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ABSTRACT 

 

The natural enemies of plants are ubiquitous and can reduce plant fitness.  Plants have 

evolved two defense strategies to ameliorate the fitness cost associated with natural 

enemy attack.  The first strategy, resistance, reduces the frequency and/or severity of 

natural enemy damage.  The second strategy, tolerance, attenuates the fitness cost of 

natural enemy damage.  Very little is known about the traits through which tolerance is 

manifested, particularly with respect to plant-pathogen systems (pathosystems).  Diseased 

and naturally senescing leaves are often similar in their visible symptoms and molecular 

activities, suggesting that they may involve similar processes.  One process that may be 

shared by the two phenomena is the efficient remobilization of nitrogen, a limiting 

nutrient that is heavily remobilized during natural leaf senescence.  Nitrogen metabolism 

during foliar infections is largely unexplored, although plants are known to remobilize 

nitrogen from diseased leaves.  Efficient remobilization of nitrogen from diseased leaves 

may ameliorate the fitness cost of infection, thereby manifesting tolerance to infection.  

Using the model pathosystem Arabidopsis thaliana – Pseudomonas syringae we asked 

the following questions: 1) Does infection by P. syringae pathovar tomato strain DC3000 

(Pst DC3000) affect the amount of nitrogen remobilized from leaves? 2) Is there a 

relationship between the amount of nitrogen remobilized from infected leaves and plant 

tolerance to infection?  To our knowledge, our study is the first to explore the effect of 

infection on leaf nitrogen remobilization in the context of tolerance.   

 

Results show that infected A. thaliana leaves remobilized nitrogen, however infection 

substantially reduced the amount of nitrogen remobilized.  Plant fitness was inversely 

correlated with the amount of nitrogen retained by infected, senesced leaves, suggesting 

that the infection-caused impairment of nitrogen remobilization imposed a fitness cost.  

We detected little genetic variation in the effect of infection on the amount of nitrogen 

remobilized from infected leaves among 10 A. thaliana accessions.  Similarly, we 

detected little genetic variation in A. thaliana symptom severity and tolerance to infection 

by Pst DC3000.  The latter results contradict recent studies of this pathosystem, 
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indicating that estimates of the broad-sense heritability of resistance and tolerance in this 

system are highly conditional.  The challenge involved with understanding tolerance in 

an evolutionary context is discussed.  We explored the effects of infection on additional 

A. thaliana traits and found that infected A. thaliana plants produce shorter main stems.  

The inverse correlation between the nitrogen content of senesced, infected leaves and 

fitness supports efficient nitrogen remobilization as a promising candidate tolerance trait. 
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1.  INTRODUCTION 

 

Plant natural enemies (herbivores and pathogens) are ubiquitous.  Interactions between 

plants and their natural enemies can have community- and ecosystem-level 

consequences.  For example, plant-natural enemy interactions can affect the interactions 

of plants with other community members (Strauss and Irwin 2004), and nutrient cycling 

within ecosystems can be affected by natural enemy-induced changes in plant quality 

(Chapman et al. 2003).  Natural enemies can affect trait evolution in plants, and vice 

versa, through reciprocal selection/coevolution (Janzen 1980; Thompson 1999; Rausher 

2001).  

 

Plants have evolved resistance and tolerance in response to natural enemies.  Resistance 

is manifested through traits that reduce plant availability, palatability, and/or nutritive 

quality with respect to their natural enemies.  Resistance traits include structural barriers 

(e.g. trichomes, latex and reinforced cell walls), secondary chemical compounds (e.g. 

cardiac glycosides and glucosinolates), and premature leaf senescence.  Resistance can 

also be achieved through phenological shifts.  Resistance traits can be present before 

exposure to natural enemies (constitutive), or they can be induced following natural 

enemy attack (induced).  Inducing resistance traits allows plants to circumvent the fitness 

costs of the traits when they are unnecessary.  Induced resistance traits may also 

contribute to a moving target strategy whereby plants impede the evolution of counter-

resistance in natural enemies by imposing shifting selection pressures on them (Adler and 

Karban 1994).  When induced resistance traits confer a net fitness benefit to plants when 

in the presence of natural enemies, they represent adaptive plasticity.  Whether induced 

or constitutive, when a resistance trait confers a net fitness advantage to the plants that 

possess it, the resistance trait qualifies as a defense trait (Agrawal 1999). 

 

Tolerance is an alternative defense strategy to resistance that plants can employ.  

Tolerance compliments resistance by attenuating the fitness cost of natural enemy 

damage when plants are incompletely resistant.  Tolerance traits may allow for a general 
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response to a diverse suite of natural enemies (Jokela et al. 2000).  The evolution of 

broadly effective counter-resistance traits is difficult due to the diffuse nature of plant-

natural enemy interactions, particularly in reference to specialists (Hougen-Eitzman and 

Rausher 1994).  Relative to resistance traits little is known of the traits that manifest 

tolerance, particularly tolerance to pathogen infection (Stowe et al. 2000).  Knowledge of 

tolerance traits is critical to our understanding of the evolutionary ecology of plant-

natural enemy systems.  In addition, natural enemy damage results in substantial crop 

yield losses in agriculture (Oerke and Dehne 1997); knowledge of the traits that 

contribute to tolerance can be applied in crop selection (Clarke 1986).  Selecting for 

enhanced tolerance traits in crops may offer a more evolutionarily stable means of 

defending crop plants than selecting for increased resistance because tolerance does not 

impose reciprocal selection on natural enemies, whereas resistance does (Stowe et al. 

2000).   

 

Mechanisms of tolerance can be associated with two general characteristics of plants: 

resource allocation patterns and architecture (Stowe et al. 2000).  With respect to the 

timing of natural enemy damage, tolerance traits can be pre-existing or induced (Stowe et 

al. 2000).  Pre-existing mechanisms of tolerance to herbivory include high levels of 

carbon storage in roots (Strauss and Agrawal 1999), high numbers of dormant lateral 

meristems, and a highly integrated vascular system (Stowe et al. 2000).  Induced 

mechanisms of tolerance to herbivory include the ability to transport stored carbon from 

roots to shoots, increased branching following herbivore-imposed release of apical 

dominance, increased rates of photosynthesis, changes in flowering phenology (Strauss 

and Agrawal 1999), and potentially, enhanced integration of the vascular system (Stowe 

et al. 2000).  Little is known about the mechanisms of tolerance to pathogen infection.  

Clarke (1986) suggests candidate mechanisms of tolerance to pathogen infection, 

including pre-existing large root systems and post-infection increases in leaf production, 

root growth, and photosynthetic rates of uninfected leaves.    
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Tolerance is a relative measure that is based on two variables: the amount of natural 

enemy damage sustained, and plant fitness.  The amount of damage sustained is a 

function of the resistance level of the plant.  Plant resistance can be measured in either of 

the two following ways: the inverse of the amount of plant damage accrued per unit time, 

or the inverse of natural enemy performance (e.g. biomass attained or fecundity).  Basing 

resistance measures on the performance of the natural enemy is particularly useful when 

plant damage is difficult to quantify.  Plant damage due to pathogen infection (disease) is 

challenging to measure because some aspects of disease are invisible (Clarke 1986), 

obscuring the relationship between visible disease symptoms and fitness (Gaunt 1995).   

  

A common approach to evaluating tolerance is the norm of reaction approach (Simms 

2000), which measures tolerance as the slope of the line obtained by regressing fitness 

over a damage gradient.  The norm of reaction approach allows one to compare the 

tolerance levels of multiple genotypes that vary in overall vigor.  Intolerant genotypes 

exhibit a negative relationship between damage and fitness; completely tolerant 

genotypes exhibit no relationship between damage and fitness (a slope of zero), while 

higher damage levels correspond to higher fitness values in overcompensating genotypes.  

