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Abstract

Understanding the ever changing stock market has long been of interest to both

academic and financial institutions. The early attempts to model the dynamics

treated the volatility or sensitivity of the price change to random effects as constant.

However, in matching the model to real data it was realized that the volatility

was actually a random variable, and thus began efforts to determine methods for

estimating the stochastic volatility from experimental data.

In this thesis, we develop and compare three different computational statistical

filtering methods for estimating the volatility: The Kalman Filter, the Gibbs Sampler,

and the Particle Filter. These methods are applied to a discrete time version of the

log-volatility dynamic model and the results are compared based on their performance

on synthetic data sets, where dynamics are nonlinear.

All the methods struggled to provide accurate estimates, but in comparison, the

Gibbs Sampler provided the most accurate estimates, with Particle Filtering providing

the least accurate results. Therefore, further investigation on the topic should take

place.
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Chapter 1

Introduction

Understanding the ever changing stock market has long been of interest to both

academic and financial institutions. In 1972, the discover of the Black-Shcoles

equations was a groundbreaking results in the field of financial mathematics [4]. The

equation became the off-the-shelf methodology for the pricing of options in the market

place. Through this approach, one was able to analyze the dynamic of the price, S,

of a stock by the model

dS

S
= rdt+ σdW, (1.1)

where r is the constant intrinsic growth rate, W is the driving noise, and σ is the

constant volatility or the sensitivity of the price change to the noise. Equivalently,

if we consider the price to be measured at discrete times, we replace S by St for

t = 0, 1, . . . and rewrite the Black-Scholes equation (1.1) as

St+1 = St + rSt + σSt∆Wt, (1.2)

where r and σ are as in equation (1.1) (adjusted to the time scale), and ∆Wt =

Wt+1 −Wt is the noise increment.
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Initially, stock prices were modeled under the assumption that the volatility was

constant. In 1985, Rubinstein [30] addressed these concerns about this assumption

by showing that the volatility should not be constant, but should be considered a

randomly changing quantity. In attempting to draw inference from the stock price

about how volatility should behave, equation (1.2) was adjusted to only examine the

relative change in stock price, yt, with the volatility, σt now being a random variable,

depending on time:

yt
.
=
St − St−1

St−1

= σt−1∆Wt−1. (1.3)

Determining methods for estimating stochastic volatility from real market data

became an active and important area of investigation.

There are basically two general types of methods for estimating the volatility:

regression based methods and filtering methods. The early works were regression

based with Engle publishing the first method in 1982 [10]. Engle assumed there was

data at time t − 1 that gave investors information about how a stock price might

change. He then looked at the expected relative price of the stock and the variance of

the stock conditional on this information. In particular, he defined mt
.
= E[yt | Ft−1],

the expected price conditional on the information Ft−1, and ht
.
= var(yt | Ft−1),

the variance conditional on Ft−1. In this case, ht is a measure of σ2
t . From the

errors between actual and expected prices, et
.
= yt−mt, he applied an autoregressive

conditional heteroskedasticity (ARCH) model of degree p to determine the coefficients

a, bi, i = 1, . . . , p, for the volatility model

ht = a+

p∑
i=1

bie
2
t−i. (1.4)

The method was further extended in 1986 from the ARCH(p) model to a Generalized

ARCH model (GARCH(p, q)) [5], where p represents how far back we use the

information history and q represents how far back we use the variance history. In

2



this model, we have

ht = a+

p∑
i=1

bie
2
t−i +

q∑
i=1

ciht−i. (1.5)

Building on these models, many other approaches were made popular such as the

Exponential GARCH (EGARCH), the nonlinear ARCH, the multiplicative ARCH,

and several others outlined in [11]. Although these statistical methods are successful

in predicting volatility, the concept of the new information needed for the predictions

is mathematically difficult to represent in the general setting.

Soon after the regression models were developed, researchers started using a

different set of methods based on stochastic filtering. In general, in filtering

problems we estimate an unknown random variable by using observations perturbed

by random noise, see e.g. [3, 25, 37]. These types of problems arise in many

areas such as tracking an object’s location, weather forecasting, monitoring ocean

currents, biology, the military, predicting the volatility of stock prices, and many

others [7, 8, 22, 24, 23, 28, 34]. Briefly, the generic filter problem consists of two

stochastic differential equations, a transition model for the hidden state variable and

an observation model to form intuition about the hidden variable. Typically, the

transition density is a Markov process where the stochastic equation depends only on

the previous state variable. The observation model depends only on the state variable,

along with some random noise, typically white noise. For our problem, we observe

the changing stock price in order to estimate the hidden state variable, volatility. We

discuss several families of filtering methods below.

The Kalman Filter method is one such approach to produce this more precise

estimate. Developed in 1960, this method calculates the optimal estimate by

minimizing the variance of error between the estimate and the true value [17]. It is

optimal when applied to systems with linear dynamics and data driven by Gaussian

noise. The method involves producing a prior estimate, using the dynamic equation,

before updating to a posterior estimate by making adjustments according to what we

observe. A key component of the method is the Kalman Gain which determines the
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degree to which the posterior estimate should be corrected to reflect the deviation

in what is observed and what our prior says we should observe. The Kalman Gain

is found by minimizing the variance of the posterior error. Although the Kalman

Filter method is the optimal method under the right properties, for many problems,

including ours, the state or observation dynamics are not linear and thus, to apply

this method, we first would need to linearize the dynamics. We expect that this

approximation would introduce additional error into the method, thus making it less

accurate.

Another strategy for determining volatility estimates is via Monte Carlo Markov

Chain (MCMC) methods. MCMC methods were formalized in 1949 [27], right after

World War II. At that time, in the field of physics, there existed a strong interest in the

movement of particles [29]. The problem of interest was to compute the configuration

of particles after some time had passed. Due to all the possible collisions that can

take place, the analytic approach was not feasible. With recent developments in

computers, the solution was found by having the computer randomly place particles

and then simulate their movement through given rules. After many iterations, the

average configuration of particles approached the analytic solution with probability

1. This method of repeatedly simulating the unknown to estimate an expectation

became known as Monte Carlo method.

For the general filtering problem, we want to use observations yt in order to

estimate the state variables xt. Mathematically speaking, we want to estimate a

function of the state of the system, say f(xt), using the sequence of noisy data.

In other words, the filtering problem attempts to approximate the conditional

expectation E[f(Xt) | Yt] or equivalently to compute the conditional probability

p(xt | yt). If this relation was easy to sample from, then by the standard Monte

Carlo sampling methods, we could simulate x̂it, i = 1, . . . , N from the conditional

distribution to produce an estimate of the true value. However, in practice, the

filter density is hard to sample from. This is especially true for higher dimensional

problems. In 1953, the Metropolis algorithm, an MCMC method, overcame this issue
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by proposing a new symmetric distribution Q(xt | yt, xt−1) that was easy to sample

from [26]. Using this distribution, we update our estimate by either accepting the

sample from the proposed distribution or using an estimate from a previous time step.

