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Abstract 

 Contamination of soils with toxic metals such as arsenic and cadmium has 

become a major environmental and human health risk.  Phytoremediation provides a 

method to remove contaminants from soils that is not only economically viable but also 

environmentally sound.  Metallohistins are proteins that have the capability to bind 

divalent metal ions such as Ni2+, Zn2+, Co2+, Cu2+ and Cd2+.  In this study, a concatemer 

sequence was designed to try to increase the presence of metal-binding proteins in 

transgenic plants.  Two methods to increase translational efficiency of the metallohistin 

protein were used: 1) characterization of the full-length metallohistin AgNt84 gene, and 

2) construction of three vectors containing different fragments of the AgNt84 cDNA 

which were transformed into Nicotiana tabacum.  The concatemer sequence proved toxic 

to Escherichia coli cells and could not be cloned into vectors for plant transformation.  

Explants genetically transformed with vectors containing either the entire AgNt84 cDNA 

or the 5’ untranslated and coding region of the cDNA recovered from tissue culture.  

Explants genetically transformed with a vector containing only the coding region of the 

cDNA produced shoots but not roots in tissue culture, and then became necrotic.  

Characterization of the transformants is underway.  The first exon and portion of the 

intron of the gene has been sequenced. 

 Phytosensors that can recognize and report the presence of arsenic would provide 

remediators with a management tool for phytoremediation.  A transmission and scanning 

electron microscopy study of Pteris vittata tissue culture revealed callus formation on 
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epidermal cells of gametophytes, presence of an extracellular matrix on calli, and the 

formation of croziers during differentiation.  Calli induced on semi-solid medium 

consisted of distinct meristematic nodules.  These nodules differentiated randomly, and 

are unfit for genetic transformation.  A new differentiation medium is also described.  

 A preliminary genetic transformation study was successful in creating protoplasts 

from both Pteris vittata gametophytes and sporophytes, but unsuccessful with biolistic 

bombardment of calli.  Low yields, cellular debris, and autofluorescence exhibited by the 

protoplasts hampered polyethylene glycol-mediated genetic transformation and detection 

of transgene expression.  
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Chapter One:  Introduction 

Remediation of contaminated soil  

 Pollution has far reaching influences and effects throughout the world.  Mining 

practices, combustion of fossil fuels, industrialization, and types of metal production have 

mobilized heavy metals into the environment in concentrations that significantly exceed 

natural background sources (Clemens 2006).  Specifically, soil contaminated with heavy 

metals pose a challenge for remediators charged with the task of cleaning up after mining 

and smelting practices. 

 Traditionally, excavation and storage of contaminated soil in hazardous waste 

landfills was the most effective, if expensive, way to deal with heavy metals.  In 2000, 

the price for excavation and storage of a hectare soil dug 30 cm deep was estimated at 

$1.6 million (Cunningham and Berti 2000).  Worse yet, the end product for the high cost 

of excavation is simply moving the problem somewhere else rather than remediation.  

Other engineering strategies like soil washing uses surfactants and/or chelating agents to 

leach the contaminants out of soil once it has been excavated (Ehsan et al. 2006).  This 

leachate is then stored or processed to, in theory, recover the contaminants for other uses.  

This system is less expensive than storage, and recovers large particulates from the 

contaminated soil while the finer particulates are lost.  This technique, however, still 

requires excavation which is highly invasive and expensive. 
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 Newer techniques such as electrokinetic remediation have been developed to 

replace excavation.  This technique employs a direct current applied to soils through an 

anode and cathode.  Groundwater or a processing fluid must then be injected into the soil 

to conduct the electrical potential in a field that attracts negatively charged compounds to 

the anode and positively charged species to the cathode (Acar and Alshawabkeh 1993).  

The species are then input into the system through the electrodes either by electrolysis or 

through the cycling processing fluid.  Once the metal species are collected, they are 

extracted by precipitation, ion exchange, or electrodeposition (Acar and Alshawabkeh 

1993).  

 But electrokinetic remediation has limitations; contaminants that are bound to soil 

particles, in their precipitate form, or were absorbed into the soil as an immiscible liquid 

cannot be effectively removed (Kaya and Yukselen 2005).  Surfactants can be used to 

increase metal solubility and mobility during electrokinetic remediation.  Kaya and 

Yukselen (2005) demonstrated that pH of surfactants varied slightly due to the 

concentration of the surfactant, the type of soil it is applied to, and what type of surfactant 

is used.  They also noted that around neutral pH heavy metals precipitated in the 

surfactant making electrokinetic remediation ineffective.  Over a period of three years, 

the total cost for electrokinetic remediation has been estimated at 50-120 United states 

dollar m-3 (Virkutyte et al. 2002).  To remediate a hectare of land up to a meter in depth, 

the cost would be $500,000-1,200,000.  The cost to implement phytoremediation has 

been estimated at $279,000 per hectare (Cunningham and Berti 2000).  
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 Phytoremediation is an alternative to engineering techniques.  Phytoremediation 

seeks to employ low-cost plant mechanisms to remove inorganic pollution, such as heavy 

metals, from the soil.  Phytoremediation techniques include phytostabilization, 

phytovolatilization, and phytoextraction.  Phytostabilization uses plants to act on 

contaminated soil in several ways.  Grass species are used to grow in thick clusters that 

reduce water and rain drainage and leaching of the contaminants from the soil into the 

water table.  The root system of the plants binds the soil in place and reduces or 

eliminates erosion which would spread the contamination to other sites.  The root system 

also stabilizes contaminated dust from wind dispersion.  Though this technique does not 

remove the contaminant from the system, it would be most effectively used in heavily 

contaminated soils where nothing can grow except for plants that can exclude the metals 

from entering their roots.  The species used for phytostabilization can also be tailored to 

local conditions reducing the concerns from invasive species introduction (Frérot et al. 

2006). 

 Phytovolatilization has two steps: first the plant’s root system extracts 

contaminants from the soil and then the plant reduces or breaks down the contaminant so 

it is volatilized through stomata.  The best example of this technique comes from 

transformation of Arabidopsis thaliana with two bacterial genes that code for mercuric 

ion reductase, merA, and organomercury lyase, merB.  The transgenic Arabidopsis 

thaliana produced Hg(0) gas and survived on medium containing methylmercury (Bizily 

et al. 2000).  This strategy removes contaminants from the ground environment, but 
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introduces remediated substrate to the global environment through air currents.  There are 

still many questions about the safety of producing gases from contaminants like heavy 

metals, and what levels of these kinds of gases are safe.     

 Phytoextraction uses plants that are capable of taking up environmental 

contaminants through their roots, and then sequestering them in aerial parts.  The 

effectiveness of this process depends on several factors: the extent of soil contamination, 

the bioavailability of metal species present for uptake, and the plant’s ability to absorb 

and accumulate the metal into shoots and leaves (Ernst 1996).  

 Bioavailability varies widely and depends on the metal and environmental 

conditions such as the physical, chemical, and biological composition of the soil.  Metals, 

with the exception of mercury, must be in an aqueous solution to be bioavailable (Lasat 

2002).  If they are strongly bound to soil particles or are in their precipitate form, plant 

roots cannot absorb them.  To ameliorate this situation, plant roots exude various 

compounds.  Compounds called “phytometallophores” are metal chelating organic 

ligands that are exuded when the plant undergoes the stress of metal deficiency (Fan et al. 

1997).  These authors used barley roots to study a subclass of phytometallophores called 

phytosiderophores, more specifically mugineic acids, which are specialized to increase 

the bioavailable iron in the soil.  It was observed that with increased iron deficiency, the 

levels of mugineic acids exuded not only increased, but also assumed a larger fraction of 

the exudate.      
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 Economics are the final component of any remediation strategy.  To create a 

functional strategy, whether engineering or phytoremediation, we must consider the 

initial price, the available capital, the extent of remediation sought, the timeframe, and 

the expected economic, environmental, and health benefit to the landowner/public.  

Economic analysis of remediation strategies is complicated because consideration must 

be given to local and national governmental heavy metal standards and policies, as well 

as the myriad of land use options available to the landowner, i.e. remediation, asphalt 

capping for a parking lot, a shift to crops that accumulate less metals from the soil.   

 An assessment of the economic value farmers would gain by using Salix trees to 

remove cadmium from contaminated soils concluded that the value of remediating ranged 

from €1800-21,100 ha-1; this value, however, depended on factors such as the time 

needed to clean the soil, the value of that can be produced on the cleaned land, and the 

length of time a high value crop can be produced on the land after it has been cleaned 

(Lewandowski et al. 2006).   

 

 Metal toxicity 

 Metals cause cellular damage and death through several mechanisms.  Their 

action in the cell ranges from free radical creation to osmotic balance complication.  Free 

radicals such as superoxide (O2·-) and hydrogen peroxide (H2O2) damage DNA, proteins, 

and lipid membranes through oxidation.  Superoxide and hydrogen peroxide are 

generated through reactions with metals such as iron (the Fenton reaction) and copper 
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(the Haber-Weiss reaction) that have unpaired electrons which they donate to reduce 

oxygen (Briat and Lebrun 1999).  Hydroxyl radicals can cause DNA damage by adding 

hydrogen atoms to bases or removing hydrogen atoms from DNA backbones (Baker et al. 

1994).   Free amino acids and proteins that contain histidine, lysine, proline, and cysteine 

are targets for oxidation which can lead to degradation by proteases (Briat and Lebrun 

1999).   

 Cadmium toxicity in plants results in inhibition of stomatal opening, lower 

growth, leaf chlorosis, oxidative stress, and replacement of zinc, thus interfering with Zn-

dependent processes (Clemens 2006).  Of these, Clemens states that replacement of zinc 

may be the most likely mechanism in vivo.   Hart et al. (1998) suggests that cadmium 

moves across the plasma membrane of the cell by a native zinc carrier-mediated system.  

Clemens (2006) also states that cadmium binds to glutathione, thereby leading to lipid 

peroxidation through glutathione depletion.  Membranes with higher amounts of 

polyunsaturated fats are more susceptible to lipid peroxidation by oxygen radicals and 

transition metals such as iron (Briat and Lebrun 1999).     

 Metals can also bind to the cell’s nucleus and cause promutagenic events like 

DNA strand breaks, base modifications, rearrangements, and purination (Kasprzak 1995).  

Chromium and nickel are two human carcinogens which cause DNA alterations through 

metal-induced promutagenic oxidation (Waalkes et al. 1992), but there are other 

mechanisms for metal-induced DNA damage.  Nickel competes with chromatin-bound 

magnesium ions, resulting in condensed chromatin, which is then hypermethylated and 
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therefore, not transcribed, thus silencing any oncogene suppressors present (Lee et al. 

1995).   

 

Metallohistins  

 The metallohistin cDNAs AgNt84 (GenBank U69156) and Ag164 were isolated 

from the root nodules of Alnus glutinosa in association with the actinomycete Frankia 

spp. (Pawlowski et al. 1997).  Based on in situ hybridizations, these authors report that 

expression of AgNt84 occurs in the second zone of Alnus nodules where some 

nonmeristematic cells are infected by Frankia filaments.   

 Before metallohistins were characterized, metal chelating proteins called 

metallothioneins and phytochelatins were classified.  Metallothioneins are cysteine rich 

molecules that provide thiols for metal chelation when in their reduced form.  They were 

first discovered in equine kidneys containing 20 cysteine residues amongst 61 amino 

acids (Rauser 1995).  Metallothioneins are broken down into two classes based on 

structure: MT-I and MT-II.   Metallothioneins and phytochelatins are rich in cysteine 

residues and are able to bind many different metal species, including copper and zinc 

(Mejare and Bulow 2001, Murphy et al. 1997).  

 MT-Is are the archetypal metallothioneins and have two domains; one domain 

contains nine cysteine residues that bind three metal ions, whereas the second domain has 

eleven cysteine residues that bind four metal ions (Rauser 1999).  Rauser (1999) 

classifies MT-IIs as metallothioneins that lack homology to MT-Is in the positioning of 
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their cysteine residues.  MT-IIs are found in nematode, fungi, cyanobacteria, Drosophila, 

and plants.   

 Phytochelatins are repeated dipeptides of γ-GluCys that are not created through 

translation of gene-encoded mRNAs.  Instead, they are created from glutathione and 

other related compounds by the enzyme PC synthase (Cobbett and Goldsborough 2002).  

They were found to be the major peptide bound to cadmium in complexes inside of 

fission yeast and plant cells (Rauser 1995).  Rauser also reported that phytochelatins bind 

to cadmium and less frequently with copper.  In vitro experiments on phytochelatins 

showed that they could release bound metals to enzymes that required them (Thumann et 

al. 1991).  Other experiments showed that phytochelatins were capable of both protecting 

and reactivating enzymes such as Rubisco after undergoing cadmium stress (Kneer and 

Zenk 1992).    

 Metallohistins, on the other hand, are glycine and histidine rich actinorhizal 

nodulins that are not related to metallothioneins and phytochelatins (Gupta et al. 2002).  

The cDNA AgNt84 codes for a 10.57 kDa, 99 amino acid protein.  Metallohistin proteins 

have a high affinity for binding to specific divalent metal ions like Ni2+, Zn2+, Co2+, Cu2+ 

and Cd2+ (Gupta et al. 2002).  These authors demonstrated that the metallohistin proteins 

can bind 1.6 moles of Cd2+ per mole of monomeric protein; the capacity for binding 

ranged from 3 to 12 atoms per protein, depending on the metal, for both AgNt84 and 

Ag164.  Metallohistins are expressed in the beginning stages of Frankia infection.  

Because they bind cobalt, zinc, and nickel, these proteins could function to regulate 



9 

 

growth of the Frankia by accumulating or withholding these necessary elements (Gupta 

et al. 2002).     

 The metallohistin cDNA contains several parts: a 5’ untranslated region (UTR), 

the coding region which contains a signal peptide followed by the metal-binding protein, 

and the 3’ UTR.  Pawlowski et al. also note that the 3’ untranslated regions in the AgNt84 

cDNA could have a role in the regulation of mRNA regulation because it is predicted to 

form stem-loop structures.  Expressing the entire coding sequence from AgNt84 is lethal 

to E. coli, and so a mutant that had the first 16 amino acids of the leader sequence 

truncated was used to achieve in vitro expression for initial assessment of metal-binding 

properties (Pawlowski et al. 1997).   A construct was then made by deleting the first 

twenty three amino acids of AgNt84 which truncated the protein at the predicted signal 

peptidase cleavage site.  All subsequent metal-binding experiments were done with this 

truncated construct, officially named tAgNt84-6 (Gupta et al. 2002).   

 

Hyperaccumulators, bioremediation, and heavy metals  

 Horace G. Byers (Byers and Knight 1935) observed that Astragalus spp. 

accumulated selenium.  Since this discovery, metal hyperaccumulators have been 

identified in other phyla as well as other genera.  Hyperaccumulators have been defined 

as species capable of accumulating metals in concentrations of 100 fold greater than of 

other species; meaning concentrations of more than 10 mg kg-1 Hg, 100 mg kg-1 Cd, 1000 
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mg kg-1 Co, Cr, Cu, and Pb, and 10,000 mg kg-1 Zn and Ni (Lasat 2002).  Many strains of 

bacteria like Xanthomonas maltophyla, Escherichia coli, and Pseudomonas putida have 

the ability to catalyze reactions to reduce and precipitate metal ions like Pb2+, Hg2+, Cr6+, 

and SeO4
- (Blake et al. 1993; Shen and Wang 1995; Park et al. 1999).  A strain of 

Pseudomonas maltophilia (strain O-2) isolated at a toxic waste site in Oak Ridge, 

Tennessee reduced and precipitated Hg2+, Cr6+, Se4+, Pb2+, Au3+, Cd2+, Te4+, or Ag+ out of 

a nutrient broth in a few days (Blake et al. 1993).  

 Metal tolerance in plant hyperaccumulators follows two basic strategies: 

exclusion and detoxification (Baker 1981).  Agrostis tenuis exemplifies the metal 

exclusion strategy (Dahmani-Muller et al. 2000).  When these authors characterized the 

levels of zinc, cadmium, lead, and copper in A. tenius, the metal concentrations in the 

roots were significantly higher than in leaves.  They suggested that metal immobilization 

in the root cell walls acted as a defense strategy to exclude the metals from aerial parts of 

the plant. 

 Physiological mechanisms used for hyperaccumulation are not well understood.  

In 1999, Persans et al. studied the genes involved in the free histidine (His) pathway of a 

nickel hyperaccumulator Thlaspi goesingense.  The free histidine pathway was thought to 

be a shuttle through the cytoplasm for Ni to be loaded into the vacuole.  Later, Krämer et 

al. (2000) presented evidence that 87% of the Ni not bound to the cell wall was chelated 

by citrate.  They further explained that the tolerance model of nickel-citrate stored in the 

vacuole was sufficient to explain the hyperaccumulation ability of T. goesingense. 
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 Though natural hyperaccumulators exist, most suffer from undesirable traits for 

phytoremediation such as low biomass and slow growth (Lasat 2002).  Low biomass 

crops are undesirable because they inhibit proper management, for example smaller 

plants are more difficult to harvest.  Slow growing plants may not be able to accumulate 

metals quickly enough to keep them from leaching from soils.   

