaustein 1995, Kiesecker et 

al. 1999, Theimann and Wassersug 2000).  More research is needed to identify the mechanisms 

associated with reduced or increased activity of amphibian larvae exposed to pathogens. 
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Mortality from ranavirus occurred in all tadpole species in my experiment, providing 

additional evidence that ranaviruses infect multiple amphibian hosts (Duffus et al. 2008, 

Hoverman et al. 2010).  Mortality was substantially higher for ranid tadpoles (L. clamitans = 

62%, L. sylvaticus = 100%) than for hylid tadpoles (H. chrysoscelis = 17%, P. feriarum = 19%), 

which corresponds with die-off trends in wild populations (Green et al. 2002).  However, 

ongoing research at the University of Tennessee indicates that mortality rates vary greatly across 

ranid and hylid species (J. Hoverman, unpublished data).  These results suggest that more 

research is needed to understand the mechanism impacting mortality rates across species.     

Exposure to predator cues and ranavirus did not synergistically increase mortality rates as 

predicted.  Given that exposure to predator cues before and after exposure to ranavirus reduced 

tadpole activity for all species, the procedures I followed for cue generation and exposure were 

effective.  The levels of cue concentration used in my study (0.57 mg of consumed tadpole 

biomass L
-1

) have been shown to cause behavioral and morphological responses in tadpoles and 

are considered ecologically relevant (Van Buskirk 2001, Relyea 2002a, Schoeppner and Relyea 

2008).  Thus, it is reasonable to infer that exposure to Anax or Belostoma predators may not 

increase ranavirus-associated mortality for the tadpoles species used in my study.  It is important 

to note that my study exposed tadpoles to predator cues for 8 days prior to ranavirus exposure, 

which may be insufficient time to cause immune suppression.  Therefore, exposure to predator 

cues for longer durations or at higher concentrations may cause chronic stress and contribute to 

ranaviral disease emergence.   

I found that virus exposure resulted in higher growth rates in surviving L. clamitans 

tadpoles.  I documented that 19% of surviving L. clamitans had edema (N. Haislip, unpublished 

data), which could have increased growth estimates calculated from mass.  However, if edema 
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was primarily responsible for driving this trend, I should have observed higher growth rates in H. 

chrysoscelis tadpoles, because this species experienced severe edema as well.  Given these 

uncertainties and that higher growth rate was observed in only one species, more research is 

needed investigating the possible impacts of sublethal ranavirus infection on larval and post-

metamorphic body size.        

 There were no differences in viral load among predator treatments, providing further 

support that cues from Anax or Belostoma predators may not function as significant ecological 

stressors for ranaviral disease.  If this were true, I would have expected to observe higher viral 

loads (an index of virion density) in predator treatments.  It is important to note that the 

relationship between viral load estimates from qPCR and ranaviral disease is unknown (Green et 

al. 2009); however in Chapter III, I found that viral load and mortality rates were correlated, 

which has been reported in other iridovirus studies (Inendino et al. 2005, Cotter et al. 2008).    

CONCLUSIONS 

There are very few studies that have examined the role of natural stressors in driving the 

susceptibility of amphibians to pathogens.  In other animal taxa, natural stressors, including the 

threat of predation, have been shown to negatively affect immune parameters and, in some cases, 

increase susceptibility to diseases (Griffin 1989, Boonstra et al. 1998, Rigby and Jokela 2000).  

These findings have led to generalizations that natural stressors affect taxa similarly, hence 

contribute to host-pathogen dynamics (Carey et al. 1999).  In Amphibia, it appears that the threat 

of predation may increase susceptibility of amphibians to certain pathogens (Theimann and 

Wassersug 2000, Parris et al. 2004, Belden and Kiesecker 2005), but this effect is not consistent 

among species or pathogens (Parris and Beaudoin 2004, Raffel et al. 2010).  My study did not 

support the hypothesis that the threat of predation increases susceptibility to ranaviruses; 
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however, more studies are needed to verify if this trend holds true across additional amphibian 

taxa and viral types.    
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CHAPTER III 

STAGE- AND SPECIES-SPECIFIC SUSCEPTIBILITY OF ANURANS TO RANAVIRUS  

INTRODUCTION 

 Pathogens are fundamental components of natural communities and have impacts that 

can vary from sequestration of resources from a host to large-scale population regulation 

(Anderson and May 1978, Price et al. 1986, Scott 1988, Sorensen and Minchella 1998).  

Moreover, by directly impacting the survival and reproduction of hosts, pathogens can affect 

community interactions and the structure and function of ecological communities (Holt 1977, 

Price et al. 1986, Scott 1988, Kiesecker and Blaustein 1999, Keesing et al. 2006, Lafferty et al. 

2008).  The recent emergence of pathogens in plant and animal communities has sparked interest 

in understanding the mechanisms driving host-pathogen dynamics (Daszak et al. 2000). 

 The role of pathogens in the recent declines of amphibians across the globe has received 

considerable attention (Goater and Ward 1992, Jancovich et al. 1997, Longcore et al. 1999, 

Kiesecker and Skelly 2001, Carey et al. 2003b, Wake and Vredenburg 2008).  While amphibians 

are hosts for a diversity of pathogens (Wright and Whitaker 2000), many die-off events have 

been associated with infection by ranaviruses (Green et al. 2002, Carey et al. 2003a, Muths et al. 

2006).  Ranaviruses have been reported on 5 continents and are associated with nearly 50% of 

the reported amphibian mortality events in the United States (Green et al. 2002, Carey et al. 

2003a, Carey et al. 2003b, Converse and Green 2005).  In 96% of these reports, larvae and 

recently metamorphosed individuals experienced the greatest mortality.  Although ranaviruses 

have been fairly well studied and characterized at the molecular level (Chinchar 2002, Chinchar 

et al. 2003, Chinchar et al. 2005, Williams et al. 2005), research has only recently begun to 
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examine the mechanisms associated with ranavirus emergence in wild populations (Gray et al. 

2009).   