Genetic variation in tolerance is demonstrated by differences in the regression slopes of 

fitness over the damage gradient.  In pathosystem studies, measures of tolerance are often 

based on visible disease symptoms, while invisible components of disease are not taken 

into account (Gaunt 1995).  Clarke (1986) describes a measure of “overall” tolerance, 

which relates the relationship between pathogen density and plant fitness and thus 

includes plant tolerance to the pathogen and to the primary and secondary components of 

disease.  When measuring overall tolerance, variation in plant resistance to the pathogen 

will not affect comparisons of overall tolerance between genotypes because (assuming an 

approximately linear relationship between damage and fitness) the slope of the regression 

of fitness over pathogen density is independent of the distance between control and 

infected pathogen densities. 
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Measures of tolerance to foliar infections are often based on visible disease symptoms 

(Gaunt 1995).  Two visible symptoms that are commonly evaluated are chlorosis 

(yellowing as a result of chloroplast degradation) and necrotic lesions (regions of cell 

death).  Tissues exhibiting these disease symptoms are increasingly thought to have 

undergone a type of premature/pathogen-induced senescence program; similarities exist 

between diseased and naturally senescing leaves with respect to visible symptoms and 

molecular activities (e.g. Greenberg and Ausubel 1993; Pérez-García et al. 1995; Morel 

and Dangl 1997; Butt et al. 1998; Pérez-García et al. 1998a; Pérez-García et al. 1998b; 

Weaver et al. 1998; Quirino et al. 1999; Obregόn et al. 2001; Robatzek and Somssich 

2001; Cots et al. 2002; Navabpour et al. 2003; Olea et al. 2004; Pageau et al. 2006).  

Premature senescence also occurs in plant-herbivore systems.  In response to green peach 

aphid attack, Arabidopsis thaliana leaves prematurely senesce, possibly reducing green 

peach aphid performance and thus contributing to resistance (Pegadaraju 2005).  During 

natural leaf senescence, nutrients are remobilized and redistributed by the plant (e.g. for 

storage or reproduction; Lim et al. 2003).  The relative efficacies of pathogen-induced 

and natural leaf senescence in remobilizing nutrients have not been compared, although 

several studies have detected reduced nitrogen remobilization from diseased leaves 

(Dimmock and Gooding 2002; Barbottin et al. 2002).  In addition, Barbottin et al. (2005) 

detected genetic variation in wheat in the rate and efficiency of nitrogen remobilization 

from diseased leaves.  Nitrogen is an important limiting nutrient, and genetic variation in 

the effect of infection on nitrogen remobilization may explain genetic variation in 

tolerance to infection.  To our knowledge, there has been no study that explored genetic 

variation in nutrient remobilization following pathogen infection in the context of 

tolerance. 

 

Here we explore the link between the amount of nitrogen remobilized from infected 

leaves and tolerance to infection using the Arabidopsis thaliana – Pseudomonas syringae 

pathosystem.  This pathosystem is a model system for examining mechanisms of plant 

resistance to pathogens (Katagiri et al. 2002).  Kover and Schaal (2002) demonstrated 

that tolerance is present in this pathosystem.  Moreover, genetic variation in tolerance has 
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been detected in this pathosystem (Kover and Schaal 2002; M.B. Unpublished) and 

symptom severity has been shown to serve as a reasonable estimate of pathogen density 

when using the norm of reaction approach to measure overall tolerance (Kover and 

Schaal 2002; Korves and Bergelson 2003; Korves and Bergelson 2004).  In addition, 

increased branch and inflorescence production and changes in flowering phenology are 

potential candidate tolerance traits in this pathosystem (Korves and Bergelson 2003) 

warranting further study.  Our study used 10 genetically disparate A. thaliana accessions 

(Table 1) to address the following questions: 

 

1. Do A. thaliana genotypes vary in their susceptibility to the bacterial pathogen 

Pseudomonas syringae? 

2. Is there genetic variation for the effect of infection on the amount of nitrogen 

remobilized from infected rosette leaves? 

3. Is there genetic variation in the effect of infection on plant fitness? 

4. Does genetic variation in the effect of infection on the amount of nitrogen 

remobilized from rosette leaves explain genetic variation in plant fitness? 

 

Study System 
 

Arabidopsis thaliana (mouse ear cress) is an annual belonging to the family Brassicaceae 

(mustards).  The geographic range of A. thaliana extends across Asia, Europe and North 

America; North American populations are believed to have been introduced within the 

last 200 years.  The ecology of A. thaliana is relatively poorly characterized with respect 

to its natural enemies, despite its prevalence in biological research.   

 

Pseudomonas syringae is an economically important bacterial pathogen that infects 

hundreds of plant species worldwide.  Infections by P. syringae are non-systemic, and 

typical symptoms in susceptible hosts include foliar spots and blights (Alfano and 

Collmer 1996).  Pseudomonas syringae is categorized into over forty pathovars (pv.) 

according to degree of pathogenicity (ability to cause disease).  Host range further divides  
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 Table 1.  The names of the accessions used in our experiments and their stock number 
at the Arabidopsis Information Management System. 

Code Stock Accession 
1 CS6673 Col-0 
2 CS6674 Ct-1 
3 CS6736 Hi-0 
4 CS1380 Mt-0 
5 CS6805 No-0 
6 CS6839 Po-0 
7 CS6850 Rsch-4 
8 CS6874 Tsu-0 
9 CS6889 Wil-2 
10 CS6897 Wu-0 

Kover and Schaal (2002). 
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pathovars into strains, for example P. syringae pv. tomato strain DC3000.  Pseudomonas 

syringae has been described as a biotrophic pathogen, a necrotrophic pathogen, and a 

hemibiotrophic pathogen (Thaler et al. 2004).  These descriptors represent a continuum 

relating the vitality status of the host cell to nutrient acquisition by the pathogen.  

Biotrophic pathogens obtain resources from living cells, necrotrophs from dead cells, and 

hemibiotrophs exhibit an initial biotrophic phase followed by a necrotrophic phase. 

 

 Natural colonies of P. syringae can be found on leaf surfaces and within leaf apoplasts, 

although the majority of P. syringae populations are epiphytic, presumably consuming 

leaf leachates.  The P. syringae cells can emigrate from surrounding vegetation to leaf 

surfaces via aerial transport, rain-splash, or insect transport (Hirano and Upper 2000).  In 

addition, P. syringae cells contained within the seeds can colonize the surfaces of 

seedlings.  Both the density of earlier colonists and host resistance to infection probably 

determine colonization success.  It appears that once epiphytic P. syringae populations 

reach a certain size, the bacteria enter the intercellular space of the leaf (the apoplast) 

through openings in the cuticle (stomata and lesions).  The apoplast is believed to be 

relatively dry and nutrient poor, unlike host cell cytoplasm.  Within the apoplast, P. 

syringae constructs a pilus to act as a needle to inject over thirty “effector” proteins 

through the host cell walls to the cytoplasm.  If the host cell is resistant, an effector can 

act as an avirulence factor, triggering a host defense response called the hypersensitive 

response (HR).  The HR involves rapid cell death around the infection site and is thought 

to limit the growth of certain pathogens, including strains of P. syringae (Katagiri et al. 

2002).  When a host is susceptible, effector proteins quantitatively act as “virulence” 

factors, presumed functions of which include facilitating water and nutrient leakage from 

the host cell and suppressing defense responses. 
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2.  MATERIALS AND METHODS 

 

Arabidopsis thaliana growth conditions 

 

Seeds were planted in 5.72 cm x 5.72 cm pots containing equal parts Premier High 

Porosity soil, Palmetto Vermiculite Co. Inc. vermiculite, and Krum Horticultural perlite.  

