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ABSTRACT 

A ground- coup led he at pump system was i nstal led i n  

TECH House I a t  the Tenne s s ee Ene rgy Conservati on i n  

Housing s i te loc ated o n  the Unive r s i ty of Tenne s s ee 

c ampu s . The pe rformanc e o f  the he at pump system was 

eva luated for the coo l i ng season of 1983 . Data on 

system ene rgy flows , powe r c onsumpti on , house 

temperature s , soi l tempe rature s and we athe r condi ti ons 

we re gathe red on an hourly basi s fo r the enti re c o o l i ng 

s e a son. Weekly c oe ffi c i ent s o f  performance , soi l 

thermal conduc tivity s , and a sea sonal performance 

facto r we re c a lcu l ated from expe rimental data . 

The pe rformanc e was found to be poor when 

c ompai red to a conventi onal a i r - to - ai r  he at ·pump 

s ystem. The sea sona l pe rformanc e fac tor for the 

ground- coupled he at pump sys tem was 1 . 1 1 whi le typ i c a l 

conventi onal heat pump system sea sona l pe rformance 

facto r s  for the Knoxvi l l e are a are around 2 . 3 .  A trend 

o f  pe rformanc e dete ri orati on ove r the sea son due in 

part to dec re a s i ng soi l the rmal conductivi ty wa s found . 

The dec re asing soi l thermal c onductivi ty wa s c aus ed by 

a dec rease in soi l mo i sture . 



iii 

The ground- coupled he at pump sy stem was mode led 

using the TRNSYS and GROCS computer programs . 

Compa ri son wi th experimenta l data va l i dated the 

computer mode l . The di fferenc e between the predi cted 

and expe rimenta l season al pe rformanc e facto rs was 

approximate ly 3 perc ent . 

Pa rametric studi e s  we re perfo rmed to dete rmine 

sy stem perfo rmanc e unde� vari ous condi t i ons . Facto rs 

varied inc lude soi l moi sture c ontent , density , c o o l i ng 

l o ad per uni t coi l length and far - f i e ld so i l  

tempe rature s . 

The predi cti ons show that the ground-coup led he at 

pump shou ld give best performanc e in course grained , 

we l l  packed , mo i sture s aturated so i l .  Wo rst 

perf o rmanc e was predi cted to occur i n  fine gr ai ned , 

l o ose packed , dry so i l .  

The mode l was a l s o used to predict the maximum 

pe rfo rmanc e o f  a we l l  de s i gned ground- c oup led he at pump 

in the Knoxville area. The maximum predicted seasonal 

performanc e factor was 2 . 04 . 
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CHAPTER 1 

I NTRODUCT I ON 

The hi story o f  he at pumps began i n  1850 when , i n  

Appal achi c o l a ,  Florida , John Go rri e i nvented the first 

ice maki ng devi ce . Gorri e bui lt a steam engine that 

moved a pi ston whi ch c ompres sed ai r .  The a i r  was 

a l l owed to expand qui ckly and thi s expansi on caused the 

ai r temperature to drop be l ow the free z i ng po i nt o f  

water . Go rrie used i c e  produced from hi s devi ce to 

coo l ma l ari a pati ents in an attempt to cure the 

pati ents o f  the i r i l lne s s . 

Lord Ke lvi n was al so anothe r pi oneer in deve l oping 

the he at pump . I n  1850, Lo rd Kelvin pre sented to the 

Royal Soci ety hi s theo ry o f  a "he at mu l tip�i er" device . 

Ke lvi n ' s "heat mu l tip l i e r" theory and Gerr ie ' s ice 

making devi ce are the ba s i s  for the modern heat 

pump ( 1 ) .  

The He at Pump 

The ba s i c  components o f  a he at pump are a 

compre s so r , an evapor ato r , a condenser and an expansi on 

va lve . Fi gure 1-1 i l lustrate s a ba s i c  he at pump 

system . The· compre s sor take s low pre s sure vapor at 
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State 1 and c ompre s se s  the vapor to a hi gh pre s sure , 

State 2 .  The hi gh pre s sure vapo r then pa s s e s  through 

the condenser whe re the vapo r re l e a s e s  ene rgy and 

change s phase . At State 3 ,  the f luid i s  a hi gh 

pre s sure l i qui d . The l iqui d  then p a s se s through the 

expan s i on va lve and ente r s  the evaporato r at State 4 a s  

a l ow pre s sure mi xture o f  l i quid and vapo r . As the 

mi xtu re p a s se s  through the evaporator, ene rgy i s  added . 

The re su l t  i s  a l ow pre s sure vapor at State 1.  

Type s o f  He at Pumps 

The type s o f  he at pump s i n  �se today are 

ai r-to- ai r, ai r- to-wate r ,  e arth-to- ai r, earth- to -water , 

wate r - to - ai r, and wate r- to-wate r ( 2 ) . Each type refers 

to the he at sourc e ( s i nk )  to heat s i nk ( sourc e ) heat 

tran s fe r  fo r he ati ng ( c o o l i ng ) . The a i r - to - ai r  he at 

pump i s  the mo st common type o f  he at pump i n  use today 

for residenti a l  app l i c ati ons . The use of ai r as the 

heat tran s fe r  flui d a l lows great f l exibi l i ty i n  the 

de s i gn o f  heati ng and ai r c ondi ti oni ng systems . 

Ai r - to - ai r  he at pumps a l so are usua l l y manufactured in 

modu l ari zed comp ac t  package s whi ch contain the he at 

pump components . The pac kagi ng a l l ows the he at pump to 

be mass -produc ed thu s reduc i ng the price to the 

consume r . 
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Ai r- to -wate r he at pumps use water as the he at 

trans fer f luid in moving ene rgy i nto or out of the 

condi ti oned space . The ai r-to-wate r he at pump s have 

frequent app l i c ation in l arge bui ldings whe re zone 

contro l i s  nec e s sary ( 2 ) . The primary di sadvantage o f  

the ai r t o  ai r and ai r t o  water he at pump s i s  that the 

perfo rmanc e deteri orate s signi fi c antl y  when the system s 

are needed the mo st . Fi gure_ 1 - 2  i�lustrate s the sy stem 

pe rfo rmanc e deteri o rati on ( 3 ) .  During the he ating 

season , fro st may fo rm on the· out side ai r co i l . Some 

sort of de fro st cyc l e  i s  used to stop the c o i l fro sting 

but adds to the ope rating c o sts and requi res an 

auxi l i ary he ater . 

E arth- to - ai r  and earth- to-wate r he at pump s use the 

earth as a he at sink o r  source . The se he at pump s use 

di rect evapo rati on o r  condens ation of the refri gerant 

in the ground co i l . Earth-to- ai r  and earth- to -wate r 

he at pump s do not experi enc e the temperature 

fluctuati ons that heat pumps u s i ng ai r as the outdoor 

he at sink o r  source encounte r sinc e  the earth i s  a 

temperature mode rato r .  Since the range o f  annual 

temperature fluctuations is l e s s for earth- to - ai r  and 

earth- to -water heat pump s , the he at pump sy stem 

perfo rmance should not deterio rate as s igni fi c antl y  a s  

a i r  type·he at pump s . The i nsta l l ati on co sts , however ,  
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are much hi gher than ai r type he at pump s . The c o st o f  

hi gh pre s sure tubi ng and the l arge vo lume o f  

refri gerant needed for the ground coi l wou ld furthe r 

i nc re a se initi a l  costs ( 2 ) . 

Water - to - ai r  and water-to-water he at pump s use 

ground wate r, ai r or the earth a s  the outside heat s i nk 

o r  he at s ource . When ground wate r i s  used,· at l e ast 

one we l l  i s  needed s i nce streams o r  l ake s are not 

u sua l l y  avai l ab l e . Ground water i s  not pract i c a l  

unl e s s  the re i s  some �ay t6 return the water t o  the 

underground re servo i r . Any gene r a l  wide spre ad use o f  

ground wate r without returni ng the water t o  the 

unde rground reservo i r  wou ld resu lt i n  depletion o f  thi s 

valuab l e  re s ource and would not be i n  the pub l i c  

i ntere st . 

One method .of returning ground water to the 

unde rground re servoi r  i s  a dua l  we l l  system whe re one 

we l l  i s  u s ed to extract wate r and a second we l l  i s  used 

to return the water to the underground reservo i r .  The 

practi c a l ity o f  a dua l  we l l  system depends upon l o c a l  

c ondi tions , we l l  spac i ng ,  loc a l  code s , envi ronmental 

consi derati ons , etc . Thi s recyc l i ng scheme may be 

ec onomi c a l l y  j u stifi ab l e  and practi c a l  whe re there are 

sha l l ow, thi ck wate r s ands ( 4 ) . 
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The chi ef advantage o f  u s i ng ground water i nstead 

o f  ai r for the outdo o r  heat s i nk o r  source i s  that 

ground water i s  at ne arly constant and relative l y  high 

temperature i n  the wi nte r and low temperature in the 

summe r when compared to the ai r temperature ( 2 ) .  By 

havi ng a ne arly constant outdo o r  s i nk o r  source 

tempe rature , it i s  po s s ible to de s i gn a uni t that 

operate s at maximum effi ci enc y for a parti cu l ar range 

o f  ground temperatures . Thi s wou ld re sult in reduced 

operating c o st s . 

Some othe r di s advant age s in the use o f  ground 

water i n  heat pump app l i c ati ons are c o rro s i on and 

s c a l i ng problems on the heat tran s fe r  surface and 

hi ghe r insta l l ati on c o s t s  when c ompared to ai r type 

heat pump s . The water compo s i ti on
.
, l o c ation and 

temperature i s  u sua l l y  unknown unti l afte r the we l l  ha s 

been dri l l ed . The re i s  a l so the po s sibi l i ty that the 

we l l  could dry up ( 2 ) .  

There are two basic types of water-to -air and 

water- to -water heat pump s that use the earth as a heat 

s i nk or source . The type s are the ve rti c a l  co i l  and 

hori z onta l  coi l heat pump systems . Both s ystems c an be 

u sed in areas wi th l imi ted water avai l abi l i ty and/o r 

c o rro sive mine ral s in the water supp l y . The ve rti cal 
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earth coi l system i s  compo sed o f  a we l l  o r  seri e s  o f  

we l l s  wi th a �-shaped he at exchange r i n  each we l l .  The 

ve rti c a l  coi l he at exchange r insta l l ati on c o st i s  

$2 1 . 3 3 ( 1979 do l l ars ) per mete r a s  repo rted by Bo se at 

Oakl ahoma State Unive r s i ty ( 5 ) . Bose al so menti ons that 

a minimum l ength rati o o f  3 0 . 5  mete r s  o f  wetted coi l 

per ton o f  summe r coo l i ng i s  rec ommended for a ve rti c a l  

coi l he at exchanger i n  the Oakl ahoma area . 

The hori z onta l  co i l  he at pump system i s  the 

subj ect o f  thi s study . A ho rizonta l.coi l he at pump 

uti l i z e s  an unde rground piping netwo rk a s  a heat 

exchanger .  S ome f luid other than the he at pump 

refri ge rant , such as water, i s  used as. the he at 

transfer f luid . The insta l l ation c o st o f  a ho ri zontal 

coi l he at exchanger ,  a l so repo rted by Bo se , i s  $5 . 75 

( 198 1 do l l ar s )  pe r meter ( 5 ) . Bo se sugge sts a length 

ratio o f  between 91 and 1 0 6  meter s  pe r ton o f  summe r 

coo l i ng for a ho rizonta l  coi l he at exchange r .  Bose 

sugge sted l ength rati o p l ac e s  the c o st pe r ton between 

$5 2 5 . 00 and $6 12 . 50 for the ho ri zonta l  coi l . 

Seve ral di s advantage s o f  the ho rizonta l coi l he at 

pump system are the l arge amount of surface area 

requi red fo r the c o i l and , when used during the summer, 

the po s s ibi l i ty o f  the soi l dryi ng i n  the vi c ini ty of 

the co i l . Such drying would reduce the therma l  
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conduc tivi ty o f  

the c o i l f luid 

the so i l  whi ch wou ld c ause a ri se in 

tempe rature. Thi s i nc re a s e  i n  coi l 

f lui d tempe rature would c ause the condenser pre s sure to 

inc rease , thus reduc i ng the he at pump effi c i ency and 

c ause the he at pump to use mo re powe r . Ci rcumstance s  

could ari se whe re the inc rease i n  condenser pre s sure i s  

so great that the he at pump hi gh pre s sure senso r wou ld 

c ause the he at pump to stop ope rati ng . 

P a st and Current Re search 

Much re search w.a s  conducted in the 1940 ' s and 

19 5 0 ' s on ground- c oup l ed he at pump s . A survey report 

on current rese a rch as o f  19 5 3  wa s pre sented i n  the 

Edi son E l ec tric I nstitute Bu l l eti n ( 6 ) .  Li sted we re 2 8  

re se arch p ro j ects in progre s s  o r  comp l e ted . Twenty two 

o f  the proj ects i nvo lved actu a l  he at pump 

insta l l ati ons . Ni ne o f  the pro j ects de a l t  wi th he ati ng 

only , three we re coo l i ng only and the remaining ten 

were he ating and coo l i ng. The insta l l ati ons were as 

far no rth as Connecticut , as far south as A l abama and 

a s  far we st as Wa shi ngton . The heat transfer rate s 

reported range between 1 . 10 and 6.44 W/m-C fo r he ating 

and between 0 . 74 and 2 . 3 8 W/m-C fo r coo l i ng .  Seasonal 

per fo rmanc e data we re not given . 
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By the l ate 1 9 5 0 ' s ,  i ntere st i n  ground- coup led 

he at pump s wa�ed due to che ap and abundent e l ectr i c i ty . 