 The use of hyperaccumulators to remediate heavy metals seems logical, but we 

must determine just how effective phytoextraction is for field-scale applications, i.e., time 

and rate expectations to reach targets considering biomass constraints. Hernández-Allica 

et al. (2006) used Thlaspi caerulescens, a species that accumulates zinc, in a study aimed 

at determining the effectiveness of phytoremediation.  They collected heavy metal 

contaminated soil from two sites that were formerly zinc and lead smelters in northern 

Spain and conducted a microcosm study on metal uptake by T. caerulescens.  T. 

caerulescens accumulated levels of zinc from 1.5% to 2.2% of its dry weight in both 

roots and shoots of the plant without showing phytotoxic symptoms.  It was also noted 

that T. caerulescens seemed to have a positive effect on soil biological activity and 

health, putatively through increased carbon mineralization.   

 Recently, a field study to determine the viability of using phytoremediation in an 

urban canal was carried out in Warrington, England using hybrids of Salix, Populus, and 

Alnus (King et al. 2006).  These authors found low survivorship (56-62%) and low 

biomass production (370-530 kg ha-1 yr-1 dry weight) after three years.  These two factors 

influenced metal accumulation which was also low (36 g Cd ha-1 and 4.8 Zn ha-1) 
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compared to 47 g Cd ha-1 and 14.5 kg Zn ha-1 in Salix viminalis (Hammer et al. 2003).  

Though phytoextraction was not useful in this particular setting due to low plant 

survivorship and growth, the trees were planted on soil heavily contaminated by various 

heavy metals, including arsenic and hydrocarbons.  It may be unreasonable to expect 

trees to grow on freshly dredged soil that is so heavily contaminated. 

 

The use of Pteris vittata for phytoremediation 

 In 2001, Ma et al. described the capabilities of an arsenic hyperaccumulating fern, 

Pteris vittata.  These authors report that Pteris vittata was capable of accumulating 

arsenic up to 2.3% in its above ground biomass without displaying symptoms of toxicity.  

Perhaps more importantly, 93% of the arsenic present in the fern was concentrated in the 

leaves.  This make Pteris vittata ideal for phytoremediation as it can accumulate large 

amounts of toxic arsenic in above-ground fronds that are easy to harvest and process.  

Since this characterization, several researchers have studied Pteris vittata to understand 

the mechanisms for its unique arsenic tolerance. 

 Because Pteris vittata naturally shows great potential as a tool for 

phytoremediation it is a perfect target for genetic transformation.  Genetic modification 

of Pteris vittata could lead to improved efficiency in arsenic uptake for use in 

phytoremediation and creation of arsenic phytosensors to monitor agricultural fields and 

contaminated sites.  Fern transformation would also yield possibilities for new areas of 

research investigating fern physiology and developmental biology through study of 
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gametophytes overexpressing genes or knockout mutants in similar fashion to current 

liverwort research (Ishizaki et al. 2008); research investigating fern genomics and 

proteomics could yield new tools for molecular biology such as promoters and genes 

responsible for arsenic accumulation pathways that can be transferred to other organisms 

to confer value-adding traits for academic research and industrial applications.  To our 

knowledge, however, there have been no reports of transient or stable transformation of 

any fern species to date.  Creating a protocol for fern transformation requires 

investigation into fern tissue culture, possible transformation techniques, and knowledge 

of fern genomics.  

Tissue culture of Pteris vittata  

 Yukio Kato studied Pteris vittata in tissue culture during the 1960's and 1970's.  

Kato primarily studied gametophyte formation under different light regimes and medium 

types.  When spores germinated on basal medium (500 mg L-1 NH4NO3; 200 mg L-1 

KH2PO4; 200 mg L-1 MgSO4 
. 7 H2O; 75 mg L-1 CaCl2; 10 mg L-1 ferric citrate; 3 mg L-1 

MnSO4; 0.5 mg L-1 ZnSO4 
. 7 H2O; 0.5 mg L-1 H3BO3; 0.025 mg L-1 CuSO4; 0.025 mg L-

1 Na2MoO4; 0.025 mg L-1 CoCl2; 0.0005 ml H2SO4; and 6,000 agar) under white light 

they developed into normal two-dimensional gametophytes; when mannitol was added to 

the basal medium only one-dimensional growth, also known as filamentous growth or 

protonemata, was maintained (Kato 1970). In 1967, Kato noted that under blue light 

normal two-dimensional gametophytes formed while spores germinating in red light 

produced only one-dimensional gametophytes.  Two-dimensional gametophytes 



14 

 

developed from protonemata after sucrose was added to the basal medium.  Kato 

concluded that accumulation of sugars or other metabolites from photosynthesis were 

necessary for the proper development of fern gametophytes.  Perhaps more interestingly, 

Kato also found that in the presence of sucrose and 10 mg L-1 (2,4-D) friable callus 

developed from protonemata.  Cell suspension cultures have been initiated and recovered 

to gametophytes from Pteris vittata friable callus (Kato 1964).  Callus induction and 

apospory, formation of gametophytes without production or germination of spores, from 

sporophytic Pteris vittata pinnae has also been achieved (Kwa et al. 1991).  

 More recently, Yang et al. (2008) described a method to induce callus formation 

from gametophytes on medium with half-strength Murashige-Skoog salts (Murashige and 

Skoog 1962), 2.0% w/v sucrose, and 0.7% agarose supplemented with 0.5 mg L-1 6-

benzylaminopurine (BAP) and 0.5 mg L-1 gibberellic acid (GA3).  Pteris vittata callus 

was able to accumulate about three fold more arsenic in suspension than Arabidopsis 

thaliana.  When put into medium with 1.0 mM of arsenic, Pteris vittata callus 

accumulated about 2.5 mg of arsenic kg-1 dry weight of callus.  Yang suggested Pteris 

vittata callus could be used in phytoremediation of arsenic contaminated water.  Later in 

the year, Zheng et al. (2008) described a method to regenerate Pteris vittata callus.  Calli 

were placed onto the same medium as Yang et al. (2008), but supplemented with 1.0 mg 

L-1 GA3, 0.5 mg L-1 BAP, and 500 mg L-1 lactalbumin hydrolysate.  As callus was 

produced from gametophytes, presumably it would contain a haploid number of 
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chromosomes, but it is not known whether the recovered sporophytes have a doubled or 

single haploid number of chromosomes.   

 Most traditional tissue culture systems in dicot and monocots use diploid explants 

such as seeds or leaves to produce callus and somatic embryos for transformation.  There 

are, however, many tissue culture and transformation techniques described to produce 

doubled haploid plants as diverse as Nicotiana tabacum (Perica et al. 1998), Oryza sativa 

(Chair et al. 1996), and single haploids in poplar (Qu et al. 2007).  In poplar, a haploid 

anther callus induction technique was characterized to produce haploid poplar trees 

which would be homozygous for the gene-of-interest in the first (T0) generation (Qu et al. 

2007).  The haploid plants showed no phenotypic differences from diploid poplar, and 

two of ten transgenic lines were doubled haploid meaning that they had undergone 

spontaneous chromosome doubling.  Chair et al. (1996) described a protocol to extract 

and transform protoplasts from microspores of rice, Oryza sativa.  The transgenic events 

that were recovered ranged in ploidy level from 1n to 5n; this was attributed to instability 

of ploidy level in rice protoplasts.  Despite wide changes in ploidy level exhibited by 

recovered plants no abnormal phenotypes were reported.  This suggests that the ploidy 

level of fern callus should not have a significant influence on transformation.       

Possible transformation techniques  

 Three main transformation techniques have been considered: biolistic 

transformation, Agrobacterium-mediated transformation, and transfection of protoplasts.  

There are no published protocols for fern transformation, and so each technique should be 
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considered. Biolistic transformation is a viable option for Pteris vittata transformation 

because a tissue culture system has already been described.  Biolistic transformation is a 

difficult and demanding technique in which DNA is bound to gold and projected into 

tissue under helium pressure.  Biolistic transformation is appropriate for plants that are 

recalcitrant to Agrobacterium infection (Moeller and Wang 2008).  Creating and 

optimizing a biolistic transformation method for a new species requires empirical 

investigation testing various rupture disk pressure, flying distance, osmotic treatment 

regimes, and explant tissue types.  Even if optimized, biolistic methods can yield very 

low transformation efficiency, e.g., 3% in maize (Brettschneider et al. 1997).          

 In 1985, Deblaere et al. described a transformation system using a disarmed 

Agrobacterium as a vector to insert any genes found between transfer DNA (T-DNA) 

borders into plants.  Since 1985, this transformation system has been used to rapidly 

transform monocots and dicots, and even used as a transient assay of gene function 

(Bendahmane et al. 2000).   Agrobacterium-mediated transformation is attractive because 

there are fewer variables to optimize and is inherently more efficient.  In context of 

possible fern transformation, a protocol to transform the liverwort Marchantia 

polymorpha has been described (Ishizaki et al. 2008).  Ishizaki used Agrobacterium 

tumefaciens to infect young thalli with a construct which contains a 35S promoter driving 

β-glucuronidase (GUS) expression.  After transformation, thalli were placed on 

hygromycin selection and resistant progeny were screened through histochemical GUS 

staining.  Southern blots and blue GUS-stained thalli confirmed insertion of T-DNA by 
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Agrobacterium tumefaciens.  If Agrobacterium is capable of infecting plants from 

bryophytes to angiosperms, then it may be possible that Agrobacterium could infect 

pteridophytes.   

 Protoplasts have been isolated from several fern species and tissue types, e.g. 

prothalli (Maeda and Ito 1981) and sporophytic fronds (Redford et al. 1987).  Protoplasts 

are plant cells that have been digested with cellulase and pectinase to remove the cell 

wall.  Without the cell wall, plant cells can be transfected with plasmid DNA using 

polyethylene glycol (PEG) transformation in the same way as animal cells.  This method 

exhibits a straight forward approach to genetic transformation of fern cells, and could be 

used to screen a large amount of promoters for expression strength.  Protoplast extraction 

requires optimization as well, and above all, healthy and fleshy tissue to extract a large 

number of cells.  Ferns typically have waxy sporophytic leaves that do not release many 

cells, and gametophytes are so small it is difficult to maintain large enough cultures for 

extractions.  Investigators have been successful in extracting a useful number of 

protoplasts for transfection from monocot grass species that have recalcitrant leaves such 

as switchgrass (Mazarei et al. 2008).  Just as the other two possible transformation 

techniques, protoplast extraction and PEG transfection exhibits pros and cons that must 

be weighed. 

Fern genomics, transcriptomics, and proteomics 

 The most common promoters used in molecular biology for overexpression have 

been shown to work in dicots or monocots such as cauliflower mosaic virus (35S), maize 
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or rice ubiquitin, or rice actin.  There are no reports of expression using these, or any, 

promoters in ferns to date, but several dicot and monocot promoters have been shown to 

work in bryophytes (Holtorf 2002).  Transformation of bryophytes with monocot and 

dicot promoters suggests that promoters in general will work in species that are not 

closely related phylogenetically.  One spore-specific storage protein promoter, dubbed 

MVP, has been characterized from ostrich fern, Matteuccia struthiopteris (Schallau 

2008).  When the promoter was tested in transgenic Arabidopsis thaliana and Nicotiana 

tabacum driving GUS it showed seed-specific expression but was not expressed in 

leaves.  The promoter did contain distinct conserved sequences known as an RY 

consensus sequence that is found throughout related fern, cycad, gymnosperm, and 

angiosperm seed- or spore-specific promoters.  This report of phylogenetically “ancient” 

promoters performing the same function in angiosperms makes promoter discovery in 

ferns interesting.  Further work in fern genomics could yield new tissue-specific or 

promoters for overexpression devoid of intellectual property issues that could function in 

a broad spectrum of plant species from pteridophytes to angiosperms. 

 The transcriptome from Pteris vittata fronds has been studied to elucidate 

potential cDNAs involved in arsenic-tolerance.  The cDNAs were screened in a library 

plated on medium containing both antibiotic selection and 4.0 mM sodium arsenate 

(Rathinasabapathi et al. 2006).  A total of five bacterial colonies grew on arsenate from 

the Pteris vittata library, and no colonies containing the blank vector were capable of 

growing.  A 1,140 bp sequence from these colonies coded for a functional cytosolic 
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triosephosphate isomerase cDNA.  The cTPI from Pteris vittata was able to increase 

arsenate tolerance in an E. coli strain that lacks arsenate reductase, but did not increase 

tolerance in an E. coli strain that lacked an ars operon.  The bacteria expressing the fern 

cTPI also accumulated more arsenic and converted more into arsenite than controls, 

which suggests that the protein has a role in reducing arsenic.   

 In similar experiments, a cDNA library created from Pteris vittata gametophytes 

that were exposed to 1.0 mM arsenic was expressed in arsenic-sensitive yeast that lacked 

an arsenic reductase.  Amongst the transformants, one colony of yeast had its arsenic-

tolerance complemented.  The recombinant sequence in that colony, called PvARC2, 

coded for a 134 amino acid protein that shared 47% homology with ScARC2, arsenate 

reductase from Saccharomyces cerevisiae, and 60% homology with CDC25, a 

phosphatase that shows arsenate reductase activity from Arabidopsis thaliana (Ellis et al. 

2006).  The arsenate reducing rate of PvARC2 was found to be comparable to CDC25, 

but not as high as ScARC2.  These in vitro results suggest that PvARC2 is an arsenate 

reductase, but its role in vivo has not been determined and so further work must be 

carried out to determine whether this protein can be useful for phytoremediation 

purposes.  Further genomic studies such as these could provide tools for researchers to 

increase the phytoremediation capability of other plant species through genetic 

transformation.     
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Objectives 

1.  Increase translational efficiency of AgNt84 to detectable amounts in transgenic 

Nicotiana tabacum cv. Xanthi for characterization of potential metal-binding trait 

conferred by expression of the metallohistin protein in planta.  

2.  Characterize the Pteris vittata tissue culture system to determine its potential use in 

genetic transformation techniques.  

3.  Investigate potential genetic transformation techniques of the fern Pteris vittata. 
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Chapter Two: Assessing the Phytoremediation Potential 

of the Metallohistin cDNA AgNt84 

Introduction 

 Mining practices, combustion of fossil fuels, industrialization, and metal 

production have mobilized toxic compounds containing “heavy metals” such as arsenic, 

cadmium, cobalt, copper, and nickel into the environment in concentrations that 

significantly exceed natural background sources (Clemens 2006).  Phytoremediation, the 

removal of specific compounds from soils using plants capable of contamination uptake 

and storage in aboveground growth, has recently become an attractive alternative to 

traditional soil contaminant removal.    

 In 1997, a new class of metal-binding proteins called metallohistins was 

discovered (Pawlowski et al. 1997).  The metallohistin protein exhibits an amazing ability 

to bind a wide range of divalent metal ions such as Zn2+, Cd2+, Ni2+, Co2+, and Cu2+ 

(Gupta et al. 2002).  The metallohistin cDNA AgNt84 was originally isolated from 

mRNA in Alnus glutinosa root nodules (Pawlowski et al. 1997).  AgNt84 and AgNt164, a 

closely related metallohistin homolog, mRNA is expressed in root nodules only during 

early stages of infection by Frankia spp.  AgNt84 contains several regions of interest.  

The coding region contains a signal peptide and the metal-binding protein.  The signal 

peptide has an 82% prediction for transport out of the cell using WoLF PSORT protein 
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subcellular localization prediction for plants (http.//wolfpsort.org).  The metal-binding 

protein coding region contains 219 base pairs that code for 74 amino acids.  Two 

untranslated regions (UTRs) flank the coding region both upstream (5’) and downstream 

(3’).  A second cDNA called AgNt164 showed high DNA sequence similarity to AgNt84 

and is considered part of the metallohistin gene family (Pawlowski 1997).  AgNt84 and 

AgNt164 are slightly different.  AgNt164 codes for a 9.19 kDa protein whereas AgNt84 

codes for a 10.57 kDa protein.  Both cDNAs were present only in nodule RNA northern 

blots and were not found in shoot tips, male flowers, female flowers, and developing 

fruits.  Though the native function of the protein is currently unknown its possible use to 

increase the phytoremediation capability of plants is intriguing.        

 Transgenic AgNt84 Nicotiana tabacum, Arabidopsis thaliana, and Brassica 

juncea were generated and partially characterized (Mentewab et al. 2005).  Northern blots 

of the Arabidopsis thaliana lines showed presence of AgNt84 mRNA, but presence of the 

AgNt84 protein could not be confirmed with a specialized western blot technique 

designed for detection of the metallohistin protein (Maillet et al. 2001).  This suggests 

that failure to transcribe the metallohistin cDNA could explain the lack of increased 

metal-binding in transgenics versus wild type.   Factors such as mRNA that is degraded 

quickly or post-transcriptional regulation cause a failure in transcription.   