The ability to combat pathogens in amphibians may be correlated with the development 

of the immune system.  For amphibians that belong to the Order Anura, development is often 

categorized on a scale of 1 – 46 that was established by Gosner (1960), where stages 1 – 19, 20 – 

25, 26 – 41, and 42 – 46 are embryos, hatchlings, larvae (i.e., tadpoles), and metamorphs, 

respectively.  Previous studies suggest that there are varying degrees of immune system 

development across different amphibian life stages.  Embryos and hatchlings (Gosner stages 1-

24) lack many of the important components of the functional immune system because they have 

not yet fully developed organs such as pronephros (hereafter kidneys), liver, spleen, or thymus, 

and they do not produce T and B lymphocytes or major histocompatability complex (Fox 1963, 

Manning and Horton 1969, Du Pasquier et al. 1989, Hansen and Zapata 1998, Rollins-Smith 

1998).  Du Pasquier et al. (1989) found that the production of thymic lymphocytes increases 

during larval development, drops substantially at metamorphosis, and peaks in adult Xenopus 

laevis.  Decreases in immune function during metamorphosis (Gosner stages 41-44) are probably 

related to endogenous production of glucocorticoids associated with restructuring organ systems 

for postmetamorphic life (Rollins-Smith 1998).  Thus, peak immunity may occur between 

Gosner stages 30 – 40 for amphibian larvae.  

The immunological changes that occur during anuran development should affect host-

pathogen interactions (Rollins-Smith 1998, Gantress et al. 2003).  Unfortunately, studies 

comparing the susceptibility of amphibians to pathogens at different developmental stages are 

rare.  Adult X. laevis are able to overcome an infection from ranavirus, yet larvae are highly 

susceptible and experienced 80 – 100% mortality (Gantress et al. 2003).  Scotthoefer et al. 
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(2003) infected Lithobates pipiens with trematodes at 3 development stages (Gosner stages 25-

27, 31-39, and 42) and found that only those infected with trematodes at Gosner stage 25 

experienced mortality.  Embryos that were injected with ranavirus experienced 100% mortality 

(Tweedell and Granoff 1968).  Collectively, these studies affirm that earlier developmental 

stages in anurans may be most susceptible to pathogens; however to date, no studies have tested 

all 4 larval developmental stages (embryo, hatchling, tadpole, and metamorph).  Thus, the first 

objective of my research was to test for differences in susceptibility (as indexed by infection 

rates, mortality rates, and viral load) to ranavirus among developmental stages prior to the 

completion of metamorphosis.      

Traditionally, disease ecology has focused on pathogens that attack a single host, which 

has limited our ecological understanding of disease dynamics driven by pathogens that infect 

multiple host species (Cleaveland et al. 2001, Dobson and Foufopoulos 2001, Parker and Gilbert 

2004, Power and Mitchell 2004).  While many amphibian pathogens including ranaviruses are 

capable of infecting multiple hosts, few studies have compared the relative susceptibility to 

pathogens among species.  Schock et al. (2008) demonstrated that recently metamorphosed 

individuals of 4 amphibian species were differentially susceptible to different ranavirus strains.  

In addition, larval Cope’s gray tree frogs (Hyla chrysoscelis) and pickerel frogs (Lithobates 

palustris) experience 3-fold greater mortality compared to eastern narrow-mouthed toads 

(Gastrophryne carolinensis) when exposed to ranaviruses (Hoverman et al. 2010).  Field and 

laboratory studies have shown that Anaxyrus americanus tadpoles are more susceptible to the 

digenetic trematode, Ribeiroia ondatrae, than H. versicolor tadpoles (Johnson and Hartson 

2009).  Thus, differences in susceptibility to pathogens exist among amphibian species.  There is 

a need to identify species that are highly susceptible to pathogens so that conservation initiatives 
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can be directed appropriately (Green et al. 2009).  To date, very few studies have examined the 

relative susceptibility of amphibian larvae to ranaviruses (Schock et al. 2008, Hoverman et al. 

2010).  Moreover, these studies tested only one developmental stage, thus their results may be 

limited.  The second objective of my study was to identify trends in the relative susceptibility to 

ranavirus for 7 North American anuran species, and to relate species-specific trends to life 

history and evolutionary characteristics of the hosts.   

METHODS 

Study Animals and Virus Isolate 

I used 7 anuran species for my study:  L. clamitans, L. pipiens, L. sylvaticus, Pseudacris 

feriarum, H. chrysoscelis, Scaphiopus holbrookii, and A. americanus, which are widely 

distributed in eastern North America (Lang et al. 2009).  Between February – July 2009, I 

collected 7 – 20 egg masses for each species (except H. chrysoscelis, Table A.4).  Egg masses 

were collected within 48 hours of deposition, rinsed with sterile water, and transported in 19-L 

buckets filled with aged tap water to the University of Tennessee Joe Johnson Animal Research 

and Teaching Unit (JARTU).  For H. chrysoscelis, 9 amplexed breeding pairs were collected and 

transported to JARTU for oviposition in covered 11.7-L tub containing 7 L of aged tap water.  

Breeding pairs remained in containers <24 hrs before oviposition occurred.   

Egg masses were placed outdoors the day after collection in 300-L wading pools filled 

with aged tap water to develop.  These pools were covered with 60% shade cloth to prevent the 

colonization of aquatic insects or other amphibians.  After hatching, tadpoles were maintained in 

these pools and fed rabbit chow (Purina, St. Louis, Missouri) and ground TetraMin® (Tetra, 

Blacksburg, Virginia) ad libitum until used in the experiments.  The experiments began as 

individuals reached the appropriate developmental stages (see below).  Prior to each 
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experimental trial, a subset of 10 initial individuals of the developmental stage to be tested was 

euthanized and frozen at -80˚ C for confirmation that they were negative for ranavirus using real-

time quantitative polymerase chain reaction (qPCR, see Molecular Analyses section); all pre-

experiment individuals tested negative.  

A single isolate of Ranavirus was used for all experiments.  The University of Georgia 

Veterinary Diagnostic and Investigational Laboratory (VDIL) extracted this isolate from morbid 

L. catesbeianus juveniles.  Preliminary molecular analyses suggest that the isolate is similar to 

the ranavirus frog virus 3 (GenBank accession no. EF101698, Miller et al. 2007), and it has been 

shown to be highly virulent in anuran larvae (Hoverman et al. 2010).  Titrated stock solutions of 

the isolate were sent overnight by the VDIL to the University of Tennessee for the experiments.   