The acceptance rate depends on the likelihood of the new sample in comparison to

the old estimate using the original density p.

Due to the restricting assumptions for choosing the proposal distribution, the

algorithm was further generalized in 1970 into the Metropolis-Hastings algorithm

[15]. The more generalized approach was more relaxed in selecting the proposal

distribution, which only required the proposal distribution to be symmetric, a full

conditional or something else entirely.

A special case of Metropolis-Hastings algorithm is Gibbs Sampling. The

proposal in the Gibbs Sampler is chosen to be Q(xt | x−t), where x−t =

(x1, x2, . . . , xt−1, xt+1, . . . , xT ), i.e. all the time series values except for xt [13].

Formalized in 1984, the method uses the full conditional distribution to use all past

and previous estimates in time instead of only the value from the previous step.

Unlike the Metropolis-Hasting algorithm, the advantage of this proposal is that all

the samples are accepted, i.e. the acceptance rate is always one. Basically, using the

Gibbs Sampler, we sample from the full conditional distribution of each parameter. It

is an iterative algorithm which constructs a dependent sequence of parameter values

whose distribution converges to the target joint posterior distribution.

The third method of interest is the Particle Filtering method. It is a special

case of the importance sampling algorithm [21]. Importance sampling originated

around the time of the Metropolis-Hastings algorithm as another type of MCMC

method [12]. Similarly, it deals with the difficulty of sampling from the posterior

conditional distribution p(xt | yt) by proposing a new distribution Q(xt | yt, xt−1)

that is easy to sample from. Where the Metropolis algorithm only kept some samples

depending on the likelihood of the estimate, importance sampling keeps all samples

but weights them according to their likelihood, and uses these weights to approximate

the expected value.

5



A popular method of computational implementation of filtering is the Particle

Filter [18, 24]. Particle Filters are capable of handling nonlinear and non-Gaussian

scenarios. This method is an importance sampling method, which approximates the

posterior distribution p(Xt | Yt) by a discrete set of weights. The weighs of the

samples are computed using the observations. Briefly, instead of using p(Xt | Yt), one

may employ an alternative density, say q(Xt | Yt), which can be easily sampled.

For this thesis, we focus on using versions of the Kalman Filter, Gibbs Sampling

and Particle Filtering methods to develop and compare computational statistical

algorithms for determining stochastic volatility. We apply these methods to a specific

model related to stock price volatility. Through the work of [16, 31, 36], volatility

can be expressed as a solution of the following stochastic differential equation:

dσ2

σ2
= φdt+ ηdB, (1.6)

where the parameter φ is the intrinsic growth and η is the sensitivity to the driving

noise which is a Brownian motion, B, in our case. In particular, we will use the

discrete version of equation (1.6):

xt = ν + φxt−1 + ηwt, (1.7)

where xt = log σ2
t , the log variance, ν is a scaling factor to ensure a non-zero fixed

point, and wt ∼ N(0, 1) by a property of Brownian motion. With this log-transform,

we also rewrite (1.3) with σ now depending on time and σt = ext/2, as

yt
.
= σtvt = ext/2vt, (1.8)

where we have vt ∼ N(0, 1) for the difference in the noise. For our work, we will use

the dynamic and observation models defined by equations (1.7) and (1.8) respectively.

We will apply the three filtering algorithms we develop and compare estimates of

the corresponding stochastic volatility for this model. The basis for the comparisons

6



will be the performance of the algorithms on synthetic data. The difficulty of this

problem is the non-linearity, e.g. in equation (1.8). Drawing inference on the variance

of a random variable only given one observation at each time step is a difficult task.

Our methods, which all build on this relationship, struggled to overcome this obstacle

when looking at the numerical results of each method. In comparison, after applying

each method to the same randomly generated data set, the Gibbs Sampler produced

the most accurate estimates over many simulations.

The rest of this thesis is organized as follows: Chapter 2 discusses preliminary

concepts for non-experts. Chapter 3 gives a brief overview of the Kalman Filter, Gibbs

Sampler and Particle Filtering methods. Lastly, Chapter 4 focuses on the different

computations of the stochastic volatility for the stock model with a comparison and

discussion of the errors.
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Chapter 2

General Preliminaries

We expose preliminary results for the uninitiated reader. Experts could skip to

Chapter 3.

2.1 Sampling Random Variables

Let X be a random variable distributed according to F , and we will denote this from

now on as X ∼ F . Define

F−1(y) = inf {x : F (x) ≥ y}, 0 ≤ y ≤ 1, (2.1)

where F−1 is well-defined since F is a non-decreasing function.

We want to produce samples from this generic distribution F .

Lemma 2.1. Let U follow a uniform distribution over the interval [0, 1], i.e. U ∼

U(0, 1). Consider X = F−1(U), where F−1 is defined in equation (2.1). Then X is

F-distributed.

Proof. Following the basic definition of a cumulative distribution function (cdf) we

have that

P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x), (2.2)
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since U ∼ U(0, 1).

Therefore, we use the following algorithm to generate samples from a specific

distribution F .

Algorithm 2.2 (Inverse Transform Algorithm).

1. Sample X ∼ U(0, 1)

2. Compute Y = F−1(x)

Definition 2.3. Consider X1, . . . , XN samples of a distribution F . Then the

empirical distribution of X i, i = 1, . . . , N is

F̂N(t) =
1

N

N∑
i=1

1{Xi≤t}, (2.3)

where 1 is the indicator function.

Example 2.4. Suppose we want to sample from a distribution F with density f(y) =

3y2, if 0 ≤ y ≤ 1 (f(y) = 0 otherwise). F (y) = P(Y ≤ y) =
∫ y

0
3y2dy = y3. Following

the inverse transform algorithm we generate N = 1000 samples from U(0, 1), i.e.

X1, . . . , X1000 ∼ U(0, 1), and then we evaluate the inverse based on these samples,

i.e. yi =
3
√
xi, i = 1, . . . , N . The empirical distribution of the samples, yi, are

compared with the true cdf F (y) = y3 and are shown in Figure (2.1).

Although Lemma 2.1 suggests to us an explicit way of generating a random

variable when the cdf is available, there are several cases in which the corresponding

distributions are mathematically inconvenient. The acceptance-rejection method is a

very general algorithm for sampling [33].

Consider a probability density function (pdf) f bounded on some interval [a, b]

and zero outside. Let c = sup {f(x) : x ∈ [a, b]}. Then f takes values within the

rectangle [a, b]× [0, c]. We generate Z ∼ f with the following algorithm:

9
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Figure 2.1: Comparison of Empirical cdf and true cdf F (y) = y3.