To induce seed germination we stored the seeds in the dark at 4 °C for three days.  The 

seeds were then transferred to a Percival Scientific growth chamber set at 21 °C, 70% 

humidity, with a photoperiod of 14 hours of light, 10 hours of dark.  The trays containing 

the pots (50 pots per tray) were haphazardly rearranged every few days to reduce possible 

positional effects.  The plants were watered as needed.  During the course of each 

experiment, 500 mL of diluted (as instructed) Peters Concentrated Liquid Plant Food 

were added twice to each tray.  In experiments 1 and 2, fertilizer was added 22 and 36 

days after planting.  In experiment 3, fertilizer was added 22 and 42 days after planting. 

 

Pst DC3000 culturing and inoculum preparation 

 

For each experiment the treatment solutions were prepared using the following protocol.  

The Pst DC3000 (obtained from American Type Culture Collection; USDA permit # 

69487) were cultured for 30 hours on NYG agar plates containing 50 µg/mL of the 

antibiotic Rifampicin.  Pst DC3000 is genetically modified to be resistant to Rifampicin.  

The presence of Rifampicin prevents contamination of the agar by other microorganisms.  

The bacteria were removed from the plates using a sterile cell spreader.  They were then 

gradually added to 1 L of 10 mM MgCl2 until the cell suspension reached an optical 

density of 0.4 when measured at a wavelength 600 nm using a GeneQuant pro 

spectrophotometer.  This optical density corresponds to a concentration of 2 x 108 colony 

forming units/mL (Katagiri et al. 2002).  Lastly, we added 200 µL of Silwet L-77, a 

surfactant.  The presence of the surfactant facilitates infection by causing the treatment 

solutions to adhere to and spread over the leaf surfaces to which they are applied.   
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The control solution consisted of 1 L of 10 mM MgCl2 with 200 µL of Silwet L-77.  We 

heavily doused the plants with the treatment solutions using spray bottles and covered the 

trays with propagation domes for one day.  Pst DC3000 enters the leaf apoplast through 

natural leaf openings, primarily the stomata.  Maintaining high humidity aids the 

infection process by increasing the frequency and aperture of stomata opening.   

 

Assaying A. thaliana symptom severity 

 

In experiments 1 and 3 (described below) we estimated A. thaliana symptom severity in 

response to infection by Pst DC3000 by quantifying the proportion of total rosette area 

that exhibited chlorosis, necrosis, and purpling (disease symptoms; Figure 1).  

Symptomatic areas were quantified from digital photographs taken with a Nikon Coolpix 

5900 mounted on a tripod positioned over the plants.  The symptomatic areas of the 

rosette were separated from the green areas using Adobe Photoshop 7.0.1 (Adobe 

Systems Inc. 2002).  All pixels were then filled with black.  In Image J (Rasband, W.W., 

Image J, U.S. National Institutes of Health, Bethesda, Maryland, USA, 

http://rsb.info.nih.gov/ij/ 1997-2006), the numbers of pixels corresponding to the 

symptomatic rosette areas and green rosette areas were counted using the programs 

“measure” option.  The symptomatic proportion of the rosette (our measure of 

susceptibility) was then calculated by dividing symptomatic rosette area (in pixels) by 

total rosette area (in pixels). 

 

Statistical analyses 

 

All of our experimental designs were based on an analysis of variance (ANOVA) 

framework.  We used nonparametric (NP) tests to analyze our data because the data did 

not meet ANOVA assumptions of multivariate normality and homogeneity of variance-

covariance matrices.  The NP tests described below are sensitive to differences in 

multivariate dispersion.  Dispersion is measured as the sum of squared distances between  
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An A. thaliana plant 
exhibiting disease 

symptoms five days 
post-infection. 

 

The green rosette area 
isolated from the 

original digital image. 

The diseased rosette area 
isolated from the 

original digital image. 

 

 
 

Figure 1: Quantifying A. thaliana disease symptom severity five days after infection with 
Pst DC3000.  
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observations and their treatment group centroid in multivariate space.  All NPANOVA 

and NP multivariate analyses of variance (NPMANOVA) were accompanied by a test for 

homogeneity of treatment group dispersions using the computer program PERMDISP 

(Anderson 2004; Anderson 2006).  Heterogeneity in treatment group dispersions can 

result in rejection of the null hypothesis in NPANOVA and NPMANOVA.  Unless 

otherwise noted in the results, treatment group dispersions were not different.  All 

analyses were based on Euclidean distances and involved 999 permutations of 

standardized (to z-scores) response variables.  Pairwise comparisons were performed 

under significant model terms.  The sequential Bonferroni procedure was used to adjust 

the significance level for multiple comparisons (Holm 1979).  We used a significance 

level of α = 0.05 for all analyses. 

 

We conducted all NPANOVA and NPMANOVA using permutational analysis of 

variance (PERMANOVA; Anderson 2001a; Anderson 2001b; McArdle and Anderson 

2001).  PERMANOVA is a computer program that randomly permutes the sampling 

units within a response variable data matrix.  The program calculates a pseudo F-statistic 

for the original response variable data matrix and for each permutation of the data matrix 

by dividing the within-group sum of squared distances by the total sum of squared 

distances between observations.  The null expectation is that the random permutations of 

the sampling units will not affect the value of the pseudo F-statistic (this would indicate 

no treatment effects on sampling unit values).  A P-value is derived by comparing the 

pseudo F-statistic associated with the original response variable data matrix to the null 

distribution of pseudo F-statistics associated with the random permutations. 

 

To test for effects of the independent variables on our response variables, while taking 

into account the correlation structure of the response variables, and to understand the 

contribution of original response variables to distinguishing treatment groups from one 

another in multivariate space, we conducted canonical analyses of principal coordinates 

(CAP) using the CAP computer program (Anderson and Robinson 2003; Anderson and 

Willis 2003; Anderson 2004).  CAP uses principle coordinate analysis (PCO) to reduce 
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the dimensionality of the response data cloud.  It then conducts either a canonical 

discriminant analysis (CDA) or a canonical correlation analysis on all or a subset of the 

resulting PCO axes.  CDA constructs linear combinations of the principal coordinates 

that minimize within-group variation and maximize between-group variation in canonical 

space.  CAP tests the goodness of fit of the CDA using the “leave-one-out” approach 

(Lachenbruch and Mickey 1968).  Finally, CAP produces the canonical correlations of 

the original response variables with the canonical axes.  Response variables that have 

strong absolute correlations with the canonical axes represent variables that are important 

in distinguishing the treatment groups in canonical space. 

 

Experiment 1: assaying A. thaliana symptom severity 

 

In order to obtain measures of overall tolerance to infection, we required an estimate of 

the density of Pst DC3000 in the A. thaliana leaves.  Kover and Schaal (2002) and 

Korves and Bergelson (2003) demonstrated that the density of Pst DC3000 strongly 

correlates with A. thaliana symptom severity four days post-infection.  We assayed 

symptom severity (described above) using 15 replicates of each A. thaliana accession.  

The plants were infected 50 days after they were planted and were photographed five 

days post-infection.  We used NPANOVA to test for genetic variation in A. thaliana 

susceptibility under the imposed experimental conditions. 

 

Experiment 2: effects of infection on nitrogen remobilization, fitness, and other 

plant traits 

 

Effects of infection on the remobilization of nitrogen from infected leaves 

 

A potential consequence of infection with respect to immature leaves is reduced 

subsequent growth.  Effects of infection on subsequent leaf growth may affect the 

original amount of leaf nitrogen available for remobilization during senescence (induced 

or natural).  As a result, tests for an effect of infection on the amount of nitrogen 
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remobilized from leaves may be confounded.  Ideally, infection and control treatments 

would be applied when A. thaliana rosettes were mature, but had not yet begun natural 

senescence.  We treated our plants when the rosettes were large, and when individuals 

within a few of the accessions had begun to bolt.  The rosettes did not exhibit natural 

senescence symptoms at this time.  To test for an effect of treatment on subsequent leaf 

growth, we used NPANOVA with independent variables accession, treatment status, and 

accession*treatment status.  As a proxy for subsequent leaf growth (our dependent 

variable), we used the mass of the dried, sampled, senesced rosette leaves (described 

below).  A significant effect of treatment status on dry leaf sample mass would indicate 

that our tests for the effect of infection on leaf nitrogen remobilization may be 

confounded by differences in leaf growth following infection.  

