
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

8-2003

The Development and Verification of Three Matlab
Analysis Applications Programmed Specifically for
Engage Team Projects.
Jonathan W. Huber
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Huber, Jonathan W., "The Development and Verification of Three Matlab Analysis Applications Programmed Specifically for Engage
Team Projects.. " Master's Thesis, University of Tennessee, 2003.
https://trace.tennessee.edu/utk_gradthes/2015

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a thesis written by Jonathan W. Huber entitled "The Development and
Verification of Three Matlab Analysis Applications Programmed Specifically for Engage Team Projects.."
I have examined the final electronic copy of this thesis for form and content and recommend that it be
accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in
Engineering Science.

Christopher Pionke, Major Professor

We have read this thesis and recommend its acceptance:

J. Roger Parsons, Jaime Elaine Seat

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council: 
 
I am submitting the enclosed thesis written by Jonathan W. Huber entitled “The 
Development and Verification of Three Matlab Analysis Applications Programmed 
Specifically for Engage Team Projects.” I have examined the final electronic copy of 
this thesis for form and content and recommend that it be accepted in partial 
fulfillment of the requirements for the degree of Master of Science, with a major in 
Engineering Science. 
 
 

Christopher Pionke 
______________________________ 
Christopher Pionke, Major Professor 

 
 

We have read this thesis and 
recommend its acceptance: 
 
 
J. Roger Parsons 
_______________________________ 
 
Jaime Elaine Seat 
_______________________________ 
 
 
 

Acceptance for the Council: 
 

Anne Mayhew 
_______________________________ 

 
 

Vice Provost and Dean of 
Graduate Studies 

 
 

 
 
 
 
 

(Original signatures are on file with official student records.) 



The Development and Verification of Three Matlab Analysis Applications 

Programmed Specifically for Engage Team Projects 

 

 

 

A Thesis 

Presented for the 

Master of Science Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

 

 

 

Jonathan W.  Huber 

August 2003 

315 
 

 



Abstract 

This thesis outlines the development of three analysis applications for use in the 

freshmen Engineering Fundamentals Program (engage) at the University of Tennessee.  

Engage teaches freshmen engineering mechanics concepts through a set of integrated 

components including Lecture, Analysis and Skills, Problem Session, Physical 

Homework, and Team Projects.   

Presently, the students have limited access to any software analysis tools to aid 

the design process.  The students have little experience writing the types of complex 

programs needed to analyze a particular project.  Even more, they do not have the time.  

The applications provide a means for the students to perform an accurate analysis on their 

designs within the timeframe of the project deadlines. 

 The contents of this thesis outline the statics and dynamics team projects, a 

comparison of existing applications that model similar problems, an explanation of why 

Matlab was chosen as the programming language, a description of each application’s 

features, verification problems, and application walkthrough tutorials. 

  

 

 

316 
 

ii



Contents 

Chapter 1 - Introduction .................................................................................................. 1 

1.1 Background............................................................................................................... 1 

1.1.1  Engage’s needs and requirements for pre-assembled applications................... 3 

1.2 Team Projects............................................................................................................ 5 

1.2.1 Statics Projects ................................................................................................... 5 

1.2.2 Dynamics Projects ............................................................................................. 7 

1.3 Review of Similar Applications.............................................................................. 10 

1.3.1 Truss solvers .................................................................................................... 10 

1.3.3 Summary of existing analysis applications...................................................... 15 

1.4 Application Objectives............................................................................................ 15 

1.4.1 Objectives for all applications ......................................................................... 16 

1.4.2 Objectives for the statics application ............................................................... 16 

1.4.3 Objectives for the two dynamics applications ................................................. 17 

1.5 Thesis Objectives .................................................................................................... 18 

 

Chapter 2 - Development................................................................................................ 19 

2.1 Application Details ................................................................................................. 19 

2.1.1 Truss Analysis.................................................................................................. 19 

2.1.1.1 Creating 2D and 3D capabilities in the same application ......................... 24 

2.1.1.2 Error checking on for 2D and 3D models................................................. 25 

1.3.2 Projectile motion.............................................................................................. 13 

317 
 

iii



2.1.2 Projectile Motion ............................................................................................. 26 

2.1.2.1 Ramp and Spring Energy Dynamics Launch Velocity Calculation.......... 27 

2.1.2.2 Swing Energy Dynamics Launch Velocity Calculation ........................... 29 

2.1.2.3 Projectile Motion Calculations from Launch Velocity............................. 30 

2.2.2.4 Modifying Plots ........................................................................................ 31 

2.2 Deciding to use Matlab ........................................................................................... 31 

2.3 Help Files ................................................................................................................ 33 

 

Chapter 3 - Application Features .................................................................................. 35 

3.1 Truss Analysis Application..................................................................................... 35 

3.1.1 Toolbar Menu................................................................................................... 37 

3.1.2 Feature Menu ................................................................................................... 41 

3.1.4 Enter Values Menu .......................................................................................... 43 

................................................................................................. 44 

........................................................................................................ 45 

3.1.7 Draw Area........................................................................................................ 47 

3.1.8 View Display Menu ......................................................................................... 47 

3.1.9 Help File........................................................................................................... 48 

3.1.10 Internal Error Checking ................................................................................. 49 

3.2 Ramp Launched Projectile Motion Application ..................................................... 51 

3.2.1 Toolbar............................................................................................................. 53 

3.1.3 Modify Menu ................................................................................................... 42 

3.1.5 Analysis Menu

3.1.6 Axis Menu

318 
 

iv



319 
 

3.2.2 Time Increment Menu...................................................................................... 55 

3.2.3 Ramp Energy Menu ......................................................................................... 55 

3.2.3.1 Angle calculations..................................................................................... 57 

3.2.3.2 Initial velocity up a ramp .......................................................................... 58 

3.2.3.3 Initial velocity down a ramp ..................................................................... 60 

3.2.3.4 Simple Initial Velocity Launch................................................................. 62 

3.2.4 Launch Energy Menu....................................................................................... 62 

3.2.5 Aim for Target Menu....................................................................................... 65 

3.2.6 Specify Launch Angle Menu ........................................................................... 65 

3.2.7 Drag Menu ....................................................................................................... 67 

3.2.8 Output to Figure............................................................................................... 67 

3.2.9 Analysis Button................................................................................................ 69 

3.2.10 Help File......................................................................................................... 71 

3.3 Swinging Projectile Application ............................................................................. 72 

3.3.1 Toolbar............................................................................................................. 73 

3.3.2 Properties Menu............................................................................................... 77 

3.3.3 Swing Energy Menu ........................................................................................ 77 

3.3.4 Aim for Target Menu....................................................................................... 79 

3.3.5 Drag Menu ....................................................................................................... 79 

3.3.6 Output to Figure............................................................................................... 81 

3.3.7 Analysis Button................................................................................................ 82 

3.3.8 Help File........................................................................................................... 84 

v



320 
 

Chapter 4 - Verification and Tutorials ......................................................................... 85 

4.1 Truss Solver Application Verification .................................................................... 86 

4.1.1 Hibbeler Example 6-1 ...................................................................................... 86 

4.1.1.1 Specify and Number Model Information.................................................. 87 

4.1.1.2 Enter Joint Information ............................................................................. 88 

4.1.1.3 Enter Member Data................................................................................... 90 

4.1.1.4 Enter Constraint Data................................................................................ 91 

4.1.1.5 Enter Force Data ....................................................................................... 93 

4.1.1.6 Analyze ..................................................................................................... 94 

4.1.1.7 View Results ............................................................................................. 94 

4.1.2 Hibbeler Example 6-2 ...................................................................................... 96 

4.1.3 Hibbeler Homework 6-30 / 6-31.................................................................... 100 

4.1.4 Hibbeler Homework 6-62 / 6-63.................................................................... 105 

4.2 Ramp Dynamics Verification Problems ............................................................... 110 

4.2.1 Hibbeler Homework 14-28 ............................................................................ 111 

4.2.2 Hibbeler Example 14-4 .................................................................................. 115 

4.2.3 Hibbeler Homework 12-86 ............................................................................ 119 

4.2.4 Boresi / Schmidt Example 14-7, Drag Verification....................................... 126 

4.3 Swing Energy Application Verification................................................................ 130 

4.3.1 Homework 14-31 ........................................................................................... 131 

 

Chapter 5 - Conclusions and Recommendations ....................................................... 134 

vi



5.1 Conclusions........................................................................................................... 134 

5.2 Recommendations................................................................................................. 135 

5.2.1 Truss Solver Application Modifications........................................................ 135 

5.2.2 Projectile Motion Application Modifications ................................................ 135 

5.2.3 Implementation Suggestions.......................................................................... 136 

 

References ……………………………………………………………………………. 137 

Appendices ………………………………………...…………………………………. 140 

A   EF 102 Spring 2003 Calendar and Team Projects ………………………..…… 141 

B    Application Code ………………………………………………………………... 161 

      B.1    2D / 3D truss solver code ……………………………………………..……. 161 

      B.2    Ramp and Spring Energy Dynamics code ……………………..…………… 248 

      B.3    Swing Energy Dynamics code …………………………………..…………. 281 

Vita ……………...………………………...……………………..…………………… 314 

321 
 

vii



List of Tables 

Table 1.1.  Engage Class Descriptions ............................................................................... 2 

 

Table 2.1  Simple and Complex Drag Calculations.......................................................... 31 

 

Table 4.1  Hibbeler Example 6-1 Joint Information ......................................................... 87 

Table 4.2  Hibbeler Example 6-1 Member Information ................................................... 87 

Table 4.3  Hibbeler Example 6-1 Constraint Information ................................................ 88 

Table 4.4  Hibbeler Example 6-1 Force Information........................................................ 88 

Table 4.5  Hibbeler Example 6-1 Reaction Forces ........................................................... 96 

Table 4.6  Hibbeler Example 6-2 Joint Information ......................................................... 97 

Table 4.7  Hibbeler Example 6-2 Member Information ................................................... 97 

Table 4.8  Hibbeler Example 6-2 Constraint Information ................................................ 98 

Table 4.9  Hibbeler Example 6-2 Force Information........................................................ 98 

Table 4.10 Hibbeler Example 6-2 Analysis Results ......................................................... 99 

Table 4.11  Hibbeler Homework 6-30 / 6-31 Joint Information..................................... 101 

Table 4.12 Hibbeler Homework 6-30 / 6-31 Member Information ................................ 102 

Table 4.13 Hibbeler Homework 6-30 / 6-31 Constraint Information............................. 102 

Table 4.14 Hibbeler Homework 6-30 / 6-31 Force Information .................................... 102 

Table 4.15  Hibbeler Homework 6-30 / 6-31 Results..................................................... 104 

106 

Table 4.17 Hibbeler Homework 6-62 / 6-63 Member Information ................................ 107 

Table 4.16  Hibbeler Homework 6-62 / 6-63 Joint Information.....................................

322 
 

viii



Table 4.18  Hibbeler Homework 6-62 / 6-63 Constraint Information............................ 107 

Table 4.21 Ramp Energy Application Data.................................................................... 112 

Table 4.22  Hibbeler homework 14-28 Time Increment Output .................................... 114 

Table 4.23 Ramp Energy Application Output ................................................................ 115 

Table 4.24  Hibbeler Example 14-4 data entered into application ................................. 116 

Table 4.25 Hibbeler Example 14-4 application results................................................... 118 

Table 4.26  Hibbeler Homework 12-86 data entered into application............................ 120 

Table 4.27 Hibbeler Homework 12-86 Time Increment and Angle Precision Results .. 125 

Table 4.28  Boresi / Schmidt Example 14-7 data entered into application..................... 127 

Table 4.29  Boresi / Schmidt Example 14-7 Results ...................................................... 129 

Table 4.30  Boreshi / Schmidt Example 14-7 Application, Excel, and Text Answer .... 130 

Table 4.31  Homework 14-31 data for application ......................................................... 132 

Table 4.32  Hibbeler Homework 14-31 application results............................................ 133 

Table 4.19  Hibbeler Homework 6-62 / 6-63 Force Information ................................... 107 

Table 4.20  Hibbeler Homework 6-62 / 6-63 Results..................................................... 110 

 

323 
 

 

ix



List of Figures 

Figure 1.1  Typical Truss Project........................................................................................ 5 

Figure 1.2 Top View of Testing Area................................................................................. 8 

Figure 1.3.  Dynamics Team Project Timing Mechanism (left) and Launcher (right) ....... 8 

Figure 1.4.  Dynamic Team Project Top View................................................................... 8 

Figure 1.5.  University of Minnesota 2D Truss Solver..................................................... 11 

Figure 1.6  West Point Bridge Designer ........................................................................... 12 

Figure 1.7.  Web-based Projectile Motion Application .................................................... 14 

Figure 1.8.  Excel Based Projectile Motion User Input .................................................... 14 

14 

 

Figure 2.1  Basic truss and forces at each joint................................................................. 21 

Figure 2.2 Arranged unknowns of the basic truss............................................................. 21 

Figure 2.3  Basic truss arranged into [A]{x} + {b} = {0}................................................ 23 

Figure 2.4 Basic truss results ............................................................................................ 23 

Figure 2.5  Ramp and Spring Energy Typical Analyses................................................... 28 

Figure 2.6  Swing Energy Description.............................................................................. 29 

 

Figure 3.1 Engage Truss Solver........................................................................................ 36 

Figure 3.2 Truss Solver Toolbar ....................................................................................... 37 

Figure 3.3  Truss Solver, File Menu ................................................................................. 37 

Figure 3.4  Truss Solver, View Menu............................................................................... 38 

Figure 1.9.  Excel Based Projectile Motion Data Plots.....................................................

324 
 

x



Figure 3.5  Truss Solver, Display Menu........................................................................... 38 

Figure 3.6  Truss Solver, Error Checking Menu............................................................... 40 

Figure 3.7  Truss Solver, Help Menu................................................................................ 40 

Figure 3.8  Truss Solver, Feature Menu ........................................................................... 41 

Figure 3.9  Feature, Modify, and Enter Values Menus..................................................... 41 

Figure 3.10  Truss Solver, Modify Menu ......................................................................... 43 

Figure 3.13  Truss Solver, Model Details Menu............................................................... 45 

Figure 3.14  Truss Solver, Axis Menu.............................................................................. 46 

Figure 3.15  Full Truss (left) and Zoomed View (right)................................................... 46 

Figure 3.16 Truss Solver, Draw Area ............................................................................... 47 

Figure 3.17  Truss Solver, View Menu Output................................................................. 47 

Figure 3.18  Truss Solver, Help File................................................................................. 48 

Figure 3.19  Truss Solver, Non-numeric Value Error ...................................................... 50 

Figure 3.20  Truss Solver, Duplicate Entry Error............................................................. 50 

Figure 3.21  Truss Solver, Non-existing Entry Error........................................................ 51 

Figure 3.22  Ramp and Spring Launching Application .................................................... 52 

Figure 3.23  Ramp and Spring Launching Application, Toolbar ..................................... 53 

Figure 3.24 Ramp and Spring Launching Application, Display Menu ............................ 54 

Figure 3.25  Ramp and Spring Launching Application, Sample Output .......................... 54 

Figure 3.26 Ramp and Spring Launching Application, Unit Selection Menu.................. 55 

Figure 3.11  Truss Solver, Enter Values Menu................................................................. 43 

325 
 

Figure 3.12  Truss Solver Analysis Menu ........................................................................ 44 

xi



Figure 3.27  Ramp and Spring Launching Application,  Unit Display............................. 56 

Figure 3.28  Ramp and Spring Launching Application, 0.5s Time Increment................. 56 

Figure 3.29  Ramp and Spring Launching Application, 0.1s Time Increment................. 57 

Figure 3.30  An upward ramp and positive dy value ........................................................ 58 

Figure 3.31  A downward ramp and negative dy value .................................................... 58 

Figure 3.32  Ramp and Spring Launching Application, Ramp Upward........................... 59 

Figure 3.33  Ramp and Spring Launching Application, Ramp Upward Results.............. 60 

Figure 3.34  Ramp and Spring Launching Application, Ramp Downward...................... 61 

Figure 3.35  Ramp and Spring Launching Application, Specified angle (left) and Ramp 

Downward Results (right)......................................................................................... 61 

Figure 3.36  Ramp and Spring Launching Application, Simple Velocity Analysis ......... 62 

Figure 3.37  Ramp and Spring Launching Application, Simple Velocity Results ........... 63 

Figure 3.38  Ramp and Spring Launching Application, Launch Energy Menu ............... 63 

Figure 3.39  Ramp and Spring Launching Application, Combination Launch Output .... 64 

Figure 3.40  Ramp and Spring Launching Application, Spring Launch Output .............. 64 

Figure 3.41  Ramp and Spring Launching Application, Target Menu ............................. 65 

Figure 3.42  Ramp and Spring Launching Application, With  (left) and Without (right) 

Target Menu.............................................................................................................. 66 

66 

Figure 3.44 Ramp and Spring Launching Application, With (left) and Without (right) 

Specific Launch Angle.............................................................................................. 66 

Figure 3.45  Ramp and Spring Launching Application,  Drag Menu............................... 67 

Figure 3.43  Ramp and Spring Launching Application, Specific Launch Angle Menu...

326 
 

xii



Figure 3.46  Ramp and Spring Launching Application, Figure Output............................ 68 

Figure 3.49  Ramp and Spring Launching Application, Analyze Output......................... 70 

Figure 3.50  Ramp and Spring Launching Application, Help File ................................... 71 

Figure 3.51 Swing Launching Application....................................................................... 73 

Figure 3.52  Swing Launching Application, Toolbar ....................................................... 74 

Figure 3.53  Swing Launching Application, Display Menu ............................................. 74 

Figure 3.54  Swing Launching Application, Output......................................................... 75 

Figure 3.55 Swing Launching Application, Units Selection Menu.................................. 75 

Figure 3.56 Swing Launching Application, Units Display............................................... 76 

Figure 3.57  Swing Launching Application, Properties Menu ......................................... 77 

Figure 3.60  Swing Launching Application, Aim for Target Menu ................................. 79 

Figure 3.61  Swing Launching Application, With  (left) and Without (right) Target Menu

................................................................................................................................... 80 

Figure 3.62  Swing Launching Application, Drag Menu.................................................. 80 

Figure 3.63  Swing Launching Application, Figure Output ............................................. 81 

Figure 3.64  Swing Launching Application, Data Output ................................................ 82 

Figure 3.65  Swing Launching Application, Analyze Button........................................... 83 

Figure 3.66  Swing Launching Application, Analysis Output.......................................... 83 

Figure 3.47  Ramp and Spring Launching Application, Data Output .............................. 68 

Figure 3.48  Ramp and Spring Launching Application, Analyze Button......................... 69 

Figure 3.58  Swing Launching Application, Swing Energy Menu................................... 78 

327 
 

Figure 3.59  Swing Launching Application, User Input................................................... 78 

xiii



Figure 3.67  Swing Launching Application, Help File..................................................... 84 

 

Figure 4.1  Hibbeler Example 6-1..................................................................................... 86 

Figure 4.2  Adding joint 1 to the model............................................................................ 89 

Figure 4.3  Results of adding joint 2 (left) and joint 3 (right) to the model ..................... 89 

Figure 4.4  Steps to adding member 1 to the model ......................................................... 90 

Figure 4.5 Results of adding member 2 (left) and member 3 (right) to the model........... 91 

Figure 4.6  Steps to adding a new constraint .................................................................... 92 

Figure 4.7  Results of adding all model constraints.......................................................... 92 

Figure 4.8  Steps to adding a new force............................................................................ 93 

Figure 4.9  Example 6-1 complete model......................................................................... 95 

Figure 4.10  Example 6-1 analysis.................................................................................... 95 

Figure 4.11 Hibbeler Example 6-2.................................................................................... 97 

........................................... 98 

Figure 4.13  Hibbeler Example 6-2 Analysis Results....................................................... 99 

......................... 103 

Figure 4.16  Hibbeler Homework 6-30 / 6-31 analysis results ....................................... 103 

......................... 108 

........................................ 109 

Figure 4.20  Figure for Hibbeler homework 14-28......................................................... 112 

Figure 4.12  Hibbeler Example 6-2 entered into truss solver

Figure 4.14  Figure for Hibbeler homework problems 6-30 and 6-31............................ 100 

Figure 4.15  Hibbeler Homework 6-30 / 6-31 entered into truss solver

Figure 4.17  Figure for Hibbeler homework problems 6-62 and 6-63............................ 106 

Figure 4.18  Hibbeler Homework 6-62 / 6-63 entered into truss solver

Figure 4.19 Hibbeler Homework 6-62 / 6-63 analysis results

328 
 

xiv



329 
 

Figure 4.21  Ramp angle CCW from the x-axis ............................................................. 113 

Figure 4.22  Hibbeler homework 14-28 data into Ramp Energy Menu ......................... 114 

Figure 4.23  Application results for Hibbeler homework 14-28..................................... 114 

Figure 4.24  Hibbeler Example 14-4, Platform, unloaded (left) and loaded (right) ....... 116 

Figure 4.25  Hibbeler Example 14-4 Time Increment, Ramp Energy, and Spring Energy 

Menu Settings ......................................................................................................... 117 

Figure 4.26  Hibbeler Example 14-4 application results ................................................ 118 

Figure 4.27  Hibbeler Homework 12-86 Figure ............................................................. 120 

Figure 4.28  Possible launch angles CCW from x-axis .................................................. 122 

Figure 4.29  Hibbeler Homework 12-86 “Low Arc” solution ........................................ 122 

Figure 4.30  Hibbeler Homework 12-86 “High Arc” solution ....................................... 123 

Figure 4.31  Hibbeler Homework 12-86 “High Arc” solution focused on target........... 123 

Figure 4.32 Hibbeler Homework 12-86 “High Arc” solution, with increased launch angle 

precision.................................................................................................................. 124 

Figure 4.33 Hibbeler Homework 12-86 Direct Path missing target ............................... 126 

Figure 4.34  Boresi / Schmidt Example 14-7 Figure ...................................................... 127 

Figure 4.35 Boresci / Schmidt Drag Example 14-7 User Entry ..................................... 128 

Figure 4.36  Boresi / Schmidt Example 14-7 Output...................................................... 129 

Figure 4.37  Hibbeler Homework 14-31 Figure ............................................................. 132 

Figure 4.38  Data for Hibbeler Homework 14-31........................................................... 133 

Figure 4.39  Hibbeler Homework 14-31 application results........................................... 133 

 

xv



Chapter 1 - Introduction 

The Engineering Fundamentals Program at the University of Tennessee, known as 

the engage program, requires a package of analysis applications..  Three applications 

make up the package; a 2D and 3D truss analysis package and two specialized projectile 

motion packages.  Each application corresponds to an engage team project, utilizes 

Matlab as a programming language, uses a graphical user interface, and includes 

complete help files and tutorials. 

 

1.1 Background 

The engage freshmen-engineering program at the University of Tennessee 

consists of two six-hour classes, EF 101 and EF 102, taught over the Fall and Spring 

semesters, respectively.  The engage curriculum covers material in basic physics, statics, 

dynamics, computer programming, laboratory experiments, and team projects in an 

integrated manner [1].   

Each semester is divided into a series of Modules.  A Module is a packet of 

individual components with common topical themes including a general Lecture, 

Analysis and Skills, Problem Session, Physical Homework, and Team Project Time.  The 

Modules are usually two to three weeks in length.  A component breakdown of engage is 

shown in Table 1.1.  Each component within EF 101 and EF 102 contributes to a 

different portion of the students’ education.  The course outline for Fall and Spring 2003, 

including the descriptions of all the student project assignments, is shown in Appendix A.   

1 
 



Table 1.1.  Engage Class Descriptions 

Engage 
Component 

Description 
 

Lecture Introduces the mechanics concepts, formulas, and 
general background for a particular topic. 

Analysis and 
Skills / 
Problem Session 

Drafting, CAD, and computer programming during 
the Fall. 
 
Statics and dynamics with some computer 
programming in the Spring. 

Physical 
Homework 

Student laboratory of the mechanics concepts 
taught in Lecture. 

Team Project 
Time 

Students divide into teams and then design and 
build projects to perform a specified task.  Usually, 
two or three team projects a semester. 

 

The Lectures take place in an auditorium and occurs three times a week.  In the 

Lectures, the students are taught the mechanics concepts for the Module.    The Analysis 

and Skills sessions teach concepts in drafting, computer drafting, and computer 

programming.  The Problem Sessions are mainly for the students to solve practice 

problems selected from the textbooks, which correspond to the current Module and are 

directly related to the Lecture.  Physical Homework Sessions are hands-on laboratory 

experiments that reinforce the concepts taught in Lecture.  The Team Project Time 

divides a thirty-student class into teams of five students to develop teaming, 

communication, and design skills.  Generally, team projects span multiple Modules and 

reinforce the concepts taught in Lecture.   

Engage organizes and integrates each of the students’ activities.  The integration can 

be as simple as introducing the concept of a coordinate system in General Lecture and 

then reinforcing that concept as a drafting tool in Analysis and Skills, or as complex as 

2 
 



learning the mathematical technique to solve 2D truss problems, then writing a Matlab 

[2] program to solve more complicated 2D truss problems, performing related 

experiments in Physical Homework attempting to determine and measure the member 

forces in a small truss, and all the while building a complex 3D bridge for a team project. 

 

1.1.1  Engage’s needs and requirements for pre-assembled applications  

 In Analysis and Skills, the students learn programming skills using Matlab as a 

language.  The Matlab programs are designed to answer simple homework problems.  

Near the end of the EF 101 and during EF 102, the assigned Matlab problems are more 

advanced and are often related to the team projects.  With some modifications to their 

code from the assignment, the students can perform the analysis for their team project.  

However, due to time restrictions, the students don’t always have an opportunity to make 

the necessary modifications to their code, analyze their design, implement any changes, 

and finish their projects by the deadline.  When the code is ready to analyze their model, 

the current project is completed and they start a new project.  

This thesis outlines the development of three Matlab applications to aid students’ 

analyses of the engage team projects.  To help the students use each application, 

comprehensive help files and tutorials are included.  The applications include error 

checking to monitor the validity of the user inputs.  Also, they are each in a window 

based Graphical User Interface (GUI) to make them more user-friendly.   

At present, in EF 102, students are required to design projects to perform 

specified tasks, such as building a bridge (statics) or launching a projectile towards a 

3 
 



target (dynamics).  The projects are helpful in the students’ understanding of the 

mechanics concepts associated with the design issues being taught in the Module, but the 

students have limited options when attempting to analyze their design before the 

completion of the project. 

With a prepared package of applications, the students will have time to analyze 

their design and make any necessary changes to their project.  The applications reinforce 

the notion of tool usage, in particular, Matlab, to complete a specific step in the problem 

solving process. 

Additionally, the applications may improve the morale surrounding Matlab 

assignments.  As part of teaching Matlab, the students are taught to write organized, 

generic, and commented code for the “mysterious random user”.  When they use the 

applications for the first time, the students take on the role of that “random user”.   From 

this perspective, the students learn why it is important to write organized, generic, and 

commented code.  Also, they will the benefit from the help files, tutorials, and error 

checking supplied for the bungling “mysterious random user”. 

More importantly, the students interact with the versatility of Matlab.  While the 

students are learning the programming language, they don’t comprehend a complete 

picture of its capabilities.  The classroom examples are limited because of time. Also, the 

examples are meant to discuss a particular set of features.  With these analysis 

applications, the students use Matlab to quickly and easily solve complex problems.  

Furthermore, the students recognize the usefulness of the computer solutions and the 

effectiveness of Matlab as a programming language to solve an analytical problem.  

4 
 



1.2 Team Projects 

Engage has a variety of team projects for the students.  The design projects are 

divided into two basic categories, statics and dynamics.  Appendix A provides examples 

of project descriptions from EF 102 in the 2003 Spring semester. 

 

1.2.1 Statics Projects 

For the statics projects in EF 102, the students usually need to build a bridge, 

which (hopefully) withstands a specified load.  Typically, the bridge must span a distance 

of roughly eight feet with the builders standing on the bridge to supply the load.  A 

typical student built truss is shown in Figure 1.1. 

 

 

Figure 1.1  Typical Truss Project 

 

5 
 



As a project restriction, the students are only allowed to perform testing on 

individual truss members and never the entire truss.  This requirement places a premium 

on the ability to calculate the member forces in their entire design.  The combination of 

member testing and 3D analysis in the provided thesis statics application will provide 

feedback as to where the load is greater than the member is expected to carry for the 

design.   

The students are taught the method of joints to solve for member and reaction 

forces through a series of lectures in Modules 1 and 2 during EF 102.  After the lectures, 

the students have been introduced to the theory, but they do not understand the material 

to the degree to convert their knowledge into working code to solve the member and 

reaction forces in their design.  Also, they don’t have the time to write a complete 3D 

truss solver.  

At present, the students have access to a simple 2D truss solving Matlab code and 

instructions of how the code operates, but it requires the model information to be hard 

coded into variables.  This method is an effective way to apply method of joints for 

simple trusses, but it isn’t efficient for larger models.  The code does not use a GUI and 

has a sharp learning curve because of the complex data entry methods. 

The visual interface provides an interactive means of data entry.  The students still 

need to know the coordinates of the joints, member connectivity, applied forces, and 

constraints for the design.  With the proposed application, the model is built as a visual 

object, instead of a listing of hard coded variables.  The truss solver application will 

provide a GUI for the numerical analysis.   

6 
 



The visual, user-friendly environment will lower the learning curve associated 

with the standard hard coded function.  With an intuitive, visual application, the students 

who usually avoid Matlab are capable of performing an analysis.  Optimistically, the 

students apply the analysis into their design and begin to understand the method of joints 

mechanics concepts. 

 

1.2.2 Dynamics Projects 

As mentioned in a previous section, each of the projects corresponds to a 

particular set of dynamics Modules.  The following is a sample team project caller Critter 

Conker that spans EF 102 Modules 3-5.  A detailed project description is listed in 

Appendix A. 

The students are required to design a projectile (paintball) launcher to hit a 

moving target.  As shown in Figure 1.2, the projectile must be launched over a barrier 

precisely at the correct moment to hit the critter moving along a transverse path.  The 

students are informed on test day which particular path the critter will follow.  They have 

a specified time limit to make the necessary changes to their launcher. 

One team’s launcher is shown in Figures 1.3 and 1.4.  This design consists of a 

marble moving down a series of ramps, a trigger mechanism, and a rubber band launcher.  

The ramp acts as a timing mechanism to delay the marble hitting the triggering device.  

With a bit of luck, the projectile lands at the intended location and time as the moving 

critter crosses the centerline. 

 

7 
 



 

Figure 1.2 Top View of Testing Area 

 

Figure 1.3.  Dynamics Team Project Timing Mechanism (left) and Launcher (right) 

 

 

Figure 1.4.  Dynamic Team Project Top View 

8 
 



This project requires the students to design for two steps.  First, they need to 

calculate time the projectile is in the air.  This includes calculating the launch speed, 

height, angle, and time.  Second, they need to calculate the time delay needed before the 

launch, using the speed and path of the critter.  Proper implementation of the calculations 

into the design will result in the projectile hitting the moving critter. engage  This project 

is typical of other projectile motion engage dynamics related team projects. 

The Critter Conker is one example of the typical dynamics projects assigned.  In 

general, the dynamics projects require the students to launch a projectile towards a target 

using a variety of launching mechanisms.  The launching mechanism varies from a 

vehicle sliding down a ramp then launching a spring loaded projectile, a vehicle moving 

up a ramp with a particular velocity from a loaded spring, or a swinging vehicle that 

launches a projectile at a particular angle. 

These applications will account for a simple velocity vector, swing, ramp, and 

spring launching energies.  This range of launching methods makes the applications 

compatible with the typical dynamics oriented team projects.  The two applications 

account for most launching methods that have been used in engage’s past.   

Much like the statics design tasks, the students are introduced to the theory but are 

not capable of programming complex applications, especially not in the allowed time 

period.  The applications allow the student to focus on the analysis, not creating the 

application to obtain the analysis.  The students have access to code from their related 

assignments, but this code requires hard coded data and is not user-friendly. 

 

9 
 



1.3 Review of Similar Applications 

The existing statics and dynamics applications are programmed for specified 

analyses.  For engage to use an existing application, it must match to the typical engage 

team projects.  For existing truss solvers, two typical 2D truss solvers and two typical 3D 

stress analysis solvers are examined.  For existing projectile motion programs, a simple 

web-based application and a general Excel based spreadsheet are considered for use with 

the engage team projects. 

 

1.3.1 Truss solvers 

The students need a means to quickly analyze their 2D and 3D truss-bridge 

designs.  For 2D models, there are many options available, such as a simple method of 

joints solver or the West Point Bridge Designer [3].  For 3D models, there are finite 

element analysis packages, which provide stress analysis of the entered model, such as 

Cosmos [5] or Ansys [6].  To apply to the team projects, the provided application must be 

able to build a 2D or 3D model and calculate the member and reaction forces associated 

with the model.   

A simple 2D truss solver, written by Professor T. W. Shield at the University of 

Minnesota, is shown in Figures 1.5 [4].  This 2D solver is similar to other available 2D 

truss solvers.  While this program is an easy means of calculating member forces, the 

program neither has a user-friendly environment nor solves 3D models.   

 

10 
 



   

Figure 1.5.  University of Minnesota 2D Truss Solver 

 

To enter data in the mentioned 2D truss solver, the user selects Nodes, MP Sets 

(material property settings), Elements, or Loads / Restraints.  Once the option has been 

selected, a menu appears for the user to enter the specific data.  The 2D model is built in 

the same window as the program.  The solver takes the material data and calculates a 

deflection on the member from the load conditions.  However, it can only solve simple 

2D models and previous entries cannot be modified.   Also, the model’s display does not 

intuitively depicting the features.  For instance, a force is displayed by changing the 

numeric background color from blue to black (as with node 4), not as a directional arrow.  

 Another truss solver is the West Point Bridge Designer (WPBD), shown in Figure 

1.6.  The user builds a bridge using a selection of beams.  If the load on the bridge, 

caused by a truck driving over the bridge, creates a member force greater than the beam 

can carry, then the program reports the failure. 

 

11 
 



 

Figure 1.6  West Point Bridge Designer 

 
The WPBD is capable of calculating the forces in each member of the truss, but it 

only solves 2D models.  Also, by considering beams of standard materials, it doesn’t 

account for the common materials used by engage.  For instance, wood beams are not 

part of the WPBD. 

The 3D solvers are capable of solving member and reaction forces in trusses.  

Analysis programs, such as Cosmos or Ansys, are capable of solving extremely complex 

3D problems, but the students would need to be trained on the software and become 

familiar with the theory behind the analysis.  For an application to be a good modeling 

tool for the students, they must have some knowledge of the mathematical technique.  

The students may be capable of building a model, but they will not understand the 

mechanics concepts behind the software.  Second, the cost of licensing the software in a 

computer lab would be a tremendous financial expenditure.  

12 
 



The proposed static application will fulfill the analysis needs for the team truss 

project.  Also, the students are taught method of joints and by utilizing that technique, the 

students understand of the mathematics used by the application. 

 

1.3.2 Projectile motion 

There are two applications outlined in this section.  Each application is typical of 

most available projectile motion programs.  One is a web-based application and the other 

is an Excel based application.  Each of these applications is capable of solving simple 

projectile motion calculations.   

One particular web-based application is from University of Oregon, Physics 

Department [7], in Figure 1.7.  It solves simple projectile motion paths and accounts for 

drag.  This application has a limited user input to specify launching types and the user 

can’t reposition the target.  This application does not have the flexibility to apply to a 

wide range of team projects, because it cannot account for any type of launching 

methods.  Obviously, the purpose of this application is to provide a simple projectile 

motion analysis, and will not suit the more complex engage dynamics team projects. 

The user can customize the Excel program from George Mason University, 

Physics and Astronomy Department [8] (see Figure 1.8).  With an Excel file, the user can 

enter new columns for other calculations, like drag.  One benefit to this program over the 

web-based application is the data output of the results.  If a new plot needs generated, 

then the user can modify the Excel file to display the proper information, as in Figure 1.9.   

 

13 
 



   

Figure 1.7.  Web-based Projectile Motion Application 

 

 

Figure 1.8.  Excel Based Projectile Motion User Input 

 

 

Figure 1.9.  Excel Based Projectile Motion Data Plots 

14 
 



If the user needs to calculate the launch velocity from a launching mechanism, then 

modifications can be made to the file. 

This application includes the user customization and data output necessary for the 

engage students’ analytical needs.  For the Critter Conker project, the students use the 

raw data to analyze the flight path and determine the launch time.  However, engage 

doesn’t teach Excel.  Therefore, the students would be required to learn new software to 

analyze their projectile motion projects. 

 

1.3.3 Summary of existing analysis applications  

While the existing applications effectively perform one particular analysis, they 

do not efficiently integrate with engage.  The analysis of the software is not specialized to 

engage’s team projects or curriculum.  Additionally, most of the existing applications 

cannot be modified to meet the team project’s analysis needs. Even more, none of the 

existing projectile motion applications are programmed in Matlab with a window based 

graphical user interface. 

 

1.4 Application Objectives 

 The objectives for the Matlab applications are divided into three categories:  

general objectives for all applications, objectives for the statics application, and 

objectives for the two dynamics applications.   

15 
 



1.4.1 Objectives for all applications 

• Must use a graphical user interface (GUI) 

• Must have an intuitive operation 

• Include error checking 

o Verify input 

o Verify model validity 

• Help file  

o Each button and user data entry is described 

o Includes a example walkthrough tutorials 

 

1.4.2 Objectives for the statics application 

• The truss solver must solve for member forces using method of joints 

o Display Results 

 Members are red or blue for tension or compression 

 Thickness of member is proportional to the magnitude of 

the member forces 

• The truss solver must allow 2D and some 3D models 

• Implement a user-friendly environment 

o View Options 

 Zoom 

 Select Top, Front, Side, or Isometric view. 

16 
 



 Rotation of View 

o Modify previously entered values 

o Save / Open / Edit models 

 

1.4.3 Objectives for the two dynamics applications 

• The applications must account for four launching methods 

o Specific launch velocity and launch angle projectile motion 

o A vehicle sliding up or down a ramp and launched into the air at 

the calculated exit velocity from the energy exchange. 

o A release of spring energy and the end of the ramp 

o A swinging vehicle releasing a projectile 

• Have the option to account for drag 

o A simple initial percentage reduction in energy 

o An iterative drag force calculation based on user entry coefficients 

  

By satisfying these objectives, the applications reinforce concepts that are taught 

by engage to the students.  The students are using numerical tools to solve an analytical 

problem.  In particular, they are using Matlab to solve a mechanics problem.  The visual 

interface provides a more intuitive environment for the students to solve problems.   The 

analysis applications save the students’ time, and reinforce the basic engage mechanics 

concepts. 

17 
 



1.5 Thesis Objectives  

The focus of this thesis is to create applications for use in the engage program.  

Matlab is the preferred programming language because of its ability to solve analytical 

problems, and it is the programming language taught as a part of Analysis and Skills.  

Chapter 2 presents a comparison of Matlab to other programming languages and details 

Matlab’s analytical advantages.  Chapter 3 provides a description of each feature 

contained in the completed applications.  Chapter 4 outlines the verification of results and 

application walkthrough tutorials to guide to user through the application’s capabilities.  

Chapter 5 offers suggestions for implementation and improvements to the created 

applications.  Appendix A is the engage 2003 Spring semester calendar and the team 

project descriptions.  Appendix B contains the code for the created applications. 

  

18 
 



Chapter 2 - Development 

2.1 Application Details 

 For all the applications, the user input is within the main user window GUI.  This 

format keeps students from searching for a particular menu to enter a piece of data into 

their model.  Instead, the user input is through one interface, which is in front of the 

students at all times.  The toolbar is used for file management, view options, and a few 

user specific features such as, unit system selection, error checking, and help file access.  

All functions in the main user window are specific to each application and easy to access. 

 

2.1.1 Truss Analysis 

The truss analysis will apply the method of joints to solve for the member and 

reaction forces.  Once calculated, the vector and magnitude of the force can be displayed 

in two different formats, either onto the screen as tensile or compression (red or blue) 

with the reaction forces as green vector arrows, or as text output containing a table of 

results.  The text output is saved as a file and is also displayed in the Matlab Command 

Window. 

To easily pass model variables between functions, the joint, member, constraint, 

and force variables are global.  By allowing the key variables to be passed without any 

special commands, the global variables make a student customized or an additional 

provided analysis function easier to implement.  Making a variable global is not a 

19 
 



programmer-preferred method.  If a programmer is not careful, then the global variables 

could overlap with a different variable of the same name.  Matlab has a built-in defense 

for this issue.  The global variable only exists inside a function where it has been 

initialized.  Hence, if students want access to the variable in the Matlab Command 

Window, they must first initialize it from the Command Window.  The variable doesn’t 

exist in a function until it has been initialized.  Once the variable is available, it contains 

the values of the global variable and any changes made by the user affect the global 

variable. 

After the joints, members, constraints, and forces have been entered into the 

application, the next step is to turn the global variables into a coefficient matrix for 

Matlab to solve.  The students learn this process in EF 102, Module 2 Lecture 3 [9].   

Building the matrix starts by drawing the free body diagrams of each joint, shown 

in Figure 2.1.  Joint A is pinned to a wall, this pin constraint limits motion on the X and 

Y axes and creates reaction forces for both constraints, shown as Ay and Ax on the 

figure.  Joint C is a roller constraint and creates the force Cx.  This type of constraint 

limits motion perpendicular to the contact surface, in this case, the X-axis. 

Because this truss is in static equilibrium, each joint is also in static equilibrium.  

Figure 2.2 shows the equilibrium equations for each joint.  The “c” and “s” are 

abbreviations for cosine and sine, respectively.  The variables are arranged to group the 

constraint forces (reaction forces) and member forces.  The equilibrium equations for 

each joint and axis are stored in separate rows.  The arrangement is meant to separate the 

unknowns of the joint equilibrium equations into the same columns.  This arrangement 

20 
 



 

 

Figure 2.1  Basic truss and forces at each joint 

 

 

 

Figure 2.2 Arranged unknowns of the basic truss  

 

21 
 



results in a matrix of coefficient data.  The coefficients determine how much of the force 

is applied on each axis from the equilibrium equations for a particular joint.  For instance, 

if a member force was 30o counter-clockwise from the x-axis, then the x coefficient 

would equal the cos30 o and the y coefficient would equal the sin30 o. 

After the equilibrium equations have been arranged, the member and reaction 

forces are separated from the coefficient data, as shown in Figure 2.3.  The unknown 

member and reaction forces are stored in vector {x}.  In the form [A]{x} + {b} =  {0}, 

the equation is in equilibrium.  Because the truss is in static equilibrium, the combination 

of all member, reaction, and external forces is equal to zero.  Matrix [A] corresponds to 

the coefficients that describe the free body diagrams for each joint.  The first three 

columns relate to the constraints Ax, Ay, and Cx.  Joint B has no constraints, so, no value 

exists in these columns for that joint.  The remaining columns relate to the geometry 

coefficients for members AB, AC, and BC.  The Vector {x} is the list of unknown 

values.  The Vector {b} contains all external forces, in this case, the lone force in the Y 

direction at Joint B. 

To solve for the unknown variables in vector {x}, the equation                                          

[A]{x} + {b} = {0} needs to be rearranged to [A]{x} = {-b}.  The vector {b} is negative 

because it was moved to the other side of the equation.  With the data entered into 

Matlab, a solution can be found, shown in Figure 2.4.  Calculating the solution for the 

unknown member and reactions forces vector {x} in Matlab is executed by a simple 

single command x = A \ -b. 