Algorithm 2.5.

1. Sample U ∼ U(a, b)

2. Sample V ∼ U(0, c)

3. If Z = U if V ≤ f(U), otherwise go to Step 1.

The generated vector (U, V ) ∼ U([a, b] × [0, c]), and therefore, the accepted pair

(U, V ) is uniformly distributed under the pdf f . This implies that the distribution of

the accepted values has the desired pdf f .

We further generalize the algorithm by letting g be any density where Cg(x) ≥

f(x) for some constant C. We call g(x) the proposal pdf and assume that is it easy

to sample from.

Algorithm 2.6 (Acceptance-Rejection Algorithm).

1. Generate X ∼ g(x)

2. Generate Y ∼ U(0, Cg(X))

10



3. Z = X, if Y ≤ f(X), otherwise go to Step 1.

Theorem 2.7. The random variable generated according to the acceptance-rejection

algorithm has the desired pdf f(x).

Proof. Define

A = {(x, y) : 0 ≤ y ≤ Cg(x)}

B = {(x, y) : 0 ≤ y ≤ f(x)}.

Following the acceptance-rejection algorithm, we sample X ∼ g(x) and Y ∼

U(0, Cg(X)). The resulting vector (X, Y ) is uniformly distributed on A. Let (X∗, Y ∗)

be the first accepted sample, i.e. (X∗, Y ∗) ∈ B. Thus, we take Z = X∗, which will

have the pdf:

fZ(z) =

∫ f(x)

0

fZ,Y ∗(z, y
∗)dy∗ =

∫ f(x)

0

1dy∗ = f(x). (2.4)

The efficiency of the acceptance-rejection algorithm is defined as

P((X, Y ) is accepted) =
area of B

area of A
=

1

C
. (2.5)

Thus, in choosing our proposal density g(x), we want high efficiency 1
c
, i.e. c ≈ 1.

We achieve this by g(x) ≈ f(x).

2.2 Bayes Theorem

This section will briefly introduce the Bayes rule. Bayes rule and its philosophy have a

great impact in engineering, science, statistics, and mathematics. Bayes rule, briefly,

does not inform what our belief should be, but rather “the essence of the Bayesian

approach is to provide a mathematical rule explaining how you should change your
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existing beliefs in the light of new evidence, it allows scientists to combine new data

with their existing knowledge” as stated in [1].

Consider a parameter of interest θ which is unknown and one wants to identify

values of θ ∈ Θ based on data X. According to Bayesian methods, one needs a

distribution of θ, called the prior distribution, π(θ), and a sampling model, f(x | θ).

The prior distribution, π(θ), quantifies the uncertainty about θ prior to seeing data

or describes the belief that x would be the outcome of our study if we knew θ to be

true. Once we obtain the data X, we update our beliefs about θ with the posterior

distribution, π(θ | x), using the Bayes formula described below,

π(θ | x) =
π(θ)f(x | θ)∫

Θ
π(θ)f(x | θ)dθ

(2.6)

The posterior distribution, π(θ | x), describes our belief that θ is the true value,

having observed the data set x. It is crucial to note that the Bayes rule does not

inform what our belief should be, but it informs how our belief should change after

seeing new evidence.

Definition 2.8. For R-valued θ the posterior mean and variance are given by:

E(θ | x) =

∫ ∞
−∞

θπ(θ | x)dθ (2.7)

V ar(θ | x) =

∫ ∞
−∞

(θ − E(θ | x))2 π(θ | x)dθ (2.8)

The following clarifies how one may use a prior and a sampling model in order to

propagate a posterior distribution using the equation (2.6).

Example 2.9. Let us consider the independent identically distributed (iid) random

variables X = (X1, . . . , XN) normally distributed, N(µ, σ2), where σ2 is known.

Assuming a normal prior distribution for the mean, µ, i.e. N(η, τ 2), we will show

that the posterior distribution µ | X is also normal.
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Prior distribution: π(µ) =
1√

2πτ 2
e−

(µ−η)2

2τ2

Sampling model: f(X | µ) = (2πσ2)−n/2e−
∑

(Xi−µ)2

2σ2

π(µ | X) ∝ 1√
2πτ 2

e−
(µ−η)2

2τ2 (2πσ2)−n/2e−
∑

(Xi−µ)2

2σ2

∝ e−
(µ−η)2

2τ2
−
∑

(Xi−µ)2

2σ2

∝ e
− 1

2

[
( 1
τ2

+ N
σ2

)µ2−2

(
η

τ2
+
∑
Xi

σ2

)
µ+

(
η2

τ2
+
∑

(Xi)2

σ2

)]

∝ e
−

[
µ−
(
η

τ2
+

∑
Xi

σ2

)
/( 1
τ2

+ N
σ2

)
]2

2/( 1
τ2

+ N
σ2

)

=
1√

2π
(

1/
√

1
τ2

+ N
σ2

)2
e
−

(µ−
(
η

τ2
+

∑
Xi

σ2

)
/( 1
τ2

+ N
σ2

))2

2(1/
√

1
τ2

+ N
σ2

)2

Hence, µ | X ∼ N
((

η
τ2

+
∑
Xi

σ2

)
/
(

1
τ2

+ N
σ2

)
, 1/
√

1
τ2

+ N
σ2

)
.

2.3 Markov Chains

This section discusses a few preliminary definitions with respect to Markov Chain.

This is important for introducing the Markov Chain Monte Carlo techniques. We

say that Xt is a discrete Markov Chain with transition matrix p(i, j), if for any

j, i, it−1, . . . , i0, we have the following property.

P(Xt+1 = j | Xt = i,Xt−1 = it−1, . . . , X0 = i0) = P(Xt+1 = j | Xt = i) (2.9)
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Equation (2.9) is called the Markov property. Basically, it admits that the future

behavior of the system depends only on the present and not on its past history.

Furthermore, the transition probability gives the rules of the model.

Definition 2.10. The one-step transition probability, denoted as pij(t), is defined as

the following conditional probability:

P(Xt+1 = j | Xt = i) (2.10)

in other words the probability that the process is in state j at time t+ 1 given that the

process was in state i at the previous time t.

Definition 2.11. If the transition probabilities pij(t) in a Markov chain do not depend

on time t, they are said to be stationary or time-homogeneous.

For more information on Markov chains and their properties one may refer to

[2, 9].
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Chapter 3

Sampling and Filtering Methods

We often want to summarize several aspects of a posterior distribution. For instance,

we may be interested in the moments of some function of a parameter θ. However,

it might not be easy to approximate the full posterior distribution, especially when

we deal with multi-parameter models. Hence, one may address this problem by

sampling from the full conditional distribution of each parameter by employing a

posterior approximation based on the Gibbs sampler. We also investigate the special

linear and Gaussian cases using the optimal technique, the Kalman Filter.