 

To test for an effect of infection on the amount of nitrogen remobilized from infected 

leaves, we infected A. thaliana with Pst DC3000 and measured the nitrogen content of 

senesced, treated leaves.  For each accession we planted fifteen replicates per treatment.  

The plants were infected 49 days after they were planted.  The first 12 leaves to senesce 

on each plant were collected, wrapped in Kraft ® paper, and stored at room temperature.  

For each plant, all of the collected leaves were combined and ground to a powder in a 

Wig-L-Bug ® ball mill.  The samples were dried, weighed, and assessed for nitrogen 

content at the Department of Soil Sciences Laboratory at the University of North 

Carolina, Raleigh.  Nitrogen content was measured using a PerkinElemer 2400 CHN 

analyzer.  To evaluate the effect of infection on the amount of nitrogen remobilized from 

infected A. thaliana leaves, and to explore genetic variation in the effect of infection on 

the amount of nitrogen remobilized from leaves, we used NPANOVA with subsequent 

pairwise comparisons under significant model terms.  We used the proportion of nitrogen 

with respect to the total sample mass as the response variable.  
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The effect of infection on plant fitness and genetic variation in tolerance to infection 

 

To examine the effect of infection on A. thaliana fitness, we estimated seed number and 

average seed size for each plant.  We further explored the effects of infection on A. 

thaliana fitness by testing for trans-generational effects of infection on progeny size and 

susceptibility to Pst DC3000.  Fruits were collected for 4.5 months, at which time fruit 

production was still occurring, but at very low levels.  We assumed that continuing fruit 

collection would have little bearing on our plant fitness estimates.   

 

Mature fruits were removed and stored in coin envelopes prior to dehiscence.  Each coin 

envelope represented a collection period of seven to ten days.  Occasionally, fruits 

dehisced before they were collected; we represented the number of seeds lost from these 

fruits with the average number of seeds per fruit collected within the respective seven to 

ten day collection period.  Approximately 4% of the seeds in this experiment were lost 

due to fruit dehiscence prior to collection.   

 

We collected 43,051 fruits; we used the 35,693 fruits obtained during the first five 

collection periods for each plant to estimate plant fitness.  The number of seeds from the 

remaining collection periods was estimated by multiplying their number of fruits by the 

average number of seeds per fruit associated with envelopes 4 and 5.  We used envelopes 

4 and 5 because later fruits appeared to be smaller than earlier fruits, and they were 

associated with smaller average numbers of seeds per fruit.   

 

To prepare the seeds for the photographs we removed them from their husks using 7.62 

cm stainless steel sieves with size 40 stainless steel mesh (W.S. Tyler, Mentor, Ohio, 

U.S.A.).  We placed the seeds on a white background and spread them out with a 

dissecting needle (Figure 2).  The seeds were then photographed from above using a 

Nikon Coolpix 5900 mounted on a tripod.  To allow comparability of seed size between 

samples, the same level of zoom was used for each photograph.  We programmed a 

macro in Image J to process the images.  The macro converted the images to 8-bit  
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Figure 2: An example of the digital images processed in order to obtain an estimate of the 
number of seeds produced by each plant, and average seed size. 
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grayscale images, used the watershed function to enhance the separation of touching 

seeds, and the analyze particles function yielded seed number and area.  To prevent the 

inclusion of small debris in our data, we adjusted the bin width under analyze particles so 

that particles smaller than 10 pixels were omitted (average seed area was approximately 

23 pixels).  We used NPMANOVA to examine the effects of accession, treatment, and 

accession*treatment on seed number and size.   

 

To test for trans-generational effects of infection on progeny size and susceptibility to Pst 

DC3000 (measures of performance), we infected a single representative of the progeny of 

12 plants per parent treatment combination with Pst DC3000 46 days after they were 

planted.  To control for the potential effect of seed production date with respect to parent 

phenology, only seeds produced during the first two collection periods were used.  We 

assayed progeny susceptibility as described above.  To test for effects of accession, 

parent treatment status, and the accession*parent treatment status interaction on progeny 

size and susceptibility, we used NPMANOVA. 

 

Effects of infection on plant traits and links to tolerance 

 

To explore the effects of infection on plant traits and to identify traits that may be 

associated with tolerance to infection, we documented the number of days to bolting, 

flowering, and fruiting; measured the height of the main stem, and counted the number of 

inflorescences, primary branches, and secondary branches.  The number of days to 

bolting, flowering, and fruiting were very highly correlated.  We used the number of days 

to flowering to represent phenology in CAP analyses for each accession because, of the 

three, it is the most accurately measured.  CAP analyses allowed us to explore treatment 

effects on plant traits while accounting for their correlation structure.  In order to identify 

traits linked to tolerance, we looked for inconsistencies between tolerant and intolerant 

accessions (as identified above) in the traits that were highly correlated with the 

canonical axes that separated the treatment groups in canonical space. 
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3.  RESULTS 

 

Due to seedling mortality, experiment 2 treatment groups contained unequal numbers of 

replicates.  To balance the design for statistical analyses, we selected the appropriate 

number of individuals from each treatment group at random to drop from the final data 

set.  Accession 8 was omitted from experiment 2 analyses due to a considerable level of 

early mortality.  The final replication numbers for experiment 2 were 14 per treatment 

group in the parental generation, and 11 per treatment group in the progeny generation. 

 

Experiment 1: assaying A. thaliana symptom severity 

 

All A. thaliana accessions exhibited disease symptoms five days post-infection.  Median 

symptomatic rosette proportion was 0.75, with a range of 0.13 to 0.94.  We observed 

genetic variation in symptom severity (Table 2); accession explained approximately 43% 

of the variation in symptom severity.  Subsequent pairwise comparisons between 

accessions indicated that one accession was responsible for the observed genetic variation 

in symptom severity (Table 3).  Accession data dispersion differences did not explain 

significant pairwise comparisons (Tables 4 and 5). 

 

Experiment 2: effects of infection on nitrogen remobilization, fitness, and plant 

traits 

 

Effects of infection on the remobilization of nitrogen from infected leaves 

 

Arabidopsis thaliana leaves were fully expanded or near full expansion when treated; leaf 

mass was not affected by treatment status (Table 6).  The amount of nitrogen remobilized 

from infected leaves was affected by infection (Table 7); infection approximately 

doubled the median amount of nitrogen retained in senesced leaves.  The median amount 

of nitrogen retained in control leaves was 0.0100, with a range of 0.0069-0.0182.  The 

median amount of nitrogen remaining in infected leaves was 0.0183, with a range of 
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Table 2.  NPANOVA results testing for genetic variation in the symptomatic 
proportion of the rosette five days post-infection. 