 

22 
 



 

 

Figure 2.3  Basic truss arranged into [A]{x} + {b} = {0} 

 
 

 

Figure 2.4 Basic truss results 

23 
 



2.1.1.1 Creating 2D and 3D capabilities in the same application 

One alternative is to create separate applications for 2D and 3D analysis.   

However, the mathematics for building the coefficient matrix is the same for both 2D and 

3D models.  Hence, adding the capability to solve for 2D and 3D is simple to implement.  

When the application is determining the coefficient for a particular member, it checks the 

x, y, and z vector components relative to the scalar length to determine the angle of the 

member force vector, 
V

zVjViVzyxtCoefficien
ˆˆˆ

),,( ++
= .  When the student builds a 2D 

model, one vector component will be equal to zero, because the member should not have 

a length component off of the specified 2D plane. 

Another benefit of the dual dimensional capabilities is the ability to analyze a 

model in 2D, make a few modifications, and analyze the same model in 3D.  A setting on 

the main view area controls the type of dimensional analysis.  When analyzing a truss, 

the application builds the matrix for a 3D model.  For a 2D analysis, after checking the 

dimension and plane, the unnecessary entries are removed from the matrix.  For instance, 

if the model was built on the XZ plane, then all entries for the Y vectors are removed.  

The same is true for the XY and YZ planes. 

The matrix entry removal process was extremely simple to implement.  The 

removal starts with the last row and column and moves towards the first.  This method 

does not affect the numbering system of the rows and columns.  If the Y components of 

Joint 1 are removed first, then it affects the row and column number of Joint 2.  

24 
 



While a 2D truss can be built on any plane, the front view is set to the XZ plane.  

The coordinate system is the default XYZ coordinate system for Matlab, and is identical 

to the default coordinate system used in Mechanical Desktop [10], the CAD package 

taught in the Analysis and Skills portion of EF 101 and EF 102. 

 Once the model is built, clicking a button initiates the analysis function.  There 

are two calculations related to drawing each member force.  First, the magnitude of all 

the applied, member and reaction forces is compared to the maximum value of all the 

forces.  Based on the global maximum, each member is drawn thicker for high forces, 

thinner for smaller forces.  Second, the members are blue for a compressive (negative 

value) load, red for a tension (positive value) load.  The value of each member force is 

drawn in the center of the member.  If the students want to view a list of forces, then they 

can output the results to the Command Window and a text file through a details option.  

The details of all the application features are outlined in chapter 3 and model tutorials are 

outlined in chapter 4. 

 

2.1.1.2 Error checking on for 2D and 3D models 

The application performs error checking by validating the Add, Modify, or 

Remove action, monitoring the various user inputs, and checking the method of joints 

requirement of three constraints for 2D models and six constraints for 3D models.  In 

addition, for 2D models, the following equation must be met, 2 * number of joints = 

number of members + 3.  For 3D models, the equation is 3 * number of joints = number 

of members + 6.  Meeting the equation ensures the truss matrix is square, which is 

25 
 



required to take an inverse of the matrix.  Adding the constraints to the proper axis makes 

certain the matrix is not singular.  When a matrix is singular, the inverse of the matrix is 

unobtainable.  For this reason, not all 3D trusses can be solved.  The six constraints must 

be placed in a way that they restrain motion in all three directions and rotations.  It is 

easier to assign constraints to 2D trusses because the user places two constraints on one 

joint and one constraint on another joint of the same plane.  With 3D analyses, the user 

must think about the rotations of the model. 

For complicated models, the users need to determine how to apply the constraints 

their particular model.  If a constraint is not properly restraining against motion or 

rotation, then the reaction force will be zero.  The lack of a resultant force means no force 

is being placed on the constraint.  Hence, either it is not configured to restrain motion or 

no force is applied in that direction.  As is the case of many 2D models, when all the 

loads are in the Y-axis, then the x constraints will have no reaction force.  However, the x 

constraint still needs to be part of the model to ensure a square matrix and therefore a 

valid solution. 

 

2.1.2 Projectile Motion 

The projectile motion analysis package is divided into two applications; ramp and 

spring launched projectile and swing-launched projectiles.  The individual applications 

calculate a projectile’s launch energy to provide an initial velocity and direction for the 

projectile motion function.   One can select to ignore drag, use a simple initial velocity 

26 
 



loss, or calculate the drag relative to a set of input coefficients.  When the projectile 

reaches the ground, or a specified target, the projectile’s path terminates. 

 

2.1.2.1 Ramp and Spring Energy Dynamics Launch Velocity Calculation 

The ramp and spring dynamics application utilizes a combination of initial kinetic 

and potential energy conditions.  The user can choose to launch at the ramp angle or a 

specific launch angle.  Friction and other energy losses for both the kinetic and potential 

energies account for energy loss as a percentage reduction. 

The two general types of analysis performed by this application are shown in 

Figure 2.5.  The first analysis is for a projectile with an initial velocity traveling up or 

down a ramp.  The second analysis calculates the stored energy from a linear spring.   

This application considers the change in kinetic energy from the ramp, then, if 

necessary, applies the launch energy.  The ramp energy is defined by the initial kinetic 

energy and the change in height from the ramp, 

HEIGHTINITIAL PEKERampEnergy += .  The kinetic energy is 

2*
2
1 VmagmassKEINITIAL =

dygravitymassPEHEIGHT **=

, and the change in energy due to height is 

.  When the projectile is moving up the 

ramp, the entered dy value is positive, which causes a reduction in kinetic energy because 

gravity is negative.  When the projectile moves down the ramp, the entered dy value is 

negative, which is multiplied by the negative gravity value and increases the kinetic  

27 
 



 

Figure 2.5  Ramp and Spring Energy Typical Analyses 

 

energy.  The user can specify the initial height, change in height, ramp angle, launch 

angle, vehicle’s mass, and projectile’s mass.   

With a linear spring coefficient k and the initial and final spring displacement, the 

applied potential energy from the spring can be calculated, 

22 *
2
1*

2
1

InitialSpringFinalSpringSPRING xkxkPE −= .   

The kinetic and potential energies can be added together, 

SPRINGPERampEnergyEnergyTotal += .  The user can choose to model 

only one of the energies.  The launch velocity is determined by 

mass
EnergyTotalVLAUNCH

*2
= . 

 

28 
 



2.1.2.2 Swing Energy Dynamics Launch Velocity Calculation 

The swing launched projectile uses a swinging mass with a given center position 

and radius of movement as shown in Figure 2.6.  As the projectile swings from its 

starting angle of 95o to its release angle of 280 o, the projectile has a gain in kinetic 

energy.  At the release, the launch velocity is calculated from the resulting kinetic energy 

relative to the mass of the projectile using dygravitymassVtmassKE ***
2
1 2 += .  A 

vehicle starts with an initial velocity or drops from rest at the specified start angle.  

Similar to the ramp dynamics, a loss can be associated with each energy transfer.  A 

projectile can be launched tangent to the release angle, or at an angle that is offset to the 

tangent release, or at a specified angle. 

 

 

Figure 2.6  Swing Energy Description 

29 
 



2.1.2.3 Projectile Motion Calculations from Launch Velocity 

Both dynamics applications can calculate a projectile’s path by entering an initial 

velocity and launch angle.  The launch velocity is either specified by the user or 

calculated by the transfer of energy from the ramp, spring, or swing.  

The ability to calculate a projectile’s path from an initial velocity and launch 

angle removes the limitation of the launching type.  If a new method of launching is 

required for the team project that cannot be computed with the dynamics applications, the 

students can calculate the launch velocity for their design separately and then enter the 

launch information into either application to determine the flight path. 

When neglecting drag, the launch velocity and angle are used to calculate to flight 

path using x(t) = xo + Vxo * t and y(t) = yo + Vyo * t + 0.5*g * t2.  The initial x and y 

positions, xo and yo, can be specified in each application.  The initial velocities, Vxo and 

Vyo, are the x and y components of the launch velocity.  For a specified time t, the 

equations predict the x and y position at that time. 

Both applications can account for drag using one of two methods.  For a simple 

drag method, the calculated launch velocity is reduced by a specified percentage.  The 

simple method is intended to provide a quick initial answer before the complex drag 

method is used.  The complex drag method uses a set of equations to determine the flight 

path with drag.  The equations are x(t) = xo  + (Vxo / λ)*(1- eλt)  and                                                           

y(t) = yo + (-g/λ2 + Vyo / λ)*(1-eλt) + (g / λ)t.  The initial x and y positions, xo and yo, are 

specified in the user inputs or calculated by the program.  The initial velocities, Vxo and 

Vyo, are the x and y components of the previously calculated launch velocity.  λ is the  

30 
 



Table 2.1  Simple and Complex Drag Calculations 

Drag Method Coefficients Implementation 

Simple Drag Loss % 
 

Velocity_launch =  
( (100 – Drag Loss %) / 100) * Velocity_launch 

Complex k – Drag Coefficient 

λ = k / mass of projectile 
g = gravity 
 
x(t) = (Vxo / λ)*(1- eλt) 
y(t) = (-g/λ2 + Vyo / λ)*(1-eλt) + (g / λ)t 
 

 

result of the entered coefficient of drag divided by the mass of the projectile.  These 

simultaneous equations separately calculate the x and y positions for a specified time t.  

The complex drag option is outlined in the Boresci / Schmidt Example 14-7 [11] in 

chapter 4.  The drag method calculations are shown in Table 2.1. 

 

2.2.2.4 Modifying Plots 

If the user wants to customize an output figure, then the plot can be put into a 

separate figure window.  The axis, title, labels, legend, and any other plot formatting 

commands can be issued from the Matlab Command Window. 

 

2.2 Deciding to use Matlab 

All aspects of the applications can be programmed in any language.  Neither the 

calculations nor the visual layout requires Matlab.  The projectile motion function, in 

31 
 



particular, could have been programmed in an Excel Spreadsheet as outlined in Chapter 

1.   Matlab is the preferred software because of its combination of the matrix analysis, 

general plot displaying, and numeric analysis.  All can be performed within Matlab, 

whereas Visual C++ (VC++) needs a complicated data storage process and an external 

matrix solver, like PETSc [12].  In addition, Matlab is the programming language taught 

in engage. 

Matlab is designed to handle matrix computations similar to those needed for a 

truss analysis.  The equation [A]{x} = {-b} is an excellent example of Matlab’s ability to 

solve matrices.  This is a standard linear algebra equation.  Matrix [A] contains the 

coefficients that describe the mathematical relationships for the truss’s joints and 

members, vector {-b} is the known external forces, and vector {x} is the unknown 

member and reaction forces.  To solve this equation, the inverse of [A] is needed, 

converting the equation to {x} = [A]-1{-b}.  In this form, the equation calculates the 

unknown member and reaction forces in vector {x}.  In Matlab, this process is 

accomplished by the command x = A \ -b.  Other languages are unable to build the matrix 

[A], which easily makes them unable to take the inverse and solve.  Clearly, Matlab is the 

best choice for the matrix computations needed to solve a complex truss matrix. 

In Matlab, detailed plots can be created using a small number of commands, 

whereas in VC++, the user must issue commands to draw each individual characteristic 

of the plot, such as drawing the specific coordinates of the legend or axis labels.  In 

Matlab, the legend’s text and placement are simple commands to implement.  The axis 

labels are automatically drawn centered and below the axis.  In VC++, the user must 

32 
 



write code to calculate the label’s position, and then draw the text at that location.  

Additionally, the rotate feature in Matlab for the truss application is extremely simple to 

implement.  In Matlab, the “rotate3d on” function turns a plot window into a mouse 

active three-dimensional window that enables free rotation of the view.  To implement 

this action in VC++, one must load directx [13] or openGL [14] graphics.   

Matlab simplifies the numerical analysis by having analysis functions built into 

the language.  It is extremely code efficient to take a set of data, find a best-fit curve, and 

then perform whatever analysis is needed in Matlab.   Once again, external code can be 

written to perform the math operations in VC++, but the functions are not built into the 

language. 

 

2.3 Help Files 

 These applications are of little benefit if the students are unable to use the 

software.  Each application includes a HTML based help file that can be opened from the 

embedded toolbar.  The help file includes information about the various buttons and user 

entry areas, and how those options affect the analysis.  Also, there are sample problems 

for the students to use as tutorials. 

The combination of help files and sample walkthroughs reinforce the notion of the 

“random user”.  When programming functions, the students are taught how to display 

help information associated with the function, and then taught how to make the help file 

for the “mysterious random user”.  With these applications, they are that “random user”, 

33 
 



they learn the importance of the help files, making an intuitive interface, and writing 

organized and commented code, because they need to use each of the features to obtain 

an analysis that directly relates to their team project. 

34 
 



Chapter 3 - Application Features 

The intention of this chapter is to discuss the capabilities of the individual features 

of the applications.  Examples, verification, and tutorials are outlined in chapter 4. 

 

3.1 Truss Analysis Application 

 The Truss Solver Application is capable of building and solving a wide range of 

2D and 3D bridge-truss models.  The application, shown in Figure 3.1, consists of nine 

specific features: 

1. Toolbar Menu 

2. Feature Menu 

a) Joint 

b) Member 

c) Constraint 

d) Force 

3. Modify Menu 

a) Add 

b) Modify 

c) Remove 

4. Enter Values Menu 

5. Analysis Menu 

6. Axis Menu 

35 
 



 

Figure 3.1 Engage Truss Solver 

 

7. Draw Area Menu 

8. View Menu 

9. Help File 

 

The application features needed to build and analyze the truss are easily accessible to 

the user.  Every user input feature is shown on the main user area.  The layout is 

important, because the students do not need to hunt for the particular user entry menu.  

Each feature contributes to the complete application. 

36 
 



 

Figure 3.2 Truss Solver Toolbar 

 
 

 

File:  
New - Clears the current truss model 
 
Open - Opens a *.mat file (must have been created by EFD_TRUSS) 
 
Save - Saves a *.mat file, every save is a "Save As" 
 
Print - Prints Display 
 
Close - Closes EFD_TRUSS 

Figure 3.3  Truss Solver, File Menu 

 

3.1.1 Toolbar Menu 

The Toolbar Menu, shown in Figure 3.2, contains all the file management and 

user option controls.  The Toolbar consists of five headers, File, View, Display, Error 

Checking, and Help. 

All the file management is inside the File header, shown in Figure 3.3.  The user 

can reset the model, open an existing model, save the current model, print the figure, and 

close the application. 

The View header, shown in Figure 3.4, allows the user to show a particular view.  

One can choose the Top, Right, Front, and Isometric views. 

The Display header, shown in Figure 3.5, controls what features are displayed.  

From this header, the user can show or hide the joint numbers, member numbers, 

constraints, forces, axes, axis labels, and grid.  Also, there is a toggle feature.  If a  

37 
 



 

View:  
Top (XY) – Sets view to XY plane 
 
Front (XZ) – Sets view to XZ plane 
 
Side (YZ) – Sets view to YZ plane 
 
Iso – Sets to an isometric view 

Figure 3.4  Truss Solver, View Menu 

 
 

 

Display:  
Toggle Display - Toggles between displaying all options and 
displaying nothing.  The "Axis Labels" and "Grid" are not 
modified. 

 
Joint Numbers - Show (checked), Hide (unchecked) 

 
Members Numbers - Show (checked), Hide (unchecked) 

 
Constraints - Show (checked), Hide (unchecked), if the truss has 
been analyzed, this option will toggle the reaction forces. 

 
Force - Show (checked), Hide (unchecked) 

 
Axes - Show (checked), Hide (unchecked) 

 
Grid - Show (checked), Hide (unchecked) 

Figure 3.5  Truss Solver, Display Menu 

 

38 
 



majority of items are checked, all will become unchecked. The converse is also true.  The 

joints and member connections are always shown.  The grid and axis labels are 

unaffected by the toggle. 

The error checking, shown in Figure 3.6, verifies some of the basic requirements 

for method of joints analysis and recovers damaged models.  The Verify Number of 

Constraints option verifies that the number of constraints is the proper number for the 

given analysis, three constraints for 2D, six constraints for 3D.  For 2D models, Verify 

2D Plane verifies the analysis plane is the same as the model’s plane.  The Model 

Recovery feature removes any member, constraint, or force that is attached to a joint that 

does not exist.  The internal error checking should ensure that a feature is not connected 

to a non-existent joint.  However, if the user finds a way to bypass the error checking, 

then it will corrupt the model file by trying to draw a feature for a joint that does not  

exist.  The Model Recovery feature scans and removes the member, constraint, and force 

variables attached to the nonexistent joint. 

The help header, shown in Figure 3.7, includes two options, the help guide and an 

about pop-up.  The help guide contains information about each feature and sample 

walkthroughs.  The about pop-up gives information about the title of the application, it’s 

programmer, etc.  Detailed examples of the Quick Guide are included in chapter 4. 

39 
 



 

 

Error Checking:  

Verify 2D Plane - Compares the model to the selected 
plane.  If a joint or constraint exists on an illegal plane, 
the user will be notified. 

Verify the Number of Constraints - If the number of 
constraints does not correspond to the 2D / 3D 
analysis, the user will be notified. 

Model Recovery - This is a safety valve.  This option 
will remove any member, constraint, or force that 
references a joint that does not exist.  The user will 
only need this option if the model continuously fails to 
draw. 
 

Figure 3.6  Truss Solver, Error Checking Menu 

 

 

 

Help:  
Quick Guide - General Help 
 
About - Program Information 
 

Figure 3.7  Truss Solver, Help Menu 

 

40 
 



3.1.2 Feature Menu  

The Feature Menu, shown in Figure 3.8, is used to add new features for analysis. 

The user may create joints, members, constraints, and forces. This menu works hand in 

hand with the Modify and Enter Values menus. Once the user selects a feature (joint, 

member, constraint, or force), he must provide information to the Modify Menu’s Add, 

Modify, or Remove, then based on the operation and feature enter a Feature Number, and 

finally, enter the feature data into the Enter Values Menu.  The Feature Menu, Modify 

Menu, and Enter Values Menu are shown in Figure 3.9 set to the Joint Feature, therefore 

the Enter Values menu shows X pos, Y pos, and Z pos. 

 

 

Figure 3.8  Truss Solver, Feature Menu 

 

Figure 3.9  Feature, Modify, and Enter Values Menus 

 

41 
 



The Feature Menu controls the inputs of the Enter Values Menu.  Depending on 

the feature type, the enter values menu corresponds to the feature selection.  For instance, 

when the feature menu is set to Joint, the enter values menu shows inputs for the X, Y, 

and Z positions.  When the feature menu is set to Force, the enter values menu shows 

input labels for the forces in the X, Y, and Z direction (“FX”, “FY”, and “FZ”).  The 

Modify Menu and Enter Values Menu are discussed later in this chapter, sections 3.1.3 

and 3.1.4, respectively. 

Obviously, one cannot create a member unless the joints have first been created.  

When one attempts to create a member, two joints must be entered.  Internal error 

checking verifies the user entries are valid. 

Joints and members are numbered with respect to the order in which they are 

created.  Constraints and forces are numbered with respect to the joint that they are 

attached.  Joint, constraint, and force values are based on X, Y, & Z components. 

Members are based on the two joint numbers. 

 

3.1.3 Modify Menu  

The Modify Menu, shown in Figure 3.10, is used to add, modify, or remove a 

feature. A specific feature is modified or removed by entering its Feature Number and 

pressing apply to make the changes that have been selected.  Obviously, error checking 

ensures the user cannot modify or remove a feature that does not exist and he cannot 

create the same type of feature with the same feature number values as an existing 

feature.  For instance, if the user adds two joints with XYZ coordinates of (0,0,0), or adds  

42 
 



 

Figure 3.10  Truss Solver, Modify Menu 

 

 

Figure 3.11  Truss Solver, Enter Values Menu 

 
 
two separate force entries to joint 5, then the application reports these errors the moment 

they occur. 

 

3.1.4 Enter Values Menu  

The Enter Values Menu, shown in Figure 3.11, is used to enter X, Y, & Z data for 

Joints, Constraints, and Forces. For Members, joint numbers are entered here. This menu 

works with The Modify Menu and Feature Menu.  

 

43 
 



 

2D / 3D - Select the setting that matches the 
entered truss.  Not all 3D trusses will compute.  
 
Model Detail - Lists joints, members, 
constraints, forces, and analysis. 
 
Analyze - Solves for the forces in each member 

Figure 3.12  Truss Solver Analysis Menu 

 

3.1.5 Analysis Menu 

The Analysis menu is shown in Figure 3.12.  The Analyze button will take the 

existing model and build a coefficient matrix and a force vector.  After the matrix and 

vector data has been entered, Matlab solves for the member and reaction forces.  The 

member and reaction forces are then displayed on the model. 

The Model Details button lists all the model information, such as the joints, 

members, constraints, and forces.  When clicked, a data entry box, shown in Figure 3.13, 

will receive specific model information from the user.  This information is shown at the 

top of the output.  If the model has been analyzed, the option will output a data file 

displaying the member and reaction forces to the Command Window, as well. 

The 2D / 3D selection is critical in determining the correct analysis.   In 2D, if the 

model’s plane and analysis’ plane do not correspond, the incorrect rows and columns will 

be removed from the geometry matrix.  In this case, the results will usually include an 

infinite member force.  Because the users have a general background of the method of 

joints technique from the engage curriculum, they will know some type of error has 

occurred.  If a user cannot find the error, the provided error checking can be used to  

44 
 



 

Figure 3.13  Truss Solver, Model Details Menu 

 

detect the problem..  In this case, the Toolbar option Verify 2D Plan” in Error Checking 

will inform the user of the cause for the incorrect analysis.  

 

3.1.6 Axis Menu  

The Axis Menu, shown in Figure 3.14, allows the user to set the axis limits that 

scale the plot window.  The user can use this menu to zoom in or out of the model.  The 

user enters a minimum and maximum x, y, & z values and hits Update Axis.  The 

drawing area will clear and the new axis coordinates will be applied on the plot.  This 

menu also allows the user to reset the view and analysis results by hitting the Reset 

button. 

45 
 



 

Figure 3.14  Truss Solver, Axis Menu 

 

    

Figure 3.15  Full Truss (left) and Zoomed View (right) 

 

If the user needs to examine a particular portion of the model, then the axis limits 

can be modified to any numeric value required by the user.  In this case, the X min value 

has been changed from –3.6 to 50, (see Figure 3.15). 

As shown in the zoomed view, Matlab draws some text labels and lines outside of 

the plot window.  Fortunately, they are drawn beneath the menus.  While the loose text 

labels and lines are a nuisance, they do not interfere with the appearance of any user input 

menus. 

46 
 



   

Figure 3.16 Truss Solver, Draw Area 

 
 

 

Figure 3.17  Truss Solver, View Menu Output 

 

3.1.7 Draw Area 

The Draw Area is the visual output of the entered truss data.  While this view can 

be adjusted using the Display menu, the user can also rotate the view to any orientation.  

When the user holds down the left mouse button on the picture (white area) and moves 

the mouse, then the view will rotate, shown in Figure 3.16.  

 

3.1.8 View Display Menu 

The View Display Menu, shown in Figure 3.17, only appears while the view is 

being rotated.  It is possible to hide the display, but the user may want a certain 

customized view.  Therefore, the user can set the Azimuth and Elevation to the values 

47 
 



that were used previously in the report or presentation.  So, each picture is from the same 

perspective. 

 

3.1.9 Help File 

 The help file contains two main sections, feature information and walkthrough 

tutorials.  The user can access the help file by clicking on the Help item on the toolbar, 

and then selecting User Guide.  Once clicked, a web page help file appears.  The help 

file’s homepage is shown in Figure 3.18.  The user can find feature menu information by 

clicking on the list on the left, or by clicking on the picture of a particular menu. 

 

 

Figure 3.18  Truss Solver, Help File 

 

48 
 



 The feature information is similar to the information shown in sections 3.1.1 

through 3.1.8.  If the users have a question about a particular menu, then they can open 

the help file and click on the topic of choice. 

 The sample problems contain a few walkthrough tutorials.  The walkthrough 

tutorials help the users build their first model and provide sample problems to showcase 

the various types of analysis.  The tutorials are described in chapter 4 in detail. 

 

3.1.10 Internal Error Checking 

The application constantly monitors the user input.  The three main types of input 

errors are non-numeric values, duplicate entries, and attaching information to joints that 

don’t exist.  If the user makes one of these errors, The application will provide feedback 

to the user. 

Figure 3.19 shows an input error.  The user entered a non-numeric value.  All 

entries must be numbers. 

Figure 3.20 shows a user attempting to make a duplicate entry.  This error 

checking works for joints, members, constraints, and forces. 

Figure 3.21 shows the user attempting to apply constraint information to a joint 

that does not exist.  This error checking also works for forces and members.   

49 
 



 

Figure 3.19  Truss Solver, Non-numeric Value Error 

 

 

Figure 3.20  Truss Solver, Duplicate Entry Error 

 

 

50 
 



 

Figure 3.21  Truss Solver, Non-existing Entry Error 

 

3.2 Ramp Launched Projectile Motion Application 

The Ramp Launched Projectile Motion Application, shown in Figure 3.22, solves 

a wide range of energy transfer-projectile motion problems.  The analysis is built from 

information from the following ten menus on the main draw area. 

1. Toolbar 

a. Display 

b. Units 

c. Help 

2. Time Increment Menu 

3. Ramp Energy Menu 

a. Sliding down the ramp 

51 
 



 

Figure 3.22  Ramp and Spring Launching Application 

 

b. Traveling up the ramp 

c. Generic launch (initial velocity and angle) 

4. Launch Energy Menu 

a. Launch energy with ramp energy 

b. Launch energy and a specified angle 

5. Aim for Target Menu 

6. Specify launch angle Menu 

52 
 



 

Figure 3.23  Ramp and Spring Launching Application, Toolbar 

 

7. Drag Menu 

a. No Drag 

b. Simple Drag 

c. Complex Drag (calculation from drag coefficients) 

8. Outputting Figures and Data 

a. Main draw area 

b. To a separate figure 

c. Output data plots and results file 

9. Analysis Button 

10. Help File 

 

3.2.1 Toolbar 

The Toolbar Menu, shown in Figure 3.23, contains all the file management and 

user option controls.  The Toolbar consists of four headers, File, Display, Units, and 

Help.  The file menu is only to close the application, or print the figure.  There is not a 

need to save these models, because the user entry is limited to a few pieces of data. 

 The display header, shown in Figure 3.24, controls the output to the screen, 

shown in Figure 3.25.  It is possible to toggle each path on and off as well as the onscreen 

results.   

53 
 



 

The user can toggle display options  
Show Simple Path - Draws the 'No Drag' (blue) path 
 
Show Drag Path - Draws the Drag Path (green), either 'Simple' or 
'Complex' 
 
Show Text Results - Toggles output of onscreen data to the display 
plot. 

Figure 3.24 Ramp and Spring Launching Application, Display Menu 

 

 

Figure 3.25  Ramp and Spring Launching Application, Sample Output 

 

54 
 



 The Units header, shown in Figure 3.26, informs the application which units to 

use for the entries.  When the user selects a unit system, a separate figure appears, shown 

in Figure 3.27.  The figure lists the units for each user entry and remains open until the 

user closes the figure window.  Optimally, the units would be next to each user entry, but 

there is not enough room for all the menus and the units. 

 

3.2.2 Time Increment Menu 

 The Time Increment Menu controls the time steps for each of the iterations.  

Figures 3.28 and 3.29 are with the time increment set to 0.5 and 0.1 seconds.  The process 

of selecting a time increment is outlined in chapter 4. 

 

3.2.3 Ramp Energy Menu 

This menu can simulate a vehicle moving up or down the ramp as explained in Chapter 

2.  Also, when properly configured, a user can specify launch velocity and launch angle. 

 

 

Figure 3.26 Ramp and Spring Launching Application, Unit Selection Menu 

 

55 
 



 

Figure 3.27  Ramp and Spring Launching Application,  Unit Display 

 

 

Figure 3.28  Ramp and Spring Launching Application, 0.5s Time Increment 

 

56 
 



 

 

Figure 3.29  Ramp and Spring Launching Application, 0.1s Time Increment 

 

3.2.3.1 Angle calculations 

The user must input the angle and dy values to specify whether the projectile is 

moving up or down the ramp.  To simulate the projectile moving up the ramp, the angle 

value must be between 0 and 180 degrees CCW from the x-axis and the dy value must be 

greater that zero.  Figure 3.30 shows the upward ramp angles of 15, 40, 75, 105, 140, and 

165 degrees CCW from the x-axis.  To simulate the projectile moving down a ramp, the 

angle value must be between 181 and 360 degrees CCW from the x-axis and the dy value 

must be negative because the projectile is moving down relative to the positive y 

direction.  Figure 3.31 shows the downward ramp angles of 195, 220, 255, 285, 320, and 

345 degrees CCW from the x-axis.  If the dy value is set to zero, then the ramp has no 

effect on the projectile’s kinetic energy.   An error message informs the user if the angle  

 

57 
 



   

Figure 3.30  An upward ramp and positive dy value 

 

 

Figure 3.31  A downward ramp and negative dy value 

 

and dy values do not correspond to a definite upward or downward ramp.    For instance, 

a ramp angle of 60 degrees with a dy value of –5 feet is incorrect because the ramp angle 

of 60 degrees is associated with an upward ramp and the dy value of –5 feet is associated 

with a downward ramp.   

 

3.2.3.2 Initial velocity up a ramp 

Figure 3.32 shows the coefficient’s values needed to simulate a vehicle moving 

up a ramp and launching a projectile at the same angle as the ramp.  There are three  

58 
 



 

Vmag - Initial Velocity  

angle - Ramp angle, must be between 0 and 180 to simulate upward ramp. 

height - Initial height, must be greater than 0. 

dy - Ramp height, must be greater than 0 to simulate upward ramp. 

mass of vehicle - in kg or slugs 

loss (%) - Percentage of energy loss during transfer, enter 0 to 100. 

Figure 3.32  Ramp and Spring Launching Application, Ramp Upward 

 

conditions.  First, the angle value must be between 0 and 180 degrees.  Second, the dy 

value must be greater than zero.  Finally, the velocity’s magnitude must be able to 

overcome the change in height.  There is an error message verifying the velocity and 

height relationship.  However, if the user enters a loss value from the Ramp Energy 

Menu, then the loss is taken from the energy remaining at the top of the ramp.  The 

results of the user settings are shown in Figure 3.33. 

 

 

 

 

59 
 



 

 

Figure 3.33  Ramp and Spring Launching Application, Ramp Upward Results 

 

3.2.3.3 Initial velocity down a ramp 

Figure 3.34 shows one set of coefficient values needed simulate a vehicle moving 

down a ramp and releasing at that angle.  There are two conditions.  First, the angle value 

must be between 181 and 360 degrees.  Second, the dy value must be less than zero.  An 

error message informs the user if the angle and dy values do not correspond.  The user 

specifies the initial velocity Vmag, ramp angle, initial height, change in height, mass of 

the vehicle, and loss due to the energy transfer.  The result of the user data for the vehicle 

sliding down the ramp is shown in Figure 3.35.   

 

60 
 



 

angle - must be between 181 and 360 to simulate downward ramp  
 
dy - must be less that 0 to simulate downward ramp. 
 

Figure 3.34  Ramp and Spring Launching Application, Ramp Downward 

 

 

    

Figure 3.35  Ramp and Spring Launching Application, Specified angle (left) and 

Ramp Downward Results (right) 

61 
 



3.2.3.4 Simple Initial Velocity Launch 

Figure 3.36 shows the coefficients necessary to calculate the projectile’s path 

without any ramp or spring energy.  If the dy value is set to zero, the calculation has no 

ramp energy effects, as in Figure 3.37.  The velocity’s initial vector is set by the angle 

value, unless an angle is specified. 

 

3.2.4 Launch Energy Menu 

The Launch Energy Menu, shown in Figure 3.38, is used to simulate the release 

of stored energy from a linear spring.  The user enters the linear spring constant k, the 

initial and final stretch lengths (x_initial and x_final) of the spring, the mass of the 

projectile, and the percentage of energy loss due to the transfer of energy.  It is possible 

to use launch energy with or without the ramp energy.  Figure 3.39 shows a vehicle 

sliding down a ramp, and then releasing spring energy at a specified angle.  Figure 3.40 

shows a stationary release of spring energy at a specified angle.  The Specified Launch 

Angle Menu is discussed in Section 3.2.6.   

 

   

Figure 3.36  Ramp and Spring Launching Application, Simple Velocity Analysis 

 

62 
 



 

Figure 3.37  Ramp and Spring Launching Application, Simple Velocity Results 

 

 

k - Spring Constant  
 
x_final – Final Spring Deflection 
 
x_initial – Initial Spring Deflection 
 
mass of projectile - In kg or slug.  Only used 
when Calculate Launch Energy is checked. 
 
loss(%) - Percentage of energy loss during the 
transfer, 0 to 100. 

Figure 3.38  Ramp and Spring Launching Application, Launch Energy Menu 

 

63 
 



 

Figure 3.39  Ramp and Spring Launching Application, Combination Launch 

Output 

  

 

Figure 3.40  Ramp and Spring Launching Application, Spring Launch Output 

64 
 



3.2.5 Aim for Target Menu 

The aim for target menu, shown in Figure 3.41, draws a rectangular target for the 

projectile.  The user specifies a rectangular target using the values Xmin, Xmax, Ymin, 

and Ymax.  When the projectile’s path moves inside the target, the path terminates.  If the 

path never moves inside the target, the path terminates when the project hits the ground at 

y = 0.  Figure 3.42 shows the results with and without aiming for a target. 

 

3.2.6 Specify Launch Angle Menu 

This feature, shown in Figure 3.43, controls the use of a specified angle.  When 

analyzing the spring energy, the user must specify the angle to launch the projectile.  

Also, it’s possible the user will want to have a launch angle different from the ramp 

angle.  In either case, to specify an angle, simply click on the checkbox and enter a value.  

Figure 3.44 shows the difference between a specified angle and a ramp angle using the 

same coefficients.   

 

 

Figure 3.41  Ramp and Spring Launching Application, Target Menu 

 

65 
 



   

Figure 3.42  Ramp and Spring Launching Application, With  (left) and Without 

(right) Target Menu 

 

 

Figure 3.43  Ramp and Spring Launching Application, Specific Launch Angle Menu 

  

     

Figure 3.44 Ramp and Spring Launching Application, With (left) and Without 

(right) Specific Launch Angle 

  

66 
 



 

No Drag - Drag is not considered  
 
Simple Drag - Reduces the launch velocity by a 
percentage. 
 
Complex Drag - Calculates drag with respect to the 
coefficients and the instantaneous velocity. 

Figure 3.45  Ramp and Spring Launching Application,  Drag Menu 

 

3.2.7 Drag Menu 

 The Drag Menu, shown in Figure 3.45, is for the user to select the type of loss 

associated with drag.  There are three options, ignoring drag, a simple drag loss 

calculation, and a coefficient of drag calculation.  The “Simple Drag” option is a percent 

reduction in the initial launch velocity.  The “Complex Drag” option uses a coefficient of 

drag to solve for the x(t) and y(t) equations discussed in section 2.1.2.3. 

 

3.2.8 Output to Figure 

It is possible the user will want to modify the plot of the projectile path, or view 

the velocity data.  By placing a check next to the Output to Figure command, as in Figure 

3.46, when the model is analyzed, the output will be draw in a separate figure window 

instead of inside the application.  Now, the user can modify the plot from the Command 

Window.  By selecting the Output Data command, as in Figure 3.47, the application will  

67 
 



 

Figure 3.46  Ramp and Spring Launching Application, Figure Output 

 

 

 

Figure 3.47  Ramp and Spring Launching Application, Data Output 

68 
 



make a plot of the velocity versus the x-position, a plot of the angle of the velocity versus 

the x-position, and write the raw data to an output file.  The user can use the output file 

for additional analysis that is specialized to a particular team project. 

 

3.2.9 Analysis Button 

 The analysis button, shown in Figure 3.48, initiates the application.  Each variable 

coefficient is transferred to a variable inside the function.  Based on the user selections, 

the application performs the necessary calculations.  An example output is shown in 

Figure 3.49. 

 

 

 

Figure 3.48  Ramp and Spring Launching Application, Analyze Button 

 

69 
 



 

Figure 3.49  Ramp and Spring Launching Application, Analyze Output 

 

70 
 



3.2.10 Help File 

The help file contains two main sections, feature information and walkthrough 

tutorials.  The user can access the help file by clicking on the “Help” item on the toolbar, 

and then selecting “User Guide”.  Once clicked, a web page help file appears.  The 

information is similar to the above sections 3.2.1 through 3.2.9.  If the users have a 

question about a particular menu, then they can open the help file and click on the topic 

of choice.  The sample problems contain walkthrough tutorials, which help the users 

build their first model.  The walkthroughs will be discussed in detail in chapter 4 as 

verification problems. 

The help file’s homepage is shown in Figure 3.50.  The user can find feature 

menu information by clicking on the list on the left, or by clicking on the picture of a 

particular feature menu. 

 

 

Figure 3.50  Ramp and Spring Launching Application, Help File 

71 
 



3.3 Swinging Projectile Application 

The Swinging Projectile Motion Application, shown in Figure 3.51, solves a 

swinging energy transfer projectile motion and simple velocity projection problems.  

Similar to the Ramp Launched Projectile Application, an exit velocity is calculated from 

the energy transfer from the swing, the analysis is built from information from menus on 

the main draw area.  The application is divided into eight main areas. 

1. Toolbar Menu 

a. File 

b. Display 

c. Units 

d. Help 

2. Properties Menu 

3. Swing Energy Menu 

4. Aim for Target Menu 

5. Drag Menu 

a. No Drag 

b. Simple Drag 

c. Complex Drag (calculation from drag coefficients) 

6. Outputting Figures and Data 

a. To the Main Draw Area 

b. To a separate figure 

c. Output data plots and results file 

72 
 



 

Figure 3.51 Swing Launching Application 

 

7. Analysis Button 

8. Help File 

 

3.3.1 Toolbar 

The Toolbar Menu, shown in Figure 3.52, contains all the file management and 

user option controls.  The Toolbar consists of four headers, File, Display, Units, and 

Help. 

73 
 



 

Figure 3.52  Swing Launching Application, Toolbar 

 

 

The user can toggle display options  

Show Simple Path - Draws the 'No Drag' (blue) path 
 
Show Drag Path - Draws the Drag Path (green), either 'Simple' or 
'Complex' 
 
Show Text Results - Toggles output of onscreen data to the display 
plot. 

Figure 3.53  Swing Launching Application, Display Menu 

 
 

The file menu is only to close the application, or print the figure.  There is not a 

need to save models, because the user entry is limited to a few pieces of data. 

 The display header, shown in Figure 3.53, controls the output to the screen, 

shown in Figure 3.54.  It’s possible to toggle each path on and off as well as the onscreen 

results.   

The Units header, shown in Figure 3.55, informs the application which units to 

use for the entries.  When the user selects a unit system, a figure appears, shown in Figure 

3.56.  The figure lists the units for each user entry and remains until the user closes the 

figure window.  Optimally, the units would be next to each user entry, but there isn’t 

enough room for all the menus and the units. 

 

 

 

74 
 



 

Figure 3.54  Swing Launching Application, Output 

   

 

Figure 3.55 Swing Launching Application, Units Selection Menu 

 

75 
 



 

Figure 3.56 Swing Launching Application, Units Display 

 

76 
 



 

dt - Enter the time increment.(seconds)  

Vt - Initial Velocity of vehicle at start angle 

vehicle mass - total mass of swing vehicle and 

projectile 

Figure 3.57  Swing Launching Application, Properties Menu 

 

3.3.2 Properties Menu 

 In this menu, shown in Figure 3.57, the user can enter values for the time 

increment, an initial tangent velocity Vt (a value or zero), and the vehicle’s mass.  The 

vehicle mass is needed to calculate the change in potential energy between the start and 

release angle.  The process of choosing a time increment is discussed in chapter 4. 

 

3.3.3 Swing Energy Menu 

This menu, shown in Figure 3.58, can simulate a swinging vehicle.  Figure 3.59 

corresponds to a projectile starting a 90o and swinging to 300o, and then releasing tangent 

to the release angle, the X and Y values specify the center of the swing arm.  The radius of 

the swing arm is specified by the radius value. The start angle and release angle values 

control the initial and final position of the vehicle.  The loss value will account for any 

losses attributed to the energy transfer.  The release of the projectile can either be tangent  

77 
 



 

Calculate Swing Energy  
X, Y - Coordinates of swing 
center point 
 
radius - Swing radius 
 
start angle - start angle 
 
release angle - release angle 
 
loss - amount of energy lost, 0 
to 100. 

Particle Release Angle 
With release - With release angle 
 
Offset - Offset from release angle 
 
Specify - A particular release 
 
projectile mass - Mass of projectile 
(for drag calculations) 

Figure 3.58  Swing Launching Application, Swing Energy Menu 

 

 

Figure 3.59  Swing Launching Application, User Input 

 

78 
 



 

Figure 3.60  Swing Launching Application, Aim for Target Menu 

 

to the release angle value, or at an offset to the release angle value, or at a specified 

value. 

 

3.3.4 Aim for Target Menu 

The aim for target menu, shown in Figure 3.60, draws a rectangular target for the 

projectile.  The user specifies a rectangular target using the values Xmin, Xmax, Ymin, 

and Ymax. When the projectile’s path moves inside the target, the path terminates.  If the 

path never moves inside the target, the path terminates when the project hits the ground at 

y = 0.  Figure 3.61 shows the results with and without aiming for a target. 

 

3.3.5 Drag Menu 

The Drag Menu, shown in Figure 3.62, is for the user to select the type of loss 

associated with drag.  There are three options, ignoring drag, a simple drag loss  

79 
 



  

Figure 3.61  Swing Launching Application, With  (left) and Without (right) Target 

Menu 

 
 

No Drag - Drag is not considered  
 
Simple Drag - Reduces the launch velocity by a 
percentage. 
 
Complex Drag - Calculates drag with respect to the 
coefficients and the instantaneous velocity. 

Figure 3.62  Swing Launching Application, Drag Menu 

 

80 
 



 

 

Figure 3.63  Swing Launching Application, Figure Output 

 
 

calculation, and a coefficient drag calculation.  The drag calculations are the same as 

outlined in section 3.2.7. 

 

3.3.6 Output to Figure 

It is possible the user will want to modify the plot of the projectile path, or view 

the velocity data.  By placing a check next to the Output to Figure command, as in Figure 

3.63, when the model is analyzed, the output will draw into a separate figure window 

instead of inside the application.  Now, the user can modify the plot from the Command 

Window.  By selecting the Output Data command, as in Figure 3.64, the application will 

make a plot of the velocity versus the x-position, a plot of the angle of the velocity versus  

81 
 



 

Figure 3.64  Swing Launching Application, Data Output 

 

the x-position, and write the raw data to an output file.  The user can use the output file 

for additional analysis that is specialized to a particular team project. 

 

3.3.7 Analysis Button 

The analysis button, shown in Figure 3.65, initiates the application.  Each variable 

coefficient is transferred to a variable inside the function.  Based on the user selections, 

the application performs the necessary calculations.  An example output is shown in 

Figure 3.66.  

 

82 
 



 

 

Figure 3.65  Swing Launching Application, Analyze Button 

 

 

 

Figure 3.66  Swing Launching Application, Analysis Output 

 

83 
 



3.3.8 Help File 

The help file contains two main sections, feature information and walkthrough 

tutorials.  The user can access the help file by clicking on the “Help” item on the toolbar, 

and then selecting “User Guide”.  Once clicked, a web page help file appears.  The 

feature information is similar to the above listings.  If the user has a question about a 

particular menu, then he can open the help file and click on the topic of choice.  The 

sample problems contain walkthrough tutorials, which help the users build their first  

model.  The walkthroughs will be discussed in detail in chapter 4 as verification 

problems. 