3.1 Dynamic Models

Let {xt ∈ X : t ∈ N} be the hidden state vectors of the system, let {yt ∈ Y : t ∈ N}

be the observable variables, and let θ ∈ Θ be the parameter vector for the model.

Let us further assume that the state space satisfies X ⊂ Rnx , the observation space

satisfies Y ⊂ Rny , and the parameter space satisfies Θ ⊂ Rnθ . For convenience, we

denote the collection of state vectors up to time t as x0:t, i.e. x0:t = (x0, x1, . . . , xt)

and the collection of observable vectors as y1:t, i.e. y1:t = (y1, y2, . . . , yt). The general
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dynamic model [2, 9] is then given as

Initial distribution: x0 ∼ p(x0 | θ) (3.1)

Transition density: xt ∼ p(xt | x0:t−1, y1:t−1, θ) (3.2)

Measurement density: yt ∼ p(yt | xt, y1:t−1, θ), (3.3)

where p(x0 | θ) can be interpreted as the prior distribution on the initial state

of the system. From an analytic point of view, to obtain simpler relations, we

need to introduce simplifying hypotheses on the dynamics of the model and on the

measurement density. Assume that the dynamic model is Markovian and that it

does not depend on the past observations y1:t−1, then equations (3.1), (3.2) and (3.3)

become

Initial distribution: x0 ∼ p(x0 | θ) (3.4)

Transition density: xt ∼ p(xt | xt−1, θ) (3.5)

Measurement density: yt ∼ p(yt | xt, θ). (3.6)

We are interested in estimating the hidden state vector when the parameter vector

is known, in other words, we want to estimate the density p(xt | y1:s, θ). If t = s,

the density is called the filtering density, if t < s, it is called the smoothing density,

and if t > s, it is called the prediction density. Assume that at the recurrent time

t the density p(xt−1 | yt−1, θ) is known. For t = 1 we have p(x0 | y0, θ) = p(x0 | θ),

the initial distribution. Applying the Chapman-Kolmogorov transition density, we

obtain the one step ahead prediction density:

p(xt | yt−1, θ) =

∫
X
p(xt | xt−1, θ)p(xt−1 | yt−1, θ) dxt−1. (3.7)
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Next, using the new observation yt and Bayes formula (2.6), we can update the

prediction density and filter the current state of the system to get the filtering density

p(xt | yt, θ) =
p(yt | xt, θ)p(xt | yt−1, θ)∫

X p(yt | xt, θ)p(xt | yt−1, θ) dxt
. (3.8)

At each time step t, it is possible to determine the K-steps-ahead prediction

density, conditional on the available information y1:t. Given the dynamic model

described by equations (3.4)-(3.6), the prediction density at the first step is

p(xt+1 | yt, θ) =

∫
X
p(xt+1 | xt, θ)p(xt | yt, θ) dxt. (3.9)

We can then establish the prediction density at the k-th step, k = 1, . . . , K by

p(xt+k | yt, θ) =

∫
X
p(xt+k | xt+k−1, θ)p(xt+k−1 | yt, θ) dxt+k−1, (3.10)

where

p(xt+k | xt+k−1, θ) =

∫
Yk−1

p(xt+k, yt+1:t+k−1 | xt+k−1, θ) dyt+1:t+k−1

=

∫
Yk−1

p(xt+k | xt+k−1, yt+1:t+k−1, θ)p(yt+1:t+k−1 | yt) dyt+1:t+k−1.

Similarly, the K-steps-ahead prediction density of the observable variable yt+k

conditional on the information available at time t is given by

p(yt+k | yt, θ) =

∫
X
p(yt+k | xt+k, θ)p(xt+k | yt, θ) dxt+k. (3.11)

3.2 Monte Carlo Methods

There are several ways to compute the integral in equation (3.7) for the posterior

prediction density. The feasibility of these integration methods depends heavily on

the particular details of the dynamic model, prior distribution, etc. An alternate
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technique is to use the Monte Carlo approximation which does not require a deep

knowledge of calculus nor numerical analysis [8, 14].

For the general Monte Carlo approximation, let θ be the parameter of interest

and let y1, . . . , yn be numerical samples from a distribution p(y1, . . . , yn | θ). Suppose

we sample S independent, random θ-values from the posterior distribution p(θ |

y1, . . . , yn), i.e.

θ1, . . . , θS
i.i.d.∼ p(θ | y1, . . . , yn).

Then the empirical distribution of θ1, . . . , θS is known as the Monte Carlo approxi-

mation of the posterior distribution p(θ | y1, . . . , yn).

In our situation defined by equations (3.4)-(3.6), usually we are able to sample

from the prior p(xt−1 | yt−1) and the transition density p(xt | xt−1), but it is too

complicated to sample from the posterior predictive distribution p(xt | yt−1). We can

then create these samples indirectly using a Monte Carlo procedure. From equation

(3.7) we see that p(xt | yt−1) is the expectation of p(xt | xt−1), therefore we can

approximate the predictive distribution by this two-stage Monte Carlo scheme:

Sample xit−1 ∼ p(xt−1 | yt−1), i = 1, . . . , S

Sample xit ∼ p(xt | xit−1), i = 1, . . . S,

where the sequence {xit}Si=1 constitutes S independent samples from the posterior

predictive distribution.

3.3 The Gibbs Sampler

For many models, the posterior distribution is non-standard, and therefore, it is

difficult to sample from it directly. However, it may be easy to consider the

full conditional distribution of each parameter and then to construct a posterior

approximation using the Gibbs Sampler [13, 14]. The Gibbs Sampler is an iterative

algorithm which constructs a Markov chain which converges to the distribution of
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interest. Broadly speaking, this method generates the states, one at a time, using

the Markov property of the dynamic model to condition on the current value of the

neighboring states.

Again, start with a Markovian dynamic model as in Section 3.1:

Prior distribution for θ: θ ∼ p(θ) (3.12)

Initial distribution: x0 ∼ p(x0 | θ) (3.13)

Transition density: xt ∼ p(xt | xt−1, θ) (3.14)

Measurement density: yt ∼ p(yt | xt, θ). (3.15)

On the time interval {1, . . . , T}, the conditional posterior distributions of the

parameter vector and the state vectors are given by

p(θ | x0:T , y1:T ) ∝ p(θ)p(x0 | θ)
T∏
t=1

p(yt | xt, θ)p(xt | xt−1, θ) (3.16)

p(x0:T | y1:T , θ) ∝ p(x0 | θ)
T∏
t=1

p(yt | xt, θ)p(xt | xt−1, θ). (3.17)

From the conditional distributions, we construct the Gibbs Sampler. In each step

we simulate the parameter θ from the distribution in (3.16) and then simulate from

the distribution in (3.17) using the value of θ from the previous step. When the

conditional distributions cannot be directly simulated, the corresponding steps in the

Gibbs Sampler can be replaced by the Metropolis-Hastings algorithm, which is a

generalization of the Gibbs and the Metropolis algorithms [15, 29].