I nterest has been resto red l ate l y  due to the ene rgy 

cri se s  o f  1 9 7 3  and 1 9 7 8 . 

As o f  1 9 8 0 , ove r 1 000 he at only he at pump s have 

been instal l ed in Sweden ( 7 ) . Depending upon the 

c apac i ty ,  the total inst a l l ed system c o st i s  between 

$7 3 00 and $8400 . AGA The rmi a i s  the i nsta l l e r  and 

accepts o rde r s  onl y whe re mo i st c l ay i s  pre sent . 

The re have been ove r 100 ground- coupl ed he at pump s 

insta l l ed i n  the Sti l lwater , Oakl ahoma area ( S ) . The 

earth coi l s  are buried at a 1 . 2 2 meter depth and use 

between 61 and 91 me te r s  of co i l  per ton o f  he at pump 

c apac i ty .  

The re has been some re se arch rec ently i nto 

i nc re a s i ng ground- coup l ed heat pump pe rfo rmance , 

parti cu l arly for heati ng . Coo l ing data i s  sketchy at 

be st . Bose ( 5 )  found system performance dete r i o ration 

at the begi nning o f  the cooling season and a leveling 

o f  pe rfo rmanc e throughout the middle and end o f  the 

coo l i ng season . Metz ( 8 )  has deve l oped a computer 

program c a l l ed GROCS whi ch mode l s  ground he at trans fer . 

GROCS ha s been app l i ed to ground- coup l ed he at pump 

sy stems and val i dati on of the program i s  current ly 

unde rway ( 9 , 1 0 ) . 
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P roject Objectives 

The fi rst obj ective o f  thi s study i s  to 

experimental l y  anal yze the pe rformanc e of a 

ground- c oupl ed he at pump during a coo l i ng se ason in the 

Tenne s see val ley regi on .  Spec i fi c a l l y ,  the coo l i ng 

se a sonal performance factor o f  the he at pump system has 

been dete rmi ned . The effects o f  soi l properti e s  on 

perfo rmance are evaluated . A detai led de sc ripti on of 

the ground- c oup led he at pump and i nstrumentati on i s  

pre sented i n  Chapte r 3 .  Expe rimental re sults are 

pre sented in Chapter 4. 

The sec ond obj ective o f  thi s study i s  to deve lop 

and ve ri fy a compute r mode l o f  a ho r i z ontal coi l 

ground- c oup led heat pump . The mode l o f  the 

ground- c oup l ed he at pump system was deve l oped using the 

exi sting programs TRNSYS ( 11 )  and GROCS ( 8 ) . The mode l 

o f  the ground-coup led he at pump i s  pre sented i n  Chapter 

5 .  P arametric studi e s  using the mode l we re pe rformed 

and the re sults are pre s ented in Chapter 5. The model 

wa s used to predi ct the effects soil properti e s  have on 

ground- coupled he at pump performanc e and a maximum 

l imi t of performanc e for the Knoxvi l l e regi on . 
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CHAPTER 2 

SO I L  PROPERT I E S  

A ground- coup l ed he at pump must operate wi th a 

hi ghe r system eff i c i ency than an ai r to ai r he at pump 

in order to j u sti fy the hi gher i ni ti a l  c o s t  of the 

ground- coup l ed he at pump . Thi s imp l i e s  that l a rge 

amount s o f  heat must be transf�red to the so i l  during 

the coo l i ng sea son i n  an effi c i ent manner . S inc e the 

phys i c a l  and the rma l  prope rti e s  o f  soi l p l ay an 

important ro l e  i n  the afo rementi oned transfer o f  he at, 

a di scus s i on of soi l phys i c a l  and the rmal prope rti e s  

seems approp ri ate . 

So i l  i s  a nonhomogeneou s materi a l  that i s  usua l l y  

subdivided into three phase s ,  so l i d ,  l iqui d ,  and gas . 

The s o l id pha se c an c ons i st o f  c rystal l i ne and/o r 

nonc rystal l i ne 

A percentage o f  

mate rial . The 

parti c l e s  

the so l i d 

soli d 

o f  various shape s and s i z e s . 

materi a l  c an be o rgani c 

as a 

matrix which fo rms the 

phase can 

framewo rk 

be 

o f  

thought o f  

the so i l . The 

manner i n  which the soi l partic l e s  ·form the soil matri x 

a l so fo rm the vo id spac e s  whi ch conta i n  the l i quid and 

gas pha se s ( l2 ) . 
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The l i quid phase is  a wate r so luti on containi�g 

di s so lved gase s ,  so lub l e  s a l t s  and o rganic and 

i no rganic so lute s ( 12 ) .  The gaseous pha se i s  s imi l ar to 

the atmo sphe re but di f fers in the propo rti on of the 

component s ( l2 ) . The gas phase i s  usual l y a s sumed to be 

ai r. The three-phase system i s  a s impl e  way to expre s s  

c ommoml y  used so i l  prope rti e s  such a s  wate r content , 

po ro s i ty and vo i d  ratio . 

Soi l Re l ati onships 

Vo lume and ma s s  re l ati onships among the three 

phase s in the soi l and some bas i c  parameters useful in 

characteri z i ng soi l s  wi l l  now be conside red . The 

vo lume re l ati onships o f  e ach phase c an be expre s sed by , 

where , 

Vs+Vg+Vl=l 

Vs�Vg , Vl= vo lumetr i c  fracti ons of the 

so l i d ,  ga s and l iquid 

pha se s , re spec tive l y . 

( 2 - 1 )  

Poro s i ty i s  a me a sure o f  the vo id spac e i n  the 

so i l . P o ro si ty i s  usu a l l y  in the range o f  3 0  to 60 

perc ent . Course grai ned soi l s  such a s  s and tend to 

have poro s i ti e s  between 3 0  and 40 percent and fine 
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textured soi l s  such a s  c l ay have poros i ti e s  betwe en 40 

and 60 pe rc ent ( l3 ) . Porosity i s  de fined as the rati o 

of the volume of the void space to the sum of the 

volume s of the void spac e and sol i d  materi a l  in the 

soi l ,  or , 

P=Vv/V ( 2 -2 ) 

where , 

Vv=Vq+Vl 

Water content is u sua l ly de fined on a perc ent 

ba s i s  as the ma s s  of the moi sture to the ma s s  of the 

sol i d , or , 

whe re , 

WC=Ww/Wd* lOO 

Wm=we iqht of the moi sture 

Wd=we iqht of dry soi l . 

Soi l Texture Cla s si ficati on 

( 2 - 3 )  

Two soi l clas si fi c ation .systems ba sed on part i c l e  

s i z e  are i n  ·use today . The se systems have been 

deve l oped by the Uni ted State s Dep artment of 

Aqriculture ( l4 , 15 )  and by Atterberq ( 13 ) . 
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A rough fi eld test can b e  performed t o  determine 

soil texture . With wet soi l , the fee l of the soi l c an 

be dete rmined between the thumb and finger . Sand 

parti c l e s  have a gri tty feel , si lt ha s a smooth or 

floury fee l and c l ay i s  p l a stic or sticky ( l3 ) . 

Soi l  Therma l  P roperti e s  

Therma l  conductivity , vo lumetric he at c apacity , 

and the rmal di f fu sivity are therma l propertie s that c an 

affect the perfo rmance o f  a ground- coup led heat pump . 

Vo lumetric he at c apacity i s  a re l ative ly s imp le 

prope rty to determine , given the vo lumetric f ractions 

o f  the individu al soi l component s .  DeVrie s ( l 6) 

pre sented an equation to dete rmine the vo lumetric heat 

c apacity , 

whe re , 

C=Vs*Cs+Vl*Cl+Vg*Cg ( 2 - 4 )  

C s ,  C l , Cg = Heat c apacity o f  the so lid , liquid 

and gas component s o f  the soi l ,  

re spective ly . 

DeVrie s ( l 6 )  al so deve l oped an empi rical equation 

for c a lcu l ating the vo lumetric he at c ap acity . The he at 

c apacity of the gas phase is neglec ted sinc e the ga s 
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pha se contribute s
' 

ve ry l i ttle to the ove ra l l vo lumetri c 

he at c apac i ty ( 16 ) . DeVri e s  u sed data gathe red by other 

re searche r s  ( 1 7 , 1 8 , 19 , 2 0 ) to dete rmi ne the volumetr i c  

he at c apac i ty o f  the soi l sol id phase . The equati on 

deve loped by DeVri e s , per uni t vo lume , i s  

where , 

C=0 . 46*Vm+0.6*Vo+Vw 
-3 -1 

c a l  em C 

Vm , Vo , Vw=volume fraction of the sol i d  

mi neral s , sol i d  organi c materi a l  

and the l i qui d phase whe re water 

( 2 - 5 ) 

i s  as sumed to be the onl y  component , 

respective l y . 

Determi ni ng soi l the rma l  c onductivi ty i s  much more 

di ffi cu l t  than dete rmini ng so i l  volumetri c he at 

c apac i ty .  Many experimental va lue s for various type s 

of soi l s  have ·been pre sented in the 

l i te r ature ( l3 , 2 1 , 22 , 2 3 ) . The expe rimental va lues 

should be used only if the s o i l in que sti on i s similar 

i n  not onl y  texture and mi neral c ompos i ti on but al so 

moi sture c ontent and densi ty .  F o r  examp l e , Ke rsten 

( 2 1 )  reports that , for Dakota s andy loam , as the soi l 

mo i stu re content i s  i nc rea sed from 1 . 9 percent to 4 . 9  

percent , the soi l the rma l conduc tivi ty inc rea sed by 
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more than a factor of 9 ,  from 0 . 2 4 to 1 . 96 W/m-C. As 

for the i nf luence of dens i ty ,  Ha rt l y  and Bl ack ( 2 4 )  

report that , at moi sture content s be low 5 . 0 percent by 

we i ght , a change in dens i ty from 12 80 to 1440 kgjm3 can 

cau s e  the the rma l conductivi ty to i ncrease by more than 

a f actor of 2 .  

The soi l the rma l  conductivi ty cannot be calculated 

ba sed enti re l y  on the the rma l  properti e s  of the 

components of the soi l i n  que stion . Ma s s  transfer mu st 

a l so be i ncluded whi ch l e ads to the concept of an 

" appa rent " the rmal conductivi ty which would i nclude 

mas s  trans fer effect s. A method for determi ning the 

apparent soi l thermal conductivity ha s been pre sented 

by DeVri e s ( 16 )  and wa s de rived from an equation by 

Maxwe l l  and Raylei gh for calcul ating the e l ectri cal 

conductivi ty of porous materi al. 

The apparent the rmal conductivi ty of a mu l tiphase 

porous materi a l  i s  given by , 

whe re , 

N 
Vw Kw + WFa Ka Va + I: WFi Ki Vi 

i=l 
Kap = ---------------

N
-------------

Vw + WFa Va + I: WFi Vi 
i=l 

(2-6) 

Vw , Va , Vi=volurnetri c fraction of wate r ,  a i r  and 

individu al soi l components , 

re spectively , and 



Kw , Ka , Ki = the rmal conductivi ty of water , a i r  

and individua l soi l components , 

re spective l y ,  and , 

WFi , WFa=we i ghi ng f actors , 

N=numbe r  of type s of soi l parti c l e s . 
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The we i ghi ng factor s ,  WFi and WFa ,  have a physi c a l  

me aning in that they rep resent the ratio o f  the 

temperature gradi ent ac ros s  the soi l parti c l e s  or ai r 

to the tempe rature gradi ent ac ros s  the water ( 16 ) . The 

i ndividua l value s  of the wei ghing factors are dependent 

upon the s i z e , shape and re l ative posi tion of the soli d 

soi l parti c l e s  and can be calcul ated by maki ng 

a s sumptions of the s i z e  and shape of the sol i d  

parti c le s ( 16 ) . Seve ra l  re searche rs ( 2 2 , 25 )  have used 

thi s theory wi th good suc ce s s . 

The rma l  di f fusivity i s  the ratio of 

conduc tance 

c a lculated 

to 

once 

heat c apac i ty and c an 

the the rmal conduc tivi ty 

the rma l 

be easi l y  

and he at 

c apac i ty are known . Lunardi ni ( 25 ) , u s i ng data obtained 

by Ker sten ( 2 1 )  has presented graphs of apparent 

therma l  conduc tivi ty , he at c apac i ty and the rma l  

di f fusivi ty a s  a function o f  moi sture content and 

dens i ty for both course and fine grained soi l s . 

Lunardini ( 25 )  shows that , for fine grai ned soi l s  such 
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as the soi l a t  the TECH s i te , the the rm a l  di ffu s ivity 

ha s a weak dependenc e on change s in m o i stu re content 

except when the moi sture content i s  low .  Course 

grained soi l s  show a ste ady inc re a se in 

di ffusivi ty as the moi stu re c ontent inc rea se s .  

He at And Ma s s  Trans fer 

the rm a l  

The transport o f  he at and m a s s  i n  porou s  materi al s 

i s  a comp lex problem and not re adi ly so lved . He at 

trans fer in mo i st soi l i s  c omp l i c ated by the fact that 

moi sture movement i s  induc ed by tempe rature gradi ents . 

The moi sture movement give s r i se to sens ible and l atent 

he at transfer whi ch i nf luenc es the tempe rature 

di stributi on in the soi l ( l 6 ) . 

Phi l l ip and DeVr i e s  ( 2 6 )  pre sent a theory · o f  

combined he at and mas s transfer through the use o f  two 

coupled di fferent i a l  equati ons wi th two dependent 

vari ab l e s, tempe rature and moi sture c ontent . A 

somewhat simp l i fied theo ry wa s deve loped ( 1 6 )  based on 

the a ssumption that heat tran s fer due to l iquid 

movement i s  negl i gib le . Ro se ( 2 7 )  pre sent s  evi denc e to 

suppo rt thi s . a s sumpt i on . Thi s theo ry should not be 

used when app rec i ab l e  l i qui d movement i s  expec ted due 

to gravi ty and/o r pre s sure di ffe renc e s. By negl ecting 
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liqui d  water mi grati on , soil he at trans fe r c an be 

de scr ibed by he at conducti on and latent heat trans fe r 

due to vapo r mi gr ati on ( 1 6 ) . 