Previous work has excluded the first 38 base pairs from the 5’ UTR and all of the 

3’ UTR in constructs.  Pawlowski et al. (1997) predicted the 3’ UTR of AgNt84 and 

AgNt164 to form extensive stem-loop structures and have an influence on the regulation 

http://www.psort.org/
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of the mRNA.  In addition, mRNA 5’ and 3’ UTRs play a regulatory role that affect 

localization, translation efficiency, and mRNA stability (Chabregas et al. 2002; Gilmartin 

2005; Kertész et al. 2006; Schwartz et al. 2006; Patel et al. 2006).   

 The 3’ UTR could have an effect on stability or targeting of the metallohistin 

mRNA.  Schwartz et al. (2006) reported a decrease in relative mRNA abundance as the 

length of the 3’ UTR increased in Nicotiana benthamiana.  These authors report 

approximately 45% mRNA abundance from constructs with a 3’ UTR of 300 bp relative 

to their standard gene which had a 40 bp 3’ UTR.  Kertész et al. (2006) found that plants 

trigger nonsense-mediated decay of mRNAs when the 3’ UTR of the mRNA is unusually 

long.  In a study of RUBISCO expression in C4 plants, Patel et al. (2006) found both the 

5’ and the 3’ UTRs were needed to have specific RUBISCO-GFP expression in basal 

cells.  This suggests that interactions between these two regions are needed to target a 

protein to the correct place. 

 The importance of introns in post-transcriptional regulation has been the focus of 

recent research.  Unlike most receptors, a human neuropeptide receptor Y1 (hY1) has a 

97 bp intron in its coding sequence.  Expression of cDNAs without the native intron IV 

shows low amounts of transcript, but when constructs containing intron IV either before 

the coding region or in its native position in the coding region significantly increased 

production of functional hY1 protein (Marklund et al. 2002).   

 This work seeks to assess potential methods to increase expression of AgNt84 to 

measurable amounts in transgenic Nicotiana tabacum cv. Xanthi.  Once measurable 
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amounts of AgNt84 protein are created in transgenic plants, researchers can gain insight 

into the role of the metallohistin gene in planta and the potential to confer metal-binding 

traits by expression of the metallohistin protein. 

  

Methods and Materials  

cDNA constructs 

 Portions of the cDNA AgNt84 were PCR amplified with primer sets (Table 1) 

using pAgNt84 (Pawlowski et al. 1997) as a template under the following PCR 

conditions: 94 ˚C for 1 minute; a denaturation step at 94 ˚C for 30 seconds, an annealing 

step at 46 ˚C for 30 seconds, and an elongation step at 72 ˚C for 2 minutes repeated 35 

times; a final elongation at 72 ˚C for 5 minutes.   

 The amplified fragments were separated by size using gel electrophoresis on a 

1.0% agarose gel and then extracted from the gel using the QIAquick gel extraction kit 

(Qiagen).  Extracted fragments were TOPO cloned into the vector pCR8/GW/TOPO 

(Invitrogen).  Heat shock competent E. coli were transformed by adding 3 μl of the 

TOPO cloning reaction to 100 μl of frozen E. coli stocks.  The plasmid-bacteria mixture 

was left to sit on ice for 10 minutes before placing in a 42 ˚C water bath for 30 seconds.  

The bacteria were immediately moved to 1 μl of SOB medium (2.0% w/v tryptone, 0.5% 

yeast extract, 0.058% NaCl, 0.0186% KCl, pH to 7.00) and left in a 37 ˚C incubated 

shaker rotating at 150 rpm.  After an hour the mixture of bacteria were plated onto semi-  
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Table 1. Primers used to amplify fragments of the metallohistin cDNA AgNt84. 

 

solid LB medium (1.0% w/v tryptone, 0.5% yeast extract, 1.0% NaCl, 1.5% Bactoagar, 

pH to 7.00) with spectinomycin selection.  Plates were placed in a 37 ˚C oven overnight. 

 Single colonies that formed overnight were restreaked and left to grow overnight 

once more.  Surviving colonies were inoculated in test tubes containing 5 ml of liquid LB 

and spectinomycin selection and left to grow overnight in a 37 ˚C shaking incubator.  

Each test tube was spun down and plasmid was extracted using alkaline lysis. 

 After extracting plasmid DNA, each vector was digested with either PvuI or PstI 

to confirm their orientation in the pCR8/GW plasmid.  Constructs that had the correct 

orientation were sequence confirmed to ensure that no mutations occurred during cloning.  

The pCR8 vectors containing the sequence-confirmed AgNt84 cDNA fragments were 

inserted into pMDC32 (Curtis and Grossnilaus 2003) by a Gateway LR reaction 

(Invitrogen).  The LR reaction mixture was transformed into E. coli and plated onto LB 

medium plates with kanamycin selection.  Colonies were restreaked and grown in liquid 

medium as before.  Extracted plasmids were once more digested with HindIII and PstI to 

confirm presence of the correct insert.     

Primer cDNA BP Sequence 

AgNt84-1forward 1-23 5’ – AATTAATCATCTTAGAGTTTGTT – 3’ 

AgNt84-74 forward 74-92 5’ – ATGGGTTACTCCAAGACTT – 3’ 

AgNt84-373 reverse 354-373 5’ – CTAATTTTGGTTGGTTTCAG – 3’ 

AgNt84-655 reverse 631-655 5’ – AGAATTCATAAACTATATATTCATC – 3’ 
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Agrobacterium-mediated transformation of Nicotiana tabacum 

 After confirmation, extracted pMDC32-AgNt84 plasmids were used to heat-shock 

transform Agrobacterium tumefaciens EHA105.  Agrobacterium tumefaciens EHA105 

cells were grown in liquid YEP medium (1.0% w/v peptone, 1.0% yeast extract, 0.5% 

NaCl) until an optical density (OD) of 0.5.  The bacteria cultures were then spun down at 

3000 rpm on a benchtop centrifuge for 5 minutes at 4 ̊C.  The cell pellet was resuspended 

in 1 ml of cold 20 mM CaCl2 and 100 μl aliquoted into 1.5 ml tubes.  Aliquots were then 

flash frozen in liquid nitrogen and stored at -80 ̊C until needed. 

 Heat-shock competent cells were then removed from the -80 ̊C freezer and 1 μg of 

plasmid DNA was added to the frozen pellets.  Then the tubes of bacteria and plasmid 

DNA were moved to a 37 ̊C waterbath for 5 minutes.  Tubes were quickly removed and 1 

ml YEP medium was added to each tube.  Tubes were left to shake horizontally in 28 ̊C 

incubated shakers at 150 rpm for four hours before 250 μl of the bacterial suspension was 

plated on semi-solid YEP plates with 50 mg L-1 kanamycin.  Plates were moved to a 28 ̊C 

oven for 48 hours. 

 Single colonies surviving selection were restreaked and then grown in 5 ml of 

liquid YEP medium with selection for plasmid extractions.  Agrobacterium colonies from 

single colonies were scraped from semi-solid plates and boiled in distilled water for 10 

minutes.  The resulting suspension was spun on a benchtop centrifuge at 14000 rpm for 

10 minutes.  The supernatant from each tube was used for colony PCR confirmation of 

inserted plasmid for each Agrobacterium cell line that survived selection.  Positive cells 
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were selected and grown in 5 ml liquid YEP medium with selection for transformation. 

 Nicotiana tabacum cv. Xanthi seeds were surface sterilized in 20% ethanol and 

10% dilution of sodium hypochlorite (5.25% sodium hypochlorite, Fischer Scientific) and 

plated on semi-solid MSO (MS basal medium (Murashige and Skoog 1962) B5 vitamins 

(Gamborg 1968) with 3.0% sucrose, 0.2% Gelrite Gellan Gum, pH to 5.8) six weeks 

prior to transformation.  On the day of the genetic transformation, the appropriate 

Agrobacterium tumefaciens cultures were spun down for 5 minutes at 5000 rpm and 

resuspended in 2.5 ml liquid DBI medium.  Nicotiana tabacum leaf explants were cut and 

placed into the resuspended bacteria in a sterile Petri dish for 30 minutes.  Afterwards, 

the explants were moved to semi-solid MSO for 2 days to co-cultivate.  Then the explants 

were moved to semi-solid DBI with 50 μM hygromycin and 400 μM timentin.  Explants 

were subcultured every two weeks until shoots formed.   

 Shoots were moved to semi-solid MSO with appropriate selection for rooting.  

Once rooted, plants were moved to soil to harden off.  After one month in a controlled 

environment with 28 ̊C with 16 hrs of light and 8 hours of dark plants were moved to the 

greenhouse.  T1 seed were collected after set, labeled, and sterilized as before and plated 

on MSO with 50 μM hygromycin for selection.   

Full length gene discovery 

 To elucidate the full length AgNt84 gene, Alnus glutinosa genomic DNA was 

amplified with primers used in construction of the cDNA plasmids (Table 1) in 50 μl 

volume reactions under the following gradient PCR conditions: 94 ˚C for 1 minute; a 
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denaturation step at 94 ˚C for 30 seconds, an annealing step at 50 ± 10 ˚C for 2 minutes, 

and an elongation step at 72 ˚C for 3 minutes repeated 35 times; a final elongation at 72 

˚C for 5 minutes.  Gel electrophoresis of the PCR products on a 1.0% agarose gel for 1 

hour at 80 volts gave sufficient separation.  A picture of the gel was taken under UV light 

before blotting.   

 Nested PCR reactions were performed on extracted bands of interest using the 

same primer sets as above, and under the same PCR conditions.  ClustalX2.09 (Larkin et 

al. 2007) was used to align sequenced bands of interest to AgNt84 and AgNt164.  Splice 

site prediction was performed using the NetPlantGene server (Center for Biological 

Sequence Analysis, http://www.cbs.dtu.dk/services/NetPGene/).  

 

Results 

Concatemer sequence 

 A concatemer sequence was designed based on the metallohistin cDNA AgNt84.  

The concatemer sequence contained the signal peptide followed by three repeats of the 

metal-binding protein without a stop codon (Figure 1).  The final repeat of the 

metallohistin coding region contained the stop codon.  The concatemer sequence was 

constructed by Blue Heron Biotechnology (www.blueheronbio.com).  However, during 

cloning the concatemer sequence exhibited toxicity in Escherichia coli EC100.  To avoid 

toxicity, the concatemer had to be created in three pieces and ligated together.  When the 

http://www.blueheronbio.com/
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final concatemer sequence was created and put into pUC, it was transformed into E. coli 

EC100.  Only colonies containing mutations in the concatemer sequence were able to 

grow.  Use of the stable E. coli cell line Stbl4, the low copy vector pBR322, and growing 

the colonies at room temperature did not allow colonies to grow without mutations.  

Because the concatemer construct could not be replicated, only a polymerase chain 

reaction (PCR) product could be synthesized and created.      

cDNA constructs and transformation of Nicotiana tabacum 

 Three constructs were created to assess whether the untranslated regions of the 

cDNA could have a role in AgNt84 mRNA stability.  Three cDNA fragments were PCR 

amplified and inserted into pMDC32: 1) the entire cDNA (1-655 base pairs); 2) the 5’ 

UTR and coding region (1-373 base pairs); 3) the coding region only (74-373 base pairs).  

Agrobacterium tumefaciens EHA105 was used to transform Nicotiana tabacum cv. 

Xanthi.  Xanthi explants transformed with pMDC32-AgNt84-1-655 and pMDC32-

AgNt84-1-373 recovered shoots and roots while on hygromycin selection (Table 2).  

Interestingly, explants transformed with pMDC32-AgNt8-74-373 produced shoots on  

Signal Peptide 1st Mer 4th Mer3rd Mer2nd MerCCGCCG

5’ SacII

Start Codon
Stop Codon

GGGCCC

3’ ApaI
Signal Peptide 1st Mer 4th Mer3rd Mer2nd MerCCGCCG

5’ SacII

Start Codon
Stop Codon

GGGCCC

3’ ApaI

Figure 1. The designed AgNt84 concatemer. The concatemer consists of the native signal peptide and four 
repeats of the coding region for the metal-binding protein ending in a stop codon. 
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Table 2. Construct name, fragment of AgNt84 cDNA present in construct, and number of cell lines 
recovered from genetic transformation of Nicotiana tabacum. 

  

Construct Portion of cDNA Transgenic Plant 

Lines Recovered  

pMDC32-AgNt84-1-655 5’ UTR, coding region, 3’ UTR 17 

pMDC32-AgNt84-1-373 5’ UTR and coding region 16 

pMDC32-AgNt84-74-373 Coding region only 0 
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DBI medium with hygromycin selection, but did not root when transferred to MSO 

medium with hygromycin.  After two weeks, the shoots grew necrotic and died. 

 

AgNt84 gene discovery 

 Alnus glutinosa genomic DNA was used as a template to amplify potential 

candidates for the full length AgNt84 gene.  Multiple gene products were visible for each 

primer set and temperature gradient (Figure 2).  In order to screen the possible bands, the 

gel was Southern blotted onto a nitrocellulose membrane, and probed with an AgNt84 

fragment tagged with a fluorescent marker.  Most of the bands present in the Southern 

blot match up to the brighter bands seen in the original agarose gel, but the 1.4 kb band 

from primer set 1-655 did not.   

 Seven bands were selected for gel extraction and Nested PCR analysis: 1) 3.0 kb 

band from 1-655 primer set; 2) 1.4 kb band from 1-655 primer set; 3) 3.0 kb band from 1-

373 primer set; 4) 2.6 kb band from 1-373 primer set; 5) 1.2 kb band from 1-373 primer 

set; 6) 1.2 kb band(s) from 74-373 primer set; 7) 0.75 kb band from 74-373 primer set 

(Figure 3).  Bands 1 and 2 extracted from the 1-655 primer set only amplified using the 

74-373 primer set; two product bands resulted at 750 bp and 300 bp.  Bands 3, 4, and 5 

extracted from the 1-373 primer set amplified their proper lengths when amplified with 

the 1-373 and the 74-373 primer set.  Multiple minor product bands were produced in 

bands 3, 4, and 5 when amplified with the 1-373 primer set.  Band 6 and 7 extracted from 

the 74-373 primer set amplified their proper length with the 74-373 primer, and amplified  
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Figure 2.  Comparison of gradient PCR of Alnus glutinosa genomic DNA to a 
Southern blot membrane probed with AgNt84 fragment. Left) Gradient PCR 
agarose gel using selected primers specific to the AgNt84 cDNA with Alnus 
glutinosa genomic DNA template.  Right) Gel from left blotted onto a 
nitrocellulose membrane and probed using 33-469 bp AgNt84 fragment. Arrows 
indicate bands that were chosen for nested PCR reactions.  Hi-Lo DNA ladder 
(Bionexus, Inc) was used to mark fragment size. Note that not all of the bands from 
the Southern blot match to bands visible in the PCR gel. 
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Figure 3. Nested PCR with 1-655, 1-373, and 74-373 primers sets using extracted bands of 
interest as template. Extracted bands were as follows: 1) 3.0 kb band from 1-655 primer 
set; 2) 1.4 kb band from 1-655 primer set; 3) 3.0 kb band from 1-373 primer set; 4) 2.6 kb 
band from 1-373 primer set; 5) 1.2 kb band from 1-373 primer set; 6) 1.2 kb band(s) from 
primer set 74-373; 7) 0.75 kb band from 74-373primer set.  Bands 1 and 2 extracted from 
the 1-655 primer set only amplified using the 74-373 primer set.  Bands 3, 4, and 5 
extracted from the 1-373 primer set amplified their proper lengths when amplified with the 
1-373 and the 74-373 primer set.  Band 6 and 7 extracted from the 74-373 primer set also 
amplified their proper length with the 74-373 primer, and amplified multiple other 
fragments.  Hi-Lo DNA ladder (Bionexus, Inc) was used to mark fragment size. 
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multiple other fragments.  Band 6 yielded a 1.2 kb, a 750 bp, and a 300 bp band when 

amplified with the 74-373 primer set.  Band 7 only yielded a 750 bp and a 300 bp band 

when amplified with the 74-373 primer set.  All seven extracted bands yielded a 300 bp 

band and most yielded a 750 bp band when amplified with the 74-373 primer set.    

 Closer inspection after sequencing revealed the presence of two bands, not one, at 

1.2 kb length from the 74-373 primer set.  This doublet mirrors the bands seen at 3.0 kb 

in the 1-373 primer set.  All seven bands of interest were sequenced.  Only the sequence 

derived from the 1.2 kb band from primer set 1-373 using the primer AgNt84-1forward 

matched to AgNt84 and AgNt164 with a high degree of homology (Figure 4).  The 

sequence from 2-137 bp of the genomic DNA (gDNA) band aligned to the 5’ end of the 

cDNAs from 42-179 bp of AgNt84 and 42-150 bp of AgNt164.  At some bases the gDNA 

matches to only AgNt84 or AgNt164 highlighted in Figure 4 in either blue or green, 

respectively.  The homology ends at a GT base sequence in the gDNA and from 138-669 

bp does not match to either cDNA again.  No introns could be predicted at this site.  

