
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

5-2003

Providing Customized Real Time Traffic
Information Through the Internet: Implementation
Using GIS
Moinak Chatterjee
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Chatterjee, Moinak, "Providing Customized Real Time Traffic Information Through the Internet: Implementation Using GIS. "
Master's Thesis, University of Tennessee, 2003.
https://trace.tennessee.edu/utk_gradthes/1913

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Moinak Chatterjee entitled "Providing Customized Real
Time Traffic Information Through the Internet: Implementation Using GIS." I have examined the final
electronic copy of this thesis for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Master of Science, with a major in Geography.

Shih-Lung Shaw, Major Professor

We have read this thesis and recommend its acceptance:

Bruce Ralston, Cheng Liu

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Moinak Chatterjee entitled "Providing
Customized Real Time Traffic Information Through the Internet: Implementation Using
GIS." I have examined the final electronic copy of this thesis for form and content and
recommend that it be accepted in partial fulfillment of the requirements for the degree of
Master of Science, with a major in Geography.

 Shih-Lung Shaw

Major Professor

We have read this thesis
and recommend its acceptance

Bruce Ralston

Cheng Liu

 Accepted for the Council:

 Anne Mayhew

 Vice Provost and Dean of Graduate Studies
 (Original signatures are on file with official student records)

PROVIDING CUSTOMIZED REAL TIME TRAFFIC INFORMATION
THROUGH THE INTERNET: IMPLEMENTATION USING GIS

A Thesis
Presented for the
Master of Science

Degree in Geography
The University of Tennessee, Knoxville

Moinak Chatterjee
May, 2003

 ii

ABSTRACT

For my Masters thesis I implement a web enabled GIS application

for presenting personalized real-time traffic condition information. Due to

the dynamic nature of traffic condition reporting, often large amounts of

data have to be reported. The process of introducing personalization to

traffic condition reporting hopes to reduce the amount of such data

transmitted to users.

The personalization of the presented traffic condition information

is achieved by storing geographic definitions of routes and travel zones

frequently traveled by the client. Since traffic update areas frequently

requested for daily travel routes are often geographically identical, stored

routes or zones can be used within a Geographic Information System

(GIS) environment to retrieve traffic volume information and visualize the

intended route before the start of the client's routine daily trip. This saves

both browsing time and data uploading for the client. The research

implements such tools in a server-side (most of the processing done on the

server) environment. The research concludes that existing GIS tools can

be enhanced to implement the concept of using customized traffic profiles

to transmit user specific traffic data.

 iii

 References…………………………………………………………………………............ 75

 Appendix …………………………………………………………………………………. 78

 Vita ………………………………………………………………………………………. 176

 TABLE OF CONTENTS

Chapter Page

1. Introduction and Problem Statement …………………………………… 1

2. Literature Review ………………………………………………………… 9
 Client /Server Model and Web Software Architectures ……………………

Client-Side and Server-Side Web GIS Applications ……………………….
15
23

3. Project Data Description and Research Plan …………………………….
Project Data ………………………………………………………………….
Formatting and Storing the Project Data ……………………………………
Establishing a Traffic Network in ArcInfo 8.1 ……………………………
Proposed Web Service Functionality ………………………………………

28
29
32
33
35

4. Creating and Using Customized User Profiles …………………………
Custom Areas of Interests and Potential Travel Paths …………………….
Implementation Basics – Setting Up the Necessary Internet GIS
Components……………………………………………………………….
Using ArcIMS to Provide Updated Traffic Information to the Client with
Areas of Interests…………………………………………………………
Using ArcIMS to Provide Updated Traffic Information to the Client with
Potential Paths ……………………………………………………………

37
38

42

49

57

5. Results and Further Research …………………………………………
Creating and Using Rectangular Travel Profiles (AOIs) ………………..
Creating and Using Potential Preferred Paths …………………………..
Suggested Trip Paths Using Shortest Path Potential Profiles …………..
Implementation Challenges …………………………………………….
Challenges Down the Road …………………………………………….

64
64
67
69
71
73

 iv

 LIST OF TABLES

Table Page

2.1 Transit planning website taxonomy (Source: Peng and Huang 2000)

11

2.2 Advantages and disadvantages of client-side and server-side GIS architectures
(Modified from Gifford, 1999) ………………………………………………...

25

4.1 Major websites that use user profiles (both client- and server-side)…………...

40

4.2 Major scripting languages used for research …………………………………..

48

 v

 LIST OF FIGURES

Figure Page

1.1 WSDOT traffic website …………………………………………………. 4

1.2 Research overview ……………………………………………………….

7

2.1 File server architecture …………………………………………………...

16

2.2 Two-tiered architecture …………………………………………………..

17

2.3 Three-tiered architecture with TP monitor ……………………………….

19

2.4 Three-tiered with application server (Modified from Schussel, 1995) …..

20

2.5 Outlined research methodologies using a server-side
implementation……………………………………………………………

27

3.1 Different ways traffic volume data can be stored ………………………...

28

3.2 Snapshots of the PDOT dataset with the Adams County street data …......

31

3.3 Basic model for storing user profile information ………………………...

34

3.4 Overall web application design .……………………….............................

36

4.1 AA Road watch traffic path updates by mobile/text messaging …………

39

4.2 Selection of a potential path based on map selection of start and end trip
locations ………………………………………………..............................

40

4.3 Selection of a preferred potential path based on selection of a set of
links from the start to the end location …………………………………...

42

4.4 Defining an AOI using a rectangle limiting update areas ………………..

43

4.5 GeoMedia WebMap architecture featuring the client-side ASP
 page and server-side processes …………………………………………..

45

4.6 Overall ArcIMS architecture showing the flow of data from the client’s
browser and the data server/sources though the application server ……...

46

4.7 The Adams County network for Southeast Pennsylvania ………………..

49

 vi

4.8 ArcIMS locks shapefile storing AOI shapes ………………………………….

50

4.9 Process for storing a new AOI for future use …………………………………

51

4.10 Flow diagram for the selection and extraction of traffic volume
data within AOI rectangles ……………………………………………………

53

4.11

Transmitting traffic volume data from the server back to the client using
XML …………………………………………………………………………..

55

4.12 XML file storing updated traffic links ………………………………………...

56

4.13 Methodology for creating preferred paths …………………………………….

58

4.14 Methodology for using preferred paths for traffic updates …………………… 60

4.15 Creating and storing shortest path profiles ……………………………………

62

4.16 Methodology for using shortest paths ………………………………………… 63

5.1 AOI profile rectangles drawn and stored for future use ………………………

65

5.2 Traffic volumes rendered within the AOI identified as ‘1’ in figure 5.1 ……..

66

5.3 Traffic update information using potential preferred paths …………………...

68

5.4 Shortest path route guidance …………………………………………………..

70

 1

CHAPTER 1

INTRODUCTION AND PROBLEM STATEMENT

Integrating information management with geographic visualization has enhanced

the power of Geographic Information Systems (GIS). This is evident in the world of

transportation. With the advent of increased traffic monitoring programs and user

information services, updated traffic information is conveyed to the public using location

based referencing and visualization tools provided by GIS. Even before various national

and statewide initiatives on real time traffic condition reporting were introduced, spatial

and network analysis through GIS contributed to various transportation studies and

planning initiatives. For example, various travel demand analysis projects utilized the

information management and visualization tools provided by GIS to aid in analysis,

organization and presentation of results.

By the 1980’s, traffic congestion problems started plaguing various metropolitan

areas like Washington DC and New York. Not only was it important to plan better and

effective roadways, but existing traffic had to be better managed. Central to this idea

were endeavors involving the dissemination of updated traffic information to the public.

Often, traffic congestion patterns would quickly increase and decrease by choices made

by drivers before and en route to travel. This prompted various nationwide and statewide

initiatives such as Intelligent Transportation Systems (ITS) and Advanced Traveler

Information Systems (ATIS). ITS attempted to increase the efficiency of the nation’s

highway systems through the use of advanced computing, real-time data sensor and

 2

communication technologies (Miller and Shaw, 2001). Programs like ATIS (operating

within the ITS framework occasionally) helped in collection, consolidation and

communication of traffic information (Gilroy, Puentes and Schuman, 1998).

Communication of collected traffic condition data to the public is an integral part of the

ATIS. More recently, GIS has played a significant part in this ATIS infrastructure.

Presenting, mapping and organizing rapidly changing traffic information for the general

public are a few such functionalities where GIS can continue to contribute to ATIS.

In tandem with ITS and ATIS progress, traffic data has also become more readily

available. This has been made possible with the advent of traffic monitoring stations,

video data, induction loops and fast data acquisition/reporting procedures. Real time

information about roadway accidents, potential delay locations and congestion spots can

be reported to the public (the public will be referred to as the client or user from now on)

almost as soon as they become available. With this increase in traffic data availability,

the client has been presented with different methods of real time traffic data reporting.

Traditionally, clients had to rely on radio or television updates. Trouble areas or

incidents were verbally or visually conveyed to the client either before or during travel.

The main problem with this method of information dissemination was the lack of

mapping and detail. Trouble spots could only be described without mapping these

locations to exact geographic entities such as interstates and street intersections. In

addition to this, detailed information like traffic volumes on streets (not just major

interstates and highways) could not be conveyed. This makes the information transmitted

by radio-television traffic broadcasts somewhat incomplete. For example, a verbal report

indicating an overturned trailer on the outer loop of the beltway at exit 31 told people to

 3

avoid the beltway around that area. Information on backlogs along connected streets and

the region was generally ignored. While event notification is helpful, more detailed

information about traffic volumes on streets would be welcome information critical to

avoiding lengthy waits. With the increase in popularity of GIS and location based

services, traffic conditions or any other type of attribute information can be associated to

geographic coordinates and transmitted to the client (What are Location Services?, 2000).

Also, real time descriptive traffic information along streets and highways could be tied to

relevant locations and stored for further analysis or presentation.

 With the growth of the Internet during the 1990’s, traffic condition reporting

reached the PC desktop world. Public services such as the ‘Trafficstation’ web service

(www.trafficstation.com) or ‘Smartraveler’ (www.smartraveler.com), to name a few,

provided updated maps every minute or even every thirty seconds indicating traffic

congestion areas and traffic volumes (usually classified into intervals). Public sector

Department of Transportation (DOT) initiatives like the Washington State Department of

Transportation (WSDOT) site provided up to the minute traffic volumes along major

highways (Figure 1.1). It was up to the user to pan or zoom into locations of interest. A

majority of web services also provided rated (specifying color coded traffic volumes from

heavy to light) traffic volumes along interstates and major highways. These color codes

were meant to designate areas that should be avoided by the user during an intended

travel trip. Reasons to avoid travel in these zones could be heavy traffic, construction or

accidents.

 4

 Figure 1.1 WSDOT traffic website

Usually entire metropolitan areas were mapped and the user had to navigate to intended

areas of travel through a series of time consuming clicks and substantial reloading time.

Seldom were traffic conditions on smaller highways and streets shown. To add to this,

daily trip planning tools were not available. For example, the client might have wanted

to know about the pros and cons of choosing an alternate route to work. The client might

also have wanted the shortest path from home to the nearest convenient store mapped out

before leaving home. This guidance would be even more useful if this shortest path

included streets where traffic volumes were the lowest. Many of the limitations

mentioned above, such as long browsing times and lack of pre trip planning tools (such as

route guidance) could be overcome by the use of customized or personalized traffic

services. In addition, availability of data permitting, real time traffic conditions along

 5

streets and not just major highways can be visualized with the use of such personalized

traffic services.

Customized real time traffic information services work on the premise that every

client has individual traffic information needs and requests. These services provide real

time traffic condition information, which is pertinent only to the user’s intended or

frequently observed travel paths. For example, a user from the suburbs frequently visits

downtown areas on the weekend. When he or she pre-defines the downtown city

destination areas and asks the web service to store this region for future use, a customized

travel profile is created. Before future downtown trips, the client can then initiate an

information retrieval from the web service, which gathers current traffic conditions

(usually traffic volumes) within the pre-defined region. This eliminates web browsing

that was needed to zoom into locations. Also, since the geographic scope of the request

for traffic information is reduced to a single region within the larger network, more

detailed traffic conditions and traffic volumes can be displayed and mapped.

Customized web services (not limited to real time traffic sites), have been a recent

addition to the ensemble of web services being provided by various Internet services.

Companies from Yahoo to QVC allow clients to customize the content of their web

pages. Clients can define the appearance of their web pages or complete online

transactions using shopping carts to store items for purchase. ‘My Yahoo’

(www.yahoo.com), for example, allows clients to define yellow page locations and other

information that affect the appearance of their ‘Yahoo’ home pages. Each client receives

a unique page tailored to his or her specific needs. The Weather Channel (TWC available

 6

at www.weather.com) and Monster (www.monster.com), for example, have followed

suit.

With customization, the concept of a ‘shopping cart’ for online transactions has

also become popular. Using shopping carts, the user can now interactively select several

items in one or more online sessions. Information about these items (like inventory

indices, prices, etc) is stored so that the final transaction can include these items.

However, these services have remained scarce in the world of real time traffic

information. While some Internet services, like Chicago’s transit service

(www.transitchicago.com) and ARITIS (http://www.airtis.com/airtislite.asp) do provide

the client with some online transaction capability and route storage options, the scope of

customization is limited. These sites merely provide basic trip planning or text based

traffic condition reporting. This research introduces the concept of increased customized

services to real time traffic reporting.

More specifically, the research develops a running application with a set of

Internet tools that allow the user to log in and create his or her travel profiles. These

could be general areas such as rectangles that represent frequently traveled network zone

or simply a definition of a frequently traveled path. Profiles can be drawn on the client’s

browser screen and stored for future use. Once stored, they can be used to quickly access

traffic volumes within streets and highways that constitute the client’s profile. Along

with implementing this process using the framework provided by some commercial GIS

packages (like Environmental Systems Research Institute, Inc), software development

challenges and future directions of research for similar applications are discussed. The

major objectives of the research are summarized in Figure 1.2.

 7

 Figure 1.2 Research overview

Recommended travel
path

Focused access to traffic network allows more
detailed and reporting of real time traffic conditions

Research application providing the use of user specific travel profiles

 8

As illustrated in the figure, this research hopes to develop Internet tools with the

following functions:

1) Assuming that real time traffic data is available in a GIS, expand the scope of current

real time traffic notification services by developing techniques that allow the user to

indicate frequently traveled paths on a traffic network. These frequently traveled paths

(referred to from now on as travel profiles) include a portion of the traffic network or

specific paths within the network that represent routine trips. Profiles can also be a pair

of start and end locations indicating an intended travel origin-destination pair.

2) Store these profiles so that they can be used to provide real time traffic volume

information along the traffic network portions that fall within these intended travel

locations or paths. This way, only necessary portions of the traffic network have to be

visualized to each client.

3) Provide some route guidance for the client by indicating a shortest path for profiles

that only contain start and stop locations (instead of a specific travel path or region). This

shortest path minimizes the travel cost along network links using current traffic volumes

as the cost parameter.

 9

 CHAPTER 2

LITERATURE REVIEW

 The following research builds an application that presents real time traffic

information to the public via the Internet. Peng and Huang (2000) conducted research in

the area of customized services for transportation applications. They discuss the

evolution of traffic information services with transit agencies. Before the 1990’s, transit

users were presented with schedules and had to decide their own paths and transfer

points. Often, customer service agents would suggest itinerary plans while keeping the

transit user updated. Peng and Huang argued that this form of transit planning was

tedious, time consuming, redundant and often erroneous.

By the mid and late 1990s, transit users had access to computer aided trip-

planning systems. These systems (for transit passengers) were facilitated even more with

the popularization of the Internet. Since then, Peng and Huang indicate that most

traditional customer-based services like schedules, routing and trip planning have been

enhanced or even replaced by web-based information. These services can dynamically

tie information together and create more comprehensible routing information compared

to what traditional brochure-based planning had provided. Along with these advances,

the visualization provided by web-based presentations captured the geography of the

proposed route. This contributed to the effectiveness of the traveler information being

provided.

 10

 There have been many public web sites dedicated to pre-trip transit and

automobile traveler information and planning. Peng and Huang (2000) have developed a

taxonomy based on the quality of service provided by the web based transit information

application shown in Table 2.1. They use the columns in the table to define the content

of information that has to be provided by the service. This refers to the utility level as far

as general web services are concerned. For example, a simple text search (level 1) is a

common and basic utility, while online transactions (level 4) constitute a level of utility

that is more sophisticated. Each row, on the other hand, defines the level of analysis

function each site provides. They show such things as how interactive a site is or

whether or not it provides customizations that allow transactions. For example, real-time

information for bus locations and delays provide rather advanced data content that the

user can access. For this reason, this type of functionality is classified as a D status. On

the other hand, general information like bus timings and static bus routes provide a

simpler level of information. These have been assigned an A status.

Peng and Huang (2000) develop and discuss the basic architecture involved in their

web based transit and traffic information systems. They use the following four

categories:

(1) User interface design: The typical user interface required that the user input origin,

destination and travel time data. They suggest that the designer could choose to provide

the user with an interface that provided text only interfaces or GIS based systems that

provided the user with interactive route guidance services, spatial query and search

functions.

 11

Table 2.1 Transit planning website taxonomy (Source: Peng and Huang 2000)

C
on

te
nt

 le
ve

l

W
eb

 b
ro

w
si

ng

(H
TM

L
an

d
pd

f)

Te
xt

 se
ar

ch
, s

ta
tic

gr

ap
hi

c
lin

ks

In
te

ra
ct

iv
e

m
ap

-
ba

se
d

se
ar

ch
,

qu
er

y
an

d
an

al
ys

is

(I
nt

er
ne

t G
IS

)

C
us

to
m

iz
at

io
n

an
d

in
fo

rm
at

io
n

de
liv

er
y

O
nl

in
e

tra
ns

ac
tio

n

Function
Level

 0 1 2 3 4

General
Informatio
n

A A0 A1 A3 A4 A5

Static
informatio
n (routes,
schedule
and fare)

B B0
 www.city.toront

o.on.ca/ttc/sched
ules/index.htm

 www.itsmarta.co
m

 www.suntran.co
m

B1
 www.wma

ta.com
without
the
itinerary
planning
system

B2
 www.tran

sitinfo.co
m

B3

B4
 ww

w.tr
ansi
tchi
cag
o.c
om

Trip
itinerary
planning

C C0 C1
 www.wma

ta.com
 www.rom

anse.com
 www.mta.

net
 www.theri

de.org

C2 C3 C4

Real time
informatio
n (bus
locations
and
delays)

D D0 D1 D2 D3 D4

 12

(2) Map server functions: The map server provided map rendering and address matching

capabilities.

(3) Data and DBMS: They used a relational database in Microsoft Access and the Open

Database Connectivity (ODBC).

(4) Network analysis component: They indicated that the network analysis component

was a key component to providing itinerary trip planning. Peng and Huang (2000) used a

path finding algorithm for transit usage that is different from the usual algorithms for

highway usage.

 Using this architecture, Peng and Huang (2000) also suggest developing

personalized traveler information systems. The concept of personalized traffic

information services involved having the system store user profiles of frequently traveled

routes. However, even now, very few if any websites on the Internet provide the

capability to store frequently traveled origins and destinations. These stored locations

can be useful so that when the user logs in, the trip origin and destination information is

recalled immediately. This profile storage capability can then be used to make a traffic

update procedure that covers a smaller geographic area, thereby decreasing the

information retrieval time. According to Peng and Huang’s (2000) typology, this would

be a D3 (both real time and customized travel updates) website. To investigate current

technology in the area of personalized services, I conducted an inspection of current real-

time traffic update sites available on the Internet. This inspection is summarized below

through a list of some of the websites reviewed:

• http://www.smartraveler.com/scripts/phlmap.asp?city=phl&cityname=Philadelphi

a

 13

Smartraveler provides users with route codes that identify major interstates and

highways. Using these route codes, clients can dial in and get quicker updates on those

coded highway segments. Since the user can use route codes that limit the area of

updates, Smartraveler does provide minimal customization. However, updated traffic

information along streets is not presented visually for the client. This fact, coupled with

the lack of interactive capability for the client, makes the Smartraveler site a minimal D3

service.

• http://www.airtis.com/airtislite.asp

AIRTIS provides a partial D3 service that allows the user to store a customer profile

defining a frequently traveled route. This updated information is emailed to the

registered customer at regular intervals. This service, however, does not allow for visual

updates in real time and route selection is not interactive.

• http://www.wsdot.wa.gov/PugetSoundTraffic/

The Washington State Department of Transportation (WSDOT) site gives updated traffic

conditions for the Puget Sound area in Washington State. This web based traffic

information service provides color-coded maps indicating traffic volumes on major

interstates such as the I-495 and I-5. Categories ranging from “stop and go” (heavy

congestion), to “wide open” (low congestion), are rendered on maps which are updated

frequently. This data is collected from WSDOT Traffic Management Systems (TMS)

and provides the updated information using data collected from loops (remote sensors

placed roadside). This website can be categorized as a D2 (real time information with

simple graphical browsing).

• http://frida.transport.civil.ntua.gr/map/route.html

 14

Travel time information is the focus of this website providing traffic condition updates

for the Athens, Greece. This University of Athens web application helps users decide on

where they can go in 15 minutes from any major street intersection. While this site does

not provide tools for customized travel information and detailed traffic updates, it does

allow the user to plan a possible course of action during a trip. Once again, this site does

not strictly meet the D3 functionalities as defined by Peng and Huang (2000). At best, it

can be classified as a mixture of C2 and D2 (providing trip planning and real time

information in a non-interactive setting).

 All of these websites provide useful information in different ways. Some give the

user detailed current traffic conditions that include accident and congestion information

but limit the data to only major highways. Other websites provide customized routes

with only a text delivery mechanism (for example, AIRTIS). Thus, the need of providing

content unique to each client’s needs, combined with detailed road traffic conditions,

opens the door for customized real time traffic applications. However, customization

relies heavily on the ability to store frequently traveled paths or regions and effectively

use this information to provide traffic updates in real time. This means that large

quantities of spatial and related attribute information have to be transmitted from the

client’s browser to the website hosting the data. This is where the overall design and

architecture of the resulting web application becomes critical.

The client/server architecture of web applications is very popular. For Internet

applications, any computer accessing the service through the Internet is referred to as the

client, while the host providing the services (i.e. updated traffic maps and volumes) is the

server. This generally constitutes a traditional client/server model (Webopedia, 2001).

 15

The client/server model has undergone many transitions and upgrades in recent years.

The following discusses the evolution of this model.

Client /Server Model and Web Software Architectures

 The client/server model was initially developed in the late 1980's (Schussel,

1995). It subsequently went through many transformations. The initial push to develop

the client/server model resulted from the gain in popularity of PC network computing.

Data had to be distributed from file servers to client computers. The first emergent

architecture was the file server architecture that was popular in the 1980s. With the file

server architecture, the client computers would simply download necessary files from the

server when needed. All applications would reside on each client machine and files

would be moved from network servers through a local area network connection. File

server systems were slow because large files had to be transferred from the server to

multiple clients on a regular basis. This could cause network congestion problems

(Schussel, 1995) due to overloading client resources. In time, software companies like

Xbase, DBase, and FoxPro came up with different file sharing systems. Figure 2.1

illustrates such a file sharing system. Necessary files were transferred upon request from

the file server to each client using a stackable hub for transmitting data. All the software

resided on the client (for example DBase+ etc), where all the processing was done. This

was the initial version of the client/server model.

As demands for faster data and file transfers increased, client/server architectures

evolved, and two-tiered client/server architectures emerged. Two-tiered client/server

architectures were different in that the network file server in file sharing systems was

 16

Figure 2.1 File server architecture (Modified from Schussel, 1995)

upgraded into a true database server (Schussel, 1995). This meant that the clients only

had to run interfaces that would launch SQL queries to the Database Management

Systems (DBMS) tier. Figure 2.2 depicts this process. Some of the processing was

actually done on the server, which housed the DBMS system. Once again, the stackable

hub shown in the figure connected the various clients to the DBMS system. Clients only

had to run queries that were used to fetch data from the DBMS using Structured Query

Language (SQL). Consequently, network traffic would also be significantly reduced

since data did not have to be downloaded on to the client in its entirety. Only queries and

their results were transmitted through the network. Simply put, two tiered architectures

allowed the client to download and store less data by simply fetching the required data

from the server. In time however, as the number of clients increased, the DBMS server

would retain threads for each client connected to the server even when no work was

being done (Schussel, 1995). This would cause overloading of the server when the

number of clients reached a critical capacity.

Schussel (1995) also mentions another drawback regarding two-tiered application

architectures. Moving two-tiered applications could be very cumbersome. Migrating

PC

PC

PC

Stackable
hub

Netware
file server

Fat clients
like Dbase+
on PC’s

 17

Figure 2.2 Two-tiered architecture (Modified from Schussel, 1995)

such applications from one server to another would require a regeneration of procedural

code that would make such a design disastrous when portability was critical. Dickman

(1995) also emphasizes this drawback about two-tiered approaches when he describes

them as “fat-client” (high software overheads and required bandwidth on the client)

systems and therefore a burden to the clients. However, Dickman (1995) also points out

that remote management programs like Lotus Notes can manage the database tier to

improve its behavior and thus overall application speed from server to client. Dickman

(1995) indicates that this still “is often an afterthought” (Pg. 2).

 To alleviate some of the problems about two-tiered architectures, a third middle

tier was added. This third tier would lie between the client and the DBMS server. Three-

tiered architectures moved all the business processing (executables and programs that run

client applications) from the client to the middle tier. The client sends its request to the

middle tier and then disengages. The request is scheduled and prioritized by the middle

tier, which then sends the request to the database server. Variations arose as to how the

PC

PC

PC

SQL
queries

Stackable
Hub

DBMS that
provides
shared access
to clients

Client PCs run
processing tasks
and launch SQL
queries to the
DBMS

 18

middle tier was set up. How much of the application was kept in the middle tier and

splitting the middle tier into further sub tiers were issues that had to be considered.

According to Schussel (1995), there are four major types of three-tiered architectures:

(1) Three-tiered with Transaction Processing monitor:

 The transaction-processing (TP) monitor was one of the oldest methods of

transaction processing that dated back to the mainframe era in the 1970's (Schussel,

1995). The client connected to the TP monitor instead of directly connecting to the

DBMS server as in two-tiered systems. The TP monitor then disengaged the client and

assumed the responsibility of completing the request from then on. This architecture

used scheduling algorithms like round robin to allocate computing resources in a priority

driven environment. Figure 2.3 shows how the DBMS on the server handled queries to

completion thus disengaging each client after the query was completed. However, this

practice in a three-tiered architecture did not last for long because the clients were still

running substantial applications and heavily taxing the network (Schussel, 1995).

According to Schussel (1995), TP monitor driven three-tiered architectures can still

handle more clients than two-tiered systems (approximately by about 100 to 200 users).