Source df SS SS% MS F P-Value 
Accession 9 63.56 42.66 7.06 11.57 0.001 
Residual 140 85.44 57.34 0.61   

Total 149 149         



 19

 
Table 3.  Pairwise comparisons between accessions for the symptomatic proportion of 

the rosette five days post-infection. 
Groups t P-value Holm-Adjusted P-Value 
*1,10 3.4301 0.001 0.001 
*3,10 4.0788 0.001 0.001 
*6,10 2.8853 0.001 0.001 
7,10 3.5326 0.002 0.001 
4,10 3.3585 0.003 0.001 
2,10 3.0934 0.004 0.001 
8,10 3.0785 0.006 0.001 
5,10 2.7955 0.012 0.001 
3,9 2.3662 0.026 0.001 
6,9 1.7832 0.044 0.001 
9,10 1.8344 0.073 0.001 
2,3 1.6864 0.102 0.001 
1,9 1.6774 0.103 0.002 
3,4 1.6735 0.109 0.002 
7,9 1.7201 0.115 0.002 
4,9 1.4153 0.169 0.002 
2,6 1.2882 0.185 0.002 
3,8 1.2454 0.212 0.002 
8,9 1.257 0.212 0.002 
4,6 1.2262 0.232 0.002 
3,5 1.2059 0.246 0.002 
2,9 1.174 0.248 0.002 
6,8 1.1693 0.262 0.002 
5,6 1.1975 0.271 0.002 
5,9 1.0461 0.32 0.002 
3,7 0.8625 0.4 0.003 
6,7 0.9895 0.417 0.003 
2,7 0.7829 0.436 0.003 
1,2 0.7816 0.44 0.003 
1,6 0.9341 0.472 0.003 
4,7 0.6426 0.478 0.003 
1,3 0.6755 0.524 0.004 
1,4 0.6494 0.538 0.004 

Significant comparisons at α = 0.05 are indicated with an asterisk. 
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Table 3.  Continued. 
Groups t P-value Holm-Adjusted P-Value 

1,5 0.5671 0.579 0.004 
5,7 0.5349 0.6 0.005 
1,8 0.5045 0.62 0.005 
7,8 0.468 0.645 0.006 
3,6 0.6682 0.745 0.006 
2,4 0.2526 0.804 0.007 
2,8 0.2212 0.835 0.008 
5,8 0.1202 0.895 0.01 
4,5 0.1137 0.905 0.013 
1,7 0.0865 0.928 0.017 
2,5 0.0604 0.949 0.025 
4,8 0.0315 0.98 0.05 

Significant comparisons at α = 0.05 are indicated with an asterisk. 
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Table 4.  PERMDISP results testing for homogeneity of accession dispersion for the 

symptomatic proportion of the rosette five days post-infection. 
Source df SS SS% MS F P-Value 

Accession 9 7.17 10.68 0.8 1.86 0.039 
Residual 140 59.93 89.32 0.43   

Total 149 67.1         



 22

 
Table 5.  PERMDISP pairwise comparisons between accessions for dispersion in the 

symptomatic proportion of the rosette five days post-infection. 
Groups t P-Value Holm-Adjusted P-Value 
*4,10 3.4773 0.001 0.001 
4,9 3.0467 0.005 0.001 
4,8 2.9101 0.008 0.001 
7,10 2.7183 0.01 0.001 
2,10 2.7275 0.012 0.001 
3,10 2.7504 0.012 0.001 
4,6 1.5888 0.023 0.001 
4,5 2.1409 0.025 0.001 
7,9 2.0847 0.043 0.001 
1,10 2.2122 0.044 0.001 
3,9 2.117 0.046 0.001 
2,9 2.0882 0.064 0.001 
8,10 1.8899 0.069 0.002 
3,6 1.3329 0.13 0.002 
1,9 1.5122 0.133 0.002 
6,7 1.3593 0.133 0.002 
3,8 1.4741 0.142 0.002 
2,6 1.322 0.146 0.002 
7,8 1.4383 0.155 0.002 
2,8 1.4329 0.156 0.002 
2,4 1.3681 0.173 0.002 
5,7 1.3365 0.173 0.002 
3,4 1.2988 0.188 0.002 
5,10 1.3887 0.192 0.002 
1,6 1.2084 0.216 0.002 
2,5 1.2851 0.224 0.003 
3,5 1.3146 0.226 0.003 
1,4 1.1265 0.264 0.003 
8,9 1.0521 0.285 0.003 
4,7 0.9149 0.351 0.003 
9,10 0.9096 0.402 0.003 
1,5 0.8752 0.416 0.004 
1,8 0.7703 0.423 0.004 

Significant comparisons at α = 0.05 are indicated with an asterisk. 
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Table 5.  Continued. 
Groups t P-Value Holm-Adjusted P-Value 

6,8 0.9828 0.454 0.004 
5,9 0.5778 0.549 0.005 
5,6 0.8427 0.554 0.005 
1,7 0.3746 0.704 0.006 
6,9 0.6058 0.776 0.006 
1,3 0.2869 0.79 0.007 
5,8 0.3149 0.799 0.008 
1,2 0.2527 0.826 0.01 
2,7 0.1897 0.841 0.013 
3,7 0.1452 0.888 0.017 
6,10 0.1704 0.947 0.025 
2,3 0.0506 0.956 0.05 

Significant comparisons at α = 0.05 are indicated with an asterisk. 



 24

 
Table 6.  NPANOVA results testing for effects of accession, treatment status, and their 

interaction on the mass of the collected, senesced rosette leaves. 
Source df SS SS% MS F P-Value 

Accession [A] 8 47.01 18.73 5.88 6.84 0.001 
Treatment Status [T] 1 0.17 0.07 0.17 0.2 0.654 

A X T 8 2.94 1.17 0.37 0.43 0.903 
Residual 234 200.89 80.03 0.86   

Total 251 251         
Note: Bracketed letters represent shorthand notation for the independent variables. 
        
        
        
        

Table 7.  NPANOVA results testing for effects of accession, treatment status, and their 
interaction on the nitrogen content of the collected, senesced rosette leaves. 
Source df SS SS% MS F P-Value 

Accession [A] 8 29.1 11.59 3.64 8.91 0.001 
Treatment Status [T] 1 112.93 44.99 112.93 276.75 0.001 

A X T 8 13.48 5.37 1.69 4.13 0.001 
Residual 234 95.49 38.04 0.41   

Total 251 251         
Note: Bracketed letters represent shorthand notation for the independent variables. 
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0.0099-0.0436.  There was genetic variation in the effect of infection on the amount of 

nitrogen remobilized from infected leaves; however one accession explained the majority 

of the genetic variation (Tables 8-10).  Within accession and treatment status, data 

dispersions were different (Tables 11 and 12) however these differences do not affect our 

interpretation of the rejection of the null in the NPANOVA.  Interestingly, data 

dispersion was higher for the infected plants (Figure 3).   

 

The effect of infection on plant fitness and genetic variation in tolerance to infection 

 

Of all of the fitness correlates measured in our study (seed number, average seed size, 

progeny size, and progeny resistance to Pst DC3000), only seed number was affected by 

infection (Tables 13-17).  Infection reduced median seed number by approximately 11% 

(4696 control: 4202 infected; Figure 4).   We did not detect genetic variation in overall 

tolerance to infection, as there was no interaction effect between accession and treatment 

status on seed number, and experiment 1 showed all 10 A. thaliana accessions to harbor 

similar pathogen densities (as inferred by symptom severity).  We found that there was a 

significant, negative correlation between the amount of nitrogen remaining in infected, 

senesced leaves and seed number (Spearman’s ρ = -.3463, p < .0001; Figure 5), 

suggesting that plants that inefficiently remobilized nitrogen (potentially as a result of 

environmental heterogeneity) had relatively poor fitness. 

 

Effects of infection on plant traits and links to tolerance 

 

Infection by Pst DC3000 affected A. thaliana traits.  There were significant differences in 

multivariate treatment group locations in canonical space for eight of the nine accessions 

included in the CAP analyses (Table 18).  Main stem height was consistently reduced in 

infected plants (Table 19; Figure 6).  Other plant traits also correlated strongly with the 

canonical axis separating treatment groups, but these traits were inconsistent among the 

accessions.  We further explored the effect of infection on main stem height using 

NPANOVA.  Accession, treatment status, and accession*treatment status explained a  
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Table 8.  Pairwise comparisons between accessions within the control treatment of the 
nitrogen content of the collected, senesced rosette leaves. 