Experimental Trials 

For each species, I conducted a 14-d experimental trial for each of 4 developmental 

stages: 1) embryo (stage 11), 2) hatchling (stage 21), 3) larval (stage 30), and 4) pro-

metamorphosis (stage 41, Gosner 1960).  Embryos were defined as eggs containing developing 

embryos.  Although it has been shown that embryos are extremely susceptible to ranavirus when 

injected with the virus (Tweedell and Granoff 1968), exposing embryos while in the egg capsule 

is a more ecologically relevant transmission route.  Experimental units for all trials were 1-L tubs 

filled with 0.5 L of aged tap water.  The tubs were placed at a common shelf height in a 

completely randomized design at the JARTU laboratory facility.  Tubs were set approximately12 

cm apart to reduce the likelihood of contamination among experiment units.  I randomly 

assigned a single individual to each tub.  Treatments included a no-virus control and a virus 

exposure of 10
3 

plaque-forming units (PFUs) mL
-1

 (Hoverman et al. 2010)  Both treatments were 

replicated 20 times for a total of 40 experimental units per trial.   
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I inoculated the water (i.e., bath exposure) with 29.5 μL of Eagle’s Minimal Essential 

Media (MEM) for the no-virus control tubs and 29.5 μL of MEM containing the virus for the 

virus tubs.  The resulting virus concentration was 10
3
 PFUs mL

-1
, which is within the range of 

doses used in other studies (10
2 

– 10
6
 PFUs mL

-1
; Bollinger et al. 1999, Brunner et al. 2005, 

Pearman and Garner 2005) and environmentally relevant (Rojas et al. 2005, Schock et al. 2008).  

Given that some species in my study developed rapidly (e.g., S. holbrookii), I used a 3-day 

exposure in an attempt to target the intended developmental stage rather than a subsequent stage.   

For S. holbrookii and L. sylvaticus, exposure during the embryo stage was less than 3 days 

because the embryos hatched prior to the end of the 3-day exposure.  After 3 days, individuals 

were removed from the containers, rinsed with sterile water, and placed into a new container 

with 500-mL of fresh aged tap water.  For the remainder of the experiment, water was changed 

every 3 days to maintain water quality.   

After each water change, individuals in the larval and metamorph experiments were fed 

ground TetraMin® at a daily rate of 8% body weight (Relyea 2002).  I weighed a group of 10 

non-experimental individuals housed under identical conditions to calculate food rations, 

because weighing individuals in the experimental units would have increased the chance of 

contamination.  The non-experimental individuals were weighed every 3 days prior to the water 

changes to estimate average mass and calculate the food ration for the treatment animals.  

Individuals in embryo and hatchling experiments were fed if they reached Gosner stage 25 prior 

to the end of the experiment, which is when yolk reserves are exhausted and jaw development is 

complete in most species (Thibaudeau and Altig 1999).  After the initial exposure and water 

change, platforms were placed in the metamorph experimental units to allow individuals to crawl 

out of the water following gill resportion.  Once individuals in the metamorph stage experiments 
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began tail resorption, water depth was slowly reduced until a minimal amount of water remained 

to provide moisture for the individual and TetraMin® was no longer added.  Water was lowered 

because pilot studies revealed mortality of metamorphs associated with drowning upon tail 

resorption, even with floating platforms present.  These individuals were fed 10 seed weevils 

(Callosobruchus sp.) every 3 days for the remainder of the experiment. 

The experimental units were monitored 3 times daily for mortality and signs of disease.  I 

noted any gross signs of ranaviral infections including loss of pigmentation, epithelial sloughing, 

edema, hemorrhaging, skin lesions, and erythema (Tweedell and Granoff 1968, Wolf et al. 1968, 

Gantress et al. 2003, Docherty et al. 2003).  I also noted if individuals exhibited lethargy, 

inappetance, or loss of righting reflex (Jancovich et al. 1997, Bollinger et al. 1999, Docherty et al 

2003).  If an individual died during an experiment, Gosner stage was recorded and mass 

measured.  For larvae and metamorphs, individuals were necropsied using sterilized forceps and 

scissors.  Because the kidneys and liver are known sites of ranavirus infection (Gray et al. 2009), 

I removed sections of these organs from each individual, placed the pooled sample in a 1.5-mL 

microcentrifuge tube, and froze at -80°C for molecular testing.  Embryos and hatchlings were 

rinsed with sterile water and frozen at -80˚C, because their small size prevented consistent 

necropsies.  After 14 days, all live individuals were euthanized in benzocaine hydrochloride (1 g 

L
-1

) and the identical necropsy procedures followed.  I set 14 days as the experiment duration 

because previous research has shown this is sufficient duration to observe disease from ranavirus 

infection with a 3-day exposure (Hoverman et al. 2010).  All animal husbandry and euthanasia 

procedures followed an approved University of Tennessee IACUC protocol (#1816).  Collection 

of egg masses was approved by the Tennessee Wildlife Resources Agency (Scientific Collection 

Permit #1990). 
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Molecular Analyses 

 All experimental units exposed to ranavirus were tested using qPCR to estimate infection 

rate and viral load.  Three random controls, as well as any controls that died, were also tested to 

confirm the absence of ranavirus; all controls were negative.  Genomic DNA (gDNA) was 

extracted from a homogenate of the kidney and liver for tadpoles and metamorphs and from 

entire embryos (including vitelline membrane and mucoidal capsules) and hatchlings using a 

DNeasy Blood and Tissue Kit (Qiagen Inc., Valencia, CA).  I used the Qubit
TM

 fluorometer and 

the Quant-iT
TM

 dsDNA BR Assay Kit to quantify the concentration of genomic DNA in each 

sample (Invitrogen Corp., Carlsbad, CA, USA), which was used to quantify viral load using 

qPCR (Yuan et al. 2006).  I used the TaqMan qPCR assay for quantification of viral load in the 

samples.  The qPCR amplified a 70-bp region of the ranavirus major capsid protein.  For each 

sample, I combined 12.5 μL of TaqMan Universal PCR Master Mix (Applied Biosystems, Foster 

City, California, USA), 1.5 µL of each primer (rtMCP-F [5’ – ACA CCA CCG CCC AAA AGT 

AC – 3’] and rtMCP-R [5’ – CCG TTC ATG ATG CGG ATA ATG – 3’]), and 1.5 μL of 

rtMCP-probe (5’-CCT CAT CGT TCT GGC CAT CAA CCA-3’).  I added 0.25 μg of gDNA 

from each sample to standardize the total amount of gDNA added to the tubes.  Because the 

volume containing this amount of gDNA varied depending on the gDNA concentration of the 

sample, I used the values from the fluorometer to calculate how much of the sample to add.  I 

then added DNA grade water to the sample to bring the total volume to 30 μL.  A SmartCycler® 

(Cepheid, Sunnyvale, California) thermal cycler was used for the qPCR.  In each run of the 

qPCR, I included 4 controls, which were a ranavirus-negative tadpole sample, a negative DNA 

grade water sample, a ranavirus-positive tadpole sample, and a cultured virus sample.  For each 

sample, I recorded the cycle number at which the sample crossed the fluorescent threshold level, 
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which was set at 30 (i.e., CT value).  I used a standard curve obtained from a qPCR conducted 

with a concentration gradient of ranavirus and the CT value of each sample to calculate viral 

load. 