(2) Three-tiered with messaging server:

 The three-tiered architecture with a messaging server was similar to the TP

monitor architecture with one major difference. The messaging server handled only

intelligent messages. Each packet of data contained information about both logical and

physical network addresses. The messaging server was reduced to only performing

communication related functions like encryption and transportation of data packets

(Schussel, 1995). This change added more flexibility to the system, something that was

 19

Figure 2.3 Three-tiered architecture with TP monitor (Modified from Schussel, 1995)

missing in the earlier TP monitoring technology. Even with this flexibility, the need for a

thinner client eventually resulted in messaging server architectures giving way to

application server systems.

(3) Three-tiered with application server:

 The three-tiered architecture with application server operated on the premise of a

truly thin client. This meant that the PC or client computer was used merely for

presentation services, almost like the terminal of a mainframe computer. In concordance

with the X architecture developed in the 1980's by the Massachusetts Institute of

Technology (MIT), the entire business logic tier was placed on the application server.

The application server was responsible for executing the application, tasking and

monitoring the client requests along with interacting with the DBMS server. The three-

tiered application architecture described in Figure 2.4 shows the intermediate application

server tier that contains all the executables that process and transmit SQL queries to the

DBMS tier. In other words, a bulk of the processing now resided in the intermediate

PC

PC

PC

Stackable
Hub

DBMS that
provides
shared access
to clients

Client PCs run
processing tasks
and launch SQL
queries to the
DBMS

SQL queries
disengage
after being
launched

TP monitor
handles the
queries to
completion

 20

Figure 2.4 Three-tiered with application server (Modified from Schussel, 1995)

application server tier. There were many advantages to this form of three-tiering. These

include (Schussel, 1995):

 Less software on the client and alleviated worries about security

 The application was more scalable because the server could be a single processor, a

multiprocessing sequent environment, or even a massively parallel system

 One server was easier to maintain as opposed to hundreds of PC's

 Added flexibility because application portioning was easier. Code could be

reallocated to new servers after the system had been built

However, with application servers, queries had to be processed for each request. The

query and database objects could not last the lifetime of the application. This need for

PC

PC

PC

Stackable
Hub

DBMS that
provides
shared access
to clients

Client PCs run
interfaces that
merely send
requests to the
application
server

Application
server contains
executables
that send SQL
queries to the
DBMS server

 21

persistence spawned the design of Object Database Management Systems for the middle

tier.

(4) Three-tiered with Object Database Management System (ODBMS):

 In this architecture, the middle layer was replaced with an ODBMS. The

ODBMS retrieved the data from the DBMS and created persistent objects that lasted the

lifetime of the application. The ODBMS architecture led to the formulation of distributed

components within a three-tiered architecture. With the advent of Microsoft Object

Linking and Embedding (OLE) or Object Management Group’s (OMG's) Common

Object Request Broker Architecture (CORBA), primary application objects and database

objects could be copied and distributed on to various servers. This added distribution led

to an increase in fault tolerant computing since the failure of certain objects could be

compensated by using its copy in a different server (Schussel, 1995).

With the design and implementation of two-tiered and three-tiered software

architectures, the client/server model had evolved into a popular choice for the

deployment of various software solutions. Currently, however, Internet applications are

special cases (two-tiered or three-tiered) of the aforementioned client/server model.

While the origins of the Internet can be traced back to the 1960's, using the Internet for

distributing and interacting with Geographical Information Systems (GIS) did not

become widespread until the mid 1990's. This coincided with the privatization of the

Internet and vast user growth. Ever since, it has appeared that the advancement of Web

GIS products has occurred in tandem with advances in Internet technology.

One of the first Web GIS endeavors was developed by Steve Putz at the Xerox's

Palo Alto Research Center and put online in 1993 (Plewe, 1997). The site

 22

(http://map.web.parc.xerox.com/map) generated maps from public domain data using

non-commercial GIS programs on the server-side. This idea quickly caught on with other

web sites like Virtual Tourist (http://www.vtourist.com/web), NSDI (National Spatial

Data Infrastructure at http://www.fgdc.gov) and the online digital library of spatially

referenced information funded by the Alexandria project (http://alexandria.sdc.ucsb.edu).

All of these sites provided the user with basic interactive abilities like panning and

zooming, along with data downloads and pre-designed raster maps.

A change was initiated in 1995 with the development of live mapping engines

such as the Topologically Integrated Geographic Encoding and Referencing (TIGER)

mapping service at http://tiger.census.gov. ”Live” referred to the introduction of

interactive ability supplied to the user. The user could not only pan and zoom as with the

earlier Xerox applications, but he or she could turn layers on and off. They could alter

symbology by changing map rendering and download maps as images. In other words,

the user could now change the web content interactively.

 According to Plewe (2000, p.13), 1996 is the year “everyone joins the party”.

Coinciding with the coined “year of the Internet”, major GIS vendors such as Intergraph,

ESRI (Environmental Systems Research Institute) and Bently started publishing their

software and data online. Internet architectures matured with increased bandwidth

connections while heftier clients and servers developed from strides in the

microprocessor and related industries. It was getting easier for the public to access and

interact with spatial data. By the late 1990's, ESRI and Intergraph along with a few

others came up with commercial packages that allowed GIS applications running on the

server-side to be accessible interactively by client computers. This significantly

 23

minimized the amount of development for third party developers. Tasks such as load

balancing, maintenance of client-side states and web publishing were available through

commercial packages such as the ArcIMS by ESRI and the GeoMedia WebMap Internet

map control by Intergraph.

With this increased ease of web application deployment, development choices

started to become important. Applications could provide increased processing capability

to the client by loading the server with data processing capability. On the other hand,

GIS applications could also allow the client’s computer to do a chunk of the required

processing and analysis. This would free up the server for increased load handling.

Either one of these development paradigms could be chosen.

Client-Side and Server-Side Web GIS Applications

Gifford (1999) states that even though the Internet adheres to the client/server

model, it is based on a network that is usually slow and constrained by a large network

size and the need for widespread administration. Fortunately, he says, communication

protocols are written so that in case a path is "down" or congested, many other different

paths may be taken. Notwithstanding this flexibility, the quality and integrity of data

transmission and connection bandwidths remain the lynchpins in the success of any

client/server application. The amount of data and other information that has to be

transmitted between the client and server is critical.

Addressing these issues, Gifford (1999) groups GIS applications into server-side

and client-side applications. Server-side applications require the web browser to initiate

server requests while client-side applications usually have the user (or client) enhanced to

 24

perform and support GIS operations. Server-side applications load the server machine

with a majority of the application processing. For example, if the web service in question

returns all hospitals within a ten-mile radius for a given address, the client would simply

send the address to the server. The server then performs a query or computes a buffer to

extract the necessary information. After processing is complete, the hospital’s

information is sent back to the client for display. Most of the processing, such as data

query and analysis are done on the server, thus making this a server-side web application.

On the other hand, if the client were made to download necessary hospital data and

perform a buffer on the client machine, the application would take a decided turn towards

a client-side service. Table 2.2 lists some advantages and disadvantages of client-side

and server-side systems as outlined by Gifford (1999).

Both client-side and server-side applications have their advantages and disadvantages for

serving GIS functionality over the Internet. As expected, the requirements of the

application dictate the development mode.

For this research, the client/server model is important because the effective usage

of customized user profiles hinges on the ability to process concurrent web requests and

download updated traffic information to the client. This downloading can be kept at a

minimum by developing a client-side application that would entail downloading and

storing traffic data on the client’s computer (client-side approach). Another option is to

store profile information on the server and develop efficient processing methods that

would take advantage of the server’s computing recourses (server-side approach).

The literature review above established there is a need to introduce personalized

services into real-time traffic reporting through the Internet. It also revealed that there

 25

Table 2.2 Advantages and disadvantages of client-side and server-side GIS architectures
(Modified from Gifford, 1999).

 Client-side Server-side
Advantages Excellent on operations that

occur locally
 Less Internet traffic required
 Vector data can be more

readily used
 Modern interfaces available

 Adheres to all web and Internet
standards

 Can be accessed with a
standard web browser

 Platform issues are more or
less eliminated (with some
exceptions)

 Low bandwidth requirements
 Performance is predictable
 Centralizes ownership of data
 User support is minimal

Disadvantages Requires users to obtain
additional software

 Incompatibilities with client
browsers and platforms

 Initial download times can
be long.

 Low performance with large
databases

 Vector formats are less readily
supported

 Low graphics quality
 Primitive user interface
 Creates many requests
 Information re-transferred for

each request.

 26

are two major development choices (namely client-side or server-side methods). The

review also pointed out that the choice of appropriate development technology could

influence the amount of information that the client has to process on his or her machine.

Quite often, client computer capacities, like available memory or processing speeds can

be unpredictable. In addition to this, security reasons can prevent clients from running

certain plug-ins, like Java applets or DirectX by Microsoft. As described before, the

server-side development method minimizes the software that the client has to run or

download onto his or her machine. Hence, this development methodology becomes a

requirement to the major research objectives introduced in Chapter One.

Keeping this in mind, the research attempts to create server side tools for

customized real time traffic reporting. This requires the implementation of a

communication channel for frequent spatial data transfer between the client and the

server. This research will develop such a communication channel while keeping a

majority of processing tasks on the server. Figure 2.5 provides a summary of the

research deliverables based on the above discussion about personalized traffic

information procedures and server-side web deployment.

 27

Figure 2.5: Research deliverables and questions

 CHAPTER 3

Figure 2.5 Outlined research methodologies using a server-side implementation

Server Side Internet Based Tools

Develop GIS tools that allow the user to draw and store
frequently traveled paths on a travel network. The client-side
processing involved with this is kept relatively light

Use these profiles to provide updated traffic volume data
down to street level to each client through the Internet

Provide some pre-travel guidance as
shortest path from a start to end location

• Outline the methodology needed to implement the
above functionality as a proof of concept.

• Discuss challenges and issues spawned while
developing a predominantly server-side
communication channel to store geographic profiles
representing frequently traveled paths.

 28

CHAPTER 3

PROJECT DATA DESCRIPTION AND RESEARCH PLAN

This research presents traffic information in real-time through the utilization of

the Internet. A multitude of traffic data sources, such as traffic accident locations,

locations of special events or simply traffic volume data, can be displayed on real-time

traffic information sites, often referenced along traffic networks. Data for this type of

presentation would commonly be stored as point locations on a geographical database.

However, traffic congestion measures such as current traffic volumes can also be

represented along highway segments. The illustration in Figure 3.1 shows that the

labeled traffic volume numbers can be attributes of either links (Figure 3.1a) or assigned

to points (Figure 3.1b).

 (a) (b)

Figure 3.1 Different ways traffic volume data can be stored

Traffic volume data
assigned along links

Traffic volume
data assigned to
nodes

 29

Project Data

 Whether data is recorded along points or lines, it has to be collected from

highway networks. The following examples are the types of traffic data that are available

from various traffic monitoring programs:

(1) Real time traffic speeds and volumes: Often traffic speeds are recorded using loop

detectors. Loop detectors are digital devices controlled by microprocessors that are

usually placed across streets. These detectors send traffic volume, speed and density data

to a Traffic Management Center (TMC) to which the loops are wired. Loop detectors are

often used alongside ramp meters to regulate the flow of traffic on to interstates. Each

loop detector has a unique ID that is used to identify it on a GIS coverage representing

state highways. Another way of collecting traffic count data is to implement rubber

tubes. These tubes are placed alongside roads. The pressure exerted on them by passing

cars causes the mechanical counter to record the passage of each vehicle across the road

(Johnson City MPO, 2001). More recently, video surveillance has been used for traffic

count estimation.

(2) Accident and incident reports: Many state Departments of Transportation (DOTs)

offer updated accident and incident/construction reports. Traffic accidents can be

reported to emergency centers when a car equipped with an emergency notification

system transmits its location. In addition to this, Intelligent Traffic Systems (ITS)

programs offer sensor signals and video feed that can be used for acquiring real time

accident or construction information. Acquired accident information can be identified on

a geographic dataset such as a street network using a unique ID. Then, attribute data such

as delay times and construction site status reports can be reported in real time. The

 30

Tennessee Department of Transportation (TNDOT at

http://www.tdot.state.tn.us/information-office/const.htm) site reporting updated interstate

construction conditions provides a good example.

(3) Average Annual Daily Traffic (AADT): These data are compiled and reported each

year to provide estimations on the average number of vehicles using a roadway during a

year. Quite often, these various traffic-monitoring programs are used to collect and store

the traffic count data. The data are then adjusted for various errors and compiled to

provide traffic counts.

Mainly due to its availability, this research used the AADT traffic volume data

assigned to links on a street network as traffic data. This dataset was acquired from

Pennsylvania Department of Transportation (PDOT). The data was obtained by

downloading through the Internet from the following address:

ftp://www.pasda.psu.edu/pub/pasda/padot2001/state/padot. The PDOT CD data

contained road surface conditions, truck miles, and truck percentages along with AADT

data. PDOT traffic volumes were stored in a street shapefile with each link having a

unique ID along with other attributes. Figure 3.2 is a snapshot of the Adams County

(southeastern Pennsylvania) traffic count data from the PDOT CD available on the web.

The metadata for this dataset is included in Appendix B. The field ‘cur_adt’ holds the

average annual daily traffic counts. The field ‘Objectid’ uniquely identifies the link that

represents a road segment. Other fields hold attributes that describe various condition

descriptors for road segments.

 31

Figure 3.2: Snapshots of the PDOT dataset with the Adams County street data. (Data-
source PDOT available at: ftp://www.pasda.psu.edu/pub/pasda/padot2001/state/padot-
stroads-adams_2001.zip)

Use [cur_adt] =
[cur_adt] *+-Rnd(0-
0.1[cur_adt]) every
30 seconds.

The ‘cur_adt’ field
stores the traffic
volume data.

PDOT street data links

 32

For this research, obtaining real time traffic count data was not feasible.

Therefore, for the purpose of this research, it was assumed that the data had already been

recorded into a GIS. Since the AADT value in the field ‘cur_adt’ represented the average

annual daily traffic count for a particular link or intersection, this daily count was

randomly varied to produce a traffic count value that changes every minute. Since most

real time traffic update applications offer traffic updates every minute or thirty seconds,

the formatting of the data simulated the actual traffic volume numbers along a street.

Formatting and Storing the Project Data

In an effort to simulate real time data capture, the ‘cur_adt’ field in the PDOT

database was subjected to random fluctuations. The value stored in the ‘cur_adt’ field

was multiplied every minute by a random number that either increased or decreased the

existing traffic volume by 0 to 5%. This meant that for the ‘cur_adt’ value of 1773, the

automated program (set to operate as a batch process) on the server would change this

value to a number between 1861.3 and 1684.7. The fractions would be rounded off to the

nearest integer. These fluctuations were sufficient to test the major issues addressed in

the thesis.

 For representation purposes, traffic volumes were put into three major classes

ranging from light, moderate to heavy. Since interstates and roads can often be two-way

roads with multiple lanes, volume to capacity ratios might have been more useful.

However since this capacity data was not available, traffic count values serve for an

adequate demonstration of the research methodology.

 33

Establishing a Traffic Network in ArcInfo 8.1

Once the PDOT data were obtained and the attribute values formatted to resemble

real time traffic counts, the next step was to organize the network data so that it could be

used in the proposed application. Reiterating the major goals of the research, traffic

volumes had to be displayed to individual clients within their specified geographic region

or intended travel path.

To make sure that analysis functions of this nature can be performed on the

dataset, the Adams County traffic count database was converted into an ArcInfo 8.1

traffic network. A traffic network allows for topology to be established within the traffic

count database. This topology allows for routing solutions (like shortest path between

two travel locations) to be computed. Along with the traffic network, a copy of the base

Adams County shapefile is also used. This shapefile is used for referencing intended

travel regions within the county network, along with visualizing the streets and highways

for the client. Even though both the traffic network dataset and shapefile have similar

geometry and attributes, the traffic network database allows shortest path computation

along with building appropriate topology.

Serving personalized traffic updates to a multitude of clients also requires the

establishment of user based data management tables. These tables allow for the attribute

data for each user to be associated as a series of network links that represent the user’s

daily intended travel regions or paths. Figure 3.3 shows a simple data model

 34

Unique-id Usernum Profile coordinates

1 1

2 1

 ………………………………………………………………

10 2

Figure 3.3 Basic model for storing user profile information

Attributes define
regions within the
PDOT network

 35

for the major user account management tables used in the research. This master table

was named ‘tuserpoly’. Each record in this table stored basic information about travel

profiles and associated properties, like coordinates of travel regions, and descriptive

notes. This table was also indexed by a unique identifier (‘Unique-ID’ field) that could

be used to reference each record. Along with this, the user-number field ‘Usernum’

identified the user associated with each profile.

Proposed Web Service Functionality

With the database structure in place above, the basic framework for the storage of

individual profile information linked to the traffic network was established. The next

step was to design the overall functionality of the web service so that the profiles stored

in the master table ‘tuserpoly’ could be used by the client to receive updated traffic

information and route guidance.

In order to keep client-side processing to a minimum, the web service was

designed to operate in two distinct modes. The first mode (Mode1 in Figure 3.4) allows

the client to interactively construct travel profiles on a browser. These profiles are

constructed by indicating start and stop locations on the network, drawing rectangles or

tracing out a frequently traveled path. These profiles are stored on the server using the

master table ‘tuserpoly’ along with some additional reference tables.

The second mode (Mode2 in Figure 3.4) presents updated traffic information to

the client. Mode 2 operations use the profile information stored on the server to extract

either recommended travel paths between two locations or updated traffic volume

 36

CLIENT (WEB BROWSER)

SERVER

Figure 3.4 Overall web application design

information for regions and paths. For mode 2 to function effectively, updated traffic

volume information on each network link within a profile region has to be uploaded from

the server and has to be rendered on the client’s browser. If this step is implemented

using the profile region information entered in mode 1, concise real time traffic

information can be delivered to the client using a predominantly server-side processing.

The details of implementing both modes are discussed in the next chapter.

Mode1: Construct travel
profiles on the PDOT
network by drawing.

Mode2: View updated traffic volume data
information/route guidance within travel profiles
along with suggested travel paths if necessary.

Store all the necessary traffic volume
data and perform analysis to extract
such data that lie on streets within
travel profiles. Compute optimal
paths if necessary.

 37

CHAPTER 4

CREATING AND USING CUSTOMIZED USER PROFILES

 Providing custom content to clients is not new. Various websites and Internet

Service Providers (ISPs) like America Online (AOL) create custom profiles that store

commonly used web page settings and images the client might use. For example, the

Weather Channel (at www.weather.com) can personalize the content of each client’s web

page by showing the temperatures and related weather for locations that are of interest to

the client. Applying a similar concept to real time traffic reporting using the Internet, this

research proposes the use of traffic profiles as user specific regions of interest within the

street networks (referred to as AOIs from now on).

These AOI shapes or routes are created on the client’s computer and transmitted

as shapes or text from the client to the server databases that are indexed by unique user

numbers. In this way, the personal profiles can be retrieved every time the user logs onto

the Internet application. Also provided is network analysis, such as providing suggested

trip paths based on the shortest trip from an origin to a destination based on the current

traffic volumes. Creating the necessary software so that the client can create these

aforementioned travel profiles is the first step in this research.

 38

Custom Areas of Interests and Potential Travel Paths

 There are many ways to define a profile representing a frequently traveled route.

Statistical methods that use actual archived travel data are ways to automatically

determine a frequently traveled route for the client. If sufficiently archived travel

activities within travel areas are available, statistical methods can be used to roughly

estimate the origins, destinations and expected routes of travelers. Trip paths can be

obtained by having the user fill out an Internet survey form indicating a ranked list of

frequently traveled origins and destinations, preferred interstates or highways and time

windows for travel. The data could then be stored with the locations geocoded into a trip

database with each user having a set of locations and other attributes.

In reality however, only a few real-time traffic websites allow the users to do this.

For example, the Automobile Association (AA) Roadwatch service

(http://www.theaa.com/travelwatch/) transmits personalized routes to registered users in

the UK. The overall layout of this service is illustrated in Figure 4.1. The web service

first asks the user to input a start and an end location, both of which are then geocoded

and stored on the server. The shortest path is then constructed (just like Mapquest trip

planner available at www.mapquest.com) and traffic conditions like accidents or traffic

jams on that route are indicated to the user using his mobile service/text messaging

services. This is mostly a server-side service since no plug-ins or executables have to be

run on the client other than the current web browser. The thin client (low software or

bandwidth overheads on the client) service allows for the creation and storage (on the

server) of user profile information. However, the traffic updates provided to the user are

 39

 Figure 4.1 AA Road watch traffic path updates by mobile/text messaging.

not based on current traffic volumes nor are they presented back to the user as geographic

data that can be put into spatial context. Thus, this provides a minimal ‘D3’

(customization of content and real time traffic data) website as per Peng and Huang’s

(2000) taxonomy, as GIS and visualization capability are absent even though some

customization in trip planning is provided.

Table 4.1 summarizes some of the existing applications that use custom profiles

(not necessarily traffic update applications) and the type of technology used in terms of

client-side or server-side development. Trip paths can also be created by selecting a start

location and an end location geographically. Simply allowing the user to select the start

and the end location on a street map can define a potential trip. In Figure 4.2 for

example, the user selects a start location and an end location by clicking on points that

are near to identifiable landmarks such as a street intersections or places of interest.

Start Location

End Location

Route preferences

Receives
information on
accidents and
traffic jams on
intended paths

Find path and
get roadside
information
by geocoding.

Client

Server

Mobile unit

 40

Table 4.1 Major websites that use user profiles (both client and server-side).

 Generic sites
using profiles:
(Weather
channel/AOI
profiles)

Mapquest/Trafficstation AA
Roadwatch

Puget
Sound
traffic site

Method
of
creation
of
profiles

Survey form
filled out by
client

No profiles used. Updates
are for entire cities and only
major interstates/highways
only.

Survey
forms for
start and end
trip
locations.

No profiles.

Storage
and
usage of
profiles

Heavy client-
side
executables
and dynamic
link libraries
(dll)

Updated maps are provided
using considerable server-
side processing. Simple
browser suffices.

Server-side
processing
used.

Client-side
executable
does the
processing.

Figure 4.2 Selection of a potential path based on map selection of start and end trip
locations.

Start Location
is selected on
‘Middle St’.

End location
selected on
‘Lincoln Av’
by clicking on
the map.

Shortest path between the
start and end location
using traffic volume data
as weights on the network.

 41

Once a location pair is selected, only those coordinates need to be stored for the

user to ask for a suggested travel path between these locations. To provide this path,

server scripts have to calculate the shortest path between the start and end locations on

the network. Traffic count values assigned to each link can be used as impedances for the

shortest path calculation. These impedances are used to find the least cost path of travel.

Such a travel profile that stores only start and end locations will be referred to as a

potential shortest path.

Another method of path selection is to have the user select a frequently traveled

path. This can be done by tracing out a path in between a start location and an end

location along a set of links on the traffic network. The research defines a path between

the two locations as a potential preferred path. In Figure 4.3 for example, the user can

interactively click on a set of links from the start location to the end location to construct

this preferred potential path. Each link ID is then stored and so that future updates can

render the updated traffic volumes on these links. These updated traffic conditions in and

along this preferred path will give the user pre-travel guidance. The selection methods

above describe potential routes. However, sometimes a user might be more interested in

a traffic update that covers a larger portion of the traffic network rather than just a path.

For example, a client might want to monitor the traffic patterns in a specific area. For

such cases, the customized profile may define the boundaries of that area. This is known

as an Area of Interest (AOI).

Rectangles, squares, circles or irregular polygons can all be used as AOIs. This

research uses rectangular AOIs for simplicity and proof of concept.

 42

 Figure 4.3 Selection of a preferred potential path based on selection of a set of
links from the start to the end location

Each AOI has information linking it to the user that created it and an ID that uniquely

defines its existence in a geographical database. Figure 4.4 shows an AOI defined as a

rectangle by a client and the resulting portion of the network used for traffic updates.

Implementation Basics – Setting Up the Necessary Internet GIS Components

 The first step in the implementation process is the selection and usage of an

appropriate Internet GIS application. Internet GIS applications usually consist of

software packages that allow a server to function as a public map server allowing

interactive GIS transactions with spatial data on the server. For this research, the Internet

GIS application will provide a template web interface that is shown to the client. This

web interface will allow for basic GIS interactions such as pan, zoom and identify.

User clicks on first
link on the
preferred path

User clicks on in-between
links on the preferred path

Start Location

End
Location

 43

Figure 4.4 Defining an AOI using a rectangle limiting update areas.

AOI defined by the
user as a rectangle

Resultant network
segments within the
AOI displayed during
an update

 44

Along with this, the web interface should also have the capability to communicate with

the server to display spatial data like the background traffic network, AOIs and potential

paths. With the basic GIS functionality provided, heavy customization (modifying

existing scripts provided by the Internet GIS application) and additional scripting will

allow for the creation of AOI and potential paths, which can then be stored and used for

traffic updates.

Internet GIS software choices/comparisons

 There are two major commercial Internet GIS packages currently available,

GeoMedia WebMap and ArcIMS. Geomedia WebMap developed and marketed by

Intergraph provides the client with a Component Object Model (COM) component that

can be embedded in a web page. This component is called the ActiveCGM map control

(http://www.intergraph.com/gis/support/technotes/Gwm2Impl.asp#2). The ActiveCGM

control provides the necessary functions for communication between the client and data

servers. Basic GIS requests such as pan, zoom and identify are supported. The client

loads a web page as an Active Server Page (ASP). ASP pages are special Hypertext

Transfer Markup Language (HTML) pages that allow for the instancing and usage of

certain server-side components and COM objects. With the ActiveCGM control used

within the ASP page loaded on to the client (if the client has an Internet Explorer

browser), maps can be rendered on the client. On the server-side, the GeoMedia or MGE

data servers must be loaded with the appropriate spatial data. GeoMedia uses the server-

side service called GeoMedia WebMap in conjunction with a server-side process called

the MapSrvMngr.exe and a number of map server processes each called MapSvr.exe.

 45

The manager (MapSvrMngr) process receives the client ActiveCGM control requests and

finds an idle MapSvr.exe to apply GIS functions to the spatial data stored on the data

server. Thus, the MapSvr is really the application server that handles and completes all

GIS transactions. Figure 4.5 outlines the broad architecture for GeoMedia WebMap

based applications.

 ArcIMS functions developed by ESRI are similar to Geomedia WebMap, even

though the underlying technology is quite different. Figure 4.6 explains the basic

ArcIMS architecture. ArcIMS, provides a GIS viewer that the client’s browser loads.