Vapo r pre s sure gr adi ents , c aused by tempe rature 

gradi ents , are the dr iving po tenti al of the vapo r 

mi grati on . The vapo r mi grati on occur s in the 

ga s - filled po res o f  the soil . According to 

DeVr i e s ( l 6 ) , the vapor flux due to tempe rature 

gradi ent s i s  approximately propo rti onal to the 

tempe rature gradi ent ac ro s s  the gas - filled po re s and 

c an be des c ribed mathemati c ally a s  an inc rease
.

in the 

heat conducti on i n  the po re . The r fore , the apparent 

the rmal conductivi ty of the ga s- filled pore i s  compo sed 

o f  a no rmal heat conduct i on term and a vapo r transpo rt 

term ,  or , 

whe re, 

Kp=Ka+Kv ( 2 - 7 )  

Ka , Kv= ai r  thermal conductivi ty and vapor 

transport contributi on , re spectively . 

DeVrie s uses the apparent thermal conduc tivi ty o f  

the ga s - fi lled po re a s  the thermal conductivity o f  the 

ai r phase o f  the soil in order to c alcul ate the overall 

apparent soil the rmal conductivi ty . 
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Sep a skahah and Boe r sma ( 2 8 )  have shown that for 

certain type s of soi l s ,  at e levated temperature s ,  the 

c al cu l ated apparent soi l thema l  conduct iviti e s  are 

lowe r than expe rimenta l soi l therma l conduc tivi ti e s . 

Hada s ( 2 9 ) proposes that turbu l enc e in the ai r pore s i s  

a pos s ible c ause for thi s di sc repanc� and sugge sts that 

the simp l i f i ed theory be modi fied to ac count for hi gher 

rate s of vapor di ffu s ion due to turbu le'nce .  A " ma s s  · 

enhanc ement factor " should be mu ltip l i ed to the vapor 

transport contributi on term of the apparent the rmal 

conduc tivi ty equation . Hada s reports that the ma s s  

enhanc ement fac tor i s  between 1 and 5 .  Howeve r ,  other 

re se arche rs ( 2 7 , 30 )  have reported value s of between 1 

and 12 9 .  

Soi l The rma l Stabi l i ty 

Hart l y  and B l ack ( 2 4 )  report that soi l drying next 

to a c y l i ndri c al heat source oc curs in two di stinct 

stage s . During the fi rst stage , termed the therma l l y 

stable regi on ,  the rate of moi sture mi gration away from 

the he at source dec rea s e s  until a c ri ti c al moi s ture 

content i s  re ached . The second stage then oc cur s ,  

known a s  the therma l ly unstab l e  regi on , and i s  marked 

by an increase i n  the rate of moi sture mi gration unti l 
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c ompl ete l y  

adj ac ent t o  the 

dry . The va lue 
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he at sourc e i s  a lmo st 

of the c ri t i c a l  mo i sture 

c ontent i s  i ndependent of the surfac e he at trans fer 

rate and is a functon o f  the ini ti al mo i sture content . 

(2 4 )  However ,  the thermal stabi l i ty of the so i l  i s  a 

strong func ti on of the su rface he at transfer rate . 

Hartly and B l ack (2 4 )  a l s o sugge st that ,  for a gi ven 

so i l , the re wi l l  be a surface he at tr an s fer rate· be low 

whi ch signi fi c ant drying wi l be de l ayed for a 

conside r able length o f  time , po s s ibly inde f i ni tely . 
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CHAPTER 3 

THE HEAT PUMP SYSTEM AND I NSTRUMENTAT I ON 

A ground- coupled he at pump was instal l ed pri or to 

the winte r o f  1 9 82 - 83 at the Tenne s see Ene rgy 

Conserv ation in Housing ( TECH ) s i te . The TECH s i te i s  

a j o i nt venture by the Unive rsity o f  Tenne s see , the 

Tenne s s ee Va l l ey Autho ri ty , the Department o f  Ene rgy 

through Oak Ri dge Nati onal Labo ratory and a consortium 

o f  private i ndustri e s  as a re search and. demonstration 

proj ect i n  re sidenti al ene rgy uti l i z ation techniqUe s .  

The s i te c onsi sts o f  two so l ar houses ( TECH hou se I and 

I V ) , a pa s sive so l ar modular hou se ( TECH hou se V) , an 

annual cyc le ene rgy system ( ACE S ) hou se ( TECH hou se I I ) 

and a c ontro l hou se ( TECH hou se I I I ) . 

loc ated at the U . T . I n sti tute 

The TECH s i te i s  

of Agriculture 

Expe riment Stati on , in Knoxv i l l e ,  Tenne s see . 

The Heat Pump Sy stem 

TECH house I ,  i n  whi ch the ground coupl ed heat 

pump system i s  insta l led ,  i s  a 1 9 04 square foot pass ive 

s o l ar home . The ene rgy conserv ati on fe atures o f  TECH 

house I inc lude external window shading dev i ce s  that 

reduce di rect so l ar gain during the coo l i ng season ,  
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water filled tubes loc ated i n  the conditi oned sp ace 

that sto re di rect sol ar gain dur i ng the he ati ng seas on 

and mo re i n sulati on than in a convent i onall y built 

home . TECH hou se I was occupi ed during the coo l i ng 

season ,  thus provi ding re al i stic ene rgy consumption . 

The ground-coupled he at pump system used in thi s 

study cons i s ts of four main component s .  The component s 

are a wate r-to -water he at pump , a water to ai r heat 

exchange r ,  a pipe buried ho r i z ont ally in the ground for 

use a s  a he at exchange r ,  and two ci rcul ation pump s . 

The he at pump used for thi s experiment wa s a TETCO 

water to water heating only he at pump . Cool ing 

c apac i ty i s  2 . 1 tons at a condenser 

o f  3 0 . 0  C .  Cooling c apac i ty wa s 

i nlet temperature 

determined f rom 

experimental data . 

the water-methanol 

Cooling was achieved by redi recting 

brine vi a three way valve s .  The 

redi rection o f  the bri ne allows the ground coil to act 

as a condenser i n  the summe r and an evapo rato r i n  the 

winter . 

Gorman- Rupp seri e s  1 4520 pumps we re used to 

c i rculate the water-methanol brine . Me a sured f low 

rate s were 2 . 5  cubic mete rs per hour through the ground 

coil and 2 . 6  cubic mete rs pe r hou r through the water to 

ai r c o il ( 3 1 ) . The powe r consumpti on o f  each pump wa s 

approximate ly 1 60 watts . 
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The ground coi l cons i st s  of a pol ybutylene pipe 

wi th an inside di ameter of 3 . 5 centimeters and a wa l l  

thi ckne s s  of 0 . 3  c entimeters . F i gure 3-1 shows 

loc ation of the coi l re l ative to TECH hou se I .  

the rmal conductivi ty o f  the pol ybutyl ene pipe i s  

the 

The 

0 . 2  

W/m-C ( 32 ) .  The insta l l ed coi l l ength i s  2 0 6 meters and 

i s  bur i ed at approximate l y  a 1 . 2 meter depth . The 

trench in whi ch the ground coi l was p l aced was dug by a 

mechani zed di tch di gger . The fi l l  di rt u sed in the 

trench was the soi l exc avated from the trench . The re 

wa s no spec i a l preparation of the trench be fore the 

ground coi l wa s i nsta l l ed .  The soi l in the trench was 

packed by runni ng the whee l  of the di tch di gger along 

the l ength of the trench after the·in sta l l ation of the 

coi l . 

I nstrumentation 

The paramete rs me a sured were the ene rgy f low 

between the he at pump and the ground he at exchange r ,  

the ene rgy f low between the he at pump and the 

condi ti oned spac e , e l ectri c energy consu�ption of the 

he at pump system , soi l temperature s , he at pump sys tem 

tempe ratures and soi l moi sture content . Al l va ri ab le s  

except the soi l moi sture me asurements we re samp l ed by a 
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SCALE 
, .. : 27.4' 

Ft gure 3-1. Plan V lew of Hor l zontel Ground Col I 



Hew let-P ackard data acqui s i ti on 

mo i sture mea surement s were taken by 

system . 

hand . 

The 

The 
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soi l 

dat a 

acqui siti on system c o l lected data on an an hourly 

ba si s .  D i gi tal s i gnal output s such as the ene rgy flows 

and the e l ectri c a l ene rgy c onsumpti ons we re summed by 

c ounters ove r the s ample pe r i od . At the end of the 

s amp l e  peri od , the content s of the counte rs and the 

ana l o g  s i gna l output s such a s  the temperature 

me a su rement s were pl aced on a magneti c tape for 

storage . The c ounte rs we re then reset to ze ro for data 

summati on ove r the fo l lowing hou r . 

Energy flows . Two energy f low mete rs we re used in 

thi s  re search effort . The meters were loc ated in the 

brine l oop between the heat pump and the brine to a i r  

he at exchanger and i n  the brine loop between the he at 

pump and the ground he at exchange r .  A Badge r mode l 

MS-ES nut ating di sk f l owmeter and a pai r o f  Winsco 

mode l 2 1 0 0 - 1 - 6  hi gh ac curacy platinum re si stanc e 

tempe ratu re devi c e s  ( PRTD ) are the c omponent s used in 

the in-house cons tructed energy f l ow mete r s . The 

fl owmeter output s a pu l s e s i gnal who se frequenc y i s  

propo rti onal to the flowrate and the PRTD ' s output a 

vo ltage propo rti onal to the tempe rature . The 
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individua l  PRTD output vo ltage s are subtrac ted 

e l ectroni c a l ly and conve rted to a frequency . 

The ene rgy flows are dete rmined by the fo ll owing 

expre s sion , 

where , 

Q=Kc a l*Fflow* Fde lt 

Q= mea sured ene rgy flow ,  

Kcal= ca libration data constant , 

Ffl ow= f l owmeter signal frequenc y ,  

( 3 - 1 ) 

Fde lt= temper atu re di fference signal frequency . 

The c a l ibrati on data constant , K c a l , i s  de termi ned. 

by pe rforming an in- si tu c a l ibration o f  the ene rgy f low 

de sired . The maximum unc ertainty of the ground coi l 

ene rgy me asurement s fo r the 1983 c oo ling sea son i s  7 . 4  

pe rcent. For the brine to ai r c oi l  ene rgy me a surement , 

the unc ertainty i s  al so 7.4 percent . The er ror i n  the 

ene rgy f low me a surement s consisted of a dri ft in the 

c a l ibrati on c onstant and an er ror a s s oci ated with the 

accuracy o f  the in strumentation used to me asure the 

ene rgy f l ow. The dri ft in the c a l ibrati on constant i s  

mo st like ly due to the change in brine fluid properti e s  

and i s  the major contributo r to the e rror i n  the ene rgy 

f l ow me a surements . Detailed erro r ana lysi s i s  

.presented in Appendix A .  
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Powe r c onsumption . Me a surement o f  the indivi dual 

system c ompo�ent powe r c onsumpti on wa s ac comp l i shed 

through the use of a sy stem of watt -hour submete rs . 

The submeters me asured the purchased powe r o f  the he at 

pump c ompre s s o r , two c i rcu l at i on pumps , the ai r 

handl ing system and the tota l hou se powe r c onsumpti on . 

The watt-hour mete r s  used to me asure the powe r 

c onsumpti on o f  the heat pump , ci rc� l ation pumps and a i r  

hand l i ng system are General E l ec tri c single pha se , 15  

amp , 2 40 vo l t ,  model AR- 5 , · type !30 meters . The 

watt-hour me ter used to me a sure total house powe r is a 

General E l ectric three phase , 2 40 vo lt , type I - 60 - S . 

The revo luti ons o f  the eddy di sk in e ach watt-hour 

meter are c ounted u s i ng an opt i c a l  senso r and a thin 

pai nted strip on the eddy di sk . The sensor de tects a 

change i n  re flec ted l i ght due to the painted strip and 

emi ts a pul se . The se pu l se s  are c ounted by the data 

acqui s i t i on system and e l ectroni c a l l y  multipl i ed by the 

power constant of the i ndivi dual mete r to obtain the 

powe r reading . Thi s method doe s  not c ause any 

mechani c al fr i c t i on i n  the system whi ch c ould induce 

error i n  the powe r consumpti on me a surement . The e rror 

in the ac curacy of each submeter is 0 . 5  percent ( 3 3 ) . 

The total me a surement error , inc luding the error in the 
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instrumentation u s ed to me a sure e ach watt-hour meter i s  

1 . 0  pe rc ent . 

Tempe rature me a surement . Minc o  mode l 592 9 8  PRTD' s 

we re used to me asure ground temperatures . The location 

o f  the senso r array at the approximate midpoint o f  the 

coi l  i s  pre sented in Figu re 3 - 2 . The sensor att ached 

to the c oi l  is insul ated and , the re fore , is a me asure 

of the coi l  wal l temperature . A total o f  fi fteen 

PRTD' s we re used to mea sure the soil tempe rature 

di stribution in the ve rtic a l  and ho riz ontal pl ane s . 

The soil surfac e temperature , the temperature at a 

three meter depth and the coi l  wa l l  tempe rature at 2 5  

and 7 5  percent o f  the coi l  l ength wa s al so me asured . 

Ac co rding to the manufacturer ( 3 4 ) , the error 

a s sociated with the PRTD me a surement i s  1 . 3  pe rcent . 