Clean sequencing results could not be obtained using the AgNt84-373 reverse primer 

from this sequence. 

 

Discussion  

 Toxicity that the 4x AgNt84 concatemer sequence exhibited in E. coli prevented 

cloning and transformation of Nicotiana tabacum cv. Xanthi from the lack of a completed 

vector DNA.  The AgNt84 cDNA showed toxicity in E. coli when large amounts of 
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Figure 4. An alignment of the metallohistin cDNAs AgNt84 and AgNt164 to a sequence derived 
from the 1.2 kb band amplified using primer set AgNt841F and AgNt84373R. Stars indicate an 
exact match between all three sequences.  Areas highlighted in yellow are the coding region of 
the cDNAs.  Areas highlighted in blue are bases of the gDNA sequence that match to AgNt84 
but not AgNt164.  Areas highlighted in green are bases of the gDNA sequence that match to 
AgNt164 but not AgNt84.  Black arrows indicate forward and reverse primers designed specific 
to AgNt84 to amplify the entire putative intron.  Red arrows indicate forward and reverse 
primers designed specific AgNt84 to amplify the remaining portion of gDNA exons and 
potential introns. 
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AgNt84cDNA    1 AATTAATCATCTTAGAGTTTGTTTCCCTAGCTAGTACTACATTGTCTCCAATCCTCTTCA 

AgNt164cDNA   1 -----------------------------CCTACTACAATATTGTCTCCAATCCTCTTCA 

gDNA          1 ----------------------------------------WTTGTTCTCCATCCTCTTC- 

                                                         ****   * *********  

 

AgNt84cDNA   61 TTGTTAACGAAAAATGGGTTACTCCAAGACTTTTCTTCTCCTTGGCCTTGCCTTTGCTGT 

AgNt164cDNA  32 TTGTTAACGAAAAATGGGTTACTTCAACACTTTCCTTCTCCTTGGCCTAGTCTTTGCCGT 

gDNA         20 TTGTTGACGAAA-ATGGGTTACTTCAAGACTTTTCTTCTCCTTGGCTAAGTCTTTGCTGT 

                ***** ****** ********** *** ***** ************   * ****** ** 

 

 

AgNt84cDNA  121 TGTGCTCCTCATCTCCTCCGATGTCTCAGCTTCTGAGCTTGCTGTTGCCGCTCAAACCA- 

AgNt164cDNA  92 TGTGCTCCTCATCTCTTCCGATGTCTCAGCTGGTGAGCTTGTTGGTGCCACTCAAACCA- 

gDNA         79 TGTGCTCCTCATCTCTTCCGATGTCTCAGCTGGTGAGCTTGTTGTTGCCGCTCAAACCAG 

                *************** ***************  ******** ** **** *********  

AgNt84cDNA      ------------------------------------------------------------ 

AgNt164cDNA     ------------------------------------------------------------ 

gDNA        139 TGAGTTTCTTACTTTTTCTTGAATTAATTAAATATGCACCTTTACTATCTTCTGCTTTTT 

                                                                             

AgNt84cDNA      ------------------------------------------------------------ 

AgNt164cDNA     ------------------------------------------------------------ 

gDNA        199 GGTAGTGATCAAGAGCCCTTGTGTTCTAAATAATGTGTAAATTCCTCATATAAAGTGATA 

                                                                             

AgNt84cDNA      ------------------------------------------------------------ 

AgNt164cDNA     ------------------------------------------------------------ 

gDNA        259 ATATGCATCATTTGGACAAGAAAAAAACAGAACAGAGTACTTCGAAGTACATAACGACRT 

                                                                             

AgNt84cDNA      ------------------------------------------------------------ 

AgNt164cDNA     ------------------------------------------------------------ 

gDNA        319 GCCTTGCATCTCTATACATCCGTTTTACAAAATAATGGAACATCATTTTCCTATGTTTCA 

                                                                             

AgNt84cDNA      ------------------------------------------------------------ 

AgNt164cDNA     ------------------------------------------------------------ 

gDNA        379 TAGAATTTATTTTAAGCACTTTATGTTTTTTGAAATGCGCGCACAACTTAATTTCCAGTA                                                                           

 

AgNt84cDNA      ------------------------------------------------------------ 

AgNt164cDNA     ------------------------------------------------------------ 

gDNA        439 TAATTATAGTTTACCTTAACCATGTGTCATATATTTAACTTCTTCAACTGATCATTTATG                                                                            

 

AgNt84cDNA      ------------------------------------------------------------ 

AgNt164cDNA     ------------------------------------------------------------ 

gDNA        499 TCCAAACTGGTGCTGTATATTATTGTATATATGATCAATACAATTATATTTAATTTTGCA                                                                            

 

AgNt84cDNA      ------------------------------------------------------------ 

AgNt164cDNA     ------------------------------------------------------------ 

gDNA        459 ATTCCTTCTTTGTATCTATATATTGATAAGTATGTTAAAATATTAATTTAAATAATCCGA                                                                            

 

AgNt84cDNA      ------------------------------------------------------------ 

AgNt164cDNA     ------------------------------------------------------------ 

gDNA        519 ATTTCTTATTTTCTATCTACTTAAATTTTTGAGAAAATTAATTATTTGACATGGTATAAA                                                                            

 

AgNt84cDNA      ------------------------------------------------------------ 

AgNt164cDNA     ------------------------------------------------------------ 

gDNA        579 CTCAAATGTATTGAAAAGAAAGTTAAGGACAAGTAAAAAAGCTTTCAAGACAAGATTCGA 

                                                                             

 

AgNt84cDNA      ------------------------------------------------------------ 

AgNt164cDNA     ------------------------------------------------------------ 

gDNA        639 ACAGGGGATATATATCTTAGCTCTTAATTAAAGACATTAAAATGCAAACTTAACATTACC 

Figure 4. Continued.  

AgNt84cDNA  180 AGGAGAATATGCAAACTGACGGTGTGGAGGAGGATAAGTATCATGGCCATCGTCACGTGC 

AgNt164cDNA 151 AGGAGAATATGCAAACTGATGGTGCGGAGGAGGTCAAGTATCATGGCCATCGTCACGTGC 

gDNA            ------------------------------------------------------------ 

                                                                             

 

AgNt84cDNA  240 ATGGACATGGGCATGGACATGTACATGGGAATGGGAATGAACATGGACATGGTCATCACC 

AgNt164cDNA 211 ATGGACATGGGCATGGGAATGGACATGG---------------------------ACACC 

gDNA            ------------------------------------------------------------ 

                                                                             

AgNt84cDNA  300 ACGGCCGTGGTCACCCAGGACACGGTGCTGCTGCAGACGAGACAGAAACCGA----AACT  

AgNt164cDNA 244 ACGGCCATGGTCACTCGGGACATGTTGTTGCTGCTGATGAGACAGAAACTGATCGAAATT 

gDNA            ------------------------------------------------------------ 

                                                                             

AgNt84cDNA  356 GAAACCAACCAAAATTAGACCAATCTTTTGATTCGTCCTATATAT--------------- 

AgNt164cDNA 303 AAAACCAATCAAAATTAGACGAATCCTTCGATTCGTCCTATATATATATATATATATATA 

gDNA            ------------------------------------------------------------ 

                          

AgNt84cDNA  401 -----------------------------GCTATCAGTTGTACGTACGTCTAAGTGTGTC  

AgNt164cDNA 363 TATATATATATACACATATTGACATATATGCTATCAGCTATACA----TCTGAGTGTGTC 

gDNA            ------------------------------------------------------------ 

 

AgNt84cDNA  432 TAAGTCGTAATATGTGGCTTAATTATCTAATTAAGCTTGTATGCCAATAAACTTTATGTT  

AgNt164cDNA 419 TAAGTCGTCTTATGTGGCTTAATTATCTAATTAAGCTTGTATGCCAATAAACTTTATGTT 

gDNA            ------------------------------------------------------------ 

 

AgNt84cDNA  492 TCTACTTTTGTCATGTGTAATTTTTGCTTTTCTATGTATTACAATGTACGCTGTAGCATA 

AgNt164cDNA 479 TCTACTTTTGTCATGTGTAATTTCTGCTTTTTTATGTATTAAAATGTACGCTGTAGCATA 

gDNA            ------------------------------------------------------------ 

 

AgNt84cDNA  552 TCAAAATTAAACGAATCCTTTGTCCTATATATATATATAT-------------------- 

AgNt164cDNA 533 TCAAAATTAAACGAATCCTTTGTCCTATATATATATATATATATATATATATATATATAT 

gDNA            ------------------------------------------------------------ 

 

AgNt84cDNA  582 ------------------------GCAACTTTTGAAAGGCTGTACGTGAATAAGATTATA 

AgNt164cDNA 593 ATATATATATATATATATATATATGCAACTTTTGAAAGGTTGTACGTGAATAAGATTATA 

gDNA            ------------------------------------------------------------ 

 

AgNt84cDNA  618 TTGGATGAATATATAGTTTATGAATTCT 

AgNt164cDNA 653 TTGGCTGAATAAATAGTTTATGAATTCT 

gDNA            ---------------------------- 
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protein were induced for purification (Gupta et al. 2002).  E. coli were able to grow 

normally, however, when constructs that lacked the signal peptide of the AgNt84 cDNA 

were used.  Though it may be possible the signal peptide caused toxicity in colonies with 

the designed concatemer, it is unlikely because protein production should be minimal in 

the low expression vector pBR322 and other constructs containing the signal peptide 

have been cloned and replicated in E. coli not only in this work, but in other work as well 

(Mentewab et al. 2005). 

 Conventional wisdom holds that E. coli easily mutates sections of short repeats in 

plasmid DNA.  AgNt84 codes for a 74 amino acid protein and was repeated four times in 

the concatemer.  Another concatemer sequence designed using thymosin alpha 1 

contained six sequence repeats each only 28 amino acids long (Zhou et al. 2008).  This 

concatemer was successfully expressed in E. coli without issue.  In addition, a construct 

with 19 repeats only 15 bp long was efficiently expressed in E. coli to produce 

elastomeric polypeptides (McPherson et al. 1992).  Presence of a few short repeats alone 

does not seem enough to cause toxicity in all but the colonies with mutations in the 

concatemer protein sequence.  It could be possible the toxicity observed could be related 

to the metallohistin protein function.  It is unknown what role the metallohistin protein 

plays in Alnus glutinosa nodules, but it could be involved in binding metal ions during 

early nodule formation as similar proteins containing signal peptides and cysteine-rich 

sequences are found in soybean during association in bacterial symbiosis (Sandal et al. 

1987; Pawlowski et al. 1997).  Toxicity in E. coli could be linked to the multimeric 
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metallohistin proteins binding and making necessary metallic compounds inside cells 

unavailable for metabolism at background expression levels.   

 Currently, the T1 generation of transgenic plants for pMDC32-AgNt84-1-655 and 

pMDC32-AgNt84-1-373 are undergoing zygosity screening.  Once AgNt84 homozygotic 

lines are found, they can be grown and tested for presence of mRNA and metallohistin 

protein.  Full characterization will be completed with studies of cadmium metal-binding 

compared to wild-type Nicotiana tabacum cv. Xanthi.  

 Strangely, no lines of pMDC32-AgNt84-74-373 could be recovered during tissue 

culture.  It is unlikely that tissue culture conditions were responsible for the phenotype 

because all transformations and subcultures were performed at the same time.  Further 

investigation into the strange phenotype exhibited in putative pMDC32-AgNt84-1-655 

transformants will be necessary.  Further transformations will be performed with this 

construct.  If recovered shoots will not root, protein extractions and western blots will be 

performed to detect presence or absence of the AgNt84 protein.     

 Little is known about the role of introns in translation regulation, but recently 

research has begun to focus the importance of introns for translation efficiency.  

Expression studies of histone H1 in Xenopus oocytes found that there was as much as a 

100-fold difference between two constructs based solely due to construct configuration 

(Matsumoto et al. 1998).  Further investigation revealed this difference in translation was 

due not only to the presence of an intron in the mRNA, but also to the positioning of that 

intron.  Constructs with an intron at the 5’ end of the transcript had increased translation 
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efficiency whereas constructs with an intron at the 3’ end of the transcript had 

translational efficiencies lower than the constructs without a construct at all.  These 

authors also reported that there was no change in translational efficiency between 

different types of introns inserted into the construct.  Related mRNA processing work 

carried out through microinjection of pre-mRNAs into Xenopus oocyte nuclei revealed 

that pre-mRNAs containing introns had greater percentages of export to the cytoplasm 

than the same pre-mRNAs without an intron (Luo and Reed 1999).  These authors 

contributed this phenomenon to an exportation complex they detected on gels associating 

with only pre-mRNAs that contained introns.  This exportation complex, called an exon-

exon junction complex, was later found to contain at least five proteins (Le Hir et al. 

2000) and to be directly responsible for the increased export efficiency of mRNAs with 

introns (Le Hir et al. 2001).   Expressing the full length AgNt84 gene in planta may 

address several issues in our current system.  First, presence of introns could reduce E. 

coli toxicity seen during cloning of constructs putatively due to background expression of 

the metallohistin gene with its signal peptide.  Secondly, low translational efficiency 

would explain the current conundrum in detecting ample amount of metallohistin mRNA 

in northern blots, but the inability to detect the presence of protein in western blots.   

 Current investigation of the full length AgNt84 gene has been hampered by the 

large number of bands that appeared using primers specific to the cDNA.  The multiple 

bands seen in the Nested PCR and the Southern blot probe suggest either on or a 

combination of three possibilities: 1) the metallohistin gene is a natural concatemer that 



40 

 

has several conserved repeats of varying length; 2) AgNt84 represents only one cDNA in 

a larger family of genes that contain conserved regions; 3) the primers specific to AgNt84 

are also amplifying products from the homolog AgNt164 or nonspecific genomic DNA.  

Because of the sequence similarity between AgNt84 and AgNt164, the PCR primers 

specific to AgNt84 could have amplified products from both genes giving the pattern of 

multiple bands.  A sequence that matched the 5’ UTR and coding region of AgNt84 and 

AgNt164 has been isolated.  It could not be determined which cDNA the gDNA sequence 

matched to due to the strong sequence similarity of AgNt84 and AgNt164 at the 5’ end 

and the mixed bases of the gDNA.  Isolation and sequencing of the rest of the AgNt84 or 

AgNt164 gene will reveal which cDNA is being amplified from genomic DNA as 

AgNt164 exhibits a 27 bp and 10 bp deletion that is not seen in AgNt84.  Sequence 

similarity ends at a GT base pair region which could be the beginning of an intron 

sequence that cannot be predicted because it is longer than the portion of gDNA 

amplified and sequenced here.  Two primer sets specific to AgNt84 will amplify the full 

intron and the remaining coding region and any further introns that may be present.  Only 

sequence greater than 1186 bp as the gDNA sequence matches to 179 bp of AgNt84 5’ 

UTR and coding region and then has a potential intron that is a minimum of 531 bp 

which leaves 476 bp of the 3’ coding region and UTR assuming no more introns are 

present.   

 The multiple bands exhibited in nested PCR reactions could be a result from 

nonspecific binding of primers or areas of repeated sequences in genomic DNA.  In 
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addition, clean sequence could only be derived from using AgNt84-1 forward primer on 

the 1.2 kb gDNA band suggesting that the reverse primer was amplifying a non-specific 

area inside of a putative intron.       

 Currently, investigation into the possibility of the metallohistin gene being a 

natural concatemer is underway.  Sequencing results from the remaining six bands of 

interest have come back muddled with multiple products and short reads.  This is 

possibly because of the primers priming at several points within one PCR product rather 

than specifically to the 5’ and 3’ ends.  This is further supported by the fact that multiple 

bands lengths ranging from 3.0 to 0.75 kb can be amplified from one gel extracted PCR 

product during nested PCR.      

 Future research will focus on characterization of T2 homozygous AgNt84 cDNA 

fragment Nicotiana tabacum plants, discovering the full length AgNt84 gene, and 

assessing metal-binding ability in all transgenic AgNt84 plants.  Further investigation into 

the molecular biology of the metallohistin mRNA and full characterization of the role 

AgNt84 plays in vitro and in vivo could lead to advances in phytoremediation and 

nitrogen-fixing microbe-plant interactions.  
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Chapter Three: SEM and TEM Characterization of 

Pteris vittata Callus Induction and Regeneration 

Introduction 

 The fern Pteris vittata, also known as Chinese brake fern, belongs to the family 

Pteridaceae in the class Polypodiopsida.  Pteris vittata has been classified as an arsenic 

hyperaccumulator capable of storing arsenic in fronds to 2.3% dry weight (Ma et al. 