This viewer is an HTML and DHTML (Dynamic HTML for drawing functions) template

that communicates with JavaScript modules that are loaded on the client. The main

purpose of the viewer is to provide an interface for spatial data that is stored on the

Figure 4.5 GeoMedia WebMap architecture featuring the client-side ASP page and
server-side processes. Modified from:
http://www.intergraph.com/gis/support/technotes/Gwm2Impl.asp#2

Client-side ASP page:

<HTML>
<BODY>
Set MapServMgr =
Server.CreateObject("GMWe
bMap.MapServerManager")
Rest of script
</BODY>
</HTML>

MapSvr
Mngr :
NT
service

MapSvr.ese

MapSvr.exe

GeoMedia
or MGE
datasets. MapSvr.exe

Client browser loads ASP pages that have
references to the Server-side MapServer
manager object. GIS requests are done using
methods like connect() to set data-source
properties.

 46

Figure 4.6 Overall ArcIMS architecture showing the flow of data from the client’s
browser and the data server/sources though the application server. Reproduced from:
http://arconline.esri.com/arconline/whitepapers/ims_/arcims31arch.pdf?PID=6

server. Requests like pan, zoom and identification of spatial features can be done by the

client using this viewer. The rest of the ArcIMS package is based on Java servlets and

dlls that reside on the server. All requests from the client like pan or identify are sent via

the TCP/IP network back to the server or more specifically the application server, which

acts like a workhorse for rendering these requests.

For this research, ESRI’s ArcIMS was used as the Internet GIS package to build

the customized profile storage and traffic update application. This product was chosen

because of availability. Once ArcIMS was chosen as the Internet package for the

deployment of the traffic update application, the next step was to develop the necessary

software that allowed the client to load the ArcIMS viewer. Then the client would be

able to click a button for creating and storing rectangles that represent the client’s area of

interest. Potential path profiles would be created in a similar fashion.

Client: HTML
page with
embedded calls
to JavaScript
libraries. This
page acts as a
template that can
be further
customized.

Ja

va
Sc

rip
t L

ib
ra

rie
s

Server: Uses the servlet
connector to run the
application server or
more specifically the
ArcIMS spatial server.
Requests like pan, zoom
and map
rendering/symbology is
carried out.

Data servers:
Can be an
external
RDBMS
(need
ArcSDE
connection)
or simply
shapefile
datasets

Se
rv

le
t c

on
ne

ct
or

 +

Ja
va

 R
un

tim
e

En
vi

ro
nm

en
t (

JR
E)

 47

As previously mentioned, ArcIMS has an HTML viewer which consists of HTML

tags that display a map image showing the necessary GIS datasets along with other tools

for interacting with the data. Embedded within this HTML page is a series of calls to

JavaScript libraries that are loaded on to the client during the display of the ArcIMS

viewer. This allows for considerable modification by the developer. New JavaScript

functions can be added and calls made to them to carry out custom functions. Also,

existing JavaScript can be modified to add more custom functionality. Table 4.2 lists the

major scripting languages that are used to implement the research methodology for

storing and using personalized traffic profiles.

The First Step: Setting Up the Map Server (ArcIMS Map Service)

ArcIMS uses map services to group different websites on the server that can be

visited by the client. For this research, the map service used for the traffic update and

custom profile application is called the ‘moresearchsite’. This ArcIMS service lets the

developer choose the data that needs to be displayed to the client each time he or she

accesses the website. The dataset that was added to the ‘moresearchsite’ map service was

the PDOT street network data represented as two shapefiles. One shapefile contained the

network junctions while the other contained the network links. As mentioned in chapter

three, the PDOT street level data was also made available as an ArcInfo 8.1 street

network for other server-side processing functions. Figure 4.7 illustrates the major

datasets used.

 48

Table 4.2 Major scripting languages used for research

Scripting language Description

JavaScript Client-side scripting language that
allows for programs to be run from the
client’s browser without initiating new
individual processes on the client.
Files have a *.js extension.

Microsoft Visual Basic (VB) VB allows for the development of both
standalone executables and macros
within Microsoft applications. For the
research, VB is used in conjunction
with ESRI’s ArcObjects, which
provides many COM classes needed
for geometry creation, storage and
shortest path calculation procedures.

ASP ASPs are scripts that run on the client
but use Microsoft’s IIS (Internet
Information Server) to transmit and
execute actions on objects like
Microsoft Access or Outlook. ASP
may be written in either VB or
JavaScript. Files have a *.asp
extension.

 49

 Figure 4.7 The Adams County network for Southeast Pennsylvania

Using ArcIMS to Provide Updated Traffic Information to the Client with Areas of

Interests

Once the network junctions and links were added to the ArcIMS map service for

display, the next step was to create a storage database to store client profile information.

The initial plan for the research was to have separate shapefiles that store each

geographic AOI or potential path profile. However, this method was not feasible. Figure

4.8 shows the basic reason for the failure of this method. Using shapefiles to store

individual AOIs required that ArcIMS allow online editing (addition or deletion) of new

shapes. However, geographic data in an active map service cannot be edited, so this

approach was abandoned. Instead of using shapefiles, the strategy employed simply

stores the coordinates that define rectangles for an AOI shape in a Microsoft Access

database. In the case of potential paths, network link IDs or network junction IDs are

stored.

Adams County
shapefile
containing network
links

Adams County
point shapefile
containing network
junctions

ArcInfo 8.1
geometric
network

Server–side processing
to report current traffic
conditions

Web display

 50

Figure 4.8 ArcIMS locks shapefile storing AOI shapes.

Figure 4.9 illustrates the methodology used to store newly created AOI shapes and

potential paths. The client logs into the research website. If it is the client’s first visit, he

or she is assigned a unique user number. The research website uses this user number to

display all existing AOI shapes created by the user along with certain attributes such as

descriptive names or comments. JavaScript customization of the client’s viewer page

allows the client to produce new AOI regions interactively on his or her browser by

drawing to the ArcIMS acetate layer. The acetate layer functions as an overlay layer on

the map. It displays graphical information that does not belong to a locked geographic

data layer. Elements on the acetate layer, therefore, can be edited by individual users

using custom scripts.

Using the network links as background reference, the client can then trace out a

region defined as a rectangle on the acetate layer to represent a frequently traveled

region. The resulting shapes are stored as profiles so that subsequent actions from the

same client will display the traffic volume along each network link within this

rectangular region.

ArcIMS mapservice AOI
shapefiles

Server-side
extraction/processing
scripts Client browser

Lock

 51

 Microsoft IIS

 Server

 Figure 4.9 Process for storing a new AOI for future use.

usernum MinX MaxX MinY MaxY Uniqueid

1 39.5 39.7 65.5 65.7 1

1 39.3 39.9 64.5 66.9 2

2 39.6 43.6 65.6 66.8 3

3 39.8 44.4 66 67 4

Client

Client browser processes
these coordinates and then
transmits them to the server.

39.7,65.7

39.7,65.5

39.5,65.7

39.5,65.5

New AOI record in
Microsoft Access

• Aimsselect.js
• Toolbar.htm
• Aimscommon.js,
• Moresearch.js

• Researchstart.asp
• Researchstore.asp

 52

After development of the drawing software, the HTML viewer displayed on the client

was modified (again using JavaScript and ASP) to record the bounding coordinates of

these newly drawn AOIs.

In Figure 4.9, the user traces out a region defined with Y coordinates from 65.5 to

65.7 while the X coordinates lie between 39.5 and 39.7. These coordinates define the

drawn rectangle using the four numbers, minimum X and Y and a maximum X and Y.

The research modified the template ArcIMS JavaScript to allow for the recording and

transmission of these coordinates from the client directly to the server for permanent

storage in a Microsoft Access database. Scripts named ‘Toolbar.htm’, ‘Aimsselect.js’,

‘Aimscommon.js’ and ‘Moresearch.js’ were either modified or created to allow the

template to draw and record these coordinates in the Microsoft Access table ‘tuserpoly’

(refer to flow in Figure 4.9). The ASP script ‘Researchstore.asp’ was created to allow

this transmission and storage of AOI shape information from the client to the server

database. Microsoft Internet Information Server (IIS) was used as the web server. All

these scripts are included in Appendix A.

Storage of AOIs within the ‘tuserpoly’ database creates descriptions of

geographic profiles of intended travel regions or interest areas. The research developed a

system to allow the users to select individual AOI profiles on their web browsers. Using

this system, they can receive updated traffic conditions along the streets or highways that

fall within the AOI.

 The first step in this process allows the user to select an AOI shape that he or she

would like to use for a region to receive traffic updates. As shown in the Figure 4.10

flow diagram, the user selects an AOI from one of the records displayed on the bottom of

 53

 Figure 4.10 Flow diagram for the selection and extraction of traffic volume data within
AOI rectangles

Microsoft IIS

Server

Client

User selects the
record matching
the number on the
AOI

Transmit the ID for this
record to the server

Server processing (VB and ArcObjects)

• Re-create AOI geometry using
coordinates stored in the Microsoft
Access database ‘tuserpoly’.

• Overlay this geometry with the Adams
County network link shapefile.

• Generate an XML file containing
geometry from each link that falls within
the AOI.

• Researchupd
ate.asp

• Mointersec
t.exe

XML

AOI ID = 1

 54

the browser screen. Clicking on the table entry that matches the number displayed on the

AOI rectangle completes this selection. This reference number or record is then

transmitted to the server using an ASP script called ‘Researchupdate.asp’ (refer to

Appendix A).

More specifically, this ASP script transmits the unique ID to a server executable

(‘mointersect.exe’) written with VB and ArcObjects (Figure 4.11). This transmission of

the unique ID to the ASP script is done by reading in the unique ID from the client and

then querying the minimum and maximum bounding coordinates of the AOI stored in the

‘tuserpoly’ table. Once these coordinates are read, the ArcObjects/Visual Basic program

creates a rectangular geometry shape using these coordinates and overlays this rectangle

on the Adams County network link shapefile.

All the network links that fall within the rectangle are recorded by reading their

geometry and traffic count values into an eXtensible Markup Language (XML) file as

shown in Figure 4.12. XML in this portion of the research was used as a transient

geometry storage file. A sample XML file is shown in Figure 4.12 containing all the

links resulting from an overlay using an AOI.

 The parsing and display of updated traffic volumes follows the creation of the

XML file with the traffic links. This parsing and display of these resulting traffic

volumes was achieved by running the scripts ‘Aimscustom.js’ on the ArcIMS client

(Figure 4.11). This is shown in the final snapshot of Figure 4.11. Once the client

browser parses the XML file, an ArcIMS acetate layer displaying these links is created.

The ArcIMS acetate layer is merely a graphic that ceases to exit after the viewer session

is completed. Hence, it can be referred to as a dynamic layer.

 55

 Figure 4.11 Transmitting traffic volume data from the server back to the client using

XML

Client
Client parses the XML
geometry of links within
the AOI .

The links within the AOI are
displayed on the client’s HTML
browser with a graduated
symbol legend indicating levels
of traffic congestion

Traffic volume
data is rendered
using ArcIMS
acetate layers

• Aimscustom.js

XML

 56

<USERSHAPE>
 <OBJ>
 <X>-77.2156699999996</X>
 <Y>39.8367199999993</Y>
 <X>-77.2142899999999</X>
 <Y>39.8388400000003</Y>
 <X>-77.2129499999992</X>
 <Y>39.84087</Y>
 <X>-77.2116499999993</X>
 <Y>39.84274</Y>
 <X>-77.2116499999993</X>
 <Y>39.84274</Y>
 <X>-77.2116499999993</X>
 <Y>39.84274</Y>
 <X>-77.2216499999999</X>
 <Y>39.84273</Y>
 <X>-77.3116777766666</X>
 <Y>39.84284</Y>
 <X>-77.2116499798993</X>
 <Y>39.84274</Y>
 <X>-77.2116499900000</X>
 <Y>39.84474</Y>
 <X>-77.2116499234900</X>
 <Y>39.84234</Y>
 <AADT>3003</AADT>
 </OBJ>
</USERSHAPE>

Figure 4.12 XML file storing updated traffic links

<X> and
<Y>tags store
coordinates for
the link under the
<OBJ> tag

 57

To render the traffic volumes, the acetate layer tells ArcIMS to display the traffic

links to the viewer using a certain size and color. After ArcIMS reads and visualizes the

XML file by using acetate layers, graduated symbol lines are shown with the zoom levels

adjusted so that unnecessary links outside the AOI do not display. It should also be noted

that a similar acetate-XML method is used to display previous AOI shapes when the user

first logs in with a unique user number.

Using ArcIMS to Provide Updated Traffic Information to the Client with Potential

Paths

As described earlier, an AOI is not the only geographic user profile used in the

research. Potential paths that describe possible routes for the user are also profiles that

can help the user make a pre-trip route choice. The first type of potential path is the

preferred path. These profiles are used by the client to view updated conditions on a

frequently traveled route. This path is rendered with updated traffic volumes before the

client’s intended trip.

Preferred Path Updates Using ArcIMS

 In addition to storing links that compose a path, it also is possible to store only the

origin and destination of a path and use a path algorithm to select the relevant links.

Figure 4.13 shows the flow for potential path creation, storage and use in traffic

information display. The first step requires the user to select a set of links that start

between the user’s intended start location and end location on the traffic network and

subsequently store these links as profiles on the server. The script ‘Researchpp.asp’

 58

Client

Figure 4.13 Methodology for creating preferred paths

User
num

MinX MaxX MinY MaxY aiotype uniqueid

1 34.5 34.8 48.5 49.7 0 1

1 39.3 39.9 64.5 66.9 1 2

2 39.6 43.6 65.6 66.8 1 3

Usernum linkid uniqueid

1 225 1

1 226 1

Microsoft IIS

Server

IDs for ‘Baltimore Pk’ on the Adams
County line shapefile recorded on the
client and transmitted to the table
‘tuserpoly’ below.

ArcIMS layer
containing links
from Adams
County traffic
network

• Aimsclick.js
• Toolbar.htm

• Researchpp.asp

ID = 225, ID
= 226

Network link IDs
stored in the
loopkup table
‘Pplookup’

 59

included in Appendix A accomplishes this task. This script works in conjunction with

‘Aimselect.js’ and ‘Toolbar.htm’ on the client browser. Once the user selects a set of

links to form a preferred path, the unique ID for each link in the set is stored in the

Microsoft Access table ‘pplookup’. These are unique ID’s for each link on the Adams

County network. At the same time, the script ‘Researchpp.asp’ also inserts a single

master entry for this path in the ‘tuserpoly’ table. Thus, as shown in Figure 4.13, each

record in the ‘tuserpoly’ table for a single preferred path corresponds to a set of links in

the ‘pplookup’ table. These two tables are linked together by the ‘unique ID’ field in the

‘tuserpoly’ table using a one-to-many relationship. The contents of the master table

‘tuserpoly’ are presented at the bottom of the user’s screen allowing the user can select

respective AOIs or potential paths.

 Once the links selected for potential paths have been stored, software for allowing

the user to view updated traffic conditions on a potential path is used to display the

custom travel information. In Figure 4.14, this process is illustrated by showing the user

clicking on a Hyperlink (containing the unique ID of the preferred path) that displays the

current traffic volumes. Once in this mode, the server-side script ‘Linepp.exe’ queries

the links within the preferred path from the ‘pplookup’ table. Using XML as a transient

geometry storage file, subsequent XML parsing and conversion to ArcIMS acetate layers

re-create the geometry of this potential path for. This potential path, from origin to

destination, is shown in graduated symbols. As shown in Figure 4.14, the scripts

‘Aimscustom.js’ and ‘Researchupdate.asp’ (refer to Appendix A for code details) have

been used for uploading of traffic volume information from the server to the client.

 60

Figure 4.14 Methodology for using preferred paths for traffic updates

Microsoft IIS

Client

Server

Select the potential path from browser
and send an unique ID for this path to
server script ‘linepp.exe’.

• Query corresponding
link IDs from the table
‘pplookup’

• Write geometry of
these links into an
XML file

Display the links on the
client by creating acetate
layers from XML

• Linepp.exe

XML

• Aimscustom.js

 61

Shortest Path Updates Using ArcIMS

 The major difference between a potential path and a shortest path is that the latter

provides a recommended path based on the current traffic volumes. The ArcIMS HTML

client was customized to handle this by allowing the user to select a network junction

point. Client-side JavaScripts (‘Aimsselect.js’ and ‘Toolbar.htm’) record the unique IDs

of these junction points and transmit them back to the server for storage in the ‘tuserpoly’

table. Refer to figure 4.15 for an illustration of the junction ID storage process.

Once these locations (junction IDs) have been stored as AOIs and preferred paths,

server-side scripts for providing updated traffic conditions were developed. Since

shortest paths in this research did not necessarily have to display real-time traffic

volumes, the set of links that constitute the shortest path between the stored locations

based on the current traffic volumes was computed. This computation was performed on

the server using the ArcObjects and VB program ‘Shortestpath.exe’ included in

Appendix A. This program reads the start and end IDs for a profile path on the Adams

County junction shapefile from the server table ‘tuserpoly’. It then identified these as

start and end flags on the Adams County geometric network.

 The geometric network allowed for shortest path computations. Using ArcObject

interfaces, the least cost path between the start and end junctions was computed using the

traffic count values as impedances (identified as ‘weights’ by ArcObjects). This shortest

path was extracted as a polyline and converted (just like links from AOI overlays and

preferred path construction) into a XML file for display on the client (Figure 4.16).

 62

Client

Microsoft IIS

Server

 Figure 4.15 Creating and storing shortest path profiles

usernum MinX MaxX MinY MaxY aoitype uniqueid Start End

1 36.9 40.4 67 66 2 1 221 256

1 39.3 39.9 66.9 64.5 1 2 456 406

2 39.6 43.6 66.8 65.6 1 3 334 456

Junction IDs
stored in
‘tuserpoly’

• Aimsselect.js
• Toolbar.htm

• Researchshorty.as
p

ID = 221, ID = 226

 63

Client

Microsoft IIS

Server

Client

 Figure 4.16 Methodology for using shortest paths.

Select the shortest path by clicking on the ID field
from the browser.

Transmit the start and end
junction IDs to the server script
‘shorty.exe’

• Read in the junction IDs
• Initialize the Adams County

network
• Set the weights/impedances

for the network to the field
containing traffic volumes

• Use ArcObjects to compute
shortest path between these
two junctions

• Export the geometry of the
path as XML file

• Aimsclick.js
• Toolbar.htm

• Reasearchup
date.asp

• Shortestpath.
exe

XML

• Aimscustom.
js

 64

CHAPTER 5

RESULTS AND FURTHER RESEARCH

 This research implemented an Internet application that provides the user with

street level traffic updates in real-time. With the use of browser-based tools, clients are

updated on traffic conditions within a predefined region on a network. The client does

not have to navigate through the entire network to obtain updated traffic information

related to only a portion of the entire network. As a result, browsing and data

transmission time for getting this updated traffic information are reduced. In addition,

the client only has to use a standard JavaScript enabled web browser, thereby keeping the

entire application as a server-side implementation. The first three sections of this

conclusion will outline some of the functions provided by the Internet application

developed in the research. The remaining two sections will conclude the thesis by

discussing some of the GIS software implementation challenges faced while developing

the customized web service and further challenges down the road for similar web

services.

Creating and Using Rectangular Travel Profiles (AOIs)

The first tool produced by this research is a Graphical User Interface (GUI)

provided to the client via the Internet. This GUI allows the user to log in and store

frequently traveled regions of the travel network in question. The methodology chapter

(chapter four) indicated that this could be done by three methods. The first method is the

 65

generation of traffic profiles as rectangular regions on a street network. Figure 5.1 shows

the web browser screen snapshot of a client that created rectangular profiles (AOI shapes)

by drawing Dynamic Hypertext Transfer Protocol (DHTML) on his or her browser with

the street network as backdrop. Once new AOI’s are drawn, the user is allowed to enter

some additional descriptive properties in the text box on the lower left corner. This new

AOI is immediately added to the master profile storage database, while the attributes are

added to the table view in the bottom frame of the viewer. This interactive creation and

viewing of profiles give the look and feel of a shopping cart commonly used for online

transactions.

Figure 5.1 AOI profile rectangles drawn and stored for future use

Attribute
Table

 66

Once such a rectangular AOI region has been stored, the user can exit the

application or request updated traffic volumes for street segments that fall within one of

these AOIs. Figure 5.2 illustrates this updating process. The request for an update is sent

to the server by clicking on the attribute table which returns a graduated symbol graphic

representing the traffic volumes on street segments that fall within the selected AOI. In

Figure 5.2, this is shown as the streets within the AOI numbered ‘1’ in Figure 5.1. The

graduated symbol rendering shows thicker symbols in black that represent heavier traffic

volumes along those street segments.

Figure 5.2 Traffic volumes rendered within the AOI identified as ‘1’ in figure 5.1

Graduated symbols show more
congested areas with thicker
symbols and vice versa

 67

Thinner symbols indicate relatively lighter traffic congestion conditions.

AOI’s are useful for providing updated traffic conditions within a user-defined

geographic region. Their utility is more pronounced when no intended travel path is

predetermined. For example, viewing traffic volumes in a portion of a downtown area

can lead to advanced pre-trip information which can help the public better plan their trips.

Heavily congested areas can be avoided. Along with this, utilization of traffic profiles

keep the data browsing at a premium since information is presented to the user on a need

only basis. However, AOIs are not very useful when the travel path is pre-determined.

This means that sometimes, even though updated traffic condition information is desired,

the travel path from the start location to the end location is fixed. If these profiles are

stored, the user can receive updated conditions only along this pre-determined path.

These types of profiles are classified as preferred potential paths.

Creating and Using Potential Preferred Paths

 Potential preferred paths provide the client with customized real-time traffic

information along an intended travel path. Using a web browser, the user clicks on a start

location and constructs a continuous line along the street network. This line should stop

at the end location of a frequently traveled route. These routes can be alternate home-

work routes or non-periodic travel paths like a shopping mall trip or travel in a new city.

Once this profile represented by a path is stored, updated traffic volumes along this path

can be graphically rendered using graduated symbols (refer to figure 5.3).

 68

 Figure 5.3 Traffic update information using potential preferred paths

The current traffic volume data along
each path (A in orange and B in
black) are rendered by graduated
symbols. Based on traffic volumes,
either A or B may be chosen

Avoid route B due
to thicker black
symbol indicating
heavier traffic
(traffic volume)

A B

 69

In Figure 5.3, either one of the routes stored in profile A or B can be selected by the

client. Before the intended trip, the client can inspect the volumes on both the ‘Bullfrog’

and ‘Water Street’ route profiles. The route with the least congestion (thinner symbols

representing lower traffic) would most likely be the best choice.

Suggested Trip Paths Using Shortest Path Potential Profiles

 The third and final profile method implemented in the research is the shortest path

route guidance system. The profile creation and storage for shortest paths are less

complicated when compared to the tools discussed above. The client simply selects a

start and a stop location for an intended travel route. The identification points for these

locations are stored as profiles. Before travel, the client can use these pair of locations to

receive a suggested path computed by the application. This suggested path is the shortest

path between the two locations using the path that follows the lowest traffic congestion

(Figure 5.4).

 This research successfully implemented a web server application that integrates

the concepts of profile management and real-time traffic presentation in using server-side

application architecture. While the research accomplishes a proof of concept endeavor,

there remain certain challenges from the standpoint of software development, data

acquisition and integration into GIS.

 70

 Figure 5.4 Shortest path route guidance

Start location

End location
(outside view)

Shortest path between
the start and end
locations based on
current traffic volume
data

 71

Implementation Challenges

ESRI components were used for much of the implemented traffic update

application. ESRI's ArcIMS was used as the Internet GIS software. While this software

was adequate for most of the common requests like handling the visualization of street

network and the actual display of updated road segments, major customization was

required. The customization can be summarized as follows:

1) A communication channel had to be built to allow for the storage of rectangular areas

of interests on the server for each client. Since no shapes were stored, the

communication channel would receive AOI envelope coordinates drawn for each client

and then transmit these coordinates along with other attribute information to the server

for storage. This could not be achieved using the traditional ArcIMS data loading of

shapefiles into a map service.

2) Transmitting updated traffic volume information to the client also required another

communication channel. The major difference from the channel required to store travel

profiles was that the response from the server contained geographic information that had

to find the client that requested for the information. This was more difficult to

implement, but was achieved by producing temporary eXtensible Markup Language

(XML) files that contained geometry definitions for links that needed to be updated.

These updates are initiated by a call to a server-side executable. Once initiated, the

execuatable finds the necessary Microsoft Access tables and creates the XML files

containing coordinates that constituted each polyline within an AOI area or a potential

path. The current, updated traffic volumes on each link are also encoded within the XML

file. This XML file is displayed using dynamic display ArcXML acetate layers.

 72

 The major methodology choice for creating both of these communication

channels was the usage of ASP scripts that retrieved coordinate and attribute information

for AOI shapes and potential paths. Text files were transferred from the client to the

server and usually consisted of an ID number or a string containing parameter values.

Hence, the research used a method of text file transmission to produce real-time traffic

maps and for customization. Even though this methodology proved effective, relying on

the customization of the client HTML viewer through an increased usage of client–side

JavaScripts might handicap future development in the following ways:

1) Display options are limited to the Netscape or Internet Explorer Document Object

Models (DOM). The DOM is a standard that these browsers conform to when the

developer gains access to certain objects that allow for drawing and browser related

operations on the client. For example, drawing the geometry of updated traffic links

requires the usage of the client’s browser DOM (either Internet Explorer or Netscape).

The research uses a legend that is fixed with three traffic volume intervals: low, moderate

and high. The acetate layers drawn via the usage of DOM objects are merely graphics

and not GIS layers since no relationship between the data and actual link graphics is

developed.

2) Heavy use of client-side Dynamic HTML (DHTML) used for the display of spatial

data can obscure the basic utilities provided by Internet GIS software packages like

ArcIMS. For example, developing appropriate DHTML layers to show traffic volumes

on the server almost repeats the very functions ArcIMS tries to provide. It is like trying

to re-create ArcIMS functionality by displaying and querying spatially indexed attribute

data.

 73

 3) Using shapefiles and ArcSDE with Oracle along with ArcIMS might have been more

effective for the implementation. This would take full advantage of existing spatial

indexing and RDBMS functionality to manage concurrent requests and spatial

transmission and queries. In addition, constant updates of traffic volume or traffic

condition information can be facilitated through interactive editing and updating on the

server.

The essential technology implemented through the research application began to

lay a foundation for future projects integrating server-side storage of travel profiles with

real time traffic updates. However, there remain broader areas of concern not directly

related to software development or even GIS.

Challenges Down the Road

 For customized geographic profiles to be effectively used as real-time traffic

reporting tools, other concerns must be addressed. The first problem is the actual method

of creating profiles. The research attempted to introduce three methods of simple

geographic selection of travel profiles. For example, the preferred path selection tool

implemented in the research allowed the user to trace out a frequently traveled path on a

street network. Building on this, more advanced methods of profile path selection could

be employed. Shifting from merely applying a geographic approach, one could use

statistical data of trip origins and destinations to build profile paths between start and end

locations. Multi-modal trips can also be built and stored as travel profiles for more

complex travel profiles.