Groups t P-Value Holm-Adjusted P-Value 
*3,6 3.8407 0.001 0.001 
*3,7 5.0296 0.001 0.001 
*3,9 4.0569 0.001 0.001 
*5,7 4.2205 0.001 0.002 
*1,3 3.398 0.002 0.002 
3,4 3.039 0.003 0.002 
5,9 3.09 0.004 0.002 
2,3 3.2072 0.006 0.002 
3,10 3.1693 0.006 0.002 
5,6 2.8569 0.009 0.002 
1,7 2.5278 0.018 0.002 
7,10 2.3569 0.02 0.002 
2,5 2.2268 0.028 0.002 
1,5 2.3766 0.029 0.002 
6,7 2.186 0.04 0.002 
5,10 2.1592 0.044 0.002 
4,7 2.0869 0.048 0.003 
7,9 2.1271 0.051 0.003 
4,5 2.0569 0.057 0.003 
2,7 2.0153 0.066 0.003 
3,5 1.1092 0.266 0.003 
9,10 0.8035 0.429 0.003 
1,9 0.7964 0.457 0.004 
6,10 0.5896 0.548 0.004 
4,9 0.6719 0.568 0.004 
2,9 0.5344 0.586 0.005 
1,6 0.5476 0.633 0.005 
4,6 0.4901 0.652 0.006 
2,6 0.3494 0.737 0.006 
6,9 0.2358 0.832 0.007 
2,10 0.1744 0.879 0.008 
1,10 0.1007 0.902 0.01 
2,4 0.131 0.907 0.013 

Significant comparisons at α = 0.05 are indicated with an asterisk. 
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Table 8.  Continued. 
Groups t P-Value Holm-Adjusted P-Value 

1,2 0.0945 0.931 0.017 
1,4 0.0568 0.966 0.025 
4,10 0.0316 0.984 0.05 

Significant comparisons at α = 0.05 are indicated with an asterisk. 
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Table 9.  Pairwise comparisons between accessions within the infected treatment of the 

nitrogen content of the collected, senesced rosette leaves. 
Groups t P-Value Holm-Adjusted P-Value 

*1,3 5.3206 0.001 0.001 
*3,4 5.1854 0.001 0.001 
*3,6 3.988 0.001 0.001 
*3,7 4.4855 0.001 0.002 
*3,10 3.8812 0.002 0.002 
*3,5 3.4764 0.004 0.002 
3,9 2.9985 0.005 0.002 
2,3 3.0969 0.008 0.002 
1,9 2.1204 0.032 0.002 
1,6 2.1526 0.04 0.002 
4,9 2.0838 0.04 0.002 
1,10 2.1104 0.044 0.002 
4,10 2.0065 0.049 0.002 
1,2 1.8421 0.056 0.002 
4,6 2.0281 0.061 0.002 
2,4 1.8246 0.087 0.002 
4,5 1.4759 0.152 0.003 
1,5 1.4781 0.174 0.003 
7,9 1.2649 0.203 0.003 
1,7 1.094 0.284 0.003 
4,7 1.09 0.286 0.003 
2,7 1.0319 0.325 0.003 
7,10 0.9191 0.346 0.004 
6,7 0.891 0.368 0.004 
5,7 0.6514 0.523 0.004 
6,9 0.6278 0.576 0.005 
5,9 0.5225 0.605 0.005 
9,10 0.5636 0.609 0.006 
2,6 0.4097 0.725 0.006 
2,10 0.3527 0.752 0.007 
2,5 0.3453 0.754 0.008 
2,9 0.1651 0.874 0.01 
1,4 0.1246 0.912 0.013 

Significant comparisons at α = 0.05 are indicated with an asterisk. 
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Table 9.  Continued. 
Groups t P-Value Holm-Adjusted P-Value 

6,10 0.0674 0.947 0.017 
5,10 0.0538 0.963 0.025 
5,6 0.0039 0.996 0.05 

Significant comparisons at α = 0.05 are indicated with an asterisk. 
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Table 10.  NPANOVA results testing for effects of accession, treatment status, and 
their interaction on the nitrogen content of the collected, senesced rosette leaves, 

excluding accession 3. 
Source df SS SS% MS F P-Value 

Accession [A] 7 5.64 2.53 0.88 1.68 0.113 
Treatment Status [T] 1 112.52 50.46 112.52 233.98 0.001 

A X T 7 4.82 2.16 0.69 1.43 0.210 
Residual 208 100.02 44.85 0.48   

Total 223 223         
Note: Bracketed letters represent shorthand notation for the independent variables. 

 

 

 

Table 11.  PERMDISP results testing for homogeneity of treatment group nitrogen data 
dispersion. 

Source df SS SS% MS F P-Value 
Accession [A] 8 3.74 6.94 0.47 3.16 0.001 

Treatment Status [T] 1 13.36 24.81 13.36 90.36 0.001 
A X T 8 2.16 4.02 0.27 1.83 0.087 

Residual 234 35.55 66.02 0.15   
Total 251 53.85         

Note: Bracketed letters represent shorthand notation for the independent variables. 



 31

 
Table 12.  PERMDISP pairwise comparisons between accessions for nitrogen data 

dispersion. 
Groups t P-Value Holm-Adjusted P-Value 

*1,3 3.3519 0.001 0.001 
3,6 2.7215 0.009 0.001 
3,7 2.5554 0.013 0.001 
3,4 2.4304 0.014 0.002 
3,10 2.5077 0.023 0.002 
1,5 2.1368 0.037 0.002 
1,2 1.8832 0.053 0.002 
1,4 1.5178 0.13 0.002 
1,9 1.5225 0.131 0.002 
3,9 1.559 0.133 0.002 
5,6 1.4381 0.176 0.002 
5,10 1.2386 0.205 0.002 
3,5 1.2191 0.21 0.002 
2,6 1.2412 0.224 0.002 
1,7 1.2235 0.229 0.002 
2,3 1.2458 0.235 0.002 
5,7 1.2655 0.237 0.003 
1,10 1.1364 0.256 0.003 
1,6 1.034 0.285 0.003 
4,5 1.113 0.299 0.003 
2,10 1.0657 0.316 0.003 
2,7 1.0845 0.32 0.003 
2,4 0.9399 0.4 0.004 
6,9 0.8729 0.436 0.004 
7,9 0.7179 0.497 0.004 
9,10 0.7072 0.515 0.005 
4,9 0.5667 0.616 0.005 
4,6 0.4731 0.644 0.006 
5,9 0.4043 0.701 0.006 
2,9 0.3088 0.757 0.007 
4,7 0.2393 0.805 0.008 
4,10 0.2366 0.819 0.01 
6,7 0.2198 0.834 0.013 

Significant comparisons at α = 0.05 are indicated with an asterisk. 
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Table 12.  Continued. 
Groups t P-Value Holm-Adjusted P-Value 

6,10 0.1968 0.834 0.017 
2,5 0.0803 0.941 0.025 
7,10 0.0103 0.99 0.05 

Significant comparisons at α = 0.05 are indicated with an asterisk. 
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Figure 3: Nitrogen data dispersion by accession.  Closed circles represent control plant 
standardized nitrogen values; open circles represent infected plant standardized nitrogen 

values. 
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Table 13.  NPMANOVA results testing for effects of accession, treatment status, and 

their interaction on seed number and average seed size. 
Source df SS SS% MS F P-Value 

Accession [A] 8 168.22 33.51 21.03 15.37 0.001 
Treatment Status [T] 1 5.23 1.04 5.23 3.83 0.028 

A X T 8 8.39 1.67 1.05 0.77 0.748 
Residual 234 320.15 63.78 1.37   

Total 251 502         
Note: Bracketed letters represent shorthand notation for the independent variables. 