The help file’s homepage is shown in Figure 3.67.  The user can find feature 

menu information by clicking on the list on the left, or by clicking on the picture of a 

particular feature menu. 

 

 

Figure 3.67  Swing Launching Application, Help File 

84 
 



Chapter 4 - Verification and Tutorials 

Various example and homework solutions, from the Hibbeler Statics [15] and 

Dynamics [16] textbooks and the Boresi-Schmidt Engineering Mechanics [14] textbook, 

validate the calculations of each application and some examples are used as walkthrough 

tutorials.  The solutions were chosen because they relate to a particular analysis for each 

application.  The following is the list of verification problems used for each application. 

• Truss Solver Application Verification Problems 

o Hibbeler Statics, Example 6-1, page 262 – Simple 2D Model 

o Hibbeler Statics, Example 6-2, page 263 – Simple 2D Model 

o Hibbeler Statics, Homework 6-30, page 279 – Complicated 2D Model 

o Hibbeler Statics, Homework 6-62, page 286 – 3D Model 

• Ramp and Spring Energy Dynamics Verification Problems 

o Hibbeler Dynamics, Homework 14-28, page 179 – Ramp Energy 

Verification 

o Hibbeler Dynamics, Example 14-4, page 170 – Spring Energy Verification 

o Hibbeler Dynamics, Homework 12-86, page 45 – Projectile Motion 

Verification 

o Boresi / Schmidt Example 14-7, page 150 - Drag Verification from 

• Swing Energy Dynamics Verification Problems 

o Hibbeler Dynamics, Homework 14-31, page 179 – Swing Energy 

Verification 

85 
 



4.1 Truss Solver Application Verification 

 The truss solver is capable of solving a wide range of truss types.  Hibbeler Statics 

textbook examples 6-1 and 6-2 and homework problems 6-30 and 6-62 are used to verify 

the accuracy of the calculated answer and to serve as a walkthrough tutorial for using the 

application. 

 

4.1.1 Hibbeler Example 6-1 

 Example 6-1 is a very simple truss to solve, (see Figure 4.1).  Before the truss can 

be analyzed, it must be loaded into the application.  This process includes specifying the 

joint numbers and coordinates, member connectivity, constraints, and forces.  The 

member and reaction forces will be calculated from the entered information. 

 

 

Figure 4.1  Hibbeler Example 6-1 

86 
 



4.1.1.1 Specify and Number Model Information 

The first step for the user is to make a list of all joints, members, constraints, and 

forces, as shown in Tables 4.1, 4.2, 4.3, and 4.4, respectively.  Even though this model is 

2D, the information for every feature needs to be entered as a 3D model.  For instance, 

this model is built on the XZ plane.  All joints must have the same value for the y 

component, most likely zero.  If the y values are not the same, the model does not exist 

on the same XZ plane.  The constraint entry for the Y-axis degree of freedom must be 

free.  If constrained, the model will be over constrained because no degree of freedom 

exists in the y direction on the XZ plane.  The force value for FY must be zero, as well.  

The “Error Checking” “Validate 2D Plane” option informs the user if any of these errors 

exist in the 2D model, as discussed in section 3.1.1. 

 

Table 4.1  Hibbeler Example 6-1 Joint Information 

Joint Num X-Pos 
(meters)

Y-Pos 
(meters)

Z-Pos 
(meters)

1 0 0 0 
2 0 0 2 
3 2 0 0 

 

Table 4.2  Hibbeler Example 6-1 Member Information 

Member Num Joint 1 Joint 2 

1 1 2 
2 1 3 
3 2 3 

 

87 
 



Table 4.3  Hibbeler Example 6-1 Constraint Information 

Constraint Num CX CY CZ Joint Num 
1 1 0 1 1 
2 0 0 1 3 

 

Table 4.4  Hibbeler Example 6-1 Force Information 

Force Num FX 
(Newtons)

FY 
(Newtons)

FZ 
(Newtons) Joint Num 

1 500 0 0 2 
 

For constraints, a value of “1” represents a constraint being present and a value of 

“0” means the joint has a degree of freedom for that direction.  For instance, if the 

constraint XYZ values are (1,0,1), then the constraints exist on the X and Z-axes, while 

no constraint is on the Y-axis.  If the joint is completely unconstrained, then no 

information needs to be added.  In fact, the application will report an error if the user 

attempts to add constraint information of (0, 0, 0) to a joint. 

 

4.1.1.2 Enter Joint Information 

Once the model information is organized, it can be entered into the application.  

First, ensure that the “Joint” feature is highlighted in the Feature Menu and “Add 

Feature” is selected in the Modify Menu, they do not have to be selected again.  Enter the 

3D coordinates for joint 1 (0,0,0) into the Enter Values Menu and then click Apply.  

Repeat the data entry for joints 2 (0,0,2) and 3 (2,0,0).  Figures 4.2 and 4.3 visually 

progress through each joint for this truss. 

88 
 



 

 

Figure 4.2  Adding joint 1 to the model 

 

        

Figure 4.3  Results of adding joint 2 (left) and joint 3 (right) to the model 

89 
 



4.1.1.3 Enter Member Data 

Next, select the “Member” feature in the Feature Menu and ensure “Add Feature” 

is selected in the Modify Menu.  Enter the joint connectivity for member 1 (1,2) into the 

Enter Values Menu, and then click Apply.  Repeat the data entry for members 2 (1,3) and 

3 (2,3).  The order of the connectivity does not have an affect on the application.  For 

instance, member 1 can be (1,2) or (2,1).  Figures 4.4 and 4.5 show the members being 

added to the model. 

 

 

Figure 4.4  Steps to adding member 1 to the model 

90 
 



      

Figure 4.5 Results of adding member 2 (left) and member 3 (right) to the model 

 

4.1.1.4 Enter Constraint Data 

Select the “Constraint” feature in the Feature Menu and ensure “Add Feature” is 

selected in the Modify Menu.  Enter the “Joint Number”, for the first constraint enter a 

“1” to attach the constraint data to joint 1.  In the Modify Menu, enter the 3D constraint 

data for the constraint at joint 1 (1,0,1) into the Enter Values Menu, and then click Apply 

in the Modify Menu.  The “Joint Number” in the Modify Menu attaches the constraint 

data to the specified joint.  Repeat the data entry for the second constraint at joint 2 

(0,0,1).  Figures 4.6 and 4.7 show the constraints being added to the model.  The 

constraint at joint 1 is a pin restraint, so it prohibits motion in two directions, the x and z-

axes (1, 0, 1).   

The constraint at joint 2 is a roller, and prohibits motion perpendicular to the 

roller, in this case, the z-axis (0, 0, 1).  The total number of constraints is three; this value 

is the correct number of constraints for a 2D analysis. 

  

91 
 



 

Figure 4.6  Steps to adding a new constraint 

 

 

Figure 4.7  Results of adding all model constraints 

 

92 
 



 

Figure 4.8  Steps to adding a new force 

 

4.1.1.5 Enter Force Data 

Select the Force option in the Feature Menu and “Add Feature” is selected in the 

Modify Menu.  Enter the “Joint Number”, for this force enter a “2” to attach the force 

data to joint 2.  In the Modify Menu, enter the 3D force data applied at joint 2 (500,0,0) 

into the Enter Values Menu, and then click Apply in the Modify Menu.  Enter the 3D 

force data for the force at joint 2 (500,0,0) into the Enter Values Menu, and then click 

Apply.  The “Joint Number” in the Modify Menu attaches the force data to the specified 

joint.  Figure 4.8 shows the result of adding the force to the model. 

93 
 



4.1.1.6 Analyze 

Once all the model information has been loaded, as in Figure 4.9, clicking the 

“Analyze” button will solve the model and display the results, as shown in Figure 4.10.   

It is important to make certain the 2D analysis plane matches the plane used for the 

model.  If not, the analysis function will remove matrix entries that are required in order 

to solve the problem.  If an incorrect matrix is used, the program will not calculate the 

correct answer.  If the incorrect plane is set for this model, it usually results in “Inf” for 

the member and reaction force values. 

 

4.1.1.7 View Results 

By clicking the “Model Details” button, the model information is written to a text 

file and displayed in the Matlab Command Window, shown in Table 4.5.   The 

application results match the answers from the Hibbeler textbook.  This application 

accurately solves for member and reaction forces in simple 2D trusses. 

94 
 



 

Figure 4.9  Example 6-1 complete model 

 

 

Figure 4.10  Example 6-1 analysis 

 

 

95 
 



Table 4.5  Hibbeler Example 6-1 Reaction Forces 

Hibbeler Value 
(Newtons) 

Force Value 
(Newtons) 

Tension / 
Compression Note Member / 

Joint Num 
500 500.00 T Member 1 
500 500.00 T Member 2 

707.1 707.11 C Member 3 
-500 -500.00  X constraint at Joint 1 
-500 -500.00  Z constraint at Joint 1 
500 500.00  Z constraint at Joint 3 

 

4.1.2 Hibbeler Example 6-2 

 Similar to Example 6-1, the force in each member shown in Figure 4.11 is to be 

determined as well as the reaction forces from the constraints.  The main purpose of this 

example is for verification of the program.  While this example provides the users with an 

additional simple example to help familiarize them with the application, a detailed step-

by-step walkthrough of this example is not provided. 

The model information for all joints, members, constraints, and forces is shown in 

Tables 4.6, 4.7, 4.8, and 4.9, respectively and the completed model is shown in Figure 

4.12.  The analysis results are shown in Figure 4.13 and are listed in Table 4.10. 

96 
 



 

Figure 4.11 Hibbeler Example 6-2 

 
Table 4.6  Hibbeler Example 6-2 Joint Information 

Joint Num X-Pos 
(meters)

Y-Pos 
(meters)

Z-Pos 
(meters)

1 0 0 0 
2 2 0 2 
3 4 0 0 
4 2 0 1.15 

 

 

Table 4.7  Hibbeler Example 6-2 Member Information 

Member Num Joint 1 Joint 2 

1 1 2 
2 3 2 
3 3 4 
4 2 4 
5 1 4 

 

97 
 



 

Table 4.8  Hibbeler Example 6-2 Constraint Information 

Constraint Num CX CY CZ Joint Num 
1 1 0 1 1 
2 0 0 1 3 

 

 

Table 4.9  Hibbeler Example 6-2 Force Information 

Force Num FX 
(Newtons)

FY 
(Newtons)

FZ 
(Newtons) Joint Num 

1 3000 0 0 2 
 

 

Figure 4.12  Hibbeler Example 6-2 entered into truss solver 

98 
 



 

 

Figure 4.13  Hibbeler Example 6-2 Analysis Results 

 
 

Table 4.10 Hibbeler Example 6-2 Analysis Results 

Hibbeler Value 
(Newtons) 

Force Value
(Newtons) 

Tension / 
Compression Note Member / 

Joint Num 

776 776.45 C Member 1 
5020 5019.09 C Member 2 
4100 4098.07 T Member 3 
4100 4098.07 T Member 4 
4100 4098.07 T Member 5 
N/A -3000.00  X constraint at Joint 1 
N/A -1500.00  Z constraint at Joint 1 
N/A 1500.00  Z constraint at Joint 3 

 

99 
 



The application’s calculations vary slightly from the provided solution.  However, 

the Hibbeler text provided these answers to three significant figures.  The application’s 

results do match the Hibbeler solution to three significant figures.  Once again, the 

application accurately solves for member and reaction forces in a simple 2D model. 

 

4.1.3 Hibbeler Homework 6-30 / 6-31 

Homework 6-30 and 6-31 represents a complicated 2D truss, (Figure 4.14).  

Homework 6-30 asks for the forces in members BC, HC, and HG, and homework 6-31 

asks for forces in members GF, CF, and CD.    The main purpose of this example is for 

verification of the program.  Also, this example will give the users a complicated 2D 

example to help familiarize themselves with the application.  It is not a detailed 

walkthrough.   

 

Figure 4.14  Figure for Hibbeler homework problems 6-30 and 6-31 

 

100 
 



The lists of model information for all joints, members, constraints, and forces are 

shown in Tables 4.11, 4.12, 4.13, and 4.14, respectively.  The completed model is shown 

in Figure 4.15.  The analysis results are shown in Figure 4.16 and Table 4.15.  After 

successfully completing this practice problem, the user should be comfortable solving a 

moderately complicated 2D problem with this application. 

The results are accurate to three significant figures compared to the provided 

solutions.  Therefore, it can be concluded that this application correctly calculates the 

member and reaction forces of complicated 2D trusses within the precision used by the 

Hibbeler statics textbook. 

 

 
Table 4.11  Hibbeler Homework 6-30 / 6-31 Joint Information 

Joint Num X-Pos 
(meters)

Y-Pos 
(meters)

Z-Pos 
(meters)

1 0 0 0 
2 3 0 0 
3 6 0 0 
4 9 0 0 
5 12 0 0 
6 9 0 3 
7 6 0 3 
8 3 0 3 

 

101 
 



Table 4.12 Hibbeler Homework 6-30 / 6-31 Member Information 

Member Num Joint 1 Joint 2 
1 1 2 
2 3 2 
3 3 4 
4 5 4 
5 5 6 
6 4 6 
7 7 6 
8 6 3 
9 7 3 
10 7 8 
11 3 8 
12 2 8 
13 1 8 

 

Table 4.13 Hibbeler Homework 6-30 / 6-31 Constraint Information 

Constraint Num CX CY CZ Joint Num 
1 0 0 1 1 
2 1 0 1 5 

 

Table 4.14 Hibbeler Homework 6-30 / 6-31 Force Information 

Force Num FX 
(Newtons)

FY 
(Newtons)

FZ 
(Newtons) Joint Num 

1 0 0 -12000 2 
2 0 0 -14000 3 
3 0 0 -18000 4 

 

 

102 
 



 

Figure 4.15  Hibbeler Homework 6-30 / 6-31 entered into truss solver 

 

Figure 4.16  Hibbeler Homework 6-30 / 6-31 analysis results 

103 
 



 

Table 4.15  Hibbeler Homework 6-30 / 6-31 Results 

Hibbeler Value 
(Newtons) 

Force Value
(Newtons) 

Tension / 
Compression Note Member / 

Joint Num 

N/A 20500.00 T Member 1 
20500 20500.00 T Member 2 
23500 23500.00 T Member 3 

N/A 23500.00 T Member 4 
N/A 33234.02 C Member 5 
N/A 18000.00 T Member 6 

29000 29000.00 C Member 7 
7780 7778.17 T Member 8 
N/A 0.00 - Member 9 

29000 29000.00 C Member 10 
12000 12020.82 T Member 11 

N/A 12000.00 T Member 12 
N/A 28991.38 C Member 13 

20500 20500.00  Z constraint at Joint 1 
0 0.00  X constraint at Joint 5 

23500 23500.00  Z constraint at Joint 5 
 

104 
 



4.1.4 Hibbeler Homework 6-62 / 6-63 

These homework problems illustrate and validate the truss solver application’s 

ability to solve 3D truss models.  Homework 6-62 asks for the forces in members BE, 

DF, and BC, and homework 6-63 asks for the forces in members AB, CD, and ED, 

(Figure 4.17).  The lists of model information for all joints, members, constraints, and 

forces are shown in Tables 4.16, 4.17, 4.18, and 4.19, respectively.  The completed model 

is shown entered into the application in Figure 4.18.   

Previously in the 2D trusses, the pin restricted motion in two directions, such as 

(1, 0, 1).  However, in 3D truss, the constraints must restrain the truss from translation 

and rotation along the three axes.  A pin can constrain motion in all three directions, as in 

the constraint on joint 1 (1, 1, 1).  A pin constraint represents a fixed joint and constraints 

motion for all available degrees of freedom for that joint.   In 2D models, joints have two 

degrees of freedom.  For 3D model, joints have three degrees of freedom.   

The analysis results are shown in Figure 4.19 and Table 4.20. 

For this example, the results are accurate to four significant figures, except for 

member 1, this answer was provided to three significant figures and was correct to that 

precision.  This application correctly calculates 3D trusses within the precision used by 

the Hibbeler statics textbook.   

The truss solver is capable of solving complicated 3D trusses.  After completing 

this example, the users should be able to use this application to analyze their 3D truss 

bridge designs for the engage team projects. 

 

105 
 



 

 

 

Figure 4.17  Figure for Hibbeler homework problems 6-62 and 6-63 

 

Table 4.16  Hibbeler Homework 6-62 / 6-63 Joint Information 

Joint Num X-Pos 
(meters)

Y-Pos 
(meters)

Z-Pos 
(meters)

1 0 0 0 
2 0 -3 0 
3 2 -3 0 
4 1 -3 1.73 
5 1 0 1.73 
6 2 0 0 

 

106 
 



Table 4.17 Hibbeler Homework 6-62 / 6-63 Member Information 

Member Num Joint 1 Joint 2 
1 1 2 
2 3 2 
3 3 4 
4 2 4 
5 5 4 
6 5 1 
7 5 6 
8 3 6 
9 5 2 
10 4 6 
11 1 6 

 

Table 4.18  Hibbeler Homework 6-62 / 6-63 Constraint Information 

Constraint Num CX CY CZ Joint Num 

1 1 1 1 1 
2 0 1 0 5 
3 0 1 1 6 

 

Table 4.19  Hibbeler Homework 6-62 / 6-63 Force Information 

Force Num FX 
(Newtons)

FY 
(Newtons)

FZ 
(Newtons) Joint Num 

1 0 0 -2000 2 
2 0 0 -2000 3 

107 
 



 

 

Figure 4.18  Hibbeler Homework 6-62 / 6-63 entered into truss solver 

 

 

 

108 
 



 

Figure 4.19 Hibbeler Homework 6-62 / 6-63 analysis results 

 

109 
 



Table 4.20  Hibbeler Homework 6-62 / 6-63 Results 

Hibbeler Values 
(Newtons) 

Force Value
(Newtons) 

Tension / 
Compression Note Member / 

Joint Num 

3460 3464.20 C Member 1 
1150 1154.73 C Member 2 
2309 2309.42 T Member 3 

0 0.00 T Member 4 
N/A 3464.20 T Member 5 
N/A 2309.42 C Member 6 
N/A 0.00 - Member 7 
0 0.00 T Member 8 

4160 4163.43 T Member 9 
4160 4163.43 C Member 10 
N/A 1154.73 T Member 11 
N/A 0.00  X constraint at Joint 1 
N/A -3464.20  Y constraint at Joint 1 
N/A 2000.00  Z constraint at Joint 1 
N/A 6928.41  Y constraint at Joint 5 
N/A -3464.20  Y constraint at Joint 6 
N/A 2000.00  Z constraint at Joint 6 

 

4.2 Ramp Dynamics Verification Problems 

For the Ramp Dynamics Application, various example and homework problems 

were used to validate the calculations of individual aspects of the application.  Homework 

14-28 demonstrates the application’s ability to calculate the proper exit velocity as a 

function of the ramp height change.  Example 14-4 validates the calculation of the 

conversion of stored linear spring energy to kinetic energy.  Homework 12-86 

demonstrates the effects of the time increment on the solution accuracy.  The Boresi / 

Schmidt Example 14-7 verifies the simple and complex drag calculation. 

 

110 
 



4.2.1 Hibbeler Homework 14-28 

The 2-lb brick slides down a smooth roof, at point A it has a velocity of 5 ft/s, 

(see Figure 4.20).  Determine the speed of the block just before it leaves the surface at 

point B, the distance d from the wall to where it strikes the ground, and the speed at 

which it hits the ground.  Table 4.21 contains the data that needs to be entered into the 

application. 

The time increment of 0.00001 seconds was used because the Hibbeler solution 

for time also contains five significant figures.  When choosing a time limit, the user must 

consider the situation of the analysis.  The necessary time increment precision depends on 

the problem.  A method can be applied to determine an acceptable time increment.  First, 

analyze the model with a relatively large increment, like 0.1 seconds.  Then, reduce the 

time increment by a factor of 10, until the calculation remains constant or the compute 

time becomes excessive relative to the importance of the problem.  To illustrate this 

process, the results of time limits of 1, 0.1, 0.001, 0.0001, and 0.00001 seconds will be 

compared to the Hibbeler answer for five significant figures. 

The remaining inputs are in the Ramp Energy Menu.  The Vmag of 5 ft / s is the 

initial velocity of the sliding box at point A.  The initial height is 45 feet and the box 

slides off the ramp when 30 feet from the ground.  So, the dy value is –15 feet.  Entering 

the angle requires quick calculation.  This angle is 36.87 degrees CW from the x-axis, 

(Figure 4.21).  The angle needs to be converted from the CW direction to the CCW 

direction.  The ramp angle is 323.13 degrees CCW from the x-axis. 

 

111 
 



 

 

Figure 4.20  Figure for Hibbeler homework 14-28 

 

 

Table 4.21 Ramp Energy Application Data 

Variable Value Menu 
dt 0.00001 Time Increment 

Vmag 5 Ramp Energy 
angle 323.13 Ramp Energy 
height 45 Ramp Energy 

dy -15 Ramp Energy 
Units English Toolbar 

 

 

 

112 
 



 

Figure 4.21  Ramp angle CCW from the x-axis 

 

When the data is entered, the Time Increment Menu and Ramp Energy Menu 

should look like Figure 4.22.  The Launch Energy Menu should be unchecked, because 

there is no spring energy in this problem.  Once this data is entered, click “Analyze”.  The 

results of the 0.00001 seconds model calculate the landing time accurately to five 

significant figures, as shown in Table 4.22 and Figure 4.23. 

The results of the application for a time increment of 0.00001 seconds are shown 

in Table 4.23.  The application calculates the correct answer to the precision of the 

Hibbeler textbook.  However, the students input data for their team project will not be 

accurate to beyond two significant figures, so precision of the 0.01 seconds time 

increment is sufficient accuracy for the precision capabilities available for typical team 

projects. 

113 
 



    

Figure 4.22  Hibbeler homework 14-28 data into Ramp Energy Menu 

  

Table 4.22  Hibbeler homework 14-28 Time Increment Output 

Time Increment 
(Seconds) 

Time 
(Seconds) 

% diff from 
Hibbeler answer 

Compute time 
On P3 700 MHz 

Hibbeler 0.89916 -  

1 1 10.08400% >1 second 
0.1 0.9 0.09333% >1 second 
0.01 0.90 0.09333% >1 second 
0.001 0.900 0.09333% 1 second 
0.0001 0.8992 0.00445% 20 seconds 
0.00001 0.89916 0.00000% 30 minutes 

 

 

Figure 4.23  Application results for Hibbeler homework 14-28 

114 
 



Table 4.23 Ramp Energy Application Output 

Variable Application Answer Text Answer 

Velocity at B 
Vx = 25.184 ft / s 
Vy = -18.888 ft / s 

Vmag = 31.480 ft / s 
Vmag = 31.5 ft / s 

Final Velocity 
 

Vx = 25.184 ft / s 
Vy = -47.841 ft / s 

Vmag = 54.064 ft / s 
Vmag = 54.1 ft / s 

Length d d = 22.645 ft d = 22.6 ft 
Time from B to ground t = 0.89916 sec t = 0.89916 sec 

 
 

This application accurately calculates the launch velocity from a block with initial 

velocity sliding down a ramp.  Also, the block’s flight path is correct. 

 

4.2.2 Hibbeler Example 14-4 

The platform P shown in Figure 4.24 has a negligible mass and is tied down so 

that the 0.4-meter long cords keep a 1-meter long spring compressed 0.6 meter when 

nothing is on the platform.  A 2-kg block is placed on the platform and released from rest 

after the platform is pushed down 0.1-meter.  Determine the maximum height h the block 

rises in the air, measured from the ground.  The data that needs to be entered in the Ramp 

Energy Menu and Launch Energy Menu is listed in Table 4.24. 

In this case, the Ramp Energy Menu and Launch Energy must be checked to have 

the application account for both energy effects.   

In the Ramp Energy Menu, the 2-kg block starts from rest so the Vmag value is 0 

with the height value is 0.3 meters, and the dy value of 0.1 meters accounts for the  

115 
 



 

 

Figure 4.24  Hibbeler Example 14-4, Platform, unloaded (left) and loaded (right) 

  

Table 4.24  Hibbeler Example 14-4 data entered into application 

Variable Value Menu 

dt 0.01 Time Increment 
 

k  200 Spring Energy 
x_final 0.7 Spring Energy 

x_initial 0.6 Spring Energy 
mass of projectile 2 Spring Energy 

Loss 0 Spring Energy 
 

Vmag 0 Ramp Energy 
angle 90 Ramp Energy 
height 0.3 Ramp Energy 

dy 0.1 Ramp Energy 
mass of vehicle 2 Ramp Energy 

Loss  0 Ramp Energy 
 

units Metric Toolbar 
 

 

116 
 



 

Figure 4.25  Hibbeler Example 14-4 Time Increment, Ramp Energy, and Spring 

Energy Menu Settings 

 

upward movement of the spring.  The angle is set to 90.  The mass value is 2-kg.  As an 

assumption, the loss associated with the kinetic energy transfer is 0%.   

In the Launch Energy Menu, the linear spring has a spring constant k of 200 N/m 

and is compressed by 0.7 meters and can expand to 0.6 meters.  Therefore, the x_initial 

value is 0.6 meters and the x_final value is 0.7 meters because the spring is initially 

compressed 0.6 meters and the initial applied energy to the spring resulted in a final 

compression of 0.7 meters before the block is released.  The mass of the projectile value 

must be set to 2-kg.  There is no assumed loss associated with the spring, so the loss 

value is 0%.  To user inputs to solve the Hibbeler example are shown in Figure 4.25.   

For this problem, a time increment of 0.01 calculates the height value to the 

precision from the Hibbeler textbook.  An incremental time decrease starting at 0.1 

seconds similar to homework problem 14-28 determines the necessary time increment.  

The results are shown in Figure 4.26 and Table 4.25.  The calculation is accurate to the 

precision of the Hibbeler textbook.  This application accurately calculates a linear spring 

launched projectile with a reduction in kinetic energy from a change in height. 

 

117 
 



 

Figure 4.26  Hibbeler Example 14-4 application results 

 

Table 4.25 Hibbeler Example 14-4 application results 

Variable Application Answer Text Answer 
Max height (meters) 0.963 0.963 

 

118 
 



4.2.3 Hibbeler Homework 12-86 

The fireman standing on the ladder wishes to direct the flow of water from his 

hose to the fire at point B, (Figure 4.27).  Determine the two possible angles θ1 and θ2 

that send the water into the upper corner of the window.  Water exits from the hose at VA 

= 300 ft / s.  Table 4.26 contains the data that needs to be entered into the application. 

A value of 0.001 seconds was used for the time increment.  However, the time 

increments of 1, 0.1, 0.01, and 0.001 seconds were studied.  The initial velocity Vmag 

was defined in the problem to be 300 feet / sec.  The direct height is not specified in the 

problem.  However, the water hose is thirty feet above the top of the window.  The water 

does not use a ramp; therefore, the dy value is 0.  To account for the window, the Aim for 

Target Menu needs to be checked and the upper left hand corner of the target must start 

and the coordinates (60, 10), shown as Xmin and Ymax.  The lower right hand corner is 

not specified by the problem.  For this analysis, (65, 0) were used as the Xmax and Ymin 

values.  To best model this problem, the projectile’s path must hit as close to the upper 

left hand corner as possible. 

The application is not capable of calculating the launching angles from user data.  

Instead, the Hibbeler solutions will be used for the desired angles.  If the student has not 

calculated the angles, he can try various launching angles until the path intersects with 

the upper corner of the target.   

 

119 
 



 

 

Figure 4.27  Hibbeler Homework 12-86 Figure 

 

Table 4.26  Hibbeler Homework 12-86 data entered into application 

Variable Value Menu 

dt 0.001 Time Increment 
Vmag 300 Ramp Energy 
Angle 

(CCW from x-axis) 
334 and 

89.4 (89.388) Ramp Energy 

height 40 Ramp Energy 
dy 0 Ramp Energy 

units English Toolbar 

Target 
Xmin = 60  Xmin = 65 

 
Ymin = 0  Ymax = 10 

Aim for Target 

  

120 
 



This homework problem has two possible mathematical solutions of 26 degrees 

CW and 89.4 degrees CCW of the x-axis, shown in Figure 4.28.  The direct path of 26 

degrees (334 degrees CCW) is accurate compared to the Hibbeler solution, as in Figure 

4.29.  However, with the Hibbeler provided precision, the lofting angle of 89.4 CCW 

solution falls short of the target, as in Figure 4.30.   

The projectile is supposed to land into the top, left corner of the target, as is the 

case, when the launch angle is 334 degrees.  However, because of the high arcing path 

when the angle is 89.4 degrees, the projectile does not hit the target as predicted by the 

Hibbeler solution.  Figure 4.31 is zoomed to a view scaled to fit the projectile’s path near 

the target.  The projectile should have hit the target, but instead it landed 1.049 feet short.  

When the precision of the launch angle is increased from 89.4 to 89.388, the application 

is capable of calculating a more accurate answer, shown in Figure 4.32.  In fact, as the 

time increment is decreased, the lower precision angle decreases in accuracy, whereas the 

more precise angle calculation increases in accuracy, in Table 4.27. 

The engage team projects do not require the precision necessary to calculate the 

exact high arc solution.  However, the precision of the analysis is directly related to the 

precision of the initial angle.  On the direct path of 334 degrees, the projectile hits the 

target in 0.23 seconds; the projectile misses the target for the time increments of 0.1 and 1 

second, as shown in Figure 4.33.  The path goes through the target in the upper left hand 

corner, but the time increment did not calculate for an entry while inside the target.  The 

size of the target is small relative to the length traveled over a time increment.  A smaller 

time increment fixes this issue. 

121 
 



 

 

Figure 4.28  Possible launch angles CCW from x-axis 

 

 

Figure 4.29  Hibbeler Homework 12-86 “Low Arc” solution 

122 
 



 

 

Figure 4.30  Hibbeler Homework 12-86 “High Arc” solution 

 

 

Figure 4.31  Hibbeler Homework 12-86 “High Arc” solution focused on target 

123 
 



 

 

Figure 4.32 Hibbeler Homework 12-86 “High Arc” solution, with increased launch 

angle precision 

 

124 
 



Table 4.27 Hibbeler Homework 12-86 Time Increment and Angle Precision Results 

Time Increment 
(seconds) 

Angle 
(degrees) 

X position 
(feet) 

Percent difference 
from Hibbeler 

Hibbeler 89.4 60 - 
    
1 334 Through target - 

0.1 334 Through target - 
0.01 334 62.017 3.3617% 
0.001 334 60.129 0.2150% 

    
1 89.4 59.689 0.5183% 

0.1 89.4 59.061 1.5650% 
0.01 89.4 58.872 1.8800% 
0.001 89.4 58.847 1.9217% 

    
1 89.388 60.883 1.4717% 

0.1 89.388 60.242 0.4033% 
0.01 89.388 60.050 0.0833% 
0.001 89.388 60.024 0.0400% 

   

  

 

125 
 



 

Figure 4.33 Hibbeler Homework 12-86 Direct Path missing target 

 

4.2.4 Boresi / Schmidt Example 14-7, Drag Verification 

A batter hits a baseball at a height of 4 feet above the ground, (Figure 4.34).  The 

ball leaves the bat with a speed of Vo = 90 mi / hr (132 ft / s), at an angle of 40 relative to 

the ground.  The mass of the ball is m = 0.009931 slugs, and the radius of the ball is r = 

1.44 in.  The mass density of the air is 0.002328 slug / feet 3.  Determine the horizontal 

distance R traveled by the ball before it strikes the ground.  First, neglect drag.  Then, 

assume a drag coefficient of k = 0.001 lb-s / ft.  The data is shown in Table 4.28. 

The time increment of 0.001 seconds is used because time becomes less of a 

factor in the consistency of the path results.  In the Ramp Energy Menu, The initial 

velocity, Vmag, is set to 132 feet / sec, the angle is set to 40 degrees CCW of the x-axis,  

126 
 



 

Figure 4.34  Boresi / Schmidt Example 14-7 Figure 

 
 
 

Table 4.28  Boresi / Schmidt Example 14-7 data entered into application 

Variable Value Menu 

dt 0.001 Time Increment 
Vmag 132 Ramp Energy 
Angle 

(CCW from x-axis) 40 Ramp Energy 

height 4 Ramp Energy 
dy 0 Ramp Energy 

mass 0.009931 Ramp Energy 
k 0.001 Drag 

units English Toolbar 
 

   

 

127 
 



 

 

Figure 4.35 Boresci / Schmidt Drag Example 14-7 User Entry 

 

the initial height is 4 feet, the mass is 0.009931 slugs, and there is no ramp, which results 

in a dy of 0.  To account for drag, the coefficient of drag value k is 0.001 lb-s/feet and the 

“Complex Drag” option must be selected.  The user entry will match Figure 4.35. 

 The results are shown in Table 4.29 and Figure 4.36.  Once again, the application 

calculates a very precise answer when neglecting drag, but some error when considering 

drag.  The results include a simple drag calculation. 

An initial velocity loss of 27% was chosen because the effect of the complex drag 

distance (393 feet) resulted in 27% less distance when compared to the neglected drag 

distance (537 feet).  The simple drag calculation is to be used as a quick estimation if the 

student has no coefficient of drag for a complex calculation.  For this example, the 

assumption of 27% loss in initial velocity was within 0.3% of the length, but 8% error for 

the time calculation.  Obviously, this simple drag calculation is not the correct method for  

128 
 



Table 4.29  Boresi / Schmidt Example 14-7 Results 

Variable Application 
Answer Text Answer Percent diff 

R no drag 537.623 feet 537.6 feet 0.004278% 
Time no drag 5.3168 seconds 5.3168 seconds 0.0000% 

    
R with complex drag 392.824 feet 393.6 feet 0.1971% 

Time with complex drag 4.9280 seconds 4.9302 seconds 0.04462% 
    

R with simple 27% drag 392.480 feet 393.6 feet 0.2845% 
Time with simple 27% drag 5.318 seconds 4.9302 seconds 7.866% 

 

 

 

Figure 4.36  Boresi / Schmidt Example 14-7 Output 

 

129 
 



Table 4.30  Boreshi / Schmidt Example 14-7 Application, Excel, and Text Answer 

Variable Application 
Answer Excel Answer Text Answer 

R with complex drag 392.824 feet 392.824 feet 393.6 feet 
Time with complex drag 4.9280 seconds 4.9280 seconds 4.9302 seconds 

 

 

calculating the drag path.  However, given the crudeness of the simple drag assumption, 

the application calculated a reasonable flight path. 

The application calculated the complex drag path within 0.2% of the correct 

length and 0.04% of the correct time.  The same drag calculations were entered into an 

Excel spreadsheet, which calculated the same values as the application, (see Table 4.30).  

One possible explanation is the precision of the coefficients given with the problem, 

similar to the Hibbeler Homework 12-86 “High Arc” solution.  Only this time, more 

precise coefficients cannot be calculated for use in the application.  

The “Complex Drag” calculation is accurate within a necessary precision for use 

in the engage dynamics team projects.  The “Simple Drag” calculation is not accurate, 

but a good estimation tool for preliminary analyses. 

 

4.3 Swing Energy Application Verification 

Only one verification problem is needed since the basic projectile motion and 

drag calculations were verified in section 4.2.  Homework 14-31 demonstrates the 

application’s ability to calculate the proper swing exit velocity.   

130 
 



4.3.1 Homework 14-31 

Marbles having a mass of 5 g fall from rest at point A through the glass tube and 

accumulate in the can at C, (Figure 4.37).  Determine the placement R of the can from the 

end of the tube and the speed at which the marbles fall into the can.  Neglect the size of 

the can.  The data that needs to be entered into the application is shown in Table 4.31. 

In the Properties Menu, the marbles have a mass of 5 g (0.005 kg) and start from 

rest, so the initial velocity Vt is 0.  The time increment was chosen by starting at 0.1 

seconds and decreasing the by a factor of 10 until the calculations remain constant.  In the 

Swing Energy Menu, to simulate the center of the swinging motion , the center point of 

the swinging is at X = 0 and Y = 3 meters with a swing radius of 1 meter.  The start angle 

is 180 degrees and swings to 270 degrees.  At the release angle, the marble launches 

tangent to the release angle.  In the Particle Release Menu, the “With Release” option 

must be selected.  Also, the projectile mass value of 0.005 kg must be entered.  The 

projectile mass is used to calculate the launch velocity from the kinetic energy from the 

falling vehicle.  In this homework, the vehicle and projectile are the same object, so the 

mass needs to match in both data entries.  The data should match Figure 4.38. 

The results of the calculation are shown in Figure 4.39 and Table 4.32.  The 

application calculates an accurate answer relative to the precision of the Hibbeler 

answers. 

The application properly calculates an object swinging at a radius and launching 

tangent to the release angle. 

 

131 
 



 

Figure 4.37  Hibbeler Homework 14-31 Figure  

 
 

Table 4.31  Homework 14-31 data for application 

Variable Value Menu 

dt 0.001 Properties 
Vt 0 Properties 

Vehicle mass 0.005 Properties 
X 0 Swing Energy 
Y 3 Swing Energy 

radius 1 Swing Energy 
Start angle 180 Swing Energy 

Release angle 270 Swing Energy 
Projectile mass 0.005 Swing Energy 

units Metric Toolbar 
 

  

 

132 
 



   

Figure 4.38  Data for Hibbeler Homework 14-31 

 

 

Figure 4.39  Hibbeler Homework 14-31 application results 

 
Table 4.32  Hibbeler Homework 14-31 application results 

Variable Application Answer Text Answer 

Length R 2.830 meters 2.83 meters 
Velocity at B Vx = 4.429 m/s Vx = 4.429 m/s 

Velocity at C 
Vx = 4.429 
Vy = -6.269 

Vmag = 7.676 
Vmag = 7.67 

 

133 
 



Chapter 5 - Conclusions and Recommendations 

5.1 Conclusions 

 Three analysis applications for use with the engage program’s team projects were 

created.  The applications were programmed in Matlab, utilize a simple Graphical User 

Interface (GUI), include corresponding help files and walkthrough tutorials, and can be 

used to analyze the typical statics and dynamics team projects assigned in EF 102. 

These applications provide a quick and simple analysis of the type of designs 

related to the engage team projects.  The students will be able to enter their design 

information into the appropriate application and obtain an answer that is accurate to the 

precision of the input data.  Thus, the applications allow the students to accurately 

analyze their designs and determine if the calculations have the intended result.  Also, 

they can make hypothetical modifications to the and asses proposed design 

improvements. 

For each application, all user input menus are part of the main GUI window.  This 

approach simplifies the data input task and provides a visual feedback as they build their 

model.  The help files and tutorials serve as a guide to teach the user how to use the 

application and to familiarize themselves with the analysis capabilities. 

Matlab is the clear choice as the programming language for two reasons.  First, it 

is the current programming language taught in the engage program.  Therefore, the 

students are given a working example of complex Matlab code.  Second, it is versatile 

134 
 



relating to matrix storage, matrix computations, plotting capabilities, and numeric 

analysis functions.  

5.2 Recommendations 

While each application is capable of analyzing statics or dynamics team projects 

that have typically been assigned in the past, there are some modifications outside of the 

initial project scope that would make the applications either more applicable to the team 

projects by adding additional analysis or more entertaining for the students by providing 

a game inside the projectile motion applications. 

 

5.2.1 Truss Solver Application Modifications 

 There are two modifications to the truss solver application that would enhance its 

analysis capability.  The first modification is to add the capability to easily analyze a 

single load moving from joint to joint.  The moving load would simulate a student 

walking over the bridge.  The second modification is to add the ability to compare a 

member’s strength versus the member’s applied load.  With this added data, the 

application could determine and report if a member will fail. 

  

5.2.2 Projectile Motion Application Modifications 

There are three modifications to the projectile motion applications that may be 

desired by the user.  First, the spring energy could be solved iteratively to account for a 

135 
 



non-linear spring as the projectile launches.  Second, the projectile motion applications 

can be modified to include a randomly positioned target game.  Third, the swing energy 

can be modified to account for trebuchet style launching.   

 

5.2.3 Implementation Suggestions 

 The applications must be introduced to the students in a way that is coordinated 

within the engage class structure.  When it is time for the students to use the applications 

for their team project, they will have been taught the necessary mechanics concepts from 

the various components of engage.  Therefore, after the application and the walkthrough 

tutorials are introduced to the students in Analysis and Skills, the students should be able 

to use the available information to apply the applications to their team project. 

The file format can be as Matlab files or as executable files.  To distribute as 

Matlab files, the user needs to have the m-file and figure file associated with the 

application.  However, a set of executable files can also be distributed.  In either case, the 

help files need to be in the same directory as the respective applications.  As an 

executable, the user would not need Matlab installed on his computer to run the 

applications.  However, as Matlab files, the user can view the code and follow the 

calculations. 

136 
 



 

 

 

 

 

 

 

 

 

REFERENCES

137 
 



References 

[1] Parsons, J. R., The Engage Program: Implementing and Assessing a New First Year 
Experience at the University of Tennessee. Journal for Engineering Education: 441-446, 
October 2002. 
 
[2] Matlab – Numerical Mathematical Software Package specializes in matrix 
computations, online web pages at http://www.mathworks.com 
 
[3] West Point Bridge Designer – Bridge Analysis Software with a focus on minimizing 
the cost of support beams, online web pages at http://bridgecontest.usma.edu/ 
 
[4Shield, T. W., A simple 2D truss solver program, University of Minnesota, online web 
pages at http://www.aem.umn.edu/people/faculty/shield/software/truss/ 
 
[5] Cosmos – Finite Element Software, online web pages at http://www.cosmos.com 
 
[6] Ansys – Finite Element Software, online web pages at http://www.ansys.com 
 
[7] Simple Web Based Projectile Motion Program – Provided by the University of 
Oregon Physics Department, online web pages at 
http://zebu.uoregon.edu/nsf/cannon.html 
 
[8] Simple Excel File Projectile Motion Program – George Mason University, Physics 
and Astronomy Department, online web pages at 
http://www.physics.gmu.edu/~jevans/phys251/Topics/ScientificComputing/spreadSheets.html 
 
[9] Pionke, C. D., Trusses, Matlab Method of Joints. EF 102 Lecture 2-6: Spring 2003. 
 
[10] Mechanical Desktop – 3D Solid Modeling and 2D CAD tool, online web pages at 
http://usa.autodesk.com/ 
 
[11] Boresi, A.P. and Schmidt, R.J., Engineering Mechanics Dynamics, Brooks/Cole 
Publishing Company, 2001. 
 
[12] PETSc – Portable Extensive Toolkit for Scientific computing, online web pages at 
http://acts.nersc.gov/petsc/main.html 
 
[13] DirectX – Microsoft 3D graphics engine, online web pages available at 
http://www.microsoft.com\directx 
 
[14] OpenGL – Open Source 3D graphics engine, online web pages available at 
http://www.opengl.org/ 

138 
 



 
 
[15] Hibbeler, R.C., Engineering Mechanics Statics 9th Edition, Prentice Hall 
Publishing Company, 2001. 
 
[16] Hibbeler, R.C., Engineering Mechanics Dynamics 9th Edition, Prentice Hall 
Publishing Company, 2001. 
 