The total me asurement erro r o f  the PRTD' s and the 

instrumentation to me a sure and rec o rd data from the 

PRTD' s i s  1 . 8  pe rc ent . 

The hou se indoor wet and dry bulb tempe rature s  

were mea sured using an Ana log Devic e s  AC 2 62 6  

temperature probe . The probe i s  a ·two -terminal 

integrated ci rcuit temperatu re transduc er which 

produc e s  an output current line arly propo rtiona l to the 
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ab so lute temperature . The manufacture r s  data ( 3 5) 

give s an ab so lute error of 1.0 degree s  Ce l sius ove r the 

rated perfo rmance range o f  - 5 5 . 0  to 1 5 0  degree s 

Cel si us . 

The temperature mea surements o f  the brine in both 

c i rcul ati on l oop s we re made u s i ng the tempe rature 

sens o r  used in the ene rgy flow me ters . According to 

Oak Ri dge National Labo ra_tory pe rsonne l ( 3 6) , the 

Winsc o PRTD inac curac i e s  are neglegib le when compared 

to othe r sourc e s  of erro r . The· mai n source o f  erro r i s  

the c onstant current sourc e o f  the PRTD . The total 

me asurement error in the brine tempe rature s due to the 

i nstrumentati on i s  0 . 5  pe rcent. 

So i l  moi sture me a surement. Wate rmark so i l  mo i st­

ure sensors manufactured by G . F. Lar son Company were 

·u sed in thi s re se arch effort . Fi gure 3-3 pre sents the 

l o c ation of the mo i sture sensors re l ative to the ground 

c o i l . The senso r s  are made o f  a po rous cerami c 

mate r i a l  whi ch , theore tical l y ,  ab sorb s  and re l e a s e s  

moi sture a t  the s ame rate as the surrounding so i l . The 

re s i stanc e o f  the senso r i s  a function o f  the mo i sture 

wi thi n the sensor and c an be me asured vi a two 

e l ectrode s p l aced wi thin the sensor . Therefore , the 
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soi l mo i s ture content c an b e  determined b y  me asuring 

the re si stanc e o f  the sensor wi th the as sumpti on that 

equi l ibrium i s  mai ntai ned between the sensor and 

surrounding so i l . 

An A . C .  Whe atstone bri dge c i rcui t and a prec i si on 

adj ustab l e  re si stanc e or "dec ade" box was used to 

me a sure the re si stanc e of the so i l  moi sture sens o r s . 

Thi s me thod of me asuring sensor re si stanc e give s 

accurate re sults i f  the dec ade bo·x i s  an accur ate , high 

qu a l i ty ins trument . The dec ade box used i s  accurate to 

0 . 05 perc ent accordi ng to the manufacturer(37 ) .  

The c a l ibr ati on data provi ded b y  the manufacture r 

was not b a sed on the perc ent mo i sture content o f  the 

soi l .  Therefore , an in-house c a l ibration of the 

mo i sture sensors was pe rfo rmed . The c a li bration 

proc edure c onsi sted of three steps : ( 1 )  samp l e  

prepa rati on and sensor insta l l ation ; ( 2 )  a me asurement 

of the sensor re si stanc e ;  ( 3 )  dete rmi nation o f  the soi l 

moi sture c ontent . The soi l used i n  the calibration 

proc edure wa s taken from 

ho ri z onta l  co i l ,  a l l owed 

powde r .  

the TECH s i te ne ar 

to dry and c rushed 

the 

to a 
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Sample prepar ation c onsisted o f  adding a known 

amount of water to a known amount o f  soil on a ma s s  

basis . The s ample w a s  mixed i n  orde r 

s amp l e  a s  homogeneou s as po s sib l e . 

pl aced in the soi l  and the soi l  was 

approximate ly the soil dry density . 

to make the 

The sensor wa s 

c ompre s sed to 

Some prob l ems we re enc ounte red with the s ample 

preparation . ·- At low moi stur� cont�nt s ,  the soi l  be c ame 

nonuniform with re spect to the moi sture di stribution . 

C lumps o f  soi l  formed but we re broken down as fine as 

po s sib le during the mixing pro c e s s . 

Compre s sion o f  the soi l  s amp l e  was al so difficult 

at low moi sture contents . A c ompre s sion on one side of 

the s amp le tended to l oo sen soi l  on the oppo site side 

o f  the s ample . A wide obj ect was used to compre s s  the 

s ampl e  and so lved the soil loo sening probl em . 

The re si stanc e me a surement o f  the sensor was made 

using the instrument ation di scu s s ed previously . A D . C .  

Wheat stone bridge c i rcuit c ould c ause the mo i sture 

sensor to po l ariz e. The po l ariz ation of the sensor 

wou ld c ause error in the re si stanc e me asurement . An 

A . C .  Whe at stone bridge circuit was used to avo id 

po l ariz ation of the senso r . 
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Dete rmination o f  the soi l sample mo i sture content 

was made u s i ng a we i ght differenc e techni que . A sample 

o f  soi l ne a r  the senso r wa s taken and we i ghed . The 

s amp l e  was dri ed in an oven and the s ample we ighed 

again . The di fferenc e in we i ght wa s taken to be the 

amount o f  mo i s ture in the samp l e . Si nc e the weight o f  

the soil befo re and afte r drying and the we ight of the 

water in the sample is known, the moisture content c an 

be c a l cul ated . 

The c a libr ati on curve and c a l ibrati on point s are 

pre sented in Appendi x C .  A least- square line fi t wa s 

us ed to generate the c a li bration curve . 
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CHAPTER 4 

EXPERI MENTAL RE SULTS 

Duri ng the data col lecti on period ,  a total of 2 810 

hours of vali d data wa s col l ected . Thi s corre sponds to 

the he at pump and data col lection systems performing 

adequetly for 98 pe rc ent of the data col l ec tion pe riod 

of June 6 to Octobe r 2 ,  1983 . 

The summe r of 1983 wa s approximate l y  ave rage in 

terms of cooling de gree days , but the temperature 

di stribution wa s skewed . June was a cooler than 

ave rage month whi le Jul y  and August we re warme r than 

average months . The rainfal l was al so l e s s  than 

expec ted for an ave rage summe r . A compari son of the 

we ather condi tions encountered to the long term ave rage 

we ather condi tions i s  pre sented i n  Appendix B .  

Heat Pump Pe rformance Data 

Tab l e  4- 1 pre sent s he at pump performanc e data for 

the summer of 1983 . Two addi tional f actor s , the 

coeffici ent of pe rformance ( COP ) and the seasonal 

performance factor ( SPF ) are al so p re sented . 

The coe fficent of performanc e i s  used to determine 

the the rmal performanc e of a he at pump system . Cool i ng 

COP i s  ba sed on the total or gro s s  amount of cool i ng 



Table 4- 1 .  He at Pump Pe rformanc e Data 

Week 
of 

6/6/83 
6/13/83 
6/20/83 
6/27/83 
7/4/83 
7/11/83 
7/1 8/83 
7/25/83 
8/1/83 
8/8/83 
8/15/83 
8/2 2 /83 
8/29/83 
9/5/83 
9/12/83 
9/19/83 
9/2 6/83 

Cooling 
Load 

( KWh ) 

98 . 6  
134 . 5  
464 . 6 
453 . 5  
356 . 7  
548 . 1 
588 . 4  
550 . 1  
639 . 8 
541 . 9  
6 18 . 1 
671 . 2  
473 . 1 
435 . 4 
136 . 2  

72 . 8  
0 . 0  

He at Pump 
Energy 
Consumption 
( KWh ) 

42 . 1  
54 . 0  

2 02 . 0  
2 17 . 6 
173 . 3  
2 92 .9 
327 . 7  
312 . 8  
360 . 8  
312 . 1  
354 . 5  
448 . 3  
305 . 1  
2 6 1 . 8  

75 . 2  
42 . 3  
10.2 

Se asonal Performance Fac tor: 1.11 

Blowe r 
Ene rgy 
Consumption 
( KWh ) 

5 . 8 
7 . 8 

32 . 8  
35 . 2  
2 8 . 2  
45 . 7  
50 . 1  
48 . 9  
53 . 9  
46 . 1  
52 . 7  
65 . 2  
45 . 2  
38 . 6  
1 0 . 7  

5.7 
0 . 0  

Pump COP 
Ene rgy 
Consumption 
( KWh ) 

4 . 0 
5 . 5 

2 1 . 5  
2 2 . 8  
17 . 9  
2 8.8 
31 . 4  
30 . 1  
34 . 3  
2 9.6 
33 . 6  
4 1 . 6  
2 9 . 1 
2 5 . 1 

7 . 0 
3 . 7 
0 . 0  

1 . 90 
2 . 00 
1 . 8 1 
1.64 
1 . 63 
1 . 49 
1.44 
1 . 40 
1.42 
1 . 40 
1.40 
1 . 2 1 
1 . 25 
1. 34 
1 . 47 
1.41 
0 . 00 

w (X) 
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provided to the c onditioned space . 

de fined as , 

Coo ling COP is 

where , 

COP=QajW ( 4- 1 ) 

Qa = c oo ling provided oy the heat pump , and 

W = total he at pump system power c onsumption . 

The se asonal perfo rmanc e factor is used to 

dete rmine heat pump the rmal pe rformanc e on a long te rm 

basi s . The cooling SPF i s  based on the net amount of 

c o o ling c apacity de live red to the c onditioned sp ace for 

the entire c o o ling season. Thi s me ans that any 

inte rnal heat source a s so ciated with the he at pump 

s ystem , such a s  compre s s er l o s se s ,  is subtrac ted from 

the total c oo ling c apacity provided to the c onditioned 

spac e . Thi s c an be expre s sed mathematic a l l y a s , 

SPF = ( Qa-Qi l )/W ( 4 - 2 ) 

Qi l = the inte rnal he at sourc e s  a s s ociated wi th 

the he at pump ope ration . 
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The experimental SPF fo r the ground - c oupled he at 

pump system was found to be 1 . 1 1 fo r the 198 3 co oling 

sea son . The unc ertai nty i n  the SPF i s  + 13 pe rcent . 

The SPF was a l s o e stimated wi th the he at pump system 

loc ated out s i de the condi tioned spac e . The compre ss er 

and c i rcul ati on pumps l o s se s  we re as sumed z e ro in 

Equat i on 4-2 . Thi s give s an SPF of 1 . 3 2 ,  whi ch is  an 

inc re a se o f  19  pe rcent i n  performanc e by ju st locating 

the he at pump sy stem out si de the condi ti oned space . 

As c an be seen from Tab l e  4- 1 ,  the re was a system 

pe rfo rmance dete ri orat i on wi th re spect to time . F i gure 

4- 1 i l lu str ates the system pe rfo rmanc e wi th re spect to 

time . The uncertainty in the COP i s  !8 perc ent . There 

are three main rea sons for the performanc e 

deterio rati on . Fi rst , the hou se c oo l i ng l o ad was 

unde re stimated during the de s i gn pha se o f  the heat pump 

system . The de s i gn coo l i ng l o ad u sed wa s 1 . 4 1 tons 

( 3 2 )  and the actual c oo l i ng load i s  in the range of 2 . 0  

to 2 . 5  tons (38 ) . The underestimation lead to an 

unde r s i z i ng o f  the ground c o i l .  A s  long as the actual 

c o o l i ng load is l e s s  than the de s i gn c oo l i ng load ,  the 

s i z i ng e rro r i s  i nc onsequenti a l . However ,  when the 

actual coo l i ng l o ad app ro ache s ,  then surpa s s e s  the 

de s i gn c o o l i ng l o ad,  system pe rformanc e deteri o rati on 
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o ccurs . Sec ond , the c o o l ing loads encountered in July 

and Augu st we re l a rge r than expec ted due to the 

we athe r .  Thi rd, as the so i l  dri ed during the summer , 

the soi l thermal c onduc tivity dec reased . 

The SPF for the ground- c oupl ed he at pump in thi s 

study i s  poo r  when c ompa red to the SPF o f  an ai r to ai r 

heat pump system . For c ompa r ative purpo se s ,  the SPF 

for the TECH house I I I  ai r to ai r he at pump system was 

c a l cul ated and found to be 2 . 3 .  Howeve r ,  the he at pump 

i n  TECH hou se I I I  was not ope rating unde r the same 

c ondi t i ons a s  the ground- c oupled he at pump . The 

c ompre s so r  used in TECH hou se I I I  i s  mo re e ffi c i ent 

than the c ompre s s or u sed in TECH house I .  The 

c ompre s so r  l oc ati on i s  a l s o di fferent between the two 

hou se s . The c ompre s s o r  used in TECH hou se I I I  was 

loc ated out side the condi ti oned space and the 

c ompre s so r  used i n  TECH hou se I was loc ated inside the 

c ondi ti oned space . By p l ac ing the c ompre s sor out side 

the c ondi ti oned space , the i nte rnal he at source s are 

reduc ed . The reducti on o f  i nternal heat sourc e s  

i nc rease s the SPF. The refore , the TECH hou se I I I heat 

pump SPF c i ted i s  intended only fo r a rough compari son 

o f  perfo rmanc
_
e .  
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Expe r imental The rmal Conduc tivi ty 

Since the thermal conduc tivi ty o f  the so i l  can 

limi t the pe rformanc e o f  a ground- coup led he at pump , an 

experimental the rmal c onduc tivi ty o f  the so i l  in the 

regi on o f  the ground c o i l  was c a lcul ated us ing 

experimental tempe rature and ene rgy flow data . The 

l imi tati ons o f  the expe rimental data , such as di sc rete 

tempe rature mea surement s at one hour interva l s , lead to 

the method u sed to c a l cu l ate the experi mental the rmal 

c onduc tivi ty . 