 74

However, profiles are merely tools that facilitate the data query and visualization

of real-time traffic data. Without the availability of real-time data down to the street

level, the usage of travel profiles only marginally shortens unnecessary browsing time

and server upload loads. For profile usage applications to become effective, street level

data for service regions has to be made available online. Initiatives are underway

allowing Traffic Monitoring Service (TMS) and ITS (Intelligent Traffic Systems)

programs to collect and distribute traffic volume data for streets as well as major

highways in some metropolitan cities. As these programs mature, the need for custom

methods of presentation of this vast quantity of traffic data also will grow.

 75

REFERENCES

 76

References

Albaredes, G. Web Based GIS, New means to access spatial information.

<http://www.autodesk.com>.

ArcIMS: The ArcIMS3 Architecture and Functionality. ESRI White Paper. 2001.

<http://arconline.esri.com/arconline/whitepapers.cfm?PID=6>.

ArcIMS versus MapObjects IMS: Architectures, ESRI. White Paper. 2001.

<http://arconline.esri.com/arconline/whitepapers.cfm?PID=6>.

Dickman, A. “Two-Tier Versus Three-Tier Apps.” Informationweek 13 Nov. 1995: 74-

80.

ESRI Conference Proceedings, Map Objects and ArcSDE: Twentieth Annual ESRI
Conference. 2000.
 <http://www.esri.com/devsupport/devconn/sde/presentations/uc2000.html.>

ESRI Conference Proceedings, ArcSDE for Oracle Administration: Twentieth Annual
ESRI Conference. 2000.

<http://www.esri.com/devsupport/devconn/sde/presentations/uc2000.html>

Foresman, W.T. The History of Geographic Information Systems: Perspectives from the
Pioneers. Upper Saddle River, NJ: Prentice Hall Inc, 1998.

Johnson City MPO. Frequently Asked Questions: Average Annual Daily Traffic. 2001.

<www.jcmpo.org/traffic/faq.htm>.

Gilroy, R., R. Puentes and R. Schuman. Advanced Traveler Information Systems:
Choosing the Route to Traveler Information Systems Deployment. ITS America. 1998
<http://www.fhwa.dot.gov/tfhrc/safety/pubs/its/generalits/choosette.pdf >

Harder, C. Serving Maps on the Internet: Geographic Information on the World Wide
Web. Redlands, CA: ESRI press, 1998.

Jankowski, P. and T. Nyerges. Geographic Information Systems for Group Decision
Making: Towards a Participatory, Geographic Information Science. New York, NY:
Taylor and Francis, 2001.

Miller, H.J. and S.L. Shaw. Geographic Information Systems for Transportation-
Principles and Applications. New York, NY: Oxford University Press, 2001.

Minoli, D. and A. Schmidt. Internet Architectures. New York, NY: John
Wiley & Sons, Inc, 1999.

 77

Morgenthal, J.W. and L. F. Bill. Enterprise Application Integration with XML and Java.
Upper Saddle River, NJ: Prentice Hall, 2001.

Peng, Z.R. and E. A. Biemborn. Internet GIS and its Applications. TR News. 1998

<http://216.239.33.100/search?q=cache:RCH1PbBJfpMC:www.uwm.edu/Dept/C
UTS/peng/trnews.htm+Internet+GIS+and+its+Applications+TR+News+1998.&hl
=en&ie=UTF-8>

Peng, Z.R.and R. Huang. “Design and development of interactive trip planning for web-
based transit information systems.” Transportation Research Part C, 8.1-6, 2000: 409-
425.

Plewe, B. GIS Online Information retrieval, Mapping and the Internet. SantaFe, NM:
Onward Press, 1997

Sadoski, D. Client/Server Architectures. GTE. 1997.

<http://www.sei.cmu.edu/str/descriptions/clientserver.html>.

Schussel, G. Client/Server Past, Present and Future. 1995

<http://news.dci.com/geos/>.

Sessions, R. Measuring Scalability. Object watch newsletter. 2000.
<http://216.239.33.100/search?q=cache:a9qPEHOKbQEC:www.objectwatch.com
/issue_26.htm+Sessions,+R.+Measuring+Scalability+Objectwatch+newsletter+20
00.&hl=en&ie=UTF-8>

Washington State Transportation Center. Choosing the Route to Traveler Information
Systems Deployment: Decision factors for Creating Public/Private Plans. 1998.

<www.itsa.org/.../b23f8115ff328af2852567f3005e7db0/
$FILE/ATIS%20Business%20Models%20Sept%2099.ppt>.

Webopedia. 2001. <www.webopedia.com>.

What are Location Services? the GIS perspective. ESRI White Paper. 2000.

<www.esri.com>.

 78

APPENDIX

 79

Appendix

Appendix Section Description

A Listing of all ASP (*.asp), JavaScript (*.js)
and VB code (*.bas,*.vbp) used in the
research. Javascript code added by the

research in addition to the standard
ArcIMS HTML viewer scripts are

highlighted in blue

B

Metadata for PDOT traffic CD

 80

A (scripts in sequence)

Script Purpose
1. researchacetate.asp Build XML files layers from Access tables for

viewing existing polygons.
2. researchpp.asp Insert new potential preferred paths.
3. researchstart.asp Display the attribute table on ArcIMS upon

every user login
4. researchupdate.asp Send the ID from client to the server for overlay

in the case of AOI or shortest/preferred path in
the case of potential paths.

5. aimscommon.js ArcIMS script for initializing map service.
Modified for research.

6. aimscustom.js ArcIMS script for adding customized acetate
layers. Modified to add AOI and network link
layers for display.

7. moresearch.js Launch researchstart.asp from ArcIMS when
user logs in.

8. aimsclick.js ArcIMS script for handling clicks on tools.
Launch the ASP script researchpp.asp to store
preferred paths. Record ID for preferred paths.

9. toolbar.htm Add the tools for storing AOIs and potential
paths.

10. mointersect.exe Performs overlays to extract network traffic
volumes within AOIs (compiled into exe file)

11. linepp.exe Fetch traffc volumes and geometry of network
links for a preferred path (compiled into exe).

12. shortestpath.exe Compute shortest path (compiled into exe).

 81

A

Listing of research scripts

 82

<%@ LANGUAGE=JAVASCRIPT%>
<!-- #include file="adojavas.inc" -->

<HTML>
<HEAD>
<meta http-equiv="expires" content="0">
</HEAD>
<BODY>

<%

//Script :
//1) query the tuserpoly database
//2) write an XML as xml_<usernum>
//3) XML has rectangle or link ids
var usernum;
var type;

usernum = Request.Querystring("usernum");

selectstring = "SELECT * FROM tuserpoly WHERE usernum = " + usernum;
//selectstring = "SELECT * FROM A37 WHERE usernum = '" + usernum + "'";
conn = Server.CreateObject("ADODB.Connection");
conn.open("motuserpoly","","");
inrecordset = Server.Createobject("ADODB.recordset");
Response.write(selectstring);
inrecordset.open(selectstring,conn);

researchacetate.asp

 This ASP script sets up the display of
existing AOI shapes once the user logs in.
An XML file is created from a query to the
master table ‘tuserpoly.

 83

//Open a textfile and write to it:
var textfilename = "D:\\ArcIMS\\Website\\moresearchsite\\user" + usernum + ".xml";

var textfileobj = Server.CreateObject("Scripting.FileSystemObject");
var textfile = textfileobj.CreateTextFile(textfilename);

//Loop thru the fields and print rows on the response:

var numfields = inrecordset.Fields.Count;
var xmlheader = '<?xml version=' + '"1.0"' + ' encoding=' + '"ISO8859-1"' + ' ?>';
textfile.WriteLine(xmlheader);

textfile.WriteLine("<USERSHAPE>");

//Response.write("</tr>");
while(!inrecordset.EOF){
 //Response.write("<tr>");
 var aoitype = inrecordset.fields("aoitype");
 var theminx = inrecordset.fields("Minx");
 var themaxx = inrecordset.fields("Maxx");
 var theminy = inrecordset.fields("Miny");
 var themaxy = inrecordset.fields("Maxy");
 var idval = inrecordset.fields("uniqueid");

 textfile.WriteLine(" <obj>");
 if (aoitype==1){
 var theheader = "rect";
 }else if (aoitype==0)
 {
 var theheader = "pp"
 }else
 {
 var theheader = "shorty"
 }
 var linestring = " <type>" + theheader +"</type>";
 textfile.WriteLine(linestring);
 var thestring = " <minx>" + theminx + "</minx>"
 textfile.WriteLine(thestring);
 var thestring = " <miny>" + theminy + "</miny>"
 textfile.WriteLine(thestring);
 var thestring = " <maxx>" + themaxx + "</maxx>"
 textfile.WriteLine(thestring);

 84

 var thestring = " <maxy>" + themaxy + "</maxy>"
 textfile.WriteLine(thestring);
 var thestring = " <idval>" + idval + "</idval>"
 textfile.WriteLine(thestring);
 textfile.WriteLine(" </obj>");

 inrecordset.movenext();

}

textfile.WriteLine("</USERSHAPE>");
inrecordset.close;
conn.close;

%>
</BODY>
</HTML>

 85

<%@ LANGUAGE=JAVASCRIPT%>
<!-- #include file="adojavas.inc" -->

<HTML>
<HEAD>
<meta http-equiv="expires" content="0">
</HEAD>
<BODY>

<%

//researchpp.asp
var idstring = "";
var thedesc = "";
// Fetch query queryparameters:
thedesc = Request.Querystring("pathdesc");
var usernum = Request.Querystring("usernum");
idstring = Request.Querystring("idstring");
Response.write(usernum);

conn = Server.CreateObject("ADODB.Connection");
conn.open("motuserpoly","","");
inrecordset = Server.Createobject("ADODB.recordset");
inrecordset.open("tuserpoly",conn,adOpenKeyset,adLockOptimistic,adCmdTable);

inrecordset.AddNew;
inrecordset.fields("usernum") = usernum;
inrecordset.fields("aoitype") = 0; // PP type
if (thedesc!=""){
 inrecordset.fields("Desc") = thedesc;
}

researchpp.asp
Insert new potential preferred paths

 86

var maxrecordset = Server.Createobject("ADODB.recordset");
var maxsql = "SELECT max(uniqueid) AS maxid FROM tuserpoly";
maxrecordset = conn.execute(maxsql);

var maxval = maxrecordset.fields("maxid");
inrecordset.fields("uniqueid") = maxval + 1;
var uniqueid = maxval + 1;
maxrecordset.close;
inrecordset.Update;

inrecordset.close;

conn = Server.CreateObject("ADODB.Connection");
conn.open("moconnection2","","");
inrecordset = Server.Createobject("ADODB.recordset");
inrecordset.open("pplookup",conn,adOpenKeyset,adLockOptimistic,adCmdTable);

idstring = idstring + '';

var startpos = 0;
var pos = 0;
var idarray = idstring.split("*");

for (i=0;i<idarray.length;i++){
 inrecordset.AddNew;
 var theid = idarray[i];
 inrecordset.fields("uniqueid").value = uniqueid;
 inrecordset.fields("usernum").value = usernum;
 inrecordset.fields("linkid").value = Number(theid);
 inrecordset.Update;
}

inrecordset.close;

%>
</BODY>
</HTML>

 87

<%@ LANGUAGE=JAVASCRIPT%>
<!-- #include file="adojavas.inc" -->

<HTML>
<HEAD>
<meta http-equiv="expires" content="0">
</HEAD>
<BODY>

<%
//researchstart.asp
var usernum;
var type;

usernum = Request.Querystring("usernum");

selectstring = "SELECT * FROM tuserpoly WHERE usernum = " + usernum;
//selectstring = "SELECT * FROM A37 WHERE usernum = '" + usernum + "'";
conn = Server.CreateObject("ADODB.Connection");
conn.open("motuserpoly","","");
//conn.open("moconnection2","","");
inrecordset = Server.Createobject("ADODB.recordset");
Response.write(selectstring);
inrecordset.open(selectstring,conn);

//Loop thru the fields and print rows on the response:

var numfields = inrecordset.Fields.Count;

Response.write("<table border='1' cellspacing='0' cellpadding='2' nowrap
bgcolor='White'>");
Response.write("<tr>");
for (i=0; i<numfields;i++){
 Response.write("<th>");
 Response.write(inrecordset.Fields(i).name);

researchstart.asp
Display the attribute table on ArcIMS upon
every user login

 88

 Response.write("</th>");
}
Response.write("</tr>");
while(!inrecordset.EOF){
 Response.write("<tr>");
 for (i=0;i<numfields;i++){
 var field = inrecordset.fields(i).name;
 var thetype = inrecordset.fields("aoitype");
 if (field == "uniqueid") {
 idvalue = inrecordset.fields(field);
 Response.write("<td>");
 //var theanchorstring = '<a href="' +
"/mpcasp/agendaedit.asp?"+"uid="+idvalue+"&"+"usernum="+usernum +'">' + "Edit
feature" + "";
 //var theanchorstring = '<a href="' +
"javascript:window.document.location=" + '"http://mpc-
web/mpcasp/agendedit.asp?"+"uid="+idvalue+"&"+"usernum="+usernum +'">' + "Edit
feature" + "";
 var theanchorstring = '<a href="' +
"/website/moresearchsite/default.htm?"+"mode=update"+"&"+"uid="+idvalue+"&"+"use
rnum="+usernum + "&" + "type="+thetype+'"' + " TARGET=" +'"_top"'+ '>' + idvalue +
"";
 Response.write(theanchorstring);
 Response.write("</td>");
 } else
 {
 var value = inrecordset.fields(field);
 Response.write("<td>");
 Response.write(value);
 Response.write(".");
 Response.write("</td>");
 }
 }
 inrecordset.movenext();
 Response.write("</tr>");
}
Response.write("</tr>");
Response.write("</table>");
conn.close;

%>
</BODY>
</HTML>

 89

<%@ LANGUAGE=JAVASCRIPT%>
<!-- #include file="adojavas.inc" -->
<%Response.AddHeader("Pragma","No-Cache");%>
<HTML>
<BODY>

<%

//researchupdate.asp
var usernum;
var linkindex;
var objectid; // objectid for the aoi to overlay rectangle with
var inrecordset;
var conn;
var cmd;
var dllobj;

usernum = Request.Querystring("usernum");
uid = Request.Querystring("uid");
type = Request.Querystring("type");

var objShell = new ActiveXObject("WScript.Shell");

//Determine which exe to launch. Use type for this:
var textstring = "D:\\ArcIMS\\Website\\moresearchsite\\Dev\\mointersect.exe " + uid +
"&" + usernum;

if (type=="1"){
 //var textstring = "D:\\ArcIMS\\Website\\moresearchsite\\Dev\\mointersect.exe "
+ uid + "&" + usernum;
} else if (type=="0"){
 //var textstring = "D:\\ArcIMS\\Website\\moresearchsite\\Dev\\linepp.exe " + uid
+ "&" +usernum;
} else if (type=="2"){

researchupdate.asp

 90

 //var textstring = "D:\\ArcIMS\\Website\\moresearchsite\\Dev\\shortestpath.exe "
+ uid + "&" +usernum;
}

Response.write(textstring);
var intStatus = objShell.run(textstring, 0, true);
if(intStatus==0) {
 Response.Write("sucess");
}

//Assume that the XML file is written out by the exe:

/*Query the Oracle tUserPoly table and fetch attributes*/

selectstring = "SELECT * FROM tuserpoly WHERE usernum = " + usernum;
conn = Server.CreateObject("ADODB.Connection");
conn.open("motuserpoly","","");
inrecordset = Server.Createobject("ADODB.recordset");
Response.write(selectstring);
inrecordset.open(selectstring,conn);

//Loop thru the fields and print rows on the response:

var numfields = inrecordset.Fields.Count;
var field;
var value;
var theid;
var theanchorstring;
var idstring;
Response.write("<table border='1' cellspacing='0' cellpadding='2' nowrap
bgcolor='White'>");
Response.write("<tr>");
for (i=0; i<numfields;i++){
 Response.write("<th>");
 Response.write(inrecordset.Fields(i).name);
 Response.write("</th>");
}
Response.write("</tr>");
while(!inrecordset.EOF){
 Response.write("<tr>");
 for (i=0;i<numfields;i++){

 var field = inrecordset.fields(i).name;
 if (field == "id") {

 91

 idvalue = inrecordset.fields(field);
 Response.write("<td>");
 //var theanchorstring = '<a href="' + "mpc-
web/mpcasp/agendaedit.asp?"+"uid="+idvalue+"&"+"usernum="+usernum +'">' + "Edit
feature" + "";
 var theanchorstring = '<a href="' +
"/mpcasp/agendaedit.asp?"+"mode=update"+"uid="+idvalue+"&"+"usernum="+usernum
+'"' + " TARGET=" +'"_top"'+ '>' + "Edit feature" + "";
 Response.write(theanchorstring);
 Response.write("</td>");
 }else
 {
 var value = inrecordset.fields(field);
 Response.write("<td>");
 Response.write(value);
 Response.write(".");
 Response.write("</td>");
 }
 }

 inrecordset.movenext();
 Response.write("</tr>");
}
Response.write("</tr>");
Response.write("</table>");
conn.close;
%>
</BODY>
</HTML>

 92

// aimsCommon.js
/*
* JavaScript template file for ArcIMS HTML Viewer
* dependent on aimsXML.js, ArcIMSparam.js, aimsMap.js
*/

aimsCommonPresent=true;

//var theReply = "It didn't work!";
var queryTool = 0;
var legendImage="";
var modeBlurb = modeList[0];

// delimiter to be used between coordinates in strings in ArcXML
request
var coordsDelimiter = " ";
// delimiter to be used between pairs of coordinates in strings in
ArcXML request
var pairsDelimiter = ";";

var chkUnits=false;
var legendTemp = false;
var ovIsVisible=false;

var showBuffer = false;

// character used by browser in decimals - either point or comma
var decimalChar = ((("theChar is" + (10/100)).indexOf("."))==-1) ? ","
: ".";
//alert("Decimal character: " + decimalChar);

/*

Common functions

*/

// when there is a mapservice to load, it proceeds from here

Aimscommon.js

 93

function startUp() {

 if (imsURL != "") {
 //alert(imsURL);
 iWidth = parseInt(document.theImage.width);
 iHeight = parseInt(document.theImage.height);
 if (imsURL!=imsOVURL) toggleOVVisible = false;
 getStartExtent();

 }
}

// get the starting extent
function getStartExtent() {
 if (parent.PostFrame.document.forms[0]!=null) {
 var theString = '<ARCXML
version="1.1">\n<REQUEST>\n<GET_SERVICE_INFO renderer="false"
extensions="false" fields="false" />\n';
 theString = theString + '</REQUEST>\n</ARCXML>';
 var theReply="";
 if (getLimitExtent) {
 if (hasOVMap) {
 sendToServer(imsOVURL,theString,3);
 } else {
 sendToServer(imsURL,theString,3);
 }
 } else {
 XMLMode=3;
 if (hasOVMap) {
 sendToServer(imsOVURL,theString,998);
 } else {
 processXML(msgList[1]);
 }
 }
 } else {
 alert(msgList[2]);
 }
}

// process the start extent and set up layers
function processStartExtent(theReply) {
 //alert(theReply);
 checkForForbiddenTags(theReply);
 // check for separators in serviceinfo
 var endpos = 0;
 var startpos = 0;
 var pos = theReply.indexOf("<SEPARATORS");
 if (pos!=-1) {

 startpos = theReply.indexOf("ts=",pos);
 if (startpos!=-1) {
 startpos += 4;
 endpos = theReply.indexOf(dQuote,startpos);
 pairsDelimiter = theReply.substring(startpos,endpos);
 }

 94

 startpos = theReply.indexOf("cs=",pos);
 if (startpos!=-1) {
 startpos += 4;
 endpos = theReply.indexOf(dQuote,startpos);
 coordsDelimiter =
theReply.substring(startpos,endpos);
 }

 //alert("pairsDelimiter="+pairsDelimiter+"\ncoordsDelimiter="+coo
rdsDelimiter);
 checkCoords();
 }

 if (getStartingExtent) {
 getXYs(theReply);
 startLeft=eLeft;
 startRight=eRight;
 startTop=eTop;
 startBottom=eBottom;
 } else {
 eLeft=startLeft;
 eRight=startRight;
 eTop=startTop;
 eBottom=startBottom;
 xDistance = Math.abs(eRight-eLeft);
 var sFactor = xDistance / iWidth
 mapScaleFactor = sFactor;

 }
 if (aimsLayersPresent) {
 getLayers(theReply);
 if (setLayerVisible.length>0) setupLayerVisible();
 }
 if (aimsQueryPresent) {
 if (useStoredQuery) checkStoredQueries(theReply);
 } else {
 useStoredQuery=false;
 }
 xDistance = Math.abs(eRight-eLeft);
 yDistance = Math.abs(eTop-eBottom);
 xHalf = xDistance/2;
 yHalf = yDistance/2;
 panX = xDistance * panFactor;
 panY = yDistance * panFactor;
 if (chkUnits) {
 if (MapUnits=="DEGREES") {
 if ((eRight > 250) || (eTop > 150)) MapUnits="FEET";
 // alert(MapUnits);
 }
 chkUnits=false;
 }
 mouseX = 0;
 mouseY = 0;
 pixelX = xDistance/iWidth;
 pixelY = yDistance/iHeight;

 95

 mapX = eLeft;
 mayY = eTop;
 lastLeft = eLeft;
 lastRight = eRight;
 lastTop = eTop;
 lastBottom = eBottom;
 if (hasOVMap == false) {
 fullLeft = limitLeft;
 fullRight = limitRight;
 fullTop = limitTop;
 fullBottom = limitBottom;
 fullWidth = Math.abs(fullRight - fullLeft);
 fullHeight = Math.abs(fullTop - fullBottom);

 }
 if (aimsLayersPresent) {
 if ((hasTOC) && (showTOC)) {
 parent.TOCFrame.document.location=appDir+"toc.htm";
 }
 }
 if (aimsGeocodePresent) {
 if (GCLayerCount==0) {
 if ((useGeocode) || (useReverseGeocode)) {
 useGeocode=false;
 useReverseGeocode=false;
 }
 }
 } else {
 useGeocode=false;
 useReverseGeocode=false;
 }
 if (parent.ToolFrame!=null) {
 //alert("Refreshing toolbar");
 parent.ToolFrame.document.location= appDir + "toolbar.htm";
 } else if (hasToolBarOnLayer) {
 // requires custom function getLayerListContent. . .
example in layerlist.js in Hyperlink sample
 var content = getLayerListContent();
 if (isNav) {
 replaceLayerContent("theToolBar",content);
 } else {
 content = swapStuff(content,"\\'",sQuote);
 document.all.theToolBar.innerHTML = content;
 }

 }
 hideRetrieveData();
 if ((ovIsVisible) && (aimsDHTMLPresent)) {
 ovIsVisible = false;
 toggleOVMap();
 }
 if (enforceFullExtent) {
 writeBlankMapXML();
 } else {

 96

 if ((aimsQueryPresent) && (highlightedOne!="") &&
(queryZoom)) {
 alert("launching custom query 1");
 setStartQuery();

 } else {
 sendMapXML();
 alert("launching custom query 2");
 getCommandLineForASP(webParams); //MO:Launch the
commandline parsing for user shapes
 //If update then Call a function to zoom into the
necessary acetate links, use linkids
 }
 }
}

// request a list of available Image MapServices
function startMap() {
 showRetrieveData();
 if (aimsGenericPresent) {
 // only if aimsGeneric.js is loaded - for generic sample
 getDefaultParams()
 var theText = "<GETCLIENTSERVICES/>";
 sendToServer(catURL,theText,5);

 } else {
 startUp();
 }
}

/* ************************
* Extent functions
* ************************
*/

// get the Map Image width
function getMapWidth () {
 var mapFrameWidth = thePageWin.innerWidth;

 if (mapFrameWidth == null) {
 mapFrameWidth = thePageDoc.body.clientWidth;
 }
 return mapFrameWidth;
}

 //get the Map Image height
function getMapHeight () {
 var mapFrameHeight = thePageWin.innerHeight;

 if (mapFrameHeight == null) {
 mapFrameHeight = thePageDoc.body.clientHeight;
 }
 return mapFrameHeight;
}

 97

function checkCurrentExtent() {
 var msg = msgList[3] + eLeft + msgList[4] + eBottom + msgList[5]
+ eRight + msgList[6] + eTop;
 var ratio1 = xDistance/fullWidth;
 msg += msgList[7] + ratio1;
 alert(msg);
}

/* ************************
* Mode display functions
* ************************
*/
// write out ModeFrame page
function writeModeFrame(currentMode) {
 parent.ModeFrame.document.location= appDir + "ModeFrame.htm";
}

// write out Mode on dynamic layer
function writeModeLayers(currentMode) {
 var content = '<font face="' + modeLayerFont + '"color="' +
modeLayerShadowColor + '"size=' + modeLayerSize + '>' + currentMode
+ '';
 replaceLayerContent("theMode1",content);
 content = '<font face="' + modeLayerFont + '"color="' +
modeLayerColor + '"size=' + modeLayerSize + '>' + currentMode +
'';
 replaceLayerContent("theMode2",content);

}

/* ***
* Various String manipulation Functions
* ***
*/

// swap out double quotes for single
function swapQuotes2(inText) {
 var doubleQuote = dQuote;
 var singleQuote = "'";
 var preTemp = "";
 var posTemp = "";
 var nextPos = 0;
 var ePos = inText.length;
 var pos=9;
 while (pos != -1) {
 pos = inText.indexOf(dQuote);
 if (pos!=-1) {
 nextPos=pos+1;
 preTemp = inText.substring(0,pos);
 posTemp = inText.substring(nextPos,ePos);
 inText = preTemp + sQuote + posTemp;
 }
 }

 98

 return inText;
}

function swapQuotes(inText) {
 inText = inText.replace(/"/g, "'");
 return inText;
}

// convert hexidecimal rgb number to delimited decimal rgb
function convertHexToDec(hexColor) {
 var pos = hexColor.indexOf(",");
 var decString = hexColor;
 if (pos==-1) {
 pos = hexColor.indexOf("#");
 if (pos!=-1) {
 hexColor = hexColor.substring((pos + 1),(pos + 7));
 }
 //alert(hexColor);
 var redHex = hexColor.substring(0,2);
 var greenHex = hexColor.substring(2,4);
 var blueHex = hexColor.substring(4,6);
 decString = parseInt(redHex,16) + "," +
parseInt(greenHex,16) + "," + parseInt(blueHex,16);

 }
 //alert(decString);
 return decString;

}

// swap out one interior string with another
function swapStuff(oldString,oldStuff,newStuff) {
 var pos = 0;
 var rpos = 0;
 var epos = 0;
 var leftString = "";
 var rightString = "";
 pos = oldString.indexOf(oldStuff);
 while (pos!=-1) {
 epos = oldString.length;
 rpos = pos + oldStuff.length;
 leftString = oldString.substring(0,pos);
 rightString = oldString.substring(rpos,epos);
 oldString = leftString + newStuff + rightString;
 pos = oldString.indexOf(oldStuff);
 }
 leftString=null;
 rightString=null;
 return oldString;
}