 
 

 

139 
 



 

 

 

 

 

 

 

 

APPENDICES 

140 
 



 

 

 

 

 

 

APPENDIX A 

EF 102 Spring 2003 Calendar and Team Projects 

141 
 



EF 102 - Module 1 Topics and Schedule  

 Click on lecture titles to view the lecture outline.  
 Click on the HW number to view the solution (posted shortly after all 

sections have turned it in)  
 Items in red are updates and corrections to the original posting of this 

page  
  |  |  |  |  |   Semester Calendar Module 1 Module 2 Module 3 Module 4 Module 5

Mon Tue Wed Thu Fri 
Jan 13 
Lecture 1-1 

 
Vectors 
Course 
Overview 
Read 1.1-1.5, 
2.1-2.6  

In-class Suggested HW
Handout 2-19 

2-31 
2-40 
2-55  

PS 1-2 

In-
class 

Suggested HW 

2-82 
2-97 
2-121

2-85 
2-89 
2-90 
2-114 
2-125  

2-83 
2-96 
2-112 
AS-1 

  

   

Team 1 PH 1 

Jan 14 Jan 15 
Lecture 1-2 

 
Position 
Vectors 
Forces along a 
line 
Dot Product 
Read 2.7 - 2.9 

Jan 16 Jan 17 
Lecture 1-3 

 
Moment of a 
Force 
Read 4.1 - 4.2 

PS 1-1 

2-32
2-48
2-54

assignment

Mon Tue Wed Thu Fri 
Jan 20 
MLK Day 

Jan 21 Jan 22 
Lecture 1-4 

 
Vector Cross 
Product 
Moment of a 
Force 
3-D Moments
Read 4.3 -

Jan 23 Jan 24 
Lecture 1-5  
Moment of a Couple 
Equivalent Systems 
Read 4.6 - 4.9  

142 
 

http://ef.engr.utk.edu/ef102-2003/sc/hw/schw02083.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw02096.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw02112.pdf
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab01.pdf


4.5  

PS 1-3 

In-
class 

Suggested HW Due 
PS 1-5 

4-9 
4-15 
4-30  

4-8 
4-10 
4-11 
4-22  

4-13 
4-14 
4-18* 
* Use 
Matlab to 
generate 
the plot.  

PS 1-4 

In-
class 

Suggested HW Due PS 1-6 

4-27 
4-55  

4-25 
4-29 
4-42 
4-47 
4-57 
4-59  

4-7* 
4-39 
4-58 
AS-2 assignment 
* Use cross 
product method   

  

Team 2 PH 2 

Mon Tue Wed Thu Fri 
Jan 27 
Lecture 1-6 

 
Completed 
m.file used in 
class 
Matlab 
Vector 
Operations 
Moments  

Jan 28 Jan 29  
Lecture 1-7  
Review/Perspective
Sample 2000 

Sample 2001 
 

Sample 2002  
Matlab and TI-85 
solution to 
barndoor problem 

Jan 30 Jan 31 
Exam 1  

PS 1-5 

In-class Suggested HW 
Due 
PS 1-6

4-55* 
4-72 
4-101  
4-109 
* problem 
from PS 1-4

4-73 
4-76 
4-106 
4-113  

4-70 
4-105 
4-123 

 

PS 1-6 

In-class Suggested HW 
A&S 
Power Point 
Slides 
Example 
function 

None AS-
3 

 

  

Team 3 ((PH 2)) PH 3 

 

143 
 

http://ef.engr.utk.edu/ef102-2003/sc/hw/schw04013.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw04014.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw04018.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw04007.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw04039.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw04058.pdf
http://ef.engr.utk.edu/ef102-2003/as/hw/as2.php
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab02.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m1/lec16mfilef.html
http://ef.engr.utk.edu/ef102-2003/sc/m1/lec16mfilef.html
http://ef.engr.utk.edu/ef102-2003/sc/m1/lec16mfilef.html
http://ef.engr.utk.edu/ef102-2003/sc/m1/exam1-2000.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m1/exam1-2001.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m1/exam1-2002.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m1/m1l7extra.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw04070.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw04105.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw04123.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m1/ps16.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m1/ps16.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m1/ps16function.html
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab02.pdf
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab03.pdf


EF 102 - Module 2 Topics and Schedule  

 Click on lecture titles to view the lecture outline.  
 Click on the HW number to view the solution (posted shortly after all 

sections have turned it in)  
 Items in red are updates and corrections to the original posting of this 

page  
 Semester Calendar | Module 1 | Module 2 | Module 3 | Module 4 | Module 5  

Mon Tue Wed Thu Fri 
Feb 3 
Lecture 2-1 

 
Equilibrium, 2D 
FBD 
Read 3.1 - 3.4, 
5.1 - 5.3  

Feb 4 Feb 5 
Lecture 2-2 

 
Equilibrium, 2D
Beams 
Simply Pulleys 

Feb 6 Feb 7 
Lecture 2-3 

 
Equilibrium, 3D
Constraints / 
Reactions 
Read 5.4 - 5.7 

PS 2-1  
In-class Suggested HW 
3-2  
3-8  
5-2  

3-5 
3-21 
5-5 

3-1 
3-15
5-4 
AS-3 

PS 2-2  
In-class Suggested HW
5-14  
5-20  
5-29 

5-22 
5-23 
5-26  

   

Team 4 PH 4 

5-27
5-28
5-24

Mon Tue Wed Thu Fri 
Feb 10 
Lecture 2-4 

 
Plane Trusses 
Method of 
Joints 
Read 6.1 - 6.3

Feb 11 Feb 12 
Lecture 2-5 

 
Method of 
Sections 
Space Trusses
Read 6.4 - 6.5

Feb 13 Feb 14 
Lecture 2-6 
Completed m.file 
used in class 
Trusses – Matlab
Method of Joints 

144 
 

http://ef.engr.utk.edu/ef102-2003/gen/calendar.php
http://ef.engr.utk.edu/ef102-2003/sc/m1/
http://ef.engr.utk.edu/ef102-2003/sc/m2/
http://ef.engr.utk.edu/ef102-2003/sc/m3/
http://ef.engr.utk.edu/ef102-2003/sc/m4/
http://ef.engr.utk.edu/ef102-2003/sc/m5/
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw03001.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw03015.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw05004.pdf
http://ef.engr.utk.edu/ef102-2003/as/hw/as3.php
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab04.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m2/lec26mfile.html
http://ef.engr.utk.edu/ef102-2003/sc/m2/lec26mfile.html


PS 2-3  
In-class Suggested HW
5-67  
6-5  

5-79 
6-9 
6-12 
6-16 

5-72
6-7 

Use method of joints. 

PS 2-4  
In-class Suggested HW 
6-31  
6-43  
6-45  
6-19* 

6-33 
6-46 
6-47 

Use method of sections on all 
except 6-19. 
Solve for each unknown without 
using the other unknowns. 

  

Team 5 PH 5 

6-37
6-44
6-49
AS-4

Mon Tue Wed Thu Fri 
Feb 17 
Lecture 2-7 

 
Multi-Force 
Members 
Frames & 
Machines 
Read 6.6 

Feb 18 Feb 19 
Lecture 2-8 

 
Frames & 
Machines 
Pulley 
Systems 

Feb 20 Feb 21 
Lecture 2-9  
Review/Perspective
Review Exams 

PS 2-5  
In-
class 

Suggested HW 

6-80  
6-95  
6-128 

6-88 
6-89 
6-90 

6-86pt D 
is fixed 
6-96  

PS 2-6  
In-class Suggested HW 
A&S 
Power Point 
Slides  
truss2d m.files 

6-68 
6-69 

6-67
AS-
5 

 

  

Team 6 PH 6 

Mon Tue Wed Thu Fri 
Feb 24 
Exam 2 
Exam Results  

Feb 25 Feb 26       

145 
 

http://ef.engr.utk.edu/ef102-2003/sc/hw/schw05072.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw06007.pdf
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab05.pdf
http://ef.engr.utk.edu/ef102-2003/sc/exams.php
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw06086.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw06096.pdf
http://ef.engr.utk.edu/ef102-2003/as/ps/ps26.pdf
http://ef.engr.utk.edu/ef102-2003/as/ps/ps26.pdf
http://ef.engr.utk.edu/ef102-2003/as/truss2d.htm
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw06067.pdf
http://ef.engr.utk.edu/ef102-2003/as/hw/as5/as5.php
http://ef.engr.utk.edu/ef102-2003/as/hw/as5/as5.php
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab06.pdf
http://ef.engr.utk.edu/ef102-2003/sc/exams.php


PS 2-7  
In-
class 

Suggested HW 

A&S 
Read 
ASR 
11.1 - 
11.2 
Power 
Point 
Slides 
m.file 
used in 
class  

na AS-6 
This will be 
assigned 
Friday, 
Feb. 28. 

 

     

Team 7   

 

146 
 

http://ef.engr.utk.edu/ef102-2003/as/ps/ps27.pdf
http://ef.engr.utk.edu/ef102-2003/as/ps/ps27.pdf
http://ef.engr.utk.edu/ef102-2003/as/ps/ps27.pdf
http://ef.engr.utk.edu/ef102-2003/as/ps/as27mfile.htm
http://ef.engr.utk.edu/ef102-2003/as/ps/as27mfile.htm


EF 102 - Module 3 Topics and Schedule  

 Click on lecture titles to view the lecture outline.  
 Click on the HW number to view the solution (posted shortly after all 

sections have turned it in)  
 Items in red are updates and corrections to the original posting of this 

page  
 Semester Calendar | Module 1 | Module 2 | Module 3 | Module 4 | Module 5  

Mon Tue Wed Thu Fri 
Feb 24 Feb 25 Feb 26 

Lecture 3-1 
 

Kinematics 
Review 
Graphs 
Constant 
Acceleration 
Read 12.1-12.3

Feb 27 Feb 28 
Lecture 3-2 

 
Matlab 
Application: 
s-t, v-t, a-t 
diagrams 
Read ASR 
11.3 - 11.5 
Completed 
m.file used in 
class 
Final s-v-a plot 
used in class 

  PS 3-1  
In-class Suggested HW
12-15 
12-19 Matlab 
solution 
12-49/50 
(numerically) 

12-10 
12-49 
12-53 

12-
23 
12-
31 
12-
57   

   

Team 7 PH 7 

Mon Tue Wed Thu Fri 
Mar 3 
Lecture 3-3 

 
Projectile 
Motion 
Read 12.4-

Mar 4 Mar 5 
Lecture 3-4 

 
Normal and 
Tangential 
Components

Mar 6 Mar 7 
Lecture 3-5  
Constrained Motion 
Read 12.9 

147 
 

http://ef.engr.utk.edu/ef102-2003/gen/calendar.php
http://ef.engr.utk.edu/ef102-2003/sc/m1/
http://ef.engr.utk.edu/ef102-2003/sc/m2/
http://ef.engr.utk.edu/ef102-2003/sc/m3/
http://ef.engr.utk.edu/ef102-2003/sc/m4/
http://ef.engr.utk.edu/ef102-2003/sc/m5/
http://ef.engr.utk.edu/ef102-2003/sc/m3/ef102m3l2mfilef.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m3/ef102m3l2mfilef.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m3/ef102m3l2mfilef.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m3/ef102m3l2svaf.jpg
http://ef.engr.utk.edu/ef102-2003/sc/m3/ef102m3l2svaf.jpg
http://ef.engr.utk.edu/ef102-2003/sc/m3/hibb12_19.php
http://ef.engr.utk.edu/ef102-2003/sc/m3/hibb12_19.php
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12023.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12023.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12031.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12031.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12057.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12057.pdf
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab07.pdf


12.6  Read 12.7 
PS 3-2  
In-class Suggested HW 
12-83 
12-85 
12-91 

12-81 
12-87 
12-90  

PS 3-3  
In-
class 

Suggested HW 

12-
101 
12-
103 
12-
123 

12-100 
12-107 
12-118 

12-102  
12-104  
12-119 (magnitude 
& direction) 

 

  

Team 8 - Bridge Testing PH 8 

12-80
12-84
12-92

Mon Tue Wed Thu Fri 
Mar 10 
Lecture 3-6 

 
Matlab 
Application: 
Projectile 
Motion  
Files used in 
class 

Mar 11 Mar 12 
Lecture 3-7  
Review/Perspective
Review Exams  
 

Mar 13 Mar 14 
Exam 3  
Exam Results 

PS 3-4  
In-class Suggested HW 
12-173 
12-179 
12-185 
Example 12-
24 

12-174 
12-175 
12-178 

12-
172  
12-
181  
12-
183   

PS 3-5  
In-class Suggested HW
TBA      

  

Team 9 PH 9 

 

148 
 

http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12102.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12104.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12119.pdf
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab08.pdf
http://ef.engr.utk.edu/ef102-2003/sc/exams.php
http://ef.engr.utk.edu/ef102-2003/sc/exams.php
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12181.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12181.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12183.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw12183.pdf
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab09.pdf


EF 102 - Module 4 Topics and Schedule  

 Click on lecture titles to view the lecture outline.  
 Click on the HW number to view the solution (posted shortly after all 

sections have turned it in)  
 Items in red are updates and corrections to the original posting of this 

page  
 Semester Calendar | Module 1 | Module 2 | Module 3 | Module 4 | Module 5  

Mon Tue Wed Thu Fri 
Mar 24 
Lecture 4-1 

 
Kinetics 
Read 13.1-13.4 
AS-7 assignment 

Mar 25 Mar 26 
Lecture 4-2 

 
Connected 
Bodies 

Mar 27 Mar 28 
Lecture 4-3 

 
Matlab 
Applications 
Problem 13-12 
m.file, trap 
method 
Problem 13-12 
m.file, poly 
method 

PS 4-1  
In-class Suggested HW 
13-1 
13-3 
13-12 
13-31 

13-5 
13-14 
13-28 

13-8 
13-13
13-35

 

PS 4-2  
In-class Suggested HW
13-6 
13-19 
13-19 (w/ 15 
lb weight) 
13-25 

13-20 
13-24 

13-
27  
13-
30  
13-
36   

   

Team 10 PH 10 

Mon Tue Wed Thu Fri 
Mar 31 
Lecture 4-4 

 
Kinetic Friction  

Apr 1 Apr 2 
Lecture 4-5 

 
Static Friction 
Read 8.1-8.2 

Apr 3 Apr 4 
Lecture 4-6 
Normal-
Tangential 
Read: 13.5  
AS 8 assignment 

149 
 

http://ef.engr.utk.edu/ef102-2003/gen/calendar.php
http://ef.engr.utk.edu/ef102-2003/sc/m1/
http://ef.engr.utk.edu/ef102-2003/sc/m2/
http://ef.engr.utk.edu/ef102-2003/sc/m3/
http://ef.engr.utk.edu/ef102-2003/sc/m4/
http://ef.engr.utk.edu/ef102-2003/sc/m5/
http://ef.engr.utk.edu/ef102-2003/as/hw/as7/as7.php
http://ef.engr.utk.edu/ef102-2003/sc/m4/p13_12trap.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m4/p13_12trap.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m4/p13_12trap.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m4/p13_12poly.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m4/p13_12poly.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m4/p13_12poly.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw13008.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw13013.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw13035.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw13027.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw13027.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw13030.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw13030.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw13036.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw13036.pdf
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab10.pdf
http://ef.engr.utk.edu/ef102-2003/as/hw/as8/as8.php


PS 4-3 
(These problems will be 
switched to the Thu/Fri 
problem session)  
In-class Suggested HW
8-8 
8-17 
8-18 
8-26 

8-14 
8-34 
8-37 

 

PS 4-4 
(These problems will be switched 
to the Tue/Wed problem session) 
In-class Suggested HW 
13-9 
13-11 
13-33 

13-16 
13-23 
13-43  

  

Team 11 PH 11 

13-18
8-15
8-24
8-44

13-21
13-22

Mon Tue Wed Thu Fri 
Apr 7 
Lecture 4-7 

 
Work-Energy 
Read 14.1-
14.3 

Apr 8 Apr 9 
Lecture 4-8 

 
Conservation 
of Energy 
Read 14.5, 
14.6 

Apr 10 Apr 11  
Lecture 4-9  
Review/Perspective
Bungee jump plots 
Review Exams 
Sunday Review 
Problems 
Sunday Review 
Screen Shots  

PS 4-5  
In-class Suggested HW 
13-53 
13-70 
13-61 
13-62 

13-55 
13-57 
13-59 

 

PS 4-6 
In-class Suggested HW 
14-6 
14-14 
14-27 

14-28 
14-78 
14-93 

14-18 
14-19 
14-20  

  

Team 12 PH 12 

13-54
13-56
13-60

Mon Tue Wed Thu Fri 
Apr 14  
Exam 4 
Exam Results  

Apr 15  
Start of Module 
5 

Apr 16  
 

Apr 17  Apr 18  
  

PS 5-1 
A&S in computer lab 

    

Team 13    

 

150 
 

http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab11.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m4/bungee.gif
http://ef.engr.utk.edu/ef102-2003/sc/exams.php
http://ef.engr.utk.edu/ef102-2003/sc/m4/mod4review.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m4/mod4review.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m4/mod4reviewsol.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m4/mod4reviewsol.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw14018.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw14019.pdf
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw14020.pdf
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab12.pdf
http://ef.engr.utk.edu/ef102-2003/sc/exams.php
http://ef.engr.utk.edu/ef102-2003/sc/m5
http://ef.engr.utk.edu/ef102-2003/sc/m5
http://ef.engr.utk.edu/ef102-2003/as/index.php


EF 102 - Module 5 Topics and Schedule  

 Click on lecture titles to view the lecture outline.  
 Click on the HW number to view the solution (posted shortly after all 

sections have turned it in)  
 Items in red are updates and corrections to the original posting of this 

page  
 Semester Calendar | Module 1 | Module 2 | Module 3 | Module 4 | Module 5  

Mon Tue Wed Thu Fri 
Apr 14  
Exam 4 
Exam Results 

Apr 15 Apr 16 
Lecture 5-1B 

 
Linear 
Momentum 
Read 15.1-15.3
AS-9 assignment

Apr 17 Apr 18  
Spring Recess 

PS 5-1 
A&S in computer lab 

PS 5-2  
In-class Suggested HW 
15/17 
15/33 
15/49 

15/18 
15/47  

 

   

Team 13 PH 13 

15-16
15-32
15-50

Mon Tue Wed Thu Fri 
Apr 21 
Lecture 5-2P 

 
Central Impact 
Read 15.4 
Link to 
simulation files 

Apr 22 Apr 23 
Lecture 5-3P 

 
Oblique 
Impact 

Apr 24 Apr 25 
Lecture 5-4B 

 
Review Problems

PS 5-3 
In-class Suggested HW 
15/57 
15/69 
15/75 

15/58 
15/67 
15/73 

15-56
15-64

 

PS 5-4 
In-class Suggested HW 
15/83 
15/87 
15/81 

15/66 
15/85 

 

PS 5-2 
(WE,WF) 
PH 13 
(WE,WF) 

PH 14  Team 14 - Project Testing 

15-77
15-80

Mon Tue Wed Thu Fri 

151 
 

http://ef.engr.utk.edu/ef102-2003/gen/calendar.php
http://ef.engr.utk.edu/ef102-2003/sc/m1/
http://ef.engr.utk.edu/ef102-2003/sc/m2/
http://ef.engr.utk.edu/ef102-2003/sc/m3/
http://ef.engr.utk.edu/ef102-2003/sc/m4/
http://ef.engr.utk.edu/ef102-2003/sc/m5/
http://ef.engr.utk.edu/ef102-2003/sc/exams.php
http://ef.engr.utk.edu/ef102-2003/as/hw/as9/as9.php
http://ef.engr.utk.edu/ef102-2003/as/index.php
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab13.pdf
http://ef.engr.utk.edu/ef102-2003/sc/m5/lec52files.htm
http://ef.engr.utk.edu/ef102-2003/sc/m5/lec52files.htm
http://ef.engr.utk.edu/ef102-2003/sc/hw/schw15056.pdf
http://ef.engr.utk.edu/ef102-2003/ph/labs/phlab14.pdf


Apr 28  
Lecture 5-5P 

 
A&S Review 

Apr 29  Apr 30  
Lecture 5-6B 

 
Semester 
Wrap-up 

May 1 Final 
Exam Review 
AMB 210 
10am-noon 
Problems  

May 2  
  

PS 5-5 
A&S Exam in computer lab 

    

Team 15    

152 
 

http://ef.engr.utk.edu/ef102-2003/sc/exams.php


EF 102 Statics Team Project 
 
 
EF 102 Design Project 1, Spring 2003  
 
Preliminary Assignments - It’s a Bridge! 
Engineers are responsible for the integrity and safety of their designs, a fact that 
causes sleepless nights, ethical dilemmas, and all sorts of other fun aspects of 
being a professional. Your diabolical instructors would like to give you a flavor of 
this concept by asking you to design a bridge where the test load(s) will be you, 
the designers of the bridge.  
The scale of your construction will be similar to the bridges shown on the Brunel 
video, but unlike the students shown, you will have the time and resources to go 
through the steps of the design process. Schedule and details on specifications 
and materials will be furnished next week.  
We are going to require you to keep a record of your design work for this class in 
a notebook (English Composition Book or equivalent). Now is the time to 
purchase this and begin recording your activity. As a first assignment with your 
new team, your instructors ask that you spend about 15 to 20   minutes letting 
each team member give contact information and sharing a positive and a 
negative experience from his or her last semester’s team. Each team should then 
put together a short “rule list” that will constitute how you agree to work together 
this semester. When you get your notebook, each team member should copy or 
paste a copy of this “team rule list” into his or her book. 
Your second initial assignment is to gather information on bridge design that will 
be input to your idea generation for this project. Before you leave today each 
team member should have an information gathering assignment that is specific 
enough that each member can report to the team next week.  
There is lots of material available  - student design contests, texts on the subject 
(general description of bridge types only), personal observation and experience, 
Civil Engineering department (display cases in Perkins)... the objective is that 
when you see the specifications, the team have adequate background to 
generate ideas. 

153 
 



EF 102 Design Project 1, Spring 2003  
 
Bridge over Trouble Gorge 
Your team is about to encounter Trouble Gorge, a devilish obstacle that has swallowed 
many unprepared students. Your team’s assignment is to construct a bridge that will span 
this gorge of unspeakable dangers and then use your device to get your team members 
safely across. Once a year, some unknown seismic activity causes the atrium of 
Estabrook Hall to part and the gorge appears. Along with the gorge, a band of trolls from 
the 4th sub-basement of Estabrook make their yearly appearance, to harass you with a 
series of odd demands on your interaction with their environment.  
Your bridge must be constructed with a limited supply of materials purchased 
from the Troll store at exorbitant costs (the troll council is still bickering on how 
much profit to make, but will let you know shortly about prices). Besides a profit, 
the troll band would like some entertainment from its visitors, so they have made 
a series of wagers on your efforts. One faction thinks you will be lucky to get one 
team member across your bridge, so this has been set as a minimum 
requirement. Another faction thinks your bridges should support the whole team, 
and this has been set as your maximum test load. They have decided, for 
fairness, to evaluate your bridges on a weight supported per dollar spent basis. 
  
Trouble Gorge: 
The gorge is 2.14 m wide (1/100 scale of the great Clifton gorge) and the troll 
band have helpfully supplied a sketch posted in your work area containing many 
useful dimensions from their recent survey of their domain. They insist that for 
minimum environmental impact your structures only interact with certain areas of 
the gorge ledges shown on this sketch.  
 
Troll Store Stock List: 

 1.5 X 1.5 cm wood stock  
 twine  
 cotter pins appropriate for “pin” connections  

Troll supplied “walking board”, laid on top of your structures, will be 1.6 m long 
and 0.2 m wide.  
Trolls will make available materials to run preliminary strength tests and to build 
scale models (Popsicle stick versions). Building full-scale test bridges will not be 
economically viable.  
 
Troll Rules: 
On 2/11-12/03, each team will give a 5-minute oral preliminary report covering 
the first stages of their design process. At the team’s choice, you may use 
overheads or a poster for your visual aid. What would be the most effective 

154 
 



method to present your material (and earn much-needed brownie points with Big 
Boss Troll)?  
Cross the Gorge Day will be 3/4-5/03  
Team Deliverables: 

1. Team bridge ready for testing on the gorge. Concerned for his band, the 
benevolent BBT will conduct a safety inspection of your devices before 
his home is subjected to falling students.  

2. A written report of your project must be submitted to the troll council on 
Cross the Gorge Day. This report should follow the standard format you 
have practiced, with a problem statement in your own words that 
completely describes the problem and constraints, a background section 
that demonstrates to the reader that you are familiar with what other 
people have done on similar problems and the basic principles of 
mechanics that are applicable, a description of the different ideas 
considered by your team, the concept selection process with any 
applicable test results, a complete description of your final design, and a 
conclusions and recommendation section. In keeping with the material 
that the trolls know you are studying this semester, it will be expected that 
your design is backed up with the appropriate calculations and this will be 
a major factor in their report grade. As always, sketches and diagrams are 
important parts of conveying key points. Use of your computer tools 
(Mechanical Desktop and Matlab), integrated into you report, will be 
favorably received.  

3. As part of your reporting for this project, you are asked to summarize your 
project on a team web page. The web page should consist of a summary 
of the Bridge over Trouble Gorge project, a brief listing of individual team 
members’ contributions to its completion, at least one image from 
Mechanical Desktop, and links to each team member's personal home 
page. The team web page should reside on the University server, and its 
URL "registered" with our server via your personal EF page. Resources 
regarding the creation of simple web pages and details regarding the 
creation of personal web pages will be provided as part of an upcoming 
A&S assignment.  

The troll council will assign approximately equal credit for 1) bridge construction 
and performance and 2) reporting requirements. 

155 
 

http://ef.engr.utk.edu/ef102-2003/control/student/


EF 102 Dynamics Team Project 

EF 102 Project 2 
 
The Estabrook Critter-Conker 
 
As long time residents of Estabrook Hall know, assorted crawling creatures often visit us. 
Most of these critters are nocturnal, so it is not a major inconvenience, but they have 
been known to agitate groups of students working late at night on their projects. 
For this project, your team will design, construct and demonstrate a device that will 
discourage our nightly visitors by hitting them with a projectile when they appear. Your 
instructors, always anxious to demonstrate your calculational prowess, knowledge of 
dynamics, and creative design skills, have arranged the demonstration as follows: 
Each team will design and construct a device that will fit in a designated 2 ft by 2 ft by 2 
ft starting space, will launch a regulation projectile (paintball), and be constructed from a 
provided kit of materials (tentative list below). The critter will be released and will travel 
a path perpendicular to the launching direction of your device at a distance of 20, 25 or 
30 feet from your device. The critter starts at a distance of 5 feet from the launch path of 
your device and travels at a constant velocity but the magnitude of the velocity is variable 
(in the range 0.2 to 0.8 ft/sec). Your device must be activated at the same time as the 
critter is released, and must then automatically launch the projectile at the proper time to 
hit the critter as it traverses in front of your device. To add to the challenge, a 4-ft high 
wall is located at a distance of 10 feet in front of your device. The trajectory of the 
projectile must clear this wall to successfully conk the critter. A rough sketch is provided 
below, further details will be released shortly. 
Critter speed and distance will be announced before each attempt. Each team’s device 
will be tested against two combinations of distance and critter speed with a nominal 
adjustment and set-up time allowed between runs. Scoring will be based on total distance 
from the target for the two attempts. A team member cannot touch your device after the 
critter has been released. No part of your device can leave the designated launch area. 
The launch area cannot be damaged during your set-up or operation of your device (no 
drilling, fastening, nailing...). 
 
Tentative Materials Kit: 
1 sheet foam core 
4 ft of “bridge” wood stock 
4 ft of duct tape 
6 ft of twine 
2 yardsticks 
1 #108 rubber band 
1/2 pound of small weights 

156 
 



1 mouse trap 
1 4 ft 1/4 inch dowel 
6 paper clips 
4 small nails 
3 oz Elmer’s glue 
2 pipe cleaners 
1 small spring 
Other material by petition – see schedule below 
Wall Critter Paths 
Laun ch Area 
Impact Areas 
Critter Starting Boxe s 
 
Your initial efforts should be directed toward developing background material, 
generating alternative designs, and selecting promising concepts. The information you 
have been given is sufficient to begin the design process. Please remember that the 
distance to the critter and critter speed will remain unknown until the day of competition 
and sufficient prediction and adjustment capability must be planned for. A prediction 
procedure utilizing Matlab will be required. 
Questions for your consideration: 
What are different ways that you can “time” your release mechanism? 
What energy sources are available (and what is their magnitude)? 
What is the size and mass of your projectile? 
Is air drag on your projectile important? 
What variables do you need to control to predict a projectile path? 
How can you adjust the flight path? 
How can you make your device reliable and repeatable? 
 
Schedule and Reporting Requirements: 
March 11-12 Project Assignment 
March 25-26 Idea Generation – Material Petitions Accepted 
April 1-2 Work Period – Material List Finalized 
April 8-9 Preliminary design reports. Each team must demonstrate a (partially 
constructed) device, which can potentially accomplish the competition tasks. This will be 
an informal oral report. 
April 11-16 Written report rough draft review (mandatory). 
 
Event day will be Tuesday-Wednesday, April 22-23. 
On Thursday, April 24, by 5 p.m., each team will a) post a written report described below 
as a team webpage, b) turn in design notebooks and a resume for each team member 
bundled together. 
 
Written Report: This is your last project report of the year and you should look at this 
as an opportunity to demonstrate what you have learned about integrating your team 

157 
 



efforts into an interesting and complete description of your project. The integration of 
analysis into your design process is a particular item your instructors are looking for. 
This project requires less team “construction” in an effort to provide you with the time 
you need to do a good job on this report. This report should follow the standard format 
you have practiced, with a problem statement in your own words that completely 
describes the problem and constraints, a background section that demonstrates to the 
reader that you are familiar with what other people have done on similar problems and 
the basic principles of mechanics that are applicable, a description of the different ideas 
considered by your team, the concept selection process with any applicable test results, a 
complete description of your final design and timing prediction method, and a 
conclusions and recommendation section. As always, sketches and diagrams are 
important parts of conveying key points. 

 

158 
 



EF 102 Project 2 
 
The Estabrook Critter Conker 
 
Your petitions have been reviewed, duly considered, laughed at and finally resolved into the 
 
Updated (and final) Materials List:* 
From before - 
1 sheet foam core 
4 ft of “bridge” wood stock 
4 ft of duct tape 
2 yardsticks 
1 # 108 rubber band 
1 mouse trap 
1 4 ft 1/4 inch dowel 
6 paper clips 
4 small nails 
2 pipe cleaners 
1 small spring 
1/2 pound of small weights 
 
Modifications to old list – 
“6 ft of twine” changed to “You may use up to 20 ft of string/twine/fishing line” 
“3 oz Elmer’s Glue” changed to “You may use glue for joining purposes” 
 
And two reminders – 
“1/2 pound of small weights” are “supplied by team”, your EF 102 tools are not acceptable for 
this purpose 
# 108 rubber bands can be cut to make smaller bands, we can furnish one replacement per team 
 
New Items – 
1 marble 
1 clothes pin 
1 cotter pin 
2 ft PVC pipe 
 
Other New Items Available If Needed In Your Design (ie, we don’t have enough for 
everyone) - 
Small funnel 
DC Motor and battery box 
Sand 
 
Other Permissible items (supplied by team) – 
Small quantities of water, sheet of engineering paper, small quantities of scotch tape, a party 
balloon, dixie cup 
*We have limited replacement supplies for most items 

159 
 



 

 

 

 

 

 

 

 

APPENDIX B 

Applications’ Code 

160 
 



Appendix B.1 

2D / 3D Truss Solver Code 

EFD_TRUSS 

function varargout = efd_truss(varargin) 
% EFD_TRUSS M-file for efd_truss.fig 
%      EFD_TRUSS, by itself, creates a new EFD_TRUSS or raises the existing 
%      singleton*. 
% 
%      H = EFD_TRUSS returns the handle to a new EFD_TRUSS or the handle to 
%      the existing singleton*. 
% 
%      EFD_TRUSS('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in EFD_TRUSS.M with the given input arguments. 
% 
%      EFD_TRUSS('Property','Value',...) creates a new EFD_TRUSS or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before efd_truss_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to efd_truss_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help efd_truss 
 
% Last Modified by GUIDE v2.5 15-Jul-2003 18:14:20 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @efd_truss_OpeningFcn, ... 
                   'gui_OutputFcn',  @efd_truss_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin & isstr(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

161 
 



 
% --- Executes just before efd_truss is made visible. 
function efd_truss_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to efd_truss (see VARARGIN) 
 
%clear global 
 
% Choose default command line output for efd_truss 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% This sets up the initial plot - only do when we are invisible 
% so window can get raised using efd_truss. 
if strcmp(get(hObject,'Visible'),'off') 
     
    surf(peaks); 
     
    axis equal     
end 
 
 
global w_joint w_member w_constraint w_force 
 
set(handles.mod_add, 'Value', 1); 
set(handles.user_2d, 'Value', 1); 
set(handles.user_2dxz, 'Value',1); 
 
  
% UIWAIT makes efd_truss wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = efd_truss_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
% --- Executes on button press in user_analyze. 
function user_analyze_Callback(hObject, eventdata, handles) 
% hObject    handle to user_analyze (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

162 
 



 
global w_joint w_member w_constraint w_force w_all_data w_reaction_force w_force_data 
 
%1. build matrix from members / joints 
%2. apply forces then constraints 
 
[j_length b] = size(w_joint); 
[m_length b] = size(w_member); 
 
all_data = zeros(j_length *3, m_length); 
 
%build matrix 
 
for i = 1:j_length 
     
    %cycle through each joint and find connectivity 
    for j = 1:m_length 
         
        xyz1 = 0; 
        xyz1 = 0; 
         
        %if member uses joint i 
        if (w_member(j,1) == i | w_member(j,2) == i)  
             
             
            %member data 
            j1 = w_member(j,1); 
            j2 = w_member(j,2); 
             
            if j1 == i 
                 
                xyz1 = w_joint(j1,:); 
                xyz2 = w_joint(j2,:); 
                 
                other_j = j2;    
                 
            elseif j2 == i 
                 
                xyz1 = w_joint(j2,:); 
                xyz2 = w_joint(j1,:); 
                 
                other_j = j1;           
                 
            end 
                 
            %get lengths 
            all_length = xyz2 - xyz1; 
             
             
            scalar_length = sqrt(sum( all_length.^2));             
                           
             
            % adjust to member columns 

163 
 



            % x portion 
            all_data(i*3-2, j) = all_length(1) / scalar_length; 
            % y portion 
            all_data(i*3-1, j) = all_length(2) / scalar_length; 
            % z portion 
            all_data(i*3-0, j) = all_length(3) / scalar_length; 
       
        end 
        %elseif anything? 
         
        %for loops 
    end 
end 
 
[a b] = size(all_data); 
 
force_data = zeros(j_length *3, 1); 
 
%create force vector 
[a b] = size(w_force); 
 
for i = 1:a 
     
    j1 = w_force(i,4); 
     
    if w_force(i,1) ~= 0 
        force_data(j1*3-2, 1) = w_force(i,1); 
    end 
     
    if w_force(i,2) ~= 0 
        force_data(j1*3-1, 1) = w_force(i,2); 
    end 
     
    if w_force(i,3) ~= 0 
        force_data(j1*3-0, 1) = w_force(i,3); 
    end 
     
end 
%get joints with constraints 
 
%move through the matrix backwards. 
%this way the numbering scheme is easier to control 
[a b] = size(w_constraint); 
 
[ad_size b] = size(all_data); 
[f_length b2] = size(force_data); 
     
%how big does the matrix need to be? 
mod_size = 0; 
 
for i = 1:a  
     
    j1 = w_constraint(i,4);   

164 
 



     
    % x constraint 
        if w_constraint(i,1) == 1 
             
            mod_size = mod_size+1; 
                     
            all_data(j1*3-2,b+mod_size) = 1; 
        end 
     
        % y constraint 
        if w_constraint(i,2) == 1 
         
            mod_size = mod_size+1; 
         
            all_data(j1*3-1,b+mod_size) = 1; 
        end 
     
        % z constraint 
        if w_constraint(i,3) == 1 
         
            mod_size = mod_size+1; 
         
            all_data(j1*3-0,b+mod_size) = 1; 
        end 
end 
 
 
% %condition data for 3d / 2d 
if get(handles.user_2d, 'Value') == 1 
    %get 2d plane 
     
    if get(handles.user_2dxy, 'Value') == 1 
        offset = 0; 
    elseif get(handles.user_2dxz, 'Value') == 1 
        offset = 1; 
    elseif get(handles.user_2dyz, 'Value') == 1 
        offset = 2; 
    end 
 
    %go backwards to maintain numbering system 
    for i = j_length*3:-3:3              
        all_data(i-offset,:) = []; 
        force_data(i-offset,:) = [];         
    end 
end 
     
 
reaction_force = all_data\(-force_data); 
 
%set matrix to world 
w_all_data = all_data; 
w_reaction_force = reaction_force; 
w_force_data = force_data; 

165 
 



 
%draw value 
%  
[a b] = size(all_data); 
 
%get display info to draw 
 
switch get(handles.ShowJointMenu,'Checked') 
    case 'on' 
        tog_jointnum = 1; 
    case 'off' 
        tog_jointnum = 0; 
    end 
     
switch get(handles.ShowMemberMenu,'Checked') 
    case 'on' 
        tog_membernum = 1; 
    case 'off' 
        tog_membernum = 0; 
    end 
     
switch get(handles.ShowConstraintMenu,'Checked') 
    case 'on' 
        tog_constraint = 1; 
    case 'off' 
        tog_constraint = 0; 
    end 
     
switch get(handles.ShowForceMenu,'Checked') 
    case 'on' 
        tog_force = 1; 
    case 'off' 
        tog_force = 0; 
    end 
     
switch get(handles.ShowGridMenu,'Checked') 
    case 'on' 
        tog_grid = 1; 
    case 'off' 
        tog_grid = 0; 
    end 
     
switch get(handles.ShowAxisLabelMenu,'Checked') 
    case 'on' 
        tog_axis_label = 1; 
    case 'off' 
        tog_axis_label = 0; 
    end 
     
switch get(handles.ShowAxesMenu,'Checked')         
    case 'on' 
        tog_axes = 1; 
    case 'off' 

166 
 



        tog_axes = 0; 
    end 
     
%reset view, no 
tog_view = 1; 
     
axes(handles.axes1);     
user_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view,all_data,reaction_force); 
 
rotate3d on 
 
axis(user_axis) 
 
%use all_data to draw FBDs of each Joint 
if (get(handles.check_drawFBD,'Value')) == 1 
     
    %loop through all joints, draw all members attached to the joint. 
    % draw members 
    [a b] = size(w_member); 
    [j_num b] = size(w_joint); 
     
    %search all joints 
    for kk = 1:j_num 
         
        figure(kk); 
        clf reset; 
        hold on; 
         
        %draw joint number    
         
        text(w_joint(kk,1),w_joint(kk,2),w_joint(kk,3), num2str(kk),... 
            'BackgroundColor',[.1 .5 .2],... 
            'VerticalAlignment','bottom') 
         
         
        for i = 1:a                         
             
            j1_temp = w_member(i,1); 
            j2_temp = w_member(i,2); 
             
            match = 0; 
             
            if j1_temp == kk 
                j1 = w_member(i,1); 
                j2 = w_member(i,2); 
                 
                match = 1; 
            elseif j2_temp == kk 
                j2 = w_member(i,1); 
                j1 = w_member(i,2); 
                 
                match = 1; 

167 
 



            end 
             
            if match == 1 
                xm = [ w_joint(j1,1) w_joint(j2,1) ]; 
                ym = [ w_joint(j1,2) w_joint(j2,2) ]; 
                zm = [ w_joint(j1,3) w_joint(j2,3) ]; 
                 
                plot3(xm,ym,zm,'b-','LineWidth',5) 
                plot3(w_joint(j2,1), w_joint(j2,2), 
w_joint(j2,3),'bd','MarkerEdgeColor','k','MarkerFaceColor','b','MarkerSize',10)  
                 
                                 
                %draw member number 
                if tog_membernum == 1  
                    text(mean(xm),mean(ym),mean(zm),num2str(i),... 
                        'BackgroundColor',[.7 .3 .2],... 
                        'VerticalAlignment','bottom') 
                end 
            end 
        end 
 
    end 
     
    max_size = 1.5; 
    scale_force = max([max(max(abs(w_force))) max(abs(reaction_force)) ])     ; 
     
     
    %draw forces 
    [a b] = size(w_force); 
    for jj = 1:a    
         
         
        index = w_force(jj,4); 
         
        figure(index) 
        hold on; 
         
        %get axis info to scale force vector and constraints 
        user_axis = axis; 
         
        x_length = user_axis(2) - user_axis(1); 
        y_length = user_axis(4) - user_axis(3); 
         
        if length(user_axis) == 6 
            z_length = user_axis(6) - user_axis(5); 
        else 
            z_length = 0; 
        end 
         
        %scale graphics 
        scale_line = sqrt(x_length^2 + y_length^2 + z_length^2); 
         
        xf_scale = max_size*scale_line/scale_force; 

168 
 



        yf_scale = max_size*scale_line/scale_force; 
        zf_scale = max_size*scale_line/scale_force; 
         
         
        xf(1) = w_joint(index,1); 
        yf(1) = w_joint(index,2); 
        zf(1) = w_joint(index,3); 
         
        xf(2) = xf(1) + w_force(jj,1)*xf_scale; 
        yf(2) = yf(1) + w_force(jj,2)*yf_scale; 
        zf(2) = zf(1) + w_force(jj,3)*zf_scale; 
         
        %draw FX 
        plot3([xf(1) xf(2)], [yf(1) yf(1)],[zf(1) zf(1)],'r-','LineWidth',1)  
         
        %draw FY 
        plot3([xf(1) xf(1)], [yf(1) yf(2)],[zf(1) zf(1)],'r-','LineWidth',1)   
         
        %draw FZ 
        plot3([xf(1) xf(1)], [yf(1) yf(1)],[zf(1) zf(2)],'r-','LineWidth',1) 
         
         
        %draw diagonal 
        plot3(xf, yf, zf,'r-','LineWidth',3) 
        plot3( xf(2),  yf(2), zf(2),'rd','MarkerEdgeColor','k','MarkerFaceColor','r','MarkerSize',10)  
         
    end  
     
     
     
    [m_length b] = size(w_member); 
    [rf_length b] = size(reaction_force); 
     
    count = m_length+1; 
     
    %draw constraints 
    [a b] = size(w_constraint); 
     
    for i = 1:a    
         
         
        index = w_constraint(i,4); 
         
        figure(index) 
        hold on; 
         
        %get axis info to scale force vector and constraints 
        user_axis = axis; 
         
        x_length = user_axis(2) - user_axis(1); 
        y_length = user_axis(4) - user_axis(3); 
         
        if length(user_axis) == 6 

169 
 



            z_length = user_axis(6) - user_axis(5); 
        else 
            z_length = 0; 
        end 
         
        xf_scale = max_size*scale_line/scale_force; 
        yf_scale = max_size*scale_line/scale_force; 
        zf_scale = max_size*scale_line/scale_force; 
         
        %scale graphics 
        scale_line = sqrt(x_length^2 + y_length^2 + z_length^2); 
         
         
        xf(1) = w_joint(index,1); 
        yf(1) = w_joint(index,2); 
        zf(1) = w_joint(index,3); 
         
        xf(2) = xf(1); 
        yf(2) = yf(1); 
        zf(2) = zf(1); 
         
         
         
        if w_constraint(i,1) == 1 
            xf(2) = xf(1) + reaction_force(count)*xf_scale;  
             
            %draw FX 
             
            plot3(xf, yf, zf,'g-','LineWidth',3) 
            plot3( xf(2),  yf(2), zf(2),... 
                'gd','MarkerEdgeColor',... 
                'k','MarkerFaceColor','g',... 
                'MarkerSize',10) 
             
            val = num2str(reaction_force(count),'%7.1f'); 
             
             
            count = count + 1; 
             
        end 
         
        xf(2) = xf(1); 
         
         
         
        if w_constraint(i,2) == 1 
            yf(2) = yf(1) + reaction_force(count)*yf_scale;  
             
             
             
            plot3(xf, yf, zf,'g-','LineWidth',3) 
            plot3( xf(2),  yf(2), zf(2),... 
                'gd','MarkerEdgeColor',... 