The he at transfer from the ground coi l to the 

surrounding soi l was mode led a s  one dimensi ona l radi a l  

he at flow through a ho rizonta l  cylinder . I t  was 

a s sumed that the re was no ma s s  transfer and the 

mate ri al i n  the contro l vo lume was homogeneou s .  The 

the rmal conductivity within the . contro l vo lume wa s 

a s sumed to be constant for a given hour o f  data . 

Any transi ent ef fec ts due to he at pump cyc l ing 

were minimi zed by u s i ng onl y data that met a certai n 

c ri teri on . The he at pump had to be ope rating a mi nimum 

o f  5 4  mi nute s during a given hour of data before the 

data was ac ceptable . Othe rwi se , the data wa s 

di s c a rded . A total o f  7 6 9 data points met the 

c ri te r i on .  
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Sinc e the transient e ffec ts we re minimized ,  the 

he at trans fe r  was · C onside red steady- state . The 

de fining di ffe renti a l  equation fo r the prob lem 

previou s l y  de sc ribed i s ,  

d
2

t 1 dt -:-:2 + - - - 0 ( 4-3) 
dr r dr 

The boundary c onditions are , 

1 .  T=T 1 @ r=ri , 

2 .  T=T2 @ r=ro . 

From Krieth ( 3 9 ) , the so lution fo r Equation 4- 3 

and boundary conditions 1 and 2 i s ,  

Qss = 2 * � * k * L * (Ti-To) I ln (ro/ri) ( 4-4) 

where , 

Q s s  = ste ady- state he at transfe r  ac ro s s  the 

contro l vo lume , ( W )  

L = length , ( rn )  
k = therma l c onduc tivity , ( W/m- C ) 

ro = outer radi u s , ( rn )  

r i  = inne r radius , ( rn )  

To = temperature at ro , ( C )  

Ti = temperature at ri . ( C )  
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It was nec e s sary to de fine a contro l vo lume in 

orde r to use Equati on 4- 4 .  The oute r boundary o f  the 

contro l vo lume was taken whe re the temper ature wa s 

approximate l y  constant fo r a given hour of data . 

Fi gu re 4- 2 i s  a plot of the soi l tempe ratu re 15 . 2  

centimete rs from the ground coi l in the ho ri z ontal 

p l ane . Fi gure 4-2 revea l s  that the tempe rature 15 . 2  

centimete rs from the c o i l i s  approximate ly constant for 

a given hour of data . The refo re , a radius of 1 5 . 2  

centimeters was taken as the oute r boundary of the 

contro l vo lume . 

The inner boundary wa s taken as the inner radius 

of the coi l wa l l . The ave rage f lu i d  temper atu re was 

used for the inne r boundary temperature . The ave rage 

f luid tempe rature wa s as sumed to be the ari thmeti c mean 

o f  the co i l  inlet and outlet fluid temperature . 

The thermal conduct ivi ty of the c ontro l vo lume was 

c a l cu lated fo r each hour of data that met the runtime 

c ri te ri on . The arithmetic me an o f  the hourly the rma l  

c onduc tivi ty data i s  0 . 47 W/m-C +8 perc ent . 

As i l lu strated from the he at pump powe r 

consumpti on in Table 4- 1 ,  the heat pump sy stem di d not 

run the same amount of time each week . Sinc e the re was 

an uneven di stributi on o f  the system runtime during the 
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c o o l i ng se ason , an ave rage seasona l the rmal 

c onduc tivi ty was c a l cul ated from the ari thmetic me an o f  

the average weekly the rmal conduc tiviti es. The ave rage 

weekl y the rma l c onductivi ti e s  we re c a lcul ated by taki ng 

the ari thmeti c mean o f  the hour ly the rma l  conductivity 

data fo r a given week . the ave rage seas onal the rmal 

c onductivi ty based on weekl y average s is 0.5 1 W/m-C +8 

perc ent . 

The the rmal c onduc tivi ty o f  the soi l wi thin the 

c ontrol vo lume was al so c a l cul ated. Since the contro l 

vo lume i s  a compo s i te structure , the ove ra l l  the rma l  

c onductivi ty used i n  Equation 4 - 4  i s  a sum o f  the 

i ndividu a l  thermal c onduc tivi ti e s. Due to the hi gh 

c o i l ma s s  f l ow rate s ,  the i nte rnal fi lm coeffi c i ent i s  

c onside red negl i gib l e . Using the e l ectri c a l  ana log 

method de sc ribed by Kri eth ( 3 9 ) 1 

c onduc tivity c an be expre s sed a s , 

1/k* ln ( rojri ) = 1/kc * ln ( rl/ri ) +  

1/ks* ln ( ro/r l ) 

where , 

kc = c o i l the rmal c onductivi ty ,  

ks = so i l  the rmal c onductivi ty , 

rl  = c o i l oute r radius. 

the the rmal 

( 4- 5 ) 
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Equation 4-5 was sub sti tuted into Equat i on 4-4 and 

the so i l  the rma l  conductivi ty ,  ks , was so lved fo r .  

On ly data that met the runtime criterion wa s used . The 

average soi l therma l conductivi ty ba sed on hour ly 

thermal c onductiviti e s  i s  0 . 5 6 W/m-C +8 pe rc ent . The 

ave rage soi l thermal conductivi ty ba sed on ave rage 

weekly the rmal c onductivit i e s  i s  0 . 63 W/m-C +8 perc ent . 

Lunardi ni ( 2 5 )  reports a · range of the rma l  

c onductivi t i e s  o f  0 . 12 W/m- C t o  1 . 2  W/m-C .  The ave rage 

soi l the rmal c onductiviti e s  c a l cul ated previ ou s l y  i s  

wi thin the range o f  the rma l  c onductivi t i e s  repo rted by 

Lunardi ni . 

I n  o rder to check the proc edure and a s sumpti ons 

u sed to c al culate the experimental soi l the rma l  

conductivi ty , a c ompari s on wi th Lunardini ' s  data wa s 

perfo rmed . At s aturati on mo i s ture condi ti ons , 

Lunardi ni reports a value 

repo rts an agre ement o f  

o f  1 . 2  W/m- C .  Lunardini 

wi thin 15 . 0  pe rc ent for hi s 

fine grain soi l . the rma l  c onductivi t i e s . Thi s  give s a 

range of erro r  o f  1 . 3 8 W/m-C to 1 . 02 W/m- C for 

Lunardi ni ' s  the rmal conductivi ty data at saturati on 

mo i sture conditi ons . From the mo i sture senso rs , 

saturati on moi sture c ondi ti ons were de tec ted fo r the 

fi rst week o f  the c o o l i ng sea son . The experimental 
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so i l  the rmal conductivi ty for the fi rst week of the 

coo l i ng season i s  1 . 0 5 W/m- C �8 pe rc ent . The range o f  

error o f  the expe rimental soi l the rmal conductivity i s  

1 . 1 3 W/m- C to 0 . 9 6 W/m-C . Si nc e the range s overl ap ,  

the proc edure and as sumpti ons used to c a lcul ate the 

expe rimental so i l  thermal conductivi ty are ve ri fied . 

Performing a compar i son of the ave rage 

exper �memtal so i l  the rma l  conductivity and so i l  the rmal 

c onduc tivi ties repo rted by Lunardini and Sundberg ( 7 )  

i ndi c ate good agre ement between the values . Us ing soi l 

s amp l e  data in Appendi x D ,  Lunardini ' s  so i l  the rma l  

c onnductivi ty i s  0 . 9 5 W/m- C and Sundbe rg ' s  the rma l  

conductivi ty i s  0 . 80 W/m- C .  Both Lunardi ni and 

Sundberg report hi ghe r so i l  the rmal conductivi ti es than 

the expe rimental soi l the rma l  conduc tivi ty ,  but the 

di fferenc e was expected . As repo rted i n  the upc oming 

soi l observati ons sec t i on ,  vo i d  spaces were found 

adj ac ent to and in the soi l surroundi ng the ground 

coi l . The vo i d  space s wou ld c ause the experi mental 

soi l thermal conductivi ty to be lower than repo rted 

s o i l  the rmal conductivi ties . 

Figure 4- 3 i s  a plot o f  weekly expe ri mental soi l 

the rma l  c onductivi tes . The re was no data that met the 

runtime c r i terion for the sec ond week There i s  a 

s imi l arity in the trends o f  the heat pump sys tem 



O G  • l 0 0 . l o s · o  0 9 " 0  
C J  - W / M )  A l l A i l J n O N O J  

0 
0 

<D 

0 
0 

� 

0 
0 

(\J 

0 
0 

0 

0 
0 � 
oo w 

w 
3 

0 
0 

<D 

0 
0 

� 

0 
0 

(\J 

0 
0 

O v  · o
0 

so 

>-.. 
-+J 

> 

-+J 
0 
� 

-u 
c 
0 

(.) 

co 
E 
'-
Q) 

..t::. 
1--

0 
(f) 

>-.. 

� 
Q) 
Q) 

3 

(") 
I 

� 

Q) 
'-
� 
C> 

LJ... 



5 1  

performanc e dete ri orati on,  Fi gure 4- 1 ,  and the dec rease 

i n  expe rimenta l thermal c onductivi ty , Figure 4-3 . Note 

that when c ompar ing Fi gure s 4- 1 and 4- 3 ,  the maj ority 

o f  the heat pump perfo rma�c e deteri o rati on occurs at 

the beginni ng o f  the c o o l i ng sea son as do e s  the maj or 

port i on o f  change in the the rmal c onduc tivi ty . Al so 

note that between weeks 11 and 12 , the re is a dec rea se 

i n  the the rmal c onducti vi ty and a cor re sponding 

dec rease in he at pump performance . The compari son 

betwe en the experimental thermal conductivi ty and the 

heat pump performanc e indi c ate s that the soi l the rmal 

c onductivi ty i s  a maj o r  contributo r toward the he at 

pump perfo rmance dete ri o rati on . 

Soi l Moi sture Me asurement s 

Soi l moi sture me a surement s we re taken at peri odi c 

i nte rval s  throughout the c o o l i ng se ason . Fi gure 4-4 

pre sents data from three sensor loc ati ons . The sensors 

used i n  Fi gure 4- 4 were l oc ated adj ac ent to the coi l 

wal l  and at a di stanc e 1 6 . 5  centimeter s  from the co i l 

i n  both ho ri z ontal and ve rti c a l p l anes . 

As c an be seen in F i gure 4- 4 ,  the re wa s some soi l 

dryi ng throughout the c o o l i ng sea son . Fi gure 4-4 a l so 

shows that the soi l next to the coi l i s  dri er than at 

the othe r loc ati ons . Thi s phenomena c an be i nte rpreted 
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a s  a s l i ght amount o f  mo i s ture mi grati on from the 

regi on di rectly adj ac ent to the co i l . Howeve r ,  thi s 

data was intended only as an indi cati on of the trends 

o f  soi l mo i stu re , not for ab so lute va lue s of so i l  

moi sture . 

Figure 4- 5 pre sent s a time ave rage so i l  mo i sture 

profi le for Jul y , 1983 . I n  the ho r i z onta l  p l ane , the re 

i s  onl y  a 1 . 0  pe rc ent change in mo i sture from the 1 6 . 5  

centimeter locati on to the 69 . 9  centimeter loc ati on . 

The maj o ri ty o f  the change occurs between the 52 . 0  

centimeter and 69 . 9  centimeter l o c ation in the 

hor i z ontal p l ane . 

to di stanc e from 

The change in mo i sture wi th re spect 

the ground coi l i s  gre ater in the 

verti c a l  p l ane . I n  the verti c a l  p l ane , the re i s  a 2 . 0  

perc ent change in moi sture betwe en the 1 6 . 5  centimete r  

loc ation and the 5 4 . 6  centimeter loc ation . The 

approximate ly constant moi sture pro fi le beyond the 1 6 . 5  

c entimete r l oc ation sugge sts that the c o i l inf luenc e on 

the soi l moi sture doe s  no t extend beyond the 1 6 . 5  

c entimeter l oc ati on . 

The c o i l inf luenc e on the soi l moi sture in the 

ve rti c a l  plane was as sumed to not extend beyond the 

1 6 . 5  centimete r loc ati on for three rea sons : ( 1 ) the 

inf luenc e in the ho ri z ontal p l ane do e s  no t seem to 
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extend be yond the 1 6 . 5  centimeter l o c ati on ; ( 2 )  the 

ave rage mo i stu re content inc re a s e s  from the coi l to the 

1 6 . 5  centimeter loc ati on then dec rease s from the 1 6 . 5  

centimete r locati on to the 5 4 . 6  centimete r location ; 

( 3 )  the soi l i n  the ve rti cal plane i s  mo re su sceptible 

to we athe r inf luence s than the so i l  in the ho r i z ontal 

p l ane . 

From the soi l mo i sture observati ons , the mo i sture 

in the regi on withi n a 1 6 . 5  centimete r radius from the 

c o i l i s  cons i dered to be inf luenc ed by both we athe r 

effec ts and co i l  ef fec t s . 

beyond the 1 6 . 5  centimeter 

The mo i s ture in the soi l 

radius i s  considered 

i nf luenc ed by we athe r effec ts onl y .  

Soi l Ob servati ons 

Two soi l samp l e s  we re taken at the · TECH s i te on 

Jul y  1 4 , 1 9 8 3 . The s amp l e s  we re ana lyzed f o r  porou s i ty ,  

texture , percent mo i s ture , dens i ty ,  and several othe r 

soi l properti e s . One sample wa s taken i n  the trench 

whe re the coi l wa s buri ed and the sec ond sample was 

taken i n  ne arby undi sturbed so i l .  The soi l wa s found 

to be approximate l y  85 perc ent c l ay and s i lt and 1 5  

perc ent s and . A detai led de sc ripti on o f  the so i l  i s  

pre sented i n  Appendi x  D .  