Data Analyses 

 The response variables for each experiment included mortality rate, infection rate, and 

viral load.  For several of the experiments, there was mortality observed in the unexposed 

treatments.  Given that these unexposed individuals tested negative for ranavirus infection, the 

mortality can be attributed to natural background mortality rather than contamination.  In order 

to account for this mortality and facilitate unbiased comparisons of mortality rates among species 

and developmental stages, I divided the mortality rate of the virus-exposed treatment by the 

mortality rate of the unexposed treatment.  Due to this standardization, I did not compare control 

and virus mortality rates.   

Differences in infection and mortality rates were tested among species and developmental 

stages using logistic analysis (Stokes et al. 1999, Zar 1999).  If the overall Wald’s chi-square test 

was significant, I used binomial tests for 2 proportions that were Bonferroni corrected to test for 

pairwise differences (Zar 1999).  I estimated the likelihood of infection and mortality for each 

treatment in comparison with the treatment having the lowest rate by calculating odds-ratio 

statistics (Stokes et al. 1999).  If species and developmental stage effects interacted, I separated 

the analysis by species and performed a chi-square test for differences in mortality and infection 

among stages.  I used an analysis-of-variance (ANOVA) to test for differences in viral load 

among species.  Only individuals that were infected were included in the viral load analyses.  

Viral load was natural log transformed prior to analysis, because these data did not follow a 

normal distribution.  If the ANOVA was significant, Tukey’s Honestly Significant Difference 
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test was used for pairwise comparisons of viral load among species (Zar 1999).  Lastly, I was 

interested in whether mortality rates were correlated with infection rates.  Thus, mortality rates 

were regressed against infection rates for each experimental trial using simple linear regression 

(Zar 1999).  All tests were performed at α = 0.05 using the SAS® system (Littell et al. 1991, 

Stokes et al. 1999). 

RESULTS 

Across all species, mortality and infection rates for the hatchling, larval and metamorph 

stages were significantly greater than the embryo stage (
2

3 > 43.3, P < 0.001; Figure A.4).  In 

the hatchling, larval, and metamorph stages, the odds of mortality were 3X, 4X, and 5X greater, 

respectively, when exposed to ranavirus than the embryo stage.  Across all developmental stages, 

mortality and infection rates were greatest for L. sylvaticus and S. holbrookii, and were lowest 

for P. feriarum and A. americanus (
2

6 > 40.67, P < 0.001; Figure A.4).  Intermediate mortality 

and infection occurred for L. clamitans, L. pipiens, and H. chrysoscelis (Figure A.4).  Ranavirus 

exposed L. sylvaticus and S. holbrookii had 150X and 119X greater odds of mortality, 

respectively, than P. feriarum.  There was a strong positive linear relationship between infection 

and mortality rates across species and developmental stages (F1,20 = 74.5, P < 0.001, R
2 

= 0.79; 

Figure A.5).  Also, viral load tended to be greatest for species with high mortality rates (F6,24 = 

5.7, P < 0.001; Figure A.6).  

Species and developmental stage effects interacted for mortality and infection rates (
2

18 

= 128.9, P < 0.001); thus, logistic analyses were performed separately for each species.  For all 

species except L. sylvaticus, mortality and infection rates differed among developmental stages 

(
2

3 > 12.6, P < 0.006; Figure A.7).  For L. sylvaticus, infection rates were high (>82%) and did 

not differ among stages (
2

3 = 6.3, P = 0.09).  Mortality and infection rates tended to be greatest 
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during the metamorph stage for all Lithobates species.  Mortality also was greatest during the 

metamorph stage for A. americanus, but these individuals were not infected with ranavirus.  

Mortality and infection rates tended to be greatest during the larval stage for the two hylid 

species: P. feriarum and H. chrysoscelis.  The greatest infection and mortality rates for S. 

holbrookii occurred during the embryo, hatchling and larval stages, and were lowest during 

metamorphosis (Figure A.7).           

DISCUSSION 

Embryos that were contained within eggs were the least susceptible stage across species 

when exposed to ranavirus in a water bath.  Inasmuch as embryos do not have fully developed 

organs such as the mesonephros, liver, spleen, or thymus and they do not produce T and B 

lymphocytes or major histocompatability complex (Du Pasquier et al. 1989, Zettergren 2000), I 

expected that this stage would experience greater mortality than later developmental stages.  

Tweedell and Granoff (1968) demonstrated that L. pipiens embryos experienced high mortality 

(97 – 100%) within 3 – 12 days following injection with ranavirus.  Thus, the vitelline membrane 

encasing the developing embryo or the mucopolysaccharide/mucoprotein capsules coating the 

surface of the egg afford protection against ranavirus infection.  The mechanisms that contribute 

to this protection are unknown but may include structural barriers or anti-viral properties of the 

egg capsules or membrane.  Amphibian egg membranes are known to be mechanical barriers to 

insecticides (Berrill et al. 1998, Pauli et al. 1999), which may inhibit intracellular movement of 

ranavirus virions.  The vitelline membrane also may lack cell receptors necessary for virions to 

enter cells via receptor-mediated endocytosis (Chinchar 2002, Chinchar and Hyatt 2008), thereby 

thwarting infection.  Finally, the mucopolysaccharide and mucoprotein capsules surrounding the 

embryo and forming the jelly substrate of fertilized egg masses may have antiviral properties.  
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Han et al. (2008) isolated a serine proteinase inhibitor from Rana grahami eggs that inhibited the 

growth of the bacterium Bacillus subtilis.  No studies have tested whether this proteinase 

inhibitor exists in eggs of other amphibian species or whether it can inactivate ranavirus.  

Infection occurred in the embryo experiments for S. holbrookii and L. sylvaticus; however, 

embryos of these species hatched prior to the end of the 3-day virus challenge, hence exposing 

the hatchling to virions.  No infection occurred during the embryo experiments in species that 

hatched after the virus challenge and first water change.  Thus, it appears that eggs protect their 

developing embryos from ranavirus infection, but more research is needed.   