Algorithm 3.1 (Gibbs Sampler for the parameter).

1. θi1 ∼ p(θ1 | θi−1
2:nθ

, xi−1
0:T , y1:T )

2. θi2 ∼ p(θ2 | θi1, θi−1
3:nθ

, xi−1
0:T , y1:T )

... ...
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k. θik ∼ p(θk | θi1:k−1, θ
i−1
k+1:nθ

, xi−1
0:T , y1:T )

... ...

nθ − 1. θinθ−1 ∼ p(θk | θi1:nθ−2, θ
i−1
nθ
, xi−1

0:T , y1:T )

nθ. θ
i
nθ
∼ p(θnθ | θi1:nθ−1, x

i−1
0:T , y1:T )

Algorithm 3.2 (Gibbs Sampler for the hidden state).

0. xi0 ∼ p(x1 | xi−1
1:T , y1:T , θ

i)

1. xi1 ∼ p(xt | xi0, xi−1
2:T , y1:T , θ

i)

... ...

t. xit ∼ p(xt | xi0:t−1, x
i−1
t−1:T , y1:T , θ

i)

... ...

T-1. xiT−1 ∼ p(xT−1 | xi0:T−2, x
i−1
T , y1:T , θ

i)

T. xiT ∼ p(xT | xi0:T , y1:T , θ
i)

If we let x−t denote all the state vectors, except for the one at time t, i.e. x−t =

{x0, . . . , xt−1, xt+1, . . . , xT}, then we can write the distribution we sample from in the

Algorithm 3.2 as p(xt | x−t, y1:T , θ). Using an interplay of Bayes rule and the Markov

property, we can rewrite it using the proportionality

p(xt | x−t, y1:T , θ) ∝ p(xt+1 | xt, θ)p(yt | xt, θ)p(xt | xt−1, θ).

3.4 Importance Sampling Methods

Once we have a distribution f on a sample space X , a typical application is to sample

from it to approximate the expectation

E[h(X)] =

∫
X
h(x)f(x) dx, (3.18)
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for a given function h. However, it may not be optimal to directly sample from f

because, for example, the distribution f is difficult to sample from, or interesting

values of f are unlikely to show up in the samples. The principal alternative is

to use importance sampling, where we replace sampling from the distribution f

with sampling from a more productive distribution g [8, 14]. To approximate the

expectation (3.18) we generate samples x1, . . . , xm from a given distribution g and

calculate

E[h(X)] ≈ 1

m

m∑
j=1

f(xj)

g(xj)
h(xj). (3.19)

We can see this approximation from the alternate representation:

Ef [h(X)] =

∫
X
h(x)f(x) dx =

∫
X
h(x)

f(x)

g(x)
g(x) dx = Eg

[
h(X)

f(X)

g(X)

]
,

where Ef denotes the expectation with respect to the distribution f .

The challenge in importance sampling is the choice of the distribution g. Any

distribution can be used if it is appropriate for the expectation (3.18), but some

choices are better than others. Typically, we want to use a distribution where the

tails of g are heavier than the ones of f so that the ratio f
g

is bounded. We can

address this issue (bounded ratio) to yield a more stable estimator if we replace 1
m

by∑
j
f(xj)

g(xj)
. Then, we can estimate the expectation µ from

µ =

∫
X
h(x)f(x) dx

by the following algorithm:

Algorithm 3.3 (Importance Sampling).

1. Choose a distribution g

2. Sample x1, . . . , xm ∼ g

3. Calculate the importance weights wj =
f(xj)

g(xj)
, j = 1, . . . ,m
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4. Approximate µ by

µ̂ =
w1h(x1) + · · ·+ wmh(xm)

w1 + · · ·+ wm
.

3.4.1 Particle Filters

Particle filtering lies in the framework of Sequential Monte Carlo (SMC) approxima-

tion and their popularity is due to their flexibility in handling nonlinear, non-Gaussian

scenarios [8, 14, 18, 24].

Consider the state variables Xt evolving according to the model

Xt = gt(Xt−1) + ut, (3.20)

where ut is the driving noise and gt is a nonlinear function. Suppose we have noisy

observations Zt derived from the state variables via

Zt = ht(Xt) + ξt, (3.21)

where ht is a nonlinear function, and ξt, t = 1, . . . , K, are mutually independent

random variables.

Our goal is to obtain an estimate of a function of the state of the system, say

f(Xt), from the sequence of observations. The filtering problem is to approximate

the conditional expectation E[f(Xt) | {Zj}tj=1] or, equivalently, to compute the

conditional probability distribution p(Xt | Z1, . . . , Zt).

Because of the potential difficulty of sampling from the conditional distribution, we

use the sequential importance sampling (SIS) technique. Using an alternate density

q(Xt | Z1, . . . , Zt) which can be more easily sampled, and sampling N values from it,

we approximate the expectation by

E[f(Xt) | Z1, . . . Zt] ≈
1

N

N∑
n=1

f(Xn
t )
p(Xn

t | Z1, . . . , Zt)

q(Xn
t | Z1, . . . , Zt)

(3.22)
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or, by approximating N by

N∑
n=1

p(Xn
t | Z1, . . . , Zt)

q(Xn
t | Z1, . . . , Zt)

we have

E[f(Xt) | Z1, . . . Zt] ≈

(
N∑
n=1

f(Xn
t )
p(Xn

t | Z1, . . . , Zt)

q(Xn
t | Z1, . . . , Zt)

)/( N∑
n=1

p(Xn
t | Z1, . . . , Zt)

q(Xn
t | Z1, . . . , Zt)

)
.

The conditional probabilities are updated from the recursive relation

p(Xt | Z1, . . . , Zt) ∝ p(Zt | Xt)p(Xt | Z1, . . . , Zt−1),

where p(Zt | Xt) is the likelihood of the observation given the system’s state, and the

predictive prior p(Xt | Z1, . . . , Zt−1) is given by

∫
X
p(Xt | Xt−1)p(Xt−1 | Z1, . . . , Zt−1) dXt−1,

where p(Xt | Xt−1) is the Markov transition probability based on the stochastic

dynamics of the state system. For the Particle Filter, we use the predictive prior as

the alternative density, i.e.

q(Xt | Z1, . . . , Zt) = p(Xt | Z1, . . . , Zt−1).

Sampling from this density, we form the weights

wnt =
p(Zt | Xt)∑N
k=1 p(Zt | Xk

t )

and then we have the approximation

E[f(Xt) | Z1, . . . , Zt] ≈
N∑
n=1

wnt f(Xn
t ).
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In many applications, many of the samples generate negligible weights and therefore

do not contribute to the approximation [32]. One solution is to resample the weights

to create more copies of samples with significant weights.