5 6  

A ho le w a s  dug i n  the c o i l fi e ld o n  Augu st 9 , 1 9 83 , 

in orde r to inspect the ground coi l and surrounding 

so i l .  As the ho le was dug , ai r gaps we re ob served at 

the · inte rfac e between the soi l in whi ch the c o i l wa s 

bur i ed ,  de s i gnated di sturbed soi l ,  and the surrounding 

undi sturbed soi l . The gap s at the i nte rfac e occured 

inte rmi tently from the surfac e to the c oi l .  Seve ral 

othe r ai r spac es were enc ountered · i n the di sturbed soi l 

a s  the ho le was dug. 

After the ho le was dug ,  an ai r gap approximately 

5 . 1  centimeters l ong and 0 . 63 centimeters wide wa s 

di s c overed para l l e l  to and i n  contact wi th the c o i l 

wal l . Thi s ai r gap oc cured where the coi l appro ached 

the inte rfac e between the di sturbed and undi s turbed 

soi l and wa s not evi dent when the coi l was in the 

mi ddle o f  the di sturbed so i l . 

The soi l in c ontact with the top o f  the coi l was 

l i ght i n  c o l o r  and dry to the touch in several 

loc ati ons . I n  othe r loc ati ons along the top o f  the 

c o i l ,  the s o i l was darke r .  Along the bottom of the 

c o i l the soi l was dark i n  c o l o r  and pl asti c to the 

touch . Soi l color i s  an i ndi c ati on of mo i sture c ontent 

s i nce , fo r a given soi l ,  the darke r the soi l ,  the 

greater the mo i sture c ontent . 
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On Octobe r 2 ,  1983 , a second ho l e  wa s dug in a 

di fferent loc ati on from the ho le dug in August . The 

i nterface wa s no t as di stinc t  as the interface of the 

ho le dug in August . Ai r gaps were no t enc ountered a s  

the ho le was dug .  The soi l wa s we l l  packed and mo i s t 

to the touch in the vi c i ni ty of the co i l . 

Soi l Thermal Stabi l i ty 

The phenomena o f  soi l the rma l stab i l i ty di scus sed 

in Chapte r 2 mu st be addres sed in de s i gning 

ground- c oup led he at pump s fo r c o o l i ng .  I f  the soi l 

adj ac ent to the coi l i s  therma l l y unstable , then a 

rapid dryi ng wi l l  occur . The soi l the rma l c onduc tivi ty 

wi l l  appro ach the dry so i l  the rmal c onductivi ty as the 

soi l dri es re sul ting in the degradati on o f  the 

perfo rmanc e of the he at pump . Soi l the rmal stabi l i ty 

i s  dependent on the leve l of the he at f lux and the 

ini ti a l mo i sture content o f  the so i l . Obvi ous l y , a 

the rma l l y stab l e  soi l i s  de s i r ab l e  adj ac ent to the 

co i l .  

The data from B l ack ,  Hartly , et al . ,  ( 40 )  was u s ed 

in an attempt to dete rmine i f  the so i l  adj ac ent to the 

ground c o i l was the rmally stable or unstable . D ata fo r 

a sample o f  Georgi a red c l ay at 2 0 . 0  pe rc ent mo i sture 
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c ontent was used . The lowe st he at flux used by Black , 

Hart l y ,  e t  al . ,  wa s 5 1  W/m and the time t o  re ach the 

point o f  thermal instabi l i ty i s  gre ate r than 84 . 7  

hours . 

The obs e rved dai l y  ave r age energy flow to the 

ground was approximately 2 5  W/m for the ground c oup led 

he at pump . Since the re was no data at 25 w;m , the 

que stion o f  the rma l  stabi l i ty c anno t be answered at 

thi s time . From experimental data gathe red by the 

mo i stu re sensor s ,  the s o i l  do e s  no t appear to re ach the 

po int o f  rapid drying . The ef fects o f  a cyc l i c  he at 

flux on soi l therma l stabi l i ty has no t been exp l ored so 

it canno t be sai d  that the so i l  adj ac ent to the ground 

c o i l i s  the rma l ly unstable . 
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CHAPTER 5 

MODEL COMPONENTS AND RESULTS 

As mentioned previ ou s l y ,  the TRNSYS and GROCS 

compute r programs we re used to mode l the ground coupled 

he at pump system . TRNSYS ve r s i on 10 . 1  was used to 

mode l the he at pump system and GROCS was used to mode l 

the ground thermal pe rfo rmanc e . 

Mode l De sc ription 

TRNSYS i s  a FORTRAN l anguage compi ler de s i gned to 

connect c omponent mode l s  o f  transi ent system s and so lve 

the re sulting algebrai c and di fferenti al equations that 

de sc ribe the system . Each component mode l of the 

system i s  formul ated as a sep arate FORTRAN subroutine . 

Some o f  the component mode l s  pre sent l y  avai l ab l e with 

TRNSYS i nc lude f l at p l ate so l ar c o l l ecto r s , room mode l s  

and he at exchange r s . The c omponents used from TRNSYS 

to model the ground- coupled he at pump system are a data 

reade r ,  a pump , a fan ,  a he at pump , an inte rface with 

GROCS and printers . 

The components are c onnected by a seri e s  of inputs 

and outputs that are simi l ar to the pipe s , wi res , etc . , 

that c onnect ·the phys i c a l system c omponent s .  Ope rating 
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paramete r s  o f  the component s ,  such as he at pump 

pe rfo rmanc e curve s ,  and user- supp l i ed data , such as 

weathe r data , are comb i ned wi th the component 

confi gurati on to produce a transi ent system . TRNSYS 

then s imul ate s the system performanc e by c a l l i ng the 

c omponent subroutine s  unti l a l l  the system a l gebrai c 

and di fferent i a l  equati ons conve rge . To so lve 

simul taneou s al gebrai c and time dependent di ffe renti al 

equati ons , TRNSYS uses a Modi fied Eu l e r  i ntegrati on 

a l go r i thm . The algorithm i s  a fi r s t  o rde r 

predi c to r - c o rrector a l go r i thm that u s e s  Eu ler ' s  method 

for the predi cting step and the trape z o i d  rule for the 

c o rre c to r  step . One advantage i n  us i ng the Modi fied 

Eu ler integrati on a l go r i thm i s  that the i terative' 

calcu l ati ons occuring during a s i ngle 

pe rfo rmed at a constant time va lue . Thi s 

a l gebraic equati ons to conve rge by 

sub st i tuti on as the i ter ati on requi red to 

time step are 

a l l ows the 

suc c e s si ve 

so lve the 

time-dependent di fferenti al equati ons progre s se s ( 4 1 ) . 

He at pump . The he at pump subroutine supp l i ed wi th 

TRNSYS o ff e r s  several di fferent mode s of ope rati on for 

maximum flexibi l i ty .  The he at pump i s  capable o f  u s i ng 

e i ther a i r .o r wate r he at s i nks and sou rc e s . The 
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flexibi l i ty o f  the subroutine a l l ows the he at pump to 

be tai l ored to the users needs . 

To use the he at pump model , the user mu st supp ly 

performanc e data ove r a range of ope rating 

tempe r ature s .  The pe rfo rmanc e data are the ene rgy 

rej ec ted by the condens e r ,  ene rgy added to the 

evapo rato r and compre s so r  wo rk . The pe rfo rmanc e data 

are found during a simul ati on run by l i near 

interpo lati on . Since the he at pump used in thi s 

rese arch effort was a he ating- only he at pump , coo l ing 

pe rfo rmanc e data we re no t readi l y avai lable from the 

manufacturer . Expe rimental data we re used as t�e heat 

pump pe rformanc e data in the mode l . 

The heat pump subroutine perform s  at qua s i - ste ady 

state c onditi ons , that i s , the he at pump pe r fo rms at 

ste ady state condi ti ons fo r a given time step . I n  o rder 

to use experimental pe rfo rmanc e data , a c ri terion was 

u sed to minimi z e  transi ent e ffec ts . The he at pump had 

to operate for a minimum of 60 pe rc ent o f  a given hour 

be fore the data was cons i dered . I f  a hi ghe r pe rc ent of 

runtime was used a s  the c ri terion ,  pe rformanc e data at 

low temperature s could no t be e s tabli shed . The 

performanc e curve s used in thi s re se arch effort are 

pre sented in Appendi x  E .  
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The he at pump mode l must meet three condi ti ons for 

ope rati on i n  the c oo l i ng mode : ( 1 )  The mode l has an 

i nput fo r a s i gnal from a c ontro l l e r ,  i n  ef fect , an 

on/o ff swi tch . The swi tch mu st be i n  the " on "  

po s i ti on ;  ( 2) The c o o l i ng load must b e  gre ate r than 

z e ro ; ( 3 )  Ma s s  flow through the he at pump mu st be 

greate r than zero . 

For simul ation runs in thi s study , the on/o ff 

swi tch i n  condi ti on one was i n  the " on "  po s i ti on at a l l  

time step s . A constant i nput va lue p l ac ed the switch i n  

the " on "  po si ti on . The sec ond and thi rd c ondi ti ons 

we re met from inputs to the program . 

GROCS . GROCS i s  a FORTRAN c ompute r program 

deve l oped at Brookhaven Nati ona l Labo rato ry ( 8 )  and was 

de s i gned to s imu l ate three dimens i onal unde rground he at 

f l ow .  I ni ti a l val i dati on of GROCS was repo rted by Me tz 

( 9 , 1 0 )  who compared expe rimental data and mode l 

predi cti ons . GROCS wa s used i n  thi s study be c ause the 

program was avai l able , had s ome evi denc e of val i dati on 

and wa s c ompatable with TRNSYS . 

GROCS wa s de s i gned to so lve a set o f  fini te 

di fferenc e equati ons ove r a s e ri e s  o f  "b locks " o f  

earth . E ach -b lock i s  a vo lume o f  s o i l who se si ze , 
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sh�pe , locati on and i nterac tion wi th othe r bl ocks are 

dete rmined by the user . The de tai l s  o f  each bl ock are 

dete rmined from a hand dr awn mode l o f  the ground 

c'oup l i ng devi ce to be s i mul ated . Fi gure 5 - l  pre sent s 

the b l ock arrangement used in thi s study . 

Two type s o f  blocks are used in GROC S ,  " ri gged " 

b locks and " free " b locks . The temper ature o f  each free 

b l ock , once initi a l i zed,  i s  determined at each time s tep 

by the thermal interacti on o f  the block in que st i on and 

the surrounding blocks . A subrouti ne withi n GROC S 

de te rmine s the temperatu re of the ri gged blocks at each 

time step from a user supp l i ed tab le of monthly ave rage 

so i l  tempe r atur e s  as a functi on of depth . A method 

pre sented by Kusuda ( 42 )  fo r c a l cul ating so i l  

temperature s as a funct i on o f  depth was used in thi s 

study . Sinc e  the ri gged blo cks surround the free 

b locks , re a l i stic temperature boundary c ondi ti ons are 

provided at a l l  time step s in the simu l at i on . 

Two modi ficati ons were per fo rmed to GROCS in o rde r 

to enhance the c apabi l i ti e s  o f  the program . GROC S 

o r i ginal ly al lowed only 2 0  free b locks fo r any 

s imul ati on . The number o f  free b l ocks was inc re ased to 

so . GROCS wou ld a l so al l ow only one the rma l 

c onductivi ty for the enti re f i e l d  unde r c onsiderat i on . 
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The program was modi fi ed to al l ow each block,  free and 

rigged , to have an i ndividual thermal conductivi ty . 

I nput and output data . Two data input s we re us ed 

i n  the mode l runs in thi s study . The input s we re the 

expe rimental c o o l ing l o ad per hour and the system 

percent runtime per hour . Both input s we re read from a 

data fi l e  vi a the TRNSYS data reade r qnc e pe r hour o f  

s imu l ation time . The coo l i ng l o ad w a s  fed i nto the 

appropri ate i nput of the he at pump mode l , .  thu s 

s ati sfyi ng the second c ondi ti on for heat pump 

ope ration . The system pe rcent runtime wa s used to turn 

on the c i rcu l ati on pump . Wi th the c i rcul ation pump 

ope r ating ,  the thi rd condi ti on for heat pump ope rati on 

wa s sati sfi ed . The heat pump ope rated unti l the 

c o o l i ng l o ad wa s met . 

The outputs from the mode l were the ene rgy to the 

ground , the powe r c onsumpti on o f  the he at pump , 

c i rcul at i on pump s and fan , the coi l inlet and outlet 

temperature s and the amount of ene rgy transfe red to 

each bl ock adj ac ent to the ground c oi l . Each output 

was printed on an hourly ba s i s  for the simu l ati on run . 
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Mode l Veri f i c ation 

Three mode l outputs were compared wi th 

experimental data to ve ri fy the ac curacy of the 

c ompute r mode l . These facto r s  are the coi l inlet and 

outlet tempe rature s ,  the ene rgy rej ec ted to the ground 

and the he at pump powe r consumpti on . Figure s 5 - 2  and 

5 - 3  are the c o i l inlet and out let temperature 

c ompari sons re spective l y . The di fferenc e s  between the 

mode l and experimental data are thought to c ome from 

two sourc e s . One , the mode l used a c onstant so i l  

the rmal conduc tivi ty fo r the enti re cool ing sea son 

whi le the exper imental the rmal c onductivi ty varied . A 

var i able soi l thermal conductivi ty was not us ed so 

maximum flexabi l i ty of the model would be mai ntained . 