170 
 



                'k','MarkerFaceColor','g',... 
                'MarkerSize',10)    
             
            val = num2str(reaction_force(count),'%7.1f'); 
             
            
            count = count + 1; 
        end  
         
         
        yf(2) = yf(1); 
         
         
         
        if w_constraint(i,3) == 1 
            zf(2) = zf(1) + reaction_force(count)*zf_scale;  
             
             
             
            %draw FZ 
            plot3(xf, yf, zf,'g-','LineWidth',3) 
            plot3( xf(2),  yf(2), zf(2),... 
                'gd','MarkerEdgeColor',... 
                'k','MarkerFaceColor','g',... 
                'MarkerSize',10)  
             
            val = num2str(reaction_force(count),'%7.1f'); 
             
            count = count + 1; 
        end  
         
    end 
     
     
    for gg = 1:j_num 
         
        figure(gg) 
        hold on; 
         
        axis tight 
         
        axis equal 
        grid on; 
        xlabel('X axis') 
        ylabel('Y axis') 
        zlabel('Z axis') 
         
        view(3); 
         
        temp_axis = axis; 
         
         
        if temp_axis(1) > 0 

171 
 



            temp_axis(1) = temp_axis(1) * 0.85; 
        else 
            temp_axis(1) = temp_axis(1) * 1.15;                 
        end 
         
        if temp_axis(2) < 0 
            temp_axis(2) = temp_axis(2) * 0.85; 
        else 
            temp_axis(2) = temp_axis(2) * 1.15;                 
        end 
         
        if temp_axis(3) > 0 
            temp_axis(3) = temp_axis(3) * 0.85; 
        else 
            temp_axis(3) = temp_axis(3) * 1.15;                 
        end 
         
        if temp_axis(4) < 0 
            temp_axis(4) = temp_axis(4) * 0.85; 
        else 
            temp_axis(4) = temp_axis(4) * 1.15;                 
        end 
         
        if length(temp_axis) == 86 
            if temp_axis(5) > 0 
                temp_axis(5) = temp_axis(5) * 0.85; 
            else 
                temp_axis(5) = temp_axis(5) * 1.15;                 
            end 
             
            if temp_axis(6) < 0 
                temp_axis(6) = temp_axis(6) * 0.85; 
            else 
                temp_axis(6) = temp_axis(6) * 1.15;                 
            end 
        end 
         
         
        temp_axis = temp_axis * 1.15; 
        axis(temp_axis) 
        rotate3d on; 
         
    end 
     
end 
 
 
 
 
 
 
% axes(handles.axes1); 
% cla; 

172 
 



%  
% popup_sel_index = get(handles.listbox3, 'Value'); 
% switch popup_sel_index 
%     case 1 
%         plot(sin(1:0.01:25)); 
%     case 2 
%         comet(cos(1:.01:10)); 
%     case 3 
%         plot(membrane); 
%     case 4 
%         surf(peaks); 
%     case 5 
%         plot(sin(1:0.01:25)); 
%         text(550,0,'text') 
%          
%          
%            
% end 
%  
% beep 
 
 
% -------------------------------------------------------------------- 
function FileMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to FileMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function OpenMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to OpenMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
global w_joint w_member w_constraint w_force 
 
[a b] = size(w_joint); 
 
 
if a ~= 0 
     
    button = questdlg('Do you want to save the model?',... 
    'Save Model?','Yes','No','No'); 
    if strcmp(button,'Yes') 
         
        [file, path] = uiputfile({'*.mat','Matlab Model File (*.mat)'},'Save As'); 
 
        if ~isequal(file, 0) 
           
            filename = char(file); 
            %load file 
            save(filename); 

173 
 



     
            %redraw all 
            %axes(handles.axes1);     
            new_axis = draw_plot( 1, 1, 1, 1, 1, 1, 1, 1,1,1); 
            rotate3d on             
        end     
    elseif strcmp(button,'No') 
        % 
         
    end 
     
end     
     
     
file = uigetfile({'*.mat','Matlab Model File (*.mat)'},'Open Model'); 
 
if ~isequal(file, 0) 
    %open(file) 
 
    %load file 
    load(char(file)); 
     
    %redraw all 
    %axes(handles.axes1);     
    new_axis = draw_plot( 1, 1, 1, 1, 1, 1, 1, 1,1,1); 
    new_axis = draw_plot( 1, 1, 1, 1, 1, 1, 1, 1,1,1); 
    new_axis = draw_plot( 1, 1, 1, 1, 1, 1, 1, 1,1,1); 
     
    rotate3d on 
     
end 
 
 
 
 
% -------------------------------------------------------------------- 
function PrintMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to PrintMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
printdlg(handles.figure1) 
 
% -------------------------------------------------------------------- 
function CloseMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to CloseMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... 
                     ['Close ' get(handles.figure1,'Name') '...'],... 
                     'Yes','No','Yes'); 
if strcmp(selection,'No') 
    return; 
end 

174 
 



 
delete(handles.figure1) 
 
clear all 
 
 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- Executes on button press in user_details. 
function user_details_Callback(hObject, eventdata, handles) 
% hObject    handle to user_details (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
global w_joint w_member w_constraint w_force w_all_data w_reaction_force 
is_error = 0; 
 
%output model information to Command Window 
 
 
prompt = {'Model / Project Name:','Your Name:','Team:','Description','Units:'}; 
dlg_title = 'Model Details'; 
num_lines= 1; 
def     = {'Bridge Team Project','not Rooney','The Nuclear Orange Cheeto Fingers','Truss Analysis of Team 
Project','Force (Newtons)            Length (feet)'}; 
answer  = inputdlg(prompt,dlg_title,num_lines,def); 
 
%only if input exists 
if length(answer) > 0  
     
    fid = fopen('EFD_TRUSS_output.txt','wb'); 
 
    clc 
 

175 
 



    fprintf(fid,'\n------------------------------------------------------------'); 
     
     
     
    fprintf(fid,'\n------------------------------------------------------------'); 
    fprintf(fid,'\n------------------------------------------------------------'); 
 
 
    fprintf(fid,'\n\n\n--  Model / Project Name :  \n\n              '); 
    fprintf(fid,(char(answer(1)))); 
    fprintf(fid,'\n\n\n--  Name :                  \n\n              '); 
    %disp(char(answer(2))) 
    fprintf(fid,(char(answer(2)))); 
    fprintf(fid,'\n\n\n--  Team :                  \n\n              '); 
    fprintf(fid,(char(answer(3)))); 
    fprintf(fid,'\n\n\n--  Description :           \n\n              '); 
    fprintf(fid,(char(answer(4)))); 
    fprintf(fid,'\n\n\n--  Units:                  \n\n              '); 
    fprintf(fid,(char(answer(5)))); 
 
    fprintf(fid,'\n\n------------------------------------------------------------'); 
    fprintf(fid,'\n------------------------JOINTS------------------------------'); 
    fprintf(fid,'\n------------------------------------------------------------'); 
     
    fprintf(fid,'\n\n       num           X-Pos          Y-Pos          Z-Pos'); 
    fprintf(fid,'\n------------------------------------------------------------\n'); 
 
    [a b] = size(w_joint); 
 
    for i = 1:a  
        fprintf(fid,'\n      %3.0f         %7.2f         %7.2f        %7.2f',i,w_joint(i,:)); 
    end 
 
    fprintf(fid,'\n\n------------------------------------------------------------'); 
    fprintf(fid,'\n-------------------------MEMBERS----------------------------'); 
    fprintf(fid,'\n------------------------------------------------------------'); 
 
    fprintf(fid,'\n\n       num           Joint 1           Joint 2          '); 
    fprintf(fid,'\n------------------------------------------------------------\n'); 
 
    [a b] = size(w_member); 
     
    % remove blank user_z value 
    temp_member(:,1) = w_member(:,1); 
    temp_member(:,2) = w_member(:,2); 
     
    for i = 1:a  
        fprintf(fid,'\n      %3.0f             %3.0f                %3.0f        ',i,temp_member(i,:)); 
    end 
     
    fprintf(fid,'\n\n------------------------------------------------------------'); 
    fprintf(fid,'\n-----------------------CONSTRAINTS--------------------------'); 
    fprintf(fid,'\n------------------------------------------------------------'); 

176 
 



     
    fprintf(fid,'\n\n         num         CX     CY      CZ        Joint Num'); 
    fprintf(fid,'\n------------------------------------------------------------\n'); 
     
    [a b] = size(w_constraint); 
     
    for i = 1:a  
        fprintf(fid,'\n        %3.0f        %3.0f    %3.0f     %3.0f          %3.0f', i, w_constraint(i,:)); 
    end 
     
    fprintf(fid,'\n\n------------------------------------------------------------'); 
    fprintf(fid,'\n--------------------------FORCES----------------------------'); 
    fprintf(fid,'\n------------------------------------------------------------'); 
     
    fprintf(fid,'\n\n  num         FX            FY           FZ       Joint Num'); 
    fprintf(fid,'\n------------------------------------------------------------\n'); 
     
    [a b] = size(w_force); 
     
    for i = 1:a  
        fprintf(fid,'\n %3.0f     %9.2f     %9.2f    %9.2f       %3.0f', i, w_force(i,:)); 
    end 
     
    fprintf(fid,'\n\n------------------------------------------------------------'); 
    fprintf(fid,'\n------------------------------------------------------------'); 
    fprintf(fid,'\n------------------------------------------------------------\n'); 
     
     
     
    %write analysis if it exists 
     
    if isnan(w_all_data) ~= 1 
        fprintf(fid,'\n\n------------------------------------------------------------'); 
        fprintf(fid,'\n-------------------------ANALYSIS---------------------------'); 
        fprintf(fid,'\n------------------------------------------------------------'); 
         
        fprintf(fid,'\n\n                     Reaction Forces'); 
        fprintf(fid,'\n------------------------------------------------------------\n'); 
         
         
        [m_length b] = size(w_member); 
        [rf_length b] = size(w_reaction_force); 
         
         
        %    Write member loads 
         
        for k = 1:m_length 
             
             
            fprintf(fid,'\n        %9.2f ', abs(w_reaction_force(k)));  
             
            if w_reaction_force(k) > 0 
                fprintf(fid,'  T  ', w_reaction_force(k)); 

177 
 



            elseif w_reaction_force(k) == 0 
                fprintf(fid,'  -  ', w_reaction_force(k)); 
            else 
                fprintf(fid,'  C  ', w_reaction_force(k));  
            end 
             
             
            fprintf(fid,' Member #  %3.0f', k); 
             
        end 
         
         
         
         
         
         
        count = m_length+1; 
         
        %write constraint reactions 
        [a b] = size(w_constraint); 
         
        for i = 1:a    
             
             
             
            index = w_constraint(i,4); 
             
            if w_constraint(i,1) == 1 
                 
                 
                fprintf(fid,'\n        %9.2f ', (w_reaction_force(count)));  
                 
                %             if w_reaction_force(count) > 0 
                %                 fprintf(' T ', w_reaction_force(count)); 
                %             elseif w_reaction_force(count) == 0 
                %                 fprintf(' - ', w_reaction_force(count)); 
                %             else 
                %                 fprintf(' C ', w_reaction_force(count));  
                %             end 
                 
                fprintf(fid,'      X constraint at Joint  %3.0f', index); 
                 
                count = count + 1; 
                 
            end 
             
             
            if w_constraint(i,2) == 1 
                fprintf(fid,'\n        %9.2f ', (w_reaction_force(count)));  
                 
                %            if w_reaction_force(count) > 0 
                %                fprintf(' T ', w_reaction_force(count)); 
                %            elseif w_reaction_force(count) == 0 

178 
 



                %                fprintf(' - ', w_reaction_force(count)); 
                %            else 
                %                fprintf(' C ', w_reaction_force(count));  
                %            end 
                 
                fprintf(fid,'      Y constraint at Joint  %3.0f', index); 
                 
                count = count + 1;             
                 
            end  
             
             
            if w_constraint(i,3) == 1 
                fprintf(fid,'\n        %9.2f ', (w_reaction_force(count)));  
                 
                %            if w_reaction_force(count) > 0 
                %                fprintf(' T ', w_reaction_force(count)); 
                %            elseif w_reaction_force(count) == 0 
                %                 fprintf(' - ', w_reaction_force(count)); 
                %            else 
                %                fprintf(' C ', w_reaction_force(count));  
                %            end 
                 
                fprintf(fid,'      Z constraint at Joint  %3.0f', index); 
                 
                count = count + 1;  
            end  
        end 
         
         
         
    end 
     
     
     
    fprintf(fid,'\n\n------------------------------------------------------------'); 
    fprintf(fid,'\n------------------------------------------------------------'); 
    fprintf(fid,'\n------------------------------------------------------------\n'); 
     
     
    %     [a b] = size(w_reaction_force); 
    %  
    %     for i = 1:a  
    %         fprintf('\n') 
    %         for j = 1:b 
    %             fprintf('     %9.2f', i, w_all_data(i,j)) 
    %         end 
    %     end 
     
     
    %close file 
    fclose('all'); 
     

179 
 



    %print text file to HTML 
    web(['file:' which('EFD_TRUSS_output.txt')],'-browser') 
     
end 
     
     
 
 
 
 
 
 
 
 
 
% -------------------------------------------------------------------- 
function ViewMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ViewMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function DisplayMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to DisplayMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function ShowJointMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowJointMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
switch get(handles.ShowJointMenu,'Checked') 
    case 'on' 
        set(handles.ShowJointMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowJointMenu, 'Checked', 'on') 
end 
 
    switch get(handles.ShowJointMenu,'Checked') 
    case 'on' 
        tog_jointnum = 1; 
    case 'off' 
        tog_jointnum = 0; 
    end 
     
    switch get(handles.ShowMemberMenu,'Checked') 
    case 'on' 
        tog_membernum = 1; 
    case 'off' 

180 
 



        tog_membernum = 0; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 
    case 'on' 
        tog_constraint = 1; 
    case 'off' 
        tog_constraint = 0; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
    case 'on' 
        tog_force = 1; 
    case 'off' 
        tog_force = 0; 
    end 
     
    switch get(handles.ShowGridMenu,'Checked') 
    case 'on' 
        tog_grid = 1; 
    case 'off' 
        tog_grid = 0; 
    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
    case 'on' 
        tog_axis_label = 1; 
    case 'off' 
        tog_axis_label = 0; 
    end 
     
    switch get(handles.ShowAxesMenu,'Checked') 
    case 'on' 
        tog_axes = 1; 
    case 'off' 
        tog_axes = 0; 
    end 
     
    %reset view 
    tog_view = 0; 
     
    global w_all_data w_reaction_force 
     
    %check for analysis, draw 
    if sum(w_all_data) == 0 
         
        all_data = 1; 
        reaction_force = 1; 
    else 
         
        all_data = w_all_data; 
        reaction_force = w_reaction_force; 
         

181 
 



    end 
     
    axes(handles.axes1);     
    new_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view, all_data, reaction_force); 
    rotate3d on 
 
% -------------------------------------------------------------------- 
function ShowMemberMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowMemberMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
switch get(handles.ShowMemberMenu,'Checked') 
    case 'on' 
        set(handles.ShowMemberMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowMemberMenu, 'Checked', 'on') 
end 
 
    switch get(handles.ShowJointMenu,'Checked') 
    case 'on' 
        tog_jointnum = 1; 
    case 'off' 
        tog_jointnum = 0; 
    end 
     
    switch get(handles.ShowMemberMenu,'Checked') 
    case 'on' 
        tog_membernum = 1; 
    case 'off' 
        tog_membernum = 0; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 
    case 'on' 
        tog_constraint = 1; 
    case 'off' 
        tog_constraint = 0; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
    case 'on' 
        tog_force = 1; 
    case 'off' 
        tog_force = 0; 
    end 
     
    switch get(handles.ShowGridMenu,'Checked') 
    case 'on' 
        tog_grid = 1; 
    case 'off' 
        tog_grid = 0; 

182 
 



    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
    case 'on' 
        tog_axis_label = 1; 
    case 'off' 
        tog_axis_label = 0; 
    end 
     
    switch get(handles.ShowAxesMenu,'Checked') 
    case 'on' 
        tog_axes = 1; 
    case 'off' 
        tog_axes = 0; 
    end 
     
    %reset view 
    tog_view = 0; 
     
    global w_all_data w_reaction_force 
     
    %check for analysis, draw 
    if sum(w_all_data) == 0 
         
        all_data = 1; 
        reaction_force = 1; 
    else 
         
        all_data = w_all_data; 
        reaction_force = w_reaction_force; 
         
    end 
     
    axes(handles.axes1);     
    new_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view, all_data, reaction_force); 
    rotate3d on 
 
% -------------------------------------------------------------------- 
function ShowConstraintMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowConstraintMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
switch get(handles.ShowConstraintMenu,'Checked') 
    case 'on' 
        set(handles.ShowConstraintMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowConstraintMenu, 'Checked', 'on') 
end 
 
    switch get(handles.ShowJointMenu,'Checked') 
    case 'on' 

183 
 



        tog_jointnum = 1; 
    case 'off' 
        tog_jointnum = 0; 
    end 
     
    switch get(handles.ShowMemberMenu,'Checked') 
    case 'on' 
        tog_membernum = 1; 
    case 'off' 
        tog_membernum = 0; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 
    case 'on' 
        tog_constraint = 1; 
    case 'off' 
        tog_constraint = 0; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
    case 'on' 
        tog_force = 1; 
    case 'off' 
        tog_force = 0; 
    end 
     
    switch get(handles.ShowGridMenu,'Checked') 
    case 'on' 
        tog_grid = 1; 
    case 'off' 
        tog_grid = 0; 
    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
    case 'on' 
        tog_axis_label = 1; 
    case 'off' 
        tog_axis_label = 0; 
    end 
     
    switch get(handles.ShowAxesMenu,'Checked') 
    case 'on' 
        tog_axes = 1; 
    case 'off' 
        tog_axes = 0; 
    end 
     
    %reset view 
    tog_view = 0; 
     
    global w_all_data w_reaction_force 
     
    %check for analysis, draw 

184 
 



    if sum(w_all_data) == 0 
         
        all_data = 1; 
        reaction_force = 1; 
    else 
         
        all_data = w_all_data; 
        reaction_force = w_reaction_force; 
         
    end 
     
    axes(handles.axes1);     
    new_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view, all_data, reaction_force); 
    rotate3d on 
 
 
% -------------------------------------------------------------------- 
function ShowForceMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowForceMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
switch get(handles.ShowForceMenu,'Checked') 
    case 'on' 
        set(handles.ShowForceMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowForceMenu, 'Checked', 'on') 
end 
 
    switch get(handles.ShowJointMenu,'Checked') 
    case 'on' 
        tog_jointnum = 1; 
    case 'off' 
        tog_jointnum = 0; 
    end 
     
    switch get(handles.ShowMemberMenu,'Checked') 
    case 'on' 
        tog_membernum = 1; 
    case 'off' 
        tog_membernum = 0; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 
    case 'on' 
        tog_constraint = 1; 
    case 'off' 
        tog_constraint = 0; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
    case 'on' 

185 
 



        tog_force = 1; 
    case 'off' 
        tog_force = 0; 
    end 
     
    switch get(handles.ShowGridMenu,'Checked') 
    case 'on' 
        tog_grid = 1; 
    case 'off' 
        tog_grid = 0; 
    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
    case 'on' 
        tog_axis_label = 1; 
    case 'off' 
        tog_axis_label = 0; 
    end 
     
    switch get(handles.ShowAxesMenu,'Checked') 
    case 'on' 
        tog_axes = 1; 
    case 'off' 
        tog_axes = 0; 
    end 
     
    %reset view 
    tog_view = 0; 
     
    global w_all_data w_reaction_force 
     
    %check for analysis, draw 
    if sum(w_all_data) == 0 
         
        all_data = 1; 
        reaction_force = 1; 
    else 
         
        all_data = w_all_data; 
        reaction_force = w_reaction_force; 
         
    end 
     
    axes(handles.axes1);     
    new_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view, all_data, reaction_force); 
    rotate3d on 
 
% -------------------------------------------------------------------- 
function ShowGridMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowGridMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

186 
 



 
switch get(handles.ShowGridMenu,'Checked') 
    case 'on' 
        set(handles.ShowGridMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowGridMenu, 'Checked', 'on') 
end 
 
    switch get(handles.ShowJointMenu,'Checked') 
    case 'on' 
        tog_jointnum = 1; 
    case 'off' 
        tog_jointnum = 0; 
    end 
     
    switch get(handles.ShowMemberMenu,'Checked') 
    case 'on' 
        tog_membernum = 1; 
    case 'off' 
        tog_membernum = 0; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 
    case 'on' 
        tog_constraint = 1; 
    case 'off' 
        tog_constraint = 0; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
    case 'on' 
        tog_force = 1; 
    case 'off' 
        tog_force = 0; 
    end 
     
    switch get(handles.ShowGridMenu,'Checked') 
    case 'on' 
        tog_grid = 1; 
    case 'off' 
        tog_grid = 0; 
    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
    case 'on' 
        tog_axis_label = 1; 
    case 'off' 
        tog_axis_label = 0; 
    end 
     
    switch get(handles.ShowAxesMenu,'Checked') 
    case 'on' 
        tog_axes = 1; 

187 
 



    case 'off' 
        tog_axes = 0; 
    end 
     
    %reset view 
    tog_view = 0; 
     
    global w_all_data w_reaction_force 
     
    %check for analysis, draw 
    if sum(w_all_data) == 0 
         
        all_data = 1; 
        reaction_force = 1; 
    else 
         
        all_data = w_all_data; 
        reaction_force = w_reaction_force; 
         
    end 
     
    axes(handles.axes1);     
    new_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view, all_data, reaction_force); 
    rotate3d on 
 
% -------------------------------------------------------------------- 
function ErrorCheckMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ErrorCheckMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function CheckJointMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to CheckJointMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function CheckMemberMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to CheckMemberMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function CheckConstraintsMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to CheckConstraintsMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 

188 
 



 
% -------------------------------------------------------------------- 
function HelpMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to HelpMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function HelpGuideMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to HelpGuideMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 web(['file:' which('help_home.html')],'-browser') 
 %web('help_home.htm','-browser') 
 
% -------------------------------------------------------------------- 
function HelpAboutMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to HelpAboutMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
msgbox('Method of Joints Truss Solver,                                            written by Jon Huber' ,'About this 
program','help') 
 
% --- Executes during object creation, after setting all properties. 
function listbox3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to listbox3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
set(hObject, 'String', {'  Joint', '  Member', '  Constraint', '  Force'}); 
 
 
 
 
% --- Executes on selection change in listbox3. 
function listbox3_Callback(hObject, eventdata, handles) 
% hObject    handle to listbox3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = get(hObject,'String') returns listbox3 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from listbox3 

189 
 



 
popup_sel_index = get(handles.listbox3, 'Value'); 
switch popup_sel_index 
    case 1 
        %joint 
        set(handles.text13, 'String', 'X pos'); 
        set(handles.text14, 'String', 'Y pos'); 
        set(handles.text15, 'String', 'Z pos'); 
        set(handles.user_x, 'String', ''); 
        set(handles.user_y, 'String', ''); 
        set(handles.user_z, 'String', ''); 
        %set(handles.mod_num, 'String', ''); 
         
        set(handles.text28, 'String', 'Feature Number'); 
    case 2 
        %member 
        set(handles.text13, 'String', 'Joint 1'); 
        set(handles.text14, 'String', 'Joint 2'); 
        set(handles.text15, 'String', ' '); 
        set(handles.user_x, 'String', ''); 
        set(handles.user_y, 'String', ''); 
        set(handles.user_z, 'String', 'XXXXXXXX'); 
        set(handles.mod_num, 'String', ''); 
         
        set(handles.text28, 'String', 'Feature Number'); 
         
    case 3 
        %constraint 
        set(handles.text13, 'String', 'Con X'); 
        set(handles.text14, 'String', 'Con Y'); 
        set(handles.text15, 'String', 'Con Z'); 
        set(handles.user_x, 'String', ''); 
        set(handles.user_y, 'String', ''); 
        set(handles.user_z, 'String', ''); 
        %set(handles.mod_num, 'String', ''); 
         
        set(handles.text28, 'String', 'Joint Number'); 
    case 4 
        %force 
        set(handles.text13, 'String', 'F X'); 
        set(handles.text14, 'String', 'F Y'); 
        set(handles.text15, 'String', 'F Z'); 
        set(handles.user_x, 'String', ''); 
        set(handles.user_y, 'String', ''); 
        set(handles.user_z, 'String', ''); 
        %set(handles.mod_num, 'String', ''); 
         
        set(handles.text28, 'String', 'Joint Number'); 
end 
 
         
         
% --- Executes during object creation, after setting all properties. 

190 
 



function edit12_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit12 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function edit12_Callback(hObject, eventdata, handles) 
% hObject    handle to edit12 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit12 as text 
%        str2double(get(hObject,'String')) returns contents of edit12 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit14_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function edit14_Callback(hObject, eventdata, handles) 
% hObject    handle to edit14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit14 as text 
%        str2double(get(hObject,'String')) returns contents of edit14 as a double 
 
 
% --- Executes on button press in radiobutton1. 
function radiobutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 

191 
 



% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of radiobutton1 
 
 
% --- Executes on button press in radiobutton2. 
function radiobutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of radiobutton2 
 
 
% --- Executes during object creation, after setting all properties. 
function edit19_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit19 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function edit19_Callback(hObject, eventdata, handles) 
% hObject    handle to edit19 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit19 as text 
%        str2double(get(hObject,'String')) returns contents of edit19 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit20_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit20 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 

192 
 



 
 
function edit20_Callback(hObject, eventdata, handles) 
% hObject    handle to edit20 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit20 as text 
%        str2double(get(hObject,'String')) returns contents of edit20 as a double 
 
 
% -------------------------------------------------------------------- 
function ViewFrontMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ViewFrontMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
az = 0; 
el = 0; 
view(az, el); 
 
% -------------------------------------------------------------------- 
function ViewTopMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ViewTopMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
az = 0; 
el = 90; 
view(az, el); 
% -------------------------------------------------------------------- 
function ViewSideMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ViewSideMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
az = 90; 
el = 0; 
view(az, el); 
 
% -------------------------------------------------------------------- 
function ViewIsoMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ViewIsoMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
az = 30; 
el = 30; 
view(az, el); 
 
% --- Executes on button press in pushbutton7. 
function pushbutton7_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton7 (see GCBO) 

193 
 



% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- Executes during object creation, after setting all properties. 
function user_x_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to user_x (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function user_x_Callback(hObject, eventdata, handles) 
% hObject    handle to user_x (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of user_x as text 
%        str2double(get(hObject,'String')) returns contents of user_x as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function user_y_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to user_y (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function user_y_Callback(hObject, eventdata, handles) 
% hObject    handle to user_y (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of user_y as text 
%        str2double(get(hObject,'String')) returns contents of user_y as a double 
 

194 
 



 
% --- Executes during object creation, after setting all properties. 
function user_z_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to user_z (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function user_z_Callback(hObject, eventdata, handles) 
% hObject    handle to user_z (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of user_z as text 
%        str2double(get(hObject,'String')) returns contents of user_z as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function mod_num_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to mod_num (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function mod_num_Callback(hObject, eventdata, handles) 
% hObject    handle to mod_num (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of mod_num as text 
%        str2double(get(hObject,'String')) returns contents of mod_num as a double 
 
 
% --- Executes on button press in mod_add. 
function mod_add_Callback(hObject, eventdata, handles) 

195 
 



% hObject    handle to mod_add (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of mod_add 
set(handles.mod_add, 'Value', 1); 
set(handles.mod_mod, 'Value', 0); 
set(handles.mod_remove, 'Value', 0); 
 
% --- Executes on button press in mod_mod. 
function mod_mod_Callback(hObject, eventdata, handles) 
% hObject    handle to mod_mod (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of mod_mod 
set(handles.mod_add, 'Value', 0); 
set(handles.mod_mod, 'Value', 1); 
set(handles.mod_remove, 'Value', 0); 
 
% --- Executes on button press in mod_remove. 
function mod_remove_Callback(hObject, eventdata, handles) 
% hObject    handle to mod_remove (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of mod_remove 
set(handles.mod_add, 'Value', 0); 
set(handles.mod_mod, 'Value', 0); 
set(handles.mod_remove, 'Value', 1); 
 
% --- Executes on button press in user_apply. 
function user_apply_Callback(hObject, eventdata, handles) 
% hObject    handle to user_apply (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
global w_joint w_member w_constraint w_force w_mod_num 
 
is_error = 0; 
 
% 
% 
% search for specifed feature 
% 
% 
% is it Add / Modify / Remove ???? 
% 
 
% check for legal feature entry and add 
     
w_mod_num = str2double(get(handles.mod_num,'String')); 
     

196 
 



% get values 
user_x = str2double(get(handles.user_x,'String')); 
user_y = str2double(get(handles.user_y,'String')); 
user_z = str2double(get(handles.user_z,'String')); 
 
% if member 
if get(handles.listbox3,'Value') == 2 
    user_z = 0; 
end 
 
% check for NaN 
%if mod or remove, w_mod_num must be legal 
if (get(handles.mod_remove,'Value')) == 1 
    if isnan(w_mod_num) == 1 
        errordlg('You have entered an illegal Feature / Joint value','User Input Error'); 
        is_error = 1; 
        return; 
    end 
elseif isnan(user_x) == 1 | isnan(user_y) == 1 | isnan(user_z) == 1 
    errordlg('You have entered an illegal feature value','User Input Error'); 
    is_error = 1; 
    return; 
end 
 
if w_mod_num == 0 
    errordlg('The feature value will never exist','User Input Error'); 
    is_error = 1; 
    return; 
end 
     
 
 
 
% 
% 
%check feature type   
popup_sel_index = get(handles.listbox3, 'Value'); 
switch popup_sel_index 
    case 1 
        %joint 
        [a b] = size(w_joint); 
 
        %check for pre-existing and add 
 
        if (get(handles.mod_remove,'Value')) == 1 & a >= w_mod_num 
            button = questdlg('Do you want to continue?',... 
            'Remove Joint?','Yes','No','No'); 
             
            if strcmp(button,'Yes') 
                %write updating function 
                w_joint(w_mod_num,:) = []; 
                 
                %work through matrix, lower joint numbers above the deleted 

197 
 



                %remove the features connected to the joint 
                tog_member = 1; 
                w_member = subtract_joint(w_member, tog_member, w_mod_num); 
     
                tog_member = 0; 
                w_constraint = subtract_joint(w_constraint, tog_member, w_mod_num); 
                w_force = subtract_joint(w_force, tog_member, w_mod_num); 
                 
            elseif strcmp(button,'No') 
                % do nothing 
                is_error = 1; 
            end 
        elseif (get(handles.mod_remove,'Value')) == 1 & a < w_mod_num 
            errordlg('The joint number does not exist','User Input Error'); 
            is_error = 1;      
            return; 
        elseif (get(handles.mod_add,'Value')) == 1 
             
            size_check1 = size(w_joint); 
            w_joint = check_add(w_joint, user_x, user_y, user_z); 
            size_check2 = size(w_joint); 
             
            if size_check1 == size_check2 
                is_error = 1; 
                return; 
            end 
            %modify 
        elseif (get(handles.mod_mod,'Value')) == 1 & a >= w_mod_num 
            % 
            w_joint(w_mod_num,:) = [user_x user_y user_z]; 
             
        elseif (get(handles.mod_mod,'Value')) == 1 
            errordlg('The joint number does not exist','User Input Error'); 
            is_error = 1; 
            return; 
        end 
             
   case 2 
        %member   
        [a b] = size(w_joint); 
        [a2 b2] = size(w_member);         
          
        %remove first        
        if (get(handles.mod_remove,'Value')) == 1 & a2 >= w_mod_num 
            button = questdlg('Do you want to continue?',... 
            'Remove Member?','Yes','No','No'); 
             
            if strcmp(button,'Yes') 
                 
                 w_member(w_mod_num,:) = []; 
                 
                 
            elseif strcmp(button,'No') 

198 
 



                % do nothing 
                is_error = 1; 
                return; 
            end 
        elseif (get(handles.mod_remove,'Value')) == 1 & a2 < w_mod_num 
            errordlg('The member number does not exist','User Input Error'); 
            is_error = 1;  
            return; 
        elseif isnan(user_x) == 1 | isnan(user_y) == 1 
            errordlg('Enter a joint number','User Input Error'); 
            is_error = 1; 
            return; 
        elseif user_x > a | user_y > a 
            errordlg('The joint number does not exist','User Input Error'); 
            is_error = 1; 
            return; 
        elseif user_x == user_y 
            errordlg('The joint numbers cannot be equal','User Input Error'); 
            is_error = 1; 
            return; 
        elseif user_x == 0 | user_y == 0 
            errordlg('The joint number does not exist','User Input Error'); 
            is_error = 1; 
            return; 
        elseif user_x ~= round(user_x) | user_y ~= round(user_y) 
            errordlg('The joint number must be an integer','User Input Error'); 
            is_error = 1; 
            return; 
                 
        else  
            %add 
            if (get(handles.mod_add,'Value')) == 1            
                % if sizes are equal, no addition occured 
                size_check1 = size(w_member); 
                
                w_member = check_add(w_member, user_x, user_y, 0); 
                
                size_check2 = size(w_member);             
                 
                  
            %modify 
                 
            elseif (get(handles.mod_mod,'Value')) == 1 & a2 >= w_mod_num 
                % 
                w_member(w_mod_num,:) = [user_x user_y user_z]; 
             
            elseif (get(handles.mod_mod,'Value')) == 1 
                errordlg('The member entry does not exist','User Input Error'); 
                is_error = 1; 
                return; 
            end 
             
        end 

199 
 



        
        
    

       %constraint 

        end 

     
         
    case 3 
    

       [a b] = size(w_joint); 
       [a2 b2] = size(w_constraint); 
             
       check_constraint = 0; 
             
       %check that every value is 0 or 1 
       if (get(handles.mod_remove,'Value')) ~= 1 
            if user_x == 1 | user_x == 0                  
                check_constraint = check_constraint + 1; 
            end 
            if user_y == 1 | user_y == 0  
                check_constraint = check_constraint + 1; 
            end 
            if user_z == 1 | user_z == 0 
                check_constraint = check_constraint + 1; 
            end 

         
        %remove first        
        if (get(handles.mod_remove,'Value')) == 1 & a >= w_mod_num 
            button = questdlg('Do you want to continue?',... 
            'Remove Constraint?','Yes','No','No'); 
             
            if strcmp(button,'Yes')                 
                 %search for existing point 
                            
                 check_exist = 0;   
                 for i = 1:a2 
                    if w_constraint(i,4) == w_mod_num                 
                        w_constraint(i,:) = []; 
                        check_exist = 1;     
 
                        break; 
                    end 
                end 
             
                if check_exist == 0 
                    errordlg('The feature does not exist for this joint','User Input Error'); 
                    is_error = 1; 
                    return; 
                end   
                 
                 
            elseif strcmp(button,'No') 
                % do nothing 
                is_error = 1; 

200 
 



                return; 
            end                 
        elseif user_x + user_y + user_z == 0 
            errordlg('Constraint values sum to 0, give a value or remove','User Input Error'); 
            is_error = 1;             
        elseif check_constraint == 3                 
            if isnan(w_mod_num) == 1 
                errordlg('Enter a joint number','User Input Error'); 
                is_error = 1; 
                return; 
            end 
        end 
         
        if w_mod_num > a 
                errordlg('The joint number does not exist','User Input Error'); 
                is_error = 1; 
                return; 
        elseif isnan(w_mod_num) ~= 1  
             
            %add 
            if (get(handles.mod_add,'Value')) == 1 
                size_check1 = size(w_constraint); 
                w_constraint = check_add2(w_constraint, user_x, user_y, user_z, w_mod_num); 
                size_check2 = size(w_constraint); 
             
                if size_check1 == size_check2 
                    is_error = 1; 
                    return; 
                end 
                     
                %modify     
            elseif (get(handles.mod_mod,'Value')) == 1 
                 % 
                 %find joint, switch 
                 [a b] = size(w_constraint); 
                 check_exist = 0; 
                  
                 for i = 1:a 
                    if w_constraint(i,4) == w_mod_num 
                        w_constraint(i,:) = [user_x user_y user_z w_mod_num]; 
                        check_exist = 1; 
                    end 
                 end   
                  
                 if check_exist == 0 
                    errordlg('The feature does not exist for this joint','User Input Error'); 
                    is_error = 1;  
                    return; 
                end   
                           
            end 
             
          

201 
 



     else 
         errordlg('Constraint must be a 0 or 1','User Input Error'); 
         is_error = 1; 
         return; 
     end 
 
  
      
 case 4 
     %force 
     [a b] = size(w_joint); 
     [a2 b2] = size(w_force); 
      
      
      
     %remove first        
    if (get(handles.mod_remove,'Value')) == 1 & a >= w_mod_num 
        button = questdlg('Do you want to continue?',... 
        'Remove Force?','Yes','No','No'); 
             
        if strcmp(button,'Yes') 
             
            %search for existing point 
            check_exist = 0; 
            for i = 1:a2 
                if w_force(i,4) == w_mod_num 
                 
                    w_force(i,:) = []; 
                    check_exist = 1;    
                     
                    break; 
                end 
            end 
             
            if check_exist == 0 
                errordlg('The feature does not exist for this joint','User Input Error'); 
                is_error = 1;  
            end                 
                 
        elseif strcmp(button,'No') 
            % do nothing 
            is_error = 1; 
        end 
     elseif (get(handles.mod_remove,'Value')) == 1 & a < w_mod_num 
         errordlg('The joint number does not exist','User Input Error'); 
         is_error = 1;  
         return; 
     elseif isnan(w_mod_num) == 1  
         errordlg('Enter a joint number','User Input Error'); 
         is_error = 1;  
         return; 
     elseif w_mod_num > a 
         errordlg('The joint number does not exist','User Input Error'); 

202 
 



         is_error = 1; 
         return; 
     elseif isnan(w_mod_num) ~= 1 

             end 

         elseif (get(handles.mod_mod,'Value')) == 1  

              

             end  

    

         %add 
         if (get(handles.mod_add,'Value')) == 1 
             size_check1 = size(w_force); 
             w_force = check_add2(w_force, user_x, user_y, user_z, w_mod_num); 
             size_check2 = size(w_force); 
             
             if size_check1 == size_check2 
                 is_error = 1; 
                 return; 

              
             %modify   

             % 
             %find joint, switch 
             [a b] = size(w_force); 
             check_exist = 0; 

             for i = 1:a 
                 if w_force(i,4) == w_mod_num 
                     w_force(i,:) = [user_x user_y user_z w_mod_num]; 
                     check_exist = 1; 
                 end 

              
             if check_exist == 0 
                    errordlg('The feature does not exist for this joint','User Input Error'); 
                    is_error = 1;  
                    return; 
             end   
          
         end 
     end 
end 

 
 
%if no error, redraw 
if is_error == 0 
 
       
    %get display info 
    %tog_joint = (get(handles.ShowJointMenu,'Checked')) 
     
     
    %send_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view) 
     
    switch get(handles.ShowJointMenu,'Checked') 
    case 'on' 

203 
 



        tog_jointnum = 1; 
    case 'off' 
        tog_jointnum = 0; 
    end 
     

    case 'on' 

    switch get(handles.ShowAxesMenu,'Checked') 

     

    switch get(handles.ShowMemberMenu,'Checked') 
    case 'on' 
        tog_membernum = 1; 
    case 'off' 
        tog_membernum = 0; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 

        tog_constraint = 1; 
    case 'off' 
        tog_constraint = 0; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
    case 'on' 
        tog_force = 1; 
    case 'off' 
        tog_force = 0; 
    end 
     
    switch get(handles.ShowGridMenu,'Checked') 
    case 'on' 
        tog_grid = 1; 
    case 'off' 
        tog_grid = 0; 
    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
    case 'on' 
        tog_axis_label = 1; 
    case 'off' 
        tog_axis_label = 0; 
    end 
     

    case 'on' 
        tog_axes = 1; 
    case 'off' 
        tog_axes = 0; 
    end 
     
    %reset view toggle 
    tog_view = 1; 

    axes(handles.axes1); 
     

204 
 



    new_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view,1,1); 
 
 
   for i = 1:length(new_axis) 
       new_axis(i) = round(new_axis(i)*10)/10; 
   end 
       
    
   set(handles.axis_xmin, 'String', new_axis(1)); 
   set(handles.axis_xmax, 'String', new_axis(2)); 
   set(handles.axis_ymin, 'String', new_axis(3)); 
   set(handles.axis_ymax, 'String', new_axis(4));     
   set(handles.axis_zmin, 'String', new_axis(5)); 
   set(handles.axis_zmax, 'String', new_axis(6)); 
 
   rotate3d on 
     
     
end 
 
w_tog_update = 0; 
 
% --- Executes on button press in mod_update. 
function mod_update_Callback(hObject, eventdata, handles) 
% hObject    handle to mod_update (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
global w_joint w_member w_constraint w_force w_mod_num 
 
 
% 
% 
% search for specifed feature 
% 
% is it Add / Modify / Remove ???? 
% 
if (get(handles.mod_add,'Value')) == 1 
    %can't update an add 
    errordlg('To add a new feature, click ''Apply'' ','User Input Error'); 
     
elseif (get(handles.mod_mod,'Value')) == 1 
    % search for legal feature and display 
    % 
    w_mod_num = str2double(get(handles.mod_num,'String')); 
     
    % check for NaN 
    if isnan(w_mod_num) == 1  
        errordlg('You have entered an illegal feature number','User Input Error'); 
        return; 
    end 
    % 

205 
 



    %check feature type   
    popup_sel_index = get(handles.listbox3, 'Value'); 
    switch popup_sel_index 
        case 1 
            %joint             
            %check for valid entry, fill in user area 
            if check_mod(w_joint, w_mod_num) == 0    
                set(handles.user_x, 'String', w_joint(w_mod_num,1)); 
                set(handles.user_y, 'String', w_joint(w_mod_num,2)); 
                set(handles.user_z, 'String', w_joint(w_mod_num,3)); 
           end 
        case 2 
            %member 
            if check_mod(w_member, w_mod_num) == 0   
                set(handles.user_x, 'String', w_member(w_mod_num,1)); 
                set(handles.user_y, 'String', w_member(w_mod_num,2)); 
                %set(handles.user_z, 'String', w_member(w_mod_num,3)); 
                set(handles.user_z, 'String', 'XXXXXXXX'); 
           end             
        case 3 
            %constraint 
             
            c = check_mod2(w_constraint, w_mod_num); 
             
            exist_val = c(1); 
            index = c(2); 
             
            if exist_val == 0    
                set(handles.user_x, 'String', w_constraint(index,1)); 
                set(handles.user_y, 'String', w_constraint(index,2)); 
                set(handles.user_z, 'String', w_constraint(index,3)); 
           end 
        case 4 
            %force 
            c = check_mod2(w_force, w_mod_num); 
             
            exist_val = c(1); 
            index = c(2); 
             
            if exist_val == 0    
                set(handles.user_x, 'String', w_force(index,1)); 
                set(handles.user_y, 'String', w_force(index,2)); 
                set(handles.user_z, 'String', w_force(index,3)); 
           end 
   end 
     
else 
    % remove 
    % display info and ask again 
    errordlg('To remove a feature, click ''Apply''','User Input Error'); 
     
end 
 

206 
 



 
 