I documented high mortality during metamorphosis for all species of Lithobates tested, 

which is frequently the stage associated with anuran die-offs in the wild (Green and Converse 

2005, Greer et al. 2005).  Cullen et al. (1995) and Cullen and Owens (2002) reported high 

susceptibility of several species of recently metamorphosed anurans compared to larvae or adults 

when exposed to ranavirus.  High infection and mortality during metamorphosis may be 

associated with decreased immune function from endogenous production of corticosteroids and 

lymphocyte apoptosis (Flajnik et al. 1987; Rollins-Smith 1998, 2001), which has been 

demonstrated in Xenopus laevis (Rollins-Smith et al. 1993, Grant et al. 1998).  All other species 

that I tested had low mortality and infection during metamorphosis.  If immune function of these 

species resembled X. laevis then these species should have experienced high susceptibility as 

well to ranavirus during metamorphosis (Flajnik et al. 1987, Rollins-Smith 1998).  Although I 

did not measure specific products of immune function (e.g., antibody production, leukocyte 

profiles; Rollins-Smith 2001, Davis et al. 2008), it appears that the model of X. laevis immunity 

during development may be inconsistent among anuran species based on my indices of 

susceptibility to ranavirus.   
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The greatest infection and mortality occurred during the hatchling stage for S. holbrookii, 

which was a different trend among the species that I tested.  Infection and mortality rates 

decreased during the larval and metamorph stages, suggesting that immune function increased 

through development for this species.  Compromised immunity during early development may 

be a consequence of physiological trade-offs associated with rapid development in this species.  

Spadefoots are among the fastest developing anuran species due to their association with 

ephemeral breeding sites (Newman 1992, Denver 1997).  Zettergren (2000) reported cells 

synthesizing immunoglobulins (Ig) during embryogenesis and B lymphocytes circulating in pre-

metamorphic L. pipiens at the onset of feeding.  Leukocyte mobilization and anti-FV3 IgY 

antibody production have been reported as immune responses to ranavirus infection in X. laevis 

(Maniero et al. 2006, Morales et al. 2010).  I hypothesize that development of these components 

of the amphibian immune system is delayed in S. holbrookii due to rapid growth during the 

embryo and hatchling stages. 

Among species, L. sylvaticus was the most susceptible, with infection and mortality rates 

exceeding 80% in the hatchling, larval, and metamorph stages.  High infection and mortality 

rates with this species have been reported in the wild across its geographic range in North 

America (e.g., Greer et al. 2005, Harp and Petranka 2006, Gahl and Calhoun 2010, Schock et al. 

2010).  Ongoing research at the University of Tennessee tested the relative susceptibility of 

tadpoles for 14 anuran and 5 urodelean species and found that L. sylvaticus was the most 

susceptible to ranavirus exposure (J. Hoverman and N. Haislip, unpublished data).  Hoverman 

(unpublished data) found that L. sylvaticus died as quickly as 3 days following exposure to 

ranavirus, providing circumstantial evidence of poor innate immune response.  Cotter et al. 

(2008) reported that poor lymphocyte production in the spleen was a mechanism driving high 



 

 38 

susceptibility of larval Ambystoma mexicanum to the ranavirus, Ambysoma tigrinum virus.  

Significant increases in total leukocytes and natural killer cells are detected after 1 and 3 days 

post-infection with ranavirus, respectively, in X. laevis (Morales et al. 2010).  Antibody 

production in pre-metamorphic L. catesbeianus and X. laevis has been reported (Haimovich and 

Du Pasquier 1973, Hsu and Du Pasquier 1984), and consequently these species are known to be 

relatively resistant to ranavirus infection (Robert et al. 2007; J. Hoverman, unpublished data).  

Thus, slow or minimal innate and adaptive immune response to ranavirus infection may be 

mechanisms contributing to high infection and mortality rates in ranavirus-exposed L. sylvaticus.   

My results provide additional evidence that differences in susceptibility to ranavirus 

infection and disease exist among anuran species (Schock et al. 2008; J. Hoverman, unpublished 

data).  In my study, species in Ranidae and Scaphiopodidae were most susceptible; very little 

mortality was observed for species in Hylidae and Bufonidae.  It is possible that these differences 

in susceptibility are related to differences in life history and evolutionary characteristics of the 

hosts.  Given that ranavirus transmission is facilitated by water, species inhabiting more 

permanent breeding sites may have evolved greater resistance to the virus due to high contact 

rates.  Hoverman (unpublished data) provided some evidence for this trend, with L. catesbeianus 

exhibiting low susceptibility.  However, in my study, 2 ranid species that are known to breed in 

permanent wetlands (L. pipiens and L. clamitans; Lang et al. 2009) had relatively high mortality 

(>40%).  The very high mortality of L. sylvaticus and S. holbrookii supports the co-evolution 

hypothesis, but A. americanus and P. feriarum also breed in ephemeral habitats yet had low 

mortality rates in my study.  Lastly, H. chrysoscelis experienced moderate mortality, which is 

reasonable considering this species breeds in ephemeral and permanent wetlands.  Thus, the 

hypothesis that susceptibility is related to life history is partially supported.   
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To understand the role of host-virus co-evolution, comparing phylogenetic drivers of host 

susceptibility may provide insight (Storfer et al. 2007).  For example, species in Hylidae and 

Bufonidae are considered more recently evolved than Ranidae or Scaphiopodidae (Frost et al. 

2006), thus innate and adaptive immune responses for larvae of the former anuran families may 

be more advanced.  Indeed, the mechanisms driving species susceptibility to ranavirus should 

have immunogenetic origins and need to be investigated (Cotter et al. 2008).   

I found that viral load was greatest for species that had the highest mortality rates.  Cotter 

et al. (2008) reported an increase in viral load as ranavirus infection and disease progressed in 

pre-metamorphic A. mexicanum.  Green et al. (2009) cautioned the use of viral load estimates 

using qPCR to infer ranaviral disease.  Cotter et al. (2008) and my study provide some evidence 

that viral load and ranaviral disease may be correlated, which has been shown with other 

iridoviruses (Inendino et al. 2005).  I also found a strong correlation (R
2
 = 0.79, P < 0.001) 

between ranavirus infection and mortality rates, which has been documented in other lab studies 

(Brunner et al. 2005; J. Hoverman, unpublished data).  Field surveillance of ranavirus prevalence 

also indicates a strong correlation with mortality given that nearly all individuals that experience 

mortality at die-off sites are infected (M. Gray and D. Miller, unpublished data).  Thus, 

measuring infection rates may provide a reasonable estimate of the likelihood of mortality in the 

field or lab.  Conversely, measuring mortality rates in designed ranavirus-challenge experiments 

should provide reasonable estimates of infection rates and disease, which are costly to quantify 

(Green et al. 2009).           