I f  a vari ab le the rmal conduc tivi ty was used , the way in 

whi ch the soi l the rma l  conduc tivi ty var i ed wou ld have 

to e i the r be known o r  a s sumed by the user be fore a 

s imul ati on and would have to be some type o f  i nput to 

the mode l . S imul ati ons of a ground- coup l ed he at pump 

i n  other regi ons would be very di ffi cul t s inc e thi s 

info rmation i s  not re adi l y  attai nable from conventi onal 

sourc e s  of weathe r data such as the Nati ona l We athe r 

Servi c e . 
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The sec ond source of error between the mode l and 

experiment al tempe rature s has to do wi th the 

po si ti oni ng of the temperature sens ors . The mode l 

take s the coi l outlet temperature to be the ave rage of 

the c a l cul ated ground temperature s adj ac ent to the 

ground co i l . The tempe rature senso r s  i n� ide the ground 

coi l we re l o c ated in the condti oned space so when the 

he at pUmp was off the temperature seen by the senso rs 

wou ld start appro achi ng the c ondi ti oned sp ace 

temperature . Thi s affect i s  mo st noti cable in 

Septembe r when the he at pump was ope rating 

i nfrequehtl y .  

Fi gure s 5 - 4  and 5 - 5  are compari sons betwe en the 

expe rimental data and the mode l predi cti ons . Figure 

5 - 4  compare s the ene rgy re j ected to the ground and 

Figure 5 - 5  c ompare s the he at pump powe r c onsumpti on . 

The re i s  an exc e l l ent agre ement between the 

experimental data and the mode l predi cti ons . The 

agreement between the experimental dat a and the mode l 

predi cti ons va l i date the use of the mode l in predi cting 

heat pump pe rfo rmanc e under va ri ous condi ti ons . 

Three va lue s o f  soi l the rmal conductivity we re 

used in the val idati on o f  the model . The blocks of 

soi l adj acent to the coi l we re wi thin the cont ro l 
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vo lume de fi ned in ca l cu l ati ng the experimental the rmal 

conductivi ty . The mo st lo gi c a l  cho i c e  for the the rmal 

conductivi ty in thi s regi on was the experimental 

the rmal conductivity . 

The blocks o f  soi l outside the control vo lume we re 

a s s i gned a thermal conductivi ty from Luna rdi ni ' s  

data ( 2 5 ) . The se lecti on o f  the value was ba sed on the 

soi l core sample data pre sented in Appendi x D .  

Several blocks o f  soi l were parti a l l y  ins ide the 

expe r imenta l soi l thermal c onductivi ty contro l vo lume . 

The se blocks were given a we i ghted ave rage va lue 

between the experimental the rmal conduc tivi ty and the 

thermal conduc tivi ty o f  the b l ocks out s i de the c ontrol 

vo lume . 

Pa rametri c Studi e s  

From the exc el lent compari son betwe en the 

expe rimental data and the mode l predi cti on , it was 

dec ided to determi ne the SPF of a ground- c oup led heat 

pump under varyi ng so i'l parameters . The effec ts of 

so i l  density and mo i sture content of both fine gr ained 

and course grai ned soi l s  on the SPF we re addres sed . 

Al so , the effec t on the SPF by varying the cool ing load 

was c a lcu l ated . The maxi mum pe rformanc e fo r a 
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ground-coupl ed heat pump i n  the Knoxvi l l e area was a l so 

e stimated . 

fine 

Moi sture effects . The moi sture content of both 

and course grai ned soi l were var i ed from 

s aturati on to a low moi sture content , 2 percent for 

course grai ned soi l and 5 perc ent for fine grai ned 

soi l . The corre spondi ng the rma l  conduc tivi ty at e ach 

moi sture content was used in the mode l and was taken 

from Lunardi ni ' s data ( 25 ) . 

Fi gure 5- 6 pre sents the effec t on the SPF o f  

varying the moi sture content . Note that the l arge st 

change in SPF oc curs at low moi sture c ontents . Thi s 

behavior wa s expec ted sinc e  the the rma l  conduc tivi ty 

change with moi sture i s  greater at lowe r moi sture 

content s than at hi ghe r moi sture content s .  Note a l so 

that , for a given moi sture content , the SPF using the 

cour se grai ned soi l the rma l  conduc tivi ty i s  always 

hi ghe r than the SPF us i ng the fine grained soi l the rma l 

conduc tivity . Thi s phenomena i s  due to the hi gher 

value of thermal conductivi ty of the solid materi a l  o f  

the cour se grained soi l when compared to the the rmal 

conductivi ty of the sol i d  materi a l  of the fine grai ned 

soi l . Quartz i s  the main component of s and and has a 
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hi ghe r therma l conductivi ty than the sol i d  mate ri'al  in 

fine grai ned soi l s . The mode l predi cts there wou ld be 

a maximum inc rease i n  the SPF o f  1 6  perc ent ove r the 

experimental SPF . Thi s would oc cur i f  the soi l we re 

course grai ned and at saturati on condi tion s . 

Dens i ty e ffects .  The densi ty of both course and 

fine grai ned soi l we re vari ed ove r a wide range . 

Corre sponding value s of the rmal conduc tivi ty we re a l so 

taken from Lunardi ni ' s dat a ( 2 5 ) . Fi gure 5 - 7  pre sents 

the effec t of dens i ty change s on the SPF . · As wi th the 

moi sture content effec ts , the course grai ned soi l give s 

a hi gher SP F than the fine grai ned soi l for a given 

den s i ty . Thi s i s  · due to the previous ly explai ned 

di ffe rence in the sol i d  mater i a l  therma l  conductivi ty . 

The mode l predi cts an approximate l y  l i near inc rease in 

the SPF a s  the dens i ty inc re ase s for both type s of 

soi l . The mode l a l so predi c t s  a maximum i nc re ase of 18 

pe rcent in the SPF ove r  the experimental SPF . 

C?ol ing load effec t s . The effect of reduc i ng the 

cool i ng load or i nc re a si ng the coi l l ength on the SPF 

was al so predi cted using the mode l .  An experimental 

cool i ng load per uni t coi l l ength was found to be 33. 0 

KWh/m . The coo l i ng load per uni t . coi l length was 

determi ned by di vidi ng the total seasonal coo l i ng 
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provided by the he at pump by the tot a l  coi l length . 

The coo l i ng l o ad pe r uni t coi l l ength was vari ed 

between 3.3 KWh/m and 66 . 0  KWh/m . F i gure 5 - 8  pre sents 

the p redi cted SPF ve r s e s  the coo l i ng l o ad per uni t c o i l 

l ength . 

The hi gh mo i sture soi l s  performed much bette r than 

the l ow mo i sture soi l s  ove r a wide range o f  cco l i ng 

l o ads pe r uni t coi l l ength . I n  the regi on o f  l ow 

c o o l i ng l o ads per uni t coi l l ength ( < 8 . 2 5 KWh/m ) ,  the 

so i l  the rma l  prope rti e s  start lo s i ng s i gni fi c anc e i n  

the he at t rans fer proce s s . Thi s wa s expec ted s i nce , as 

the co i l  l ength appro ache s an i nfini te l ength , the c o i l 

outlet tempe rature appro ache s the far- fi e ld so i l  

tempe rature regardle s s  o f  the c o i l inlet temperature . 

Thi s  trend i s  i l lustrated in Figure 5 - 9 . The refore , 

the far- f i e ld so i l  tempe rature i s  a l imi t on the 

perfo rmance o f  the ground-coup l ed he at pump . 

Fi gure 5 - 8  give s an i dea o f  the be st po s s ible SPF 

fo r the he at pump system and we athe r condi ti ons u sed in 

thi s study . The maximum SP F predi cted by the 

TRNSYS - GROCS mode l was between 1 . 4  and 1 . 6 . 
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Far- fi e ld effec ts . The mode l was al so run us ing 

far- f i e ld data for two othe r l o c ati ons . The l ocati ons 

cho sen we re Tyle r ,  Texas and 

the Texas locat i on , the 

Argonne , I l l i no i s .  For 

ave rage summe r far- field 

tempe rature at a 1 . 22 mete r depth was inc re ased f rom 

2 0 . 9  C to 2 5 . 6  C .  The 2 3  pe rc ent inc rease in 

tempe rature c au sed a 6 pe rcent dec re ase in the SPF . 

For the I l l i no i s l o c ati on ,  the far- f i e l d  temperature 

was dec re ased from 2 0 . 9  C to 1 6 . 0  C .  The 2 3  perc ent 

dec re ase in the far- fi e ld tempe rature re sul ted in a 

5 perc ent inc rease in the SPF .  

Maximum predi cted pe rfo rmance . The TRNSYS- GROCS 

mode l wa s u sed to predi ct the maximum performanc e of a 

ground- c oup l ed he at pump system in the Knoxvi l l e area . 

P e rfo rmanc e data for an Entercon I I  water source he at 

pump was used ( 43 ) .  The Ente rcon I I  he at pump COP was 

3 . 46 at 3 0  C whi ch i s  a 3 2 . 6  pe rc ent inc rease in 

perfo rmance over the TETCO heat pump . The TETCO heat 

pump COP was 2 . 6 1 at 3 0  C .  Si nc e performanc e data fo r 

the Entercon he at pump was given onl y at one 

temper ature , i t  wa s a s sumed that the performanc e curve s 

o f  both he at pumps were paral l e l . I n  o rder to 

c ompens ate for the de s i gn error menti oned in Chapter 4 ,  
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the c oo l ing load per uni t coi l length was reduced by 3 0  

perc ent . Bose ru le o f  thumb { 5 )  o f  1 0 6  meters pe r ton 

of coo l i ng was used since de s i gn procedure s for a 

ground-coupled heat pump are sp arce . The soi l used was 

a we l l  packed , cour se grained s o i l at s aturation 

mo i stu re condi ti ons . The se soi l c ondi ti ons give the 

maximum value for so i l  the rmal conductivi ty .  Soi l 

thermal c onductivity wa s taken from Lunardi ni ' s  data 

{ 2 5 )  for the previ ou s l y  menti oned soi l condi ti ons . The 

re sulting SPF predi cted by the mode l wa s 1.87 . Thi s 

repre s ents an inc rease o f  68 percent over the 

experimental SPF o f  1 . 1 1 .  

The heat pump pe rfo rmanc e wa s a l so predi c ted with 

the system out side the c ondi ti oned sp ac e . An SPF of 

2 . 04 was predi cted using the afo rementi oned c onditions . 

Thi s repre sent s an inc rease o f  84 pe rc ent ove r the 

expe rimental SPF . 
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CHAPTER 6 

CONCLUS I ONS AND RECOMENDAT I ONS 

Ths study has shown that the ground-coup led heat 

pump used i n  thi s study perfo rmed i nadequetly during 

the coo l i ng season . The experimenta l l y  determi ned SPF 

of 1 . 1 1 i s  poor by any standard . Four factors detract 

from the perfo rmanc e . The fi rst facto r i s  the 

p l acement o f  the he at pump system i n the c ondi ti oned 

space . P l ac i ng the system out side the c ondi ti oned 

space shou ld result in an SPF o f  1 . 3 2 due to the 

reduc ed inte rnal l o ads . I n  the he ati ng sea son , 

however ,  p l acement o f  the heat pump i nside the 

c ondi ti oned spac e i s  

reduce the house 

de s i rable s i nc e  

he ating l o ad .  For 

system 

the 

l o c at i on o f  the he at pump system , perfo rmance 

both seasons must be exami ned . 

l o s ses 

optimum 

during 

The second fac to r i s  the soi l the rma l  conduc tivi ty 

adj ac ent to the ground co i l . Comparing the 

experimental the rma l  conductivity wi th the system COP 

reve a l  simi l ar trends wi th re spect to time . A dec re ase 

in the rma l  c onductivi ty produced a dec rease i n  COP . 

Three recommendati ons to i nc rease the soi l the rmal 

conductivi ty are : ( 1 )  B ackfi l l  the trench wi th a 
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c ourse grain soi l ;  ( 2 ) I nstal l a wate ring system to 

keep the soi l at s aturati on condi ti ons ; ( 3 )  P ack the 

soi l in the trench to i ncrease den s i ty and reduce vo id 

spac e s . 

The thi rd factor i s  so i l  the rma l  stabi l i ty .  

I nstrumentati on did not detec t the rapid drying that i s  

characte ri stic o f  a therm a l l y  unstab l e  s o i l . S i nc e  the 

i nstrumentati on· ·wa s loc ated at only one po i nt al ong the 

co i l ,  i t  i s  po s s ib l e that the soi l i n  othe r locations 

wa s the rmal ly unstab le . Obse rvati ons o f  the so i l  on 

the uppe r ha l f  of the coi l showed patchy are a s  of dry 

so i l . Mo i sture detecti on instrumentati on al ong the 

l ength o f  the co i l  and data c o l l ecti on eve ry hour i s  

rec ommended . Tensi omete rs s imi l a r  to tho se in u se by 

Oak Ridge Nati onal Labo rato ri e s  ( 44 )  are a po s s ibi l i ty .  

Experimental wo rk into so i l  the rma l  stab i l i ty and the 

effects o f  a c yc l i c  he at f lux i s  rec ommended . 

The fourth factor i s  the ground c o i l used i n  thi s 

study was unde rsi zed fo r coo l i ng . The ground coi l was 

s i z ed for a coo l i ng l o ad o f  1 . 4 1 tons ( 32 )  whi le the 

actu a l  coo l ing l o ad was i n  the range of 2 . 0  to 2 . 5  

tons ( 3 8 ) . Taking the wo rst c a se c o o l i ng l o ad , 2 . 5  

tons , and Bo se rec ommendati on ( 5 ) , the c o i l shou ld be 

i nc re a sed by at least 61 mete rs . 
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An addi ti onal instrumentati on rec ommendati on i s  

fo r seve ra l  mo re temper ature sensors i nstal led al ong 

the c o i l length and a di stanc e l e s s  than 16 centime ters 

from the co i l . The addi ti onal temperature data wou ld 

provi de i nformati on on the soi l tempe rature gradi ent 

and the temperatu re change al ong the l ength of the 

c o i l . 