        
        
        
        

Table 14.  PERMDISP results testing for homogeneity of treatment group seed number 
and average seed size dispersion. 

Source df SS SS% MS F P-Value 
Accession [A] 8 11.66 8.76 1.46 2.92 0.002 

Treatment Status [T] 1 0.24 0.18 0.24 0.49 0.529 
A X T 8 4.22 3.17 0.53 1.06 0.409 

Residual 234 116.9 87.88 0.5   
Total 251 133.02         

Note: Bracketed letters represent shorthand notation for the independent variables. 
        
        
        
        

Table 15.  NPANOVA results testing for effects of accession, treatment status, and their 
interaction on seed number. 

Source df SS SS% MS F P-Value 
Accession [A] 8 154.18 30.71 19.27 13.48 0.001 
Treatment [T] 1 5.93 1.18 5.93 4.15 0.015 

A X T 8 7.33 1.46 0.92 0.64 0.852 
Residual 234 334.55 66.64 1.43   

Total 251 502         
Note: Bracketed letters represent shorthand notation for the independent variables. 
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Table 16.  NPANOVA results testing for effects of accession, treatment status, and their 

interaction on average seed size. 
Source df SS SS% MS F P-Value 

Accession [A] 8 121.38 48.36 15.17 28.13 0.001 
Treatment Status [T] 1 0.23 0.09 0.23 0.42 0.516 

A X T 8 3.2 1.27 0.4 0.74 0.674 
Residual 234 126.2 50.28 0.54   

Total 251 251         
Note: Bracketed letters represent shorthand notation for the independent variables. 

        
        
        
        

Table 17.  NPMANOVA results testing for effects of accession, parent treatment status, 
and their interaction on progeny size and the symptomatic portion of the rosette five 

days post-infection. 
Source df SS SS% MS F P-Value 

Accession [A] 9 8.64 10.47 0.96 2.72 0.005 
Parent Treatment Status [P] 1 0.26 0.32 0.26 0.75 0.39 

A X P 9 3.15 3.82 0.35 0.99 0.43 
Residual 200 70.48 85.41 0.35   

Total 219 82.52         
Note: Bracketed letters represent shorthand notation for the independent variables. 
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Figure 4: The median number of seeds produced by each accession by control and 

infected treatment groups. 



 37

Senesced Leaf Nitrogen Content (Proportion of Dry Weight)

0.00 0.01 0.02 0.03 0.04 0.05

N
um

be
r o

f S
ee

ds
 P

ro
du

ce
d

0

2000

4000

6000

8000

10000

 
 

Figure 5: The association between the amount of nitrogen remaining in senesced, infected 
leaves, and seed number. 
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Table 18. The results of treatment group separation (by accession) using the CAP 

procedure on z-transformed performance response variables. 

Accession 
Number of 
PCO Axes 

Variation 
Explained by 
the PCO axes 

(%) δ2 Permutation Test P-value 
1 5 96.225 0.408 0.027 
2 5 93.126 0.758 0.001 
3 5 94.316 0.392 0.036 
4 4 89.435 0.330 0.032 
5 3 72.558 0.583 0.001 
6 2 61.522 0.022 0.785 
7 5 100.000 0.309 0.090 
9 6 100.000 0.516 0.005 
10 3 79.502 0.266 0.054 

δ2 = the squared canonical correlation of the canonical axis. 
        
        
        

Table 19. Correlations of the z-transformed, original variables with the canonical axis 

Days to 
Flower 

Number of 
Inflorescences 

Main Stem 
Height 

1° 
Branches 

2° 
Branches 

Average 
Number of 
Seeds per 

Fruit 
0.3679 -0.3851 -0.6033 0.8069 0.1189 -0.2127 
0.2392 -0.0682 0.7653 0.3435 0.4949 -0.4793 
-0.2896 -0.4878 -0.9095 0.0033 0.1024 -0.2469 
0.0077 -0.3714 -0.7098 0.4871 0.3765 -0.1917 
0.3892 0.4213 -0.9209 -0.3125 -0.0244 0.0473 
-0.196 N/A 0.6479 -0.7727 -0.7378 0.2282 
-0.1573 N/A 0.5708 -0.1895 0.2738 -0.3094 
0.0412 -0.089 -0.7366 0.2083 -0.0504 -0.0824 
-0.4717 0.4044 0.7319 -0.0059 0.3399 0.8955 

N/A indicates not applicable (there was no variation in the number of inflorescences for 
accessions 6 and 7).   
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Figure 6: The effect of infection on main stem height; median main stem heights by 
accession, by control and infected treatment groups. 
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significant portion of the variation in main stem height (Table 20).  Had we detected 

genetic variation in tolerance, we would have tested for a genetic correlation between 

main stem height and overall tolerance. 
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Table 20.  NPANOVA results testing for effects of accession, treatment status, and their 
interaction on main stem height. 

Source df SS SS% MS F P-Value 
Accession [A] 8 98.74 39.34 12.34 26.19 0.001 

Treatment Status [T] 1 27.71 11.04 27.71 58.81 0.001 
A X T 8 14.28 5.69 1.79 3.79 0.001 

Residual 234 110.27 43.93 0.47   
Total 251 251.00     

Note: Bracketed letters represent shorthand notation for the independent variables. 
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4.  DISCUSSION 

 

We assayed A. thaliana susceptibility to Pst DC3000 in two experiments.  Plant 

susceptibility to pathogen infection is inversely related to resistance to pathogen 

infection, which is often measured in terms of pathogen density in pathosystem studies.  

Kover and Schaal (2002) and Korves and Bergelson (2003) found that the extent of 

chlorosis and necrosis in infected A. thaliana correlates strongly with Pst DC3000 

density, indicating that symptom severity can be used as a proxy for susceptibility in this 

pathosystem.  The plants in the experiments described above were grown under 

equivalent conditions; however for the progeny plants in the second experiment, there 

was a six-day delay in the second and final application of fertilizer.  Consistent with 

previous studies (Kover and Schaal 2002; Kover et al. 2005; M.B. Unpublished), we 

detected genetic variation in A. thaliana susceptibility to Pst DC3000 in both 

experiments.  The results of our two experiments were surprisingly different, however.  

In the first experiment, we detected very little genetic variation in susceptibility, and the 

median susceptibility level was relatively high (0.72).  In the second experiment, we 

observed substantial genetic variation in susceptibility (Table A-1), and the median 

susceptibility level was relatively low (0.50).  The inconsistencies in susceptibility 

observed between the two experiments indicate that measures of susceptibility in this 

pathosystem are highly sensitive to experimental conditions. 

 

The timing of infection, relative to the ontogeny of the plants, may have contributed to 

the discrepancy in the results of our two experiments.  The plants of the second 

experiment were noticeably smaller, and exhibited a lower frequency of bolting, relative 

to the plants of the first experiment.  Although no senescence symptoms were visible in 

our plants when infected, because bolting is tightly correlated with leaf senescence in A. 

thaliana (Levey and Wingler 2005), their leaves may have begun the senescence process.  

Kus et al. (2002) documented reduced P. syringae growth in older A. thaliana plants 

(age-related resistance), possibly as a result of prior initiation of natural leaf senescence 

in the older plants.  Senescence and foliar disease show substantial overlap in their visible 
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symptoms and molecular activities.  The more developed plants of the first experiment 

may have initiated leaf senescence prior to infection, and thereby accelerated the 

development of senescence symptoms (explaining the high median symptom severity), 

and in turn obscured the detection of genetic variation in susceptibility.  Plant resistance 

is often a function of ontogenetic stage; Boege and Marquis (2005) recommend that 

resistance studies include plant ontogenetic stage as a determining factor of resistance.  In 

addition, constitutive and induced resistance markers in A. thaliana have been shown to 

be dependent on nitrogen supply (Dietrich and Heil 2004).  The difference in the 

fertilization regime between the two experiments could have contributed to the difference 

in the resistance levels observed between the two experiments.  Because genetic variation 

in the expression of resistance varies substantially between plant ontogeny and the abiotic 

conditions such as fertilization regime, it is challenging to understand the evolution of 

resistance in an evolutionary context.   