 

CONCLUSIONS 
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 My results indicate that susceptibility to ranavirus differs among developmental stages 

and species.  High mortality rates were documented in all developmental stages except for the 

embryo stage.  The classic model of amphibian immune function during development, based on 

X. laevis, suggests that immune function increases through development then drops at 

metamorphosis (Rollins-Smith 2001), thus mortality associated with ranavirus infection should 

be lowest during the larval (i.e., tadpole) stages.  This trend did not occur for any of the anuran 

species that I tested, which may indicate that immune responses of North American anurans may 

differ from those of X. laevis. 

My study is the first to report mortality of anuran hatchlings by ranavirus, which was 

greatest for S. holbrookii.  The possibility for hatchling mortality from ranaviruses raises a 

significant conservation concern considering that detecting die-offs of hatchlings is extremely 

difficult in the wild.  Differential susceptibility among developmental stages also indicates that 

studies that focus on one stage (e.g., Schock et al. 2008) may provide limited insight into species 

susceptibility.  If testing only one stage is feasible, I recommend using the larval stage because 

mortality and infection rates were either greater or similar to hatchling and metamorph stages for 

most species.   

If exposure to ranavirus during one developmental stage does not elicit an adaptive 

immune response that creates antibody memory (Hemingway et al. 2009), the probability of 

survival from embryo through metamorphosis is the product of the survival rate for each stage as 

per the Law of Independence (Allen 2006).  If this is true, the probability of survival when 

exposed to ranavirus during all developmental stages equals 12% across all species tested in my 

study.  Species of greatest risk include L. sylvaticus = 0%, S. holbrookii = 0.2%, L. clamitans = 

3.6%, and L. pipiens = 4.6% survival.  It is important to note that the FV3-like ranavirus that I 
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used in my study (Miller et al. 2007) is more virulent than FV3 (J. Hoverman, unpublished data).  

Nonetheless, these results emphasize the threat of ranavirus epizootics in some amphibian 

communities.  Amphibian communities composed of highly susceptible species may be at 

greatest risk, considering these species may amplify free-floating viral concentrations at breeding 

sites through accelerated virion shedding.  Thus, I propose that highly susceptible species instead 

of highly susceptible individuals may initiate superspreading events and ranavirus epizootics in 

an amphibian community (cf. Lloyd-Smith et al. 2005).               

 More research is needed investigating the role of immune function in regulating 

differences in susceptibility to ranavirus among anuran species.  To date, only a handful of 

studies have quantified immune responses to ranavirus in pre-metamorphic amphibians (Gantress 

et al. 2003, Cotter et al. 2008).  Identifying commonalities among immunogenetic, evolutionary 

and life history traits of susceptible species will improve our understanding of host-pathogen 

interactions (Richmond et al. 2009), and help facilitate identification of amphibian communities 

at greatest risk of ranavirus epizootics.  To this end, I recommend that additional amphibian 

species and ranavirus strains be tested for relative susceptibility.  Various multivariate techniques 

exist (e.g., canonical correspondence analysis, ter Braak 1986) that can elucidate patterns 

between host characteristics and indices of susceptibility.  I also encourage studies that challenge 

amphibian species with ranavirus at each stage of development and follow individual survival 

through metamorphosis to test my hypothesis of stage independence to ranavirus susceptibility 

and my overall survival predictions.  This knowledge is fundamental to developing stage-

structured disease models that predict epizootic outcomes (Allen 2006).       
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Table A.1. Results of repeated-measures ANOVAs testing the effects of predator cue on the behavioral responses of 4 tadpole species 

during 8 consecutive days prior to exposure to ranavirus. 

Behavior
1 

Effects
2 

Hyla chrysoscelis Pseudacris feriarum Lithobates sylvaticus Lithobates clamitans 

df
 

F
3 

P df F P df F P df F P 

Activity Predator 2,27 79.1 <0.001 2,27 64.3 <0.001 2,27 61.2 <0.001 2,27 16.7 <0.001 

 Time 7,21 73.0 <0.001 7,21 77.1 <0.001 7,21 156.7 <0.001 7,21 144.1 <0.001 

 Time*Predator 14,42 4.3 <0.001 14,42 4.9 <0.001 14,42 1.3 0.265 14,42 2.8 0.005 

Responsiveness Predator 2,27 1.3 0.279 2,27 0.4 0.679 2,27 3.0 0.070 2,27 4.5 0.020 

 Time 7,21 8.1 <0.001 7,21 14.8 <0.001 7,21 2.2 0.080 7,21 2.5 0.053 

 Time*Predator 14,42 0.5 0.891 14,42 1.1 0.353 14,42 1.5 0.144 14,42 1.6 0.110 

               
1
Activity was the mean percent of individuals that were moving in the water column or displaying movement of their tail; 

responsiveness was the mean percent of individuals that responded to the external stimulus of tapping on the holding container. 

2
Predator = no exposure and exposure to either Anax or Belostoma cues; time = number of days from the start of the 

experiment.   

3
F-test from the repeated-measures analysis-of-variance.
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Table A.2. Results of repeated-measures ANOVAs testing the effects of predator cue and ranavirus exposure on the behavioral 

responses of 4 tadpole species over time. 