Thi s study has a l so shown that the TRNSYS -GROCS 

c ompute r mode l i s  an exc e l l ent repre sentat i on of the 

ground- coup l ed he at pump during the coo l i ng s e a son . A 

deve l opment o f  a mode l o f  TECH house I i s  rec ommended . 

The hou se mode l would al low predi cti ons o f  

ground- coup l ed he at pump perfo rmance throughout the 

wo rld . 

P arametric studi e s  us ing the mode l predi c ts that 

the be st performanc e of a ground- coupl ed heat pump 

occur s i n  dense l y  packed , s aturated course grai ned 

so i l .  The wo rst performanc e predi cted occurs i n  loo s l y  

p acked , dry , fine grai ned soi l .  

How the SPF changed a s  soi l mo i sture content o r  

dens i ty changed w a s  predi c ted . Four conc lu s i on s  we re 

made from the resu lt s : ( 1 )  As moi sture or dens i ty 

i nc rea sed , the SPF i nc reased . As mo i sture content o r  

densi ty dec reased ,  the SPF dec rea sed ; ( 2 )  The rate o f  
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change o f  SPF due to moi sture content change wa s 

dependent on the mo i sture content . The maj o ri ty o f  SPF 

change occured at mo i sture c ontents between z e ro and 

1 5  pe rc ent ; ( 3 )  The rate o f  change o f  SPF due to 

dens i ty change i s  approximate l y  l i near ; ( 4 ) Fo r a given 

density and mo i sture content , course grain soi l 

pe rfo rms bette r than fine grain so i l . 

SPF change s due to varyi ng the sea sonal 

l o ad pe r uni t coi l length we re predi cted . 

c o o l ing 

Three 

conc lu s i ons from the re su l t s  are made : ( 1 )  A dec re ase 

i n  the sea sonal coo l i ng l o ad per uni t l ength produc e s  

an i nc rease i n  the SPF . An i nc re a se i n  the seasonal 

coo l i ng l o ad pe r uni t l ength produce s  a dec re a se i n  the 

SPF ; ( 2 ) Hi gh mo i sture so i l  pe rforms bette r than low 

moi stu re soi l regardl e s s  o f  the grain s i z e ; ( 3 ) The SPF 

for a l l so i l  type s and mo i sture contents approache s a 

s i ngle va lue between 1 . 4  and 1 . 6  a s  the c o o l i ng l o ad 

pe r uni t l ength appro ache s zero . 

The mode l was u sed to predi ct f ar- f i e ld 

tempe rature effec t s  on the SPF . The ground- coup l ed 

he at pump i s  not hi gh l y  sensi tive to change s i n  the 

far- fi e ld temperature s .  A change o f  2 3  percent onl y 

changed the SPF by 5 to 6 pe rc ent . 
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The mode l was a l s o used to predi ct the maximum 

pe rfo rmanc e of 

Knoxvi l l e area . 

a ground-coupled he at 

The mode l predi cted an 

pump in the 

SPF of 1 . 8 7 

with the heat pump wi thin the c ondi ti oned space . Wi th 

the he at pump sys tem outside the c ondi ti oned spac e , the 

mode l predicts a maximum SPF of 2 . 04 .  Wi th the SPF in 

the range of 1 . 87 to 2 . 04 ,  the ground- c oupled he at pump 

h a s  the potent i a l  o f  be ing c ompeti tive wi th ai r typ'e 

he at pump s . 
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APPEND IX A 

EXPER I MENTAL ERROR ANALYS I S  

Ene rgy F l ow Unc e rtai nty · 

. The energy flows we re expe rimental l y  determi ned by 

the fo l l owing expre s s i on ,  

Q=k* Fflow* Fde lt ( 1 )  

whe re , 

Q=mea sured energy flow
·
, 

k=c al ibrati on constant , 

Fflow=f l owmeter s i gnal frequency ,  

Fde lt=temper ature signal frequency .  

The unc e rtainty i n  the energy f l ows c an be 

determined u s i ng an unc ertai nty ana l ys i s  p ropo sed be 

Kline and McLintock ( 45 ) . The unce rtainty i n  the energy 

f l ow c an be expres sed a s , 

!!9.. = [ (Uk) 2 + (Uflow) 2 + (Udel t) 2 ] 1/2 
q- K Fflow Fdelt 

(2) 



whe re , 

Uq , Uk , Ufl ow , Ude l t=unc ertainti e s  o f  the ene rgy 

f l ows , c a l ibration constant , 

flowmeter s i gnal frequency ,  

and temperature s i gnal 

frequ ency ,  re spective l y . 

9 5  

Fo r the brine t o  ai r c o i l and the ground c oi l 

ene rgy · f l ow me a surement s ,  the fo l l owing unc e rtaint i e $  

were used , · 

Ukfk=7 . 4% 

Ufl ow/Ff l ow=O . S% 

Ude l t/Fde l t=l . O% 

Using Equati on 2 ,  an unc e rtainty o f  + 7 . 4  perc ent 

was c a lcul ated for both ene rgy f l ows . 
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E l ectri c Powe r Uncertai nty 

According to KUB per sonne l ( 3 3 ) , the maximum erro r 

expe cted in the elec tric powe r meters i s  + 0 . 5  pe rc ent . 

The maximum error associ ated wi th the data acqui s i ti on 

sy stem i s  + 0 . 5  percent . Thi s wi l l  give a total er ror 

of ! 1 . 0  pe rc ent for the e l ectric powe r me asurement s . 

Temperatu re Sens o r  Unc ertainty 

The maximum er ro r a s s oc i ated with the inlet and 

outlet tempe rature s of the brine to ai r coi l and the 

ground co i l  i s + 0 . 5  percent ( 3 6 ) . The erro r i s  due to 

the ac curac y of the constant current source used in 

readi ng the tempe rature senso rs . The erro r  o f  the 

tempe rature senso rs i s  negl i gible ( 3 6 ) . The re fore , the 

e rro r o f  the tempe rature me a surement s in the brine to 

ai r coi l and the ground c o i l i s  ! 0 . 5  percent . 

Accordi ng to the manufac turer ,  the maximum error 

a s soc i ated wi th the ground tempe rature sensors i s + 0 . 7  

percent ( 3 4 ) . I nc ludi ng the error a s so c i ated wi th the 

data acqui siti on sys tem , the to tal error o f  the ground 

temperature mea surements i s  ! 1 . 2  percent . 
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WEATHER DATA 

1 .  Summer 1 9 8 3  We athe r Condi ti ons 

Month 

Degree Days 

Tempe rature ( C )  

Rai nfa l l  ( mm )  

June 

2 3 5  

22 . 5  

7 3 . 4  

Ju l y  

42 5 

2 5 . 8  

5 3 . 6  

August 

462 

2 6 . 4  

42 . 9  

2 .  Long Term Me an Weather Conditi ons 

Month June 

Degree Days 2 83 

Tempe rature ( C )  23 . 5  

Rai nfa l l  ( mm )  1 00 . 3  

Sourc e : Refe rence 4 6  

Ju ly 

3 9 1 

2 5 . 3  

1 10 . 0  

August 

3 72 

2 5 . 0  

7 6 . 7  

9 7  

September 

2 1 7 

2 1 . 3  

1 6 . 3  

September 

2 09 

2 1 . 9  

75 . 9  
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APPEND I X  C 

MO I STURE METER CAL I BRAT I ON CURVE 

The c a l ibration data provided by the manufacturer 

was not ba sed on perc ent mo i s ture content of the so i l . 

I t  was de c i ded to pe rform an in-hou se c a l ibrati on which 

resulted in the fo l l owin� c a l ibrati on curve . Three 

mo i sture me ter senso rs we re us ed in the c a l ibration . 

Detai l s  o f  the c a librati on procedure are . in Chapte r 3 .  

The c a l ibrati on curve i s  only for Watermark 

ce rami c so i l  mo i sture · mete rs manufactured by G . F .  

Lar son c ompany . 
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APPEND IX D 

SO I L  SAMP LE DATA 

Di sturbed So i l  

P o r<;> s i ty :  

Wet Den s i ty : 

Natural Mo i s ture : 

De gre e o f  Saturation : 

Liquid l imi t : 

P l acti c i ty I ndex : 

Soi l Texture 

C l a y  and S i l t :  

S and : 

Sourc e : Refe renc e 47 

52 . 8% 

157 1 . 4  Kg/m 

2 4% 

54 . 4% 

42% 

1 6  

85% 

15% 

Undi sturbed So i l  

3 5 . 0% 

1 9 9 7 . 5  Kg/m 

1 7% 

78 . 0% 

3 4% 

13 

8 7% 

13% 

100 

Vo lumetr i c  Heat 
Cap ac ity : 2 1 0 9 . 7  Kj /m

3 
c 2 3 9 4 . 4  Kj /m

3 
c 

Note : Vo lumetr i c  he at c apac i ty c a lcul ated u s i ng 

Equati on 2 - 5 
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APPEND IX E 

HEAT PUMP PERFORMANCE CURVE S 

Experimental data wa s used to gene rate the 

fo lowing he at pump performanc e cu rve s .  The 

expe rimenta l data used we re the ene rgy taken from the 

c ondi ti oned space , the ene rgy added to the ground and 

the ene rgy c onsumpti on o f  the compre s so r . 

I n  o rde r to use the expe rimental data , a . c ri terion 

wa s used to minimi z e  trans i ent e ffects . The he at pump 

had to operate a mi nimum o f  60 percent o f  an hour 

befo re the data was considered u s able . I f  a hi ghe r 

perc ent runtime was used , pe rfo rmanc e data at low 

temperatu re s c ould not be e stab l i shed . 

The data that met the runt ime c r i terion was 

grouped in one degree Celc ius inc rements . The 

ari thmeti c mean o f  the data within the inc rement was 

used a s  the performance data . Fo r example , the data 

between 3 4 . 5  C and 3 5 . 5  C was averaged and used as the 

pe rformance data at 3 5 . 0  C .  A least square s technique 

was used to generate the curve s .  
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APPEND I X  F 

TRNSYS AND GROCS MOD I F I CAT I ONS 

The TRNSYS TYPE47 sub routine and GROCS we re 

combi ned to form a subroutine T I PE47 . The fo l l owing 

modi f i c ati ons were done to T I PE47 . I t  i s  as sumed that 

the reade r i s  fami l i ar wi th FORTRAN and ha s acc e s s  to 

the u se r  manu a l s  of TRNSYS and GROCS . T I P E47 contains 

two secti ons . The fi rst section i s  the TYPE47 

subrouti ne and the sec ond sec ti on i s  GROCS . 

I .  The fo l lowi ng array dimensi ons we re inc reased in 

orde r to increase the maximum a l lowable number o f  

free b l o c k s  t o  fi fty . The modi fied array name s and 

dimensi ons are l i sted be l ow . 

A .  TSTARF ( S O )  
B .  DEPFRE ( S O )  
C .  VOL ( S O )  
D .  RHOC ( SO )  
E .  DEPRI G ( lO )  
F .  AREA ( 60 , 6 0 ) 
G .  DELTAX ( 60 , 60 )  
H .  Q IN ( S O )  
I .  TOLD ( 60 )  
J .  TNEW ( 60 )  
K .  D ( S O )  
L .  R ( 60 , 60 )  
M .  TSTARR ( SO )  
N .  QNEW ( S O )  
0 .  XNEW ( SO )  
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I I . The vari able COND in the GROCS secti on of T I PE47 wa s 

changed to an array to a l l ow i ndividual block 

the rmal conductivi ti es . The array name and 

dimens i on are �OND ( SO ) . The vari ab l e  COND wa s 

rep l ac ed by COND ( I )  i n  the GROCS sec tion o f  T I PE47 . 

The input data for GROCS was changed . GROCS 

requi re s a de scripti on of e ach b l ock in a certain 

o rde r as part o f  the input data . The the rma l 

conductivi ty o f  each b l ock was added in a s i xth 

po s i ti on in the de scripti on·. The b lock de scription 

and o rde r are : 

( 1 ) The b l ock numbe r 
( 2 ) The ini t i a l  b lock temperature 
( 3 )  The depth to the b l ock center 
( 4 ) The b lock vo lume 
( 5 )  The b l ock vo lume he at c apac i ty 
( 6 ) The b lock the rma l  c onduc tivi ty 

The re ad statement used to input the fi rst five 

facto r s  was modi fied by addi ng COND ( I ) . 

I I I . An array CONDUC was de fi ned and contains ten 

e l ements . CONDUC alows the u ser to input indivi dual 

the rma l  c onduc tivi ties to the b l ocks adj ac ent to the 

ground co i l . Thi s modi f i c ati on wa s nec e s s ary to 

make the TYPE47 and GROCS sections o f  T I PE47 

compatab le· . The adj ac ent b l ock the rmal 



1 08 

c onduc tivi ti e s  in the TYPE47 and GROCS sections must 

be the s ame . CONDUC ( I )  rep l ac e s  COND in the TYPE47 

secti on of T I PE47 . TYPE47 requi re s  a de scripti on of 

the blocks adj ac ent to the ground co i l . The the rmal 

c onductivi ty of the adj acent b l o cks was i nc luded in 

the de sc ripti on . The de sc ription and orde r are : 

{ 1 )  Block numbe r  
{ 2 ) Block length 
( 3 )  He at trans fer area 
{ 4 ) Co i l  to b l ock c ente r di stanc e 
{ 5 )  Block the rmal c onductivi ty 

The fo l l owing statement was used to input the 

thermal c onduct ivi ty : 

CONDUC { I ) =PAR { J+ 4 ) . 

Thi s stat ement fo l l ows : 

X ( I ) =PAR ( J+3 ) .  
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