/* ***
* Various utility Functions
* ***

 99

*/

// disables error checking
function clearError() {
 return true;
}

// reset error checking to default
function resetError() {
 return false;
}

function reloadApp() {
 if (isNav) {
 document.location = "default.htm";
 }
}

// clear out leading spaces in field value list
function clearLeadingSpace(inText) {
 var pos=9;
 while (pos != -1) {
 pos = inText.indexOf('=" ');
 if (pos!=-1) {
 var lastpos = inText.length;
 var midend = pos + 2;
 var midstart = pos + 3;
 var leftSide = inText.substring(0,midend);
 var rightSide = inText.substring(midstart,lastpos);
 inText = leftSide + rightSide;
 }
 }
 return inText;
}

// replace < and > in string with [and] to allow display in html page
function untag(inputString) {
 var outString = inputString.replace(/</g,"[");
 outString = outString.replace(/>/g, "]");
 return outString;
}

// replace single quotes with double single quotes
// set up interior single qoutes and apostrophes for queries
function fixSingleQuotes(inputString) {
 var outString = inputString.replace(/'/g, "''");
 return outString;
}

// parse out record data from XML stream
function parseRecordString(theReply, startpos) {
 var inData = "";
 var pos = theReply.indexOf("<FIELDS ",startpos);

 100

 if (pos!=-1) {
 startpos = pos + 8;
 xmlEndPos = theReply.indexOf('" />',startpos);
 inData = theReply.substring(startpos,xmlEndPos);
 }
 return inData;
}

// get a list of field names from the returned record
function getFieldNames(recordString) {
 var theStuff = new String(recordString);
 var theList = theStuff.split('" ');
 var fName1 = new Array();
 for (var f=0;f<theList.length;f++) {
 var v = theList[f].split('="');
 fName1[f] = v[0];
 }
 return fName1;

}

// get a list field values from the returned record
function getFieldValues(recordString) {
 var theStuff = new String(recordString);
 var theList = theStuff.split('" ');
 var fValue1 = new Array();
 for (var f=0;f<theList.length;f++) {
 var v = theList[f].split('="');
 if ((v[1]=="") || (v[1]==null)) v[1] = " ";
 if (v[0]==LayerShapeField[ActiveLayerIndex]) v[1]="[" +
ActiveLayerType + "]";
 fValue1[f] = v[1];
 }
 return fValue1;

}

// just get the field value from the lists of fieldnames and
fieldvalues
function getIdValue(fieldNameArray, fieldValueArray) {
 var theValue = 0;
 for (var f=0;f<fieldNameArray.length;f++) {
 if (fieldNameArray[f]==LayerIDField[ActiveLayerIndex]) {
 theValue = fieldValueArray[f];
 }
 }
 return theValue;

}

// just get the interior string from the theReply between preString and
postString
// starting from startpos
function justGetValue(theReply,preString,postString,startpos) {
 var theValue = "";

 101

 var pos = theReply.indexOf(preString,startpos);
 if (pos!=-1) {
 pos = pos + preString.length;
 var endpos = theReply.indexOf(postString,(pos));
 if (endpos!=-1) {
 theValue = theReply.substring(pos,endpos);
 xmlEndPos = endpos;
 }
 }
 return theValue;
}

// get one field value from theReply starting from startpos
function justGetFieldValue(theReply,theField,startpos) {
 var preString = theField + '="';
 var returnString = justGetValue(theReply, preString, dQuote,
startpos);
 return returnString;
}

// get the number of features returned in xml response
function justGetFeatureCount(theReply) {
 var theCount = 0;
 var pos = theReply.indexOf("<FEATURECOUNT");
 if (pos!=-1) {
 var theValue = justGetValue(theReply,'count="',dQuote,pos);
 //alert(theValue);
 theCount = parseInt(theValue);
 }
 return theCount;
}

// get all the field values and return a list
function getAllFieldValues(theReply,theField,recCount) {
 var vList = new Array();
 xmlEndPos = 0;
 for (var i=0;i<recCount;i++) {
 vList[i] =
parseFloat(justGetFieldValue(theReply,theField,xmlEndPos));
 }
 return vList;
}

// reset order to numeric
function numberorder(a,b) { return a - b; }

// replace common HTML entitys with the characters they represent
function parseEntity(oldString) {
 //alert(oldString);
 oldString = oldString.replace(/'/g, "'");
 oldString = oldString.replace(/>/g, ">");
 oldString = oldString.replace(/</g, "<");
 oldString = oldString.replace(/"/g, '"');
 oldString = oldString.replace(/&/g, "&");
 //alert(oldString);

 102

 /*
 oldString = swapStuff(oldString,"'","'");
 oldString = swapStuff(oldString,"÷","/");
 oldString = swapStuff(oldString,"≥",">=");
 oldString = swapStuff(oldString,">",">");
 oldString = swapStuff(oldString,"≤","<=");
 oldString = swapStuff(oldString,"<","<");
 oldString = swapStuff(oldString,"≠","<>");
 oldString = swapStuff(oldString,""",'"');
 oldString = swapStuff(oldString,"&","&");
 */

 return oldString;
}

function hideQuotes(oldString) {

}

// replace the five problem characters for the server's XML parser
function makeXMLsafe(oldString) {
 //alert(oldString);
 oldString = oldString.replace(/&/g, "&");
 oldString = oldString.replace(/'/g, "'");
 oldString = oldString.replace(/>/g, ">");
 oldString = oldString.replace(/</g, "<");
 oldString = oldString.replace(/"/g, """);
 /*
 oldString = swapStuff(oldString,"'","'");
 oldString = swapStuff(oldString,">",">");
 oldString = swapStuff(oldString,"<","<");
 oldString = swapStuff(oldString,'"',""");
 */
 //alert(oldString);
 return oldString;
}

// replace + in string with space to allow parsing of unescaped xml
response
function replacePlus(inText) {
 var re = /\+/g;
 inText = inText.replace(re," ");
 return inText;
}

// replaces comas or spaces in these variables to coordsDelimiter value
 // the variables checked are used for image coords and should be
integer
function checkCoords() {
 var re = /,|\s|\|/g;
 NorthArrowCoords = NorthArrowCoords.replace(re,coordsDelimiter);
 CopyrightCoords = CopyrightCoords.replace(re,coordsDelimiter);
}

 103

// get the substring between beforeString and afterString, starting at
startpos
// must be found before limitpos (0 for no limit)
// caseSensitive = true or false
function
getInsideString(inString,beforeString,afterString,startpos,limitpos,cas
eSensitive) {
 var returnString = "";
 var ucInString = inString;
 var ucBefore = beforeString;
 var ucAfter = afterString;
 if (limitpos==0) limitpos = inString.length;
 if (!caseSensitive) {
 ucInString = inString.toUpperCase();
 ucBefore = beforeString.toUpperCase();;
 ucAfter = afterString.toUpperCase();;
 }
 pos = ucInString.indexOf(ucBefore,startpos);
 //alert(startpos);
 if ((pos != -1) && (pos<limitpos)) {
 pos = pos + ucBefore.length;
 var endpos = ucInString.indexOf(ucAfter,pos);
 returnString = inString.substring(pos,endpos);
 }

 return returnString;
}

// formats date string to "{ts 'yyyy-mm-dd hh:mm:ss'}"
function formatDate(theDateString) {
 //if (theDateString.toUpperCase().indexOf("UTC")==-1)
theDateString + " UTC";
 var v = new Date(theDateString);
 //alert(v);

 var dateString = "";
 if (!isNaN(v.valueOf())) {
 var y = v.getFullYear();
 var mo = v.getMonth() + 1;
 if (mo<10) mo = "0" + mo;
 var d = v.getDate();
 if (d<10) d = "0" + d;
 var h = v.getHours();
 if (h<10) h = "0" + h;
 var mi = v.getMinutes();
 if (mi<10) mi = "0" + mi;
 var s = v.getSeconds();
 if (s<10) s = "0" + s;
 dateString = "{ts \"" + y + "-" + mo + "-" + d;
 if (theDateString.indexOf(":")!=-1) {
 if (v.getHours() + v.getMinutes() + v.getSeconds()>0)
 dateString += " " + h + ":" + mi + ":" + s;
 }
 dateString += "\"}";
 }

 104

 // note: this sets up the formatted date with double quotes,
 // which will be changed to single by the swapQuotes
function called in sendQueryString()
 return dateString;

}

// format decimal numerics from comma to point
// SQL format requires English notation
function convertDecimal(theNumString) {
 var replacer = "."
 var re = /,/g;
 var newString = theNumString.replace(re,replacer);
 return newString;
}

// test for forbidden tags for this service
function checkForForbiddenTags(theReply) {
 var startpos = theReply.indexOf("CAPABILITIES forbidden=");
 if (startpos!=-1) {
 startpos = startpos + 24;
 endpos = theReply.indexOf(dQuote,startpos);
 var forbiddenTags = theReply.substring(startpos,endpos);
 //alert(forbiddenTags);
 if (forbiddenTags.indexOf("GET_IMAGE")!=-1) {
 // No image requests!!!! Abort viewer
 parent.document.location = "Abort.htm";
 }
 if (forbiddenTags.indexOf("GET_FEATURES")!=-1) {
 // No id/query requests!!!! Kill buttons
 aimsSelectPresent=false;
 aimsQueryPresent=false;
 aimsBufferPresent=false;
 aimsIdentifyPresent=false;
 canQuery=false;
 useIdentify=false;
 useSelect=false;
 useQuery=false;
 useFind=false;
 useBuffer=false;
 useStoredQuery=false;
 useHyperLink=false;
 useHyperLinkAny=false;
 useIdentifyAll=false;
 useBufferShape=false;

 }
 if (forbiddenTags.indexOf("GET_GEOCODE")!=-1) {
 // No geocode requests!!!! Kill buttons
 aimsGeocodePresent=false;
 useGeocode=false;
 useReverseGeocode=false;
 }
 if (forbiddenTags.indexOf("GET_EXTRACT")!=-1) {
 // No geocode requests!!!! Kill buttons

 105

 useExtract=false;
 }

 }
}

 106

// aimsCustom.js
/*
* JavaScript template file for ArcIMS HTML Viewer
* dependent on aimsXML.js, ArcIMSparam.js, aimsCommon.js,
aimsMap.js,
* aimsLayers.js, aimsDHTML.js
* aimsClick.js, aimsNavigation.js,
*/

// global variables
 aimsCustomPresent=true;
 // change these to send XML response to custom function.
 // use numbers >= 1000 and match in useCustomFunction()
 // defaults are defined in aimsXML.js and use standard functions

 // xml response mode for selection
 selectXMLMode = 6;
 // xml response mode for identify
 identifyXMLMode = 7;
 // xml response mode for query
 queryXMLMode = 8;
 // xml response mode for find
 findXMLMode = 14;
 // xml response mode hyperlink
 hyperlinkXMLMode = 15;

// custom function for handling clicks
// flow redirected here when
// toolMode set to >=1000
function customMapTool(e) {
 if (toolMode == 1001) {
 // insert code here
 return false;

 }
 if (toolMode == 1002) {
 // insert code here

 }

}

// send XML response to custom function

Aimscustom.js

 107

// flow redirected here when
// XMLMode >=1000
function useCustomFunction(theReply) {
 if (XMLMode==1001) {
 // insert code here
 } else if (XMLMode==1002) {
 // insert code here
 } else {
 alert(msgList[55] + XMLMode + msgList[56]);
 }
 hideLayer("LoadData");
}

// add custom stuff to Map XML request. . . between selection and
geocode
function addCustomToMap1(){
 var customString = "";

 //MO: modified here to read the XML file produced by
researchstart:
 alert("custom to map");
 //Get usernum even though getcommandlineline extracts it again!
 var cmdString2 = webParams.toUpperCase();
 var pos = cmdString2.indexOf("USERNUM=");
 if (pos!=-1) {
 startpos = pos + 8;
 endpos = webParams.indexOf("&",startpos);
 if (endpos==-1) endpos = webParams.length;
 usernum = webParams.substring(startpos,endpos);
 alert("usernum at customtomap");
 alert(usernum);
 }
 //Query the database first and get the rectangle bounds first:
 var aspurl =
"http://puertorico.geog.utk.edu/researchasp/researchacetate.asp?" +
"Usernum=" + usernum;
 var win1 = parent.MoFrame;
 win1.document.open();
 win1.document.location = aspurl;

 for (i=0;i<2000;i++)

 //Read the XML file just produced:
 var xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
 xmlDoc.async = "false"
 var loadstring = "user" + usernum + ".xml";
 xmlDoc.load(loadstring);
 nodes = xmlDoc.documentElement.childNodes
 for (i=0;i<nodes.length;i++){
 thetype = nodes.item(i).childNodes.item(0).text;
 //alert(thetype);
 //Mo: check if update!
 //If update display aoi being updated only, use uid-> AOI
identifier:

 108

 if(thetype=='rect'){
 var minx = nodes.item(i).childNodes.item(1).text;
 var miny = nodes.item(i).childNodes.item(2).text;
 var maxx = nodes.item(i).childNodes.item(3).text;
 var maxy = nodes.item(i).childNodes.item(4).text;
 var theid = nodes.item(i).childNodes.item(5).text;

 var intminx = parseFloat(minx);
 var intmaxx = parseFloat(maxx);
 var intminy = parseFloat(miny);
 var intmaxy = parseFloat(maxy);

 var numtextx = (intminx + intmaxx)/2;
 var numtexty = (intminy + intmaxy)/2;
 var textx = numtextx + '';
 var texty = numtexty + '';
 //alert(textx);
 //alert(texty);

 //Write this layer as acetate:

 customString += '<LAYER type="ACETATE" name="usershape">\n';
 customString += '<OBJECT units="DATABASE">\n<LINE coords="'
+ minx + " " + miny + ';' + minx + " " + maxy + ';';
 customString += maxx + " " + maxy + ';';
 customString += maxx + " " + miny + ';';
 customString += minx + " " + miny + '">\n';
 customString += '<SIMPLELINESYMBOL type="SOLID" color="' +
'#ff0000' + '" width="3"/>\n</LINE>\n</OBJECT>\n';
 customString += '<OBJECT units="DATABASE">\n';
 customString += '<TEXT coords="' + textx + " " + texty + '"
label="' + theid + '">\n<TEXTMARKERSYMBOL fontstyle="regular"
fontsize="30" font="Times New Roman" /></TEXT>\n';
 customString += '</OBJECT>\n';
 customString += '</LAYER>\n';
 //alert(customString);
 }

 }

 getCommandLineForASP(webParams);
 return customString;
}

// add custom stuff to Map XML request. . . between clickpoints and
copyright
function addCustomToMap2(){
 var customString = "";
 var cmdString2 = webParams.toUpperCase();
 var pos = cmdString2.indexOf("MODE=");
 if (pos!=-1) {
 startpos = pos + 5;
 endpos = webParams.indexOf("&",startpos);
 if (endpos==-1) endpos = webParams.length;
 momode = webParams.substring(startpos,endpos);

 109

 alert(momode);

 }
 if (momode!="update") return; // no lines to draw if not an
update
 var pos = cmdString2.indexOf("UID=");
 if (pos!=-1) {
 startpos = pos + 4;
 endpos = webParams.indexOf("&",startpos);
 if (endpos==-1) endpos = webParams.length;
 momodeid = webParams.substring(startpos,endpos);
 alert(momodeid);

 }
 //Type is used for AOI overlay or potential path:
 var pos = cmdString2.indexOf("TYPE=");
 if (pos!=-1) {
 startpos = pos + 5;
 endpos = webParams.indexOf("&",startpos);
 if (endpos==-1) endpos = webParams.length;
 momodetype = webParams.substring(startpos,endpos);
 alert(momodetype);

 }

 //Query the database first and get the rectangle bounds first:
 var aspurl =
"http://puertorico.geog.utk.edu/researchasp/researchupdate.asp?" +
"Usernum=" + usernum + "type=" + momodetype;
 var win1 = parent.MoFrame;
 win1.document.open();
 win1.document.location = aspurl;

 for (i=0;i<2000;i++)

 //Read the XML file just produced:
 var xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
 xmlDoc.async = "false"
 var loadstring = "update-" + usernum + momodeid + ".xml";
 //var loadstring = "update-11.xml";
 xmlDoc.load(loadstring);
 nodes = xmlDoc.documentElement.childNodes

 //Initialize the color ramps:
 //Three ramps light-> 4-7617:3
 //Mod-> 7618-15235:6
 //Heavy-> 15235 -22841:9

 for (i=0;i<nodes.length;i++){

 customString += '<LAYER type="ACETATE" name="usershape">\n';
 customString += '<OBJECT units="DATABASE">\n<LINE coords="'
 //alert(nodes.item(i).childNodes.length);
 for (j=0;j<nodes.item(i).childNodes.length-1;j++){

 110

 //alert(j);
 var x = nodes.item(i).childNodes.item(j).text;
 customString += x + " ";
 if (j==(nodes.item(i).childNodes.length -2)) {
 var aadt = nodes.item(i).childNodes.item(j+2).text;
 //alert(aadt);
 //Get the last y:

 } else {
 var y = nodes.item(i).childNodes.item(j+1).text;
 customString += y + ';';
 //Check for last item and read as AADT:
 }

 j++;
 }
 //Classfy aadt:
 if (aadt>=4 && aadt<=7617) {
 var thewitdh = 3;
 } else if (aadt>7617 && aadt<=1523) {
 var thewitdh = 6;
 } else {
 var thewitdh = 9;
 }

 customString += '">\n';
 customString += '<SIMPLELINESYMBOL type="SOLID" color="' +
'#6D67FF' + '" width="' + thewitdh + '"/>\n</LINE>\n</OBJECT>\n';
 customString += '</LAYER>\n';

 if (i==1) {
 alert(customString);
 }

 }

 //Mo:Zoom into this AOI using etops:

 return customString;
}

// add custom stuff to Map XML request. . . under modeOnMap
function addCustomToMap3(){
 var customString = "";
 /*
 customString += '<LAYER type="ACETATE" name="theMode">\n';
 customString += '<OBJECT units="PIXEL">\n<TEXT coord="5,' +
(iHeight-10) + '" label="This is a test">\n';
 customString += '<TEXTMARKERSYMBOL fontstyle="BOLD"
fontsize="12" font="ARIAL" fontcolor="' + modeMapColor + '" ';
 customString += 'threed="TRUE" glowing="' + modeMapGlow +
'" />\n</TEXT>\n</OBJECT>';
 customString += '\n</LAYER>\n';

 111

 alert(customString);
 */
 return customString;
}

// add custom stuff to Map XML request. . . on top of everything
function addCustomToMap4(){
 var customString = "";

 return customString;
}

// extract layers to download
function extractIt() {
 hideLayer("measureBox");
 alert(msgList[51]);
}

 112

// Moresearch.js
/***
*
* Javascript to parse command line:
* Launch window to ASP
* Query oracle database and select preselected user polygons
**/

//List of global variables that are modified:
//starttop,startleft,startbottom,startright all set to 0 along with the
limits

//List of entry points:
//12/12/01 amiscommon.js::processStartExtent()

function getCommandLineForASP(cmdString) {

 alert("moagenda.js: starting");
 //var usernum = ""; Note: usernum is defined in AIMSparams.js

 //Process command line:

 var cmdString2 = cmdString.toUpperCase();
 var pos = cmdString2.indexOf("QUERYZOOM=");
 var startpos = 0;
 var endpos = 0;

 if (pos!=-1) {
 startpos = pos + 10;

 endpos = cmdString.indexOf("&",startpos);
 if (endpos==-1) endpos = cmdString.length;
 querystatus = cmdString.substring(startpos,endpos);
 alert(querystatus);
 }
 var pos = cmdString2.indexOf("USERNUM=");
 if (pos!=-1) {
 startpos = pos + 8;
 endpos = cmdString.indexOf("&",startpos);
 if (endpos==-1) endpos = cmdString.length;

Moresearch.js

 113

 usernum = cmdString.substring(startpos,endpos);
 alert(usernum);
 }
 if (usernum != "") {
 // Mo: dont need this now
 /*
 //var userquerystring = 'TUSERPOLY.USERNUM = ' + usernum;
 alert("processing querry");
 var userquerystring = 'ADAMSNET.OBJECTID = 1';
 alert(userquerystring);
 modeBlurb = "Query";
 QueryZoom = true;
 setActiveLayer(2);
 sendQueryString(userquerystring);
 alert("sent query");
 */

 }

 //Launch query with username in ASP:
 //Write data to MoFrame.htm
 var aspurl =
"http://puertorico.geog.utk.edu/researchasp/researchstart.asp?" +
"Usernum=" + usernum;
 alert(aspurl);
 //var aspwin =
window.open(aspurl,"aspwindow","width=575,height=120,scrollbars=yes,res
izable=yes");
 //MO: change to resultframe in mainpage
 var win1 = parent.MoFrame;
 win1.document.open();
 win1.document.location = aspurl;
 //Query the layer again to show shopping cart:
 /*
 Call aimsquery::sendquerystring
 modify aimsidentify::display attributedata() to show shopping
cart urls
 */

}

 114

// aimsClick.js
/*
* JavaScript template file for ArcIMS HTML Viewer
* dependent on aimsXML.js, ArcIMSparam.js, aimsCommon.js,
aimsMap.js,
* aimsLayers.js, aimsDHTML.js
* aimsNavigation.js
*/

aimsClickPresent=true;

var onOVArea = false;

// Global vars to save mouse position
var mouseX=0;
var mouseY=0;
var x1=0;
var y1=0;
var x2=0;
var y2=0;
var zleft=0;
var zright=0;
var ztop=0;
var zbottom=0;

var totalMeasure=0;
var currentMeasure=0;
var lastTotMeasure=0;

// variables for interactive clicks
var clickCount = 0;
var clickPointX = new Array();
var clickPointY = new Array();
var clickMeasure = new Array();
 // type - 1=Measure; 2=SelectLine ; 3=SelectPolygon
var clickType = 1;

var shapeSelectBuffer = false;

var panning=false;
var zooming=false;
var selectBox=false;
var blankImage = "images/map.gif";

Aimsclick.js

 115

var leftButton =1;
var rightButton = 2;
if (isNav) {
 leftButton = 1;
 rightButton = 3;
}

/* ***
* Point click functions
* used by Measure and Select by Line/Polygon
* ***
*/

// put a point at click and add to clickCount
function clickAddPoint() {
 var theX = mouseX;
 var theY = mouseY;
 getMapXY(theX,theY);
 clickPointX[clickCount]=mapX;
 clickPointY[clickCount]=mapY;
 clickCount += 1;
 selectCount=0;
 totalMeasure = totalMeasure + currentMeasure;
 //var u = Math.pow(10,numDecimals);
 //if (totalMeasure!=0) totalMeasure =
parseInt(totalMeasure*u+0.5)/u;

 clickMeasure[clickCount]=totalMeasure;
 legendTemp=legendVisible;
 legendVisible=false;
 var theString = writeXML();
 var theNum = 99;
 sendToServer(imsURL,theString,theNum);

}

// zero out all clicks in clickCount
function resetClick() {
 var c1 = clickCount;
 clickCount=0;
 clickPointX.length=1;
 clickPointY.length=1;
 currentMeasure=0;
 totalMeasure=0;
 lastTotMeasure=0;
 clickMeasure.length=1;
 selectCount=0;

 legendTemp=legendVisible;
 legendVisible=false;
 var theString = writeXML();
 var theNum = 99;
 //showRetrieveMap();
 sendToServer(imsURL,theString,theNum);

 116

 if (toolMode==20) updateMeasureBox();

}

// remove last click from clickCount
function deleteClick() {
 var c1 = clickCount;
 clickCount=clickCount-1;
 selectCount=0;
 if (clickCount<0) clickCount=0;
 if (clickCount>0) {
 totalMeasure = clickMeasure[clickCount]
 clickPointX.length=clickCount;
 clickPointY.length=clickCount;
 clickMeasure.length=clickCount;

 } else {
 totalMeasure=0;
 clickMeasure[0]=0;
 }
 currentMeasure=0;
 if (c1>0) {
 legendTemp=legendVisible;
 legendVisible=false;
 var theString = writeXML();
 var theNum = 99;
 sendToServer(imsURL,theString,theNum);
 }

}

//keep track of currently selected tool, and display it to user
// set the imsMap cursor tool
function clickFunction (toolName) {
 if (hasLayer("measureBox"))
 hideLayer("measureBox");
 switch(toolName) {
 // Zooming functions
 case "zoomin":
 // zoom in mode
 toolMode = 1;
 panning=false;
 selectBox=false;
 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }
 modeBlurb = modeList[0];
 //if (useTextFrame) parent.TextFrame.document.location=
appDir + "text.htm";
 break
 case "zoomout":
 // zoom out mode

 117

 toolMode = 2;
 panning=false;
 selectBox=false;
 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }
 modeBlurb = modeList[1];
 //if (useTextFrame) parent.TextFrame.document.location=
appDir + "text.htm";
 break
 case "zoomlast":
 zoomBack();
 panning=false;
 zooming=false;
 selectBox=false;
 break
 case "zoomactive":
 //alert(LayerExtent[ActiveLayerIndex]);
 var q = LayerExtent[ActiveLayerIndex].split("|");
 panning=false;
 zooming=false;
 selectBox=false;

 //zoomToEnvelope(parseFloat(q[0]),parseFloat(q[1]),parseFloat(q[2
]),parseFloat(q[3]));

 var l = parseFloat(setDecimalString(q[0]));
 var b = parseFloat(setDecimalString(q[1]));
 var r = parseFloat(setDecimalString(q[2]));
 var t = parseFloat(setDecimalString(q[3]));
 var w = r-l;
 var h = t-b;
 // add a bit of a margin around the layer
 var wm = w * (5/100);
 var hm = h * (5/100);
 l = l - wm;
 r = r + wm;
 b = b - hm;
 t = t + hm;
 zoomToEnvelope(l,b,r,t);
 break
 case "fullextent":
 fullExtent();
 break

 // Pan functions
 case "pan":
 // pan mode
 toolMode = 3;

 zooming=false;
 selectBox=false;
 if (isIE) {
 document.all.theTop.style.cursor = "move";

 118

 theCursor = document.all.theTop.style.cursor;
 }
 modeBlurb = modeList[2];
 //if (useTextFrame) parent.TextFrame.document.location=
appDir + "text.htm";
 break

 // Identify-Hyperlink functions
 case "identify":
 // identify mode - layer attributes - requires
aimsIdentify.js
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 if (canQuery) {
 toolMode = 4;

 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }
 modeBlurb = modeList[3];
 } else {
 alert(msgList[46]);
 }
 //alert("Function Not Implemented");

 showGeocode=false;
 if (useTextFrame) parent.TextFrame.document.location=
appDir + "text.htm";
 hideLayer("measureBox");
 break
 case "researchpp":
 // identify mode - layer attributes - requires
aimsIdentify.js
 ppset = true; // variable set so that select is handled
different, needs to be reset in aimsselect.js
 //alert(ppset);
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 if (canQuery) {
 alert("setting tool mode = 10");
 //toolMode = 4;
 toolMode = 21;