Behavior
1 

Main 

Effect 

Divisions
2 

Effects
3 

Hyla chrysoscelis Pseudacris feriarum Lithobates sylvaticus
5 

Lithobates clamitans 

df
4 

F P df F P df F P df F P 

Activity Between 

Subjects 

Predator 2,24 118.3 <0.001 2,24 89.2 <0.001 2,24 51.2 <0.001 2,24 16.6 <0.001 

 Virus 1,24 4.9 0.037 1,24 1.7 0.204 1,24 0.1 0.767 1,24 5.7 0.026 

 Predator*Virus 2,24 0.1 0.886 2,24 0.6 0.555 2,24 0.2 0.810 2,24 0.3 0.740 

                Within 

Subjects 

Time 15,10 38.7 <0.001 17,8 14.7 <0.001 7,18 17.9 <0.001 9,16 23.1 <0.001 

 Time*Predator 30,20 2.1 0.048 34,16 4.1 0.002 14,36 1.8 0.070 18,32 1.3 0.277 

 Time*Virus 15,10 2.5 0.071 17,8 0.8 0.664 7,18 2.8 0.039 9,16 1.5 0.218 

 Time*Predator*Virus 30,20 1.4 0.237 34,16 1.3 0.314 14,36 2.8 0.007 18,32 1.2 0.338 

               Responsiveness Between 

Subjects 

Predator 2,24 0.1 0.898 2,24 0.3 0.734 2,24 NT NT 2,24 1.0 0.379 

 Virus 1,24 5.7 0.025 1,24 6.9 0.015 1,24 1.0 0.325 1,24 0.4 0.516 

 Predator*Virus 2,24 1.2 0.323 2,24 1.5 0.244 2,24 0.7 0.521 2,24 2.7 0.087 

                Within 

Subjects 

Time 15,10 2.5 0.073 17,8 4.2 0.022 7,18 1.74 0.162 9,16 2.5 0.056 

 Time*Predator 30,20 0.6 0.878 34,16 1.5 0.189 14,36 0.3 0.996 18,32 1.6 0.118 

 Time*Virus 15,10 0.7 0.734 17,8 0.9 0.605 7,18 2.0 0.119 9,16 1.3 0.331 

 Time*Predator*Virus 30,20 0.6 0.932 34,16 1.9 0.095 14,36 0.7 0.774 18,32 0.7 0.827 
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Table A.2 (continued). 

___________________________________________________________________________________________________________ 

1
Activity was the mean percent of individuals that were moving in the water column or displaying movement of their tail; 

responsiveness was the mean percent of individuals that responded to the external stimulus of tapping on the holding container. 

2
Between- and within-subject tests for the repeated-measures analysis-of-variance (ANOVA). 

3
Predator = no exposure and exposure to either Anax or Belostoma cues; virus = no exposure and exposure to ranavirus; time = 

number of days from the start of virus exposure.   

4
Degrees of freedom differ among species for some effects because experimental units were removed from the analysis due to 

mortality. 

5
NT = no test performed because all individuals responded the same to all three predator treatments, hence no variation existed 

for ANOVA. 

 



 

 66 

Table A.3. Results of analyses testing the effects of predator cue and ranavirus exposure on the survival, growth, and viral load of 

tadpoles. 

Response Variable
1 

Effects
2
 Hyla chrysoscelis Pseudacris feriarum Lithobates sylvaticus

3, 4 
Lithobates clamitans 

  df 
2 

P  df 
2
 P df 

2
 P df 

2
 P 

Survival Predator 2 0.5 0.763 2 0.3 0.861  NT  2 0.6 0.745 

 Virus 1 17.9 <0.001 1 12.6 <0.001  NT  1 24.4 <0.001 

  df F P df F P df F P df F P 

Growth Predator 2,24 2.6 0.092 2,24 0.6 0.577 2,14 1.396 0.285 2,24 2.0 0.152 

 Virus 1,24 1.2 0.278 1,24 1.7 0.207  NT  1,24 12.1 0.002 

 Predator*virus 2,24 1.1 0.356 2,24 2.3 0.127  NT  2,24 2.3 0.119 

Viral load Predator 2,46 1.3 0.278 2,46 1.4 0.266  NT  2,52 0.7 0.522 

 
1
Survival was the mean number of individuals per treatment that survived to the end of the experiment; growth was the mean 

growth of each experimental unit; viral load was back calculated from the mean CT value of the qPCR then log transformed. 

2
Predator*virus effect was not included for survival because a Kruskal-Wallis test was used due to non-normal data; 

interaction of main effects cannot be tested using this non-parametric test.  Virus effect was not included for viral load, because all 

unexposed individual were negative for ranavirus.   

3
A one-way analysis-of-variance was conducted on growth because all virus-exposed individuals died. 

4
NT = no test performed, because all individuals in the virus-exposed treatment died. 
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Table A.4. Egg mass collection sites for all experiments. 

 

Scientific Name 

 

State 

 

County 

 

Location 

 

Lat - Long 

 

UTM 

# Egg 

masses 

Anaxyrus americanus PA Crawford Pymatuning State Park 
41°34'10"N, 

80°27'20"W 
17 545392E 

4602117N  

10 

Hyla chrysoscelis TN Knox Private landowner 
 36°01'30"N, 

 83°47'30"W 
17 248426E 

3990338N 

9 

Lithobates clamitans TN Union Chuck Swan WMA 
36°21'29"N, 

 83°54'49"W 

17 238539E 

4027616N  

7 

Lithobates pipiens PA Crawford Pymatuning State Park 
41°41'30"N, 

80°30'20"W 
17 541146E 

4615661N 

10 

Lithobates sylvaticus TN Knox Royal Blue WMA 
36

o
02’10"N, 

83
o
51’19"W 

17 242745E 

3991727N  

9 

Pseudacris feriarum TN Knox 
Seven Islands Wildlife 

Refuge 

 35°56'59"N, 

 83°41'41"W 

17 256940E 

3981756N 

20 

Scaphiopus holbrookii TN Union Chuck Swan WMA 
 36°21'29"N, 

 83°54'49"W 

17 238539E 

4027616N  

20 
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Figure Legends 

Figure A.1.  The effects of predator cues on the activity (A) and responsiveness (B) of Hyla 

chrysoscelis (HYCH), Pseudacris feriarum (PSFE), Lithobates sylvaticus (LISY), and L. 

clamitans (LICL) tadpoles prior to the addition of virus. Predator cue treatments are no-predator 

(NP), Belostoma (B), and Anax (A).  Data (least-squares means + 1 SE) were averaged across 

time. 

 

Figure A.2.  The effects of predator cues and virus addition on the activity (A) and 

responsiveness (B) of Hyla chrysoscelis (HYCH), Pseudacris feriarum (PSFE), Lithobates 

sylvaticus (LISY), and L.  clamitans (LICL) tadpoles.  Predator cue treatments are no predator 

(NP), Belostoma (B), and Anax (A).  Open circles represent the no-virus treatment and closed 

circles represent the virus treatment.  Data (least-squares means + 1 SE) were averaged across 

time. 