Algorithm 3.4 (Particle Filter with resampling).

Given X i
t−1 for i = 1, . . . , N

1. Sample X i
t ∼ p(X i

t | X i
t−1)

2. Compute the weight through wit = p(Zt|Xt)∑N
k=1 p(Zt|Xk

t )

3. Repeat from Step 1.

4. Generate Ñ samples of U ∼ U(0, 1)

5. Set X̃j
t = X i

t if
∑j wit ≤ U i ≤

∑j+1wit

3.5 Kalman Filter

In this section, we focus on a method which is optimal when the dynamic and

the observation processes are linear and Gaussian [17, 35]. In this case, the model

dynamics are given by

Xt+1 = FtXt + Vt, (3.23)

where Vt is the normally distributed noise, i.e. Vt ∼ N(0, Qt). We also have an

observation vector Zt defined by

Zt = HXt +Wt, (3.24)

where H is a M×N matrix, with M < N , capturing the fact that not all components

of the state vector Xt may be part of the observation, and Wt is a zero-mean Gaussian

random vector with covariance matrix R.
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From equation (3.23), the Kalman Filter predictor gives the prior estimate

Xt+1|t = FtXt|t and that the potential error is measured by the covariance matrix

Pt+1|t = FtPt|tF
T
t +Qt. After extrapolating the state vector to time t+1, the prediction

will be updated by taking into account the actual observation Zt+1, giving the Kalman

Filter update

Xt+1|t+1 = Xt+1|t +K(Zt+1 −HXt+1|t), (3.25)

where the Kalman gain-matrix is given by

K = Pt+1|tH
T (HPt+1|tH

T +R)−1.

The error is measured by the covariance matrix Pt+1|t+1 = (I −KH)Pt+1|t.

The innovation St+1 = Zt+1 − HXt+1|t indicates the degree to which the actual

measurement Zt+1 differs from the predicted measurement HXt+1|t, and K determines

the degree to which the predicted state Xt+1|t should be corrected to reflect their

deviation. The resulting algorithm follows:

Algorithm 3.5 (Kalman Filter).

Given Xt|t and Pt|t

1. Compute Xt+1|t = FtXt|t

2. Compute Pt+1|t = FtPt|tF
T
t +Qt

3. Compute optimal K = Pt+1|tH
T (HPt+1|tH

T +R)−1

4. Update Xt+1|t+1 = Xt+1|t +K(Zt+1 −HXt+1|t)

5. Update Pt+1|t+1 = (I −KH)Pt+1|t

6. Repeat from Step 1. with t = t+ 1
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Chapter 4

Our Problem

4.1 Modeling Stock Prices and Stochastic

Volatilities

We focus now on a financial problem which has been widely studied and investigated.

In this thesis, we explore a stock price model enhanced with a pertinent volatility

model through filtering techniques. The stock price, say S, grows at a deterministic

rate, called the drift, r. The complexity of analyzing stock prices follows from

random movement, which may lead to unexpected spikes one sees in the market.

Since different stocks respond differently to market spikes, let σ represent the stock’s

volatility but can more practically be thought of as the risk of the stock. We consider

the stock prices model

dS = rSdt+ σSdW, (4.1)

where W represents the driving noise, in our case a Brownian motion. According to

equation (4.1), a low volatility implies the stock will behave nearly deterministically

according to the growth parameter r. On the other hand, a large volatility means the

stock price is likely to experience large spikes in pricing.
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In order to simulate stock prices, we first discretize equation (4.1) using a basic

Euler scheme [20]. Consider a given time discretization 0 = t0 < t1 < · · · < tn <

tN = T of the time interval [0, T ]

Stn+1 = Stn + rStn∆tn + σStn∆Wtn , (4.2)

where ∆Wtn ∼ N(0,∆tn), ∆tn = tn+1 − tn. For simplicity, we consider ∆tn = 1. We

simulate the stock prices, and show the resulting simulation below in Figure 4.1 with

two different volatilities.
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Figure 4.1: Simulated stock prices with low volatility σ2 = 0.1 (dashed line) and
high volatility (solid line) σ2 = 1 with growth rate, r = 0.05

Equation (4.1) assumes that the volatility, σ is time invariant; however, in practice,

volatility changes over time instead of remaining constant. Thus, we model the

volatility’s behavior via the following equation

log(σ2
t ) = ν + φlog(σ2

t−1) + ηw, (4.3)
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where the driving noise, w ∼ N(0, 1). We denote the hidden state variable xt =

log(σ2
t ), which we need to estimate. We also observe the relative change in stock

price yt, given by the observation model

yt = ext/2v, (4.4)

where the driving noise v is considered standard normal as well.

4.2 Application of Methods

Based on the discussion of filtering methods in Chapter 3, we attempt to estimate the

log-volatility given by equation (4.3) based on the observation model as described in

equation (4.4). Consider the following dynamic system

Initial distribution: X0 ∼ N(0, η2) (4.5)

Transition density: Xt | Xt−1 = xt−1 ∼ N(ν + φxt−1, η
2) (4.6)

Observation density: Yt | Xt = xt ∼ N(0, ext) (4.7)

We examine three different approaches to the stochastic log-volatility problem.

The volatility, which is updated through its own dynamic model, was estimated by

drawing inference from observerable changes in the stock price. In comparison to

many filtering problems, like those found in tracking, where the unknown appears in

the mean of the observation density, the volatility is related to the observable stock

price through the variance. Drawing inference on the variance of a random variable

only given one observation at each time step is a difficult task. Our methods, which

all build on this relationship, did not preform as well as one would hope as shown

later in the results (Section 4.3).
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4.2.1 Kalman Filter

In order to apply the Kalman Filter, we must first satisfy the assumption of linearity,

which is violated by the observation equation. We transform the observation equation

by squaring both sides before taking the natural logarithm

y∗t = log y2
t = xt + log v2, (4.8)

making the equation linear in form. Following the work of [19], we approximate the

distribution of log v2 where v ∼ N(0, 1) with a mixture of normal distributions.

log v2 ≈
∑

qiN(mi, s
2
i ) (4.9)

where the parameters used in equation (4.9) are defined in Table 4.1.

Table 4.1: Parameters for the Mixture of Normal Distributions defined in equation
(4.9)

i qi mi s2
i

1 0.00730 -10.12999 5.79596

2 0.10556 -3.97281 2.61369

3 0.00002 -8.56686 5.17950

4 0.04395 2.77786 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 -1.08819 1.26261

Below is given a pseudo-code for the Kalman Filter estimates.

Algorithm 4.1 (Kalman Filter).