 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }
 modeBlurb = modeList[3];

 119

 } else {
 alert(msgList[46]);
 }
 //alert("Function Not Implemented");

 showGeocode=false;
 if (useTextFrame) parent.TextFrame.document.location=
appDir + "text.htm";
 hideLayer("measureBox");

 //Mo: Enter the description for the path:
 //var descwin = parent.TextFrame;
 //descwin.document.open();
 //descwin.document.writeln('<html><meta http-
equiv="Content-Type" content="text/html; charset=' + charSet +
'"><HEAD>');
 //descwin.document.writeln(' </head>');
 //descwin.document.writeln(' <body>');
 //descwin.document.writeln(' Please enter a
descriptor for the path ');
 //descwin.document.writeln('<form name="thepath">');
 //descwin.document.writeln('<input name="pathval" size="25"
maxlength="1000" >');
 //descwin.document.writeln(' </form></body></html>');
 //descwin.close;

 break

 case "researchppstop":
 // Launch the asp and clear ppset and pparray
 //sendShapeSelect(1);

 var textwin = parent.PathFrame;
 var pathdesc = textwin.document.thepath.pathval.value;
 alert(pathdesc);
 alert(usernum);
 var aspurl =
"http://puertorico.geog.utk.edu/researchasp/researchpp.asp?" +
"usernum=" + usernum + "&" + "idstring=" + pparray + "&" + "pathdesc="
+ pathdesc;
 alert(aspurl);
 alert(pparray);
 var win1 = parent.MoFrame;
 win1.document.open();
 win1.document.location = aspurl;
 alert(pparray);
 ppset = false; // variable set so that select is handled
different, needs to be reset in aimsselect.js
 pparray = "";

 break

 120

 case "identifyall":
 // identify drill mode
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 toolMode = 5;
 if (canQuery) {
 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }
 //modeBlurb = modeList[19]; // identify all
 modeBlurb = modeList[20]; // identify visible
features
 //modeBlurb = modeList[3]; // identify
 } else {
 alert(msgList[46]);
 }
 //alert("Function Not Implemented");
 showGeocode=false;
 drawSelectBoundary=false;
 if (useTextFrame) parent.TextFrame.document.location=
appDir + "text.htm";
 hideLayer("measureBox");
 break
 case "hyperlink":
 // hyperlink mode - requires aimsIdentify.js
 var isOk = false;
 var j=-1;
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 toolMode = 15;
 modeBlurb = modeList[9];
 showGeocode=false;
 if (useTextFrame) parent.TextFrame.document.location=
appDir + "text.htm";
 hideLayer("measureBox");
 var isOk = checkHyperLinkLayer(ActiveLayerIndex)
 if (isOk) {
 if (canQuery) {

 if (isIE) {
 document.all.theTop.style.cursor =
"crosshair";
 theCursor =
document.all.theTop.style.cursor;
 }

 } else {
 alert(msgList[46]);

 121

 }
 //alert("Function Not Implemented");
 } else {
 currentHyperLinkLayer="";
 currentHyperLinkField="";
 alert(msgList[47]);

 }
 break

 case "hyperlinkany":
 // hyperlink mode - requires aimsIdentify.js
 var j=-1;
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 toolMode = 30;
 modeBlurb = modeList[9];
 showGeocode=false;
 if (useTextFrame) parent.TextFrame.document.location=
appDir + "text.htm";
 hideLayer("measureBox");
 if (canQuery) {

 if (isIE) {
 document.all.theTop.style.cursor =
"crosshair";
 theCursor =
document.all.theTop.style.cursor;
 }

 } else {
 alert(msgList[46]);
 }
 //alert("Function Not Implemented");
 break

 // Measure-Unit function
 case "measure":
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 if (clickCount>0) {
 if (totalMeasure==0) resetClick();
 }
 toolMode = 20;
 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }
 modeBlurb = modeList[12];
 if (clickType==1) {

 122

 //if (useTextFrame) parent.TextFrame.location= appDir
+ "measure.htm";
 showLayer("measureBox");
 updateMeasureBox();
 }
 showGeocode=false;
 break

 case "setunits":
 if (useTextFrame) {
 parent.TextFrame.location = "setUnits.htm";
 } else {
 window.open((appDir +
"setUnits.htm"),"OptionWindow","width=575,height=120,scrollbars=yes,res
izable=yes");
 }
 break

 // Graphic Selection functions
 case "shape":
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 toolMode = 21;
 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }

 modeBlurb = modeList[13];

 showGeocode=false;

 hideLayer("measureBox");
 break

 case "selectbox":
 panning=false;
 zooming=false;
 // select mode - requires aimsSelect.js
 if (canQuery) {
 toolMode = 10;
 queryTool=0;
 clickCount=0;
 showBuffer=false;
 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }

 modeBlurb = modeList[4];
 } else {
 alert(msgList[46]);
 }

 123

 //alert("Function Not Implemented");
 showGeocode=false;
 if (useTextFrame) parent.TextFrame.document.location=
appDir + "text.htm";
 hideLayer("measureBox");
 break

 case "researchstore":
 panning=false;
 zooming=false;
 alert("handling agendastore in clickfunction");
 // select mode - requires aimsSelect.js
 if (canQuery) {
 toolMode = 10;
 researchset = true; // variable set so that select is
handled different, needs to be reset in aimsselect.js
 alert(researchset);
 queryTool=0;
 clickCount=0;
 showBuffer=false;
 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }

 modeBlurb = "Select Rectangle";
 } else {
 alert("Cannot query Service\nIdentify, Select, and
Query functions are disabled.");
 }
 //alert("Function Not Implemented");
 showGeocode=false;
 if (useTextFrame) parent.TextFrame.document.location=
appDir + "text.htm";
 hideLayer("measureBox");
 break

 case "selectpoint":
 panning=false;
 zooming=false;
 shapeSelectBuffer = false;
 // select mode - requires aimsSelect.js
 if (canQuery) {
 toolMode = 11;
 queryTool=0;
 clickCount=0;
 resetClick();
 if (isIE) {
 document.all.theTop.style.cursor = "hand";
 theCursor = document.all.theTop.style.cursor;
 }

 modeBlurb = modeList[5];
 } else {

 124

 alert(msgList[46]);
 }
 //alert("Function Not Implemented");
 showGeocode=false;
 showBuffer=false;
 hideLayer("measureBox");
 break

 case "selectline":
 panning=false;
 zooming=false;
 shapeSelectBuffer = false;
 // select mode - requires aimsSelect.js
 if (canQuery) {
 toolMode = 12;
 queryTool=0;
 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }
 hideLayer("measureBox");
 if (useTextFrame) {
 parent.TextFrame.document.location= appDir +
"selectline.htm";
 } else {
 Win1 =
open("selectline.htm","QueryWindow","width=575,height=150,scrollbars=ye
s,resizable=yes");
 }
 modeBlurb = modeList[6];
 } else {
 alert(msgList[46]);
 }
 //alert("Function Not Implemented");
 showGeocode=false;
 showBuffer=false;
 break

 case "selectpoly":
 panning=false;
 zooming=false;
 shapeSelectBuffer = false;
 // select mode - requires aimsSelect.js
 if (canQuery) {
 toolMode = 13;
 queryTool=0;
 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }
 hideLayer("measureBox");
 if (useTextFrame) {
 parent.TextFrame.document.location= appDir +
"selectpoly.htm";
 } else {

 125

 Win1 =
open("selectpoly.htm","QueryWindow","width=575,height=150,scrollbars=ye
s,resizable=yes");
 }
 modeBlurb = modeList[7];
 } else {
 alert(msgList[46]);
 }
 //alert("Function Not Implemented");
 showGeocode=false;
 showBuffer=false;
 break

 case "selectshape":
 panning=false;
 zooming=false;
 shapeSelectBuffer = false;
 // select mode - requires aimsSelect.js
 if (canQuery) {
 toolMode = 16;
 queryTool=0;
 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";
 theCursor = document.all.theTop.style.cursor;
 }
 hideLayer("measureBox");
 if (useTextFrame) {
 parent.TextFrame.document.location= appDir +
"select.htm";
 } else {
 Win1 =
open("select.htm","QueryWindow","width=575,height=150,scrollbars=yes,re
sizable=yes");
 }
 modeBlurb = modeList[8];
 } else {
 alert(msgList[46]);
 }
 //alert("Function Not Implemented");
 showGeocode=false;
 showBuffer=false;
 break
 ///*
 case "buffershape":
 panning=false;
 zooming=false;

 // interactive shape buffer - not implemented
 if (canQuery) {
 toolMode = 17;
 //toolMode = 16;
 queryTool=0;
 shapeSelectBuffer = true;
 if (isIE) {
 document.all.theTop.style.cursor = "crosshair";

 126

 theCursor = document.all.theTop.style.cursor;
 }
 hideLayer("measureBox");
 if (useTextFrame) {
 parent.TextFrame.document.location= appDir +
"shapeBuffer.htm";
 } else {
 Win1 =
open("shapeBuffer.htm","QueryWindow","width=575,height=150,scrollbars=y
es,resizable=yes");
 }
 modeBlurb = modeList[11];
 } else {
 alert(msgList[46]);
 }
 //alert("Function Not Implemented");
 showGeocode=false;
 showBuffer=false;
 break
 //*/
 // Geocode Function
 case "geocode":
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 // geocode mode - requires aimsGeocode.js
 hideLayer("measureBox");
 modeBlurb = modeList[14];
 setupGeocode();
 //parent.TextFrame.document.location= appDir +
"addmatch.htm";
 break

 // Query - Search - Find functions
 //if ((toolName=="attributesel") || (toolName=="query")) {
 case "query":
 // query mode - requires aimsQuery.js
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 queryStartRecord=1;
 //toolMode=
 queryTool=51;
 if (canQuery) {
 LayerFields.length=1;
 LayerFieldType.length=1;
 LayerFieldCount=0;
 toolMode=8;
 modeBlurb=modeList[15];

 fieldIndex=0;
 setQueryString="";
 hideLayer("measureBox");

 127

 queryForm();
 } else {
 alert(msgList[46]);
 }
 showGeocode=false;
 showBuffer=false;
 break

 case "storedquery":
 // storedquery mode - requires aimsQuery.js
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 queryStartRecord=1;
 queryTool=1;
 toolMode=51;
 modeBlurb="Search";
 if (canQuery) {
 toolMode=51;
 modeBlurb=modeList[16];
 fieldIndex=0;
 setQueryString="";
 hideLayer("measureBox");
 getStoredQueries();
 } else {
 alert(msgList[46]);
 }
 showGeocode=false;
 showBuffer=false;
 break

 case "find":
 //find
 toolMode=9;
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 queryStartRecord=1;
 queryTool=1;
 if (canQuery) {
 LayerFields.length=1;
 LayerFieldType.length=1;
 LayerFieldCount=0;

 fieldIndex=0;
 setQueryString="";
 hideLayer("measureBox");
 modeBlurb = modeList[17];
 findForm();
 } else {
 alert(msgList[46]);
 }
 showGeocode=false;

 128

 showBuffer=false;
 break

 case "clearsel":
 clearSelection();
 break

 // Buffer function
 case "buffer":
 //buffer - requires aimsBuffer.js
 if (useBuffer) {
 if (checkSelected()) {
 toolMode = 25;
 shapeSelectBuffer = false;
 modeBlurb = modeList[18];
 writeBufferForm();
 } else {
 showBuffer=false;
 alert(msgList[48]);
 }
 } else {
 alert(msgList[49]);
 }
 break

 case "options":
 writeOptionForm();
 break

 // Print function
 case "print":
 printIt();
 break

 // custom modes
 case "dbidentify":
 panning=false;
 zooming=false;
 selectBox=false;
 shapeSelectBuffer = false;
 // identify mode - requires custom db query - not in basic
 if (canQuery) {
 toolMode = 40;
 if (isIE) {
 document.all.theTop.style.cursor = "hand";
 theCursor = document.all.theTop.style.cursor;
 }

 modeBlurb = modeList[3];
 } else {
 alert(msgList[46]);
 }
 //alert("Function Not Implemented");

 showGeocode=false;

 129

 if (useTextFrame) parent.TextFrame.document.location=
appDir + "text.htm";
 hideLayer("measureBox");
 break

 case "extract":
 extractIt();
 break

 case "legend":
 if (aimsLegendPresent) {
 if (imsURL!="") {
 if (hasTOC) {
 if (legendVisible) {

 legendVisible=false;
 //writeLayerList();

 parent.TOCFrame.document.location=appDir+"toc.htm";
 } else {
 legendVisible=true;
 getLegend();
 }
 } else {
 legendVisible=true;
 getLegend();
 }
 } else {
 alert(msgList[45]);
 }
 } else {
 alert(msgList[50]);
 }
 break

 case "layerlist":
 // put LayerList in separate window
 writeLayerListForm();
 break

 default:
 alert(msgList[51]);
 }
 modeName=modeBlurb;
 if (useModeFrame) {
 writeModeFrame(modeBlurb);
 } else if ((drawFloatingMode) && (modeLayerOn)) {
 writeModeLayers(modeBlurb);
 } else if ((modeRefreshMap) && (drawModeOnMap)) {
 //var theString = writeXML();
 sendMapXML();
 }
}

 130

// check for mouseup
function chkMouseUp(e) {
 if ((toolMode == 1) && (zooming)) {
 stopZoomBox(e);

 }
 if ((toolMode == 2) && (zooming)) {
 stopZoomOutBox(e);
 }
 if ((toolMode == 3) && (panning)) {
 stopPan(e);

 }
 if ((toolMode == 10) && (selectBox)) {
 stopSelectBox(e);
 }

 return false;

}

// perform appropriate action with mapTool
function mapTool (e) {
 var theButton= 0;
 // get the button pushed... if right, ignore... let browser do
the popup... it will anyway
 if (isNav) {
 theButton = e.which;
 } else {
 theButton =window.event.button;
 }
 if (theButton==leftButton) {
 getImageXY(e);
 if ((mouseX>=0) && (mouseX<iWidth) && (mouseY>=0) &&
(mouseY<iHeight)) {
 //if ((!isNav) || (!is5up)) {
 if ((hasOVMap) && (ovIsVisible) &&
(mouseX<i2Width+ovBoxSize) && (mouseY<i2Height) && (ovMapIsLayer)) {
 //alert(mouseX + ", " + mouseY);
 ovMapClick(mouseX,mouseY);

 window.status = "On OV Map Area";
 //}
 } else {
 //alert(mouseX + "," + mouseY);

 switch(toolMode) {
 case 1:
 startZoomBox(e);
 return false;
 break

 case 2:
 startZoomOutBox(e);
 return false;

 131

 break
 case 3:
 startPan(e);
 return false;
 break

 case 4:
 identify(e);
 break

 case 5:
 // identify all
 identifyAll(e);
 break

 // custom modes
 /*
 case 6:
 // route - requires custom route routine
- not in default
 routeClick = routeClick + 1;
 if (routeClick > 2) routeClick = 2;
 setRouteXY()
 writeRoutePage();
 break
 case 7:
 // proximity - requires custom proximity
routine - not in default
 proxCount=0;
 proximitySearch(e);
 break

 */
 case 10:
 //select(e);
 startSelectBox(e);
 return false;
 break
 case 11:
 //select point
 if (checkIfActiveLayerAvailable()) {
 select(e);
 }
 break
 case 12:
 //select line
 if (checkIfActiveLayerAvailable()) {
 clickType=2;
 clickAddPoint();
 //Mo: added here:

 if (useTextFrame) {
 if
(parent.TextFrame.document.title!==modeList[60]) {

 132

 parent.TextFrame.document.location= appDir + "selectline.htm";
 }
 }
 }
 break
 case 13:
 //select polygon
 if (checkIfActiveLayerAvailable()) {
 clickType=3;
 clickAddPoint();
 if (useTextFrame) {
 if
(parent.TextFrame.document.title!==modeList[7]) {

 parent.TextFrame.document.location= appDir + "selectpoly.htm";
 }
 }
 }
 break
 case 15:
 // hyperlink
 hyperLink(e);
 break
 case 16:
 //select shape
 if (checkIfActiveLayerAvailable()) {
 clickType=2;
 clickAddPoint();
 if (useTextFrame) {
 if
(parent.TextFrame.document.title!==modeList[8]) {

 parent.TextFrame.document.location= appDir + "select.htm";
 }
 }
 }
 break
 ///*
 case 17:
 //buffer shape -
 if (checkIfActiveLayerAvailable()) {
 clickType=2;
 clickAddPoint();
 if (useTextFrame) {
 if
(parent.TextFrame.document.title!=modeList[11]) {

 parent.TextFrame.document.location= appDir + "shapeBuffer.htm";
 }
 }
 }
 break
 //*/
 case 20:

 133

 // measure
 clickType=1;
 clickAddPoint();
 break
 case 21:
 // shape
 clickType=4;
 clickAddPoint();
 break
 case 30:
 // hyperlink
 hyperLinkAny(e);
 break
 case 40:
 // db identify - requires custom db query
- not in default
 if (aimsDBPresent) {
 matchDBLinkLayer(dbLinkLayer);
 dbIdentify(e);
 }
 break
 default:
 if (toolMode>=1000) {
 customMapTool(e);
 }
 }
 }
 }
 }
}

// update measureBox layer
function updateMeasureBox() {
 if (isNav4) {
 var theForm =
document.layers["measureBox"].document.forms[0];
 } else {
 //var theForm = document.measureBox.forms[0];
 var theForm = document.forms[0];
 }
 var j = 1;
 for (var i=0;i<sUnitList.length;i++) {
 if (ScaleBarUnits==sUnitList[i]) j=i;
 }
 var u = Math.pow(10,numDecimals);
 var tMeas = 0;
 if (totalMeasure!=0) tMeas =
parseInt(totalMeasure*u+0.5)/u;
 theForm.theMeasTotal.value = tMeas + " " + unitList[j];
 theForm.theMeasSegment.value = currentMeasure + " " +
unitList[j];
 showLayer("measureBox");

}

 134

toolbar.htm #

<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-
1">
<HTML>
<HEAD>

 <SCRIPT LANGUAGE=JAVASCRIPT>
 var t = parent.MapFrame;
 document.writeln('<TITLE> ' + t.titleList[12] +
'</TITLE>');
 var lBreak = "
";
 var isSecond=true;
 var currModeName="zoomin";
 var version = navigator.appVersion;
 var browser = navigator.appName;
 //alert(browser);
 function revertToolPic() {
 // reset tool icons to non-set mode
 //alert(lastMode);
 if (parent.MapFrame.useZoomIn)
document.zoomin.src="images/zoomin_1.gif";
 if (parent.MapFrame.useZoomOut)
document.zoomout.src="images/zoomout_1.gif";
 if (parent.MapFrame.useIdentify)
document.identify.src="images/identify_1.gif";
 if (parent.MapFrame.usePan)
document.pan.src="images/pan_1.gif";
 if (parent.MapFrame.useMeasure)
document.measure.src="images/measure_1.gif";
 if (parent.MapFrame.useSelect) {
 document.rect.src="images/select_rect_1.gif";
 document.line.src="images/select_1.gif";
 }
 if (parent.MapFrame.useBufferShape)
document.buffershape.src="images/buffershape_1.gif";
 if (parent.MapFrame.useHyperLink)
document.hyperlink.src="images/hotlink_1.gif";
 if (parent.MapFrame.useHyperLinkAny)
document.hyperlink.src="images/hotlink_1.gif";
 if (parent.MapFrame.useIdentifyAll)
document.identifyall.src="images/identifyall_1.gif";
 }
 function setToolPic(functName) {
 // set clicked button icon to set mode
 //if (functName!=parent.MapFrame.modeName) {

 135

 revertToolPic();
 parent.MapFrame.focus();
 //alert(functName);
 if (functName=="Zoom In") {

 document.zoomin.src="images/zoomin_2.gif";
 } else if (functName=="Zoom Out") {

 document.zoomout.src="images/zoomout_2.gif";
 } else if (functName=="Identify") {

 document.identify.src="images/identify_2.gif";
 } else if (functName=="Pan") {
 document.pan.src="images/pan_2.gif";
 } else if (functName=="Measure") {

 document.measure.src="images/measure_2.gif";
 } else if (functName=="Select Rectangle") {

 document.rect.src="images/select_rect_2.gif";
 } else if (functName=="Buffer Shape") {

 document.buffershape.src="images/buffershape_2.gif";
 } else if (functName=="Select Line/Polygon") {
 document.line.src="images/select_2.gif";
 } else if (functName=="HyperLink") {

 document.hyperlink.src="images/hotlink_2.gif";
 } else if (functName=="Identify All") {

 document.identifyall.src="images/identifyall_2.gif";
 } else if (functName=="researchstore") {
 alert("settingtoolpic");

 document.researchstore.src="images/select_line_2.gif";
 } else if (functName=="researchpp") {
 alert("settingtoolpic");

 document.researchstore.src="images/select_point_2.gif";
 } else if (functName=="researchppstop") {
 alert("settingtoolpic");

 document.researchstore.src="images/wrench.gif";
 }
 //}
 }

 function openGeoNetwork() {
 var Win1 =
window.open("http://www.geographynetwork.com","","scrollbars,resizable,
toolbar,width=750,height=580");
 }

 </SCRIPT>
</HEAD>

 136

<BODY BGCOLOR="Silver" TEXT="Black" LINK="White" VLINK="White"
LEFTMARGIN=0 TOPMARGIN=0 RIGHTMARGIN=0 ALINK="White"
onload="setToolPic(parent.MapFrame.modeBlurb)">
 <DIV ALIGN="center">
 <TABLE BORDER="1" CELLSPACING="0" CELLPADDING="1"
ALIGN="CENTER" VALIGN="MIDDLE" BGCOLOR="White" BORDERCOLOR="Gray"
BORDERCOLORLIGHT="Silver" BORDERCOLORDARK="Black">

 <SCRIPT TYPE="text/javascript"
LANGUAGE="JavaScript1.2">
 /*
 if (parent.MapFrame.useGeoNetwork) {
 document.writeln('<tr><TD COLSPAN="2"
align="center" valign="middle">');
 document.writeln('<IMG
SRC="images/GN_tool1.gif" WIDTH=18 HEIGHT=18 HSPACE=0 VSPACE=0 BORDER=0
ALT="Geography Network" onmousedown="openGeoNetwork()"
onmouseover="window.status=\'Geography Network\'">');
 document.writeln('</TD></tr>');
 }
 */
 document.write('<tr>');
 if ((parent.MapFrame.hasTOC) &&
(parent.MapFrame.aimsLegendPresent)) {
 // Legend toggle. . . requires
aimsLegend.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/togglelegend.gif" width=16 height=16 hspace=1 vspace=0
border=0 alt=" ' + t.buttonList[14] + '" name="legend"
onmousedown="parent.MapFrame.clickFunction(\'legend\');"
onmouseover="window.status=\' ' + t.buttonList[14] + '\'">');
 isSecond = !isSecond;
 document.writeln('</td>');
 }
 if (parent.MapFrame.hasOVMap) {
 // Overview Map toggle . . . requires
overview map
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/overview_html.gif" width=16 height=16 hspace=1 vspace=0
border=0 alt=" ' + t.buttonList[15] + '" name="refmap"
onmousedown="parent.MapFrame.toggleOVMap();"
onmouseover="window.status=\' ' + t.buttonList[15] + '\'">');

 isSecond = !isSecond;
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 if (parent.MapFrame.useZoomIn) {
 // Zoom In . . . requires
aimsNavigation.js

 137

 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/zoomin_1.gif" width=16 height=16 hspace=1 vspace=0 border=0
alt=" ' + t.buttonList[16] + '" name="zoomin"
onmousedown="parent.MapFrame.clickFunction(\'zoomin\');
setToolPic(\'Zoom In\');" onmouseover="window.status=\' ' +
t.buttonList[16] + '\'">');
 isSecond = !isSecond;
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 if (parent.MapFrame.useZoomOut) {
 // Zoom Out . . . requires
aimsNavigation.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/zoomout_1.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt=" ' + t.buttonList[17] + '" name="zoomout"
onmousedown="parent.MapFrame.clickFunction(\'zoomout\');
setToolPic(\'Zoom Out\');" onmouseover="window.status=\' ' +
t.buttonList[17] + 't\'">');
 isSecond = !isSecond;
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 if (parent.MapFrame.useFullExtent) {
 // Full Extennt . . . requires
amisLayers.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/fullextent_1.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt=" ' + t.buttonList[18] + '"
onmousedown="parent.MapFrame.clickFunction(\'fullextent\');"
onmouseover="window.status=\' ' + t.buttonList[18] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 if (parent.MapFrame.useZoomActive) {
 // Zoom to Active Layer . . . requires
aimsLayers.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/zoomactive_1.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt=" ' + t.buttonList[19] + '"
onmousedown="parent.MapFrame.clickFunction(\'zoomactive\');"
onmouseover="window.status=\' ' + t.buttonList[19] + '\'">');

 138

 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 if (parent.MapFrame.useZoomLast) {
 // Zoom to previous extent . . . requires
aimsLayers.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/zoomlast.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[20] + '"
onmousedown="parent.MapFrame.clickFunction(\'zoomlast\');"
onmouseover="window.status=\' ' + t.buttonList[20] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 if (parent.MapFrame.usePan) {
 // Pan Button . . . requires
aimsNavigation.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/pan_1.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[21] + '" name="pan"
onmousedown="parent.MapFrame.clickFunction(\'pan\');
setToolPic(\'Pan\');" onmouseover="window.status=\' ' +
t.buttonList[21] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');

 }

 if (parent.MapFrame.usePanNorth) {
 // Pan North . . . requires
aimsNavigation.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/pan_north.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt=" ' + t.buttonList[22] + '"
onmousedown="parent.MapFrame.panButton(2);"
onmouseover="window.status=\' ' + t.buttonList[22] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');

 139

 }

 if (parent.MapFrame.usePanSouth) {
 // Pan South . . . requires
aimsNavigation.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/pan_south.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt=" ' + t.buttonList[23] + '"
onmousedown="parent.MapFrame.panButton(4);"
onmouseover="window.status=\' ' + t.buttonList[23] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 if (parent.MapFrame.usePanWest) {
 // Pan West . . . requires
aimsNavigation.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/pan_west.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[24] + '"
onmousedown="parent.MapFrame.panButton(1);"
onmouseover="window.status=\' ' + t.buttonList[24] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 if (parent.MapFrame.usePanEast) {
 // Pan East . . . requires
aimsNavigation.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/pan_east.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[25] + '"
onmousedown="parent.MapFrame.panButton(3);"
onmouseover="window.status=\' ' + t.buttonList[25] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 // only one of these next two
(useHyperLink or useHyperLinkAny) can be true - useHyperLink takes
priority
 if (parent.MapFrame.useHyperLink) {
 // HyperLink . . . requires
aimsIdentify.js