%% 
%% 
%% 
 
 
 
function feature = check_add(feature, x, y, z) 

if repeat_val == 0 

%  For Joints and Members 
% 
%  takes specifed feature and checks for a repeat 
%  then adds the feature, if legal. 
%  internal use only, do not call 
%global w_joint w_member w_constraint w_force 
[a b] = size(feature); 
repeat_val = 0; 
for i = 1:a     
    %check for repeat 
    if feature(i,:) == [x y z] 
        errordlg('The feature values already exist','User Input Error'); 
        repeat_val = 1; 
    end    
end 
%perform feature add if..... 

    feature(a+1,:) = [x y z]; 
end 
return; 
 
 
 
function feature = check_add2(feature, x, y, z, index) 
%  For Constraints and Forces 
% 
%  takes specifed feature and checks for a repeat 
%  then adds the feature, if legal. 
%  internal use only, do not call 
%global w_joint w_member w_constraint w_force 
 
[a b] = size(feature); 
repeat_val = 0; 
 
if isnan(feature) ~= 1 
 
    for i = 1:a     
        %check for repeat 
        if feature(i,4) == index 
            errordlg('The feature values already exist','User Input Error'); 
            repeat_val = 1; 
        end    
    end 
end 

207 
 



 
 
 
%perform feature add if..... 
if repeat_val == 0 
    feature(a+1,:) = [x y z index]; 
end 
return; 
 
 
 
 
function exist_val = check_mod(feature, index) 
%  For Joints and Members 
% 
%  takes specifed feature and checks for valid entry 
%  then displays the entry in the user entry area, if legal. 
%  internal use only, do not call 
 

    errordlg('The feature entry does not exist','User Input Error');         

%does the index exist? 
[a b] = size(feature); 
exist_val = 0; 
if index > a 

    exist_val = 1; 
end 
return; 
 
function c = check_mod2(feature, index) 
%  For Constraints and Forces 
% 
%  takes specifed feature and checks for valid entry 
%  then displays the entry in the user entry area, if legal. 
%  internal use only, do not call 
 
%X-val Y-val Z-val Joint # 
 
%does the index exist? 
[a b] = size(feature); 
exist_val = 1; 
 
 
for i = 1:a 
     
    if feature(i, 4) == index 
        % this entry exists! 
        exist_val = 0; 
        placement = i; 
         
        c(1) = 0; 
        c(1,2) = i; 
    end 
end 

208 
 



      

%axes(handles.axes1); 

 

plot3(x,y,z,'ys','MarkerEdgeColor','k','MarkerFaceColor','y','MarkerSize',8); 

 
if exist_val == 1 
    errordlg('The feature entry does not exist','User Input Error');  
    c = [1 0]; 
     
end 
return; 
 
 
function send_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axis, tog_view, all_data, reaction_force) 
 
global w_joint w_member w_constraint w_force w_mod_num 
% update plot 

cla; 
hold on 
 
xlabel('X axis') 
ylabel('Y axis') 
zlabel('Z axis') 

%draw grid 
if tog_grid == 1 
    grid on 
else 
    grid off 
end 
 
% draw nodes 
x=w_joint(:,1); 
y=w_joint(:,2); 
z=w_joint(:,3); 
 

 
% draw members 
[a b] = size(w_member); 
 
for i = 1:a 
    j1 = w_member(i,1); 
    j2 = w_member(i,2); 
     
    xm = [ w_joint(j1,1) w_joint(j2,1) ]; 
    ym = [ w_joint(j1,2) w_joint(j2,2) ]; 
    zm = [ w_joint(j1,3) w_joint(j2,3) ]; 
     
    if size(all_data) == [1,1] 
        plot3(xm,ym,zm,'b-','LineWidth',2) 
    end 
     
    %draw member number 

209 
 



    if tog_membernum == 1  
        text(mean(xm),mean(ym),mean(zm),num2str(i),... 
            'BackgroundColor',[.7 .3 .2],... 
            'VerticalAlignment','bottom') 
    end 
     
%   
%                 %draw output labels 
%             if j == b & i <= m_length 
%                 label = num2str(i,2); 
%              
%                 text(j-2,i,'M',... 
%                     'BackgroundColor',[.7 .3 .2],... 
%                     'EdgeColor','k',... 
%                     'HorizontalAlignment','center') 
%              
%                 text(j-1.5,i,label,... 
%                     'BackgroundColor',[.7 .3 .2],... 
%                     'EdgeColor','k',... 
%                     'HorizontalAlignment','center',... 
%                     'FontWeight','bold') 
%             elseif j == b 
%                 label = num2str(i-m_length,2); 
%              
%                 text(j-2,i,'R',... 
%                     'BackgroundColor',[.6 .5 .4],... 
%                     'EdgeColor','k',... 
%                     'HorizontalAlignment','center') 
%              
%                 text(j-1.5,i,label,... 
%                     'BackgroundColor',[.6 .5 .4],... 
%                     'EdgeColor','k',... 
%                     'HorizontalAlignment','center',... 
%                     'FontWeight','bold') 
%              
%             end 
%      
     
 
%draw analysis data 
    if size(all_data) ~= [1,1] 
         
        %get scale 
        react_scale = max(abs(reaction_force)); 
         
        line_scale = 2; 
         
        if (reaction_force(i)/react_scale) > .9 
            plot3(xm,ym,zm,'r-','LineWidth',5*line_scale) 
        elseif (reaction_force(i)/react_scale) > .7 
            plot3(xm,ym,zm,'r-','LineWidth',4*line_scale) 
        elseif (reaction_force(i)/react_scale) > .4 
            plot3(xm,ym,zm,'r-','LineWidth',2*line_scale) 

210 
 



        elseif (reaction_force(i)/react_scale) > .1 
            plot3(xm,ym,zm,'r-','LineWidth',1*line_scale) 
         
        elseif (reaction_force(i)/react_scale) > 0 
            plot3(xm,ym,zm,'r-','LineWidth',.5*line_scale) 
        elseif (reaction_force(i)/react_scale) == 0 
            plot3(xm,ym,zm,'k-','LineWidth',line_scale) 
        elseif (reaction_force(i)/react_scale) < -.9 
            plot3(xm,ym,zm,'b-','LineWidth',5*line_scale) 
        elseif (reaction_force(i)/react_scale) < -.7 
            plot3(xm,ym,zm,'b-','LineWidth',4*line_scale) 
        elseif (reaction_force(i)/react_scale) < -.4 
            plot3(xm,ym,zm,'b-','LineWidth',2*line_scale) 
        elseif (reaction_force(i)/react_scale) < -.1 
            plot3(xm,ym,zm,'b-','LineWidth',1*line_scale) 
        else 
            plot3(xm,ym,zm,'b-','LineWidth',.5*line_scale) 
         
             
        end 
             
             
         
        %redraw members as scaled to the weight 
         
         
         
         
         
        val = num2str(reaction_force(i),'%7.1f'); 
         
        if tog_membernum == 1 
            if reaction_force(i) <= 0 
                text(mean(xm),mean(ym),mean(zm),val,... 
                    'BackgroundColor',[0 .5 .8],... 
                    'EdgeColor','k',... 
                    'HorizontalAlignment','center',... 
                    'VerticalAlignment','top') 
            else 
                text(mean(xm),mean(ym),mean(zm),val,... 
                    'BackgroundColor',[.8 0 0],... 
                    'EdgeColor','k',... 
                    'HorizontalAlignment','center',... 
                    'VerticalAlignment','top') 
                 
            end 
        end 
         
    end 
     
     
end 
 

211 
 



 
%get axis info to scale force vector and constraints 
 
user_axis = axis; 
 
x_length = user_axis(2) - user_axis(1); 
y_length = user_axis(4) - user_axis(3); 
     
if length(user_axis) == 6 
    z_length = user_axis(6) - user_axis(5); 
else 
    z_length = 0; 
end 
 
%scale graphics 
scale_line = sqrt(x_length^2 + y_length^2 + z_length^2); 
 
%draw force  
if tog_force == 1  
    if isnan(w_force) ~= 1 
        %max force is 10% of axis 
        max_size = 0.1; 
         
        % the scale is equal 
        % so take the largest value 
        if size(all_data) == [1,1] 
            scale_force = max(max(abs(w_force))); 
        else 
            scale_force = max([max(max(abs(w_force))) max(abs(reaction_force)) ])     ; 
        end 
     
        xf_scale = max_size*scale_line/scale_force; 
        yf_scale = max_size*scale_line/scale_force; 
        zf_scale = max_size*scale_line/scale_force; 
             
    end 
 
         
    %draw forces 
    [a b] = size(w_force); 
    for i = 1:a    
     
    
        index = w_force(i,4); 
     
        xf(1) = w_joint(index,1); 
        yf(1) = w_joint(index,2); 
        zf(1) = w_joint(index,3); 
     
        xf(2) = xf(1) + w_force(i,1)*xf_scale; 
        yf(2) = yf(1) + w_force(i,2)*yf_scale; 
        zf(2) = zf(1) + w_force(i,3)*zf_scale; 
 

212 
 



        %draw FX 
        plot3([xf(1) xf(2)], [yf(1) yf(1)],[zf(1) zf(1)],'r-','LineWidth',1)  
         
        %draw FY 
        plot3([xf(1) xf(1)], [yf(1) yf(2)],[zf(1) zf(1)],'r-','LineWidth',1)   
         
        %draw FZ 
        plot3([xf(1) xf(1)], [yf(1) yf(1)],[zf(1) zf(2)],'r-','LineWidth',1) 
         
         
        %draw diagonal 
        plot3(xf, yf, zf,'r-','LineWidth',3) 
        plot3( xf(2),  yf(2), zf(2),'rd','MarkerEdgeColor','k','MarkerFaceColor','r','MarkerSize',10)  
                
    end  
end 
 
 

    yc_scale = max_size*scale_line; 

%create constraint scale 
     
if tog_constraint == 1 & size(all_data) == [1,1] 
 
    %max force is 5% of axis 
    max_size = 0.05; 
 
    xc_scale = max_size*scale_line; 

    zc_scale = max_size*scale_line; 
 
    %draw constraints 
    [a b] = size(w_constraint); 
     
    for i = 1:a 
     
        index = w_constraint(i,4); 
     
        xc(1) = w_joint(index,1); 
        yc(1) = w_joint(index,2); 
        zc(1) = w_joint(index,3); 
     
        xc(3) = w_joint(index,1) - w_constraint(i,1)*xc_scale; 
        yc(3) = w_joint(index,2) - w_constraint(i,2)*yc_scale; 
        zc(3) = w_joint(index,3) - w_constraint(i,3)*zc_scale; 
     
        xc(2) = w_joint(index,1) + w_constraint(i,1)*xc_scale; 
        yc(2) = w_joint(index,2) + w_constraint(i,2)*yc_scale; 
        zc(2) = w_joint(index,3) + w_constraint(i,3)*zc_scale; 
 
        %draw FX 
        plot3([xc(3) xc(2)], [yc(1) yc(1)],[zc(1) zc(1)],'go-','MarkerEdgeColor','k','MarkerFaceColor','g')      
        %draw FY 
        plot3([xc(1) xc(1)], [yc(3) yc(2)],[zc(1) zc(1)],'go-','MarkerEdgeColor','k','MarkerFaceColor','g')     
        %draw FZ 

213 
 



        plot3([xc(1) xc(1)], [yc(1) yc(1)],[zc(3) zc(2)],'go-','MarkerEdgeColor','k','MarkerFaceColor','g') 
    end 
         
   
elseif tog_constraint == 1 & tog_force == 1  
     
    [m_length b] = size(w_member); 
    [rf_length b] = size(reaction_force); 
 
    count = m_length+1; 
     
    %draw constraints 
    [a b] = size(w_constraint); 
        
    for i = 1:a    
     
    
        index = w_constraint(i,4); 
     
        xf(1) = w_joint(index,1); 
        yf(1) = w_joint(index,2); 
        zf(1) = w_joint(index,3); 
         
        xf(2) = xf(1); 
        yf(2) = yf(1); 
        zf(2) = zf(1); 
         
        xm = [ w_joint(j1,1) w_joint(j2,1) ]; 
        ym = [ w_joint(j1,2) w_joint(j2,2) ]; 
        zm = [ w_joint(j1,3) w_joint(j2,3) ]; 
         
         
         
         
         
       if w_constraint(i,1) == 1 
           xf(2) = xf(1) + reaction_force(count)*xf_scale;  
            
            
            
            %draw FX 
         
            plot3(xf, yf, zf,'g-','LineWidth',3) 
            plot3( xf(2),  yf(2), zf(2),... 
                'gd','MarkerEdgeColor',... 
                'k','MarkerFaceColor','g',... 
                'MarkerSize',10) 
             
            val = num2str(reaction_force(count),'%7.1f'); 
         
            if reaction_force(count) <= 0 
                text(xf(2),  yf(2), zf(2),val,... 
                    'BackgroundColor',[0 .5 .8],... 

214 
 



                    'EdgeColor','k',... 
                    'HorizontalAlignment','center',... 
                    'VerticalAlignment','top') 
            else 
                text(xf(2),  yf(2), zf(2),val,... 
                    'BackgroundColor',[.8 0 0],... 
                    'EdgeColor','k',... 
                    'HorizontalAlignment','center',... 
                    'VerticalAlignment','top') 
                 
            end 
             
            count = count + 1; 
        
       end 
        
       xf(2) = xf(1); 
        
       if w_constraint(i,2) == 1 
           yf(2) = yf(1) + reaction_force(count)*yf_scale;  
            
            
            
           plot3(xf, yf, zf,'g-','LineWidth',3) 
           plot3( xf(2),  yf(2), zf(2),... 
                'gd','MarkerEdgeColor',... 
                'k','MarkerFaceColor','g',... 
                'MarkerSize',10)    
             
            val = num2str(reaction_force(count),'%7.1f'); 
         
            if reaction_force(count) <= 0 
                text(xf(2),  yf(2), zf(2),val,... 
                    'BackgroundColor',[0 .5 .8],... 
                    'EdgeColor','k',... 
                    'HorizontalAlignment','center',... 
                    'VerticalAlignment','top') 
            else 
                text(xf(2),  yf(2), zf(2),val,... 
                    'BackgroundColor',[.8 0 0],... 
                    'EdgeColor','k',... 
                    'HorizontalAlignment','center',... 
                    'VerticalAlignment','top') 
                 
            end 
             
           count = count + 1; 
       end  
        
        
       yf(2) = yf(1); 
         
       if w_constraint(i,3) == 1 

215 
 



           zf(2) = zf(1) + reaction_force(count)*zf_scale;  
            
            
            
            %draw FZ 
            plot3(xf, yf, zf,'g-','LineWidth',3) 
            plot3( xf(2),  yf(2), zf(2),... 
                'gd','MarkerEdgeColor',... 
                'k','MarkerFaceColor','g',... 
                'MarkerSize',10)  
             
            val = num2str(reaction_force(count),'%7.1f'); 
         
            if reaction_force(count) <= 0 
                text(xf(2),  yf(2), zf(2),val,... 
                    'BackgroundColor',[0 .5 .8],... 
                    'EdgeColor','k',... 
                    'HorizontalAlignment','center',... 
                    'VerticalAlignment','top') 
            else 
                text(xf(2),  yf(2), zf(2),val,... 
                    'BackgroundColor',[.8 0 0],... 
                    'EdgeColor','k',... 
                    'HorizontalAlignment','center',... 
                    'VerticalAlignment','top') 
                 
            end 
             
            count = count + 1; 
       end  
        
             
        
    end 
     
    %draw reaction force 
     
     
     
end 
     
%set axis     
     
if tog_view == 1 
    axis equal 
     
end 
 
%get axis for graphics 
new_axis = axis; 
     
%offset 2% 
max_size = 0.02; 

216 
 



     
xj_scale = max_size*x_length; 
yj_scale = max_size*y_length; 
zj_scale = max_size*z_length; 
     
% draw joint number 
if tog_jointnum == 1 
    [a b] = size(w_joint); 
    for i = 1:a 
        x=w_joint(i,1) + xj_scale; 
        y=w_joint(i,2) + yj_scale; 
        z=w_joint(i,3) + zj_scale; 
         
        text(x,y,z,num2str(i),'BackgroundColor',[0 .8 .8] ) 
    end 
end 
 
%get axis info for axis and labels 
%draw origin 
user_axis = axis; 
    
if user_axis(1) > 0 
    user_axis(1) = 0; 
elseif user_axis(2) < 0 
    user_axis(2) = 0; 
end 
     
if user_axis(3) > 0 
    user_axis(3) = 0; 
elseif user_axis(4) < 0 
    user_axis(4) = 0; 
end 
     
if length(user_axis) == 6     
    if user_axis(5) > 0 
        user_axis(5) = 0; 
    elseif user_axis(6) < 0 
        user_axis(6) = 0; 
    end     
end 
 
if tog_axis_label == 1 
     
    %axis offset scale 
    offset = 1.2; 
        
    %draw X-X 
    text(user_axis(1)*offset, 0 ,0,' -X ','BackgroundColor',[.7 .9 .7]) 
    text(user_axis(2)*offset, 0 ,0,' +X ','BackgroundColor',[.7 .9 .7]) 
     
    %draw Y-Y 
    text(0, user_axis(3)*offset, 0 ,' -Y ','BackgroundColor',[.7 .9 .7]) 
    text(0, user_axis(4)*offset, 0 ,' +Y ','BackgroundColor',[.7 .9 .7]) 

217 
 



   
    %draw Z-Z 
    if length(user_axis) == 6 
        text(0,0, user_axis(5)*offset,' -Z ','BackgroundColor',[.7 .9 .7]) 
        text(0,0, user_axis(6)*offset,' +Z ','BackgroundColor',[.7 .9 .7] ) 
    end 
         
end 
     
if tog_axis == 1  
    %draw X-X 
    plot3([user_axis(1) user_axis(2)], [0 0],[0 0],'k-','LineWidth',3) 
    %draw Y-Y 
    plot3([0 0], [user_axis(3) user_axis(4)],[0 0],'k-','LineWidth',3)    
    %draw Z-Z 
    if length(user_axis) == 6 
        plot3([0 0], [0 0],[user_axis(5) user_axis(6)],'k-','LineWidth',3) 
    end 
     
end 
 
% redraw, just in case 
if tog_view == 1 
    axis equal 
end 
     
%send axis     
send_axis = axis; 
   
 
return; 
 
function feature = subtract_joint(feature, tog_member, mod_num); 
 
% remove features  connected to the joint 
% lower joint number if needed 
 
[a b] = size(feature); 
     
if tog_member == 1 
    %reset member 
    for i = 1:a   
         
        %by removing entris, the increment can be larger than the matrix 
        if i <= a 
             
            if feature(i,1) == mod_num | feature(i,2) == mod_num 
                %feature exists on joint 
                %remove feature row 
                feature(i,:) = []; 
                 
                %resize a 
                [a b] = size(feature);            

218 
 



                 
            elseif feature(i,1) > mod_num | feature(i,2) > mod_num 
                %joint needs adjusted 
                 
                if feature(i,1) > mod_num 
                    feature(i,1) = feature(i,1) - 1; 
                end 
                 
                if feature(i,2) > mod_num 
                    feature(i,2) = feature(i,2) - 1; 
                end 
            end 
        end 
    end 
         
elseif tog_member == 0 
    %reset constraint / force 
    for i = 1:a 
         
        %by removing entris, the increment can be larger than the matrix 
        if i <= a 
            if feature(i,4) == mod_num 
                feature(i,:) = []; 
                 
                %resize a 
                [a b] = size(feature);    
                 
            elseif feature(i,4) > mod_num 
                feature(i,4) = feature(i,4) - 1; 
            end 
        end 
    end 
end 
 
 
return; 
             
             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

219 
 



 
 
 
 
 
 
 
% --- Executes during object creation, after setting all properties. 
function axis_xmin_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to axis_xmin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 

if ispc 

else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function axis_xmin_Callback(hObject, eventdata, handles) 
% hObject    handle to axis_xmin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of axis_xmin as text 
%        str2double(get(hObject,'String')) returns contents of axis_xmin as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function axis_xmax_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to axis_xmax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 

    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function axis_xmax_Callback(hObject, eventdata, handles) 
% hObject    handle to axis_xmax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 

220 
 



% Hints: get(hObject,'String') returns contents of axis_xmax as text 
%        str2double(get(hObject,'String')) returns contents of axis_xmax as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function axis_ymin_CreateFcn(hObject, eventdata, handles) 

else 

% Hint: edit controls usually have a white background on Windows. 

% hObject    handle to axis_ymin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function axis_ymin_Callback(hObject, eventdata, handles) 
% hObject    handle to axis_ymin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of axis_ymin as text 
%        str2double(get(hObject,'String')) returns contents of axis_ymin as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function axis_ymax_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to axis_ymax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 

%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function axis_ymax_Callback(hObject, eventdata, handles) 
% hObject    handle to axis_ymax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of axis_ymax as text 
%        str2double(get(hObject,'String')) returns contents of axis_ymax as a double 
 

221 
 



 
% --- Executes during object creation, after setting all properties. 

 

 

% handles    structure with handles and user data (see GUIDATA) 

function axis_zmin_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to axis_zmin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function axis_zmin_Callback(hObject, eventdata, handles) 
% hObject    handle to axis_zmin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of axis_zmin as text 
%        str2double(get(hObject,'String')) returns contents of axis_zmin as a double 
 

% --- Executes during object creation, after setting all properties. 
function axis_zmax_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to axis_zmax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function axis_zmax_Callback(hObject, eventdata, handles) 
% hObject    handle to axis_zmax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 

 
% Hints: get(hObject,'String') returns contents of axis_zmax as text 
%        str2double(get(hObject,'String')) returns contents of axis_zmax as a double 
 
 
 
% --- Executes during object creation, after setting all properties. 

222 
 



function edit40_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit40 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function edit40_Callback(hObject, eventdata, handles) 
% hObject    handle to edit40 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit40 as text 
%        str2double(get(hObject,'String')) returns contents of edit40 as a double 
 
 
% --- Executes on button press in axis_update. 
function axis_update_Callback(hObject, eventdata, handles) 
% hObject    handle to axis_update (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
global w_joint w_all_data w_reaction_force 
 
if isnan(w_joint) ~= 1 
     
    %get axis data and modify 
    xmin = str2double(get(handles.axis_xmin,'String')); 
    xmax = str2double(get(handles.axis_xmax,'String')); 
     
    ymin = str2double(get(handles.axis_ymin,'String')); 
    ymax = str2double(get(handles.axis_ymax,'String')); 
     
    zmin = str2double(get(handles.axis_zmin,'String')); 
    zmax = str2double(get(handles.axis_zmax,'String')); 
     
     
    axes(handles.axes1); 
     
    axis([xmin xmax ymin ymax zmin zmax]); 
     
    switch get(handles.ShowJointMenu,'Checked') 
        case 'on' 
            tog_jointnum = 1; 
        case 'off' 

223 
 



            tog_jointnum = 0; 
    end 
     
    switch get(handles.ShowMemberMenu,'Checked') 
        case 'on' 
            tog_membernum = 1; 
        case 'off' 
            tog_membernum = 0; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 
        case 'on' 
            tog_constraint = 1; 
        case 'off' 
            tog_constraint = 0; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
        case 'on' 
            tog_force = 1; 
        case 'off' 
            tog_force = 0; 
    end 
     
    switch get(handles.ShowGridMenu,'Checked') 
        case 'on' 
            tog_grid = 1; 
        case 'off' 
            tog_grid = 0; 
    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
        case 'on' 
            tog_axis_label = 1; 
        case 'off' 
            tog_axis_label = 0; 
    end 
     
    switch get(handles.ShowAxesMenu,'Checked')         
        case 'on' 
            tog_axes = 1; 
        case 'off' 
            tog_axes = 0; 
    end 
     
    %reset view, no 
    tog_view = 0; 
     
     
    %check for analysis, draw 
    if sum(w_all_data) == 0 
         
        all_data = 1; 

224 
 



        reaction_force = 1; 
    else 
         
        all_data = w_all_data; 
        reaction_force = w_reaction_force; 
         
    end 
     
    axes(handles.axes1);     
    new_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view, all_data, reaction_force); 
    rotate3d on 
     
else 
    errordlg('No model exists.  Add a Joint from the ''Feature Type'' menu.','No Model Available') 
end 
 
 
 
% --- Executes during object creation, after setting all properties. 
function edit42_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit42 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function edit42_Callback(hObject, eventdata, handles) 
% hObject    handle to edit42 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit42 as text 
%        str2double(get(hObject,'String')) returns contents of edit42 as a double 
 
% --- Executes on button press in axis_reset. 
function axis_reset_Callback(hObject, eventdata, handles) 
% hObject    handle to axis_reset (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
global w_joint w_all_data w_reaction_force 
 
axes(handles.axes1); 
cla; 

225 
 



 
hold off 
 
axis equal 
hold on 
%axis([0 1 0 1 0 1]) 
 
if isnan(w_joint) ~= 1 
     
    switch get(handles.ShowJointMenu,'Checked') 
        case 'on' 
            tog_jointnum = 1; 
        case 'off' 
            tog_jointnum = 0; 
    end 
     
    switch get(handles.ShowMemberMenu,'Checked') 
        case 'on' 
            tog_membernum = 1; 
        case 'off' 
            tog_membernum = 0; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 
        case 'on' 
            tog_constraint = 1; 
        case 'off' 
            tog_constraint = 0; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
        case 'on' 
            tog_force = 1; 
        case 'off' 
            tog_force = 0; 
    end 
     
    switch get(handles.ShowGridMenu,'Checked') 
        case 'on' 
            tog_grid = 1; 
        case 'off' 
            tog_grid = 0; 
    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
        case 'on' 
            tog_axis_label = 1; 
        case 'off' 
            tog_axis_label = 0; 
    end 
     
    switch get(handles.ShowAxesMenu,'Checked')         
        case 'on' 

226 
 



            tog_axes = 1; 
        case 'off' 
            tog_axes = 0; 
    end 
     
    %reset view, no 
    tog_view = 1; 
     
    %also reset analysis 
    w_all_data = []; 
    w_reaction_force = []; 
     
    %      
    %     %check for analysis, draw 
    %     if size(w_all_data) == [1,1] 
    %          
    %         all_data = 1; 
    %         reaction_force = 1; 
    %     else 
    %          
    %         all_data = w_all_data; 
    %         reaction_force = w_reaction_force; 
    %          
    %     end 
     
    axes(handles.axes1);     
    new_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view, 1, 1); 
    rotate3d on 

     

        set(handles.axis_zmin, 'String', new_axis(5)); 
        set(handles.axis_zmax, 'String', new_axis(6)); 

     
    %rotate3d on 
    new_axis = axis; 
    %new_axis = round(axis); 

    for i = 1:length(new_axis) 
         
        new_axis(i) = round(new_axis(i)*10)/10; 
         
    end 
     
    axis(new_axis); 
     
    set(handles.axis_xmin, 'String', new_axis(1)); 
    set(handles.axis_xmax, 'String', new_axis(2)); 
    set(handles.axis_ymin, 'String', new_axis(3)); 
    set(handles.axis_ymax, 'String', new_axis(4)); 
     
    if length(new_axis) == 6 

    end 
     
    rotate3d on 

227 
 



     
    %set view 
    az = 30; 
    el = 30; 
    view(az, el); 
     
    
else 
    errordlg('No model exists.  Add a Joint from the ''Feature Type'' menu.','No Model Available') 
end 
 
 
 
% -------------------------------------------------------------------- 
function ShowAxisLabelMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowAxisLabelMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
switch get(handles.ShowAxisLabelMenu,'Checked') 
    case 'on' 
        set(handles.ShowAxisLabelMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowAxisLabelMenu, 'Checked', 'on') 
end 
 
    switch get(handles.ShowJointMenu,'Checked') 
    case 'on' 
        tog_jointnum = 1; 
    case 'off' 
        tog_jointnum = 0; 
    end 
     
    switch get(handles.ShowMemberMenu,'Checked') 
    case 'on' 
        tog_membernum = 1; 
    case 'off' 
        tog_membernum = 0; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 
    case 'on' 
        tog_constraint = 1; 
    case 'off' 
        tog_constraint = 0; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
    case 'on' 
        tog_force = 1; 
    case 'off' 
        tog_force = 0; 
    end 

228 
 



     
    switch get(handles.ShowGridMenu,'Checked') 
    case 'on' 
        tog_grid = 1; 
    case 'off' 
        tog_grid = 0; 
    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
    case 'on' 
        tog_axis_label = 1; 
    case 'off' 
        tog_axis_label = 0; 
    end 
     
    switch get(handles.ShowAxesMenu,'Checked') 
    case 'on' 
        tog_axes = 1; 
    case 'off' 
        tog_axes = 0; 
    end 
     
    %reset view 
    tog_view = 0; 
     
    global w_all_data w_reaction_force 
     
    %check for analysis, draw 
    if sum(w_all_data) == 0 
         
        all_data = 1; 
        reaction_force = 1; 
    else 
         
        all_data = w_all_data; 
        reaction_force = w_reaction_force; 
         
    end 
     
    axes(handles.axes1);     
    new_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view, all_data, reaction_force); 
    rotate3d on    
 
 
% -------------------------------------------------------------------- 
function ShowAxesMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowAxesMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
switch get(handles.ShowAxesMenu,'Checked') 
    case 'on' 

229 
 



        set(handles.ShowAxesMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowAxesMenu, 'Checked', 'on') 
end 
 
    switch get(handles.ShowJointMenu,'Checked') 
    case 'on' 
        tog_jointnum = 1; 
    case 'off' 
        tog_jointnum = 0; 
    end 
     
    switch get(handles.ShowMemberMenu,'Checked') 
    case 'on' 
        tog_membernum = 1; 
    case 'off' 
        tog_membernum = 0; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 
    case 'on' 
        tog_constraint = 1; 
    case 'off' 
        tog_constraint = 0; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
    case 'on' 
        tog_force = 1; 
    case 'off' 
        tog_force = 0; 
    end 
     
    switch get(handles.ShowGridMenu,'Checked') 
    case 'on' 
        tog_grid = 1; 
    case 'off' 
        tog_grid = 0; 
    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
    case 'on' 
        tog_axis_label = 1; 
    case 'off' 
        tog_axis_label = 0; 
    end 
     
    switch get(handles.ShowAxesMenu,'Checked') 
    case 'on' 
        tog_axes = 1; 
    case 'off' 
        tog_axes = 0; 
    end 

230 
 



     
    %reset view 
    tog_view = 0; 
     
    global w_all_data w_reaction_force 
     
    %check for analysis, draw 
    if sum(w_all_data) == 0 
         
        all_data = 1; 
        reaction_force = 1; 
    else 
         
        all_data = w_all_data; 
        reaction_force = w_reaction_force; 
         
    end 
     
    axes(handles.axes1);     
    new_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view, all_data, reaction_force); 
    rotate3d on 
 
% -------------------------------------------------------------------- 
function NewMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to NewMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
global w_joint 
clc 
[a b] = size(w_joint); 
 
 
if a ~= 0 
    button = questdlg('Do you want to save the model',... 
    'Start New File?','Yes','No','No'); 
    if strcmp(button,'Yes') 
         
        [file, path] = uiputfile({'*.mat','Matlab Model File (*.mat)'},'Save As'); 
 
        if ~isequal(file, 0) 
        %open(file);    
     
        filename = char(file); 
        %load file 
        save(filename);     
         
     
        end 
         
     
         

231 
 



     
    elseif strcmp(button,'No') 
        %  
        axes(handles.axes1); 
        cla; 
     
        clear global 
     
        n = round(rand*50+20); 
        m = rand*3 + 1; 
   
        q = m*rand(n,n)+(peaks(n)); 
     
        surf(q);     
        axis equal  
    end 
else 
    axes(handles.axes1); 
        cla; 
     
        clear global 
     
        n = round(rand*50+20); 
        m = rand*3 + 1; 
   
        q = m*rand(n,n)+(peaks(n)); 
     
        surf(q);     
        axis equal  
     
end 
 
     
 
 
 
 

% prompt = {'Enter filename (default is *.fea)'}; 

 
 
 
 
% -------------------------------------------------------------------- 
function SaveMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to SaveMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
global w_joint w_member w_constraint w_force 
 

% dlg_title = 'Save Project'; 
% num_lines= 1; 
% def     = {'project1.fea'}; 

232 
 



% answer  = inputdlg(prompt,dlg_title,num_lines,def); 
%  
% n = 'aaa';%answer(1,1) 
%  
% save 'aaa.mat' w_joint w_member w_constraint w_force 
 
[file, path] = uiputfile({'*.mat','Matlab Model File (*.mat)'},'Save As'); 
 
if ~isequal(file, 0)      
     
    filename = char(file); 
    %load file 
    save(filename);    
     
     
end 
 
 
 
 
% --- Executes during object creation, after setting all properties. 
function edit44_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit44 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function edit44_Callback(hObject, eventdata, handles) 
% hObject    handle to edit44 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit44 as text 
%        str2double(get(hObject,'String')) returns contents of edit44 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit46_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit46 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 

233 
 



if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function edit46_Callback(hObject, eventdata, handles) 
% hObject    handle to edit46 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit46 as text 

% hObject    handle to pushbutton12 (see GCBO) 

%        str2double(get(hObject,'String')) returns contents of edit46 as a double 
 
 
% --- Executes on button press in pushbutton12. 
function pushbutton12_Callback(hObject, eventdata, handles) 

% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- Executes on button press in user_2d. 
function user_2d_Callback(hObject, eventdata, handles) 
% hObject    handle to user_2d (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of user_2d 
set(handles.user_2d, 'Value', 1); 
set(handles.user_3d, 'Value', 0); 
 
set(handles.user_2dxy, 'Value', 0); 
set(handles.user_2dyz, 'Value', 0); 
set(handles.user_2dxz, 'Value', 1); 
 
 
 
% --- Executes on button press in user_3d. 
function user_3d_Callback(hObject, eventdata, handles) 
% hObject    handle to user_3d (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of user_3d 
 
set(handles.user_2d, 'Value', 0); 
set(handles.user_3d, 'Value', 1); 
 
set(handles.user_2dxy, 'Value', 0); 
set(handles.user_2dyz, 'Value', 0); 

234 
 



set(handles.user_2dxz, 'Value', 0); 
 
 
% --- Executes on button press in user_2dxy. 
function user_2dxy_Callback(hObject, eventdata, handles) 
% hObject    handle to user_2dxy (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
if get(handles.user_2d, 'Value') == 1 
 
    set(handles.user_2dxy, 'Value', 1); 
    set(handles.user_2dyz, 'Value', 0); 
    set(handles.user_2dxz, 'Value', 0); 
else 
    set(handles.user_2dxy, 'Value', 0); 
    set(handles.user_2dyz, 'Value', 0); 
    set(handles.user_2dxz, 'Value', 0); 
    beep 
end 
 
% Hint: get(hObject,'Value') returns toggle state of user_2dxy 
 
 
% --- Executes on button press in user_2dxz. 
function user_2dxz_Callback(hObject, eventdata, handles) 
% hObject    handle to user_2dxz (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of user_2dxz 
if get(handles.user_2d, 'Value') == 1 
 
    set(handles.user_2dxy, 'Value', 0); 
    set(handles.user_2dyz, 'Value', 0); 
    set(handles.user_2dxz, 'Value', 1); 
else 
    set(handles.user_2dxy, 'Value', 0); 
    set(handles.user_2dyz, 'Value', 0); 
    set(handles.user_2dxz, 'Value', 0); 
    beep 
end 
 
% --- Executes on button press in user_2dyz. 
function user_2dyz_Callback(hObject, eventdata, handles) 
% hObject    handle to user_2dyz (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of user_2dyz 
if get(handles.user_2d, 'Value') == 1 
 
    set(handles.user_2dxy, 'Value', 0); 

235 
 



    set(handles.user_2dyz, 'Value', 1); 
    set(handles.user_2dxz, 'Value', 0); 
else 
    set(handles.user_2dxy, 'Value', 0); 
    set(handles.user_2dyz, 'Value', 0); 
    set(handles.user_2dxz, 'Value', 0); 
    beep 
end 
 
% -------------------------------------------------------------------- 
function ShowToggleMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowToggleMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
tog_count = 0; 
 
    switch get(handles.ShowJointMenu,'Checked') 
    case 'on' 
        tog_count = tog_count + 1; 
    end 
     
    switch get(handles.ShowMemberMenu,'Checked') 
    case 'on' 
        tog_count = tog_count + 1; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 
    case 'on' 
        tog_count = tog_count + 1; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
    case 'on' 
        tog_count = tog_count + 1; 
    end 
     
    switch get(handles.ShowGridMenu,'Checked') 
    case 'on' 
        tog_grid = 1; 
    case 'off' 
        tog_grid = 0; 
    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
    case 'on' 
        tog_axis_label = 1; 
    case 'off' 
        tog_axis_label = 0; 
    end 
     
    switch get(handles.ShowAxesMenu,'Checked') 
    case 'on' 

236 
 



        tog_count = tog_count + 1; 
    end 
     
     
    %reset view 
    tog_view = 0; 
     
    axes(handles.axes1);  
     
    global w_all_data w_reaction_force 
     
    %check for analysis, draw 
     
    if sum(w_all_data) == 0 
         
        all_data = 1; 
        reaction_force = 1; 
    else 
         
        all_data = w_all_data; 
        reaction_force = w_reaction_force; 
         
    end 
     
        
    if tog_count > 2 
        new_axis = draw_plot( 0, 0, 0, 0, tog_grid, 0, 0, tog_view,all_data,reaction_force); 
        set(handles.ShowJointMenu, 'Checked', 'off') 
        set(handles.ShowMemberMenu, 'Checked', 'off') 
        set(handles.ShowConstraintMenu, 'Checked', 'off') 
        set(handles.ShowForceMenu, 'Checked', 'off') 
         
        set(handles.ShowAxesMenu, 'Checked', 'off') 
        set(handles.ShowAxisLabelMenu, 'Checked', 'off') 
         
    else 
        new_axis = draw_plot( 1, 1, 1, 1, tog_grid, tog_axis_label, 1, tog_view,all_data,reaction_force); 
        set(handles.ShowJointMenu, 'Checked', 'on') 
        set(handles.ShowMemberMenu, 'Checked', 'on') 
        set(handles.ShowConstraintMenu, 'Checked', 'on') 
        set(handles.ShowForceMenu, 'Checked', 'on') 
         
        set(handles.ShowAxesMenu, 'Checked', 'on') 
        %set(handles.ShowAxisLabelMenu, 'Checked', 'on') 
         
    end 
    rotate3d on 
 
function draw_value(a,b,matrix) 
 
% global w_member 
%  
% [m_length m_width] = size(w_member); 

237 
 



%  
% hold on 
% axis([1 b 1 a]) 
%  
% grid on 
%  
% % 
% for i = 1:a 
%     for j = 1:b 
%          if matrix(i,j) ~= 0 | j == b-4 | j == b 
%  
%             %draw output labels 
%             if j == b & i <= m_length 
%                 label = num2str(i,2); 
%              
%                 text(j-2,i,'M',... 
%                     'BackgroundColor',[.7 .3 .2],... 
%                     'EdgeColor','k',... 
%                     'HorizontalAlignment','center') 
%              
%                 text(j-1.5,i,label,... 
%                     'BackgroundColor',[.7 .3 .2],... 
%                     'EdgeColor','k',... 
%                     'HorizontalAlignment','center',... 
%                     'FontWeight','bold') 
%             elseif j == b 
%                 label = num2str(i-m_length,2); 
%              
%                 text(j-2,i,'R',... 
%                     'BackgroundColor',[.6 .5 .4],... 
%                     'EdgeColor','k',... 
%                     'HorizontalAlignment','center') 
%              
%                 text(j-1.5,i,label,... 
%                     'BackgroundColor',[.6 .5 .4],... 
%                     'EdgeColor','k',... 
%                     'HorizontalAlignment','center',... 
%                     'FontWeight','bold') 
%              
%             end 
%               
%               
%             %draw box around matrix 
%             plot([b-5.5 b-5.5 b-5.6 b-5.6 b-5.5],[1 a a 1 1]) 
%              
%             plot([b-2.5 b-2.5 b-2.6 b-2.6 b-2.5],[1 a a 1 1]) 
%               
%              
%             %draw value 
%             if abs(matrix(i,j)) <= 1 
%                 val = num2str(matrix(i,j), 2); 
%             else 
%                 val = num2str(matrix(i,j), '%6.1f'); 

238 
 



%             end 
%              
%              
%             if matrix(i,j) <= 0 
%                 text(j,i,val,... 
%                     'BackgroundColor',[0 .5 .8],... 
%                     'EdgeColor','k',... 
%                     'HorizontalAlignment','center') 
%             else 
%                 text(j,i,val,... 
%                     'BackgroundColor',[.8 0 0],... 
%                     'EdgeColor','k',... 
%                     'HorizontalAlignment','center') 
%                  
%             end 
%         end 
%     end 
% end 
%  
% return; 
 
function analysis_scale = draw_analysis(all_data, force_data, reaction_force) 
 
global w_joint, w_member, w_constraint, w_force 
% 
% 
%send analysis info to draw area 
 
 
%get w_member values 
 
 
%get reaction forces 
 
 
%draw reaction forces 
 
 
%draw member values 
 
 
 
 
% send data back to control panel 
                   
 
 
% -------------------------------------------------------------------- 
function Error_Plane_Callback(hObject, eventdata, handles) 
% hObject    handle to Error_Plane (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 

239 
 



global w_joint w_member w_constraint w_force w_all_data w_reaction_force w_force_data 
 
%1. build matrix from members / joints 
%2. apply forces then constraints 
 
%verify nothing exists on a removed column 
 
[j_length b] = size(w_joint); 
[m_length b] = size(w_member); 
 
all_data = zeros(j_length *3, m_length); 
 
%build matrix 
 
for i = 1:j_length 
     
    %cycle through each joint and find connectivity 
    for j = 1:m_length 
         
        xyz1 = 0; 
        xyz1 = 0; 
         
        %if member uses joint i 
        if (w_member(j,1) == i | w_member(j,2) == i)  
             
             
            %member data 
            j1 = w_member(j,1); 
            j2 = w_member(j,2); 
             
            if j1 == i 
                 
                xyz1 = w_joint(j1,:); 
                xyz2 = w_joint(j2,:); 
                 
                other_j = j2;    
                 
            elseif j2 == i 
                 
                xyz1 = w_joint(j2,:); 
                xyz2 = w_joint(j1,:); 
                 
                other_j = j1;           
                 
            end 
                 
            %get lengths 
            all_length = xyz2 - xyz1; 
             
             
            scalar_length = sqrt(sum( all_length.^2)); 
                 
             

240 
 



            % adjust to member columns 
            % x portion 
            all_data(i*3-2, j) = all_length(1) / scalar_length; 
            % y portion 
            all_data(i*3-1, j) = all_length(2) / scalar_length; 
            % z portion 
            all_data(i*3-0, j) = all_length(3) / scalar_length; 
       
        end 
        %elseif anything? 
         