1. Initialize x0|0 ∼ N(0, η2) with certainty P0|0 = η2

2. Compute xt|t−1 = ν + φxt−1|t−1
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3. Compute Pt|t−1 = φ2Pt−1|t−1 + η2

4. Randomly choose a normal distribution from mixture:

(a) Sample U ∼ U(0, 1)

(b) Select j by
∑j qi ≤ u ≤

∑j+1 qi

5. Compute K =
Pt|t−1

Pt|t−1+s2j

6. Update xt|t = xt|t−1 +K(yt − (mj + xt|t−1))

7. Update Pt|t = (1−K)2Pt|t−1 + (Ksj)
2

8. Repeat from Step 2. with t = t+ 1 until t = T

After applying the Kalman Filter, we provide the following numerical results.

Figure 4.2 shows the estimated log-volatility values in comparison to the true values.

The Kalman Filter does not match the dynamics perfectly. In fact, at times we see

extreme spikes in the Kalman Filter’s estimates in contrast to relatively small changes

in the true. Figure 4.3 displays a plot of the resulting absolute error. The error is

consistently around 2 and has very large spikes of over 5 error. Note that for this

problem, an error of 2 is also very large with respect to log-volatility with values near

2.

4.2.2 Gibbs Sampling

Next, we apply the Gibbs Sampling method to our problem. For our model the

parameter space is θ = (φ, ν, η2). In order to sample from the posterior distributions,

we first construct prior distributions for θ and x0, following the work of [6].

φ ∼ N(a, b2) (4.10)

ν ∼ N(c, d2) (4.11)
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Figure 4.2: Plot of True Log-volatility (solid) and estimates from Kalman Filter
(dashed) with parameters: ν = 0.1, φ = 0.9, η2 = 1, T = 100
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Figure 4.3: Plot of absolute difference in Kalman Filter estimates and true values
with parameters: ν = 0.1, φ = 0.9, η2 = 1, T = 100
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η2 ∼ IG(α, β) (4.12)

x0 ∼ N(0, η2) (4.13)

Using these priors one constructs the full conditional posterior distributions as

defined in Section 3.3 from which we will sample. The detailed calculations can be

found in [6]. The following is pseudo-code for generating Gibbs Sampling estimates:

Algorithm 4.2 (Gibbs Sampler).

[1.] First simulate φ

φi | θi−1, xi−1
0:T , y1:T ∼ N(ã, b̃2) (4.14)

b̃2 =

(
1

b2
+

1

η2i−1

∑
(xi−1

t−1)2

)−1

(4.15)

ã = b̃2

(
a

b2
+

1

η2i−1

∑
xi−1
t−1(xi−1

t − νi−1)

)
(4.16)

[2.] Next, sample ν

νi | θi−1, xi−1
0:T , y1:T ∼ N(c̃, d̃2) (4.17)

d̃2 =

(
1

d2
+

T

η2i−1

)−1

(4.18)

c̃ = d̃2

(
c

d2
+

1

η2i−1

∑
xi−1
t − φixi−1

t−1

)
(4.19)

[3.] The last parameter of interest is η2

(ηi)2 | θi, xi−1
0:T , y1:T ∼ IG(α̃, β̃) (4.20)

α̃ = α +
T + 1

2
(4.21)
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β̃ = β +
1

2

∑
(xi−1

t − νi − φixi−1
t−1)2 + (xi−1

0 )2 (4.22)

[4.] After updating our parameters, we compute the posterior for the hidden

variable xt

xit | θi, xi−1
−t , y1:T ∼ N(µ, σ2) (4.23)

σ2 =

(
1 + (φi)2

(ηi)2
+

1

2

)−1

(4.24)

µ = σ2((νi(1− φi) + φi(xit−1 + xi−1
t+1))(ηi)−2 + log yt) (4.25)

We next analyze the numerical results of the Gibbs Sampling. We first present the

results for the model parameter estimation in Table 4.2. The method produced very

accurate estimates for each of the parameters. As before, we plot the estimated log-

volatility values in comparison to the true values in Figure 4.4. We see a much better

fit from the Gibbs Sampling estimates in comparison to the Kalman Filter estimates.

They follow the random movement of the true values much more accurately; although,

there is an obvious issue of under approximation in this simulation. Figure 4.5 shows

the resulting absolute different between the true values and Gibbs Sampling estimates.

The errors are much lower than those from the Kalman Filter. Again we see a large

spike of error nearing 5, but unlike the Kalman Filter, there is only one spike of this

magnitude.

Table 4.2: Parameter estimation using Gibbs Sampling with N = 5000 samples

Parameter True Value Estimate
φ 0.9 0.9035
ν 0.1 0.0972
η2 1.0 1.0046
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Figure 4.4: Plot of True Log-volatility (solid) and estimates from Gibbs Sampling
(dashed) with parameters: ν = 0.1, φ = 0.9, η2 = 1, T = 100, N = 5000
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Figure 4.5: Plot of absolute difference in Gibbs Sampling estimates and true values
with parameters: ν = 0.1, φ = 0.9, η2 = 1, T = 100, N = 5000
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4.2.3 Particle Filtering

Lastly, we apply the Particle Filter as defined in Section 3.4.1. The dynamics model

and observation model provide the following densities:

Xt | xt−1 ∼ N(ν + φxt−1, η
2) (4.26)

Yt | xt ∼ N(0, ext). (4.27)

Taking our proposal density Q(Xt | Yt, Xt−1) to be the transition density P (Xt |

Xt−1), we have the following algorithm.

Algorithm 4.3 (Particle Filter).

1. Initialize N samples of X i
0 ∼ N(0, η2)

2. Sample X i
t ∼ N(ν + φxt−1, η

2), for i = 1, . . . , N

3. Compute the weights wit = wit−1p(yt | xit) using N(0, ext)

4. Resample X i
t based on the weights wit

(a) Sample U i ∼ U(0, 1), for i = 1, . . . , Ñ

(b) Set X̃j
t = X i

t if
∑j wit ≤ U i ≤

∑j+1wit

5. Set t = t+ 1 and repeat from Step 2.

6. Take the newly weighted average E(Xt | Yt) = 1
Ñ

∑
x̃it

Lastly, we analyze the estimates of the Particle Filter. Figure 4.6 shows the

estimated log-volatility values in comparison to the true values. The estimates do

a very poor job of approximating the true values. They have the opposite issue of

the Gibbs Sampling estimates, which under approximated, by over approximating the

true log-volatility from the beginning. In this simulation, the most accurate estimates

occur when log-volatility spikes upwards around t = 60, closing in on the much larger
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Particle Filter estimates. Figure 4.7 shows the resulting absolute error. As expected,

the errors are consistently large, with most ranging between 3 and 4. The only place

of decent estimates occurs around time t = 60 as mentioned above.
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Figure 4.6: Plot of True Log-volatility (solid) and estimates from Particle Filter
(dashed) with parameters: ν = 0.1, φ = 0.9, η2 = 1, T = 100, N = 5000