 140

 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/hotlink.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[26] + '" name="hyperlink"
onmousedown="parent.MapFrame.clickFunction(\'hyperlink\');
setToolPic(\'HyperLink\');" onmouseover="window.status=\' ' +
t.buttonList[26] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 if (parent.MapFrame.useHyperLinkAny) {
 // HyperLink . . . requires
aimsIdentify.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/hotlink.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[26] + '" name="hyperlink"
onmousedown="parent.MapFrame.clickFunction(\'hyperlinkany\');
setToolPic(\'HyperLink\');" onmouseover="window.status=\' ' +
t.buttonList[26] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 // only one of these next two
(useIdentify or useIdentifyAll) can be true - useIdentify takes
priority
 if (parent.MapFrame.useIdentify) {
 // Identify . . . requires
aimsIdentify.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/identify_1.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt=" ' + t.buttonList[27] + '" name="identify"
onmousedown="parent.MapFrame.clickFunction(\'identify\');
setToolPic(\'Identify\');" onmouseover="window.status=\' ' +
t.buttonList[27] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 if (parent.MapFrame.useIdentifyAll) {
 // Identify All - identify on all visible
feature layers. . . drill down
 document.write('<td align="center"
valign="middle">');

 141

 document.write('<img
src="images/identifyall_1.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt="' + t.modeList[20] + '" name="identifyall"
onmousedown="parent.MapFrame.clickFunction(\'identifyall\');
setToolPic(\'Identify All\');" onmouseover="window.status=\'' +
t.modeList[20] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 //if ((parent.MapFrame.useQuery) &&
(version.indexOf("MSIE 5")==-1)) {
 if (parent.MapFrame.useQuery) {
 // Query . . . requires aimsQuery.js
 // IE 5.0 has big problems with the query
stuff
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/query_1.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[28] + '"
onmousedown="parent.MapFrame.clickFunction(\'query\');
setToolPic(\'ClearOut\');" onmouseover="window.status=\' ' +
t.buttonList[28] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 if (parent.MapFrame.useStoredQuery) {
 // Search . . . requires aimsQuery.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/search.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[29] + '"
onmousedown="parent.MapFrame.clickFunction(\'storedquery\');
setToolPic(\'ClearOut\');" onmouseover="window.status=\' ' +
t.buttonList[29] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 if (parent.MapFrame.useFind) {
 // Find . . . requires aimsQuery.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/find_1.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[30] + '"

 142

onmousedown="parent.MapFrame.clickFunction(\'find\');
setToolPic(\'ClearOut\');" onmouseover="window.status=\' ' +
t.buttonList[30] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 if (parent.MapFrame.useMeasure) {
 // Measure
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/measure_1.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt=" ' + t.buttonList[31] + '" name="measure"
onmousedown="parent.MapFrame.clickFunction(\'measure\');
setToolPic(\'Measure\');" onmouseover="window.status=\' ' +
t.buttonList[31] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 if (parent.MapFrame.useSetUnits) {
 // Set Units
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/setunits.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[32] + '"
onmousedown="parent.MapFrame.clickFunction(\'setunits\');"
onmouseover="window.status=\' ' + t.buttonList[32] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 if (parent.MapFrame.useBuffer) {
 // Buffer . . . requires aimsBuffer.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/buffer_1.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[33] + '" name="buffer"
onmousedown="parent.MapFrame.clickFunction(\'buffer\');
setToolPic(\'Buffer\');" onmouseover="window.status=\' ' +
t.buttonList[33] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }

 143

 if (parent.MapFrame.useSelect) {
 // Graphic Selection tools . . . requires
aimsSelect.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/select_rect_1.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt=" ' + t.buttonList[34] + '" name="rect"
onmousedown="parent.MapFrame.clickFunction(\'selectbox\');
setToolPic(\'Select Rectangle\');" onmouseover="window.status=\' ' +
t.buttonList[34] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/select_1.gif" width=16 height=16 hspace=0 vspace=1 border=0
alt=" ' + t.buttonList[35] + '" name="line"
onmousedown="parent.MapFrame.clickFunction(\'selectshape\');
setToolPic(\'Select Line/Polygon\');" onmouseover="window.status=\' ' +
t.buttonList[35] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 ///*
 if (parent.MapFrame.useBufferShape) {
 // Buffer Shape. . . requires
aimsSelect.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/buffershape_1.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt="Buffer Shape" name="buffershape"
onmousedown="parent.MapFrame.clickFunction(\'buffershape\');
setToolPic(\'Buffer Shape\');" onmouseover="window.status=\'Buffer
Shape\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 //*/

 if (parent.MapFrame.useClearSelect) {
 // Clear selection . . . requires
aimsIdentify.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/clearhighlight_1.gif" width=16 height=16 hspace=1 vspace=1

 144

border=0 alt=" ' + t.buttonList[36] + '"
onmousedown="parent.MapFrame.clearSelection();"
onmouseover="window.status=\' ' + t.buttonList[36] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 if (parent.MapFrame.useGeocode) {
 // Geocode. . . requires aimsGeocode.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/geocode.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[37] + '"
onmousedown="parent.MapFrame.clickFunction(\'geocode\');"
onmouseover="window.status=\' ' + t.buttonList[37] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 if (parent.MapFrame.usePrint) {
 // Print. . . requires aimsPrint.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/print_1.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[38] + '"
onmousedown="parent.MapFrame.clickFunction(\'print\');"
onmouseover="window.status=\' ' + t.buttonList[38] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 if (parent.MapFrame.useExtract) {
 // Extract. . . zip and ship. . .
requires aimsCustom.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/zipship.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[39] + '"
onmousedown="parent.MapFrame.clickFunction(\'extract\');"
onmouseover="window.status=\' ' + t.buttonList[39] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 if (parent.MapFrame.allowOptions) {
 // Options. . . requiers
aimsOptions.js... allowOptions is set to true in this file

 145

 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/wrench.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[40] + '"
onmousedown="parent.MapFrame.writeOptionForm();"
onmouseover="window.status=\' ' + t.buttonList[40] + '\'">');
 isSecond = !isSecond
 document.writeln('</td>');
 if (isSecond)
document.write('</tr><tr>');
 }
 if (parent.MapFrame.canLoad) {
 // Load MapService. . . requires
aimsGeneric.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/open_1.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt=" ' + t.buttonList[41] + '"
onmousedown="parent.MapFrame.loadMapForm();"
onmouseover="window.status=\' ' + t.buttonList[41] + '\'">');
 document.writeln('</td>');
 }
 if (parent.MapFrame.hasresearchStore) {
 //Mo: Make user AOI as rectangle or
circle
 // Graphic Selection tools . . . requires
aimsSelect.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/select_line_1.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt="Draw AOI" name="researchstore"
onmousedown="parent.MapFrame.clickFunction(\'researchstore\');
setToolPic(\'researchstore\');" onmouseover="window.status=\'Make AOI
rectangle\'">');
 isSecond = !isSecond
 document.writeln('</td>');

 }
 if (parent.MapFrame.hasresearchpp) {
 //Mo: start clicking
 // Graphic Selection tools . . . requires
aimsSelect.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/select_point_1.gif" width=16 height=16 hspace=1 vspace=1
border=0 alt="Draw AOI" name="researchstore"
onmousedown="parent.MapFrame.clickFunction(\'researchpp\');
setToolPic(\'researchpp\');" onmouseover="window.status=\'Select
Potential Path\'">');
 isSecond = !isSecond
 document.writeln('</td>');

 146

 if (isSecond)
document.write('</tr><tr>');

 }
 if (parent.MapFrame.hasresearchpp) {
 //Mo: stop adding links
 // Graphic Selection tools . . . requires
aimsSelect.js
 document.write('<td align="center"
valign="middle">');
 document.write('<img
src="images/wrench.gif" width=16 height=16 hspace=1 vspace=1 border=0
alt="Draw AOI" name="researchstorestop"
onmousedown="parent.MapFrame.clickFunction(\'researchppstop\');
setToolPic(\'researchppstop\');" onmouseover="window.status=\'Commit
the selected links\'">');
 isSecond = !isSecond
 document.writeln('</td>');

 }
 document.writeln('</tr>');
 document.writeln('</TABLE>');

 </SCRIPT>

 </DIV>
</BODY>
</HTML>

 147

mointersect.bas:: mointersect.exe #

Attribute VB_Name = "intersect"
Dim m_outputfeatureclass As IFeatureClass
Dim m_Attributecoll As Collection

Public Sub Main()

'Recieve parameters:
Dim uid As Long
Dim usernum As Long
Dim tokenarray As Variant
Dim adams As IFeatureClass

Open "c:\logintersectexe.txt" For Output As #1
strValue = Command()
Write #1, strValue
Call ParseDelimitedString(strValue, tokenarray, "&")

uid = CLng(tokenarray(0))
usernum = CLng(tokenarray(1))

'Load the fclasses corresponding to:
Set adams = openShapeFileWorkspace2("D:\\reserachdata\\networkshapes",
"adamsnet")

'Construct a polygon from a query to tuserpoly to retrieve record for
id = XX

Dim tuserpoly As Recordset
Dim tuserpoly_base As Database
'Dim thequerydef As DAO.QueryDef
Dim selectstring As String
Set tuserpoly_base =
OpenDatabase("D:\ArcIMS\reserachdata\tuserpoly.mdb")

selectstring = "SELECT * FROM Tuserpoly WHERE uniqueid=" & uid

Set tuserpoly = tuserpoly_base.OpenRecordset(selectstring)

'No need to loop, there should be only one record with this uid!

Dim maxx As Double
Dim maxy As Double
Dim minx As Double
Dim miny As Double

tuserpoly.MoveFirst
maxx = tuserpoly.Fields("Maxx").Value

 148

maxy = tuserpoly.Fields("Maxy").Value
minx = tuserpoly.Fields("Minx").Value
miny = tuserpoly.Fields("Miny").Value

'MsgBox miny
tuserpoly.Close
tuserpoly_base.Close

'Construct geometry with these coordinates:
Dim pGeom As IPolygon
Set pGeom = New Polygon
Dim pSegmentColl As ISegmentCollection
Dim pSegment As ISegment
Dim pPoint As IPoint
Dim pEnv As IEnvelope

'MO: Have to set rectangle !!! adding segments does not work

Set pEnv = New Envelope
pEnv.XMax = maxx
pEnv.XMin = minx
pEnv.YMax = maxy
pEnv.YMin = miny

Set pSegmentColl = pGeom
pSegmentColl.SetRectangle pEnv

'Set tuserpoly =
openShapeFileWorkspace("D:\ArcIMS\reserachdata\usershapes",
"tuserpoly")

Call DoIntersection(pGeom, adams, uid, usernum)

Exit Sub

End Sub
Private Sub DoIntersection(pIntersectFeature As IPolygon, pOverlayLayer
As IFeatureClass, objectid As Long, usernum As Long)
'On Error GoTo Errorhandler
 Dim pIntersectFClass As IFeatureClass
 Dim pFilter As IQueryFilter
 Dim pIntersectFCursor As IFeatureCursor
 'Dim pIntersectFeature As IFeature
 Dim pIntersectTopo As ITopologicalOperator2
 Dim pSpatialFilter As ISpatialFilter
 Dim pIntersectFields As IFields
 Dim pIntersectArea As IArea
 Dim pOverlayFCursor As IFeatureCursor
 Dim pOverlayFClass As IFeatureClass
 Dim pOverlayFields As IFields
 Dim pOverlayFeature As IFeature
 Dim pOverlayArea As IArea
 Dim pOutputfClass As IFeatureClass
 Dim newArea As IArea

 149

 Dim theProportion As Double
 Dim newGeometry As IGeometry
 Dim pOverlayIndex As Long
 Dim pIntersectIndex As Long
 Dim pOldFieldsCount As Long
 Dim pNewFields As IFields
 Dim item As Long, lCount As Long, bFlag As Boolean
 Dim newField As IField, pOldField As IField, pCollName As String
 Dim pNewFeatureCursor As IFeatureCursor, pNewBuffer As IFeatureBuffer
 Dim openstring As String
 Dim polypointcol As IPointCollection
 Dim aadtval As Long

 'Open the tuserresults database:
 'Fetch the Access tables:
 'Dim tuserresults As Recordset
 'Dim tuserresults_base As Database
 'Dim selectstring As String

 'Set tuserresults_base =
OpenDatabase("D:\ArcIMS\reserachdata\tuserresults.mdb")

 'selectstring = "SELECT * FROM tuserresults"

 'Set tuserresults = tuserresults_base.OpenRecordset(selectstring)

 'MO: Write the XML file:
 openstring = "D:\ArcIMS\Website\moresearchsite\update-" & usernum &
objectid & ".xml"
 Open openstring For Output As #2

 Set pOverlayFClass = pOverlayLayer
 Set pOverlayFields = pOverlayFClass.Fields
 Print #2, "<USERSHAPE>"

 'Create the new shapefile or geodatabase layer

 'Set pOutputfClass = Editshape()

 'MsgBox pIntersectFeature.GeometryType
 'MsgBox pIntersectFeature.IsEmpty
 'MsgBox pIntersectFeature.Envelope.XMax
 'MsgBox pIntersectFeature.Envelope.XMin
 'MsgBox pIntersectFeature.Envelope.YMax
 'MsgBox pIntersectFeature.Envelope.YMin
 Set pIntersectTopo = pIntersectFeature

 'get the intersecting layer features
 Set pSpatialFilter = New SpatialFilter
 pSpatialFilter.GeometryField = "shape"
 Set pSpatialFilter.Geometry = pIntersectFeature
 pSpatialFilter.SpatialRel = esriSpatialRelIntersects

 150

 Set pOverlayFCursor = pOverlayFClass.Search(pSpatialFilter, False)

 'Cycle through the features intersecting that buffer poly
 Set pOverlayFeature = pOverlayFCursor.NextFeature
 If (pOverlayFeature Is Nothing) Then
 'MsgBox "Nothing"
 End If

 'tuserresults.MoveFirst
 'tuserresults.Edit
 While Not pOverlayFeature Is Nothing

 Set newGeometry = pIntersectTopo.intersect(pOverlayFeature.Shape,
2)
 aadtval = pOverlayFeature.Value(3)
 'Loop thru all the points in the collection and write X and Y's

 Set polypointcol = newGeometry

 Print #2, " <OBJ>"
 For i = 0 To (polypointcol.PointCount - 1)
 thex = " <X>" & polypointcol.Point(i).X & "</X>"
 they = " <Y>" & polypointcol.Point(i).Y & "</Y>"
 Print #2, thex
 Print #2, they

 Next i
 thevalue = " <AADT>" & aadtval & "</AADT>"
 Print #2, thevalue
 Print #2, " </OBJ>"
 'Write this to tuserresults table:
 'tuserresults.AddNew
 'All we nedd is the linkid correspomding to the intersected link:
 'tuserresults.Fields("linkid") = pOverlayFeature.Value(0)
 'tuserresults.Update
 Set pOverlayFeature = pOverlayFCursor.NextFeature
 Wend
 'tuserresults.Close
 'tuserresults_base.Close
 Print #2, "</USERSHAPE>"
 Exit Sub

Errorhandler:
 'MsgBox Err.Number & " " & Err.Description, vbCritical, "error in
intersection"
 Write #1, Err.Number & " " & Err.Description, vbCritical, "error in
intersection"
End Sub

Private Function AddTheFields(pIntersectFClass As IFeatureClass, _
 pOverlayFClass As IFeatureClass, pShortNames As Boolean) As IFields
On Error GoTo Errorhandler
 Dim pNewFields As IFields

 151

 Dim newField As IField
 Dim newFieldEdit As IFieldEdit
 Dim pIntersectFields As IFields
 Dim pOverlayFields As IFields
 Dim pFieldsEdit As IFieldsEdit
 Dim item As Long
 Dim pOverlayField As IField
 Dim theIndex As Long
 Dim pGeoDef As IGeometryDefEdit
 Dim pGeoDataset As IGeoDataset
 Dim pFldEdt As IFieldEdit
 Dim aIndex As Long
 Dim pNewName As String

 Set pNewFields = New Fields
 Set pIntersectFields = pIntersectFClass.Fields
 Set pOverlayFields = pOverlayFClass.Fields
 Set pFieldsEdit = pNewFields
 For item = 0 To pOverlayFields.FieldCount - 1
 Set pOverlayField = pOverlayFields.Field(item)
 'Skip certain fields
 If pOverlayField.Type <> esriFieldTypeGeometry And
pOverlayField.Type <> esriFieldTypeOID _
 And UCase(pOverlayField.Name) <> "SHAPE_LENGTH" And
UCase(pOverlayField.Name) <> "SHAPE_AREA" Then

 On Error Resume Next
 theIndex = -1
 theIndex = pIntersectFields.FindField(pOverlayField.Name)
 If theIndex > -1 Then
 'Try to find alternative name
 pNewName = Left(pOverlayField.Name, 8) & "_1"
 theIndex = -1
 theIndex = pIntersectFields.FindField(pNewName)
 If theIndex > -1 Then
 'Skip Thefield if a field of the same name is already in
theFile
 Set AddTheFields = Nothing
 Exit Function
 End If
 theIndex = -1
 theIndex = pOverlayFields.FindField(pNewName)
 If theIndex > -1 Then
 'Skip Thefield if a field of the same name is already in
theFile
 Set AddTheFields = Nothing
 Exit Function
 End If
 Else
 pNewName = pOverlayField.Name
 End If

 Set newField = New Field
 Set newFieldEdit = newField
 With newFieldEdit

 152

 .Name = pNewName
 .AliasName = pOverlayField.Name
 .Type = pOverlayField.Type
 .IsNullable = pOverlayField.IsNullable
 .Length = pOverlayField.Length
 .Precision = pOverlayField.Precision
 End With
 pFieldsEdit.AddField newField
 End If
 Next item

 Set AddTheFields = pFieldsEdit

 Exit Function

Errorhandler:
 'MsgBox Err.Number & " " & Err.Description, vbCritical, "error in
addfields"
End Function

Public Function openShapeFileWorkspace(Location As String, datasetname
As String) As IFeatureClass

Write #1, "Call to openshapefile"
Dim pInShpWorkspaceName As IWorkspaceName
Set pInShpWorkspaceName = New WorkspaceName
pInShpWorkspaceName.PathName = Location
pInShpWorkspaceName.WorkspaceFactoryProgID =
"esriCore.ShapefileWorkspaceFactory"

Dim pInShpFeatCLSNm As IFeatureClassName
Set pInShpFeatCLSNm = New FeatureClassName
Dim pShpDatasetName As IDatasetName
Set pShpDatasetName = pInShpFeatCLSNm
pShpDatasetName.Name = datasetname
Set pShpDatasetName.WorkspaceName = pInShpWorkspaceName

Dim pName As IName
Dim pInShpFeatCls As IFeatureClass
Set pName = pInShpFeatCLSNm
Set pInShpFeatCls = pName.Open ' Shape tuserpoly

Set openShapeFileWorkspace = pInShpFeatCls
Write #1, "Completed openshapefile"
End Function
Public Function openShapeFileWorkspace2(Location As String, datasetname
As String) As IFeatureClass

'Open the sde workspace and return the featureclass from tUserPoly
Dim pPropset As IPropertySet
Set pPropset = New PropertySet

Dim pFact As IWorkspaceFactory
Dim pWorkspace As IWorkspace

 153

Dim pApp As IAppDisplay
Set pApp = New AppDisplay

With pPropset
.SetProperty "DATABASE", Location
End With
Write #1, "1"
Set pFact = New ShapefileWorkspaceFactory
Write #1, "2"

Set pWorkspace = pFact.Open(pPropset, 0)
Write #1, "3"
Dim pFeatureWorkspace As IFeatureWorkspace
Write #1, "4"
Set pFeatureWorkspace = pWorkspace
Write #1, "5"

Set openShapeFileWorkspace2 =
pFeatureWorkspace.OpenFeatureClass(datasetname)
Write #1, "6"
' Error in dll for window handle
End Function

Public Function Editshape() As IFeatureClass
'Open tuserresults for editing and return as a featureclass:
'MsgBox "Start editshape"
Dim shpfeatureclass As IFeatureClass
Set shpfeatureclass =
openShapeFileWorkspace("D:\ArcIMS\reserachdata\usershapes",
"tuserresults.shp")

' get the workspace and start editing
 Dim pDataset As IDataset
 Set pDataset = shpfeatureclass
 Dim pWorkspace As IWorkspace
 Set pWorkspace = pDataset.Workspace
 Dim pWorkspaceEdit As IWorkspaceEdit

 Set pWorkspaceEdit = pWorkspace
 pWorkspaceEdit.StartEditing True
 pWorkspaceEdit.StartEditOperation

 ' Dont need this as closeeditshape() closes the edit session
 'Dim pFeat As IFeature
 'Set pFeat = shpfeatureclass.CreateFeature
 'pFeat.Store

 'pWorkspaceEdit.StopEditOperation
 'pWorkspaceEdit.StopEditing True

 Set Editshape = shpfeatureclass
 'MsgBox "End edit shape"

 154

End Function

Private Function newsegment(pSeg As ISegment, pPoint As IPoint, minx As
Variant, maxx As Variant, miny As Variant, maxy As Variant) As ISegment

Set pSeg = New esriCore.Line
Set pPoint = New Point
pPoint.X = minx
pPoint.Y = miny
pSeg.FromPoint = pPoint
pPoint.X = maxx
pPoint.Y = miny
pSeg.ToPoint = pPoint
Set newsegment = pSeg

End Function

 155

loadpp.bas:: linepp.exe #

Attribute VB_Name = "loadpp"

Public Sub Main()

Dim uid As Long
Dim usernum As Long
Dim tokenarray As Variant
Dim adams As IFeatureClass

Open "c:\logintersectexe.txt" For Output As #1
strValue = Command()
Write #1, strValue
Call ParseDelimitedString(strValue, tokenarray, "&")

uid = CLng(tokenarray(0))
usernum = CLng(tokenarray(1))

'Load the fclasses corresponding to:
Set adams = openShapeFileWorkspace2("D:\reserachdata\networkshapes",
"adamsnet")

Dim pp As Recordset
Dim pp_base As Database
'Dim thequerydef As DAO.QueryDef
Dim selectstring As String
Dim polypointcol As IPointCollection
Dim aadtval As Long

Set pp_base = OpenDatabase("D:\ArcIMS\reserachdata\pplookup.mdb")
selectstring = "SELECT * FROM pplookup WHERE uniqueid=" & uid

openstring = "D:\ArcIMS\Website\moresearchsite\update-" & usernum & uid
& ".xml"
Open openstring For Output As #2

Set pp = pp_base.OpenRecordset(selectstring)

'Loop thru the pp recordset and fetch each linkid:
Print #2, "<USERSHAPE>"

pp.MoveFirst
For i = 0 To pp.RecordCount

 Dim theid As Long
 Dim pFilter As IQueryFilter
 Dim adamscursor As IFeatureCursor
 Dim adamsfeature As IFeature

 156

 Dim polyseg As IPolyline

 theid = pp.Fields("linkid").Value
 Set pFilter = New QueryFilter
 pFilter.WhereClause = "objectid=" & theid

 'Now search the corresponding link in the adams theme:
 Set adamscursor = adams.Search(pFilter, 2)
 Set adamsfeature = adamscursor.NextFeature
 While Not adamsfeature Is Nothing
 Set polyseg = adamsfeature.Shape
 Set polypointcol = polyseg
 aadtval = adamsfeature.Value(3)

 Print #2, " <OBJ>"
 For j = 0 To (polypointcol.PointCount - 1)
 thex = " <X>" & polypointcol.Point(j).X & "</X>"
 they = " <Y>" & polypointcol.Point(j).Y & "</Y>"
 Print #2, thex
 Print #2, they

 Next j
 thevalue = " <AADT>" & aadtval & "</AADT>"
 Print #2, thevalue
 Print #2, " </OBJ>"

 Set adamsfeature = adamscursor.NextFeature

 'MsgBox polyseg.FromPoint.X

 Wend

Next i

Print #2, "</USERSHAPE>"

Close #2

End Sub
Public Function openShapeFileWorkspace2(Location As String, datasetname
As String) As IFeatureClass

'Open the sde workspace and return the featureclass from tUserPoly
Dim pPropset As IPropertySet
Set pPropset = New PropertySet

 157

Dim pFact As IWorkspaceFactory
Dim pWorkspace As IWorkspace

Dim pApp As IAppDisplay
Set pApp = New AppDisplay

With pPropset
.SetProperty "DATABASE", Location
End With
Write #1, "1"
Set pFact = New ShapefileWorkspaceFactory
Write #1, "2"

Set pWorkspace = pFact.Open(pPropset, 0)
Write #1, "3"
Dim pFeatureWorkspace As IFeatureWorkspace
Write #1, "4"
Set pFeatureWorkspace = pWorkspace
Write #1, "5"

Set openShapeFileWorkspace2 =
pFeatureWorkspace.OpenFeatureClass(datasetname)
Write #1, "6"
' Error in dll for window handle
End Function

 158

shortestpath.bas:: shortestpath.exe #

Attribute VB_Name = "shorty"
Public ipNetworkCollection As esriCore.INetworkCollection
Public m_ipGeometricNetwork As esriCore.IGeometricNetwork
Public m_ipPoints As esriCore.IPointCollection
Public m_ipEnumNetEID_Junctions As esriCore.IEnumNetEID
Public m_ipEnumNetEID_Edges As esriCore.IEnumNetEID
Public m_ipPolyline As esriCore.IPolyline
Public m_ipPointToEID As esriCore.IPointToEID
Public m_ipMap As esriCore.IMap

Public Sub Main()
'Calculate the shortest path given two junctions with objectid's

'Fetch the necessary points for stops:
Dim startoid As Integer
Dim endstopoid As Integer
Dim mpointstart As IPoint
Dim mpointstop As IPoint
Dim uid As Integer

Open "c:\logshortyexe.txt" For Output As #1

On Error GoTo ErrorHandler

strValue = Command()
Write #1, strValue
Call ParseDelimitedString(strValue, tokenarray, "&")

Dim tuserpoly As Recordset
Dim tuserpoly_base As Database

uid = CLng(tokenarray(0))
usernum = CLng(tokenarray(1))

'Fetch the start and stopid's from the tuserpoly database:
Set tuserpoly_base =
OpenDatabase("D:\ArcIMS\reserachdata\tuserpoly.mdb")

selectstring = "SELECT * FROM Tuserpoly WHERE uniqueid=" & uid

Set tuserpoly = tuserpoly_base.OpenRecordset(selectstring)

tuserpoly.MoveFirst

startoid = tuserpoly.Fields("startid").Value

 159

stopoid = tuserpoly.Fields("stopid").Value

tuserpoly.Close
tuserpoly_base.Close

'startoid = 25
'stopoid = 27

Dim ipNetwork As esriCore.INetwork
Dim ipFeatureClassContainer As esriCore.IFeatureClassContainer
Dim ipFeatureClassadadams As esriCore.IFeatureClass ' Adams street
polylines
Dim ipFeatureClassjunctions As esriCore.IFeatureClass ' Junctions on
network
Dim pInFeatureClass As IFeatureClass
Dim pSearchFeatureCursor As IFeatureCursor
Dim pFeature As IFeature
Dim count As Integer

'Launch the pathfinder modules:
Set ipNetworkCollection =
OpenAccessNetwork("D:\ArcIMS\reserachdata\PDOT.mdb", "Street network2")
'Fetch the featureclass with Aadt values:
'MsgBox "Opened Access"
'Count = ipNetworkCollection.GeometricNetworkCount

Set m_ipGeometricNetwork = ipNetworkCollection.GeometricNetwork(0)

'Get the Network
Set ipNetwork = m_ipGeometricNetwork.Network
Set ipFeatureClassContainer = m_ipGeometricNetwork
Set ipFeatureClassadadams = ipFeatureClassContainer.Class(0)
Set ipFeatureClassjunctions = ipFeatureClassContainer.Class(1)

Set pInFeatureClass = ipFeatureClassjunctions
Set pSearchFeatureCursor = pInFeatureClass.Search(Nothing, 2)

Set pFeature = pSearchFeatureCursor.NextFeature

'Search for the

'Dim pPoints As IMultipoint
'Set pPoints = New esriCore.Multipoint
Set m_ipPoints = New esriCore.Multipoint
Set mopointstart = New esriCore.Point
Set mopointstop = New esriCore.Point

Do While Not pFeature Is Nothing

 If (pFeature.Value(0) = startoid) Then
 'MsgBox pFeature.Value(0)
 Set mpointstart = pFeature.ShapeCopy

 160

 End If
 If (pFeature.Value(0) = stopoid) Then
 'MsgBox pFeature.Value(0)
 Set mpointstop = pFeature.ShapeCopy

 Exit Do
 End If

 Set pFeature = pSearchFeatureCursor.NextFeature
Loop

m_ipPoints.AddPoint mpointstart
m_ipPoints.AddPoint mpointstop

Call SolvePath("TrafficVolume")
Call PathPolyLine

'Read the polyline into XML:

openstring = "D:\ArcIMS\Website\moresearchsite\update-" & usernum & uid
& ".xml"
Open openstring For Output As #2

Dim polypointcol As IPointCollection
Dim polyseg As IPolyline
Dim shortyfeature As IFeature

Print #2, "<USERSHAPE>"

Set polyseg = m_ipPolyline
Set polypointcol = polyseg

Print #2, " <OBJ>"
For j = 0 To (polypointcol.PointCount - 1)
 thex = " <X>" & polypointcol.Point(j).X & "</X>"
 they = " <Y>" & polypointcol.Point(j).Y & "</Y>"
 Print #2, thex
 Print #2, they

Next j
aadtval = 10
thevalue = " <AADT>" & aadtval & "</AADT>"
Print #2, thevalue
Print #2, " </OBJ>"
Print #2, "</USERSHAPE>"

ErrorHandler:
Write #1, Err.Description

End Sub

 161

Public Function OpenAccessNetwork(AccessFileName As String,
FeatureDatasetName As String) As IFeatureDataset

 Dim ipWorkspaceFactory As esriCore.IWorkspaceFactory
 Dim ipWorkspace As esriCore.IWorkspace
 Dim ipFeatureWorkspace As esriCore.IFeatureWorkspace
 'Dim ipFeatureDataset As esriCore.IFeatureDataset

 ' After this Sub exits, we'll have an INetwork interface
 ' and an IMap interface initialized for the network we'll be using.