        %for loops 
    end 
end 
 
 
[a b] = size(all_data); 
 
force_data = zeros(j_length *3, 1); 
 
%create force vector 
[a b] = size(w_force); 
 
for i = 1:a 
     
    j1 = w_force(i,4); 
     
    if w_force(i,1) ~= 0 
        force_data(j1*3-2, 1) = w_force(i,1); 
    end 
     
    if w_force(i,2) ~= 0 
        force_data(j1*3-1, 1) = w_force(i,2); 
    end 
     
    if w_force(i,3) ~= 0 
        force_data(j1*3-0, 1) = w_force(i,3); 
    end 
     
end 
%get joints with constraints 
 
%move through the matrix backwards. 
%this way the numbering scheme is easier to control 
[a b] = size(w_constraint); 
 
[ad_size b] = size(all_data); 
[f_length b2] = size(force_data); 
     
%how big does the matrix need to be? 
mod_size = 0; 
 
for i = 1:a  

241 
 



     
    j1 = w_constraint(i,4);   
     
    % x constraint 
        if w_constraint(i,1) == 1 
             
            mod_size = mod_size+1; 
                     
            all_data(j1*3-2,b+mod_size) = 1; 
        end 
     
        % y constraint 
        if w_constraint(i,2) == 1 
         
            mod_size = mod_size+1; 
         
            all_data(j1*3-1,b+mod_size) = 1; 
        end 
     
        % z constraint 
        if w_constraint(i,3) == 1 
         
            mod_size = mod_size+1; 
         
            all_data(j1*3-0,b+mod_size) = 1; 
        end 
end 
 
 
err = 0; 
% %condition data for 3d / 2d 
if get(handles.user_2d, 'Value') == 1 
    %get 2d plane 
     
    if get(handles.user_2dxy, 'Value') == 1 
        offset = 0; 
    elseif get(handles.user_2dxz, 'Value') == 1 
        offset = 1; 
    elseif get(handles.user_2dyz, 'Value') == 1 
        offset = 2; 
    end 
 
     
      
    for i = j_length*3:-3:3    
        % check joints on plane 
        if sum(all_data(i-offset,:)) ~= 0 & err ~= 1 
            if offset == 0 
                errordlg('A joint exists with a Z coordinate other than zero.  If the entire model is along the same 
XY Plane, then the results will be accurate.  This could be an incorrect constraint','2D Plane Error') 
            elseif offset == 1 
                errordlg('A joint exists with a Y coordinate other than zero.  If the entire model is along the same 
XZ Plane, then the results will be accurate.  This could be an incorrect constraint','2D Plane Error') 

242 
 



            else 
                errordlg('A joint exists with a X coordinate other than zero.  If the entire model is along the same 
YZ Plane, then the results will be accurate.  This could be an incorrect constraint','2D Plane Error') 
            end 
            err = 1; 
                    
        end 
                 
        %check forces on plane    
        if sum(force_data(i-offset,:)) ~= 0 & err ~= 1 
            if offset == 0 
                errordlg('A force exists with a Z coordinate other than zero.  The force will be ignored during 
analysis','2D Plane Error') 
            elseif offset == 1 
                errordlg('A force exists with a Y coordinate other than zero.  The force will be ignored during 
analysis','2D Plane Error') 
            else 
                errordlg('A force exists with a X coordinate other than zero.  The force will be ignored during 
analysis','2D Plane Error') 
            end 
             
            err = 1; 
             
        end 
         
    end 
     
end     
    %check constraints 
     
    % %condition data for 3d / 2d 
if get(handles.user_2d, 'Value') == 1 
    %get 2d plane 
     
    if get(handles.user_2dxy, 'Value') == 1 
        if sum(w_constraint(:,3)) ~= 0 
            errordlg('A constraint exists with a Z coordinate other than zero.  This may cause a failure in 
analysis','2D Plane Error') 
            err = 1; 
        end 
    elseif get(handles.user_2dxz, 'Value') == 1 
        if sum(w_constraint(:,2)) ~= 0 
            errordlg('A constraint exists with a Y coordinate other than zero.  This may cause a failure in 
analysis','2D Plane Error') 
            err = 1; 
        end 
    elseif get(handles.user_2dyz, 'Value') == 1 
        if sum(w_constraint(:,1)) ~= 0 
            errordlg('A constraint exists with a X coordinate other than zero.  This may cause a failure in 
analysis','2D Plane Error') 
            err = 1; 
        end 
    end 

243 
 



end 
     
     
if err == 0 
 
    errordlg('No Error Detected', 'Error Checking Successful') 
end 
     
 
 
 
% -------------------------------------------------------------------- 
function Error_Constraint_Callback(hObject, eventdata, handles) 
% hObject    handle to Error_Constraint (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
global w_constraint 
 
con_count = sum(w_constraint(:,1) + w_constraint(:,2) + w_constraint(:,3)); 
 
err = 0; 
% %condition data for 3d / 2d 
if get(handles.user_2d, 'Value') == 1 
     
    if con_count ~= 3 
        errordlg('2D models must have 3 constraints to solve the matrix','User Input Error') 
        err = 1; 
    end 
     
else 
    if con_count ~= 6 
        errordlg('3D models must have 6 constraints to solve the matrix','User Input Error') 
        err = 1; 
    end 
     
end 
 
if err == 0 
    errordlg('No Error Detected','Error Constraint Check') 
end 
     
 
 
% -------------------------------------------------------------------- 
function Error_Recovery_Callback(hObject, eventdata, handles) 
% hObject    handle to Error_Recovery (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%sweep though the member, constraint, and force to verify a joint exists 
%for each entry 
 

244 
 



 
button = questdlg('Search for invalid joint entries?',... 
    'Scan for Joint and Repair','Yes','No','No'); 
 
if strcmp(button,'Yes') 
     
    global w_joint w_member w_constraint w_force 
     
    %get size of w_joint 
    [joint_max b] = size(w_joint); 
     
    %scan through w_member for connectivity  
    [mem b] = size(w_member);                 
    for i = 1:mem 
         
        if w_member(i,1) > joint_max | w_member(i,2) > joint_max 
            %then remove feature 
            w_member(i,:) = []; 
        end 
    end 
     
     
    %scan through w_constraint 
    [con b] = size(w_constraint); 
     
    for i = 1:con 
         
        if w_constraint(i,4) > joint_max 
            %then remove feature 
            w_constraint(i,:) = []; 
        end 
    end 
     
    %scan through w_force 
    [force_val b] = size(w_force); 
     
    for i = 1:force_val 
         
        if w_force(i,4) > joint_max 
            %then remove feature 
            w_force(i,:) = []; 
        end 
    end 
     
    switch get(handles.ShowJointMenu,'Checked') 
        case 'on' 
            tog_jointnum = 1; 
        case 'off' 
            tog_jointnum = 0; 
    end 
     
    switch get(handles.ShowMemberMenu,'Checked') 
        case 'on' 

245 
 



            tog_membernum = 1; 
        case 'off' 
            tog_membernum = 0; 
    end 
     
    switch get(handles.ShowConstraintMenu,'Checked') 
        case 'on' 
            tog_constraint = 1; 
        case 'off' 
            tog_constraint = 0; 
    end 
     
    switch get(handles.ShowForceMenu,'Checked') 
        case 'on' 
            tog_force = 1; 
        case 'off' 
            tog_force = 0; 
    end 
     
    switch get(handles.ShowGridMenu,'Checked') 
        case 'on' 
            tog_grid = 1; 
        case 'off' 
            tog_grid = 0; 
    end 
     
    switch get(handles.ShowAxisLabelMenu,'Checked') 
        case 'on' 
            tog_axis_label = 1; 
        case 'off' 
            tog_axis_label = 0; 
    end 
     
    switch get(handles.ShowAxesMenu,'Checked')         
        case 'on' 
            tog_axes = 1; 
        case 'off' 
            tog_axes = 0; 
    end 
     
    %reset view, no 
    tog_view = 0; 
     
    global w_all_data w_reaction_force 
     
    %check for analysis, draw 
    if sum(w_all_data) == 0 
         
        all_data = 1; 
        reaction_force = 1; 
    else 
         
        all_data = w_all_data; 

246 
 



        reaction_force = w_reaction_force; 
         
    end 
     
    axes(handles.axes1);     
    new_axis = draw_plot( tog_jointnum, tog_membernum, tog_constraint, tog_force, tog_grid, 
tog_axis_label, tog_axes, tog_view, all_data, reaction_force); 
    rotate3d on 
     
     
     
    msgbox('Scan Complete') 
end 
 
 
 
% --- Executes on button press in check_drawFBD. 
function check_drawFBD_Callback(hObject, eventdata, handles) 
% hObject    handle to check_drawFBD (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of check_drawFBD 

247 
 



Appendix B.2 
 

Ramp and Spring Energy Dynamics code 
 

EFD_RAMP 
  

function varargout = efd_ramp(varargin) 
% EFD_RAMP M-file for efd_ramp.fig 
%      EFD_RAMP, by itself, creates a new EFD_RAMP or raises the existing 
%      singleton*. 
% 

 

%      H = EFD_RAMP returns the handle to a new EFD_RAMP or the handle to 
%      the existing singleton*. 
% 
%      EFD_RAMP('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in EFD_RAMP.M with the given input arguments. 
% 
%      EFD_RAMP('Property','Value',...) creates a new EFD_RAMP or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before efd_ramp_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to efd_ramp_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

% Edit the above text to modify the response to help efd_ramp 
 
% Last Modified by GUIDE v2.5 30-May-2003 15:39:27 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @efd_ramp_OpeningFcn, ... 
                   'gui_OutputFcn',  @efd_ramp_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin & isstr(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 

248 
 



% End initialization code - DO NOT EDIT 
 
% --- Executes just before efd_ramp is made visible. 
function efd_ramp_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to efd_ramp (see VARARGIN) 
 
% Choose default command line output for efd_ramp 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% This sets up the initial plot - only do when we are invisible 
% so window can get raised using efd_ramp. 
if strcmp(get(hObject,'Visible'),'off') 
    surf(peaks); 
end 
 
%set initial data 
set(handles.drag_no, 'Value', 1); 
set(handles.ke_check, 'Value', 1); 
set(handles.UnitsEnglish, 'Checked', 'off'); 
set(handles.UnitsMetric, 'Checked', 'on'); 
 
% UIWAIT makes efd_ramp wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = efd_ramp_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%get output info 
if (get(handles.figure_check,'Value')) == 1 
    figure(1) 
    clf reset; 
else 

249 
 



    axes(handles.axes1); 
    cla; 
end 
 
%determine units 
switch get(handles.UnitsEnglish,'Checked') 
    case 'on' 
        unit_position = 'feet'; 

 
clc  

        unit_velocity = 'feet / second'; 
    case 'off' 
        unit_position = 'meters'; 
        unit_velocity = 'meters / second';         
end 
 
%set view 
view(2) 
 

 
%determine units 
switch get(handles.UnitsEnglish,'Checked') 
    case 'on' 
        gravity = -32.2; 
        unit_position = 'feet'; 
    case 'off' 
        gravity = -9.81;%02; 
        unit_position = 'meters'; 
end 
 
 
 
%retrieve data 
dt = str2double(get(handles.ti_dt,'String')); 
 
%get KE data 
ke_vmag = str2double(get(handles.ke_vmag,'String')); 
ke_angle = str2double(get(handles.ke_angle,'String')); 
ke_height = str2double(get(handles.ke_height,'String')); 
ke_dy = str2double(get(handles.ke_dy,'String')); 
ke_mass = str2double(get(handles.ke_mass,'String')); 
ke_loss = str2double(get(handles.ke_loss,'String')); 
 
%make ke_loss a percentage 
ke_loss = ke_loss / 100; 
 
%get Target data 
td_xmin = str2double(get(handles.td_xmin,'String')); 
td_xmax = str2double(get(handles.td_xmax,'String')); 
td_ymin = str2double(get(handles.td_ymin,'String')); 
td_ymax = str2double(get(handles.td_ymax,'String')); 
     
 

250 
 



 
 
% 
%  Energy From Ramp 
% 
%%%%%%%%%%%%%%%%%%%%% 
 
KE = 0; 
%calc total energy from initial motion   KE 
if (get(handles.ke_check,'Value')) == 1 
 

        errordlg('The inital velocity cannot overcome the ramp','Invalid Analysis') 

     

    end 

        errordlg('The ''Ramp Angle'' and ''dy'' don''t correspond!!!  For angles between 180 and 360 degress, 
''dy'' must be negative.  Please modify the ''Ramp Angle'' or ''dy''. ','Invalid Analysis') 

end 

    KE = (0.5 * ke_mass * ke_vmag ^ 2 + gravity * ke_mass * ke_dy) * (1-ke_loss); 
     
    % 
    % 
    %verify Ramp energy 
    % 
    %inital velocity check for overcoming ramp height 
    %only check if PE is turned off 
    if KE < 0 & (get(handles.pe_check,'Value')) == 0 

        return; 
    end 

    % check ke_dy and ke_angle compliance 
    if ke_angle > 360 
        errordlg('The Ramp Angle is above 360 degrees','Invalid Analysis') 
        return; 

     
     
     
    %check validity of data 
    if ke_angle > 180 & ke_angle <= 360 & ke_dy > 0 

        return; 
         
     
    elseif ke_angle > 0 & ke_angle <= 180 & ke_dy < 0 
        errordlg('The ''Ramp Angle'' and ''dy'' don''t correspond!!!  For angles between 0 and 180 degress, ''dy'' 
must be positive.  Please modify the ''Ramp Angle'' or ''dy''. ','Invalid Analysis') 
        return; 
         
    end 
        
     

 
% 
%  "Spring Energy" from stored power. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

251 
 



 
%get PE data, stored spring 
pe_k = str2double(get(handles.pe_k,'String')); 
pe_xf = str2double(get(handles.pe_xf,'String')); 
pe_xi = str2double(get(handles.pe_xi,'String')); 
pe_loss = str2double(get(handles.pe_loss,'String')); 
pe_mass = str2double(get(handles.pe_mass,'String')); 
 
%set pe_loss as percentage 
pe_loss = pe_loss / 100; 
 
PE = 0; 
%calc PE 
if (get(handles.pe_check,'Value')) == 1 

%   Combine Energies 

if (get(handles.pe_check,'Value')) == 1 & (get(handles.ke_check,'Value')) == 1 

 
    PE = ( (0.5 * pe_k * pe_xf ^ 2) - (0.5 * pe_k * pe_xi ^ 2)  )*(1-pe_loss); 
     
end 
 
angle = ke_angle; 
 
% 

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%get Launch Angle data 
if (get(handles.la_check,'Value')) == 1 
    angle = str2double(get(handles.la_angle,'String')); 
end 
 
 
%set launch magnitude and angle 
energy = (KE + PE); 
 
%inital velocity check 
%only check if PE is turned off 
if energy < 0  
    errordlg('The total applied energy cannot overcome the ramp','Invalid Analysis') 
    return; 
end 
 
% 
%choose mass based on Ramp \ Spring Launch 
% 
% if both, the velocity is calculated from the vehicle mass 
%if just spring, then use projectile mass,  
%also use projectile mass for drag 
 

     
    %use ramp mass to calc launch vel 
    mass = ke_mass; 

252 
 



    % angle determines the sign, enforce vlaunch as positive 
    if energy >= 0 
        vlaunch = sqrt( 2 * energy / mass ); 
    else 
        errordlg('NEGATIVE KE VALUE','Invalid Analysis') 
        return; 
    end 
         
    %but mod mass to account for projectile 
    mass = pe_mass; 
 
elseif (get(handles.pe_check,'Value')) == 1 
    mass = pe_mass; 
    vlaunch = sqrt( 2 * energy / mass ); 
else 
    mass = ke_mass; 
     
    % angle determines the sign, enforce vlaunch as positive 
    if KE >= 0 
        vlaunch = sqrt( 2 * energy / mass ); 
    else 
        errordlg('NEGATIVE KE VALUE','Invalid Analysis') 
        return; 
    end 
     
end 
 
%output vlaunch info to screen 
 
fprintf('\n Launch Velocity  = %g  %s \n', vlaunch, unit_velocity) 
fprintf(' at %g degrees CCW from the x-axis\n\n', angle) 
 
 
% 
%   Launch 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%set initial conditions 
angle_radian = angle * pi / 180; 
 
vx(2) = vlaunch * cos(angle_radian); 
vy(2) = vlaunch * sin(angle_radian); 
 
ke_angle_radian = ke_angle * pi / 180; 
 
if (get(handles.ke_check,'Value')) == 1 
    x(1) = -(ke_dy / tan(ke_angle_radian)); 
    y(1) = ke_height; 
end 
 
x(2) = 0; 
y(2) = ke_height + ke_dy; 

253 
 



 
 
%draw target 
if (get(handles.td_check,'Value')) == 1 
     
    %build target poly 
    x_tar(1) = td_xmin; 
    y_tar(1) = td_ymin; 
     
    x_tar(2) = td_xmin; 
    y_tar(2) = td_ymax; 
     
    x_tar(3) = td_xmax; 
    y_tar(3) = td_ymax; 
     
    x_tar(4) = td_xmax; 
    y_tar(4) = td_ymin; 
     
    x_tar(5) = td_xmin; 
    y_tar(5) = td_ymin; 
     
    plot(x_tar, y_tar, 'r-') 
     
    x_tar(5) = []; 
    y_tar(5) = []; 
     
end 
 
% 
%    Particle Motion, No Drag 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%calc motion 
 
 
index1 = 2; 
 
y_max = 0; 
hangtime = 0; 
hit = 0; 
 
while y(index1) >=0 & hit == 0 
     
    index1 = index1 + 1; 
    hangtime = hangtime + dt; 
     
 
    vx(index1) = vx(index1 - 1); 
    vy(index1) = vy(index1 - 1) + gravity * dt; 
     
     
    x(index1) = x(index1 - 1) + vx(index1 - 1) * dt; 
    y(index1) = y(index1 - 1) + vy(index1 -1 ) * dt + 0.5 * gravity * dt^2;  

254 
 



     
    %check for hit target 

 

    %  Drag, simple 

    if (get(handles.td_check,'Value')) == 1 
        hit = inpolygon( x(index1), y(index1), x_tar, y_tar); 
    end 
     
    %if max, save data 
    if y(index1) > y_max 
         
        y_max = y(index1); 
        x_max = x(index1); 
        time_max = hangtime; 
    end  
end 
 

% 
%        Drag 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%get drag info and drag_type 
 
%density_air = .002328; 
 
% reset velocity 
vx_drag(2) = vlaunch * cos(angle_radian); 
vy_drag(2) = vlaunch * sin(angle_radian); 
 
if (get(handles.drag_simple,'Value')) == 1 
    drag_simple_loss = str2double(get(handles.drag_loss,'String')); 
     
    % 

    % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % initial data 
    x_drag(1) = x(1); 
    y_drag(1) = y(1); 
    x_drag(2) = x(2); 
    y_drag(2) = y(2); 
     
    %set initial conditions 
    angle_radian = angle * pi / 180; 
 
    vx_drag(2) = vlaunch * cos(angle_radian) * (100 - drag_simple_loss)/100; 
    vy_drag(2) = vlaunch * sin(angle_radian) * (100 - drag_simple_loss)/100; 
 
     
    %calc motion 
    index1 = 2; 
     
    y_drag_max = 0; 
    hangtime_drag = dt; 

255 
 



    hit = 0; 
 
    while y(index1) >=0 & hit == 0 
     
        index1 = index1 + 1; 
        %calc hangtime 
        hangtime_drag = hangtime_drag + dt; 
     
        %change in vel form gravity 
        vx_drag(index1) = vx_drag(index1 - 1); 
        vy_drag(index1) = vy_drag(index1 - 1) + gravity * dt; 
         
        %new position 
        x_drag(index1) = x_drag(index1 - 1) + vx_drag(index1-1) * dt; 
        y_drag(index1) = y_drag(index1 - 1) + vy_drag(index1-1) * dt + 0.5*gravity*dt^2; 
     
         
         
        %check for hit target 
    if (get(handles.td_check,'Value')) == 1 
        hit = inpolygon( x_drag(index1), y_drag(index1), x_tar, y_tar); 
    end 
         
        %if max, save data 
        if y_drag(index1) > y_drag_max 
         

  

            y_drag_max = y_drag(index1); 
            x_drag_max = x_drag(index1); 
            time_drag_max = hangtime_drag; 
        end  

    end 
     
     
elseif (get(handles.drag_complex,'Value')) == 1 
     
    % 
    %  Drag, complex 
    % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    drag_k = str2double(get(handles.drag_k,'String')); 
    drag_density = str2double(get(handles.drag_density,'String')); 
      
    % initial data 
    x_drag(1) = x(1); 
    y_drag(1) = y(1); 
    x_drag(2) = x(2); 
    y_drag(2) = y(2); 
     
    %set initial conditions 
    angle_radian = angle * pi / 180; 
 
    vx_drag(2) = vlaunch * cos(angle_radian); 

256 
 



    vy_drag(2) = vlaunch * sin(angle_radian); 
     
     
    %impulse 
    index1 = 2; 
     
    y_drag_max = 0; 
    hangtime_drag = 0; 

        %bump time 

     

        end  

    hit = 0; 
     
    lamda = drag_k / mass; 
     
    while y_drag(index1) >=0 & hit == 0 
         
         
        index1 = index1 + 1; 
         
        %determine x and y position 
        x_drag(index1) = x_drag(2) + vx_drag(2)*(1-exp(-lamda*hangtime_drag))/lamda; 
        y_drag(index1) = y_drag(2) + (-gravity / lamda^2 + vy_drag(2)/lamda)*(1-exp(-
lamda*hangtime_drag)) + (gravity/lamda)*hangtime_drag; 
         

        hangtime_drag = hangtime_drag + dt; 
         
        %calc drag velocity 
        vx_drag(index1) = (x_drag(index1) - x_drag(index1-1))/dt; 
        vy_drag(index1) = (y_drag(index1) - y_drag(index1-1))/dt; 
         

          
        %check for hit target 
        if (get(handles.td_check,'Value')) == 1 
            hit = inpolygon( x_drag(index1), y_drag(index1), x_tar, y_tar); 
        end 
         
        %if max, save data 
        if y_drag(index1) > y_drag_max 
         
            y_drag_max = y_drag(index1); 
            x_drag_max = x_drag(index1); 
            time_drag_max = hangtime_drag; 

  
    end 
     
     
end 
 
%get draw results info 
switch get(handles.ShowResultsMenu,'Checked') 
    case 'on' 
         tog_results = 1;          

257 
 



                  
    case 'off' 
        tog_results = 0; 
         
end 
 
switch get(handles.ShowSimpleMenu,'Checked') 
    case 'on' 
        tog_simple = 1; 
    case 'off' 
        tog_simple = 0; 
end 
 
switch get(handles.ShowDragMenu,'Checked') 
    case 'on' 
        tog_drag = 1; 
    case 'off' 
        tog_drag = 0; 
end 
 
    
 
 
 
 
% 
% 
%plot 
if (get(handles.figure_check,'Value')) == 1 
    figure(1) 
    title('Projectile Motion Results') 
     
else 
    axes(handles.axes1); 
     
end 
 
hold on; 
 
xlabel(['Distance  ( ',unit_position,' ) ']) 
ylabel(['Height  ( ',unit_position,' ) ']) 
 
 
 
%draw ramp 
xx(1) = x(1); 
xx(2) = x(2); 
xx(3) = 0; 
xx(4) = x(1); 
xx(5) = x(1); 
 
yy(1) = y(1); 
yy(2) = y(2); 

258 
 



yy(3) = 0; 
yy(4) = 0; 
yy(5) = y(1); 
 
%plot ramp 
fill(xx,yy,'r') 
plot(xx,yy,'k-') 
 
%draw landing info and plot path 
switch get(handles.ShowSimpleMenu,'Checked') 
    case 'on' 
         plot(x,y,'b*-')   
          
         if tog_results == 1 
              
             [a b] = size(x); 
              
              
             text(x(b) , 0,['  ',num2str(x(b),'%9.3f'),... 
                     '  ',unit_position,'    at  ',num2str(hangtime),' seconds '],... 
                'BackgroundColor',[.1 .7 .9],... 
                'EdgeColor','k',... 
                'HorizontalAlignment','center',... 
                'VerticalAlignment','bottom') 
      
         end 
             
    case 'off' 
        %nadda 
    end 
 
 
 
 
 
 
%plot drag 
switch get(handles.ShowDragMenu,'Checked') 
    case 'on' 
        if (get(handles.drag_complex,'Value')) == 1 | (get(handles.drag_simple,'Value')) == 1 
 
            plot(x_drag, y_drag,'g*-') 
             
            %draw results 
            if tog_results == 1 
              
             [a b] = size(x_drag); 
              
              
             text(x_drag(b), -x_drag(b)/30,['  ',num2str(x_drag(b),'%9.3f'),'  ',unit_position,'  ',... 
                 ' at  ',num2str(hangtime_drag,'%9.3f'),' seconds '],... 
                'BackgroundColor',[.1 .9 .5],... 
                'EdgeColor','k',... 

259 
 



                'HorizontalAlignment','center',... 
                'VerticalAlignment','top') 
         end 
     
        end 
         
    case 'off' 
        %nadda 
end 
 
 
%set axis to display results 
axis auto 
 
%draw results 
 
 
axis auto; 
axis equal 
user_axis = axis; 
              
x_length = abs(user_axis(1) - user_axis(2)).*0.15; 
y_length = abs(user_axis(3) - user_axis(4)).*0.15; 
     
 
%if draw results and this path          
if tog_results == 1 & tog_simple == 1 
     
    text(x_max - x_length*2.0, y_max + y_length*1.5,'No Drag Ymax Data','HorizontalAlignment','center') 
    text(x_max - x_length*2.0, y_max + y_length*1.0,['  X position = ',num2str(x_max,'%9.3f'),'  
',unit_position,'  '],... 
        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 
        'VerticalAlignment','top') 
    text(x_max - x_length*2.0, y_max + y_length*0.5,['  Y position = ',num2str(y_max,'%9.3f'),'  
',unit_position,'  '],... 
        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 
        'VerticalAlignment','top') 
    text(x_max - x_length*2, y_max + y_length*0,['  Time = ',num2str(time_max,4), '  seconds  '],... 
        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 
        'VerticalAlignment','top') 
 
     
              
    plot(x_max, y_max, 'ro',... 
        'MarkerEdgeColor','k',... 
        'MarkerFaceColor','r',... 
        'MarkerSize',10) 

260 
 



              
 
end 
 
 
%check for drag values 
if (get(handles.drag_complex,'Value')) == 1 | (get(handles.drag_simple,'Value')) == 1 
    %already set value 
    tog_drag = tog_drag; 
else 
    tog_drag = 0; 
end 
 
 
%if draw results and this path          
if tog_results == 1 & tog_drag == 1 
     
    text(x_drag_max - x_length*1.5, y_drag_max - y_length*1,'Drag Path Ymax 
Data','HorizontalAlignment','center') 
    text(x_drag_max - x_length*1.5, y_drag_max - y_length*1.6,['  X position = 
',num2str(x_drag_max,'%9.3f'),'  ',unit_position,'  '],... 
        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 
        'VerticalAlignment','bottom') 
    text(x_drag_max - x_length*1.5, y_drag_max - y_length*2.1,['  Y position = 
',num2str(y_drag_max,'%9.3f'),'  ',unit_position,'  '],... 
        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 

              

        'VerticalAlignment','bottom') 
    text(x_drag_max - x_length*1.5, y_drag_max - y_length*2.6 ,['  Time = ',num2str(time_drag_max,4), '  
seconds  '],... 
        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 
        'VerticalAlignment','bottom') 
 
     

    plot(x_drag_max, y_drag_max, 'ro',... 
        'MarkerEdgeColor','k',... 
        'MarkerFaceColor','r',... 
        'MarkerSize',10)    
     
 
end 
 
 
 
 
%get/modify axis information 
mod_axis = axis; 

261 
 



 
mod_axis(1) = (mod_axis(1))*.95; 
mod_axis(2) = (mod_axis(2))*1.05; 
mod_axis(3) = 0;    % always set to zero  
mod_axis(4) = (mod_axis(4))*1.3; 
 
axis([mod_axis]) 
 
hold off; 
 
 
%if output data to command window 
if (get(handles.data_check,'Value')) == 1 
     
     
     
     
         
    figure(2) 
    clf reset; 
    hold on;    
     
     
    subplot(2,1,1) 
     
    hold on; 
    title('Velocity vs. X position') 
    xlabel(['Distance  ( ',unit_position,' ) ']) 
    ylabel(['Velocity  ( ',unit_velocity,' ) ']) 
     
     
    %remove swing data point 
    vx(1) = []; 
    vy(1) = []; 
    y(1) = []; 
    x(1) = []; 
         
    vmag = sqrt(vx.^2 + vy .^ 2); 
 
    plot(x, vmag, 'b') 
     
    %if drag exists, plot 
    if length(vx_drag) > 3 
         
       %format data to adjust for the ramp 
        vx_drag(1) = []; 
        vx_drag(1) = []; 
        %vx_drag(1) = []; 
         
        vy_drag(1) = []; 
        vy_drag(1) = []; 
        %vy_drag(1) = []; 
         

262 
 



        %set initial velocity data for plot 
        vx_drag(1) = vx(1); 
        vy_drag(1) = vy(1); 
        %          
        x_drag(1) = []; 
        x_drag(1) = []; 
        %x_drag(1) = []; 
         
        y_drag(1) = []; 
        y_drag(1) = []; 
        %y_drag(1) = []; 
         
        vmag_drag = sqrt(vx_drag.^2 + vy_drag.^ 2); 
         
         
        plot(x_drag, vmag_drag,'g') 
         
        legend('No Drag','With Drag',4) 
    end 
     
     
    %calc angle of velocity 
    v_angle = atan2(vy, vx).* 180 ./ pi; 
    %v_angle(1) = []; 
     
    subplot(2,1,2) 
    hold on; 
     
    title('Theta vs. X position') 
    xlabel(['Distance  ( ',unit_position,' ) ']) 
    ylabel(['Theta  ( degrees ) ']) 
     
    plot(x, v_angle, 'b') 
     
    %if drag exists, plot 
    if length(vx_drag) > 3 
         
        %calc angle of velocity 
        v_angle_drag = atan2(vy_drag, vx_drag).* 180 ./ pi; 
 
         
        plot(x_drag, v_angle_drag, 'g') 
         
        legend('No Drag','With Drag',1) 
         
    end 
   
    %output data as a table 
    clc 
     
    time =0; 
     
    fid = fopen('EFD_RAMP_output.txt','wb'); 

263 
 



     
    fprintf(fid,'\n---------------------------------------------------------------------------'); 
    fprintf(fid,'\n--------------------------- Simple Model Data -----------------------------'); 
    fprintf(fid,'\n\n    time            X                Y              Vx               Vy   '); 
    fprintf(fid,'\n  '); 
     
    %display units    
    fprintf(fid,'\n  [ seconds ]        [    %s      ]            [     %s   ]',unit_position,unit_velocity); 
    fprintf(fid,'\n---------------------------------------------------------------------------'); 
    for i = 1:length(x) 
        fprintf(fid,'\n  %7.3f  \t%9.3f    \t%9.3f    \t%9.3f   \t%9.3f', time, x(i),y(i),vx(i),vy(i)); 
         
        time = time + dt; 
    end 
     
    fclose('all'); 
     
    %print text file to HTML 
    web(['file:' which('EFD_RAMP_output.txt')],'-browser') 
     
    
    %if drag data 
    if length(vx_drag) > 3 
         
        time = 0; 
         
        fid = fopen('EFD_RAMP_output_DRAG.txt','wb'); 
         
        fprintf(fid,'\n---------------------------------------------------------------------------'); 
        fprintf(fid,'\n---------------------------- Drag Model Data ------------------------------'); 
        fprintf(fid,'\n\n    time            X                Y              Vx               Vy   '); 
        fprintf(fid,'\n  '); 
         
        %display units    
        fprintf(fid,'\n  [ seconds ]        [    %s      ]            [     %s   ]',unit_position,unit_velocity); 
        fprintf(fid,'\n---------------------------------------------------------------------------'); 
         
        for i = 1:length(x_drag) 
            fprintf(fid,'\n  %7.3f  \t%9.3f    \t%9.3f    \t%9.3f   \t%9.3f', time, 
x_drag(i),y_drag(i),vx_drag(i),vy_drag(i)); 
             
            time = time + dt; 
        end 
         
        fclose('all'); 
     
        %print text file to HTML 
        web(['file:' which('EFD_RAMP_output_DRAG.txt')],'-browser') 
         
    end 
end   
 
% -------------------------------------------------------------------- 

264 
 



function FileMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to FileMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function OpenMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to OpenMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
file = uigetfile('*.fig'); 
if ~isequal(file, 0) 
    open(file); 
end 
 
% -------------------------------------------------------------------- 
function PrintMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to PrintMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
printdlg(handles.figure1) 
 
% -------------------------------------------------------------------- 
function CloseMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to CloseMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... 
                     ['Close ' get(handles.figure1,'Name') '...'],... 
                     'Yes','No','Yes'); 
if strcmp(selection,'No') 
    return; 
end 
 
delete(handles.figure1) 
 
% -------------------------------------------------------------------- 
function ViewMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ViewMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% -------------------------------------------------------------------- 
function DisplayMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to DisplayMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function ShowGridMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowGridMenu (see GCBO) 

265 
 



% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function ErrorCheckMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ErrorCheckMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function HelpMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to HelpMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function HelpGuideMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to HelpGuideMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
web(['file:' which('help_home.html')],'-browser') 
 
% -------------------------------------------------------------------- 
function HelpAboutMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to HelpAboutMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
msgbox('Projectile Motion Analysis for Ramp and Spring Launching,               written by Jon Huber' 
,'About this program','help') 
 
% --- Executes on button press in ke_check. 
function ke_check_Callback(hObject, eventdata, handles) 
% hObject    handle to ke_check (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of ke_check 
 
% --- Executes during object creation, after setting all properties. 
function ke_vmag_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ke_vmag (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 

266 
 



else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function ke_vmag_Callback(hObject, eventdata, handles) 
% hObject    handle to ke_vmag (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of ke_vmag as text 
%        str2double(get(hObject,'String')) returns contents of ke_vmag as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function ke_angle_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ke_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function ke_angle_Callback(hObject, eventdata, handles) 
% hObject    handle to ke_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of ke_angle as text 
%        str2double(get(hObject,'String')) returns contents of ke_angle as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function ke_height_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ke_height (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 

267 
 



 
 
 
function ke_height_Callback(hObject, eventdata, handles) 
% hObject    handle to ke_height (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of ke_height as text 
%        str2double(get(hObject,'String')) returns contents of ke_height as a double 
 
 
% --- Executes on button press in pe_check. 
function pe_check_Callback(hObject, eventdata, handles) 
% hObject    handle to pe_check (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of pe_check 
 
 
% --- Executes during object creation, after setting all properties. 
function pe_k_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pe_k (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function pe_k_Callback(hObject, eventdata, handles) 
% hObject    handle to pe_k (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of pe_k as text 
%        str2double(get(hObject,'String')) returns contents of pe_k as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function pe_xf_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pe_xf (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 

268 
 



%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 

% hObject    handle to drag_density (see GCBO) 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

%       See ISPC and COMPUTER. 

else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function pe_xf_Callback(hObject, eventdata, handles) 
% hObject    handle to pe_xf (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of pe_xf as text 
%        str2double(get(hObject,'String')) returns contents of pe_xf as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function drag_density_CreateFcn(hObject, eventdata, handles) 

% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 

end 
 
 
 
function drag_density_Callback(hObject, eventdata, handles) 
% hObject    handle to drag_density (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of drag_density as text 
%        str2double(get(hObject,'String')) returns contents of drag_density as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function la_angle_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to la_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 

if ispc 
    set(hObject,'BackgroundColor','white'); 

269 
 



else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function la_angle_Callback(hObject, eventdata, handles) 
% hObject    handle to la_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of la_angle as text 
%        str2double(get(hObject,'String')) returns contents of la_angle as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function drag_k_CreateFcn(hObject, eventdata, handles) 

% --- Executes on button press in la_check. 

% Hint: get(hObject,'Value') returns toggle state of la_check 

% hObject    handle to drag_k (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function drag_k_Callback(hObject, eventdata, handles) 
% hObject    handle to drag_k (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of drag_k as text 
%        str2double(get(hObject,'String')) returns contents of drag_k as a double 
 
 

function la_check_Callback(hObject, eventdata, handles) 
% hObject    handle to la_check (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 

 
 
 
 
% --- Executes on button press in drag_simple. 
function drag_simple_Callback(hObject, eventdata, handles) 

270 
 



% hObject    handle to drag_simple (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of drag_simple 
set(handles.drag_no, 'Value', 0); 
set(handles.drag_simple, 'Value', 1); 
set(handles.drag_complex, 'Value', 0); 

set(handles.drag_no, 'Value', 0); 

 
% --- Executes on button press in drag_complex. 
function drag_complex_Callback(hObject, eventdata, handles) 
% hObject    handle to drag_complex (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of drag_complex 
 

set(handles.drag_simple, 'Value', 0); 
set(handles.drag_complex, 'Value', 1); 
 
 
% --- Executes during object creation, after setting all properties. 
function ti_dt_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ti_dt (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function ti_dt_Callback(hObject, eventdata, handles) 
% hObject    handle to ti_dt (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of ti_dt as text 
%        str2double(get(hObject,'String')) returns contents of ti_dt as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function ke_loss_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ke_loss (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 

271 
 



% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function ke_loss_Callback(hObject, eventdata, handles) 
% hObject    handle to ke_loss (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of ke_loss as text 
%        str2double(get(hObject,'String')) returns contents of ke_loss as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function pe_loss_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pe_loss (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function pe_loss_Callback(hObject, eventdata, handles) 
% hObject    handle to pe_loss (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of pe_loss as text 
%        str2double(get(hObject,'String')) returns contents of pe_loss as a double 
 
 
% --- Executes on button press in drag_no. 
function drag_no_Callback(hObject, eventdata, handles) 
% hObject    handle to drag_no (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of drag_no 
 
set(handles.drag_no, 'Value', 1); 

272 
 



set(handles.drag_simple, 'Value', 0); 
set(handles.drag_complex, 'Value', 0); 
 
% --- Executes during object creation, after setting all properties. 
function drag_loss_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to drag_loss (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function drag_loss_Callback(hObject, eventdata, handles) 
% hObject    handle to drag_loss (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of drag_loss as text 
%        str2double(get(hObject,'String')) returns contents of drag_loss as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function ke_mass_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ke_mass (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function ke_mass_Callback(hObject, eventdata, handles) 
% hObject    handle to ke_mass (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of ke_mass as text 
%        str2double(get(hObject,'String')) returns contents of ke_mass as a double 
 
 

273 
 



% -------------------------------------------------------------------- 
function UnitsMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to UnitsMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function UnitsEnglish_Callback(hObject, eventdata, handles) 
% hObject    handle to UnitsEnglish (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
set(handles.UnitsEnglish, 'Checked', 'on'); 
set(handles.UnitsMetric, 'Checked', 'off'); 
 
%pop-up figure with units menu 
figure(2); 
clf reset; 
axis([0 100 0 100]) 
 
title('English System of Units') 
 
text(5,96,'Time Increment') 
text(5,93,'-------------------------') 
text(5,90,'dt == ( sec )') 
 
text(5,81,'Calculate Ramp Energy') 
text(5,78,'--------------------------------------') 
text(5,75,'Vmag   ==  ( ft / sec )') 
text(5,70,'angle  ==  ( degrees )') 
text(5,65,'height ==  ( ft )') 
text(5,60,'dy     ==  ( ft )') 
text(5,55,'mass of vechicle ==  ( slugs )') 
text(5,50,'loss   ==  ( value of 0 thru 1 )') 
 
text(5,41,'Calculate Launch Energy') 
text(5,38,'-----------------------------------------') 
text(5,35,'k   ==  ( pounds / ft )') 
text(5,30,'x  ==  ( ft )') 
text(5,25,'mass of projectile ==  ( slugs )') 
text(5,20,'dy     ==  ( ft )') 
text(5,15,'mass of vechicle ==  ( slugs )') 
text(5,10,'loss   ==  ( value of 0 thru 1 )') 
 
text(55,96,'Aim for Target') 
text(55,93,'--------------------') 
text(55,90,'Xmin, Xmax  ==  ( ft )') 
text(55,85,'Ymin, Ymax  ==  ( ft )') 
 
text(55,76,'Specific Launch Angle') 
text(55,73,'-----------------------------') 
text(55,70,'angle ==  ( degrees )') 

274 
 



 
text(55,61,'Drag Menu') 
text(55,58,'-----------------------------') 
text(55,55,'loss   ==  ( value of 0 thru 1 )') 
text(55,50,'k ==  ( lb * s / ft )') 
text(55,45,'density of air   ==  ( slug / ft^3 )') 
 
 
% -------------------------------------------------------------------- 
function UnitsMetric_Callback(hObject, eventdata, handles) 
% hObject    handle to UnitsMetric (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
set(handles.UnitsEnglish, 'Checked', 'off'); 
set(handles.UnitsMetric, 'Checked', 'on'); 
 
%pop-up figure with units menu 
figure(2); 
clf reset; 
axis([0 100 0 100]) 
 
title('Metric System of Units') 
 
text(5,96,'Time Increment') 
text(5,93,'-------------------------') 
text(5,90,'dt == ( sec )') 
 
text(5,81,'Calculate Ramp Energy') 
text(5,78,'--------------------------------------') 
text(5,75,'Vmag   ==  ( m / sec )') 
text(5,70,'angle  ==  ( degrees )') 
text(5,65,'height ==  ( m )') 
text(5,60,'dy     ==  ( m )') 
text(5,55,'mass of vechicle ==  ( kg )') 
text(5,50,'loss   ==  ( value of 0 thru 100 )') 
 
text(5,41,'Calculate Launch Energy') 
text(5,38,'-----------------------------------------') 
text(5,35,'k   ==  ( N / m )') 
text(5,30,'x  ==  ( m )') 
text(5,25,'mass of projectile ==  ( kg )') 

text(55,96,'Aim for Target') 

text(5,20,'dy     ==  ( m )') 
text(5,15,'mass of vechicle ==  ( kg )') 
text(5,10,'loss   ==  ( value of 0 thru 100 )') 
 

text(55,93,'--------------------') 
text(55,90,'Xmin, Xmax  ==  ( m )') 
text(55,85,'Ymin, Ymax  ==  ( m )') 
 
text(55,76,'Specific Launch Angle') 
text(55,73,'-----------------------------') 

275 
 



text(55,70,'angle ==  ( degrees )') 
 
text(55,61,'Drag Menu') 
text(55,58,'-----------------------------') 
text(55,55,'loss   ==  ( value of 0 thru 100 )') 
text(55,50,'k ==  ( N * s / m )') 
text(55,45,'density of air   ==  ( kg / m^3 )') 
 
% --- Executes during object creation, after setting all properties. 
function ke_dy_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ke_dy (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function ke_dy_Callback(hObject, eventdata, handles) 
% hObject    handle to ke_dy (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of ke_dy as text 
%        str2double(get(hObject,'String')) returns contents of ke_dy as a double 
 
 
% -------------------------------------------------------------------- 
function UnitsRampMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to UnitsRampMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function UnitsLaunchMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to UnitsLaunchMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- Executes during object creation, after setting all properties. 
function pe_mass_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pe_mass (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 

276 
 



% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function pe_mass_Callback(hObject, eventdata, handles) 
% hObject    handle to pe_mass (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of pe_mass as text 
%        str2double(get(hObject,'String')) returns contents of pe_mass as a double 
 
% -------------------------------------------------------------------- 
function ShowResultsMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowResultsMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
switch get(handles.ShowResultsMenu,'Checked') 
    case 'on' 
        set(handles.ShowResultsMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowResultsMenu, 'Checked', 'on') 
end 
 