2001).  To date, several members of the Pteris genus such as Pteris cretica, Pteris 

umbrosa, and Pteris longifolia have been described as arsenic hyperaccumulators (Zhao 

et al. 2002).  In recent years the interest in using plants as sensors and remediators for 

real-time detection of pathogens (Mazarei et al. 2008b) and environmental contaminants 

(Ellis and Salt 2003; Muthukumar et al. 2007) has grown.  Phytosensors and remediators 

would provide farmers and industry with cost effective, solar-powered, in-field tools to 

streamline the economic inputs and environmental impacts from agricultural and 

industrial processes through optimization of farming practices such as fertilizer and 

pesticide application, mitigation of yield reduction due to pathogens, and removal of 

toxic byproducts mobilized into the environment from industries such as mining, metal 

production, and chemical manufacturing.   

 Creation of phytosensors, however, requires genetic transformation of target 

organisms with elements capable of responding to the signal of interest.  Through the 

years, an extensive amount of work has been accomplished with monocot, dicot, and 
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bryophyte tissue culture and transformation, but relatively little attention has been 

focused on pteridophytes.  Early work on fern tissue culture focused primarily on 

conditions necessary for initiation of each life cycle stage.  Multiple environmental and 

culture conditions such as the carbon source, osmotic potential, and light wavelength 

have been found to play roles in Pteris spore germination, gametophyte development, 

callus induction, and sporophyte production (Crotty 1967; Kato 1967; Sugai 1968; Kato 

1969; Kato 1970; Prada et al. 2008).   

 Germination occurs when the rhizoid initial emerges from the spore.  The 

protonema initial divides during this time and later develops into the gametophyte (Figure 

5).  After about four weeks sexual organs start to develop (Raghavan 1989).  P. vittata is 

homosporous, meaning that its gametophyte produces both antheridia and archegonia.  

Antheridia, sperm producing structures, are almost always found on the top of the 

gametophyte whereas the archegonia, the egg producing structures, are typically found on 

the underside of gametophytes.  Once fertilization occurs, the nuclei of the sperm and egg 

fuse and the embryo begins to divide.  Fern sporophytes develop within a fertilized 

archegonium.  The cell mass at the base of the sporophyte, called the foot, develops in the 

archegonial chamber and absorbs nutrients from the gametophyte during sporophyte 

development.  The sporophyte becomes free-living when a root and shoot system 

develop, and the gametophyte dies. 

 There have been several reports of callus induction from Pteris vittata tissue 

(Kato 1963; Kshirsagar and Mehta 1978; Kwa et al. 1991; Trotta et al. 2007; Yang et al.  
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Figure 5. A diagram depicting the life cycle of ferns. Spores (1n) developed from sporophytes (2n) 
germinate and form gametophytes (1n).  These gametophytes produce archegonia and antheridia which 
produce egg and spermatozoa sex cells.  Fusion of these sex cells leads to formation of the sporophyte.  
Photo from http://www.esu.edu/~milewski/intro_biol_two/lab_2_moss_ferns/Fern_life_cycle.html. 
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2007).  Callus formation has occurred on gametophytic tissue, croziers, rhizomes, and 

pinnae strips.  In general, calli regenerated in the same life cycle of the tissue from which 

it was created.  However, the calli produced from gametophytes in the tissue culture 

system described by Yang et al. (2007) recovers as sporophytic plants.    

 To date there have been no reports of Pteris vittata genetic transformation and 

little development of requisite tissue culture systems.  However, biolistic transformation 

of Ceratopteris richardii gametophytes has been demonstrated, but only 7% of 

gametophytes were able to transfer the introduced genes to sporophytes (Rutherford et al. 

2004).  No sporophytes survived past the early development and so fern transformation 

techniques in general remain largely uncharacterized.  A great problem in developing 

tissue culture systems de novo is ill defined tissue stages; i.e., not knowing if proliferating 

tissue is callus, somatic embryos or other differentiated tissue. 

 Scanning electron microscopy (SEM), transmission electron microscopy (TEM), 

and histology have been used to characterize tissue culture systems (Basu et al. 1997; 

Ovečka and Bobák 1999; Eudes et al. 2003; Namasivayam et al. 2006) as well as the fern 

life cycle (Gantt and Arnott 1965; Elmore and Adams 1976; Sheffield et al. 1983; 

Duckett and Ligrone 2003; Whittier 2003; Bondada et al. 2006).  This work seeks to 

characterize the Pteris vittata callus induction, maintenance, and subsequent recovery of 

calli through use of light microscopy, transmission and scanning electron microscopy.  

Two conditions of callus induction, three conditions for callus maintenance, and two 

conditions for callus differentiation into sporophytes will be compared. 
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Materials and Methods 

Environmental conditions and tissue culture 

 Two environmental conditions were used: light and dark.  The lit environment 

had 16 hours of light at 79 μmol m
-2 s-1 and 8 hours of darkness.  The dark environment 

had 24 hours of darkness.  Both environments had a constant temperature of 25 ˚C. 

 Spores were harvested from mature Pteris vittata fronds using a straight-edged 

razor blade and collected into 1.7 ml centrifuge tubes (Denville).  They were then 

sterilized by soaking in a 10% dilution of sodium hypochlorite (5.25% sodium 

hypochlorite, Fischer Scientific) and then immediately centrifuging the tubes for 30 s. at 

8,100 rcf.  This was followed by suspending the spores in 70% ethanol and immediately 

centrifuging the tubes for 30 s. at 8,100 rcf.  They were then rinsed three times with 

sterile water and plated onto half-MSO medium which contained 0.5 Murashige-Skoog 

salts (Murashige and Skoog 1962), B5 vitamins (Gamborg 1968), 2.0% sucrose, and 

solidified with 0.2% Gelrite gellan gum (Sigma).  Plates of sterilized spores were placed 

in lit conditions to germinate.  After about four weeks gametophytes formed and were 

transferred onto callus induction medium containing 0.5 MS salts, B5 vitamins, 2.0% 

sucrose, solidified with 0.2% Gelrite gellan gum supplemented with 0.5 mg L-1 6-

benzylaminopurine (BAP) and 0.5 mg L-1 gibberellic acid (GA3) modified from Yang et 

al., 2007.  The plates were split and placed in either lit or dark conditions.  Every two 

weeks the gametophytes were subcultured until they form calli.  Calli were excised and 

subcultured and maintained on the same medium in the same conditions or on callus 
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induction medium lacking Gelrite gellan gum in dark conditions. 

 To induce differentiation, calli were moved to medium containing half-strength 

MS salts supplemented with 6.0% maltose (Fisher), 0.5% activated charcoal (Sigma), and 

solidified with 0.2% Gelrite gellan gum.  The calli were placed in either the lit or dark 

conditions and subcultured onto new differentiation medium every two weeks.  After six 

weeks, calli with sporophytic leaves were moved to the original MSO medium to root.   

Fixation 

 Fifteen samples from each stage of tissue culture were randomly selected and put 

into 3% glutaraldehyde in 0.1M cacodylate buffer for 90 min. at room temperature.  They 

were then rinsed three times in the cacodylate buffer and transferred to 2% OsO4 in 0.1M 

buffer for 90 min.  The samples were then dehydrated in a grade acetone series (25%, 

50%, 75%, 95%, 100%, and dry 100%) for 30 min. at each step.  The samples were then 

divided into two groups according to preparation needed for the scanning or transmission 

electron microscope.  

 Scanning Electron Microscopy 

 Samples were prepared using the critical-point drying method with carbon 

dioxide.  Each tissue sample was affixed to two-sided carbon tape and then coated with 

50 nm of gold.  At least five samples were viewed from each stage of tissue culture and 

tissue culture condition.   
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 Transmission Electron Microscopy  

 Samples were transferred into a 1 to 3 acetone/Spurr mixture overnight.  The 

samples were then moved to a 3 to 1 acetone/Spurr mixture for 4 h. with the beaker lid on 

and 4 h. with the beaker lid removed.  The samples were then placed into a 100% Spurr 

mixture and left overnight.  Individual callus pieces were put into molds with fresh Spurr 

resin and placed in a 68 ˚C oven for 24 h to for Spurr blocks.  At least three blocks for 

each condition were randomly selected and trimmed for thin-sectioning with glass knives 

on a microtome.  Multiple sections were cut at a time and picked up on copper grids 

coated with glue.  All grids were post-stained with uranyl acetate in 50% methanol for 30 

min., and washed by dipping them 30 times into three different beakers of water.  They 

were then stained in lead citrate for 5 min., washed again and then loaded for viewing.   

 

Results 

Callus induction in lit versus dark conditions 

 Gametophytes grown on callus induction medium in dark conditions developed 

rhizoids and callus (Figure 6A).  Gametophytes grown in lit conditions swelled 

noticeably and produced callus with minimal rhizoids (Figure 6B).  Callus induced and 

maintained in dark conditions were pale white (Figure 6C) whereas callus induced in lit 

conditions were yellowish-green (Figure 6D).  White callus induced and maintained 

under dark conditions turned yellow-green after a culturing in lit conditions for a week  
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Figure 6. Light microscopy of gametophytes and callus grown on callus induction medium under 
dark (A & C) and lit conditions (B & D).  A) Gametophytes grown in dark conditions produced 
rhizoids and callus.  B) Gametophytes grown in lit conditions swelled and produced callus with 
minimal rhizoids.  C) Callus maintained in dark conditions was pale white. D) Callus either moved 
from lit conditions or maintained under lit conditions were bright yellow-green. 



50 

 

(data not shown).  Gametophytes began to swell after four to six weeks of culturing on 

callus induction medium (Figure 7A).  Adventitious gametophytes, antheridia, 

archegonia, and a small number of rhizoids were present on the surface of the 

gametophyte after six weeks of culture on callus induction medium in lit conditions 

(Figure 7A, 5B, and 5C).  Rhizoids were observed elongating in a radial pattern from the 

basal cells of antheridia-like structures (Figure 7D).  Undifferentiated cells forming callus 

were present on the surface of gametophytes at eight weeks (Figure 7E).  An extracellular 

matrix as well as fibrillar and granular structures were present on clusters of developing 

calli (Figure 7G and 5H).   

 Gametophytes cultured on callus induction medium in dark conditions also 

formed adventitious gametophytes (Figure 8A).  Rhizoids were found universally on 

gametophytes cultured in dark conditions (Figure 8B, 6C, and 6D).  Rhizoids were 

formed from antheridia-like structures and directly from the gametophyte surface (Figure 

8B and 6D).  Rhizoids were covered in fibrillar and granular structures during formation 

(Figure 8C).  Calli developed at eight weeks (Figure 8E).    Fibrillar structures were also 

found on dividing callus clusters (Figure 8F).  Removal of rhizoids was necessary to view 

the entire surface of gametophytes grown on semi-solid medium under dark conditions.  

Large clusters of callus went undetected because of the dense network of rhizoids (Figure 

8G).  The surface of some calli had trichome-like structures (Figure 8H).   

Maintenance of callus on semi-solid and liquid medium 

 Callus grew rapidly on both semi-solid and liquid medium.  Callus browned or  
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Figure 7. Scanning electron microscopy of Pteris vittata gametophytes grown under lit 
conditions for six weeks (A & B) and eight weeks (C-H). A) Swollen gametophyte with 
adventitious gametophyte blades, rhizoids, and sex organs. B) Properly formed 
archegonia and antheridia on the gametophyte epidermis. C) Early formation of 
adventituous gametophytes and rhizoids from antheridia-like structures. D) Later stage 
of adventitious gametophyte formation and rhizoid production from antheridia-like 
structures. E) Formation of undifferentiated callus cells on the gametophyte epidermis. 
F) Extracellular matrix (ecm) covering dividing callus. G) Fibrillar and granular 
structures on dividing callus. H) Overview of fully formed and dividing callus.   
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Figure 7. Continued. 
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Figure 8. Scanning electron microscopy of Pteris vittata gametophytes grown on 
callus induction medium in dark conditions for six weeks (A) and eight weeks (B-H). 
Rhizoids were removed to improve observation of dark grown gametophytes (G & H). 
A) Gametophytes grown in dark conditions for six weeks developed adventitious 
gametophyte blades.  Rhizoids are present on all gametophytes grown in dark 
conditions. B) Rhizoids are produced from antheridium-like structures. C) Fibrillar 
and granular structures cover emerging rhizoids. D) Rhizoids, antheridia and 
archegonia on the gametophyte surface. E) Early callus dividing on epidermis of 
gametophyte. F) Fibrillar structures connect  growing callus. G) Clusters of calli were 
observed once the majority of rhizoids were removed. H) Trichome-like structures 
indicative of sporophyte formation were present on some callus.   
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Figure 8. Continued.  
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started to differentiate if they were not subcultured every two weeks on semi-solid 

medium or every week on liquid medium.  Plasmodesmata were prominent between cell 

walls of calli grown on semi-solid callus induction medium under lit conditions (Figure 

9A).  Golgi aparati were seen near the edges of cells and vesicles nearby were fused to 

the plasmalemma (Figure 9B).  Multiple vacuoles and lipid microbodies associated with 

endoplasmic reticulum were in the central parts of cells (Figure 9B).  Compared to cells 

of calli grown on semi-solid and liquid medium under differentiate if they were not 

subcultured every two weeks on semi-solid medium or every week on liquid medium.  

Plasmodesmata were prominent between cell walls of calli grown on semi- dark 

conditions, cells of calli grown on semi-solid medium under lit conditions were smaller 

(Figure 9C).  The cells also had nuclei containing two nucleoli and turbidity in protein 

microbodies.    

 Less pronounced plasmodesmata were present in cell walls of calli grown on 

semi-solid medium in dark conditions as well as large central vacuoles with protein and 

lipid microbodies that dominated the cells (Figure 9D).  Extensive invaginations of the 

cell wall contained vesicles (Figure 9E).  Scanning electron microscopy revealed distinct 

nodules of cells on the surface of callus with an extracellular matrix and fibrillar 

structures connecting the structures (Figure 9F). 
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 Large vacuoles with lipid microbodies surrounded by only a small amount of 

cytoplasm were present in cells of calli grown in liquid medium in dark conditions 

(Figure 9G).  Nuclei with two nucleoli were also present in calli grown in liquid (Figure 

9H).  The surface of calli grown in liquid medium was made of broad cells undergoing 

division that did not have an extracellular matrix (Figure 9I).  

Differentiation of callus into sporophytes 

 The average number of calli with sporophytes after one month and average 

number of sporophytes per callus for the two media types used are recorded in Table 3.  

Calli grown on MSM6AC differentiation medium under lit conditions began to form 

sporophytic leaves after three weeks.  Callus multiplied readily on previously described 

regeneration medium (Zheng et al. 2008), but no regenerated sporophytes could be 

obtained. Calli grown under dark conditions did not differentiate into sporophytes.  

Scanning electron microscopy revealed trichome-like structures present on callus and 

differentiating sporophytes (Figure 10A).  Emerging sporophytes were covered in 

trichome-like structures and more developed also had the trichome-like structures to a 

lesser extent (Figure 10B).  An extracellular matrix extended across the cells just below 

the developing sporophytes in Figure 10B.  Differentiation of sporophytic fronds from 

calli was nonsynchronous like callus induction from gametophytes (Figure 10C).  An 

extracellular matrix and trichome-like structures marked developing sporophytes (Figure 

10D).   
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Figure 9. Transmission electron microscopy and scanning electron microscopy  of Pteris vittata callus 
maintained on semi-solid callus induction medium in lit (A, B, & C) and dark (D, E, & F) conditions and 
liquid medium in dark conditions (G, H, & I).  A) Plasmodesmata were observed in calli grown on semi-solid 
callus induction medium under lit conditions. B) Presence of multiple small vacuoles, vesicles fused to the 
plasmalemma, endoplasmic reticulum associated with lipid microbodies, and golgi apparati. C) Relatively 
smaller cells connected by plasmodesmata, multiple vacuoles, nuclei with two nucleoli, and turbidity in 
protein microbodies. D) Large central vacuoles with protein and starch microbodies in calli grown on semi-
solid medium under dark conditions. Less prominent plasmodesmata were present in cell walls. E) 
Invaginations in the cell wall containing vesicles. F) Callus covered in distinct nodules of cells connected with 
extracellular matrix. G) Large vacuoles containing lipid microbodies with minimum cytoplasm in calli grown 
in liquid medium under dark conditions. H) Nucleus containing two nucleoli. I) Callus grown in liquid 
medium comprised of broad cells undergoing  division.  No extracellular matrix was observed on calli grown 
in liquid medium. 
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Figure 9. Continued. 
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Table 3. The ratio of Pteris vittata callus with differentiating sporophytes (regeneration efficiency) and 
average number of sporophytes per callus after one month on two media types. 