 ' close down the last one if opened
 'CloseWorkspace

 ' open the mdb
 Set ipWorkspaceFactory = New esriCore.AccessWorkspaceFactory
 Set ipWorkspace = ipWorkspaceFactory.OpenFromFile(AccessFileName, 0)

 ' get the FeatureWorkspace
 Set ipFeatureWorkspace = ipWorkspace

 ' open the FeatureDataset
 Set OpenAccessNetwork =
ipFeatureWorkspace.OpenFeatureDataset(FeatureDatasetName)

 ' initialize Network and Map (m_ipNetwork, m_ipMap)
 'If Not InitializeNetworkAndMap(ipFeatureDataset) Then Err.Raise 0,
"OpenAccessNetwork", "Error initializing Network and Map"

End Function

Public Sub SolvePath(WeightName As String)

 Dim ipNetwork As esriCore.INetwork
 Dim ipTraceFlowSolver As esriCore.ITraceFlowSolver
 Dim ipNetSolver As esriCore.INetSolver
 Dim ipNetFlag As esriCore.INetFlag
 Dim ipaNetFlag() As esriCore.IEdgeFlag
 Dim ipEdgePoint As esriCore.IPoint
 Dim ipNetElements As esriCore.INetElements
 Dim intEdgeUserClassID As Long
 Dim intEdgeUserID As Long
 Dim intEdgeUserSubID As Long
 Dim intEdgeID As Long
 Dim ipFoundEdgePoint As esriCore.IPoint
 Dim dblEdgePercent As Double
 Dim ipNetWeight As esriCore.INetWeight
 Dim ipNetSolverWeights As esriCore.INetSolverWeights
 Dim ipNetSchema As esriCore.INetSchema
 Dim intCount As Long
 Dim i As Long
 Dim vaRes() As Variant

 ' make sure we are ready

 162

 Debug.Assert Not m_ipPoints Is Nothing
 Debug.Assert Not m_ipGeometricNetwork Is Nothing

 'Mo:Initialize : Added from PF
 Dim ipNetworkCollection As esriCore.INetworkCollection
 Dim count As Long
 Dim ipFeatureClassContainer As esriCore.IFeatureClassContainer
 Dim ipFeatureClass As esriCore.IFeatureClass
 Dim ipGeoDataset As esriCore.IGeoDataset
 Dim ipLayer As esriCore.ILayer
 Dim ipFeatureLayer As esriCore.IFeatureLayer
 Dim ipEnvelope As esriCore.IEnvelope, ipMaxEnvelope As
esriCore.IEnvelope
 Dim dblSearchTol As Double
 Dim dblWidth As Double, dblHeight As Double

 Set m_ipMap = New esriCore.Map

 ' Add each of the Feature Classes in this Geometric Network as a map
Layer
 Set ipFeatureClassContainer = m_ipGeometricNetwork
 count = ipFeatureClassContainer.ClassCount
 Debug.Assert count > 0 ' then Exception.Create('No (network)
feature classes found');

 For i = 0 To count - 1
 ' get the feature class
 Set ipFeatureClass = ipFeatureClassContainer.Class(i)
 ' make a layer
 Set ipFeatureLayer = New esriCore.FeatureLayer
 Set ipFeatureLayer.FeatureClass = ipFeatureClass
 ' add layer to the map
 m_ipMap.AddLayer ipFeatureLayer
 Next

 ' Calculate point snap tolerance as 1/100 of map width.
 count = m_ipMap.LayerCount
 Set ipMaxEnvelope = New esriCore.Envelope
 For i = 0 To count - 1
 Set ipLayer = m_ipMap.Layer(i)
 Set ipFeatureLayer = ipLayer
 ' get its dimensions (for setting search tolerance)
 Set ipGeoDataset = ipFeatureLayer
 Set ipEnvelope = ipGeoDataset.Extent
 ' merge with max dimensions
 ipMaxEnvelope.Union ipEnvelope
 Next

 ' finally, we can set up the IPointToEID ...
 Set m_ipPointToEID = New esriCore.PointToEID
 Set m_ipPointToEID.SourceMap = m_ipMap
 Set m_ipPointToEID.GeometricNetwork = m_ipGeometricNetwork

 ' set snap tolerance
 dblWidth = ipMaxEnvelope.Width

 163

 dblHeight = ipMaxEnvelope.Height

 If dblWidth > dblHeight Then
 dblSearchTol = dblWidth / 100#
 Else
 dblSearchTol = dblHeight / 100#
 End If

 m_ipPointToEID.SnapTolerance = dblSearchTol

 'Mo: Initialization complete

 ' instantiate a trace flow solver
 Set ipTraceFlowSolver = New esriCore.TraceFlowSolver

 ' get the INetSolver interface
 Set ipNetSolver = ipTraceFlowSolver

 ' set the source network to solve on
 Set ipNetwork = m_ipGeometricNetwork.Network
 Set ipNetSolver.SourceNetwork = ipNetwork

 ' make edge flags from the points

 ' the INetElements interface is needed to get UserID, UserClassID,
 ' and UserSubID from an element id
 Set ipNetElements = ipNetwork

 ' get the count
 intCount = m_ipPoints.PointCount
 'MsgBox intCount
 Debug.Assert intCount > 1

 ' dimension our IEdgeFlag array
 ReDim ipaNetFlag(intCount)

 For i = 0 To intCount - 1
 ' make a new Edge Flag
 Set ipNetFlag = New esriCore.EdgeFlag
 'MsgBox m_ipPoints.Point(i).X
 Set ipEdgePoint = m_ipPoints.Point(i)
 ' look up the EID for the current point (this will populate
intEdgeID and dblEdgePercent)
 m_ipPointToEID.GetNearestEdge ipEdgePoint, intEdgeID,
ipFoundEdgePoint, dblEdgePercent
 'MsgBox intEdgeID ' else Point (eid) not found
 'MsgBox dblEdgePercent
 ipNetElements.QueryIDs intEdgeID, esriETEdge, intEdgeUserClassID,
intEdgeUserID, intEdgeUserSubID
 Debug.Assert (intEdgeUserClassID > 0) And (intEdgeUserID > 0) '
else Point not found
 ipNetFlag.UserClassID = intEdgeUserClassID
 ipNetFlag.UserID = intEdgeUserID
 ipNetFlag.UserSubID = intEdgeUserSubID
 Set ipaNetFlag(i) = ipNetFlag

 164

 'Mo:
 Set ipEdgePoint = Nothing
 Next

 ' add these edge flags
 ipTraceFlowSolver.PutEdgeOrigins intCount, ipaNetFlag(0)

 ' set the weight (cost field) to solve on

 ' get the INetSchema interface
 Set ipNetSchema = ipNetwork
 Set ipNetWeight = ipNetSchema.WeightByName(WeightName)
 Debug.Assert Not ipNetWeight Is Nothing

 ' set the weight (use the same for both directions)
 Set ipNetSolverWeights = ipTraceFlowSolver
 Set ipNetSolverWeights.FromToEdgeWeight = ipNetWeight
 Set ipNetSolverWeights.ToFromEdgeWeight = ipNetWeight

 ' initialize array for results to number of segments in result
 ReDim vaRes(intCount - 1)

 ' solve it
 ipTraceFlowSolver.FindPath esriFMConnected, esriSPObjFnMinSum,
m_ipEnumNetEID_Junctions, m_ipEnumNetEID_Edges, intCount - 1, vaRes(0)

 ' compute total cost
 m_dblPathCost = 0
 For i = LBound(vaRes) To UBound(vaRes)
 m_dblPathCost = m_dblPathCost + vaRes(i)
 Next
 'MsgBox m_dblPathCost
 'MsgBox m_ipEnumNetEID_Edges.count
 'MsgBox m_ipEnumNetEID_Junctions.count
 ' clear the last polyline result
 Set m_ipPolyline = Nothing
'MsgBox "Done SP"
End Sub

Sub PathPolyLine()

 Dim ipEIDHelper As esriCore.IEIDHelper
 Dim count As Long, i As Long
 Dim ipEIDInfo As esriCore.IEIDInfo
 Dim ipEnumEIDInfo As esriCore.IEnumEIDInfo
 Dim ipGeometry As esriCore.IGeometry
 Dim ipNewGeometryColl As esriCore.IGeometryCollection
 Dim ipSpatialReference As esriCore.ISpatialReference

 ' if the line is already computed since the last path, just return it
 'If Not m_ipPolyline Is Nothing Then
 'Set PathPolyLine = m_ipPolyline
 'Exit Sub
 'End If

 165

 Set m_ipPolyline = New esriCore.Polyline
 Set ipNewGeometryColl = m_ipPolyline

 ' a path should be solved first
 Debug.Assert Not m_ipEnumNetEID_Edges Is Nothing

 ' make an EIDHelper object to translate edges to geometric features
 Set ipEIDHelper = New esriCore.EIDHelper
 Set ipEIDHelper.GeometricNetwork = m_ipGeometricNetwork
 Set ipSpatialReference = m_ipMap.SpatialReference
 Set ipEIDHelper.OutputSpatialReference = ipSpatialReference
 ipEIDHelper.ReturnGeometries = True

 ' get the details using the IEIDHelper classes
 Set ipEnumEIDInfo =
ipEIDHelper.CreateEnumEIDInfo(m_ipEnumNetEID_Edges)
 count = ipEnumEIDInfo.count

 ' set the iterator to beginning
 ipEnumEIDInfo.Reset

 For i = 1 To count

 ' get the next EID and a copy of its geometry (it makes a Clone)
 Set ipEIDInfo = ipEnumEIDInfo.Next
 Set ipGeometry = ipEIDInfo.Geometry

 ipNewGeometryColl.AddGeometryCollection ipGeometry

 Next ' EID

 ' return the merged geometry as a Polyline
 'Set PathPolyLine = m_ipPolyline

End Sub

 166

B

Metadata for PDOT CD

 167

Identification_Information:
Citation:
Citation_Information:
Originator:
Pennsylvania Department of Transportation, Bureau of Planning and Research,
Geographic Information Division
Publication_Date: 20010116
Title:
PennDOT - State maintained roadways in Adams County, Pennsylvania
Edition: 2001
Publication_Information:
Publication_Place: Harrisburg, PA
Publisher: Pennsylvania Department of Transportation
Online_Linkage:
<ftp://www.pasda.psu.edu/pub/pasda/padot2001/state/padot-stroads-
adams_2001.zip>
Description:
Abstract:
State-owned and maintained public roads by county within Pennsylvania.
Includes fields describing pavement type, traffic volumes and other information
as detailed below.
Purpose:
Public information and support for transportation planning, design and
development.
Supplemental_Information: This data is intended for use at 1:24,000 or smaller
scale.
Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date:
20010116
Currentness_Reference: publication date
Status:
Progress: Complete
Maintenance_and_Update_Frequency: Bi-annual
Spatial_Domain:
Bounding_Coordinates:
West_Bounding_Coordinate: -77.471603
East_Bounding_Coordinate: -76.958397
North_Bounding_Coordinate: 40.069698
South_Bounding_Coordinate:

 168

39.719891
Keywords:
Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: culture transportation roads
Theme_Keyword: highways hiways
Place:
Place_Keyword_Thesaurus: None
Place_Keyword: Pennsylvania
Place_Keyword:
Adams County
Access_Constraints:
None.
Use_Constraints:
The user shall indemnify, save harmless, and, if requested, defend the
COMMONWEALTH, their officers, agents, and employees from and against any
suits, claims, or actions for injury, death, or property damage arising out of the
use of or any defect in the FILES or any accompanying documentation.<p>

The COMMONWEALTH excludes any and all implied warranties, including
warranties or merchantability and fitness for a particular purpose.<p>

The COMMONWEALTH makes no warranty or representation, either express or
implied, with respect to the FILES or accompanying documentation, including its
quality, performance, merchantability, or fitness for a particular purpose. The
FILES and documentation are provided "as is" and the USER assumes the entire
risk as to its quality and performance.<p>

The COMMONWEALTH will not be liable for any direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to use the
FILES or any accompanying documentation.<p>

The USER is granted permission to translate and add value to the FILES for the
use of the FILES on its computer hardware; provided, however, that the USER
annually notify the UNIVERSITY / COMMONWEALTH of any customizing or
value-adding work done.<p>

Any customized or value added versions of the files will contain the following
disclaimer:<p>

THIS IS NOT A PENNSYLVANIA DEPARTMENT OF TRANSPORTATION
APPROVED FILE. THE DEPARTMENT OF TRANSPORTATION RETAINS
THE MASTER FILES.<p>

 169

THE USER AGREES AND UNDERSTANDS THAT IT MAY NOT FURTHER
DISTRIBUTE THE FILES TO A THIRD PARTY.<p>

If you have any questions or problems, contact the ORGANIZATION where you
acquired the data.<p>

Point_of_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization:
Pennsylvania Department of Transportation, Bureau of Planning and Research,
Geographic Information Division
Contact_Person: Bob Grugan
Contact_Address:
Address_Type: mailing address
Address: P.O. Box 3654
City: Harrisburg
State_or_Province: PA
Postal_Code: 17101-3654
Country: USA
Contact_Voice_Telephone:
(717) 772-3305
Native_Data_Set_Environment:
Microstation Design File (.DGN)

Data_Quality_Information:

Attribute_Accuracy:
Attribute_Accuracy_Report: Verified visually by comparison against source
materials.
Logical_Consistency_Report: Topology exists
Completeness_Report:
Contains all officially recognized features within the Commonwealth.
Positional_Accuracy:
Horizontal_Positional_Accuracy:
Horizontal_Positional_Accuracy_Report:
Digitized from sources conforming to National Mapping Accuracy Standards for
1:24,000 scale maps.
Quantitative_Horizontal_Positional_Accuracy_Assessment:
Horizontal_Positional_Accuracy_Value: 100
Horizontal_Positional_Accuracy_Explanation:
Estimated accuracy is +/- 100 Feet.
Lineage:
Source_Information:
Source_Citation:
Citation_Information:

 170

Originator: Geological Survey (U.S.)
Publication_Date: Unknown
Title: USGS 7.5 minute topographic maps
Geospatial_Data_Presentation_Form: map
Publication_Information:
Publication_Place: Reston, VA
Publisher:
United States Geological Survey
Source_Scale_Denominator: 24000
Type_of_Source_Media: paper
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date:
Unknown
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: topo quads
Source_Contribution: Features for digitization.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Geological Survey (U.S.)
Publication_Date: 1993-1996
Title: Digital orthophoto quarter quadrangle
Geospatial_Data_Presentation_Form: map
Publication_Information:
Publication_Place: Reston, VA
Publisher:
United States Geological Survey
Source_Scale_Denominator: 12000
Type_of_Source_Media: on-line
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 1992
Ending_Date:
1995
Source_Currentness_Reference: Image acquisition
Source_Citation_Abbreviation: orthophotos
Source_Contribution: position verification.
Process_Step:
Process_Description:
Digitized into Bentley Microstation system from most recently available 7.5
minute USGS topographic quadrangles on a stable (mylar) base. Updated
information is added from construction plans and maps as this information

 171

becomes available. Converted to ESRI Shapefile and Geomedia Warehouse
formats for distribution.
Process_Date: 2000-2001
Process_Step:
Process_Description: Verified visually through overlay with orthophotos as
possible.
Process_Date: 2000-2001
Process_Step:
Process_Description: Exported to ESRI Shapefile for distribution.
Process_Date:
2001

Spatial_Data_Organization_Information:

Direct_Spatial_Reference_Method: Vector

Spatial_Reference_Information:
Horizontal_Coordinate_System_Definition:
Geographic:
Latitude_Resolution: 0.0002743
Longitude_Resolution: 0.0002743
Geographic_Coordinate_Units: Decimal degrees
Geodetic_Model:
Horizontal_Datum_Name: North American Datum of 1983
Ellipsoid_Name: GRS80
Semi-major_Axis: 6378137.0
Denominator_of_Flattening_Ratio:
298.26

Entity_and_Attribute_Information:

Overview_Description:
Entity_and_Attribute_Overview:
Road entity described with the following attribution: ACCESSCTRL: Access
control: 1=Full Control; 2=Partial Control; 3=No Control ADTT_CUR: Current
truck annual average daily traffic CTY_CODE: County code - see below for
county codes and county names CUR_AADT: Current annual average daily
traffic DLY_VMT: Daily vehicle miles traveled DLYTRKVMT: Daily truck
vehicle miles traveled FAC_TYPE: Facility Type Indicator: 1=One-way; 2=Two-
way FEDAID_SYS: Federal Aid System - see table below for a table of Federal
Aid System codes FUNC_CLS: Functional Class - see table below for a table of
functional class codes JURIS: Jurisdiction (indicates maintenance responsibility
for road): 1=State; 2=Turnpike; 5=Non-state federal aid LANE_CNT: Number of
traffic lanes NAME: Street name NHS_IND: National Highway System codes:
N=Not on National Highway System; Y=On National Highway System
RT_NO_PRFX: Route prefix: I=Interstate; PA=PA Traffic Route; US=US Traffic
Route RT_NO_SFFX: NA SEG_NO: Segment number SIDE_IND: Directional

 172

indicator (right/left side of highway): 1=Even numbered segments (right side);
2=Odd numbered segments (left side) ST_RT_NO: State route number
SURF_TYPE: Pavement surface type - See below for Pavement Surface Type
codes. TOLL_CODE: Toll indicator: 1=Toll bridge TOT_WIDTH: Total
pavement width TRAF_RT_NO: Traffic route number TRK_PCT: Truck
percentage WKDYTRKCUR: Current weekday truck volume YR_BUILT: Year
road was built YR_RESURF: Year road was last surfaced

The attributes below are control information generated during data export process.
Please disregard.

FID: System generated feature identification integer Shape: System generated
feature geometry LENGTH_FT: NA MAPID: NA MSLINK: MGE link ID
number

Federal Aid System Codes:

Code Designation

1 Federal aid system open to traffic 2 Federal aid system notyet built or not open
to traffic 8 Nonfederal aid open to traffic 9 Nonfederal aid not yet built or not
open to traffic

Functional Class Codes:

Code Functional Class

01 Rural principal arterial - interstate 02 Rural principal arterial - other 06 Rural
minor arterial 07 Rural major collector 08 Rural minor collector 09 Rural local 11
Urban principal arterial - interstate 12 Urban principal arterial - other freeways 14
Urban other principal arterial 16 Urban minor arterial 17 Urban collector 19
Urban local 99 Ramp

Pavement Surface Type Codes: CodePavement Surface Type 20 Earth -
unimproved 30 Earth - graded, drained 40 Stabilized - (soil, gravel, or stone) 51
Bituminous Surface Treatment 52 Mixed Bituminous - intermediate type 53
Bitum Penetration - intermediate 61 Bituminous Pavement - high type 62
Bituminous Pavement on PCC Base 71 Plain Portland Cement Concrete
Pavement 72 Reinforced Portland Cement Concrete 73 Continuously Reinforced /
Prestressed 74 Concrete Over Concrete - bonded 75 Concrete Over Concrete -
unbonded 76 Concrete Over Bituminous Pavement 80 Brick / Block Pavement 99
Undefined Surface Type

Entity_and_Attribute_Detail_Citation: PennDOT
Detailed_Description:

 173

Entity_Type:
Entity_Type_Label: Roadway
Entity_Type_Definition: public roadways
Entity_Type_Definition_Source: U.S. Bureau of Census
Attribute:
Attribute_Label: CTY_CODE
Attribute_Definition: County code number
Attribute_Definition_Source: Self-evident
Attribute_Domain_Values:
Unrepresentable_Domain:
<pre> PennDOT Code County Name

01 Adams 02 Allegheny 03 Armstrong 04 Beaver 05 Bedford 06 Berks 07 Blair
08 Bradford 09 Bucks 10 Butler 11 Cambria 12 Cameron 13 Carbon 14 Centre 15
Chester 16 Clarion 17 Clearfield 18 Clinton 19 Columbia 20 Crawford 21
Cumberland 22 Dauphin 23 Delaware 24 Elk 25 Erie 26 Fayette 27 Forest 28
Franklin 29 Fulton 30 Greene 31 Huntingdon 32 Indiana 33 Jefferson 34 Juniata
35 Lackawanna 36 Lancaster 37 Lawrence 38 Lebanon 39 Lehigh 40 Luzerne 41
Lycoming 42 McKean 43 Mercer 44 Mifflin 45 Monroe 46 Montgomery 47
Montour 48 Northampton 49 Northumberland 50 Perry 51 Pike 52 Potter 53
Schuylkill 54 Snyder 55 Somerset 56 Sullivan 57 Susquehanna 58 Tioga 59
Union 60 Venango 61 Warren 62 Washington 63 Wayne 64 Westmoreland 65
Wyoming 66 York 67 Philadelphia </pre>

Distribution_Information:

Distributor:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: Pennsylvania Spatial Data Access (PASDA)
Contact_Address:
Address_Type: mailing address
Address: Land and Water Building
City: University Park
State_or_Province: PA
Postal_Code: 16802
Country: USA
Contact_Electronic_Mail_Address:
pasda@psu.edu
Resource_Description:
PennDOT roadways for Adams County
Distribution_Liability:
The USER shall indemnify, save harmless, and, if requested, defend those parties
involved with the development and distribution of this data, their officers, agents,
and employees from and against any suits, claims, or actions for injury, death, or

 174

property damage arising out of the use of or any defect in the FILES or any
accompanying documentation. Those parties involved with the development and
distribution excluded any and all implied warranties, including warranties or
merchantability and fitness for a particular purpose and makes no warranty or
representation, either express or implied, with respect to the FILES or
accompanying documentation, including its quality, performance,
merchantability, or fitness for a particular purpose. The FILES and documentation
are provided "as is" and the USER assumes the entire risk as to its quality and
performance. Those parties involved with the development and distribution of this
data will not be liable for any direct, indirect, special, incidental, or consequential
damages arising out of the use or inability to use the FILES or any accompanying
documentation.
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: ArcView Shapefile
Format_Version_Number: 3.x
File_Decompression_Technique: Zip compression
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information:
Network_Address:
Network_Resource_Name:
<ftp://www.pasda.psu.edu/pub/pasda/padot2001/state/padot-roads-
adams_2001.zip>
Access_Instructions:
<http://www.pasda.psu.edu>
Fees:
none

Metadata_Reference_Information:

Metadata_Date: 20010116
Metadata_Review_Date:
20010127
Metadata_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: Pennsylvania Spatial Data Access (PASDA)
Contact_Person: Christopher Pfeiffer
Contact_Position: Metadata Coordinator
Contact_Address:
Address_Type: mailing address
Address: 141 Land and Water Building
City: University Park
State_or_Province: PA

 175

Postal_Code: 16802
Country: USA
Contact_Voice_Telephone: 814-865-8792
Contact_Facsimile_Telephone: 814-865-3378
Contact_Electronic_Mail_Address:
cxp7@psu.edu
Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial
Metadata
Metadata_Standard_Version: FGDC-STD-001-1998

Generated by mp version 2.5.2 on Tue Feb 20 16:47:55 2001

 176

Vita

 Moinak Chatterjee was born in Calcutta, India. He received his B.S.E.E in

Electrical and Computer Engineering from the University of Tennessee in 1998 and

completed an M.S. in Geography with a specialty for GIS/Transportation by 2003.

Moinak has worked on several projects relating to Geographical Information Systems and

software development during the past several years.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2003

	Providing Customized Real Time Traffic Information Through the Internet: Implementation Using GIS
	Moinak Chatterjee
	Recommended Citation

	Microsoft Word - appsheet.doc