 

Figure A.3.  The effects of predator cues and virus addition on the survival (A) and growth (B) of 

Hyla chrysoscelis (HYCH), Pseudacris feriarum (PSFE), Lithobates sylvaticus (LISY), and L.  

clamitans (LICL) tadpoles.  Predator cue treatments are no predator (NP), Belostoma (B), and 

Anax (A).  Open circles represent the no-virus treatment and closed circles represent the virus 

treatment.  Data (least-squares means + 1 SE) were averaged across time.  Given that all L. 

sylvaticus tadpoles exposed to the virus died, I only tested for differences in growth among 

predators for the no-virus treatment. 
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Figure A.4. Percent mortality and infection averaged across species for each developmental stage 

(A) and averaged across developmental stage for each species (B).  Developmental stages are as 

follows embryo, hatchling (Hatch), larval, and metamorphosis (Meta). Species codes are as 

follows Pseudacris feriarum (PSFE), Anaxyrus americanus (ANAM), Hyla chrysoscelis 

(HYCH), Lithobates pipiens (LIPI), L. clamitans (LICL), Scaphiopus holbrookii (SCHO), and L. 

sylvaticus (LISY).  Similar shaded bars with unlike letters are different (P < 0.001) by logistic 

analysis; n = 80 and 140 per species and developmental stage, respectively.  

 

Figure A.5. Relationship of mortality and infection rates for 22 experimental trials testing the 

susceptibility of 7 North American anuran species to ranavirus among 4 developmental stages.  

 

Figure A.6. Mean viral load (log μg/ml) of individuals infected with ranavirus for Pseudacris 

feriarum (PSFE, n = 15), Anaxyrus americanus (ANAM, n = 10), Hyla chrysoscelis (HYCH, n = 

22), Lithobates pipiens (LIPI, n = 35), L. clamitans (LICL, n = 38), Scaphiopus holbrookii 

(SCHO, n = 52), and L. sylvaticus (LISY, n = 76).  Data are averaged across developmental 

stages.  Bars with unlike letters are different (P < 0.05) by Tukey’s HSD test.      

 

Figure A.7. Percent mortality and infection among embryo, hatchling, larval, and metamorphosis 

developmental stages for Lithobates sylvaticus (LISY, A), L. pipiens (LIPI, B), L. clamitans 

(LICL, C), Anaxyrus americanus (ANAM, D), Pseudacris feriarum (PSFE, E), Hyla 

chrysoscelis (HYCH, F), and Scaphiopus holbrookii (SCHO, G).  Similar shaded bars with 

unlike letters are different (P < 0.006) by chi-square test of homogeneity; n = 20 per 

developmental stage for each species.  
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Figure A.1 
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Figure A.2 

 

 



 

 72 

 

Figure A.3 
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Figure A.4 
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Figure A.5 

 

 

 

Figure A.6 
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Figure A.7 
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INTERACTIONS OF TIME WITH PREDATOR AND VIRUS TREATMENTS 
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Prior to ranavirus exposure, predator and time effects interacted for percent activity of 

Hyla chrysoscelis, Pseudacirs feriarum, and Lithobates clamitans (Table A.1).  The interaction 

for P. feriarum was driven by the variability in the Belostoma treatments as tadpole activity was 

similar to the Anax treatment during days 1, 2, 3, 7, and 8 (P ≥ 0.057), but significantly greater in 

the Belostoma treatment for days 4 – 6 (P ≤ 0.02, Figure B.1a).  Similarly, the interaction for H. 

chrysoscelis was driven by changes in the Belostoma treatment means as tadpole activity was 

similar to Anax treatments during days 2, 3, and 6 (P ≥ 0.08),  but were greater than Anax 

treatments for all other days ( P ≤ 0.04, Figure B.1b).  The interaction for L. clamitans was 

driven by no differences between the Belostoma and Anax at the beginning and end of the 

experiment (P ≥ 0.25), but during day 4 activity was significantly greater in the Belostoma 

treatment compared to the Anax treatment (P ≤ 0.001, Figure B.1c).   

After exposure to ranavirus, predator and time effects interacted for percent activity of 

Hyla chrysoscelis and Pseudacris feriarum (Table A.2).  Similar to the pre-exposure results, the 

interaction for P. feriarum was driven by variability in the activity levels of Belostoma 

treatments.  During days  5 and 10, tadpole activity in the Belostoma treatments was significantly 

greater than in the Anax treatments (P ≤ 0.02), but activity was similar between the predator 

treatments for the remaining days of the experiment (P ≥ 0.07, Figure B.2a).  For H. 

chrysoscelis, the interaction was driven by significantly greater activity in the Belostoma 

treatments on days 2, 3, and 11 compared to the Anax treatments (P ≤ 0.02); no differences were 

detected between predator treatments for the remaining days (P ≥ 0.11, Figure B.2b).  

There was a 3-way interaction with time, virus, and predator effects and a 2-way 

interaction between time and virus effects for percent activity of Lithobates sylvaticus (Table 

A.2), thus I separated the analyses by virus and predator treatments to identify the trends (Figure 
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B.3).  Generally, between days 3 and 7, within the no virus and virus treatments, both predator 

species were reducing activity levels when compared to the no predator treatments (P ≤ 0.10, 

Figure B.3). 
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Figure Legends 

Figure B.1.  Percent activity for Pseudacris feriarum (A), Hyla chrysoscelis (B), and Lithobates 

clamitans (C) during 8 consecutive days prior to ranavirus exposure.  Predator cues treatments 

were Anax (square), Belostoma (circle), and no predator (triangle).  There was a significant 

interaction (P < 0.005) between predator treatment and time. Data are least-squares means + 1 

SE  

 

Figure B.2.  Percent activity for Pseudacris feriarum (A) and Hyla chrysoscelis (B) during 18 

and 16 days post-exposure to ranavirus, respectively.  Predator cue treatments were Anax 

(square), Belostoma (circle), and no predator (triangle).  There was a significant interaction (P < 

0.05) between the predator treatment and time.   Data (least-squares means + 1 SE) were 

averaged across virus treatments  

 

Figure B.3.  Percent activity for Lithobates sylvaticus during 8 days post-exposure to ranavirus.  

Given the significant predator*virus*time interaction, percent activity is display for the predator 

treatments within each virus treatment over time. Predator cue treatments were Anax (square), 

Belostoma (circle), and no predator (triangle).  Data are least-squares means + 1 SE. 
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Figure B.1 
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Figure B.2 
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Figure B.3 
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