Medium and Culture 

Condition 

Regeneration Efficiency* Sporophytes per Callus* 

Light MSM6AC 38 ± 0.22% 3.92 ± 0.02 

Dark MSM6AC 68 ± 13.5% 2.59 ± 0.55 

Light Zheng 0.0% 0 

Light Zheng 0.0% 0 

* Each value represents the mean of three replicates of 25 individual callus ± standard deviation 
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Discussion 

 Previous work has described tissue culture systems that induce callus from Pteris 

vittata pinnae strips, rhizomes, croziers, and gametophytes.  These reports typically focus 

on culture conditions and nutritional requirements necessary for tissue culture, but fail to 

fully characterize the events occurring during development, maintenance, and 

differentiation of callus.  Understanding of these events is as important as tissue culture 

requirements to create de novo transformation protocols.  Strangely, antheridia and 

archegonia were produced on both sides of the gametophytes during callus induction 

rather than being separated on two different parts of the gametophyte as in nature.  In 

dark conditions, rhizoids were formed in thick mats over the entire surface of the 

gametophyte, but this has been observed in other Pteris vittata tissue culture systems.  

Calli induced from rhizomes produced “hairs” and sporophytic leaves on medium 

containing either low (1%) sucrose or high (4%) sucrose (Kshirsagar and Mehta 1978).  

Ubiquitous production of rhizoids and sex organs has been seen in other axenically 

culture fern gametophytes as well (Elmore and Adams 1976). 

 It is likely that induction of rhizoids and sex organs can be affected by culture 

conditions and growth hormones.  Gibberellic acid has been shown to induce the 

formation of antheridia in the fern Anemia phyllitidis (Kaźmierczak 2003).  More 
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Figure 10. Regenerating callus grown on differentiation medium under lit conditions for four weeks (A & 
C) and eight weeks (B & D).  A). Young sporophyte emerging from callus.  Trichome-like structures 
appeared on callus and attached to the developing sporophytes.  B)  A crozier and maturing sporophytic 
fronds.  Trichome-like structures are more noticeable on young sporophytic fronds, but are also present on 
more developed sporophytic fronds.  Note extensive extracellular matrix just below developing 
sporophytes, and the crozier, the meristematic center of the sporophytes.  C) Differentiation of sporophytes 
from callus is asynchronous.  D) Trichome-like structures and extracellular matrix marking the site of a 
developing sporophyte. 
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precisely, GA3 and ethylene interact to induce formation of antheridia (Kaźmierczak 

2007).  Presence of GA3 in the medium and production of ethylene in sealed Petri dishes 

could account for the ubiquitous presence of antheridia and rhizoids.  Typically, the cap 

cells of antheridia open to release spermatozoa for fertilization, but no opened antheridia 

were observed on any gametophytes in the current work suggesting no fusion of sex cells.  

Callus was observed forming on the epidermis of swollen gametophytes after eight weeks 

though the exact cell type that produced it could not be determined.  It is unlikely callus 

was derived from antheridia or embryos formed from sexual reproduction.  To optimize 

the tissue culture conditions and reduce presence of rhizoids and antheridia, growth under 

lit conditions and use of a micropore tape that allows for gas exchange to reduce 

concentrations of ethylene is recommended.   

 Callus development from archegonial cells or epidermal cells through as observed 

most likely occurs through apogamy.  Pteris cretica, a fern related to Pteris vittata, also 

exhibits arsenic accumulation and reproduces through obligate apogamy.  A transmission 

electron microscopy study revealed that the cells undergoing oogenesis had normal 

ultrastructural development characteristics inside Pteris cretica archegonia (El Desouky 

et al. 1990).  As was seen in transmission electron micrographs the Pteris vittata callus 

cells during this work, developing Pteris cretica egg cells had a large number of free 

ribosomes, lipid bodies, many small vacuoles rather than a large central vacuole, and 

nuclei with diffuse chromatin and two nucleoli.  This provides ultrastructural evidence 

that callus could develop from unfertilized egg cells.   
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 Investigation of a moss Physcomitrium coorgense revealed that callus cells 

derived from gametophytes accumulated large amounts of starch and contained an 

abundant number of plasmodesmata just before forming apogamous sporophytes (Lal and 

Narang 1985).  The sporophytes developed from superficial cells with “labyrinthine” cell 

walls that later became embedded in the callus due to growth of surrounding cells.  All 

callus had large amounts of starch microbodies, but only the callus on semi-solid medium 

exhibited plasmodesmata connecting cells.  Deep cell wall crenellation was observed in 

callus grown on semi-solid medium in dark conditions suggesting that these conditions 

may be the best for preparing callus to develop sporophytes.  Overall, callus grown on 

semi-solid medium exhibited more mature apogamous ultrastructural characteristics than 

callus of the same age maintained on liquid medium.  Callus maintained under dark 

conditions had a greater regeneration efficiency than callus maintained under lit 

conditions, however callus maintained under lit conditions produced more sporophytes 

per callus.  It is difficult to determine which callus is more competent for regeneration 

because of the high degree of variability seen in dark grown callus.  Callus maintained 

under dark conditions may be more suitable for regeneration as each callus has a greater 

chance to produce at least one sporophyte, but further replicates are needed. 

 Scanning electron microscopy revealed that callus grown on semi-solid medium 

had distinct nodule structures of cells, whereas callus grown in liquid medium were made 

of cells that were larger and less distinct.  Histology of Pteris vittata rhizome callus has 

previously revealed distinct nodules of meristematic cells which gave rise to shoots, 
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roots, or both depending on concentrations of sucrose and 2,4-D present in the medium 

(Kshirsagar and Mehta 1978).  The callus from semi-solid medium also had an 

extracellular matrix present whereas the callus from liquid medium did not.  This is the 

first report of an extracellular matrix seen on pteridophyte callus tissue.  An extracellular 

matrix has been observed on tissue during embryogenesis and  organogenesis in 

flowering plants such as Coffea arabica (Sondahl 1979), Papaver somniferum (Ovečka 

and Bobák 1999), Brassica napus (Namasivayam et al. 2006), and Actinidia deliciosa 

(Popielarska-Konieczna et al. 2008).  Namasivayam et al. (2006) considered the presence 

of an extracellular matrix as a marker for tissue that has entered the pre-embryogenic 

state.  In A. deliciosa, the extracellular matrix can be membranous, fibrillar, or granular 

and is made of low-esterified pectin and some lipophilic substances (Popielarska-

Konieczna et al. 2008).  It has been suggested that the extracellular matrix could play a 

role in cell-cell signal cascades to coordinate development of callus through an 

extracellular matrix-plasmodesmata-cytoskeleton continuum (Ovečka and Bobák 1999).  

These authors sited previous work in Cichorium (Hilbert et al. 1992) and on 

arabinogalactanproteins (AGPs) to support their claim.  In Cichorium, two proteins were 

detected during embryogenesis and correlated to formation of external glycoprotein 

fibrillar networks (Hilbert et al. 1992).  Some arabinogalactanproteins have been 

implicated in cell-cell signaling during cell proliferation by spatial and developmental 

regulation (Du et al. 1996).  In this work, extracellular matrices were observed on callus 

tissue from the start of induction until differentiation.  Notably, an extensive matrix was 
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observed on callus tissue at the base of differentiating sporophytes after eight weeks of 

culture on differentiation medium.  Though possible functions of the extracellular matrix 

in pteridophytes are currently unknown, the theory that it is involved in cell-cell signal 

cascades to coordinate development is plausible due to its presence at the base of forming 

and differentiating callus.  This would then suggest the callus induced on semi-solid 

medium would be regenerated more easily.   

 Though several tissue culture systems have been identified, only the method 

described by Yang (2008) induces callus from a gametophyte explant and produces a 

different portion of the fern life cycle, sporophytes.  Typically, these two portions of the 

fern life cycle are separated by the diploid sporophyte stage.  For example, croziers, a 

part of the diploid life cycle, have been used as explants to induce callus which 

differentiated into sporophytes (Trotta et al. 2007).  Most ferns, however, can undergo a 

process called apogamy where sporophytes form without sexual reproduction which 

could account for sporophyte development from callus originally derived from haploid 

gametophytes.   

 In 1970, Kato found that apogamous sporophytes developed when Pteris vittata 

gametophytes were cultured on medium containing 0.5% - 2.0% sucrose or 1.0% - 2.0% 

glucose in the dark.  Apogamous sporophyte formation was increased if casein 

hydrolysate, yeast extract, wheat germ extract, indole acetic acid, or tryptophan was 

added to the basal medium.  As was seen in this work, Kato also observed gametophytes 

that “thickened” and produced vascular strands that did not become sporophytes on 
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sucrose medium under white light.  Most likely, these vascular strands are the rhizoids 

observed in this work.  Thickening of the prothalli has been considered a major step in 

the formation of apogamous sporophytes.  When gametophytes of the fern Pteridium 

were grown on medium containing sugar the prothalli thickened and produced a mass of 

tissue that produced apogamous sporophytes (Whittier 1962).  In the present work, 

thickened prothalli produced other prothalli in addition to callus that could be maintained 

for over a year on callus induction medium.  This supports the claim of apogamous callus 

induction in this work.   

 Future work will focus on histology of gametophytes during callus induction and 

sporophytic differentiation is needed to pinpoint from which cells these structures arise.  

Further flow cytometry or chromosome squashes of gametophytes, calli, regenerated 

sporophytes, and sporophytes derived from spores will aid in characterizing the impact 

tissue culture plays on the life cycle and ploidy level of Pteris vittata.  This is especially 

important as alterations of ploidy level in sporophytes could have interesting 

consequences for transgenic sporophytes and successive generations.  Apogamous 

sporophytes in Pteris multifida rarely produced viable spores (Kawakami et al. 1995).  

When tetraploid Pteris vittata gametophytes were plated on Knudson’s medium with 

2.0% sucrose green callus formed after 10-12 weeks and later apogamous sporophytes 

were produced (Palta and Mehra 1983).  These apogamous sporophytes, termed 

polyhaploid sporophytes, showed lower overall fertility when compared to normal 

tetraploid sporophytes.  Some sporophylls, fronds that bear spore, exhibited complete 



67 

 

infertility while others exhibited mixed fertility and production of spores that were viable 

and had the correct chromosome number through endomitosis or complete asynapsis.  

Transgenic apogamous polyhaploid sporophytes that have reduced or no capability of 

producing viable spores could provide an interesting and novel method to control gene 

flow for phytosensors. 

 This work has characterized the Pteris vittata the complete tissue culture system 

originally described by Yang et al. (2008).  Optimization of culture conditions and 

hormones is required to reduce occurrence of rhizoids and antheridia and maximize callus 

induction.  Callus maintained on semi-solid medium showed the most promising 

ultrastructural and structural characteristics of regenerable callus when compared to 

liquid medium of the same age.  Further histology and cytology is necessary to elucidate 

the precise origins of callus and sporophytes.  The only obstacle perceivable in 

developing a transformation protocol for Pteris vittata by biolistic bombardment of 

gametophytes would be callus induction from surviving cells of gametophytes during 

culture on semi-solid medium with appropriate antibiotic selection.  If callus can be 

induced from any transgenic epidermal cell capable of surviving selection, recovery of 

callus into sporophytes is rapid and requires only a simple medium.   
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Chapter IV: A Preliminary Investigation of Techniques 

for Genetic Transformation of Pteris vittata 

 

Introduction 

 Genetic transformation of fern species has been largely overlooked.  As stated in 

Chapter 3, there is only one report of genetic transformation of fern gametophyte tissue.  

To develop techniques for genetic transformation of Pteris vittata sporophytes both 

protoplast- and biolistic-mediated transformation systems have been considered. 

 Protoplast transformation techniques are attractive because protoplast isolation 

and recovery systems have been developed for Pteris vittata (Ito 1962; Kadota and Wada 

1989).  These systems, however, do not produce large quantities of protoplasts that would 

be needed for genetic transformation.  Even though no genetic transformation has been 

attempted with fern protoplasts, techniques using polyethylene glycol (PEG) mediated 

transformation of Nicotiana tabacum protoplasts (Koop et al. 1996) have been developed.   

 Successful biolistic bombardment techniques have been developed for a wide 

range of plant species and tissue types for both transient and stable transgene expression.  

A biolistic technique has even been successfully used to transform gametophytes of 

Ceratopteris richardii with GUS constructs (Rutherford et al. 2004).  Biolistics, 

therefore, is the more attractive technique even though it requires extensive optimization.  

It is still not known which promoters can effectively drive transgene expression in ferns.  
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Both protoplast and biolistic bombardment techniques also benefit from the ease 

associated with which plasmids containing different promoters can be employed.   

 The ultimate goal of Pteris vittata genetic transformation is production of 

transgenic sporophytes capable of detecting arsenic and reporting with a fluorescent 

protein.  In order to achieve this goal, this work seeks to establish a genetic 

transformation technique to produce transgenic Pteris vittata sporophyte lines. 

 

Materials and Methods 

Tissue culture of Pteris vittata 

 Tissue culture conditions and media for spore germination and callus induction 

were performed as described in Chapter 3.  Pteris vittata sporophytes used for controls 

were maintained in a greenhouse at 32 ̊C for 16/8 h light/dark photoperiods.   

Protoplast isolation 

 The digestion enzyme solution (1.0%  cellulose R-10 (bioWORLD), 0.75% 

macerozyme R-10 (bioWORLD), 0.6M mannitol and 10 mM MES pH 5.7) was prepared 

fresh for each extraction.  This solution was placed in a 55 ̊C waterbath for 10 minutes.  

The solution was then removed and allowed to cool to room temperature.  Then 0.1g of 

bovine serum albumin fraction V (Sigma), 27 μl of a 1.25M CaCl2 stock, and 34 μl of 5 

mM β-mercaptoethanol (Sigma) were added to each 100 ml of the digestion enzyme 

solution and mixed to dissolve. 
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 Fronds from sporophytes were collected and weighed.  Pinnae strips were stacked 

and cut into thin strips in 20 ml of the above digestion enzyme solution contained in a 

glass Petri dish.  All pinnae strip sections were kept in the dark while shaking.  If vacuum 

infiltration was used the Petri dishes were placed in a Nalgene vacuum chamber for one 

hour while shaking, and then removed to complete digestion.  Separate trials to optimize 

digestion time from 1, 2, 3, 4, 5, and 15 h were carried out.  The resulting solution of 

protoplasts and cellular debris were filtered with either a 40 or 70 μm nylon cell strainer 

(BD Falcon) and collected.   

 Protoplast solutions were collected in a 50 ml Falcon tube and centrifuged in a 

Beckman Coulter Avanti J-E floor centrifuge at 150 rcf for 5 min at 25 ̊C.  Sucrose 

gradients ranging from 0.5 to 1.0 M were also tested during centrifugation.  After 

protoplast isolation, 10 μl samples of the protoplast solution were dyed with Evan’s blue 

to assay plasmalemma viability.  Viable protoplasts were counted using a 

hemacytometer.     

Biolistic bombardment of induced callus 

 Roughly 500 mg of calli were arranged in the center callus induction medium 

plates for biolistic transformation.  Pteris vittata fronds, Nicotiana tabacum cv. Xanthi, 

and Oryza sativa leaf controls were also arranged in the same area at the center of 

medium plates containing only agar as controls for biolistics.  To determine optimal 

conditions for shooting, plates were shot with 7929 kPa (1,150 psi) and 4482 kPa (650 

psi) rupture disks as well as using 1.0 μm and 0.6 μm gold particles.  GUS assays were 
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performed on calli three days post-shooting.  Calli were put into GUS staining solution 

(50 mg X-GLUC, 5 ml DMSO, 10 ml 1M KPO4, and 2 drops of Triton-X-100) for 24 

hours at 37 ˚C.  The GUS staining solution was then removed and 70% ethanol pipetted 

onto the calli every 12 hours to bleach the calli.   

 Calli and controls were shot with plasmids coding for green and red fluorescent 

proteins (GFP, RFP) with various promoters (Table 3) were viewed under an Olympus 

SZX12 stereo microscope with either 460-490 nm excitation and 535/40 nm emission 

filters or 520-550 nm excitation and 580 long pass emission filters respectively at 2, 3, 4, 

and 5 d post-shooting. 