 

Relative to resistance mechanisms little is known about the traits through which plants 

manifest tolerance to pathogens, despite their importance in the evolutionary ecology of 

pathosystems.  We investigated the link between a foliar infection and the remobilization 

of nitrogen (a limiting nutrient) in the context of tolerance.  Several recent studies 

involving the interaction between tomato plants and P. syringae pv. tomato have 

provided strong evidence that tomato plants remobilize nitrogen from infected tissues 

(Pérez-García et al. 1995; Pérez-García et al. 1998a; Pérez-García et al. 1998b).  We 

found that A. thaliana leaves infected with P. syringae pv. tomato contained 

approximately twice the nitrogen content of healthy leaves when senesced.  Using the 

recently reported estimate of 5% for A. thaliana leaf nitrogen content (Devienne-Barret et 

al. 2006), we estimate that infection inhibited the remobilization of 20% of leaf nitrogen 

content in the infected plants.  Studies of agricultural pathosystems have similarly found 

that diseased leaves are compromised in their ability to remobilize nitrogen (Barbottin et 

al. 2005; Dimmock and Gooding 2002; Garry et al. 1996).  To our knowledge, our study 

is the first to have investigated nitrogen remobilization from diseased leaves in the 

context of overall tolerance to infection.  The nitrogen content of senesced leaves in our 
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study was negatively correlated with the number of seeds produced, suggesting that 

nitrogen remobilization may (in part) ameliorate the fitness cost of infection.  Genetic 

variation in nitrogen remobilization efficiency from diseased leaves may in turn explain 

genetic variation in overall tolerance. 

 

We detected genetic variation in the amount of nitrogen remobilized from diseased A. 

thaliana leaves.  Genetic variation in nitrogen remobilization from diseased leaves has 

also been reported for wheat (Barbottin 2005).  Contrary to previous studies (Kover and 

Schaal 2002; M.B. Unpublished) we did not detect genetic variation in A. thaliana 

tolerance to infection.  The incongruence between the current and previous studies cannot 

be explained by differences in the methods used to estimate tolerance.  Symptom 

severity, which is correlated with pathogen density, was measured using similar methods, 

as was seed number.  Similar to A. thaliana susceptibility, the condition-specific 

manifestation of genetic variation in A. thaliana tolerance makes understanding the 

evolution of tolerance a challenge.  The condition-specific expression of tolerance has 

been documented in other pathosystems.  For example, Kniskern and Rausher (2006) 

detected dramatic effects of environmental heterogeneity on the expression of tolerance 

in the Ipomoea purpurea – coleosporium ipomoeae pathosystem, ranging from 

intolerance to overcompensation.  Korves and Bergelson (2004) showed that the fitness 

response of A. thaliana to infection by Pst DC3000 is dependent on the presence or 

absence of competition; plants growing alone exhibited overcompensation, while those 

experiencing competition showed reduced fitness when infected. 

 

In addition to having effects on A. thaliana fitness and nitrogen remobilization efficiency, 

infection by Pst DC3000 consistently reduced main stem height.  Other traits were 

affected as well (Table 18b), but the trait responses were idiosyncratic.  We also detected 

an effect of infection on the carbon content of senesced leaves; however this effect was, 

also, idiosyncratic (Table A-2; Figure A-1).  Previous studies have documented that the 

responses of A. thaliana to infection by Pst DC3000 have included earlier flowering and 

an increase in the number of basal branches (Korves and Bergelson 2003 and 2004).  
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These traits appear to have been affected in a few of the accessions in our study as well.  

Pathogens are known to affect host plant morphology and phenology.  Some of these 

changes may reduce the fitness cost of infection, and thus be tolerance traits.  Nitrogen 

remobilization in response to infection remains a promising and enigmatic means by 

which plants may tolerate natural enemy damage. 

 

Tolerance is an important element of the evolutionary ecology of plants and their natural 

enemies because it ameliorates the effects of natural enemy damage to plant fitness 

without imposing selection for the evolution of counter-defense in natural enemies.  Our 

results suggest that in the A. thaliana – P. syringae pathosystem, minor differences in 

experimental conditions can have a dramatic influence on the severity and broad-sense 

heritability of measures of defense.  Nitrogen remobilization in the context of plant 

tolerance is a promising trait that warrants further investigation. 
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APPENDIX 
 

Table A-1.  Pairwise comparisons between accessions in the progeny generation for the 
symptomatic proportion of the rosette five days post-infection. 

Groups t P-Value Holm-Adjusted P-Value 
*3,8 4.4727 0.001 0.001 
*4,9 3.817 0.001 0.001 
*5,9 5.6599 0.001 0.001 
*8,9 5.623 0.001 0.001 
*8,10 5.3825 0.001 0.001 
*9,10 6.9711 0.001 0.001 
*3,4 4.1232 0.001 0.001 
*5,8 5.4746 0.001 0.001 
*2,4 5.3589 0.001 0.001 
*3,5 5.1189 0.001 0.001 
*5,6 6.9565 0.001 0.001 
*4,10 3.7488 0.001 0.001 
*1,3 5.7586 0.001 0.002 
*6,10 5.0408 0.001 0.002 
*2,8 4.8911 0.001 0.002 
*1,4 7.8804 0.001 0.002 
*7,10 2.9852 0.001 0.002 
*4,7 4.8155 0.001 0.002 
*1,2 4.5434 0.001 0.002 
*3,7 4.2685 0.001 0.002 
*6,8 6.767 0.001 0.002 
*1,9 4.555 0.001 0.002 
*7,8 3.8572 0.001 0.002 
*2,7 3.3713 0.002 0.002 
7,9 2.6505 0.009 0.002 
3,9 2.5515 0.011 0.003 
2,10 2.4581 0.013 0.003 
1,6 2.5066 0.019 0.003 
1,5 2.3029 0.02 0.003 
2,9 2.3804 0.024 0.003 
4,5 2.0765 0.035 0.003 
3,10 2.0558 0.036 0.004 
2,3 2.2444 0.04 0.004 
5,7 2.0356 0.041 0.004 

Significant comparisons at a = 0.05 are indicated with an asterisk. 
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Table A-1.  Continued. 
Groups t P-Value Holm-Adjusted P-Value 

6,9 1.9826 0.054 0.005 
1,8 1.8328 0.074 0.005 
2,5 1.7248 0.097 0.006 
1,7 1.6433 0.11 0.006 
3,6 1.1207 0.3 0.007 
2,6 0.7273 0.452 0.008 
4,8 0.8086 0.456 0.010 
4,6 0.5187 0.653 0.013 
5,10 0.3291 0.75 0.017 
6,7 0.2939 0.798 0.025 
1,10 0.2573 0.822 0.050 

Significant comparisons at a = 0.05 are indicated with an asterisk. 
 
 
 
 
 

Table A-2.  NPANOVA results testing for effects of accession, treatment status, and 
their interaction on the carbon content of the collected, senesced rosette leaves. 

Source df SS SS% MS F P-Value 
Accession [A] 8 136.37 54.33 17.05 39.90 0.001 

Treatment Status [T] 1 0.84 0.34 0.84 1.97 0.170 
A X T 8 13.81 5.50 1.73 4.04 0.001 

Residual 234 99.98 39.83 0.43   
Total 251 251.00        

Note: Bracketed letters represent shorthand notation for the independent variables. 
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Figure A-1: The effect of infection on the carbon content of senesced rosette leaves, by 
control and infected treatment groups. 
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