4.3 Comparison

With results from all three methods, we now can compare the estimates of each

method for log-volatility. The true values are randomly simulated beforehand using

equations (4.3) and (4.4). For a genuine comparison, we ensure that the algorithms

are run on the same randomly generated data. Due to the randomness incorporated

into the data, the results from each simulation can vary, making drawing definite

conclusions a difficult task. For instance, Kalman Filter may produce the best results

on one simulation but perform much worse then the others in another case. For

comparison, we look at the results for three independent simulations.
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Figure 4.7: Plot of absolute difference in Particle Filter estimates and true values
with parameters: ν = 0.1, φ = 0.9, η2 = 1, T = 100, N = 5000

In the first simulation, we compile the numerically results shown individually

before into Figure 4.8. Kalman Filter produces estimates that drastically spike above

and below the true values; while the Gibbs Sampling and Particle Filter consistently

under and over approximate the values respectively. For further comparison, Figure

4.9 shows the absolute error of the three methods. All three methods experienced

large error spikes of around magnitude 5 in estimating log-volatility, which typically

took on values less than 2. Despite the overall poor approximation by all three

methods, the Gibbs Sampling produced the most accurate estimates. We provide

various statistics on the errors in Table 4.3, which shows that the Gibbs Sampling

did in fact produce the most accurate estimates. Kalman Filter, despite the large

spikes, on average did the second best. As expected from the plots, the Particle

Filter performed the worst of the methods.

For the second simulation, Figure 4.10 shows the estimated log-volatility values in

comparison to the true values for the three methods. The estimates exhibit the same
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Figure 4.8: First simulation: Plot of true Log-volatility in comparison with all three
approaches with parameters: ν = 0.1, φ = 0.9, η2 = 1, T = 100, N = 5000

0 20 40 60 80 100

0
1

2
3

4
5

Time (Days)

A
bs

ol
ut

e 
E

rr
or

Kalman Filter
Gibbs Sampler
Particle Filter

Figure 4.9: First simulation: Plot of absolute difference in estimates and true values
with parameters: ν = 0.1, φ = 0.9, η2 = 1, T = 100, N = 5000
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Table 4.3: Comparison of Methods in First Simulation

Kalman Filter Gibbs Sampling Particle Filter
Average Error 1.7792 1.271655 2.514508

Max Error 5.347452 5.053752 5.335677
Min Error 0.01159551 0.0820308 0.09189744
Std Dev 1.31388 0.9515875 1.190669

issues as in the first simulation. The Kalman Filter goes to extreme in predicting

the random movement, resulting in large spikes. The Gibbs Sampling is much more

accurate; although it under approximates the true values. In contrast, the Particle

Filter over approximates the true log-volatility with very poor estimates. The errors

are shown in Figure 4.11. We see similar results to that of the first simulation, where

Gibbs Sampling appears to do the best, but all methods fail to precisely estimate

the log-volatility. In fact, for this simulation, the Particle Filter achieves an error

of magnitude 6. Again for comparison, we provide various statistics on the errors

in Table 4.4, which shows the same ranking of methods by average error. Gibbs

Sampling did the best, followed by the Kalman Filter, and lastly, the Particle Filter

did the worst. Furthermore, Gibbs Sampling did better on this simulation then the

one previous, and Particle Filter did significantly worst.

Table 4.4: Comparison of Methods in Second Simulation

Kalman Filter Gibbs Sampling Particle Filter
Average Error 1.861696 1.09255 3.2037

Max Error 5.1842 3.664468 6.253594
Min Error 0.03197209 0.03528706 0.0165376
Std Dev 1.355502 0.8520093 1.295717

In the final simulation we examined, Figure 4.12 shows the estimated log-volatility

values in comparison to the true values for the three methods. The numerical results

reflect what we have seen in previous simulations. A point of interest is the two

extreme downward spikes in estimates produced by both the Kalman Filter and Gibbs
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Figure 4.10: Second Simulation: Plot of True Log-volatility in comparison with
estimates from each of the three approaches with parameters: ν = 0.1, φ = 0.9,
η2 = 1, T = 100, N = 5000
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Figure 4.11: Second Simulation: Plot of absolute difference in estimates and true
values with parameters: ν = 0.1, φ = 0.9, η2 = 1, T = 100, N = 5000
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Sampler. Likely both methods responded similarly to a misleading observation. We

see the affect this had on error in Figure 4.13. As expected, we see the largest error of

the three simulations of over 7. Besides this spike, the errors are consistent with the

previous simulations. Table 4.5 provides the usual statistics on error, which closely

resemble the previous numerical results.
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Figure 4.12: Third Simulation: Plot of True Log-volatility in comparison with all
three approaches with parameters: ν = 0.1, φ = 0.9, η2 = 1, T = 100, N = 5000

Table 4.5: Comparison of Methods in Third Simulation

Kalman Filter Gibbs Sampling Particle Filter
Average Error 1.698134 1.36461 2.862675

Max Error 7.670616 5.752662 6.141474
Min Error 0.02012137 0.001656477 0.1669187
Std Dev 1.32381 1.049757 1.259345

Lastly, we ran 50 independent simulations and compiled the error statistics in

Table 4.6.

In conclusion, none of the methods was able to accurately estimate log-volatility;

although Gibbs Sampling came the closest. The Kalman Filter is proven to be the best
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Figure 4.13: Third Simulation: Plot of absolute difference in estimates and true
values with parameters: ν = 0.1, φ = 0.9, η2 = 1, T = 100, N = 5000

Table 4.6: Comparison of Methods Over All Simulations

Kalman Filter Gibbs Sampling Particle Filter
Average Error 1.79465 1.308611 2.79216

Max Error 11.1679 7.6599 8.8153
Min Error 0.0002 0.0001 0.0003
Std Dev 1.2944 0.9871 1.4226

method when dealing with linear models with Gaussian noise. Although we linearized

our observation equation, it came at the cost of approximating the newly transformed

noise. The optimality of the Kalman Filter kept the results competitive with that

of the Gibbs Sampler, but did not outperform it due to the error added from this

approximation. The Gibbs Sampler uses a full conditional distribution for sampling.

The power of using a range of estimates over time generated more information to

predict the stock’s variance. The method also accurately estimated the unknown

parameters of the model. Lastly, the Particle Filter relies on the observation density

for weighing the more likely particles. One would hope to see a correlation between
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the accuracy of an estimate and the size of the weight; however, this was not the

case for our problem. In conclusion, the Particle Filter did the worse of the three

methods in estimating the volatility, while Gibbs Sampling performed the best. This

conclusion comes from looking across several simulations both individually and in

total. Despite Gibbs Sampling producing the most accurate estimates of the three

methods, an average error of around 1 is still significant when the true values often

take small values in the range of -2 to 2. Therefore, further investigation on the topic

should take place.
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