 

Results 

Protoplasts 

 Protoplasts were successfully isolated from Pteris vittata gametophytes and 

sporophytic fronds (Figure 11A).  Cellular debris and burst protoplasts were also present 

in extracted protoplasts (Figure 11A and 11B).  A high level of autofluorescence was 

seen in protoplasts under the green fluorescent filter set (Figure 11C and 11D).  An 

outline detailing the steps in protoplast extraction optimization from Pteris vittata tissues 

is presented in Figure 12.  Digestion of sporophytes and gametophytes was typically 

completed after one hour of vacuum  
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Figure 11. Protoplasts isolated from Pteris vittata sporophytes and gametophytes. A) 
Protoplasts (arrow) and cellular debris (arrowhead) from Pteris vittata sporophyte fronds. B) 
Gametophytic protoplast viability test using Evan’s blue dye on a hemacytometer. Protoplasts 

(arrows) were often surrounded by large amounts of blue cellular debris (arrowhead). C) Bright 
field of protoplast isolated from sporophyte fronds. D) Autofluorescence seen in the same 
protoplasts under green fluorescence filters. 
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Gametophyte 1-4 hour isolation

Low  yield of  protoplasts

Sporophyte 1, 2, 3, 4, 5, and 18hr digestion in 15 ml enzyme solution for digestion

4 hour isolation produced protoplasts

Overnight protoplasts burst

Cellular debris present

Gametophyte 4 hour isolation

Increased to 1.0g of  gametophytes

Low  yield of  protoplasts, high quality

Sporophyte 4 hour isolation

Increased to 2.50 g f rond in 25 mL enzyme solution for digestion

Low number of  intact protoplast

Sporophyte 4 hour isolation

2.4g f rond for digestion

Centrifugation  at 150 x g to concentrate protoplasts

4000 protoplast isolated; large amount of  cellular debris

Sporophyte 4 hour isolation

Filtered through 40 μm nylon mesh

Low number of  protoplasts

Sporophyte 4 hour isolation

Filtered through 70 μm nylon mesh

Protoplasts  that were  ~50 μm in diameter

Large clumps of  cellular debris forms af ter centrifugation

0.6, 0.7, 0.8M Sucrose Gradient

Low yield of  protoplasts at 0.6M layer

0.7, 0.8, 0.9M Sucrose Gradient

Low yield of  burst protoplast at 0.8M layer

0.9M Sucrose cushion during centrifugation

Best protoplasts, low amount of  cellular debris

Gametophyte Tissue Sporophyte Tissue

Figure 12. Flow chart of Pteris vittata protoplast isolation optimization.  Experimental changes to the standard method 
are presented in black font and results are shown in blue font.   
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infiltration in digestion enzyme solution and three hours of shaking at 60 rpm.  

Centrifugation was necessary to concentrate the protoplasts to a countable amount.  

Masses of suspended cellular debris were observed after centrifugation steps containing 

only the filtered protoplast solution.  Stepwise sucrose gradients reduced the formation of 

this cellular debris during centrifugation, but small numbers of protoplasts were typically 

seen at each layer.  A single layer of 0.9 M sucrose beneath the protoplast solution 

reduced formation of the cellular debris and provided a layer of round protoplasts. 

Biolistic bombardment 

 Gene expression was only detected in Nicotiana tabacum cv Xanthi controls.  

Nicotiana tabacum controls exhibited green fluorescence stronger than background 

autofluorescence with the appropriate GFP filters, but did not have autofluorescence 

detectable with RFP filters (Figure 13).  Vectors and their promoters and marker genes as 

well as the number of plates of Pteris vittata callus and controls that were shot are 

recorded in Table 3.  In constructs containing red (RFP) or green fluorescent  

Figure 13. Transformation of Nicotiana tabacum cv. Xanthi controls with pAHC25-gfp5er. A) Bright field 
Nicotiana tabacum leaf. B) Nicotiana tabacum leaf under red fluorescent filters exposed for two minutes.  
No autofluorescence is observed. C) Nicotiana tabacum leaf under green fluorescent filters exposed for 
two minutes.  Multiple spots exceed background autofluorescence. 
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Table 4. Tissue type, promoters and marker genes used in biolistic bombardment of Pteris vittata callus. 

Tissue Type Plasmid  Promoter Marker gene Number 

of Plates 

Reference

* 

Pteris vittata callus pAHC25-gbr15 Maize Ubiquitin 1 Gbr15 - RFP 6 1 

Pteris vittata callus pAHC25- gfp5er Maize Ubiquitin 1 GFP5er – GFP 6 1 

Nicotiana tabacum leaf pAHC25- gfp5er Maize Ubiquitin 1 GFP5er – GFP 2 1 

Pteris vittata callus pAHC25 Maize Ubiquitin  GUS  7 1 

Pteris vittata frond pAHC25 Maize Ubiquitin 1 GUS  2 1 

Nicotiana tabacum leaf pAHC25 Maize Ubiquitin 1 GUS  2 1 

Pteris vittata callus pRESQ70 Rice Ubiquitin GUS 2 2 

Pteris vittata callus pRESQ101 Rice Ubiquitin GUS 2 2 

Pteris vittata callus pMyGUS Badna Streak Virus GUS  2 3 

Pteris vittata callus pCvGUS Badna Streak Virus GUS  2 3 

Pteris vittata callus pMyGFP Badna Streak Virus SGFP 2 3 

Pteris vittata callus pCvGFP Badna Streak Virus SGFP 2 3 

Pteris vittata callus pSK-35S Cauliflower Mosaic 

Virus 35S-S1 

GUS 6  

Pteris vittata frond pSK-35S Cauliflower Mosaic 

Virus 35S-S1 

GUS 2  

Nicotiana tabacum leaf pSK-35S Cauliflower Mosaic 

Virus 35S-S1 

GUS 2  

* 1 - Christenson and Quail 1996; Sivamani and Qu 2006; Schenk 2001  
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proteins (GFP), no calli exhibited fluorescence stronger than background auto-

fluorescence.   

 

Discussion 

 Low numbers of extracted protoplasts and presence of cellular debris hindered the 

use of protoplasts for genetic transformation of Pteris vittata.  Other fern protoplast 

isolation systems also yield low numbers of protoplasts.  An optimized protocol for 

isolating protoplasts from Lygodium japonicum sporophytes yielded 1.07 x 104 

protoplasts on average.  In comparison, on average 6.00 x 105 protoplasts were isolated 

from the leaf tissue of the switchgrass cultivar Alamo, and 2.00 x 105 of those protoplasts 

were used for each transformation (Mazarei et al. 2008).   

 When considering continued effort on this technique for possible transformation 

of Pteris vittata, regeneration is essential.  And so, it is crucial to note that Pteris vittata 

protoplasts isolated by mechanical chopping of tissue were capable of recovering as 

gametophytes (Ito 1962).  If yields and purity could be improved, protoplast isolation and 

transformation would be an excellent technique to use for promoter expression efficiency 

screening and possibly even recovery of transformed gametophytes or sporophytes.       

 Biolistic transformation of Pteris vittata callus tissue did not produce noticeable 

amounts of GFP, RFP, or GUS activity.  In the only example of its kind, Ceratopteris 

richardii gametophytes were transformed using biolistic bombardment with GUS 
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constructs driven by the cauliflower mosaic virus 35S promoter (Rutherford et al. 2004).  

It is important to note that the gametophytes were histologically stained 6 days after 

bombardment and showed expression.  In this work, GFP and RFP constructs were 

assayed at five days after bombardment, but no bombardments were assayed six or more 

days after bombardment.  For future transformation studies, GUS constructs will be 

focused on as lower levels of expression of GUS are more easily detected than in GFPs or 

RFPs.  Pteris vittata gametophytes will be used as target tissue instead of callus.  If 

expression of GUS can be observed in gametophytes, rounds of bombarded gametophytes 

can be plated on callus induction medium with selection in an effort to generate 

transgenic callus tissue for recovery of sporophytes.  



78 

 

 

 

 

 

 

 

References 

  



79 

 

References 

Acar, YB, and AN Alshawabkeh. 1993. Principles of electrokinetic remediation. 

Environmental Science & Technology 27 (13): 2638-2647. 

Baker, AJM. 1981. Accumulators and excluders – strategies in the response of plants to 

heavy metals. Journal of Plant Nutrition 3 (1-4): 643-654.  

Baker, AJM, RD Reeves, and ASM Hajar. 1994. Heavy-metal accumulation and 

tolerance in British populations of the metallophyte Thlaspi caerulescens 

(Brassicaceae). New Phytologist 127: 61-68. 

Basu, S, G Gangopadhyay, BB Mukherjee, and S Gupta. 1997. Plant regeneration of salt 

adapted callus of indica rice (var. Basmati 370) in saline conditions. Plant Cell, 

Tissue and Organ Culture 50: 153-159. 

Bendahmane, A, M Querci, K Kanyuka, and DC Baulcombe. 2000. Agrobacterium 

transient expression system as a tool for the isolation of disease resistance genes: 

application to the Rx2 locus in potato. Plant Journal 21: 73-81. 

Blake II, RC, DM Choate, S Bardhan, N Revis, LL Barton, and TG Zocco.1993. 

Chemical transformation of toxic metals by a Pseudomonas strain from a toxic 

waste site.  Environmental Toxicology and Chemistry 12: 1365-1376. 

Bizily, SP, CL Rugh, and RB Meagher. 2000. Phytodetoxification of hazardous 

organomercurials by genetically engineered plants. Nature Biotechnology 18: 

213-217. 



80 

 

Bondada, B, C Tu, and L Ma. 2006. Surface structure and anatomical aspects of Chinese 

brake fern (Pteris vittata; Pteridaceae). Brittonia 58: 217-228. 

Brettschneider, R, D Becker, and H Lorz. 1997. Efficient transformation of scutellar 

tissue of maize embryos. Theoretical and Applied Genetics 94: 737-748. 

Briat, JF and M Lebrun. 1999. Plant response to metal toxicity. Plant Biology and 

Pathology 322: 43-54.  

Byers, H.G and HG Knight. 1935. Selenium in soils – In relation to its presence in 

vegetation. Industrial and Engineering Chemistry 27: 902-904.  

Campbell, DH. 1905. The homosporous Leptosporangiatae (Filices). In: The Structure 

 and Development of Mosses and Ferns (Archegoniatae). London, England: 

 Macmillan 346-395.  

Canhoto, JM, JF Mesquita, and GS Cruz.  1996.  Ultrastructural changes in cotyledons  

 of pineapple guava (Myrtaceae) during somatic embryogenesis. Annals of Botany  78: 513-521. 

Chabregas, SM, DD Luche, MA Van Sluys, CFM Menck, and MC Silva-Filho. 2002. 

Differential usage of two in-frame translational start codons regulates subcellular 

localization of Arabidopsis thaliana THI1.  Journal of Cell Science 116: 285-291. 

Chair, H, T Legavre, and E Guiderdoni. 1996. Transformation of haploid, microspore-

derived cell suspension protoplasts of rice (Oryza sativa L.). Plant Cell Reports 

15: 766-770. 

Chaney, RL, YM Li, SL Brown, FA Homer, M Malik, JS Angle, AJM Baker, RD 

Reeves, and M Chin. Improving metal hyperaccumulator wild plants to develop 



81 

 

commercial phytoextraction systems: approaches and progress. In: Terry N, GS 

Bañuelos, eds. Phytoremediation of Contaminated Soil and Water. Boca Raton, 

FL: CRC Press 129-169.  

Chapman, A, A Blervacq, J Tissier, B Delbreil, J Vasseur, and J Hilbert. 2000. Cell wall 

differentiation during early somatic embryogenesis in plants. I. Scanning and 

transmission electron microscopy study on embryos originating from direct, 

indirect, and adventitious pathways. Canadian Journal of Botany 78: 816-823. 

Christensen, AH and PH Quail. 1996. Ubiquitin promoter-based vectors for high-level 

expression of selectable and/or screenable marker genes in monocotyledonous 

plants. Transgenic Research 5: 213-218. 

Clemens, S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of 

tolerance in plants. Biochimie 88: 1707-1719. 

Coutu, C, J Brandle, D Brown, K Brown, B Miki, J Simmonds, DD Hegedus. 2006. 

pORE: a modular binary vector series suited for both monocot and dicot plant 

transformation. Transgenic Research DOI 10.1007/s11248-007-9066-2. 

Crotty, W. 1967. Rhizoid cell differentiation in the fern gametophyte of Pteris vittata. 

American Journal of Botany 54: 105-117. 

Curtis, M and U Grossniklaus. 2003. A Gateway cloning vector set for high-throughput 

functional analysis of genes in planta. Plant Physiology 133: 462-469. 

Cunningham, SD and WR Berti. 2000. Phytoextraction and phytostabilization: technical, 

economic, and regulatory considerations of the soil-lead issue. In: Terry N, GS 



82 

 

Bañuelos, eds. Phytoremediation of Contaminated Soil and Water. Boca Raton, 

FL: CRC Press 129-169.  

Dahmani-Muller, H, F van Oort, B Gélie, and M Balabane. 2000. Strategies of heavy 

metal uptake by three plant species growing near a metal smelter. Environmental 

Pollution 109: 231-238. 

Deblaere, R, B Bytebier, H De Greve, F Deboeck, J Schell, M Van Montagu, and J 

Leemans. 1985. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-

mediated gene transfer to plants. Nucleic Acids Research 13: 4777-4788. 

Du, H, AE Clarke, and A Bacic. 1996. Arabinogalactanproteins: a class of extracellular 

            matrix proteoglycans involved in plant growth and development. Trends in Cell 

 Biology 6: 411-414. 

Duckett, JG, and R Ligrone. 2003. The structure and development of haustorial placentas 

in Leptosporangiate ferns provide a clear-cut distinction between Euphyllophytes 

and Lycophytes. Annals of Botany 92: 513-521. 

Ehsan, S, SO Prasher, and WD Marshall. Simultaneous mobilization of heavy metals and 

polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and 

EDTA in admixture. Chemosphere 68: 150-158. 

El Desouky, FA, SM Laird, and E Sheffield. 1990. Oogenesis in the apogamous fern 

Pteris cretica. Annals of Botany 65: 297-303. 

Elmore, HW, and RJ Adams. 1976. Scanning electron microscopic observations on the  

            gametophyte and sperm of the bracken fern, Pteridium aquilinum (L.) Kuhn. New  



83 

 

            Phytologist 76: 519-522. 

Ellis, DR and DE Salt. 2003. Plants, selenium and human health. Current Opinion in 

Plant Biology 6: 273-279. 

Ellis, DR, L Gumaelius, E Indriolo, IJ Pickering, JA Banks, and DE Salt. 2006. A novel 

arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant 

Physiology 141: 1544-1554.  

Ernst, W.H.O. 1996. Bioavailability of heavy metals and decontamination of soil by 

plants. Applied Geochemistry 11:163–167. 

Eudes, F, S Acharya, A Laroche, LB Selinger, and KJ Cheng. 2003. A novel method to 

induce direct somatic embryogenesis, secondary embryogenesis and regeneration 

of fertile green cereal plants. Plant Cell, Tissue and Organ Culture 73: 147-157. 

Fan, TWM, AN Lane, J Pedler, D Crowley, and RM Higashi. 1997. Comprehensive 

analysis of organic ligands in whole root exudates using nuclear magnetic 

resonance and gas chromatography–mass spectrometry. Analytical Biochemistry 

251: 57–68. 

Frérot, H, C Lefébvre, W Gruber, C Collin, A Dos Santos, and J Escarré.  2006. Specific 

interactions between local metallicolous plants improve the phytostabilization of 

mine soils. Plant and Soil 282: 53-65. 

Gantt, E and HJ Arnott. 1965. Spore germination and development of the young 

gametophyte of the ostrich fern (Matteuccia struthiopteris). American Journal of 

Botany 52: 82-94. 



84 

 

Gilmartin, GM. 2005. Eukaryotic mRNA 3’ processing: a common means to different 

ends. Genes & Development 19: 2517-2521. 

Gupta, RK, SV Dobritsa, CA Stiles, ME Essington, Z Liu, CH Chen, EH Serpersu, and 

BC Mullin. 2002. Metallohistins: a new class of plant metal-binding proteins. 

Journal of Protein Chemistry 21(8): 529-536. 

Holtorf, H, A Hohe, HL Wang, M Jugold, T Rausch, E Duwenig, and R Reski. 2002. 

Promoter subfragments of the sugar beet V-type H+-ATPase subunit c isoform 

drive the expression of transgenes in the moss Physcomitrella patens. Plant Cell 

Report 21: 341-346. 

Hart, JJ, RM Welch, WA Norvell, LA Sullivan, and LV Kochian. 1998. Characterization 

of cadmium binding, uptake, and translocation in intact seedlings of bread and 

durum wheat cultivars.  Plant Physiology 116: 1413-1420. 

Hammer, D, A Kayser, and C Keller. 2003. Phytoextraction of Cd and Zn with Salix 

viminalis in field studies. Soil Use and Management 19: 187-192.   

Hilbert, JL, T Dubois, and J Vasseur. 1992. Detection of embryogenesis-related proteins 

during somatic embryo formation in Cichorium. Plant Physiology and 

Biochemistry 30: 733-741. 

Horsch, RB, JE Fry, NL Hoffman, D Eichholtz, SG Rogers, and RT Fraley. 1985. A 

simple and general method for transferring genes into plants. Science 227: 1229-

1231. 

Ishizaki, K, S Chiyoda, KT Yamato, and T Kohchi. 2008. Agrobacterium-mediated  



85 

 

transformation of the haploid liverwort Marchantia polymorpha L., an emerging 

model for plant biology. Plant and Cell Physiology 49: 1084-1091.  