% -------------------------------------------------------------------- 
function ShowSimpleMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowSimpleMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
switch get(handles.ShowSimpleMenu,'Checked') 
    case 'on' 
        set(handles.ShowSimpleMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowSimpleMenu, 'Checked', 'on') 
end 
 
% -------------------------------------------------------------------- 
function ShowDragMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowDragMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
switch get(handles.ShowDragMenu,'Checked') 
    case 'on' 
        set(handles.ShowDragMenu, 'Checked', 'off') 

277 
 



    case 'off' 
        set(handles.ShowDragMenu, 'Checked', 'on') 
end 
 
 
% --- Executes on button press in figure_check. 
function figure_check_Callback(hObject, eventdata, handles) 
% hObject    handle to figure_check (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of figure_check 
 
 
% --- Executes on button press in td_check. 
function td_check_Callback(hObject, eventdata, handles) 
% hObject    handle to td_check (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of td_check 
 
 
% --- Executes during object creation, after setting all properties. 
function td_xmin_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to td_xmin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function td_xmin_Callback(hObject, eventdata, handles) 
% hObject    handle to td_xmin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of td_xmin as text 
%        str2double(get(hObject,'String')) returns contents of td_xmin as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function td_xmax_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to td_xmax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

278 
 



 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function td_xmax_Callback(hObject, eventdata, handles) 
% hObject    handle to td_xmax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of td_xmax as text 
%        str2double(get(hObject,'String')) returns contents of td_xmax as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function td_ymin_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to td_ymin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function td_ymin_Callback(hObject, eventdata, handles) 
% hObject    handle to td_ymin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of td_ymin as text 
%        str2double(get(hObject,'String')) returns contents of td_ymin as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function td_ymax_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to td_ymax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 

279 
 



if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function td_ymax_Callback(hObject, eventdata, handles) 
% hObject    handle to td_ymax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of td_ymax as text 
%        str2double(get(hObject,'String')) returns contents of td_ymax as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function pe_xi_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pe_xi (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function pe_xi_Callback(hObject, eventdata, handles) 
% hObject    handle to pe_xi (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of pe_xi as text 
%        str2double(get(hObject,'String')) returns contents of pe_xi as a double 
 
% --- Executes on button press in data_check. 
function data_check_Callback(hObject, eventdata, handles) 
% hObject    handle to data_check (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of data_check 
 
 

280 
 



Appendix B.3 

Swing Energy Code 

EFD_BALLDROP 

function varargout = efd_balldrop(varargin) 
% EFD_BALLDROP M-file for efd_balldrop.fig 
%      EFD_BALLDROP, by itself, creates a new EFD_BALLDROP or raises the existing 
%      singleton*. 
% 
%      H = EFD_BALLDROP returns the handle to a new EFD_BALLDROP or the handle to 
%      the existing singleton*. 
% 
%      EFD_BALLDROP('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in EFD_BALLDROP.M with the given input arguments. 
% 
%      EFD_BALLDROP('Property','Value',...) creates a new EFD_BALLDROP or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before efd_balldrop_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to efd_balldrop_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help efd_balldrop 
 
% Last Modified by GUIDE v2.5 01-Jun-2003 17:35:21 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @efd_balldrop_OpeningFcn, ... 
                   'gui_OutputFcn',  @efd_balldrop_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin & isstr(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

281 
 



 
% --- Executes just before efd_balldrop is made visible. 
function efd_balldrop_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to efd_balldrop (see VARARGIN) 
 
% Choose default command line output for efd_balldrop 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% This sets up the initial plot - only do when we are invisible 
% so window can get raised using efd_balldrop. 
if strcmp(get(hObject,'Visible'),'off') 
    surf(peaks); 
end 
 
 
set(handles.se_check, 'Value', 1); 
set(handles.se_same, 'Value', 1); 
set(handles.drag_no, 'Value', 1); 
set(handles.UnitsEnglish, 'Checked', 'off'); 
set(handles.UnitsMetric, 'Checked', 'on'); 
 
 
 
% UIWAIT makes efd_balldrop wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
 

% handles    structure with handles and user data (see GUIDATA) 

% --- Outputs from this function are returned to the command line. 
function varargout = efd_balldrop_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 

 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%get output info 
if (get(handles.figure_check,'Value')) == 1 
    figure(1) 

282 
 



    clf reset; 
else 
    axes(handles.axes1); 
    cla; 
end 
 
%set view 
view(2) 
 
 
clc  
 
%% 
%determine units 
switch get(handles.UnitsEnglish,'Checked') 
    case 'on' 
        gravity = -32.2; 
        unit_position = 'feet'; 
    case 'off' 
        gravity = -9.8102; 
        unit_position = 'meters'; 
end 
 
 
%get Properties data 
dt = str2double(get(handles.prop_dt,'String')); 
prop_vt = str2double(get(handles.prop_vt,'String')); 
prop_mass = str2double(get(handles.prop_mass,'String')); 
 
%get Swing Energy data 
se_x = str2double(get(handles.se_x,'String')); 
se_y = str2double(get(handles.se_y,'String')); 
se_r = str2double(get(handles.se_r,'String')); 
se_start_angle = str2double(get(handles.se_start_angle,'String')); 
se_release_angle = str2double(get(handles.se_release_angle,'String')); 
se_loss = str2double(get(handles.se_loss,'String')); 
se_specify = str2double(get(handles.se_specify_angle,'String')); 
se_offset = str2double(get(handles.se_offset_angle,'String')); 
 
particle_mass = str2double(get(handles.particle_mass,'String')); 
mass = particle_mass; 
%get Target data 
td_xmin = str2double(get(handles.td_xmin,'String')); 
td_xmax = str2double(get(handles.td_xmax,'String')); 
td_ymin = str2double(get(handles.td_ymin,'String')); 
td_ymax = str2double(get(handles.td_ymax,'String')); 
 
vx_drag = 0; 
%ready to plot output 
 
 
 
%get release angle information 

283 
 



% 
% 
% 
 
% 
% 
% 
% 
KE = 0; 
 
    %set angle based on particle release     
    if (get(handles.se_same,'Value')) == 1 
        angle = se_release_angle + 90; 
    elseif (get(handles.se_specify,'Value')) == 1 
        angle = 90 + se_specify; 
    else 
        angle = se_release_angle + 90 + se_offset; 
    end 
     
    angle_radian = angle * pi / 180; 
 
%draw full rotation , then swing path 
 
if (get(handles.se_check,'Value')) == 1 
     
    %full rotation 
       
    count = 0;   
     
    for i = 0:5:365 
 
        count = count + 1; 
            ang = i * 3.14 / 180; 
            x_rot(count) = se_r * cos(ang); 
            y_rot(count) = se_r * sin(ang); 
          
    end 
     
    x_rot = x_rot + se_x; 
    y_rot = y_rot + se_y; 
     
     
    plot(x_rot, y_rot, 'r-') 
     
    hold on; 
     
    plot(se_x, se_y, 'r*') 
     
    %draw swing path 
    count = 0;   
     
    for i = se_start_angle:5:se_release_angle 
 

284 
 



        count = count + 1; 
            ang = i * 3.14 / 180; 
            x_swing(count) = se_r * cos(ang); 
            y_swing(count) = se_r * sin(ang); 
          
    end 
     
    %shift circle to new X Y 
    x_swing = x_swing + se_x; 
    y_swing = y_swing + se_y; 
     
    plot(x_swing, y_swing, 'b-') 
     
     
     
 
    %calc release kinetic energy 
    %     calc dy 
 
    dy = se_r * sin(se_release_angle * pi / 180) - ... 
        se_r * sin(se_start_angle * pi / 180); 
 
    KE = (0.5 * prop_mass * prop_vt ^ 2 + gravity * prop_mass * dy) * (100-se_loss)./100; 
 
    if KE > 0 
        vlaunch = sqrt( 2 * KE / particle_mass ); 
    else 
        errordlg('The inital velocity cannot reach the release point','Invalid Analysis') 
        return; 
    end 
 
        
    %set initial conditions 
     
 
    vx(1) = vlaunch * cos(angle_radian); 
    vy(1) = vlaunch * sin(angle_radian); 
    %sets final x,y position 
    x(1) = se_r * cos(se_release_angle * pi / 180) + se_x; 
    y(1) = se_r * sin(se_release_angle * pi / 180) + se_y; 
   
     
     
     
end 
hold on; 
axis equal 
 
  
% 
% 
%draw target 
if (get(handles.td_check,'Value')) == 1 

285 
 



     
    %build target poly 
    x_tar(1) = td_xmin; 
    y_tar(1) = td_ymin; 
     
    x_tar(2) = td_xmin; 
    y_tar(2) = td_ymax; 
     
    x_tar(3) = td_xmax; 
    y_tar(3) = td_ymax; 
     
    x_tar(4) = td_xmax; 
    y_tar(4) = td_ymin; 
     
    x_tar(5) = td_xmin; 
    y_tar(5) = td_ymin; 
     
    plot(x_tar, y_tar, 'r-') 
     
end 
 
%release, calc motion 
 
 
%calc motion 
index1 = 1; 
hangtime = 0; 
y_max = 0; 
hit = 0; 
 
% 
%          Motion, no drag 
% 
%%%%%%%% 
while y(index1) >=0 & hit == 0 
     
    index1 = index1 + 1; 
    %calc hangtime 
    hangtime = hangtime + dt; 
     
    %change in velocity from gravity 
    vx(index1) = vx(index1 - 1); 
    vy(index1) = vy(index1 - 1) + gravity * dt; 
     
    %new position 
    x(index1) = x(index1 - 1) + vx(index1-1) * dt; 
    y(index1) = y(index1 - 1) + vy(index1-1) * dt +0.5*gravity*dt^2; 
     
    
    %check for hit target 
    if (get(handles.td_check,'Value')) == 1 
        hit = inpolygon( x(index1), y(index1), x_tar, y_tar); 
    end 

286 
 



     
    %if max, save data 
    if y(index1) > y_max 
         

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        y_max = y(index1); 
        x_max = x(index1); 
        time_max = hangtime; 
    end  
  
end 
 
 
% 
%        Drag, Simple 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%get drag info and drag_type 
 
% reset velocity 
% vx_drag(2) = vlaunch * cos(angle_radian); 
% vy_drag(2) = vlaunch * sin(angle_radian); 
 
if (get(handles.drag_simple,'Value')) == 1 
    drag_simple_loss = str2double(get(handles.drag_loss,'String')); 
     
    % 
    %  Drag, simple 
    % 

    % initial data 
    x_drag(1) = x(1); 
    y_drag(1) = y(1); 
    %x_drag(2) = x(2); 
    %y_drag(2) = y(2); 
     
    %set initial conditions 
    angle_radian = angle * pi / 180; 
 
     
    vx_drag(1) = vlaunch * cos(angle_radian) * (100 - drag_simple_loss)./100; 
    vy_drag(1) = vlaunch * sin(angle_radian) * (100 - drag_simple_loss)./100; 
 
     
    %calc motion 
    index1 = 1; 
     
    y_drag_max = 0; 
    hangtime_drag = 0; 
    hit = 0; 
 
    while y(index1) >=0 & hit == 0 
     
        index1 = index1 + 1; 

287 
 



         
        %calc hangtime 
        hangtime_drag = hangtime_drag + dt; 
         
        %change in velocity from gravity 
        vx_drag(index1) = vx_drag(index1 - 1); 
        vy_drag(index1) = vy_drag(index1 - 1) + gravity * dt; 
     
        %new pos 
        x_drag(index1) = x_drag(index1 - 1) + vx_drag(index1-1) * dt; 
        y_drag(index1) = y_drag(index1 - 1) + vy_drag(index1-1) * dt+0.5*gravity*dt^2; 
     
         
         
        %check for hit target 
    if (get(handles.td_check,'Value')) == 1 
        hit = inpolygon( x_drag(index1), y_drag(index1), x_tar, y_tar); 
    end 
         
        %if max, save data 
        if y_drag(index1) > y_drag_max 
         
            y_drag_max = y_drag(index1); 
            x_drag_max = x_drag(index1); 
            time_drag_max = hangtime_drag; 
        end  
  
    end 
     
     
elseif (get(handles.drag_complex,'Value')) == 1 
     
    % 
    %  Drag, complex 
    % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    drag_k = str2double(get(handles.drag_k,'String')); 
    drag_density = str2double(get(handles.drag_density,'String')); 
      
    % initial data 
    x_drag(1) = x(1); 
    y_drag(1) = y(1); 
    x_drag(2) = x(2); 
    y_drag(2) = y(2); 
     
    %set initial conditions 
    angle_radian = (angle) * pi / 180; 
 
    %vx_drag(1) = vlaunch * cos(angle_radian); 
    %vy_drag(1) = vlaunch * sin(angle_radian); 
     
    vx_drag(1) = vx(1) 
    vy_drag(1) = vy(1) 

288 
 



     
     
    %impulse 
    index1 = 1; 
     
    y_drag_max = 0; 
    hangtime_drag = 0; 
    hit = 0; 
     
    lamda = drag_k / mass; 
     
    while y_drag(index1) >=0 & hit == 0 
         
        index1 = index1 + 1; 
         
        %determine x and y position 
        x_drag(index1) = x_drag(1) + vx_drag(1)*(1-exp(-lamda*hangtime_drag))/lamda; 
        y_drag(index1) = y_drag(1) + (-gravity / lamda^2 + vy_drag(1)/lamda)*(1-exp(-
lamda*hangtime_drag)) + (gravity/lamda)*hangtime_drag; 
         
        %bump time 
        hangtime_drag = hangtime_drag + dt; 
         
 
        vx_drag(index1) = (x_drag(index1) - x_drag(index1-1))/dt; 
        vy_drag(index1) = (y_drag(index1) - y_drag(index1-1))/dt; 
 
     
 
        %check for hit target 
        if (get(handles.td_check,'Value')) == 1 
            hit = inpolygon( x_drag(index1), y_drag(index1), x_tar, y_tar); 
        end 
         
        %if max, save data 
        if y_drag(index1) > y_drag_max 
         
            y_drag_max = y_drag(index1); 
            x_drag_max = x_drag(index1); 
            time_drag_max = hangtime_drag; 
        end  
  
    end 
        
end 
 
%get draw results info 
switch get(handles.ShowResultsMenu,'Checked') 
    case 'on' 
         tog_results = 1;          
                  
    case 'off' 
        tog_results = 0; 

289 
 



         
end 
 
switch get(handles.ShowSimpleMenu,'Checked') 
    case 'on' 
        tog_simple = 1; 
    case 'off' 
        tog_simple = 0; 
end 
 
switch get(handles.ShowDragMenu,'Checked') 
    case 'on' 
        tog_drag = 1; 
    case 'off' 
        tog_drag = 0; 
end 
 
    
 
% 
% 
%plot 
if (get(handles.figure_check,'Value')) == 1 
    figure(1) 
    title('Projectile Motion Results') 
     
else 
    axes(handles.axes1); 
     
end 
 
hold on; 
 
xlabel(['Distance  ( ',unit_position,' ) ']) 
ylabel(['Height  ( ',unit_position,' ) ']) 
 
 
%draw landing info and plot path 
switch get(handles.ShowSimpleMenu,'Checked') 
    case 'on' 
         plot(x,y,'b*-')   
          
         if tog_results == 1 
              
             [a b] = size(x); 
              
              
             text(x(b) , 0,['  ',num2str(x(b),'%9.3f'),... 
                     '  ',unit_position,'    at  ',num2str(hangtime,'%9.3f'),' seconds '],... 
                'BackgroundColor',[.1 .7 .9],... 
                'EdgeColor','k',... 
                'HorizontalAlignment','center',... 
                'VerticalAlignment','bottom') 

290 
 



      
         end 
             
    case 'off' 
        %nadda 
    end 
 
 
 
 
 
 
%plot drag 
switch get(handles.ShowDragMenu,'Checked') 
    case 'on' 
        if (get(handles.drag_complex,'Value')) == 1 | (get(handles.drag_simple,'Value')) == 1 
 
            plot(x_drag, y_drag,'g*-') 
             
            %draw results 
            if tog_results == 1 
              
             [a b] = size(x_drag); 
              
              
             text(x_drag(b), -x_drag(b)/30,['  ',num2str(x_drag(b),'%9.3f'),'  ',unit_position,'  ',... 
                 ' at  ',num2str(hangtime_drag,'%9.3f'),' seconds '],... 
                'BackgroundColor',[.1 .9 .5],... 
                'EdgeColor','k',... 
                'HorizontalAlignment','center',... 
                'VerticalAlignment','top') 
         end 
     
        end 
         
    case 'off' 
        %nadda 
end 
 
 
%set axis to display results 
axis auto 
 
%draw results 
 
 
axis equal; 
user_axis = axis; 
              
x_length = abs(user_axis(1) - user_axis(2)).*0.15; 
y_length = abs(user_axis(3) - user_axis(4)).*0.15; 
 
%set ground 

291 
 



user_axis(3) = 0; 
 
%adjust axis 
 user_axis(4) = user_axis(4) * 1.1; 
 axis([user_axis]) 
%      
 
%if draw results and this path          
if tog_results == 1 & tog_simple == 1 
              
    text(x_max - x_length*2.0, y_max + y_length*1.5,'No Drag Ymax Data','HorizontalAlignment','center') 
    text(x_max - x_length*2.0, y_max + y_length*1.0,['  X position = ',num2str(x_max,'%9.3f'),'  
',unit_position,'  '],... 
        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 
        'VerticalAlignment','top') 
    text(x_max - x_length*2.0, y_max + y_length*0.5,['  Y position = ',num2str(y_max,'%9.3f'),'  
',unit_position,'  '],... 
        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 
        'VerticalAlignment','top') 
    text(x_max - x_length*2, y_max + y_length*0,['  Time = ',num2str(time_max,4), '  seconds  '],... 
        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 
        'VerticalAlignment','top') 
 
     
              
    plot(x_max, y_max, 'ro',... 
        'MarkerEdgeColor','k',... 
        'MarkerFaceColor','r',... 
        'MarkerSize',10) 
end 
 
 
%check for drag values 
if (get(handles.drag_complex,'Value')) == 1 | (get(handles.drag_simple,'Value')) == 1 
    %already set value 
    tog_drag = tog_drag; 
else 
    tog_drag = 0; 
end 
 
 
%if draw results and this path          
if tog_results == 1 & tog_drag == 1 
    text(x_drag_max - x_length*1.5, y_drag_max - y_length*1,'Drag Path Ymax 
Data','HorizontalAlignment','center') 
    text(x_drag_max - x_length*1.5, y_drag_max - y_length*1.6,['  X position = 
',num2str(x_drag_max,'%9.3f'),'  ',unit_position,'  '],... 

292 
 



        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 
        'VerticalAlignment','bottom') 
    text(x_drag_max - x_length*1.5, y_drag_max - y_length*2.1,['  Y position = 
',num2str(y_drag_max,'%9.3f'),'  ',unit_position,'  '],... 
        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 
        'VerticalAlignment','bottom') 
    text(x_drag_max - x_length*1.5, y_drag_max - y_length*2.6 ,['  Time = ',num2str(time_drag_max,4), '  
seconds  '],... 
        'BackgroundColor',[.8 .8 .8],... 
        'EdgeColor','k',... 
        'HorizontalAlignment','center',... 
        'VerticalAlignment','bottom') 
 
     
              
    plot(x_drag_max, y_drag_max, 'ro',... 
        'MarkerEdgeColor','k',... 
        'MarkerFaceColor','r',... 
        'MarkerSize',10) 
end 
 
 
 
%if output data to command window 
if (get(handles.data_check,'Value')) == 1 
     
     
    %set units 
    %determine units 
    switch get(handles.UnitsEnglish,'Checked') 
        case 'on' 
            unit_velocity = 'feet / second'; 
        case 'off' 
            unit_velocity = 'meters / second'; 
    end 
     
         
    figure(2) 
    clf reset; 
    hold on;    
     
     
    subplot(2,1,1) 
     
    hold on; 
    title('Velocity vs. X position') 
    xlabel(['Distance  ( ',unit_position,' ) ']) 
    ylabel(['Velocity  ( ',unit_velocity,' ) ']) 
     

293 
 



    %calc vmag 
    %vx(1) = []; 
    %vy(1) = []; 
     
    vmag = sqrt(vx.^2 + vy .^ 2); 
     
    %x(1) = []; 
     
     
     
    plot(x, vmag, 'b') 
     
    %if drag exists, plot 
    if length(vx_drag) > 3 
         
         
         
        
%         %format data to account for the swing 
        vx_drag(2) = vx_drag(1); 
        vy_drag(2) = vy_drag(1); 
 
         vx_drag(1) = []; 
%         vx_drag(1) = []; 
%          
         vy_drag(1) = []; 
%         vy_drag(1) = []; 
%         %vmag_drag(1) = []; 
%          
%         %set initial velocity data for plot 
%         vx_drag(1) = vx(1); 
%         vy_drag(1) = vy(1); 
%         % 
         x_drag(1) = []; 
%         x_drag(1) = []; 
%         %x_drag(1) = []; 
%          
         y_drag(1) = []; 
%         y_drag(1) = []; 
%         %y_drag(1) = []; 
         
        vmag_drag = sqrt(vx_drag.^2 + vy_drag.^ 2); 
         
         
        plot(x_drag, vmag_drag,'g') 
         
        legend('No Drag','With Drag',4) 
    end 
     
     
     
    %hold off; 
     

294 
 



    %calc angle of velocity 
    v_angle = atan2(vy, vx).* 180 ./ pi; 
    %v_angle(1) = []; 
     
    subplot(2,1,2) 
    hold on; 
     
    title('Theta vs. X position') 
    xlabel(['Distance  ( ',unit_position,' ) ']) 
    ylabel(['Theta  ( degrees ) ']) 
     
    plot(x, v_angle, 'b') 
     
 
     
    %if drag exists, plot 
    if length(vx_drag) > 3 
         
%             %add velocity data for (2) 
%     vx_drag(2) = ( vx_drag(1) + vx_drag(3))/2; 
%     vy_drag(2) = ( vy_drag(1) + vy_drag(3))/2; 
         
        %calc angle of velocity 
        v_angle_drag = atan2(vy_drag, vx_drag).* 180 ./ pi; 
         
     
        plot(x_drag, v_angle_drag, 'g') 
         
        legend('No Drag','With Drag',1) 
         
    end 
     
     
    %output data as a table 

         

    clc 
     
    time =0; 
     
    fid = fopen('EFD_BALLDROP_output.txt','wb'); 
     
    fprintf(fid,'\n---------------------------------------------------------------------------'); 
    fprintf(fid,'\n--------------------------- Simple Model Data -----------------------------'); 
    fprintf(fid,'\n\n    time            X                Y              Vx               Vy   '); 
    fprintf(fid,'\n  '); 
     
    %display units    
    fprintf(fid,'\n  [ seconds ]        [    %s      ]            [     %s   ]',unit_position,unit_velocity); 
    fprintf(fid,'\n---------------------------------------------------------------------------'); 
    for i = 1:length(x) 
        fprintf(fid,'\n  %7.3f  \t%9.3f    \t%9.3f    \t%9.3f   \t%9.3f', time, x(i),y(i),vx(i),vy(i)); 

        time = time + dt; 
    end 

295 
 



     
    fclose('all'); 
     
    %print text file to HTML 
    web(['file:' which('EFD_BALLDROP_output.txt')],'-browser') 
     
    
    %if drag data 
    if length(vx_drag) > 3 
         
        time = 0; 
         
        fid = fopen('EFD_BALLDROP_output_DRAG.txt','wb'); 
         
        fprintf(fid,'\n---------------------------------------------------------------------------'); 
        fprintf(fid,'\n---------------------------- Drag Model Data ------------------------------'); 
        fprintf(fid,'\n\n    time            X                Y              Vx               Vy   '); 
        fprintf(fid,'\n  '); 
         
        %display units    
        fprintf(fid,'\n  [ seconds ]        [    %s      ]            [     %s   ]',unit_position,unit_velocity); 
        fprintf(fid,'\n---------------------------------------------------------------------------'); 
         
        for i = 1:length(x_drag) 
            fprintf(fid,'\n  %7.3f  \t%9.3f    \t%9.3f    \t%9.3f   \t%9.3f', time, 
x_drag(i),y_drag(i),vx_drag(i),vy_drag(i)); 
             
            time = time + dt; 
        end 
         
        fclose('all'); 
     
        %print text file to HTML 
        web(['file:' which('EFD_BALLDROP_output_DRAG.txt')],'-browser') 
    end 
        
end   
 
hold off; 
 
 
 
% -------------------------------------------------------------------- 
function FileMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to FileMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function OpenMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to OpenMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 

296 
 



% handles    structure with handles and user data (see GUIDATA) 
file = uigetfile('*.fig'); 
if ~isequal(file, 0) 
    open(file); 
end 
 
% -------------------------------------------------------------------- 
function PrintMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to PrintMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
printdlg(handles.figure1) 
 
% -------------------------------------------------------------------- 
function CloseMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to CloseMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... 
                     ['Close ' get(handles.figure1,'Name') '...'],... 
                     'Yes','No','Yes'); 
if strcmp(selection,'No') 
    return; 
end 
 
delete(handles.figure1) 
 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- Executes on button press in pushbutton5. 
function pushbutton5_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

297 
 



beep 
 
 

function listbox3_CreateFcn(hObject, eventdata, handles) 

% -------------------------------------------------------------------- 
function ViewMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ViewMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% -------------------------------------------------------------------- 
function DisplayMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to DisplayMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function ErrorCheckMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ErrorCheckMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function HelpMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to HelpMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function HelpGuideMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to HelpGuideMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
web(['file:' which('help_home.html')],'-browser') 
 
% -------------------------------------------------------------------- 
function HelpAboutMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to HelpAboutMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
msgbox('Projectile Motion Analysis for Swing Launching,                            written by Jon Huber' ,'About 
this program','help') 
 
% --- Executes during object creation, after setting all properties. 

% hObject    handle to listbox3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 

298 
 



% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

set(hObject, 'String', {'Joint', 'Member', 'Constraint', 'Force'}); 

% eventdata  reserved - to be defined in a future version of MATLAB 

 

% eventdata  reserved - to be defined in a future version of MATLAB 

 

end 
 

 
% --- Executes on selection change in listbox3. 
function listbox3_Callback(hObject, eventdata, handles) 
% hObject    handle to listbox3 (see GCBO) 

% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = get(hObject,'String') returns listbox3 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from listbox3 
 

% -------------------------------------------------------------------- 
function ZoomRotateMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ZoomRotateMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- Executes on button press in se_check. 
function se_check_Callback(hObject, eventdata, handles) 
% hObject    handle to se_check (see GCBO) 

% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of se_check 
 
 
% --- Executes during object creation, after setting all properties. 
function se_x_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to se_x (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 

 
 
function se_x_Callback(hObject, eventdata, handles) 

299 
 



% hObject    handle to se_x (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of se_x as text 
%        str2double(get(hObject,'String')) returns contents of se_x as a double 

 

if ispc 

 
 
% --- Executes during object creation, after setting all properties. 
function se_y_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to se_y (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function se_y_Callback(hObject, eventdata, handles) 
% hObject    handle to se_y (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of se_y as text 
%        str2double(get(hObject,'String')) returns contents of se_y as a double 
 

% --- Executes during object creation, after setting all properties. 
function se_r_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to se_r (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 

    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function se_r_Callback(hObject, eventdata, handles) 
% hObject    handle to se_r (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

300 
 



 
% Hints: get(hObject,'String') returns contents of se_r as text 
%        str2double(get(hObject,'String')) returns contents of se_r as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function se_start_angle_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to se_start_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function se_start_angle_Callback(hObject, eventdata, handles) 
% hObject    handle to se_start_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of se_start_angle as text 
%        str2double(get(hObject,'String')) returns contents of se_start_angle as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function se_release_angle_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to se_release_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function se_release_angle_Callback(hObject, eventdata, handles) 
% hObject    handle to se_release_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of se_release_angle as text 
%        str2double(get(hObject,'String')) returns contents of se_release_angle as a double 

301 
 



 
 
% --- Executes on button press in td_check. 
function td_check_Callback(hObject, eventdata, handles) 
% hObject    handle to td_check (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of td_check 
 
 
% --- Executes during object creation, after setting all properties. 
function prop_vt_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to prop_vt (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function prop_vt_Callback(hObject, eventdata, handles) 
% hObject    handle to prop_vt (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of prop_vt as text 
%        str2double(get(hObject,'String')) returns contents of prop_vt as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function prop_mass_CreateFcn(hObject, eventdata, handles) 

 

% hObject    handle to prop_mass (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 

function prop_mass_Callback(hObject, eventdata, handles) 

302 
 



% hObject    handle to prop_mass (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of prop_mass as text 
%        str2double(get(hObject,'String')) returns contents of prop_mass as a double 
 
 
% --- Executes on button press in se_same. 
function se_same_Callback(hObject, eventdata, handles) 
% hObject    handle to se_same (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of se_same 
set(handles.se_same, 'Value', 1); 
set(handles.se_offset, 'Value', 0); 
set(handles.se_specify, 'Value', 0); 
 
% --- Executes on button press in se_offset. 
function se_offset_Callback(hObject, eventdata, handles) 
% hObject    handle to se_offset (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of se_offset 
set(handles.se_same, 'Value', 0); 
set(handles.se_offset, 'Value', 1); 
set(handles.se_specify, 'Value', 0); 
 
% --- Executes on button press in se_specify. 
function se_specify_Callback(hObject, eventdata, handles) 
% hObject    handle to se_specify (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of se_specify 
set(handles.se_same, 'Value', 0); 
set(handles.se_offset, 'Value', 0); 
set(handles.se_specify, 'Value', 1); 
 
% --- Executes during object creation, after setting all properties. 
function prop_dt_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to prop_dt (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

303 
 



end 
 
 
 
function prop_dt_Callback(hObject, eventdata, handles) 
% hObject    handle to prop_dt (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 

% --- Executes during object creation, after setting all properties. 

 

% Hints: get(hObject,'String') returns contents of prop_dt as text 
%        str2double(get(hObject,'String')) returns contents of prop_dt as a double 
 
 

function se_offset_angle_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to se_offset_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function se_offset_angle_Callback(hObject, eventdata, handles) 
% hObject    handle to se_offset_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of se_offset_angle as text 
%        str2double(get(hObject,'String')) returns contents of se_offset_angle as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function se_specify_angle_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to se_specify_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 

304 
 



 
function se_specify_angle_Callback(hObject, eventdata, handles) 
% hObject    handle to se_specify_angle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

function td_xmin_CreateFcn(hObject, eventdata, handles) 

 

 

 
% Hints: get(hObject,'String') returns contents of se_specify_angle as text 
%        str2double(get(hObject,'String')) returns contents of se_specify_angle as a double 
 
 
% --- Executes during object creation, after setting all properties. 

% hObject    handle to td_xmin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 

 
function td_xmin_Callback(hObject, eventdata, handles) 
% hObject    handle to td_xmin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of td_xmin as text 
%        str2double(get(hObject,'String')) returns contents of td_xmin as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function td_xmax_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to td_xmax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 

 
 
function td_xmax_Callback(hObject, eventdata, handles) 
% hObject    handle to td_xmax (see GCBO) 

305 
 



% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of td_xmax as text 
%        str2double(get(hObject,'String')) returns contents of td_xmax as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function td_ymin_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to td_ymin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function td_ymin_Callback(hObject, eventdata, handles) 
% hObject    handle to td_ymin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of td_ymin as text 
%        str2double(get(hObject,'String')) returns contents of td_ymin as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function td_ymax_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to td_ymax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function td_ymax_Callback(hObject, eventdata, handles) 
% hObject    handle to td_ymax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 

306 
 



% Hints: get(hObject,'String') returns contents of td_ymax as text 
%        str2double(get(hObject,'String')) returns contents of td_ymax as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function particle_mass_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to particle_mass (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function particle_mass_Callback(hObject, eventdata, handles) 
% hObject    handle to particle_mass (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of particle_mass as text 
%        str2double(get(hObject,'String')) returns contents of particle_mass as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function drag_density_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to drag_density (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function drag_density_Callback(hObject, eventdata, handles) 
% hObject    handle to drag_density (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of drag_density as text 
%        str2double(get(hObject,'String')) returns contents of drag_density as a double 
 

307 
 



 
% --- Executes during object creation, after setting all properties. 
function drag_k_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to drag_k (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function drag_k_Callback(hObject, eventdata, handles) 
% hObject    handle to drag_k (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of drag_k as text 
%        str2double(get(hObject,'String')) returns contents of drag_k as a double 
 
 
% --- Executes on button press in drag_simple. 
function drag_simple_Callback(hObject, eventdata, handles) 
% hObject    handle to drag_simple (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of drag_simple 
set(handles.drag_no, 'Value', 0); 
set(handles.drag_simple, 'Value', 1); 
set(handles.drag_complex, 'Value', 0); 
 
% --- Executes on button press in drag_complex. 
function drag_complex_Callback(hObject, eventdata, handles) 
% hObject    handle to drag_complex (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of drag_complex 
set(handles.drag_no, 'Value', 0); 
set(handles.drag_simple, 'Value', 0); 
set(handles.drag_complex, 'Value', 1); 
 
% --- Executes on button press in drag_no. 
function drag_no_Callback(hObject, eventdata, handles) 
% hObject    handle to drag_no (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

308 
 



 
% Hint: get(hObject,'Value') returns toggle state of drag_no 
set(handles.drag_no, 'Value', 1); 
set(handles.drag_simple, 'Value', 0); 
set(handles.drag_complex, 'Value', 0); 
 
% --- Executes during object creation, after setting all properties. 

    set(hObject,'BackgroundColor','white'); 

function drag_loss_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to drag_loss (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 

else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function drag_loss_Callback(hObject, eventdata, handles) 
% hObject    handle to drag_loss (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of drag_loss as text 
%        str2double(get(hObject,'String')) returns contents of drag_loss as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function se_loss_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to se_loss (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function se_loss_Callback(hObject, eventdata, handles) 
% hObject    handle to se_loss (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of se_loss as text 

309 
 



%        str2double(get(hObject,'String')) returns contents of se_loss as a double 
 
 
% --- Executes on button press in figure_check. 
function figure_check_Callback(hObject, eventdata, handles) 
% hObject    handle to figure_check (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of figure_check 
 
 
% -------------------------------------------------------------------- 
function ShowSimpleMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowSimpleMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
switch get(handles.ShowSimpleMenu,'Checked') 
    case 'on' 
        set(handles.ShowSimpleMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowSimpleMenu, 'Checked', 'on') 
end 
 
 
% -------------------------------------------------------------------- 
function ShowDragMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowDragMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
switch get(handles.ShowDragMenu,'Checked') 
    case 'on' 
        set(handles.ShowDragMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowDragMenu, 'Checked', 'on') 
end 
 
 
% -------------------------------------------------------------------- 
function UnitsMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to UnitsMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function UnitsEnglish_Callback(hObject, eventdata, handles) 
% hObject    handle to UnitsEnglish (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

310 
 



 
set(handles.UnitsEnglish, 'Checked', 'on'); 
set(handles.UnitsMetric, 'Checked', 'off'); 
 
%pop-up figure with units menu 
figure(2); 
clf reset; 
axis([0 100 0 100]) 
 
title('English System of Units') 
 
text(5,96,'Properties') 
text(5,93,'-------------------------') 
text(5,90,'dt == ( sec )') 
text(5,85,'Vt   ==  ( ft / sec )') 
text(5,80,'mass  ==  ( slugs )') 
 
text(5,71,'Calculate Swing Energy') 
text(5,68,'-----------------------------------------') 
text(5,65,'X  ==  ( ft )') 
text(5,60,'Y  ==  ( ft )') 
text(5,55,'radius ==  ( ft )') 
text(5,50,'start angle ==  ( degrees )') 
text(5,45,'release angle ==  ( degrees )') 
text(5,40,'loss   ==  ( value of 0 thru 100 )') 
 
text(5,31,'Particle Release Angle') 
text(5,28,'-----------------------------------------') 
text(5,25,'Offset   ==  ( degrees )') 
text(5,20,'Specify  ==  ( degrees )') 
text(5,15,'mass of projectile ==  ( slugs )') 
 
text(55,96,'Aim for Target') 
text(55,93,'--------------------') 
text(55,90,'Xmin, Xmax  ==  ( m )') 
text(55,85,'Ymin, Ymax  ==  ( m )') 
 
text(55,61,'Drag Menu') 
text(55,58,'-----------------------------') 
text(55,55,'loss   ==  ( value of 0 thru 100 )') 
text(55,50,'k ==  ( lb * s / ft )') 
text(55,45,'density of air   ==  ( slug / ft^3 )') 
 
 
% -------------------------------------------------------------------- 
function UnitsMetric_Callback(hObject, eventdata, handles) 
% hObject    handle to UnitsMetric (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
set(handles.UnitsEnglish, 'Checked', 'off'); 
set(handles.UnitsMetric, 'Checked', 'on'); 
 

311 
 



%pop-up figure with units menu 
figure(2); 
clf reset; 
axis([0 100 0 100]) 
 
title('Metric System of Units') 
 
text(5,96,'Properties') 
text(5,93,'-------------------------') 
text(5,90,'dt == ( sec )') 
text(5,85,'Vt   ==  ( m / sec )') 
text(5,80,'mass  ==  ( kg )') 
 
text(5,71,'Calculate Swing Energy') 
text(5,68,'-----------------------------------------') 
text(5,65,'X  ==  ( m )') 
text(5,60,'Y  ==  ( m )') 
text(5,55,'radius ==  ( m )') 
text(5,50,'start angle ==  ( degrees )') 
text(5,45,'release angle ==  ( degrees )') 
text(5,40,'loss   ==  ( value of 0 thru 100 )') 
 
text(5,31,'Particle Release Angle') 
text(5,28,'-----------------------------------------') 
text(5,25,'Offset   ==  ( degrees )') 
text(5,20,'Specify  ==  ( degrees )') 
text(5,15,'mass of projectile ==  ( kg )') 
 
text(55,96,'Aim for Target') 
text(55,93,'--------------------') 
text(55,90,'Xmin, Xmax  ==  ( m )') 
text(55,85,'Ymin, Ymax  ==  ( m )') 
 
text(55,61,'Drag Menu') 
text(55,58,'-----------------------------') 
text(55,55,'loss   ==  ( value of 0 thru 100 )') 
text(55,50,'k ==  ( N * s / m )') 
text(55,45,'density of air   ==  ( kg / m^3 )') 
 
 
% -------------------------------------------------------------------- 
function findme_Callback(hObject, eventdata, handles) 
% hObject    handle to findme (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function ShowResultsMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to ShowResultsMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 

312 
 



switch get(handles.ShowResultsMenu,'Checked') 
    case 'on' 
        set(handles.ShowResultsMenu, 'Checked', 'off') 
    case 'off' 
        set(handles.ShowResultsMenu, 'Checked', 'on') 
end 
 
 
% --- Executes on button press in data_check. 
function data_check_Callback(hObject, eventdata, handles) 
% hObject    handle to data_check (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of data_check 
 
 

313 
 



Vita 

I started my thesis journey in 1998.  I spent two years in graduate school at the 

University of Tennessee, and then left to take a job as a design engineer for a third tier 

automotive manufacturor.  They produce airbag inflators  (glorifed pipebombs).  

Unfortunatley, I never completed my thesis.  However, I was washing away the green of 

my newness.  During this time, I realized I needed my graduate degree.  I went part time 

for my job and went back to being the lowly graduate assistant for the engage freshmen 

engineering program .  I enjoy my additional year as a TA because I am considering a full 

acedemic profiessional lifestyle.   

For the future, I plan on returning to the automotive company where I will 

perform stress analysis on the inflators as well as write analysis code to model the 

explosive material and airflow. 

I am looking forward to a life within science.  I have every intention to continue 

living with a thirst for knowledge and understanding.  

 
 

314 
 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2003

	The Development and Verification of Three Matlab Analysis Applications Programmed Specifically for Engage Team Projects.
	Jonathan W. Huber
	Recommended Citation


	- Introduction
	1.1 Background
	1.1.1  Engage’s needs and requirements for pre-as

	1.2 Team Projects
	1.2.1 Statics Projects
	1.2.2 Dynamics Projects

	1.3 Review of Similar Applications
	1.3.1 Truss solvers
	1.3.2 Projectile motion
	1.3.3 Summary of existing analysis applications

	1.4 Application Objectives
	1.4.1 Objectives for all applications
	1.4.2 Objectives for the statics application
	1.4.3 Objectives for the two dynamics applications

	1.5 Thesis Objectives

	- Development
	2.1 Application Details
	2.1.1 Truss Analysis
	2.1.1.1 Creating 2D and 3D capabilities in the same application
	2.1.1.2 Error checking on for 2D and 3D models

	2.1.2 Projectile Motion
	2.1.2.1 Ramp and Spring Energy Dynamics Launch Velocity Calculation
	2.1.2.2 Swing Energy Dynamics Launch Velocity Calculation
	2.1.2.3 Projectile Motion Calculations from Launch Velocity
	2.2.2.4 Modifying Plots


	2.2 Deciding to use Matlab
	2.3 Help Files

	- Application Features
	3.1 Truss Analysis Application
	3.1.1 Toolbar Menu
	3.1.2 Feature Menu
	3.1.3 Modify Menu
	3.1.4 Enter Values Menu
	3.1.5 Analysis Menu
	3.1.6 Axis Menu
	3.1.7 Draw Area
	3.1.8 View Display Menu
	3.1.9 Help File
	3.1.10 Internal Error Checking

	3.2 Ramp Launched Projectile Motion Application
	3.2.1 Toolbar
	3.2.2 Time Increment Menu
	3.2.3 Ramp Energy Menu
	3.2.3.1 Angle calculations
	3.2.3.2 Initial velocity up a ramp
	3.2.3.3 Initial velocity down a ramp
	3.2.3.4 Simple Initial Velocity Launch

	3.2.4 Launch Energy Menu
	3.2.5 Aim for Target Menu
	3.2.6 Specify Launch Angle Menu
	3.2.7 Drag Menu
	3.2.8 Output to Figure
	3.2.9 Analysis Button
	3.2.10 Help File

	3.3 Swinging Projectile Application
	3.3.1 Toolbar
	3.3.2 Properties Menu
	3.3.3 Swing Energy Menu
	3.3.4 Aim for Target Menu
	3.3.5 Drag Menu
	3.3.6 Output to Figure
	3.3.7 Analysis Button
	3.3.8 Help File


	- Verification and Tutorials
	4.1 Truss Solver Application Verification
	4.1.1 Hibbeler Example 6-1
	4.1.1.1 Specify and Number Model Information
	4.1.1.2 Enter Joint Information
	4.1.1.3 Enter Member Data
	4.1.1.4 Enter Constraint Data
	4.1.1.5 Enter Force Data
	4.1.1.6 Analyze
	4.1.1.7 View Results

	4.1.2 Hibbeler Example 6-2
	4.1.3 Hibbeler Homework 6-30 / 6-31
	4.1.4 Hibbeler Homework 6-62 / 6-63

	4.2 Ramp Dynamics Verification Problems
	4.2.1 Hibbeler Homework 14-28
	4.2.2 Hibbeler Example 14-4
	4.2.3 Hibbeler Homework 12-86
	4.2.4 Boresi / Schmidt Example 14-7, Drag Verification

	4.3 Swing Energy Application Verification
	4.3.1 Homework 14-31


	- Conclusions and Recommendations
	5.1 Conclusions
	5.2 Recommendations
	5.2.1 Truss Solver Application Modifications
	5.2.2 Projectile Motion Application Modifications
	5.2.3 Implementation Suggestions