Ito, M. 1962. Studies on the differentiation of fern gametophytes I. Regeneration of 

single cells isolated from cordate gametophytes of Pteris vittata. Botanical 

Magazine Tokyo 75: 19-27. 

Kadota, A and M Wada. 1989. Enzymatic isolation of protoplasts from fern protonemal 

cells stainable with fluorescent brightener. Plant and Cell Physiology 30: 1107-

1113. 

Kato, Y. 1964. Physiological and morphogenetic studies of fern gametophytes by aspetic 

culture 3. Cytologia 29: 79-85. 

Kato, Y. 1967. Physiological and morphogenetic studies of fern gametophytes and 

sporophytes in aseptic culture. Planta 77: 127-134. 

Kato, Y. 1969. Physiological and morphogenetic studies of fern gametophytes and 

sporophytes in aseptic culture. Phytomorphology 19: 114-121. 

Kato, Y. 1970. Physiological and morphogenetic studies of fern gametophytes and 

sporophytes in aseptic culture. Botanical Gazette 131: 205-210. 

Kasprzak, KS. 1995. Possible role of oxidative damage in metal-induced carcinogenesis. 

Cancer Investigation 13 (4): 411-430. 

Kawakami, SM, M Ito, and S Kawakami. 1995. Apogamous sporophyte formation in a 

fern Pteris multifida and its characteristics. Journal of Plant Research 108: 181-

184. 



86 

 

Kaya, A and Y Yukselen. 2005. Zeta potential of soils with surfactants and its relevance 

to electrokinetic remediation. Journal of Hazardous Materials B120: 119-126. 

Kaźmierczak, A. 2003. Induction of cell division and cell expansion at the beginning of 

gibberellins A3-induced precocious antheridia formation in Anemia phyllitidis 

gametophytes. Plant Science 5: 933-939. 

Kaźmierczak, A. 2007. Ethylene is a modulator of gibberellic acid-induced 

antheridiogenesis in Anemia phyllitidis gametophytes. Biologia Plantarum 51: 

683-689. 

Kertész, S, Z Kerényi, Z Mérai, I Bartos, T Pálfy, E Barta, and D Silhavy. 2006. Both 

introns and long 3’-UTRS operate as cis-acting elements to trigger nonsense-

mediated decay in plants. Nucleic Acids Research 34: 6147-6157. 

King, RF, A Royle, PD Putwain, and NM Dickinson. Changing contaminant mobility in a 

dredged canal sediment during a three-year phytoremediation trial. Environmental 

Pollution 143(2): 318-326. 

Kneer, R, and MH Zenk. 1992. Phytochelatins protect plant enzymes from heavy-metal 

poisoning. Phytochemistry 31 (8): 2663-2667. 

Koop, HU, K Steinmüller, H Wagner, C Röβler, C Eibl, and Lydia Sacher. 1996. 

Integration of foreign sequences into the tobacco plastome via polyethylene 

glycol-mediated protoplast transformation. Planta 199: 193-201. 



87 

 

Krämer,U, IJ Pickering, RC Prince, I Raskin, and DE Salt. 2000. Subcellular localization 

and speciation of nickel in hyperaccumulator and non-accumulator Thalaspi 

species. Plant Physiology 122: 1343-1353. 

Kshirsagar, MK and AR Mehta. 1978. In vitro studies in ferns: growth and differentiation 

 in rhizome callus of Pteris vittata. Phytomorphology 28: 50-58. 

Kwa, SH, YC Wee, and CS Loh. 1991. Production of aposporous gametophytes and calli   

from Pteris vittata L. pinnae strips cultured in vitro. Plant Cell Reports 10: 392-

393. 

Lal, M and A Narang. 1985. Ultrastructural and histochemical studies of transfer cells in 

the callus and apogamous sporophytes of Physcomitrium coorgense Broth. New 

Phytologist 100: 225-231. 

Larkin, MA, G Blackshields, NP Brown, R Chenna, PA McGettigan, H McWilliam, F 

Valentin, IM Wallace, A Wilm, R Lopez, JD Thompson, TJ Gibson, and DG 

Higgins. 2007. Clustal W and clustal X version 2.0. Bioinformatics 23: 2947-

2948. 

Lasat, MM. 2002. Phytoextraction of toxic metals: a review of biological mechanisms. 

Journal of Environmental Quality 31:109-120. 

Le Hir, H, E Izaurralde, LE Maquat and MJ Moore. 2000. The spliceosome deposits 

multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. The 

EMBO Journal 19: 6860-6869. 



88 

 

Le Hir, H, D Gatfield, E Izaurralde, and MJ Moore. 2001. The exon-exon junction 

complex provides a binding platform for factors involved in mRNA export and 

nonsense-mediated mRNA decay. The EMBO Journal 20: 4987-4997. 

Lee, YW, CB Klein, B Kargacin, K Salnikow, J Kitahara, K Dowjat, A Zhitkovich, NT 

Christie, and M Costa. 1995. Carcinogenic nickel silences gene-expression by 

chromatin condensation and DNA methylation – A new model for epigenetic 

carcinogens. Molecular and Cellular Biology 15 (5): 2547-2557. 

Lewandowski, I, U Schmidt, M Londo, and A Faaij. 2006. The economic value of the 

phytoremediation function – assessed by the example of cadmium remediation by 

willow (Salix ssp). Agricultural Systems 89: 68-89. 

Luo, M and R Reed. 1999. Splicing is required for rapid and efficient mRNA export in 

metazoans. Proceedings of the National Academy of Sciences 96: 14937-14942. 

Ma, LQ, KM Komar, C Tu, W Zhang, Y Cai, and ED Kenelley. 2001. A fern that 

hyperaccumulates arsenic. Nature 409: 579. 

Maeda, M and M Ito. 1981. Isolation of protoplasts from fern prothalli and their 

regeneration to gametophytes. Botanical Magazine Tokyo 94: 35-40. 

Maillet, C, RK Gupta, MG Schell, RG Brewton, CL Murphy, JS Wall, and BC Mullin. 

2001. Enhanced capture of small histidine-containing polypeptides on membranes 

in the presence of ZnCl2. Biotechniques 30: 1224–1228. 

Malik, K, K Wu, XQ Li, T Martin-Heller, M Hu, E Foster, L Tian, C Wang, K Ward, M 

Jordan, D Brown, S Gleddie, D Simmonds, S Zheng, J Simmonds, and B Miki. 



89 

 

2002. A constitutive gene expression system derived from the tCUP crptic 

promoter elements. Theoretical Applied Genetics 105: 505-514. 

Marklund, U, M Byström, K Gedda, Å Larefalk, K Juneblad, S Nyström, AJ Ekstrand. 

2002. Intron-mediated expression of the human neuropeptide Y Y1 receptor. 

Molecular and Cellular Endocrinology 188: 85-97. 

Matsumoto, K, KM Wassarman, and AP Wolffe. 1998. Nuclear history of a pre-mRNA 

determines the translational activity of cytoplasmic mRNA. The EMBO Journal 

17: 2107-2121. 

Mazarei, M, H Al-Ahmad, MR Rudis, and CN Stewart, Jr. 2008a. Protoplast isolation 

and transient gene expression in switchgrass, Panicum virgatum L. Biotechnology 

Journal 3: 354-359. 

Mazarei, M, I Teplova, MR Hajimorad, and CN Stewart. 2008b. Pathogen phytosensing: 

plants to report plant pathogens. Sensors 8: 2628-2641. 

Mejare, M., and Bulow, L. 2001. Metal-binding proteins and peptides in bioremediation 

and phytoremediation of heavy metals. Trends in Biotechnology. 19: 67–73. 

Mentewab, A, B Nelson, B Mullin, Z-M Cheng and CN Stewart, Jr. 2005. Metallohistins 

for phytoremediation. Twenty-Second Annual Missouri Symposium 'Genomics 

and Beyond: Frontiers in Plant Biology'. April 27-30,  2005, Columbia, Missouri. 

Moeller, L and K Wang. 2008. Engineering with precision: tools for the new generation 

of transgenic crops. Bioscience 58: 391-401.  

Murashige, T and F Skoog. 1962. A revised medium for rapid growth and bio assays with 



90 

 

tobacco tissue cultures. Physiologia Plantarum 15: 473-497. 

Murphy, A, JM Zhou, PB Goldsbrough, and L Taiz. 1997. Purification and 

immunological identification of metallothioneins 1 and 2 from Arabidopsis 

thaliana. Plant Physiology 113 (4): 1293-1301.  

Muthukumar, B, B Yakubov, and DE Salt. 2007. Transcriptional activation and 

localization of expression of Brassica juncea putative metal transport protein 

BjMTPI. BMC Plant Biology 7: 32. 

Namasivayam, P, J Skepper, and D Hanke.  2006.  Identification of a potential structural 

  marker for embryogenic competency in the Brassica napus spp. oleifera 

embryogenic tissue.  Plant Cell Reports 25: 887-895. 

Ovečka, M and M Bobák. 1999. Structural diversity of Papaver somniferum L. cell 

surfaces in vitro depending on particular steps of plant regeneration and 

morphogenetic program. Acta Physiologiae Plantarum 21: 117-126. 

Palta, HK and PN Mehra. 1983. In vitro induction of polyhaploid and octoploid Pteris 

vittata L. and their meiosis. Caryologia 36: 325-332. 

Park, CH, M Keyhan, and M Matin. 1999. Purification and characterization of chromium 

reductase in Psuedomonas putida. Abstract from General Meeting of the 

American Society of Microbiology 99: 536. 

Patel, M, AJ Siegel, and JO Berry. 2006. Untranslated regions of FbRbcS1 mRNA 

mediate bundle sheath cell-specific gene expression in leaves of a C4 plant. The 

Journal of Biological Chemistry 281: 25485-25491. 



91 

 

Pawlowski, K, P Twigg, S Dobritsa, CH Guan, and B Mullin. 1997.  A nodule-specific 

gene family from Alnus glutinosa encodes glycine- and histidine-rich proteins 

expressed in the early stages of actinorhizal nodule development. Molecular 

Plant-Microbe Interactions 10: 656–664. 

Perica, MC, F Gillet, A Jacquin-Dubreuil, M Krsnik-Rasol, and S Jelaska. 1998. Nicotine 

content in transformed haploid and dihaploid tissues of tobacco (Nicotiana 

tabacum L.). Phyton-annales Rei Botanicae 37: 229-239. 

Persans, MW, XG Yan, JMML Patnoe, U Krämer, DE Salt. 1999. Molecular dissection 

of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense. Plant 

Physiology 121 (4): 1117-1126. 

Popielarska-Konieczna, M, M Kozieradzka-Kiszkurno, J Świerczyńska, G Gόralski, H 

Ślesak, and J Bohdanowicz. 2008. Ultrastucture and histochemical analysis of 

extracellular matrix surface network in kiwifruit endosperm-derived callus 

culture. Plant Cell Reports 27: 1137-1145. 

Prada, C, V Moreno, and JM Gabriel y Galán. 2008. Gametophyte development, sex 

expression and antheridiogen system in Pteris incomplete Cav. (Pteridaceae). 

American Fern Journal 98: 14-25. 

Qu, GZ, GF Liu, YC Wang, J Jiang, and MH Wang. 2007. Efficient tissue culture and 

Agrobacterium-mediated transformation of haploid poplar dervied from anthers. 

Russian Journal of Plant Physiology 54: 559-563. 

Raghavan, V. 1989. Control of differentiation of sex organs on gametophytes. In: PW 



92 

 

Barlow, D Bray, PB Green, and JMW Slack, eds. Developmental Biology of Fern 

Gametophytes. Cambridge, Great Britian: Cambridge University Press 199-220. 

Rauser, WE. 1995. Phytochelatins and related peptides – structure, biosynthesis, and 

function. Plant Physiology 109 (4): 1141-1149. 

Rauser, WE. 1999. Structure and function of metal chelators produced by plants - The 

case for organic acids, amino acids, phytin, and metallothioneins. Cell 

Biochemistry and Biophysiology 31: 19–48. 

Rutherford, G, M Tanurdzic, M Hasebe, and JA Banks. 2004. A systemic gene silencing 

method suitable for high throughput, reverse genetic analyses of gene function in 

fern gametophytes. BMC Plant Biology 4: 6. 

Redford, K, MD Berliner, JE Gates, RW Fisher, and BF Matthews. 1987. Protoplast 

induction from sporophyte tissues of the heterosporous fern Azolla. Plant Cell, 

Tissue and Organ Culture 10: 187-196. 

Sandal, NN, K Bojsen, and KA Marcker. 1987. A small family of nodule specific genes 

from soybean. Nucleic Acids Research. 15: 1507-1519. 

Schallau, A, I Kakhovskaya, A Tewes, A Czihal, J Tiedemann, M Mohr, I Grosse, R 

Manteuffel, and H Bäumlein. 2008. Phylogenetic footprints in fern spore- and 

seed-specific gene promoters. The Plant Journal 53: 414-424. 

Schenk, PM, T Remans, L Sagi, AR Elliott, RG Dietzgen, R Swennen, PR Ebert, CPL 

Grof, and JM Manners. 2001. Promoters for pregenomic RNA of banana streak 

badnavirus are active for transgene expression in monocot and dicot plants. Plant 



93 

 

Molecular Biology 47: 399-412. 

Schwartz, AM, TV Komarova, MV Skulachev, AS Zvereva, YL Dorokhov, JG 

Atabekov. 2006. Stability of plant mRNAs depends on the length of the 3’-

untranslated region. Biochemistry (Moscow) 71: 1377-1384. 

Sheffield, E, S Laird, and PR Bell. 1983. Ultrastructural aspects of sporogenesis in the 

apogamous fern Dryopteris borreri. Journal of Cell Science 63: 125-134. 

Shen, H and YT Wang. 1995. Modeling simultaneous hexavalent chromium reduction 

and phenol degredation by a defined coculture of bacteria.  Biotechnology and 

Bioengineering 48: 606-613. 

Sivamani, E and R Qu. 2006. Expression enhancement of a rice polyubiquitin gene 

promoter. Plant Molecular Biology 60: 225-239. 

Sondahl, MR, JL Salisburi, and WR Sharp. 1979. SEM characterization of embryogenic 

tissue and flobular embryos during high frequency somatic embryogenesis in 

coffee callus cells. Zeitschrift Fur Pflanzenphysiologie 94: 185-187. 

Sugai, M. 1968. The changes of respiratory quotient during the early development in fern 

gametophytes. Embryologia 10: 164-172. 

Trotta, A, M Mantovani, A Fusconi, and C Gallo. 2007. In vitro culture of Pteris vittata, 

an arsenic hyperaccumulating fern, for screening and propagating strains useful 

for phytoremediation. Caryologia 60: 160-164. 

Virkutyte, J, M Sillanpää, and P Latostenmaa.  2002. Electrokinetic soil remediatin – 

critical overview. The Science of the Total Environment 289: 97-121. 



94 

 

Waalkes, MP, TP Coogan, and RA Barter. 1992. Toxicological principles of metal 

carcinogenesis with special emphasis on cadmium. Critical Reviews in 

Toxicology 22 (3-4): 175-201. 

Whittier, DP. 2003. Rapid gametophyte maturation in Ophioglossum crotalophoroides. 

American Fern Journal 93: 137-145. 

Yang, X, H Chen, W Xu, Z He, and M Ma. 2008. Hyperaccumulation of arsenic by 

callus, sporophytes and gametophytes of Pteris vittata cultured in vitro. Plant Cell 

Reports 26: 1889-1897.  

Zhao, FJ, SJ Dunham, and SP McGrath. 2002. Arsenic hyperaccumulation by different 

fern species. New Phytologist 156: 27-31. 

Zheng, YQ, WZ Xu, ZY He, and M Ma. 2008. Plant regeneration of the arsenic 

hyperaccumulator Pteris vittata L. from spores and identification of its tolerance 

and accumulation of arsenic and copper. Acta Physiologiae Lantarum 30: 249-

255. 

Zhou, L, ZT Lai, MK Lu, XG Gong, and Y Xie. 2008. Expression and hydroxylamine 

cleavage of Thymosin alpha 1 concatemer. Journal of Biomedicine and 

Biotechnology DOI: 10.1155/2008/736060. 



95 

 

Vita 

 

 Blake Lee Joyce was born in Atlanta, GA on March 20, 1984.  He was raised in 

Marietta, GA where he attended elementary school, middle school, and graduated from 

Wheeler High School in 2002.  From there he went to the University of Georgia in 

Athens, GA and received a B.S. in Biology and another B.S. in Ecology in 2006.  While 

working for Dr. Wayne Parrott, he met Dr. Neal Stewart and started work as a graduate 

research assistant in January 2007.  He received his Master of Science degree in Plant 

Sciences with a minor in Statistics from the University of Tennessee, Knoxville in 

December 2008.      

 


	Characterization of the Metallohistin cDNA AgNt84 and Pteris vittata Tissue Culture for Phytoremediation
	Recommended Citation

	To the Graduate Council:

