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Abstract 
 
 

An investigation of the current distribution in a 3-phase triaxial superconducting 

cable was conducted to study the phase imbalance under steady-state operation and to 

assist in the construction of a transient model to study operational impacts in a power 

grid. 

The triaxial cable consisted of three superconducting concentric phases inside a 

copper shield, with each phase composed of multiple layers of BSCCO tape wound 

helically in opposite directions. Current distribution within the cable was determined by 

using an electric circuit (EC) model containing the self and mutual inductances resulting 

from both axial and tangential magnetic fields. An AC loss term was also included in the 

model. Building on the EC model, a lumped cable model was used to investigate the 

effects of the triaxial cable on a power grid when faults are applied to the system. Cable 

lengths for future applications (~16 km) were considered. 

Steady-state simulation of the EC model revealed that the electrical imbalance 

associated with the phases of the triaxial cable may be negligible for cable lengths less 

than one mile, but become more of a concern at greater lengths. Transient simulations 

showed that fault currents approaching 30 kApeak may be possible under certain 

conditions and that resulting induced shield currents may be substantial. 

Recommendations for further research are provided as well as possible 

suggestions for alleviating the electrical imbalance. 
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Chapter 1 
 
 

Introduction and Background 
 
 

Since the discovery of superconductivity at the beginning of the twentieth century, 

researchers have been attracted by its potential for high current-carrying capacity for use 

in electric power transmission systems. Early attempts to design superconducting power 

cables showed technical promise, but proved impractical from an economic standpoint 

due to costs of the liquid helium cooling needed to obtain critical temperatures 

approaching 4 K [1]. In the late 1980’s, certain ceramic compounds were discovered that 

could achieve a superconducting state at temperatures > 77 K. These superconducting 

ceramic compounds, or high temperature superconductors (HTS), could be cooled using 

liquid nitrogen (LN2) at costs much cheaper than their liquid helium-cooled, low 

temperature superconducting (LTS) counterparts. The discovery of HTS materials 

including the improvement of HTS tape conductors to large engineering critical current 

densities approaching 20 kA/cm2 at 77 K have caused a resurgence in the research and 

development of superconducting power cables, including a triaxial HTS cable prototype 

to be installed in Columbus, Ohio by Ultera and American Electric Power (AEP). 

 

Advances in superconductor technology make the prospect of economical operation of a 

superconducting cable a practical concept for certain utility grid applications. One such 

application is in urban centers, where an increasing populous and industrial presence has 

increased the demand for electric power in already overloaded transmission grids. 

Considering the high costs of digging new underground tunnels, and with no room to add 

more cables in existing tunnels, retrofitting existing underground cables with HTS power 

cables that can carry over three times the current of conventional, oil-cooled, copper 

cables may be a logical solution. In addition, the large oil-cooled cables that currently 

transport electric power though underground tunnels are lossy and potentially pose an 

 1



environmental hazard if the cooling oil leaks. HTS power cables would eliminate this 

environmental hazard because the oil is replaced with environmentally friendly LN2 [2]. 

 

 

1.1 General Behavior of Superconductors 
 

Superconductors have the ability to conduct DC electrical current with virtually zero 

resistance within a specific operating range when cooled below their critical temperature, 

Tc. The maximum amount of current that can be applied to a superconductor at a certain 

temperature without encountering resistance is known as the critical current, Ic, and is 

defined in practice to be the DC current that produces a voltage gradient of 1 µV/cm. If 

the applied current or temperature exceeds the critical value, the conductor becomes 

resistive and assumes the normal state of operation. The resistance of an ideal HTS 

conductor as a function of temperature is presented in figure (1.1) and  
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Figure (1.1) Comparison of the resistance curves for an ideal superconductor and a 

conventional conductor in the 0-300 K temperature range. 
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reveals that the resistance is virtually zero for temperatures up to Tc, then the conductor 

assumes the linear resistance of the normal state. A comparison of the V-I curve of an 

actual superconductor to that of conventional copper is presented in figure (1.2). As 

shown in figure (1.2), when I>Ic is applied, the HTS conductor reaches an unstable mode 

of operation where small changes in current result in large changes in voltage. It is in this 

mode of operation where thermal gradients can cause permanent damage to the HTS 

conductor if precautionary measures are not taken. The superconductivity of a material is 

also affected by externally applied magnetic fields where perpendicular fields relative to 

the flat surface of the HTS tape cause the most degradation of the Ic [3]. However, for 

most HTS cable designs, the magnetic fields generated are parallel to the tape surface and 

do not adversely affect the conductors so significantly. More detailed information 

regarding the physics and behavior of high temperature superconductivity is available in 

literature [4], and is not discussed further in this study.  
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Figure (1.2) Comparison of V-I curves for an actual superconductor and a conventional 

conductor. 
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1.2 HTS Power Cables 
 

HTS power cables generally consist of helically wound layers of HTS tape around a 

former. Many layers of a dielectric material are wound around the HTS tapes to 

electrically insulate the conductors. An HTS cable is then typically encased in a stainless 

steel, vacuum-jacketed cryostat to insulate the cryogenic environment from ambient 

temperatures. The LN2 cooling scheme utilized by an HTS power cable is characterized 

by its cable type and is designed based on the cable configuration and particular 

application. Heat losses that affect cryogenic cooling in HTS cables result from the AC 

losses in the HTS tapes and heat-in-leak losses that occur from outside ambient 

temperature gradients across the cryostat. One of most technically challenging aspects of 

an HTS cable is the termination design, where a temperature transition from a 

conventional copper conductor at ambient temperature to LN2-cooled, HTS occurs while 

maintaining a closed electrical circuit. A description of a single-phase HTS cable is 

presented in figure (1.3). 

 

 

 
 

 

Figure (1.3) Single-phase HTS cable with an HTS return path (coaxial shield). 

 

 4



1.2.1 HTS Tapes 

 

There are many kinds HTS conductors available for use in HTS power system 

applications [5]. For the majority of HTS power cable designs, Ba2Sr2Ca2Cu3O2 

(BSCCO) is preferred because of its mechanical strength and ability to be fabricated 

easily in long lengths [6]. HTS BSCCO tape conductors are fabricated using the oxide 

powder-in-tube or OPIT technique, where the ceramic BSCCO powder is poured into a 

cylindrical Ag/alloy sheath consisting of a meshed cross-section. The Ag/alloy cylinder 

and BSCCO powder is then subjected to a series of heating and annealing treatments, 

until a flat HTS tape is produced. Additional mechanical and electrical stabilizers can 

then be applied if desired. Although not as ductile as conventional copper conductors, 

BSCCO HTS tapes are flexible enough so that the helical winding of them up to a critical 

lay angle does not degrade Ic. A schematic of the Ag/alloy cylinder and fabricated HTS 

tape is presented in figure (1.4). The amount of BSCCO relative to the matrix material is 

referred to as the fill factor. For instance, a fill factor of 40% refers to an HTS tape that 

consists of 40% BSCCO and 60% matrix material. 

 

 

 
 

 

Figure (1.4) Fabrication of BSCCO HTS tape using the OPIT technique. Ag/alloy 

cylinder with meshed cross-section (left) and fabricated HTS tape (right) with typical 

dimensions. 
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1.2.2 Types of HTS Power Cables 

 

Cable designs employing HTS tape technology are characterized as either warm 

dielectric (WD) or cold dielectric (CD) depending on their liquid nitrogen cooling 

schemes. WD cables have a nitrogen flow through the core so that the HTS conductor is 

cooled from the inside out, while the dielectric is applied on the outside of the cryostat at 

ambient temperature. CD cables have a nitrogen flow on the outer surface of the cable so 

that the dielectric material is exposed to the cryogenic environment and the HTS 

conductor is cooled from the outside in. A schematic of both cable types is presented in 

figure (1.5). Generally, CD cables have a nitrogen flow through the core in addition to the 

outer flow. Both types of HTS cables have positive and negative attributes [7]. Due to the 

ambient temperature of the applied dielectric on WD cables, low cost conventional 

dielectric materials can be used to electrically insulate the conductors, it also makes 

 

 

 

 
 

Figure (1.5) Types of cryogenic power cables. Warm dielectric (left) with one HTS 

conductor path and cold dielectric (right) with two HTS conductor paths (coaxial). 
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possible the installation of such cables into already existing ductwork. This ability makes 

WD cables attractive for retrofits where power cable ductwork already exists. It also 

results in lower material and installation costs. Although WD cables can handle a power 

capacity double than that of conventional oil-cooled copper cables at the same voltage 

rating, the lack of an electrical return path results in transport losses in the cryostat, 

ductwork, and other cables due to stray magnetic fields. CD cables have higher initial 

costs than WD cables due to the additional HTS shielding material and expensive LN2-

impregnated dielectric materials that can withstand cryogenic temperatures. However, the 

outer nitrogen flow in CD cables allow for an HTS return path to shield magnetic fields 

so that no transport losses occur in surrounding cable components. Although initially the 

costs of CD cables may be higher than the WD type, these costs may be balanced over 

long term operation because CD cables can operate at a higher current capacity with 

minimal transport losses. These advantages in CD cables result in potential power 

capacities approaching four times conventional cables. The types of HTS power cables 

have been summarized in table (1.1). 

 

 

1.2.3 Geometric Configurations of HTS Power Cables 

 

Several geometric configurations for HTS power cables have been considered for 3-phase 

electric power transmission, each with its own advantages and drawbacks. Major HTS 

cable projects currently under way are utilizing three basic geometric schemes based on 

the particular cable application. These three geometric configurations: coaxial, triad, and 

triaxial, are discussed in the literature [8, 9] and presented in figure (1.6). A brief 

description of each configuration is included in this study and summarized in table (1.2). 

 

The coaxial design contains both an HTS forward conducting path and an HTS return 

conducting path. A description of this arrangement has been presented in figure (1.3). To 

achieve three electrical phases, three of these single-phase coaxial cables are positioned  
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Table (1.1) Comparison of HTS power cable types 

 

Cable Type Description Advantages/Disadvantages 
Warm-dielectric -LN2 flow in core only. 

 
-Dielectric materials are applied 
outside the cryostat at ambient 
temperature. 
 

-Can be insulated with 
conventional dielectric materials 
 
-Can be installed into existing 
ductwork resulting in lower 
installation costs. 
 
-Potential power capacities 
approaching double that of 
conventional cables. 
 
-Requires metal shielding. 

Cold-dielectric -LN2 flow on outside of cable 
and possibly through core also. 
 
-Dielectric materials operate in a 
cryogenic environment. 
 

-Requires more expensive 
dielectric materials that can 
operate at 77 K. 
 
-HTS shielding can be used to 
contain magnetic fields, 
decreasing the amount of heat 
loss due to induced currents. 
 
-Potential power capacities 
approaching 4 times that of 
conventional cables possible. 
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Table (1.2) Comparison of HTS power cable designs. 

 

Design Advantages Disadvantages 
3-phase coaxial -No metallic shield required. 

 
-No external magnetic fields, so 
no heat losses from surrounding 
ductwork caused by induced 
currents. 
 

-A large amount of HTS tape is 
required because of the HTS 
shield.  
 
-Requires three cryogenic 
systems to cool the three cables. 

Triad  -The amount of cryogenic 
surface area is reduced. 
 
-Consumes less space than the 3-
phase coaxial design. 

-Like the 3-phase coaxial, there 
is still an HTS shield. 
 
-Cryogenic resources are 
reduced, because there is only 
one LN2 return path, but there 
are still three separate forward 
paths. 

Triaxial -Amount of cryogenic surface 
area is significantly reduced. 
 
-No HTS shield is required, 
reducing the amount of HTS 
tape by a factor of 2. 
 
-Consumes much less space than 
the other two designs. 

-Small electrical imbalance due 
to cable asymmetry. 
 
-All phases replace in case of 
defect. 
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Figure (1.6) 3-phase HTS power cable configurations. 

 

 

adjacently in a parallel arrangement with three separate sets of terminations. This 

configuration has been successfully demonstrated [10, 11] at the Southwire Plant in 

Carrolton, Georgia with over 26,000 hours of operation supplying power to the Southwire  

manufacturing plant since 2001. There are a few desirable qualities of the CD coaxial 

design that make it more desirable than other cable configurations. First, the outer LN2 

flow allows for an HTS return path so that the vector sum of the external magnetic fields 

is zero, eliminating the need for a metallic shield. Since there are no magnetic fields on 

the outside of the cable, heat loss resulting from induced currents in the cryostat or other 

surrounding metal parts does not occur, therefore the capacity for current flow in the 

coaxial design is up to four times that of conventional cables of the same voltage rating. 

Second, the coaxial design is the easiest to realize technically from an electrical and 

cryogenic standpoint because it consists of three, more simple single-phase systems. 

However, there are drawbacks to this design starting with the increased amount of HTS 

tape required to make the return conducting path, and the considerable amount of tunnel 
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space consumed by the three single-phase systems. Another economic drawback of the 

coaxial design is the additional operational and maintenance costs resulting from the 

three separate cryogenic systems. 

 

The triad design consists of three single-phase HTS cables placed triangularly in a 

common cryostat. Such a design has been successfully developed by Tokyo Electric 

Power and Sumitomo Electric Industries [12, 13]. Both WD and CD versions of this 

design have been considered, although the WD has perpendicular field issues that 

degrade cable Ic. The advantages of the triad design are that the total cryogenic surface 

area and the amount of consumed space have been effectively reduced due to the 

common cryostat. However, the amount of HTS tape has not been reduced because the 

CD version of this design consists of three coaxial HTS cables. 

 

The triaxial design is a CD cable in which all three electrical phases are arranged 

concentrically in a single cryostat. The basic construction of the triaxial cable design is 

presented in figure (1.7). Since the net vector sum of the magnetic fields of the three  

phases is small in this design, an HTS return path is not needed, and the amount of HTS 

tape is reduced by a factor of two relative to the coaxial and triad designs. In addition, the 

total cryogenic surface area has been significantly reduced, thereby reducing the 

cryogenic system capacity required to adequately cool the cable. These advantages 

coupled with its compact size make the triaxial cable an interesting prospect for power 

utilities with an expanding power capacity and limited conductor space. However, there 

is an inherent electrical imbalance due to an asymmetry in the cable cross-section. The 

differences of radii of the three concentric phases cause a small net current imbalance 

during steady-state operation that result in net external magnetic fields. These magnetic 

fields are small enough that a cold copper shield at 77 K placed concentrically with 

respect to the three phase conductors can adequately manage any induced currents. A 

prototype of the triaxial design has been scheduled for installation at the Bixby substation 

in Columbus, Ohio by Ultera and American Electric Power [14]. Although technically the 
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Figure (1.7) 3-phase triaxial cable with cold copper shield. 

 

 

most difficult to realize because of termination issues and temperature gradients during 

transients, the triaxial design has prompted interest from cable designers and utilities and 

is hence the subject of this study. 

 

 

1.3 Triaxial Cable Study 
 

The triaxial cable to be installed at the Bixby substation in Columbus, Ohio has design 

specifications to achieve a rating of 13.2 kV, 3 kArms per phase, and 69 MVA. The 200 

m-long prototype will connect two 13.2 kV buses that feed a radial line. The cable will be 

feed by a 138 kV/13.2 kV, DELTA/WYE-grounded transformer containing a circuit 

breaker on the high side. A circuit breaker will also be applied at the termination bus, 

where radial lines will supply power to their respective loads. The cold copper shield and 

stainless steel cryostat will be grounded at the endpoints to substation ground. A line  
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138 kV 13.2 kV

B 1 B 2 Load

HTS triaxial cable

∆ Y-ground  
 

 

Figure (1.8) Line diagram of the triaxial cable at the Bixby substation. 

 

 

diagram describing the basic substation components and location of the triaxial cable is 

presented in figure (1.8). The purpose of this study is to investigate the electrical 

properties of a triaxial cable for cable lengths > 200 m where electrical imbalances may  

be more significant. Line lengths practical for future applications, ~16 km, will be 

considered under different operating conditions.  

 

 

1.3.1 Electric Circuit Model 

 

An electric circuit (EC) model will be constructed to represent the triaxial cable for 

simulation in the Alternative Transients Program. Previous studies have evaluated single-

phase HTS cables using EC models to study current distribution throughout the HTS tape 

layers [1, 15-17]. These studies have been used to optimize tape lay angles so that current 

distribution across the HTS cable cross-section is uniform, resulting in reduced AC 

losses. For the purpose of this study, the lay angles are assumed to be optimized by cable 

designers so that the investigation can focus on the electrical interaction of the three 

phases. Therefore, pi-equivalent circuits, which account for mutual and self inductances, 

capacitances, and the resistance of each phase, will be used to model the cable. The phase 

resistances are dynamic and will be modeled as functions of the transport current. An 

ATP subroutine will be used to model the cold copper shield. The resulting triaxial EC 

model will contain all three HTS phases and the cold copper shield. 
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1.3.2 Triaxial Cable Specifications 

 

The specifications of the triaxial HTS cable considered in this study are presented in table 

(1.3). A sketch of the triaxial cross-section is presented in figure (1.9). From the inside-

out, the triaxial cable basically consists of a hollow corrugated former wrapped with 

layers of bedding tape. The first HTS conductor phase, phase A, is then applied 

consisting of two helically wound layers of HTS tape. The two HTS layers are wound in 

opposite directions to cancel magnetic fields and are wrapped with multiple layers of 

CryoflexTM, a dielectric tape material designed for operation in cryogenic temperatures. 

Phases B and C are constructed in the same matter as phase A, so that all three layers are 

wrapped in layers of CryoflexTM to electrically insulate the phases from each other and 

the copper shield, A space between the copper shield and the cryostat provide a path for a 

LN2 flow. 

 

 

Table (1.3) Technical specifications of the HTS triaxial cable. 

 

Cable Parameter Value 
Phase current [Arms] 3,000 
Voltage [Vrms] 15,000 
HTS tape cross-section [mm] 4.16 X 0.2 
Operating temperature [K] 77 
Phase A Ic [A] 5860 
Phase B Ic [A] 6490 
Phase C Ic [A] 6700 
Phase A ID/OD [mm] 42/43 
Phase B ID/OD [mm] 47/48 
Phase C ID/OD [mm] 52/53 
Shield ID/OD [mm] 58/60 
Phase A lay angles [degree] 20/22 
Phase B lay angles [degree] 24/25 
Phase C lay angles [degree] 30/31 
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Figure (1.9) Triaxial cable cross-section showing the three superconducting phases and 

the copper shield (not to scale). 
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1.3.3 Simulation of EC model 

 

The EC model outlined in section 1.3.1 will be simulated for two different operating 

conditions. In the steady-state operating condition, the cable operates within specified 

ratings and the applied voltage is symmetrical across the three phases due to a balanced, 

3-phase load. This operating condition presents the most balanced case electrically, 

however cable asymmetry may affect the electrical balance over long lengths.  

 

Transient operating conditions will also be introduced by applying different faults at the 

load end of the cable. During this mode of operation, electrical imbalances are expected 

to be large depending on the fault type. For both modes of operation, the induced shield 

currents will be assessed. 

 

 

1.3.4 Objectives 

 

The objectives of this study are to calculate the electrical imbalances of the triaxial cable 

for steady-state and transient operating conditions. Knowledge regarding the order of 

magnitude of the currents induced in the cold copper shield during steady-state operation 

will allow for proper design constraints so that significant heating does not affect the 

HTS layers. The amount of electrical imbalance in the triaxial cable may also present a 

power quality issue if the power factor angles become too large. For transient operating 

conditions, knowledge regarding the order of magnitude of the resulting fault currents 

and induced shield currents will help determine if any addition stabilizer material applied 

to the electrical phases is needed. The work to be presented here is an exploratory study 

and is the first step to understanding the electrical behavior of the triaxial design. Future 

studies may be able to expand upon this work by adding more technical specifications 

and detailed modeling. 
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Chapter 2 
 
 

Triaxial Cable Model 
 
 

An electric circuit (EC) model was constructed describing the general electrical behavior 

of the superconducting triaxial cable. Successful use of EC models to represent single-

phase HTS cables for studying the current distribution across the multiple HTS tape 

layers has been previously accomplished [15-20]. The purpose of these studies was to 

determine the optimal tape lay-angles that result in the most uniform layer current 

distribution in order to minimize AC losses. The unequal current distribution across the 

tape layers is due to the inherent impedance difference of each tape layer caused by their 

different radii. Since the outer tape layers will have larger radii, their inductance will be 

smaller than the interior layers, and their inductive reactance will be smaller causing 

current to flow in the outer layers first.  

 

The triaxial cable presents a different problem because it contains three electrical phases 

that are electrically insulated from each other with dielectric material. Although the 

current distribution issue is present within the two HTS tape layers of each phase, it is not 

as significant as the effects of the three-phase transmission paths caused by the difference 

in phase radii and mutual coupling. As previously stated, the different radii of the 

concentric three phases cause electrical imbalances to occur. The EC model constructed 

for this study, accounts for these electrical imbalances by considering the self and mutual 

impedances caused by the geometrical asymmetry of the three conducting phases, and 

calculates the effect of these imbalances on the cold copper shield.  

 

An EC model describing the HTS triaxial cable was constructed for use in the Alternative 

Transients Program (ATP) using a pi-equivalent model. The pi-equivalent was the model 

chosen to represent the triaxial cable because it is relatively simple to implement and is a 

standard transmission line model. The pi-equivalent model allows for the consideration of 
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self-impedances along with mutual coupling, both of which are relevant for this study. 

Figure (2.1) shows a pi-equivalent circuit for a three-phase line where resistance, R, 

inductance and L are shown. 

 

 

2.1 Alternative Transients Program 
 

The EC model was constructed using the Alternative Transients Program (ATP) [21], a 

power transients program that is a derivative of the Electromagnetic Transients Program 

(EMTP). ATP was developed to numerically analyze transients for power systems 

containing a variety of conventional and user-defined components. This ability of ATP to 

model unconventional components is an advantage over some of the other power systems 

analysis software packages that have components with fixed capabilities. 

 

Since ATP is a text-based program, it is not as user-friendly as other point and click type 

software packages. However, the recent development of a schematic capture program for 
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Figure (2.1) Pi-equivalent circuit diagram (Shunt capacitance and shield not shown). 
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ATP called ATPDraw [22], has significantly reduced the rigor of learning syntax and 

programming commands. To construct and analyze a system, the user chooses the desired 

components from the component library, connects the nodes, defines the parameters of 

each component, and then executes the simulation. ATPDraw converts the schematic into 

code that is executed by ATP during simulation. The simulation results are stored in an 

output file where they can be evaluated. 

 

ATP has useful elements and subroutines that assist with the analysis of certain power 

system components. For modeling the triaxial cable, the cable parameters (CP) 

subroutine was used to calculate the cable impedances and generate an equivalent-pi 

model given cable cross-section and material composition. The dynamic resistance of the 

triaxial cable was modeled using a type-99 nonlinear resistance element that determines 

phase resistance based on the phase current. Several transmission line models, including 

the equivalent-pi model, are available in ATP for power transmission studies. 

 

ATP is available by mail or on the web for free, but the user must sign an agreement in 

order to obtain a license before access to the program is allowed. For the development of 

the triaxial cable model, an ATP version called ATPMingw32 that is compatible with 

WindowsXP, along with ATPDraw version 4.1 was used. 

 

 

2.2 Triaxial Cable Configuration in ATP 
 

The triaxial cable model consists of two major types of components in ATP, the three 

phase conductors and the copper shield. Represented as sub-matrices in the pi-equivalent 

model, these components are determined independently and then combined to form the 

completed model. Both components along with the methods used to determine them are 

described in this section. The inclusion of a dynamic resistance component that 

represents the behavior of the HTS conductor is also described. 
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2.2.1 3-Phase Parameters 

 

The equivalent-pi model requires the RLC parameters of the three conducting phases. For 

the triaxial cable, the self and mutual inductances resulting from tangential and axial 

magnetic fields were also included. A more detailed description of the calculation of 

these inductances is provided in chapter 3. The capacitance was found using conventional 

methods [23] and is described in chapter 3. To include the dynamic resistance, the three 

phase resistances in the pi-equivalent model were set to values approaching zero and a 

type-99 resistance element was connected in series with each phase. This method was 

used because the pi-equivalent impedance matrix cannot accept changing resistance 

values. The type-99 element reads a user-defined V-I table from which it chooses a 

voltage drop based on the phase current. Table (2.1) summarizes the parameters for the 3-

phase component of the triaxial pi-equivalent matrix. 

 

 

Table (2.1) Summary of 3-phase parameters for the pi-equivalent model. 

 

Parameter Description Configuration in ATP 
Dynamic Resistance 

 
(chapter 4) 

-An effective dynamic resistance 
consisting of AC loss and 
transport loss in the HTS tape. 
 
-A function of the phase current. 
 
-Temperature is constant. 

-Represented by type-99 
nonlinear resistance element in 
series with pi-equivalent. 

Series Inductance 
 

(chapter 3) 

-Accounts for axial and 
tangential magnetic fields. 
 
-Self and mutual inductances are 
accounted for. 

-Represented in pi-equivalent. 

Shunt Capacitance 
 

(chapter 3) 

-Results from the interaction of 
electric fields. 

-Represented in pi-equivalent. 
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A combination of AC loss and the transport loss within the HTS tapes, the current- 

dependent resistance was approximated assuming a constant temperature of 77 K. Ohm’s 

law was then used to compile a V-I table based on the approximated dynamic resistance 

values. Calculation of the effective dynamic resistance and its components are described 

in detail in chapter 4. To approximate voltages from the V-I table based on phase current, 

the type-99 element uses linear interpolation to produce a smooth resistance 

characteristic. 

 

 

2.2.2 Copper Shield 

 

The cold copper shield surrounding the three electrical phases was included in the model 

using the CP subroutine in ATP. CP produced a pi-equivalent model containing the 

impedances of the phase conductors, the shield, and those resulting from mutual 

coupling. CP accounted for not only the mutual coupling between the phases, but also 

between each phase and the shield. For the triaxial cable, CP was configured to 

approximate cable impedances based on a cable in an underground pipe. The program 

used the Carson and Pollaczek methods to calculate the cable impedances [24], which are 

dependent on the proximity of the cable to shield and the soil. The behavior of electric 

power cables in underground pipes have been analyzed in previous studies using these 

methods without the assistance of ATP [25]. To model the copper shield in CP, the three 

phase conductors also had to be included into the subroutine so that ATP could calculate 

the mutual effects of the phases on the shield. To accomplish this, the triaxial cable was 

specified as having four conducting phases, with the shield being the fourth phase. The 

corresponding cross-sectional geometry and material properties of the three phases, 

dielectric, and the shield where entered into CP. CP then produced a 4X4 pi-equivalent 

matrix describing the three conducting phases and the copper shield. Figures (2.2) and 

(2.3) show the CP input menus with corresponding triaxial data. Figure (2.4) is a view of 

the CP generated cable cross-section. A summary of significant CP parameters and their 

respective values for a 16 km-long cable is presented in table (2.2).  
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Figure (2.2) Cable Parameters Model menu in ATP for a 16 km-long HTS triaxial 

cable. 

 

 

 
 

Figure (2.3) Cable Parameters Data menu in ATP for a 16 km-long HTS triaxial cable. 
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Figure (2.4) Cable Parameters view of the triaxial cable cross-section. 
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Table (2.2) Significant input parameters for CP to model a 16 km-long HTS triaxial 

cable. 

 

CP parameter Description Value 

System Type Cable type Underground 

# Phases Number of cable phases. 4 (3 electrical phases and copper 
shield.) 

Length Cable length 16 km 

Rho earth Soil resistivity 1.77E-8 [ohm*m] 

Rho pipe Resistivity of the copper shield. 1.77E-8 [ohm*m] 

Rho conductor Resistivity of HTS phases. 1E-10 (set to a value 
approaching zero) 

mu Relative permeability of HTS 
conductor. 1 

mu (ins) Relative permeability of 
dielectric (CryoflexTM). 1 (nominal value) 

eps (ins) Relative permittivity of the 
dielectric (CryoflexTM). 2.6 

Core Represents the first conducting 
phase. on (default) 

Sheath 
Represents the second 
conducting phase in the triaxial 
model. 

on 

Armor Represents the third conducting 
phase in the triaxial model. on 
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Initially, the earth resistivity was set too high, and the resulting R, L, and C terms for the 

three phase components were higher than those calculated in chapters 3 and 4. After 

some investigation, it was discovered that Carson’s formula considers the effective radial 

distance of the magnetic field from the center of the 3-phase conductors to be related to 

the frequency and resistivity of the propagation medium as presented in equation (2.1). 

 

[ ]m
f

kS

ρ

=   (2.1) 

 

S—Conductor-to-image distance below ground. 

f—Power frequency (60 Hz). 

k—A constant of proportionality. 

ρ—Soil resistivity [ohm-m]. 

 

 

Equation (2.1) reveals that higher resistivity values result in a larger effective distance, S, 

which causes the inductive reactance to increase, because the effective distance acts like 

the radial distance to the shield for the calculation of the inductance. Several values for 

the resistivity were attempted in CP, and for smaller resistivity values, the impedances of 

the three phases became smaller, approaching the calculated values. It was discovered 

that when the resistivity of the earth equaled that of the copper shield, that the three phase 

impedances strongly correlated with the calculated values. This result assumes that the 

copper enclosure acts as a complete shield so that earth return currents are avoided, a 

condition that was also assumed for the calculation of the cable inductances and 

capacitances in chapters 3 and 4. Therefore the magnetic fields are assumed to exist only 

in the copper for the purposes of this study, and do not propagate into the earth. 
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2.2.3 Constructing the Pi-Equivalent Impedance Matrix 

 

The first 3X3 rows and columns of the 4X4 pi-equivalent impedance matrix is the sub-

matrix that contains the model of the 3-phase conductors alone, and does not contain any 

shield components. The resulting impedance values of this sub-matrix from the CP 

calculation were very close to those calculated in chapter 3, resistance is very small as 

specified in the CP subroutine. However, CP only evaluates transverse electromagnetic 

(TEM) phenomena, so axial fields resulting from the helical winding of the HTS tapes 

are not accounted for. This issue was resolved by replacing the CP values of inductance 

for the 3X3 sub-matrix by those calculated in chapter 3. The capacitance values generated 

by CP were nearly an exact match to the values calculated in chapter 3, so no correction 

was necessary. The resulting pi-equivalent matrix is presented in table (2.3). 

 

 

 

Table (2.3) Pi-equivalent impedance matrix for a 16 km-long triaxial cable 

 

Matrix element R [Ω] L [mH] C [µF] 

11 10-10 1.13 26.15 

21 0.00 0.67 -26.15 

22 10-10 0.71 55.23 

31 0.00 0.39 0.00 

32 0.00 0.37 -29.06 

33 10-10 0.38 54.88 

41 0.00 0.26 0.00 

42 0.00 0.26 0.00 

43 0.00 0.26 -19.73 

44 1.53 0.24 33.60 
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2.2.4 Completion of Triaxial Cable Model 

 

To make the pi-equivalent matrix useful for power systems analysis in ATP, it had to be 

presented in a form to make it accessible to other conventional grid components. To 

accomplish this a user-defined function called SUPc was created in ATPDraw that 

accepts the pi-equivalent impedance matrix from an output file, and defines separate 

nodes for the 3-phase conductors and copper shield. The major benefit of SUPc function 

is that it allows other system components like the type-99 element, AC sources, and other 

SUPc functions to be connected in series. This benefit allows for the insertion of voltage 

and current meters between pi models so that cable data can be acquired as a function of 

distance, it also allows for the possibility of phase transposition if desired. 

 

The final equivalent circuit consisted of the SUPc function with its three phase conductor 

node connected in series with a dynamic resistor bank. Both shield nodes are grounded 

corresponding to the shield being grounded at the endpoints. A description of the 

ATPDraw schematic of the HTS triaxial cable model is presented in figure (2.5).  

 

Ra

Rb

Rc

Effective dynamic 
resistance elements

3-phase conductor component of the 
pi-equivalent (phase resistances set 
to nearly zero). 

Shield component of pi-
equivalent (shield grounded 
at endpoints).

Cable Parameters 
subroutine.

 
 

Figure (2.5) ATP circuit representation of the triaxial cable model with grounded 

copper shield and dynamic resistances. 
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2.3 Transmission Line Model 
 

A transmission line model of the triaxial cable was composed using the telegraph 

equations [26] to check results produced by the ATP model. Several approximations were 

made to simplify the construction of the model including negligible layer thicknesses, 

exclusion of a non-linear resistance term, and exclusion of the dynamic resistances. Since 

the transmission line model is valid for only TEM phenomena, the axial field inductance 

terms are also neglected. A copper shield was included to geometrically set the ground 

plane, but shield currents were excluded from the analysis. Since these neglected 

parameters had a small effect on the solutions, their exclusion from the transmission line 

model did not produce a significant difference from the results in ATP. The characteristic 

impedance of the line was approximated by the equations for a lossless coaxial line as 

described in equation (2.2). The wave number was calculated from equation (2.3) and the 

input impedance was determined using equation (2.4). The telegraph equations were then 

used to calculate the voltage and current along the line as described in equations (2.5) and 

(2.6).  
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 Zo—Characteristic impedance 

 εr—permittivity of dielectric material 

 L—cable inductance matrix 

 Zin—Input impedance 

 ZL—Load impedance 

 β—Wave number 

 l—Position along the line 

 Vphasor—Voltage phasor 

 Iphasor—Current phasor 

 Vo
+—Maximum voltage 

 Vo
-—Minimum voltage 

 ω—Resonant angular frequency (f=60 Hz). 

 

These equations were evaluated for a 13.2 kV triaxial cable with a balanced, 3-phase, 

resistive load, in the same manner as the simulations performed in ATP. Although there 

are some differences due to the approximations discussed, the results of the transmission 

line model should describe the relative behavior of the triaxial cable, and therefore should 

have significant correlation to steady-state results from ATP. 
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Chapter 3 
 
 

Inductance and Capacitance 
 
 
The inductance and capacitance parameters of the 3-phase triaxial superconducting power 

cable are expressed in matrices, L′ and C′  [23]. These 3X3 matrices describe the self and 

mutual values of inductance and capacitance for use in the EC model of the triaxial cable 

and are represented in per unit length as shown in equations (3.1) and (3.2). 
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Where the diagonal entries of the matrices are the self inductance and capacitance terms, 

and the off-diagonals represent mutual terms. As for all transmission lines, including the 

triaxial cable, the inductance and capacitance parameters are functions of both geometry 

and electromagnetic material properties, and are independent of current and voltage [26, 

27]. The discussion presented in this chapter focuses on the calculation of the inductance 

and capacitance parameters of the triaxial cable. 
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3.1 Self Inductance 
 

The inductance of the triaxial cable was determined by investigating the associated 

magnetic fields or B fields. Due to the helical winding of the HTS tapes along the cable 

axis and direction of current in the tapes, the orientation of the B field can be determined 

via the Biot-Savart Law and the right-hand rule to consist of two directional components: 

one component along the length of the cable, the axial field, and a component normal to 

the length of the cable, the tangential field [28]. Descriptions of the B field components 

are presented in figure (3.1). Both B field components contribute to the total inductance 

of the cable and are therefore considered in the corresponding inductance calculations. 

 

 

 

 
 

Figure (3.1) Axial (left) and tangential (right) field components resulting from helical 

winding of conductor. 
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3.1.1 London Penetration Depth 

 

To account for the distribution of the B field inside the thickness of the conductors, the 

penetration of the B field into the HTS tapes was investigated. Unlike conventional 

conductors, superconductors exhibit the ability to approximately exclude an external B 

field from their interior, effectively becoming perfectly diamagnetic, where the external 

field is the self-field of the other phases. Known as the Meissner effect [27], this 

phenomenon causes the HTS tape to behave like a perfect conductor, and occurs when 

the temperature, T, is less than the critical temperature, Tc, and the external B field is 

initially zero. Although the resistance is extremely low, superconductors are not perfect 

conductors in a technical sense. Therefore, external B fields can penetrate the 

superconducting material into a narrow region called the London penetration depth [29]. 

According to the London penetration depth, the distance, λ, that the external B field 

penetrates into the superconducting material is related by the ratio of the material 

temperature, T, to the critical temperature, Tc, as shown in equation (3.3). 
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 λ—London penetration depth [m] 

 λo—London penetration depth at 0 K, equal to 5x10-6 cm nominally [29]. 

 T—Temperature of superconductor [K] 

 Tc—Critical temperature of superconductor [K] 

 

For the triaxial cable, if λ << than the thickness of the BSCCO, then the assumption of a 

perfect conductor is valid and the conductor thickness can be neglected for the 

calculation of cable inductance. Evaluation of equation (3.3) over a range of temperatures 

for a typical BSCCO tape with a critical temperature of 104 K is presented in figure (3.2), 

and reveals that the penetration depth of the B field is approximately λo at 77 K, a value  
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Figure (3.2) London penetration depth of the B field into HTS tape. 

 

 

much smaller than the 100 µm thickness of the BSCCO in a typical HTS tape. Therefore, 

the penetration of the B field into the tape will have little effect on the inductance 

calculations, so for ease of calculation, the tape thickness can be neglected. However, λ is 

only valid for the superconducting material, in this case BSCCO. The Ag/alloy matrix 

material and possible stabilizers that encase the BSCCO filaments are not accounted for, 

but as analysis will show they have very little effect on the inductance because the 

thickness of the HTS tapes is small compared to the thickness of the dielectric material 

between phases. In addition, during steady-state operation all current is expected to flow 

through the BSCCO, so that the matrix material and other stabilizers do not affect the 

inductance. 
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3.1.2 Self Inductance Due to Tangential Fields 

 

The self-inductances due to tangential B fields were calculated by analytically applying 

current in one phase and opening the circuits of the other two phases. To obtain a 3X3 

inductance matrix instead of a 6X6, the two layers that compose each phase of the triaxial 

cable were lumped into one effective phase layer. Since tangential fields in the cable are 

concentric to the conductor and infinitesimal conductor thicknesses have been assumed, 

the B field resulting from current in a particular phase exists in the area external to that 

phase. Noting this observation, the self-inductances due to tangential fields were 

calculated with little difficulty because the internal inductance of the HTS conductors 

could be neglected. The self-inductance, Lt-i, of phase i  due to tangential field was then 

determined by calculating the stored magnetic energy, Wm-i from equation (3.4) [30]. 

Definitions of the variables used for the calculation the self-inductances due to tangential 

fields have been provided in table (3.1). 
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A standard approach for approximating the tangential B field of a current-carrying wire is 

the Biot-Savart Law [31], which associates the loss of field strength to its radial distance, 

r, from the conductor. The resulting magnetic field expression is presented in equation 

(3.5). 
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The corresponding self-inductance due to tangential fields can then be determined using 

the conservation of energy principle described in equation (3.6), and is expressed in 

equation (3.7). 
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Table (3.1) Variables used in the calculation of the self-inductance due to tangential 

fields for the triaxial cable. 

 

Variable Description 

B Magnetic field 

Bt Tangential magnetic field 

Wm Stored magnetic energy 

H Magnetic field intensity 

µ permeability 

Lt Inductance due to tangential fields. 

ri Mean radius of the ith phase. 

rs Mean radius of shield 

rout Outer radius of phase conductor. 

rin Inner radius of phase conductor. 

I Phase current 
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Since the B field occurs only in the dielectric material, equation (3.7) can be rewritten in 

terms of the permeability of free space as shown in equation (3.8). 
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If the thickness of the HTS conductor layers is not excluded from the analysis, then the 

permeability of the conductor materials would have to be accounted for in the internal 

inductance component. Values of the relative permeability for selected conductor and 

dielectric materials that compose the triaxial cable are described in table (3.2).  

 

To further validate neglecting the HTS conductor thickness for the calculation of the 

triaxial self inductances, they were recalculated for a finite HTS conductor thickness and 

a uniform current density along the phase layer cross-section. An expression for the 

current distribution along the cross section of phase i is expressed in equation (3.9). The 

magnetic field intensity, Hx, was calculated via Ampere’s law [26] as shown in equations 

(3.10) and (3.11). The composition of the HTS tapes was assumed to be silver, since little 

about the electromagnetic properties of BSCCO are known. Therefore, the HTS tapes 

were treated as conventional conductors with extremely low resistance, and the London 

penetration depth was ignored. The resulting tangential B field is expressed in equation 

(3.12). 
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Table 3.2 Relative permeability of selected triaxial cable materials. 

 

Material Relative Permeability 

Copper ≈1 [27] 

Silver ≈1 [27] 

Dielectric ≈1 [27] 
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 x—Radial position within phase conductor thickness. 

 Ix—Portion of the current distributed along cross-section at distance, x. 

 rout—Outer radius of phase i. 

 rin—Inner radius of phase i. 
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Substitution of equation (3.9) into equations (3.11) and (3.12) yielded the tangential B 

field for a particular phase that is a function of the current distribution in the cross section 

of the cable. The stored magnetic energy was then found using equation (3.4). The 

resulting self-inductance was calculated using equation (3.6) and is shown in equation 

(3.13). 
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The first two terms in equation (3.13) represent the inductance due to the internal fields 

that exists within the thickness of the conductor. The last term represents the inductance 

due to the external fields, and is the same as the tangential self-inductances from equation 

(3.8) that assume negligible thickness. A comparison of the self-inductance values due to 

tangential fields calculated with and without the conductor thickness is given in table 

(3.3) for the geometric parameters of the 13.2 kV triaxial cable presented in table (1.3). 

The results in table (3.3) show that the inclusion of conductor thickness has little bearing 

on the inductance values. Therefore, the assumption that conductor thickness can be 

neglected was validated for this case. It was noticed that the magnetic flux was slightly 

less when thickness was considered because not all the current was distributed in the 

centerline of the conductor cross-section. Therefore, the assumption of negligible 

thickness produced a more conservative value of inductance.  

 

 

 

 

Table (3.3) Calculated self-inductance values due to the tangential fields of the  

13.2 kV HTS triaxial power cable. Inductance values calculated assuming finite and 

negligible tape thickness are compared. 

 

Phase Conductor Lt [µH/m] finite Lt [µH/m] negligible % difference 

Phase A 64.82 65.61 1.22 

Phase B 42.66 43.36 1.65 

Phase C 22.71 23.34 2.80 
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3.1.3 Self Inductance Due to Axial Fields 

 

The self-inductances due to the axial component of the B fields were estimated using 

Ampere’s law as expressed in equation (3.14), which states that the line integral around 

any closed contour is proportional to the current passing through it [27]. Since the length 

of the cable is much greater than its diameter, the axial B field within the helical winding 

of the cable was considered parallel with its length and the field outside the winding was 

neglected. Therefore, equation (3.14) is valid for analysis of the triaxial cable because it 

considers this ideal case. If Ampere’s law is evaluated over a section of the described 

solenoid, the B field along all paths is equal to zero except for the interior path parallel to 

cable length, a-b, as described in figure (3.3) and equations (3.15), (3.16), and (3.17). A 

description of the variables used in the calculation of the self inductance due to axial 

fields is presented in table (3.4).  

 

 

length
(N turns)

I

B

a

b c

d

 
 

 

Figure (3.3) Evaluation of Ampere’s Law on a solenoid. 
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Table (3.4) Variables used in the calculation of the self-inductances due to the axial 

fields of the triaxial power cable. 

 

Variable Description 

Ba Axial magnetic field 

Ba-in Axial field of inner HTS layer in a phase 

Ba-out Axial field of outer HTS layer in a phase 

Wm Stored magnetic energy 

N Number of helical HTS tape turns 

µ Permeability 

La Inductance due to axial fields 

ri Mean radius of the ith phase 

l Solenoid length 

υp Winding pitch of HTS tape 

α Tape lay angle in degrees. Can be positive or 
negative depending on the winding direction. 

I Phase current 
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If the length, , of the cable is equal to a unit length, then the turns ratio, N, is inversely 

proportional to the pitch, υp , as shown in equation (3.18). The winding pitch, expressed 

in equation (3.19), is the length of one turn of the helically wound HTS tape and is 

dependant on the lay angle, α, and mean radius, r. 

l
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[ ]mrp απυ tan2=   (3.19) 

 

The axial self-inductance, La-i, was then determined from the stored magnetic energy as 

in the case of the tangential inductances, and is expressed in equation (3.20) [28]. 
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In order to model the triaxial cable using available power systems analysis software 

packages where only 3X3 parameter matrices are accepted, it was necessary to lump the 

two layers of HTS tape that compose each phase into one equivalent phase conductor. 

Since equation (3.20) accounts for only one HTS tape layer per phase, another expression 

was developed to account for the lay angle of each HTS layer. In order to lump the two 

conductor layers of each phase into one effective layer, the axial B field resulting from 

each layer, Ba-in and Ba-out, was calculated. The total field for each phase was then found 

by summing these individual HTS tape layer B fields as described in equations (3.21) and 

(3.22). The pitch terms υp-in and υp-out were inherently positive or negative depending on 

the sign of the lay angles, which in turn was related to the relative winding directions of 

the tape layers. For instance, if αin is positive and αout is negative, the total B field 

calculated in equation (3.22) would be smaller than if both were positive. Therefore, the 

opposing winding directions tend to cancel a portion of the axial B field. 
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Assuming that the winding directions and lay angles of the HTS tapes have been 

optimized for equal current distribution through both layers in each phase, currents Iin and 

Iout are set equal and equation (3.22) can be written as equation (3.23). 
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Application of equations (3.4) and (3.6) to equation (3.23) yields the axial self-inductance 

due to axial fields, La-i, of phase i as shown in equation (3.24). 
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Evaluation of equation (3.24) yields an expected pattern of self-inductance values due to 

axial field. For HTS tape layers wound in opposing directions the inductance values are 

smaller, likewise, they are larger if the tapes are wound in the same direction. 

 

 

3.2 Mutual Inductance 
 

Mutual inductances were determined by analytically observing the magnetic flux in one 

phase resulting from the current in another. This flux magnetically links the two circuits 

together and is therefore called the flux linkage, λij. The mutual inductance between two 

phases was then found by dividing the total flux linkage by its respective current as 

expressed in equation (3.25). 
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The magnetic flux, Φij, produced by current, Ij, was determined by integrating the field 

produced by phase j, Bj, over the area enclosed by phase i. The resulting magnetic flux is 

described in equation (3.26). 
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In the triaxial cable, the mutual inductance occurs from coiled conductors that consist of 

multiple turns. Therefore, the total magnetic flux linking phase i to phase j was found by 

considering the turns ratio, Nji, which the magnetic flux passes through. The total 

magnetic flux linkage is shown in equation (3.27). 
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[ ]WbN ijiij Φλ =   (3.27) 

 

The mutual inductance was then found by implementing equation (3.25). Like the self-

inductances, the mutual inductances consist of axial and tangential components. The 

tangential component is presented first since it requires less computational rigor.  

 

 

3.2.1 Mutual Inductance Due to Tangential Fields 

 

Using equation (3.5) to determine the B field produced by phase j, the magnetic flux 

passing into phase i was calculated from equation (3.27). The resulting magnetic flux is 

presented in equations (3.28) and (3.29). 
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The lower bound of the integral in is rj because the tangential B field resulting from 

current in phase j only exists for r>rj. The total flux linkage was then found from 

equation (3.27) to be equal to the flux, where the turns ratio is unity because each 

cylinder is one turn in the case of tangential fields. The resulting mutual inductance, Lt-ij, 

was determined by equation (3.25) and is presented in equation (3.30). 
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Since the flux in phase j due to a current in phase i is also external to phase j, Lt-ij=Lt-ji, a 

result that agrees with the Neumann formula for mutual inductance [27, 30].  

 

 

3.2.2 Mutual Inductance Due to Axial Fields 

 

The mutual inductances due to axial fields were calculated using the same process as 

described for the tangential components, except that the turns ratio, , is not unity due 

to differences in radii and lay angles of the conducting layers in each respective phase. 

Based on equation (3.22), the axial B field resulting from current in phase i is presented 

in equations (3.31) and (3.32), where Ni-in is the number of turns of the inner HTS tape 

layer of phase i, and Ni-out is that of the outer layer. 

iN

 

( ) [ ]TNN
l
IB outiini

i
i −− +=

2
οµ   (3.31) 

 

[ ] outiiniii
i

i NNNwhereTN
l
IB −− +==

2
οµ   (3.32) 

 

The resulting flux is shown in equation (3.32). 
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The flux linkage was found from equation (3.27) and described in equation (3.24) where 

 represents the number of turns of the tape layers in phase j for unit length l. jN
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The corresponding mutual inductance was found by taking the number of terms over a 

unit length. The number of turns could then be related to the winding pitch of the tapes as 

expressed in equation (3.35). 
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Since flux in phase j due to a current in phase i exists only for r<ri, La-ij=La-ji and 

Neumann’s formula is again satisfied. 

 

 

3.3 Effective Inductance 
 

From the axial and tangential components calculated, the total effective inductance of the 

triaxial cable was found by adding both components as described in equation (3.36). 
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The following pair of equations provides a complete description of the mutual and self 

inductance parameters of the triaxial cable, where equation (3.37) yields the self 

inductance and equation (3.38) yields the mutual inductance. 
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Inductance values for the 13.2 kV triaxial cable were attained from evaluation of these 

equations with the parameters given in table (1.3) and are presented in equation (3.39) 
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3.4 Effective Capacitance 
 

The capacitance parameters of power cables are usually determined through observation 

of the electric fields, or E fields, that are generated by the cable in the cross-section. For 

most power cable applications, the E field radiates from the conductors outwardly in a 

direction normal to the axis of the conductor. In the case of the triaxial cable, observation 

of the E fields associated with the helical winding of the conductor may prove to be a 

difficult task because more than one component of the E field may exist. Unfortunately, 

the capacitance could not be calculated by relating it to the cable inductance expressed in 

equation (3.40) because it is valid only for transverse electromagnetic (TEM) 

transmission lines [26], and the triaxial cable is not a TEM line due of the presence of an 

axial field component. Because little about the electric field orientations are known in the 

triaxial cable, the capacitances were found by assuming the more conventional case; that 

the electric fields are normal to the conductor axis in a radial direction. Therefore, the 

helical winding of the HTS tape was ignored and the phases were observed as three 

concentric cylinders. The corresponding capacitances were calculated using a 

conventional method [23] that has been used in a previous triaxial  

 

µε=′′CL   (3.40) 
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 µ—Permeability of the conductor. 

 ε—Permittivity of the dielectric material. 

 L'—Inductance matrix. 

 C'—Capacitance matrix. 

 

cable study [32]. First, the capacitance components were calculated by observing the 

electric field between the conducting layers as expressed in equations (3.41), (3.42), and 

(3.43). Since the relative permittivity of the dielectric material, CryoflexTM, was not 

available, an assumed value of 2.6 was used based on the value of Kapton. 
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 ε—Permittivity of dielectric material. 

 r1-out—Outer radius of phase A. 

 r2-in—Inner radius of phase B. 

 r2-out—Outer radius of phase B. 

 r3-in—Inner radius of phase C. 

 r3-out—Outer radius of phase C. 

 rs-in—Inner radius of copper shield. 
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The capacitance matrix was then found using equation (3.44). 
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Evaluation of these equations for the 13.2 kV triaxial cable with specifications presented 

in table (1.3) provide the capacitance values for the cable under study and are expressed 

in equation (3.45). 
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A simple check was made to see if these capacitance values were reasonable for the 

triaxial cable. The cable capacitances were recalculated using equation (3.40) with the 

tangential field inductance components only. The corresponding values of capacitance 

matched exactly those in equation (3.45). Therefore, the assumption of a TEM line is a 

reasonable one in this case, because the inductances due to axial fields are small relative 

to those due to tangential fields. 
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Chapter 4 
 
 

Effective Resistance of the Triaxial Cable 
 
 

Unlike conventional conductors, superconductors possess virtually zero resistance. When 

a DC current less than the critical current is applied to a superconductor, little or no 

voltage is generated across it because electrons are allowed to travel unimpeded in the 

material lattice. However, when AC currents or time-varying magnetic fields are applied, 

first generation superconductors like HTS BSCCO tapes exhibit heat losses that are 

described as AC loss [33]. Alternating current losses are of particular interest in 

applications like HTS power cables, where applied AC currents result in time-varying 

magnetic fields that exist parallel to the surface of the tape. Ohmic losses are also 

generated by these superconductors, and are associated with the transition of the 

conductor from the superconducting to the normal state of operation. These ohmic losses 

are referred to as transport losses because the transport current flows through the resistive 

matrix material. Both of these loss components are dynamic and non-linear due to their 

dependence on the applied current and the critical current, Ic, which is a function of both 

temperature and applied magnetic field. Generally, the Ic of superconductors degrades as 

temperature and applied B field increase [3], which leads to a further increase of heat 

loss. Based on these loss mechanisms, this chapter will focus on the development of an 

effective resistance for use in the lumped parameter cable model, which is described in 

equation (4.1) as the series combination of the transport resistance and the AC resistance.  
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This effective resistance was calculated as a function of the transport current so that it can 

be represented as a type-99 non-linear resistance element in ATP. For the scope of this 

study, the temperature of the cable was assumed constant throughout operation and 
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applied fields were neglected. These assumptions will simplify the analysis and reduce 

the complexity of the model with minimal loss of operational integrity. 

 

 

4.1 Alternating Current Resistance 
 

Alternating current loss, or magnetization loss, is a result of the nonlinear 

electromagnetic behavior of the HTS tapes. Although too small to have any effect on the 

driving sources, the AC loss does generate enough heating in applications to cause an 

appreciable heat source. Therefore, the ac loss is an important design parameter because 

it specifies how much additional cooling is necessary to maintain optimal HTS 

performance. During steady-state operation under rated conditions, the ac loss contributes 

a small resistive component to the effective resistance of the cable.  

 

 

4.1.1 Sources of AC Loss 

 

When an alternating field is applied to a superconductor, several phenomena occur within 

the HTS tape that results in generated watt loss. The phenomena most influential in HTS 

power cables are hysteretic loss, coupling loss, and eddy current loss [20, 34]. Hysteretic 

loss occurs due to reversible fluxoid motion caused by penetration of the changing 

magnetic field lines from the outer surface of the tape into the interior [6, 35]. The 

changing flux causes alteration of the current density of the tape near the outer surface 

first then gradually alters the most interior portions. Coupling loss occurs as the magnetic 

field penetrates into the HTS tape, causing localized induced screening currents that 

attempt to block the flux in accordance with the Meissner effect [27]. In order to maintain 

an average zero voltage across the tape, the localized voltages resulting from the 

screening currents must be cancelled via cross currents in the matrix material in 

accordance with Kirchoff’s voltage law. These cross currents, or coupling currents, 

couple the filaments together and generate ohmic loss as they flow throughout the 
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resistive matrix. A description of the screening and coupling currents are presented in 

figure (4.1). The eddy current loss is caused by locally induced eddy currents in the 

Ag/alloy or other matrix material, but some studies have shown that such eddy current 

losses are very small for power frequencies [34, 36], thus making them negligible in HTS 

power cables. 

 

 

4.1.2 Modeling AC Loss 

 

Ever since the potential of superconductors for use in electromagnets and other 

applications were realized, AC losses have been the focus of numerous studies that 

attempt to understand their origins and explain their behavior [35, 37]. The 

accomplishment of such studies has rendered mathematical models that describe the AC 

loss of superconductors under various conditions. Generally, these AC loss models are 

mathematically extensive and conceptually complicated to understand without strong 

knowledge of the physics that drives them. Such AC loss models have been modified to 

describe HTS power cables and have been used in studies that model the current 

distribution within these cables. Most of the AC loss models that describe HTS cables are  
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Figure (4.1) Coupling and screening currents within two filaments of HTS tape. 
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typically constructed for specific cable designs [16, 18, 34].  Fortunately, there is a model 

available that can describe HTS power cables called the monoblock model that is much 

easier to implement than other AC loss models, and has good correlation to experimental 

AC loss measurements [36, 17]. The monoblock model assumes a multi-filamentary thin 

superconducting tube that produces a purely tangential field at the surface, with a 

transport current that penetrates from the outer surface to the interior. A description of the 

monoblock model is presented in figure (4.2). Unlike other AC loss models, the 

monoblock model is convenient for use in power cable design because it can approximate 

AC loss for each conducting layer using one expression. The expression describing the 

monoblock model is presented in equations (4.2) and (4.3). 

 

 

κIp

B

D Do

 
 

 

Figure (4.2) Superconducting monoblock tube with superconducting filaments. 
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Ip—Peak current per HTS tape. 

κ—Number of tapes per phase. 

Do—Inner diameter of phase conductor. 

D—Outer diameter of phase conductor. 

f—Operating frequency (60 Hz). 

 

 

There are some drawbacks of the monoblock model that need consideration. First, the 

monoblock model is valid only for Ip≤Ic, so proper representation of the AC loss has to be 

considered for the normal operation of the cable. Second, the monoblock model is not an 

ambitious AC loss model, meaning that improvements in HTS materials and other 

possible enhancements to HTS tapes are not considered. For instance, coupling losses are 

improved when the filaments within HTS tapes are twisted [38], but the monoblock 

model assumes that the HTS filaments are straight. However, the monoblock model does 

provide a good approximation to the AC losses measured from previous HTS power 

cable designs measured in the laboratory, including a 5 meter-long triaxial cable tested at 

ORNL [39]. The AC losses of a 1.5 m triaxial cable were measured using a caliometric 

method [38], then compared to an approximation using the monoblock model. The 

comparison of the measured losses to the monoblock model is presented in figure (4.3), 

where the losses shown represent the combined losses of the three concentric phases. 

Approximations of the AC loss for each phase of the 13.2 kV triaxial cable are presented 

in figure (4.4). 
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Figure (4.3) AC loss of a 5 m triaxial cable tested at ORNL. 
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Figure (4.4) Approximated AC loss of a 13.2 kV triaxial cable using the monoblock 

model. 
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4.1.3 Effective AC Resistance 

 

Due to its ease of use for engineering purposes of approximating the AC loss, the 

monoblock model was used to find the effective AC resistance, Rac, for the triaxial cable 

model under study. To facilitate the requirements of the triaxial cable model, Rac, was 

approximated for each phase by dividing the AC loss, Wac, by the square of the peak 

transport current, using equation (4.4), where Ip-transport=κIp or the peak phase current in 

the case of this study. 
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Approximations to equation (4.4) are presented in figure (4.5) for each phase of the 

triaxial cable in the range Ip≤Ic. In the described region of operation, the effective AC  
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Figure (4.5) Calculated AC resistance of a 13.2 kV triaxial cable. 
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resistance appears linear with respect to current as the approximated AC losses are 

proportional to the cube of the transport current, a result that has strong correlation with  

previous studies [28]. The inclusion of Rac into the model is useful because it provides a 

finite value of resistance within the superconducting range of operation, as opposed to 

using the ideal value of zero which may lead to execution errors in ATP and other power 

system analysis software. Although not an ambitious model, the monoblock model is a 

practical approximation of the AC loss in the triaxial cable because it correlates with 

laboratory testing. 

 

 

4.2 Transport Resistance 
 

The transport resistance, Rtransport, represents the effective resistance due to transport loss. 

As previously stated, the transport losses are associated with the normal operation of the 

superconductor, and are described by the transition of current from the superconductor 

into matrix material. A better explanation of the normal operation of BSCCO tapes can 

be made by observing their V-I relationship. Such a relationship is presented in figure 

(4.6) for a BSCCO Ag/alloy HTS tape, and was obtained experimentally by applying a 

DC current ramp to the tape in a liquid nitrogen bath. The critical current, Ic, was 

measured by observing tape voltage across a known distance and applying the 1µV/cm 

criterion [40]. Observing figure (4.6), the potential across the voltage taps is virtually 

zero for I<Ic, but for I>Ic, the curve makes a sharp transition into the normal region of 

operation. In this region of operation, the tape becomes purely resistive and small 

changes of current result in large changes of voltage. An expression describing the 

potential of a HTS material along its length is presented in equation (4.5) and is valid for 

both modes of operation [40]. 
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Figure (4.6) V-I relationship of a BSCCO Ag/alloy HTS tape manufactured by 

American Superconductor Corporation measured at ORNL. 
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VHTS—Superconductor voltage. 

IHTS—Superconductor DC current. 

Eo—Critical electric field corresponding to 1 µV/cm. 

 

For obvious reasons, it is more desirable for applications to operate in the 

superconducting mode where heat losses are almost zero. However, in cable applications 

faults and other perturbations occur that introduce large currents into HTS tape 

conductors. These currents can be many times Ic and will cause the HTS conductors to 

operate in the normal mode, potentially producing large thermal gradients that can 

 58



damage the conductors. To prevent such damage from occurring, HTS tapes are 

manufactured with electrical stabilizers that can conduct these large currents for a finite 

amount of time. These stabilizers can be made from several electrically conductive 

materials, depending on the application. In general, HTS tapes usually consist of 

filaments of superconductor material surrounded by a metal/alloy matrix. There are many 

possible HTS tape/stabilizer combinations, but the most general case for present HTS 

power applications is BSSCO superconductor in an Ag/alloy matrix. Such an HTS tape 

topology was described in chapter 2 and is presented in figure (4.7), which describes the 

cross-section of a BSCCO Ag/alloy tape. The depiction of a BSCCO HTS tape in figure 

(4.7) is not precisely accurate because the filaments are very small compared to the cross-

sectional area and the number of filaments are actually much larger. However, figure 

(4.7) provides a broad generalization of the material and geometrical composition of 

BSCCO HTS tapes in general. If a transport current in the BSSCO becomes large enough 

such that I>Ic, it will be shared with Ag/alloy matrix material and the overall heat losses 

generated will be mitigated for a small fraction of time until grid contingencies are 

 

 

 
 

 

Figure (4.7) Cross-section of a BSCCO Ag/alloy HTS tape. 
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activated. Safety mechanisms of this nature are of great importance for the design of HTS 

power cables because they can prevent serious damage from overloading or fault 

currents.  

 

 

4.2.1 HTS Tape Current Sharing 

 

The dynamic transition of current from the HTS material into the stabilizer has been the 

topic of much study and can be investigated by two models; the critical state model and 

the flux flow model [38, 41]. Due to its simplicity and basic conception, the critical state 

model will be discussed first. The critical state model assumes an abrupt transition from 

the superconducting to the normal region at I=Ic. Therefore, when Ic is exceeded, all 

current greater than Ic flows through the matrix material and Rtransport can be described by 

equation (4.6). 
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Where, I, is the transport current and, Rmatrix, is the resistance of the matrix material 

obtained from experimental measurements. However, in application, BSCCO filaments 

can conduct current greater than Ic, an effect not accounted for in the critical state model.  

 

The flux flow model accounts for this simultaneous sharing of current between the HTS 

and the matrix material by assuming a more gradual transition from the superconducting 

state to the normal state of operation. This gradual transition of operational state is 

achieved through the realization of the parallel resistance combination of Rmatrix and RHTS 

as described in equation (4.7).  
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For the HTS tape modeled in this study, the HTS material is BSCCO, hence RHTS will be 

referred to as RBSCCO from this point and is described by equation (4.8). 
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From equations (4.7) and (4.8) it can be observed that for I<Ic, Rtransport is very small and  

when I>>Ic, RBSCCO becomes very large such that Rtransport=Rmatrix, results that correlate 

with the critical state model. However, for a finite range of transport current just greater 

than Ic, RBSCCO and Rtransport approach the same order of magnitude and the transport 

current is distributed through both materials simultaneously. Calculated profiles of the 

transport resistance and transport current distribution in a nickel-plated, Ag/alloy, 

BSCCO HTS tape are presented in figures (4.8) and (4.9) as a function of temperature 

and constant current. 

 

As previously mentioned, Ic decreases with increasing temperature, so if current is held 

constant  increases in accordance with equation (4.8). Likewise, if temperature is 

held constant and the transport current increases, RBSCCO increases as Ic is exceeded. This 

relationship is useful in the absence of a thermal process that determines HTS tape 

temperatures. The flux flow model can provide valuable insight to HTS cable designers 

as to what kind of electrical stabilizers can help protect the integrity of the HTS 

conductors against fault currents or other extreme operating conditions. Therefore, for the 

purpose of this study, the flux flow model will be used due to its ability to consider 

electrical stabilizers and because data is readily available. 

BSCCOR
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Figure (4.8) Transport resistance of a BSCCO HTS tape for constant transport current. 
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Figure (4.9) Current distribution of a BSCCO HTS tape for various transport currents. 
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4.2.2 Matrix Resistance 

 

Although calculation of the transport losses via the flux flow model may appear simple 

according to equation (4.7), acquiring values for RBSCCO and Rmatrix requires some work. 

The matrix resistance was obtained by measuring the voltage drop across a known 

distance of a sample tape when a small transport current, approximately 1 mA, is applied. 

To acquire resistance as a function of temperature, the sample was cryogenically cooled 

to T=Tc using a cryogenic refrigerator and the tape voltage was observed for a constant 

current until the tape assumed ambient temperature. The resulting resistance curve was 

linear with respect to temperature for ranges of interest in applications and was valid for 

Tc<T<Tambient. To obtain the matrix resistance for T<Tc, the curve was extrapolated down 

as shown in figure (4.10).  
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Figure (4.10) Measured matrix resistance of an HTS tape with Ag/alloy sheath. 
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For this study, the matrix resistance value corresponding to the temperature of liquid 

nitrogen, 77 K, was of interest since temperature was assumed to remain constant in the 

model. However, the measured resistance obtained was the matrix resistance of an 

individual tape and not that of the bundled layers that compose the phases, which consists 

of many tapes. Equation (4.8) shows that since the tapes in a phase are in parallel, Rmatrix 

is simply the measured matrix resistance of a single tape divided by the number of tapes 

in the particular phase [20]. 
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4.2.3 BSCCO Resistance 

 

The resistance of the BSCCO was approximated using the parallel resistance relationship 

described in equation (4.7) and some numerical computation. From equation (4.8), it is 

shown that RBSCCO is a nonlinear function of IBSCCO, therefore, IBSCCO has to be determined 

before RBSCCO can be calculated. Figure (4.11) describes the parallel resistance 

arrangement discussed in this study. To find IBSCCO, the voltages are equated in 

accordance with Kirchoff’s Voltage law as presented in equation (4.10). 
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Observing figure (4.11), Imatrix can be expressed in terms of IBSCCO and Itransport as shown 

in equation (4.11). 

 

[ ]AIII BSCCOtransportmatrix −=   (4.11) 
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Figure (4.11) Parallel resistance diagram of the matrix material and the BSCCO. 

 

 

 

 

Cancellation of terms and application of equation (4.11) to equation (4.10) yields 

solvable relationship for IBSCCO and is presented in equation (4.12). 
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Evaluation of equation (4.12) required numerical methods to solve for IBSCCO. Since the 

region of applicable solutions is known, transportBSCCO II <<0 , a bisection method was 

used to approximate numerically IBSCCO [42]. Then, RBSCCO and Rmatrix were known and 

Rtransport could be determined. 
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4.3 Effective Resistance 
 

The effective resistance, Reff, was calculated from equation (4.1) after all of the 

component resistances were approximated. Since the AC resistance is valid only for Ip<Ic 

as described by the monoblock model, its value outside this region was approximated to 

be constant corresponding to the AC loss at Ic. To validate the constant Rac approximation 

for I>Ic, an assumption was made that the transport losses dominate this range of 

operation due to the exponential nature of the V-I curve. The resulting effective 

resistance curves are presented in figure (4.12) and (4.13). As described in figure (4.13), 

the effective resistance approaches a threshold corresponding to the value of Rmatrix at 77 

K with increasing transport current. The reason for this threshold was the constant 

temperature of the cable assumed by the cable model. Inclusion of a thermal process  
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Figure (4.12) Effective resistance of a 13.2 kV triaxial cable. Plot has been enlarged so 

that the AC losses can be observed. 
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Figure (4.13) Effective resistance of a 13.2 kV triaxial cable for currents up to 50 kA 

peak. 

 

would cause this limit to climb linearly with temperature. Calculation of the effective 

resistance was performed using MatlabTM. The type-99 non-linear resistance element in 

ATP requires V-I data in table format, so MatlabTM was also used to convert the 

calculated effective resistance values into effective voltages via ohm’s law. The 

corresponding MatlabTM files “triaxresist” and “triaxresistvolt” are included in Appendix 

B. 
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Chapter 5 
 
 

Simulation and Results 
 
 

Simulation of the HTS triaxial power cable in a simple power system was performed 

using ATP. Steady-state simulations representing the most balanced operating case were 

made on a 16 km-long triaxial cable by subjecting the EC model to conditions such that 

rated current would flow at the rated voltage. The electrical imbalance was then measured 

as a function of line distance. Transients were simulated by subjecting the EC model to 

various fault scenarios and measuring resulting cable currents. The EC model simulated 

in this study was configured for an HTS triaxial power cable with a cross-section as 

shown in figure (1.9) and ratings of 13.2 kV, 3 kA, 69 MVA. A description of the system 

configuration and the simulation results are included in this chapter. 

 

 

5.1 Steady-State Analysis 
 

The electrical imbalance of the triaxial cable was investigated by simulating the compiled 

EC model under rated conditions in ATP. This electrical imbalance was measured at 

several points along the length of the cable to observe what line lengths may be practical 

for utility applications. 

 

 

5.1.1 Steady-State System Configuration 

 

Configuration of the system for steady-state operation was set to achieve rated conditions 

on the power cable. The source end of the cable was connected to a 13.2 kV, 3-phase 

generator and the load end was connected to a balanced 3-phase, resistive load. The 

copper shield was grounded at the endpoints to simulate conditions at the Bixby 
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substation. The triaxial cable was represented by the user-defined element, SUPc, as 

described in chapter 2, with the resistive component set to a constant nominal value 

corresponding with the rated current. Since the steady-state operation of the cable was at 

rated current, the superconducting layers operated in the superconducting mode so that 

the cable resistance was due only to AC loss. Therefore, the resistance used for the 

simulations of the cable in steady-state was that corresponding to AC loss, Rac, at the 

rated current. To simulate cable characteristics as a function of line distance for a 16 km 

cable, ten SUPc elements where cascaded in a series configuration with voltage and 

current probes positioned at each node. A further description of the steady-state system 

configuration is presented in figure (5.1). 

 

 

5.1.2 Steady-State Simulation 

 

Steady-state simulation of the power system was accomplished by setting the balanced 

resistive load so that the largest current flowing in any phase was approximately the rated

 

 

 

Load A

Load B

Load C

13.2 kV 

 
 

 

Figure (5.1) Power system configuration for the steady-state simulation of the triaxial 

cable. 
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current. For the 13.2 kV cable, this was accomplished by observing the line currents after 

each simulation and adjusting the balanced resistive load until 3 kArms was achieved in at 

least one of the three phases. It is important to note that the load was adjusted 

symmetrically, so that any electrical imbalance was a result of the cable parameters and 

not the load.  

 

The ATP simulation results were compiled using MatlabTM. Since ATP only outputs the 

time dependant voltages and currents along the cable length, the MatlabTM program 

named, “triaxATP”, was written to calculate the phase angles and line power. The 

“triaxATP” program is included in Appendix B. 

 

Steady-state simulations of the triaxial cable where also performed using the telegraph 

equations in MatlabTM. The configuration of the telegraph equation (TE) model was the 

same as that of ATP, except for the omission of some cable parameters as described in 

section 2.3 of chapter 2. The program code, “triaxTE”, is included in Appendix B.  

 

 

5.1.3 Steady-State Simulation Results 

 

Simulation of the 13.2 kV triaxial cable using ATP and the TE model produced 

comparable results. The results of the steady-state simulations are presented in this 

section as a function of cable distance from the source on the left-hand side to the load on 

the right-hand side. The solid lines represent ATP simulation and the dashed lines 

represent that of the TE model. Simulations of a 13.2 kV triaxial cable with a 69 MVA 

load at 0.9 power factor lagging, and a 69 kV triaxial cable with a purely resistive load 

were also performed and are included in Appendixes C & D. Simulation of a 200 m-long 

cable was not performed in this study, but evaluation of the 16 km results show that the 

electrical imbalance is negligible. 
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The voltage and current profiles presented in figures (5.2) and (5.3) show imbalances in 

both cable voltage and current for phases A, B, and C. The phase voltages are symmetric 

and assume the rated value at the source, but as the distance from the source approaches 

the load they begin to diverge. In contrast, the phase currents are imbalanced at the 

source, but appear to attempt convergence toward the load. Also, only one of the phase 

currents is at the rated value, the other two are either above or below the mark. As 

expected, the current in phase A is the lowest of the three phases due to the higher 

inductive reactance. In both cases, the ATP results show correlation with the TE model. 

However, there is some difference due to the omission of the axial field inductance in the 

TE model. The power factor angles presented in figure (5.4) reveal that phases B and C 

have higher capacitance than phase A, and that phase A has a higher inductance than 

phases B and C. The total reactive power presented in figure (5.5) is negative at the 

source end of the cable, suggesting that the cable behavior is capacitive for the described 

system configuration. 
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Figure (5.2) Phase voltages of a 13.2 kV triaxial cable. 

 71



2.6

2.7

2.8

2.9

3

3.1

3.2

0 4 8 12 16
Source             Line Distance [km]              Load

Ph
as

e 
C

ur
re

nt
 [k

A r
m

s]

Phase A

Phase C

Phase B

 
 

Figure (5.3) Phase currents of a 13.2 kV triaxial cable. 
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Figure (5.4) Power factor angles of a 13.2 kV triaxial cable. 
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Figure (5.5) Total reactive power of a 13.2 kV triaxial cable. 

 

 

 

 

The real power in each phase is described in figure (5.6) and shows an imbalance similar 

to the current in figure (5.3). The total real power presented in figure (5.7) is the sum of 

real power of each phase, and appears to be approximately constant. Comparison of the 

total real and reactive power plots in figures (5.5) and (5.7) shows that the magnitude of 

the total real power is much greater than the reactive power. Therefore, the reactive 

power has little effect on the apparent power of the cable, and the total apparent power is 

approximately the same as the total real power. Observation of figure (5.7) also shows 

that the total apparent power is lower than the rated value, a consequence of the lower 

than rated phase currents presented in figure (5.3). 
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Figure (5.6) Phase real power of a 13.2 kV triaxial cable. 
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Figure (5.7) Total real and apparent power of a 13.2 kV triaxial cable. 
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The line-to-line voltages of the triaxial cable are presented in figure (5.8) and reveal a 

disagreement between ATP and the TE model. The ATP results show that voltages Vac 

and Vbc increase together, while the TE model shows divergence of the two voltages. 

Initially, it appeared that a software or round-off error may be the source of this issue, 

because some oscillation existed in the ATP data. To rule-out any possibility that the 

omission of the axial field inductance term in the TE model may be the reason for the 

difference between the two voltage plots, the EC model was re-simulated in ATP with 

only the tangential field inductances. The resulting line-to-line voltages showed strong 

correlation with the TE model, which is evidence that the axial field inductance may be a 

significant parameter for triaxial cable study. The line-to-line voltages resulting from the 

re-simulated ATP case are presented in figure (5.9). 

 

 

12.9

12.95

13

13.05

13.1

13.15

13.2

13.25

13.3

13.35

13.4

0 4 8 12
Source     Line Distance [km]     Load

Li
ne

-to
-L

in
e 

Vo
lta

ge
 [k

V r
m

s]

16

Vab

Vbc

Vca

 
 

Figure (5.8) Line-to-line voltages of a 13.2 kV triaxial cable (1). Axial field inductance 

included. 
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Figure (5.9) Line-to-line voltages of a 13.2 kV triaxial cable (2). Axial field inductance 

omitted. 

 

 

 

Plots of the steady-state shield voltage and current presented in figure (5.10) show that 

the voltage of the shield at the endpoints is zero, a result that corresponds with the 

substation configuration described earlier. However, shield voltage at the midpoint 

distance peaks, a behavior similar to that of a previous underground cable study [43]. The 

shield current appears to be approximately inversely proportional to the shield voltage 

with maximum values occurring at the shield endpoints. However, according to the 

results, both shield current and voltage are small during steady-state operation. 
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Figure (5.10) Copper shield voltage and current of a 13.2 kV triaxial cable. 

 

 

 

5.2 Transient Analysis 
 

The effect of transients on the triaxial cable was investigated by simulating various faults 

at the load end of the cable in ATP. Three fault types where considered in this study 

including single line-to-ground (SLG), double line-to-ground (DLG), and 3-phase faults 

(3 lines to ground). The resulting fault, phase, and shield currents were recorded at the 

source end of the cable and compiled utilizing a user-program named “triaxfault”, which 

was written for use in MatlabTM and is included in Appendix B. The pre-fault condition 

of the cable was obtained from simulations in section 5.1. 

 

 

 

 77



5.2.1 Transient System Configuration 

 

The source end of the cable was connected to a 13.2 kV, 3-phase generator and a series 

equivalent network impedance to represent the step-down transformer and the power 

system on the high-voltage side. The cable was represented by one SUPc user-defined 

element with its resistance set to a negligible value so that the cable resistance could be 

represented using a type-99 nonlinear resistance element in series with each cable phase. 

Due to the high currents associated with power system faults, the superconducting layers 

within the cable make the transition to the normal state, so that the nonlinear resistance 

parameters discussed in chapter 4 needed to be included in the transient analysis. Faults 

were then applied to the system using ATP switching elements grounded through a 1 mΩ 

resistor to prevent iteration errors. A representation of the system configuration for a SLG 

fault on phase C is presented in figure (5.11). The system configurations for other fault 

types considered in this study are similar to that in figure (5.11) with the exception that 

the position and number of the switching elements vary. 

 

 

Ra

Rb

Rc

U Zo/Z1

1 m ohm

 
 

Figure (5.11) Power system configuration for simulation of a SLG fault on phase C. 
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The equivalent network impedance discussed above is the linear combination of the 

source impedance and the short-circuit transformer impedance [45]. This impedance 

consolidates the network on the high-voltage side of the transformer itself into a lumped 

parameter that can be accounted for in ATP. The equivalent network impedance is an 

important parameter because it limits fault currents that can be much larger if only the 

cable impedance is present. A description of the equivalent source impedance is 

presented in figure (5.12). Where, Zeq, includes the zero and positive sequence 

components of the system. Values for the equivalent network impedance were calculated 

from information obtained by the utility, and by assuming some nominal parameter 

values. Calculation of the equivalent network impedance is included in Appendix E. 

 

 

 

 
138 kV 13.2 kV

Load

HTS triaxial cable

∆ Y-ground

Rest of system

Load

Zeq HTS Cable

13.2 kV

 
 

 

Figure (5.12) Description of the equivalent network impedance. 
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5.2.2 Transient System Simulations 

 

The three fault types discussed in this chapter were simulated on the 13.2 kV triaxial 

cable in ATP. Time-dependent plots of the resulting cable currents for selected fault 

locations are presented in figures (5.13), (5.14), and (5.15). The maximum currents for 

each fault type are presented in table (5.1). 

 

The fault simulations in ATP revealed that the largest peak fault currents resulted from a 

DLG fault applied to phases A and C, while the largest shield current resulted from a 

SLG fault on phase C. For most of the fault cases simulated, the shield current 

approached a peak value of 500 A, an amount 10 times the pre-fault value of 50 A.  
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Figure (5.13) Cable currents resulting from a SLG fault on phase C. 
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Figure (5.14) Cable currents resulting from a DLG fault on phases B & C. 
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Figure (5.15) Cable currents resulting from a 3-phase fault. 
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Table (5.1) Peak cable currents resulting from specified line-to-ground faults. 

 

Fault type and 
location 

Iphase A
(kApeak) 

Iphase B
(kApeak) 

Iphase C
(kApeak) 

Ishield
(kApeak) 

Pre-fault 3.9 4.3 4.2 0.05 

SLG (A) 18 4.5 4.5 0.5 

SLG (B) 4.0 18.0 4.5 0.5 

SLG (C) 4.0 4.5 21 1.0 

DLG (A, B) 30.0 20.0 4.8 0.5 

DLG (B, C) 4.5 25.0 23.0 0.7 

DLG (A, C) 29.0 4.5 20.0 0.5 

3-phase 16.0 20.0 16.0 0.5 
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Chapter 6 
 
 

Concluding Remarks 
 
 

An electric circuit (EC) model was composed to describe the electrical behavior of an 

HTS triaxial cable for simulation in ATP. The model included the self and mutual 

inductance parameters due to magnetic fields tangent to the cable cross-section and 

parallel with the axial length of the cable. A dynamic resistance as a function of current 

was included to account for losses in the HTS tapes for both the superconducting and 

normal states using the flux flow method. A cold copper magnetic shield was included in 

the model using the Cable Parameters subroutine in ATP. The EC model composed in 

this study was based on a 200 m prototype that is to be installed at the Bixby substation 

for operation at 13.2 kV, 3 kArms, and 69 MVA. A line practical for future applications, 

16 km, was considered in the study. 

 

 

6.1 Discussion of Results 
 

Simulations of the EC model were performed to measure the steady-state electrical 

imbalance caused by the asymmetric cross-section of the cable and cable currents 

resulting from applied faults. Induced shield currents due to the electrical imbalance from 

both cases were also measured. Steady-state simulation of the EC model with a balanced, 

3-phase, resistive load showed that the inherent electrical imbalance becomes more 

significant as the cable distance increases from the source towards the load. Observation 

of the power factor angles revealed that one phase may have a power factor that is 

capacitive while another may have an inductive power factor. These steady-state results 

showed that for short cable lengths like the 200 m prototype, the imbalance is small and 

the effect on the surrounding power system may be negligible, but longer cable lengths 

may present a voltage imbalance that can adversely affect 3-phase machinery. A local 
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power utility suggested that the difference between the line-to-neutral voltages supplied 

to 3-phase machinery should not exceed 3% or negative sequence currents will degrade 

the performance and operating life of such machines [46]. The triaxial cable results in 

figure (5.2) show that over 7% difference occurs between the line-to-neutral voltages. 

Therefore, a correction of the imbalance may be necessary in this case or else the length 

of the cable would have to be reduced from 16 km to 8 km approximately. However, in 

urban centers where the triaxial cable is expected to have the most impact, such a cable 

would feed numerous single-phase loads consisting of residences and offices, so the 

electrical imbalance may not be an issue for this type of application. 

 

Transient simulations revealed that fault currents approaching 30 kApeak may occur 

depending on fault type and location. The simulations also revealed that large electrical 

imbalances resulting from applied faults cause induced currents in the surrounding phases 

and copper shield. These induced shield currents can become significant, approaching 

peak values of 1 kA. 

 

 

6.2 Future Work 
 

The work performed in this exploratory study is a compilation of basic information 

regarding HTS cables and power systems analysis. It is the hope of this author that this 

study will serve as a benchmark, and that further studies may refine the compiled model 

and increase its sophistication. Further studies may also investigate in greater detail the 

effect of the triaxial cable on a more practical power system, and possibly contrive 

solutions to issues that may arise, including the electrical imbalance. 

 

There may be several ways to increase the sophistication of the model, a couple of them 

are briefly discussed here: First, the inclusion of a known thermal process would allow 

for a more accurate depiction of the HTS conducting layers under transient conditions. 

For instance, when I<Ic is applied to an HTS tape, its resistance increases as explained in 
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chapter 4. This process results in a feedback loop such that as the tape heats up, Ic 

decreases, and additional heating occurs causing Ic to degrade, and so on. This feedback 

loop presents a thermal runaway condition that may cause damage to the HTS material if 

precautionary measures are not taken. Therefore the inclusion of a thermal process would 

allow cable designers to investigate various electrical stabilizing schemes and how they 

may affect the electrical properties of the cable. Second, inclusion of the cryostat may 

add another element of heating to the cable if the imbalance becomes large enough that 

resulting magnetic fields cause an induced cryostat current to flow. 

 

 

Further studies of the electrical imbalance associated with the triaxial cable may lead to 

solutions that could preserve power quality. Such solutions may include transposition of 

the phases, where the phases are swapped at incremented line distances to compensate for 

the imbalance. Simulation of the EC model in ATP using the transposition elements can 

help to determine the transposition sequence and the distance increment for which 

transposition should be performed. In the case of the triaxial cable, phase transposition 

may prove impractical both technically and economically due to the complexity of the 

cable terminations, therefore other methods of compensation like capacitor banks or static 

compensators may be more attractive to utilities. 

 

 

6.3 Closing Remarks 
 

The EC model developed and simulated in this study attempted to provide some insight 

into the electrical behavior of an HTS triaxial power cable in a power system. Before the 

commencement of this study, little information regarding such a cable had been 

published in literature, therefore those who conduct future studies regarding the electrical 

behavior of a triaxial cable will have a possible starting point from which to build upon. 
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Key HTS terms and the location of their definitions 
 
 
Term       page 
 
AC loss …………………………………51 
BSCCO ………………………………..…5 
BSCCO resistance …………………………61 
Critical current ………………………..…2 
Critical electric field …………………………58 
CryoflexTM …………………………………14 
HTS current …………………………………65 
Matrix material ………………………..…5 
Normal state ………………………………..…3 
Transport current …………………………65 
Transport loss …………………………………50 
Transport resistance …………………………57 
Matrix resistance …………………………63 
AC resistance …………………………………56 
 
 
 
 
 
Abbreviations 
 
AC   Alternating Current 
AEP   American Electric Power 
ATP   Alternative Transients Program 
BSCCO  Barium-Strontium-Calcium-Copper-Oxide 
CD   Cold-Dielectric 
DC   Direct Current 
EC   Electric Circuit 
HTS   High Temperature Superconductivity 
LN2   Liquid Nitrogen 
LTS   Low Temperature Superconductor 
TE   Telegraph Equations 
TEM   Transverse Electromagnetic 
WD   Warm-Dielectric 
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“triaxresist” 
 
function 
[Rphase1,Rphase2,Rphase3,Vphase1,Vphase2,Vphase3]=triaxresist(Iphase1,Iphase2,Iphase3) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Dynamic Resistance of Triaxial Cable                   % 
%                                                       % 
%Written By: Marcus Young 8/16/04                       % 
%                                                       % 
%Dynamic resistance is combination of transport         % 
%current loss and ac loss.                              % 
%The ac loss is estimated by the monoblock              %       
%model, and the transport loss is estimated from the    % 
%flux flow resistivity.                                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Input Parameters: 
Ic=[5860,6489,6700];        %phase critical currents 
Ip=[Iphase1,Iphase2,Iphase3]; 
numtapes=[56,63,70];        %number of tapes per phase 
Do=[42.75,47.75,52.75];     %outside diameter per phase 
Di=[42.25,47.25,52.25];     %inside diameter per phase 
 
%Constant Parameters 
muo=4*pi*10^-7; 
f=60; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Use Monoblock model to calculate Rac                   % 
%                                                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Set peak current value: 
 
%Magnetization loss (Monoblock model) 
for s=1:3 
   F(s)=Ip(s)/Ic(s); 
   h(s)=(Do(s)^2-Di(s)^2)/Do(s)^2; 
   if Ip(s)>Ic(s) 
       Ipac(s)=Ic(s); 
       Fac(s)=Ipac(s)/Ic(s); 
       Rac(s)=(f*muo/(2*pi)*Ic(s)^2/h(s)^2*((2-Fac(s)*h(s))*Fac(s)*h(s)+2*(1-
Fac(s)*h(s))*log(1-Fac(s)*h(s))))/Ipac(s)^2; 
   else 
       Rac(s)=(f*muo/(2*pi)*Ic(s)^2/h(s)^2*((2-F(s)*h(s))*F(s)*h(s)+2*(1-
F(s)*h(s))*log(1-F(s)*h(s))))/Ip(s)^2; 
        end 
    end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Find transport resistance from Flux-flow model         % 
%                                                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for s=1:3 
    Eo=1e-6; 
    Rm=(-.5275+.0175*(77))/(14000*numtapes(s));    %[Ohms/cm]--resistance of Ni-plated 
tape @ 77K 
    nvalue=14; 
    Ibscco(s)=bisection(Ip(s),Ic(s),nvalue,Rm); 
    Rbscco(s)=Eo*((Ibscco(s)/Ic(s))^nvalue)/(Ibscco(s)); %in [Ohm/cm] 
    Rtransport(s)=((Rbscco(s)*Rm)/(Rbscco(s)+Rm))*100;  %[Ohm/m]   
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculate total effective resistance: Rac+Rtransport   % 
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%                                                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for s=1:3 
    Rphase(s)=Rac(s)+Rtransport(s); 
    Vphase(s)=Rphase(s)*Ip(s); 
end 
 
Rphase1=Rphase(1); 
Rphase2=Rphase(2); 
Rphase3=Rphase(3); 
Vphase1=Vphase(1); 
Vphase2=Vphase(2); 
Vphase3=Vphase(3); 
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“bisection” 
 
function Z=bisection(I,Ic,n,Rm) 
%Solves for Ihts using a bisection method 
%Function used in "triaxresist" 
%Marcus Young 
 
ACC=.0001; %set accuracy 
maxiterations=40; 
%RM=5.7065e-5; 
%I=305; 
Eo=1e-6; 
%n=14; 
%Ic=114.8835; 
 
%Function to be solved 
x1=0; 
x2=I; 
FMID=Rm*(I-x2)-Eo*(x2/Ic)^n; 
F=Rm*(I-x1)-Eo*(x1/Ic)^n; 
 
%Perform bisection method 
if F*FMID>=0 
    disp('Root must be bracketed for bisection'); 
    break 
end 
if F<0 
    RTBIS=x1; 
    DX=x2-x1; 
else 
    RTBIS=x2; 
    DX=x1-x2; 
end 
for i=1:maxiterations 
    DX=DX*0.5; 
    XMID=RTBIS+DX; 
    FMID=Rm*(I-XMID)-Eo*(XMID/Ic)^n; 
    if FMID<0 
        RTBIS=XMID; 
    elseif abs(DX)<ACC 
        Z=XMID; 
        %disp(XMID); 
        break 
    elseif FMID==0 
        Z=XMID; 
        %dip(XMID); 
        break 
    end 
end 
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“triaxresisvolt” 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Check for user-defined function triaxresist()          % 
%                                                       % 
%Written By: Marcus Young 8/19/04                       % 
%                                                       % 
%Uses function to plot effective resistance or voltage  % 
%values for the triaxial cable using "triax resist".    % 
%                                                       %  
%Program also writes results from "triaxresist" to      % 
%EXCEL.                                                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear; 
clc; 
 
length=1609.43;  %length of line section [m] 
 
Ip1=1:100:50000;     %Current range 
Ip2=Ip1; 
Ip3=Ip1; 
 
sizeIp1=size(Ip1); 
numpts1=sizeIp1(1,2); 
 
for k=1:numpts1 
    [r1,r2,r3,v1,v2,v3]=triaxresist(Ip1(k),Ip2(k),Ip2(k)); 
    Rp1(k)=r1*length; 
    Rp2(k)=r2*length; 
    Rp3(k)=r3*length; 
    Vp1(k)=v1*length; 
    Vp2(k)=v2*length; 
    Vp3(k)=v3*length; 
end 
subplot(2,1,1) 
plot(Ip1,Vp1,Ip2,Vp2,'r',Ip3,Vp3,'g'); 
subplot(2,1,2) 
plot(Ip1,Rp1,Ip2,Rp2,'r',Ip3,Rp3,'g'); 
title('Effective voltage for type 99 non-linear resistance element in ATP'); 
xlabel('Ip [A]'); 
ylabel('Veff [V]'); 
 
grid; 
 
 
M=[Ip1'*1e-3,Rp1',Rp2',Rp3']; 
WK1WRITE('C:\MATLAB6p1\work\Rtriaxdata',M); 
 
 
format short e 
Ma=[Ip1',Rp1']; 
save Madata.dat Ma /ascii; 
 
Mb=[Ip2',Rp2']; 
save Mbdata.dat Mb /ascii; 
 
Mc=[Ip3',Rp3']; 
save Mcdata.dat Mc /ascii; 
 
length 
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“triaxATP” 
 
%*//////ATP--.pl4 FILE CAPTURE FOR ATP TRIAXIAL CABLE SIMULATION////////////////////    * 
%*  Loads time, voltage, and current data columns from .pl4 file and performs           * 
%*  desired calculations so that line characteristics can be plotted as a function      * 
%*  of distance.                                                                        * 
%*                                                                                      * 
%*  Version 1.3--created for triax10milecsd 
%*  ///////////////created by Marcus Young/////June 23, 2004//////////////              * 
%**************************************************************************************** 
 
clear; 
clc; 
 
%Load .pl4 file & assign data------------------------------------------------------------ 
alldata=load('C:\AEP triax project\triaxprograms\60kvtri10micsd\triax10milecsd60kv.pl4'); 
sizedata=size(alldata) 
columns=sizedata(1,2) 
datacolumn=sizedata(1,1) 
vcolumns=33; 
columnsperphase=vcolumns/3; 
time=alldata(:,1); 
%**************************************************************************************** 
 
%Acquire voltage vectors----------------------------------------------------------------- 
k=1;    %incrementer for sorting out phases 
for i=2:3:vcolumns+1   %phase A voltages 
    t(k)=i; 
    Va(:,k)=alldata(:,i); 
    k=k+1; 
end 
k=1; 
for i=3:3:vcolumns+1   %phase B voltages 
    t(k)=i; 
    Vb(:,k)=alldata(:,i); 
    k=k+1; 
end 
k=1; 
for i=4:3:vcolumns+1   %phase C voltages 
    t(k)=i; 
    Vc(:,k)=alldata(:,i); 
    k=k+1; 
end 
%**************************************************************************************** 
 
%Acquire current vectors----------------------------------------------------------------- 
k=1;    %incrementer for sorting out phases 
for i=46:3:columns-11   %phase A voltages 
    t(k)=i; 
    Ia(:,k)=alldata(:,i); 
    k=k+1; 
end 
k=1; 
for i=47:3:columns-11   %phase B voltages 
    t(k)=i; 
    Ib(:,k)=alldata(:,i); 
    k=k+1; 
end 
k=1; 
for i=48:3:columns-11   %phase C voltages 
    t(k)=i; 
    Ic(:,k)=alldata(:,i); 
    k=k+1; 
end 
%**************************************************************************************** 
 
%Create distance vector------------------------------------------------------------------ 
for i=1:columnsperphase 
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    deltad(i)=(i-1); 
end 
%**************************************************************************************** 
 
%Find rms voltage at each distance---------------------------------------------- 
for i=1:columnsperphase 
    vamax(i)=max(Va(:,i))/sqrt(2); 
    vbmax(i)=max(Vb(:,i))/sqrt(2); 
    vcmax(i)=max(Vc(:,i))/sqrt(2); 
end 
%**************************************************************************************** 
 
%Find rms current at each distance---------------------------------------------- 
for i=1:columnsperphase 
    iamax(i)=max(Ia(:,i))/sqrt(2); 
    ibmax(i)=max(Ib(:,i))/sqrt(2); 
    icmax(i)=max(Ic(:,i))/sqrt(2); 
end 
%**************************************************************************************** 
 
%Find angles between voltages and currents----------------------------------------------- 
%calculate time vector for one cycle 
 
for i=1:1854 
    time2(i)=time(i); 
    va2(i,:)=Va(i,:); 
    ia2(i,:)=Ia(i,:); 
    vb2(i,:)=Vb(i,:); 
    ib2(i,:)=Ib(i,:); 
    vc2(i,:)=Vc(i,:); 
    ic2(i,:)=Ic(i,:); 
end 
[r1,c1]=min(va2); 
[r2,c2]=min(ia2); 
[r3,c3]=min(vb2); 
[r4,c4]=min(ib2); 
[r5,c5]=min(vc2); 
[r6,c6]=min(ic2); 
dtime1=time(c2)-time(c1); 
dtime2=time(c4)-time(c3); 
dtime3=time(c6)-time(c5); 
theta1=dtime1/(1/60)*2*pi; 
theta2=dtime2/(1/60)*2*pi; 
theta3=dtime3/(1/60)*2*pi; 
 
%Find voltage angle with respect to zero reference angle: 
%Therefore, the max occurs at pi/2, or at T/4, where T=1/60 in this case. 
vreftime=(1/60)/2; 
phangle1=(time(c1)-vreftime)/(1/60)*2*pi; 
 
phangle2=(time(c3)-vreftime)/(1/60)*2*pi; 
phangle3=(time(c5)-vreftime)/(1/60)*2*pi; 
 
%Find rectangular coordinates of each L-n voltage 
van=(cos(phangle1)-j*sin(phangle1)).*abs(r1')/sqrt(2); 
vbn=(cos(phangle2)-j*sin(phangle2)).*abs(r3')/sqrt(2); 
vcn=(cos(phangle3)-j*sin(phangle3)).*abs(r5')/sqrt(2); 
 
%Calculate LL voltages 
vab=van-vbn; 
vbc=vbn-vcn; 
vca=vcn-van; 
 
thetava=angle(van)*180/pi; 
thetavb=angle(vbn)*180/pi; 
thetavc=angle(vcn)*180/pi; 
 
thetavab=angle(van-vbn)*180/pi; 
thetavbc=angle(vbn-vcn)*180/pi; 
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thetavca=angle(vcn-van)*180/pi; 
%**************************************************************************************** 
 
%Calculate average real & reactive power (W & VA)----------------------------------------
-------------------- 
Pa=vamax.*iamax.*cos(theta1)'; 
Pb=vbmax.*ibmax.*cos(theta2)'; 
Pc=vcmax.*icmax.*cos(theta3)'; 
Qa=vamax.*iamax.*sin(theta1)'; 
Qb=vbmax.*ibmax.*sin(theta2)'; 
Qc=vcmax.*icmax.*sin(theta3)'; 
 
Qtot=Qa+Qb+Qc; 
Ptot=Pa+Pb+Pc; 
 
Stot=sqrt(Ptot.^2+Qtot.^2); 
%**************************************************************************************** 
figure(1) 
subplot(4,1,1) 
plot(deltad,vamax*1e-3,'r',deltad,vbmax*1e-3,'b',deltad,vcmax*1e-3,'m'); 
%axis([0,10,0,80e3]); 
title('Line Characteristics for the 13.2 kV Superconducting Triaxial Power Cable'); 
ylabel('Line Voltage [kVrms]'); 
%xlabel('Source                             distance [miles]                                  
Load'); 
 
 
subplot(4,1,2) 
plot(deltad,abs(vab)*1e-3,'r',deltad,abs(vbc)*1e-3,'b',deltad,abs(vca)*1e-3,'m'); 
ylabel('L-L Voltage [Vrms]'); 
%xlabel('Source                             distance [miles]                                  
Load'); 
 
 
subplot(4,1,3) 
plot(deltad,iamax*1e-3,'r',deltad,ibmax*1e-3,'b',deltad,icmax*1e-3,'m'); 
%axis([0,10,0,80e3]); 
%title('Tiaxial Cable Current'); 
ylabel('Line current [kArms]'); 
%xlabel('Source                             distance [miles]                                  
Load'); 
 
subplot(4,1,4) 
plot(deltad,theta1*180/pi,'r',deltad,theta2*180/pi,'b',deltad,theta3*180/pi,'m'); 
ylabel('Phase angle shift [deg]'); 
xlabel('Source                             distance [miles]                                  
Load'); 
 
 
figure(2) 
subplot(3,1,1) 
%plot(deltad,Pa,'r',deltad,Pb,'b',deltad,Pc,'m'); 
 
plot(deltad,Ptot*1e-6,'r'); 
title('Real & Reactive Power'); 
ylabel('P [MW]'); 
%axis([0,10,60,70]); 
 
 
subplot(3,1,2) 
plot(deltad,Qtot*1e-6,'r'); 
ylabel('Q [MVA]') 
%axis([0,10,-1.5,.5]) 
 
subplot(3,1,3) 
plot(deltad,Stot*1e-6,'r'); 
ylabel('S [MVA]'); 
xlabel('Source                             distance [miles]                                  
Load'); 
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%axis([0,10,60,70]); 
 
 
%**************************************************************************************** 
%Shield current and voltages////////////////********************************************* 
%**************************************************************************************** 
%Acquire voltage vectors----------------------------------------------------------------- 
k=1;    %incrementer for sorting out phases 
for i=35:1:45   %phase A voltages 
    t(k)=i; 
    Vs(:,k)=alldata(:,i); 
    k=k+1; 
end 
%Acquire current vectors----------------------------------------------------------------- 
k=1;    %incrementer for sorting out phases 
for i=79:1:89   %phase A voltages 
    t(k)=i; 
    Is(:,k)=alldata(:,i); 
    k=k+1; 
end 
 
%Find angles between shield voltages and currents----------------------------------------
- 
%calculate time vector for one cycle 
for i=1:1667 
    timecycle(i)=time(i); 
    vs2(i,:)=Vs(i,:); 
    is2(i,:)=Is(i,:); 
end 
[rs1,cs1]=max(vs2); 
[rs2,cs2]=max(is2); 
dtimes=time(cs2)-time(cs1); 
thetas=dtimes/(1/60)*2*pi; 
 
 
 
%Find rms voltage at each distance---------------------------------------------- 
for i=1:11 
    vsrms(i)=max(Vs(:,i))/sqrt(2); 
    vsmax(i)=max(Vs(:,i)); 
end 
%**************************************************************************************** 
 
%Find rms current at each distance---------------------------------------------- 
for i=1:11 
    isrms(i)=max(Is(:,i))/sqrt(2); 
    ismax(i)=max(Is(:,i)); 
end 
%**************************************************************************************** 
 
%Find real shield power 
Ps=vsmax.*ismax.*cos(thetas)'; 
Qs=vsmax.*ismax.*sin(thetas)'; 
 
 
figure(3) 
%subplot(2,1,1) 
%plot(time,Vs) 
%axis([0,.0167,-20e-9,15e-9]) 
%subplot(2,1,2) 
%plot(time,Is) 
subplot(2,2,1); 
plot(deltad,vsrms); 
title('shield voltage') 
ylabel('Vsrms   [V]'); 
subplot(2,2,2); 
plot(deltad,isrms); 
title('shield current') 
ylabel('Isrms   [A]'); 
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subplot(2,2,3) 
plot(deltad,thetas) 
title('power angle') 
ylabel('theta   [degrees]'); 
xlabel('source          distance (miles)        load'); 
subplot(2,2,4) 
plot(deltad,Ps*1e-3,'r',deltad,Qs*1e-3); 
title('real & reactive power') 
ylabel('P (red)  [kW] & Q (blue)   [kVAR]'); 
xlabel('source          distance (miles)        load'); 
 
figure(4) 
 
subplot(4,1,1) 
plot(deltad,vamax*1e-3,'g',deltad,vbmax*1e-3,'b',deltad,vcmax*1e-3,'r'); 
title('ATP Simulation Results for the 13.2 kV Superconducting Triaxial Power Cable'); 
ylabel('L-n Voltage [kVrms]'); 
%xlabel('Source                             distance [miles]                                  
Load'); 
 
subplot(4,1,2) 
plot(deltad,abs(vab)*1e-3,'g',deltad,abs(vbc)*1e-3,'b',deltad,abs(vca)*1e-3,'r'); 
ylabel('L-L Voltage [Vrms]'); 
%xlabel('Source                             distance [miles]                                  
Load'); 
 
subplot(4,1,3) 
plot(deltad,thetava,'g',deltad,thetavb,'b',deltad,thetavc,'r'); 
ylabel('thetavln [degrees]'); 
%xlabel('Source                             distance [miles]                                  
Load'); 
 
subplot(4,1,4) 
plot(deltad,thetavab,'g',deltad,thetavbc,'b',deltad,thetavca,'r'); 
ylabel('thetavll [degrees]'); 
axis([0 10 -100 160]); 
xlabel('Source                             distance [miles]                                  
Load'); 
 
 
%Save data to a file for Excel Plotting 
%convert from miles to km 
dis=deltad*1.60934; 
M=[dis',vamax'*1e-3,vbmax'*1e-3,vcmax'*1e-3,vsrms',iamax'*1e-3,ibmax'*1e-3,icmax'*1e-
3,isrms',theta1*180/pi,theta2*180/pi,theta3*180/pi,Ptot'*1e-6,Pa'*1e-6,Pb'*1e-6,Pc'*1e-
6,Qtot'*1e-6,Qa'*1e-6,Qb'*1e-6,Qc'*1e-6,Stot'*1e-6,Ps'*1e-
3,thetava,thetavb,thetavc,thetavab,thetavbc,thetavca,abs(vab)*1e-3,abs(vbc)*1e-
3,abs(vca)*1e-3]; 
WK1WRITE('C:\AEPtemp\10miledata69kv',M); 
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“triaxTE” 
 
%TE model for the 13.2kV Triaxial Cable 
%Marcus Young  
 
clear; 
clc; 
x=1 
%Define system parameters. 
R=2.6;                           %load resistance (ohms) (wye configuration) 
xmiles=10;                      %cable length (miles) 
xl=xmiles*1609.34;               %cable length (meters) 
v1m=13.2/sqrt(3);                         %source voltage magnitude (kV) (line-to-line) 
 
 
%Define radii (in m) of each concentric phase of infintesimal width. 
a1=0.02125*0.0254; 
a2=.02375*0.0254; 
a3=.02625*0.0254; 
a4=.0295*0.0254; 
 
%Define constitutive parameters of the materials. 
mur=1;                          %relative permeability 
muo=(4*pi)*10^-7;                 %permeability of free space (H/m) 
mu=mur*muo;                     %permeability (H/m) 
 
epsilonr=2.6;                   %relative permittivity or dielectric constant 
epsilono=8.85e-12;              %permittivity of free space (F/m) 
epsilon=epsilonr*epsilono;      %permittivity (F/m) 
 
c=3e8;                          %speed of light in a vacuum (m/s) 
 
%Calculate wavenumber in accordance with equation 2.39 for f=60Hz in dielectric. 
omega=2*pi*60;                  %angular velocity (rad/s) 
beta=omega*sqrt(mu*epsilon);    %phase constant or wavenumber (rad/m) 
%******************************************************************************** 
 
%Set-up natural logarithims for inductance & capacitance calulations. 
%Refer to equations 3.7 & 3.9  
%1) set-up natural logarithims for inductance calulations 
ML(1,1)=log(a4/a1); 
ML(1,2)=log(a4/a2); 
ML(1,3)=log(a4/a3); 
ML(2,1)=log(a4/a2); 
ML(2,2)=log(a4/a2); 
ML(2,3)=log(a4/a3); 
ML(3,1)=log(a4/a3); 
ML(3,2)=log(a4/a3); 
ML(3,3)=log(a4/a3); 
 
%2) set-up natural logarithims for capacitance calulations by taking the inverse. 
MC=inv(ML); 
%******************************************************************************** 
 
%Calculate inductance and capacitance per meter. 
lprime=mu/(2*pi)*ML;            %inductance matrix (H/m) 
cprime=2*pi*epsilon*MC;         %capacitance matrix (F/m) 
%******************************************************************************** 
 
%Calculate the characteristic admittance & impedance matrices of the coupled line system 
%according to the characteristic impedance for a coaxial cable found in table 2-2. 
%Since the cable is superconducting, resistance is assumed to be zero. 
zo=60/sqrt(epsilonr)*ML;        %characteristic impedance (ohms) 
yo=inv(zo);                     %characteristic admittance (siemens) 
%******************************************************************************** 
 
%Calculate input impedance of the cable usinf equation 2.63. 
zl=eye(3)*R;    %load impedance matrix 
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zinum=zl*cos(beta*xl)+i*zo*sin(beta*xl); 
ziden=zo*cos(beta*xl)+i*zl*sin(beta*xl); 
zin=zo*zinum*inv(ziden); 
%******************************************************************************** 
 
%Calculate voltage and current at termination.  
v1=v1m*[1;exp(i*-2*pi/3);exp(i*2*pi/3)];     %source voltage phasors (volts) 
i1=inv(zin)*v1;                             %source current (amps) 
 
v2=v1*cos(beta*xl)-i*zo*i1*sin(beta*xl);   %calculate termination voltage from equation 
2.44a subtract and 
                                            %add equations 2.44a & 2.44b for x=0, then 
substitute into 2.44a then use trig ID 
i2=inv(zl)*v2; 
%******************************************************************************** 
%  
%Calculate the voltages, currents, power, and angle differences for each position of the 
line from the load to the source. 
x=0:0.1:xmiles;             %calculate for the entire line; distance from load. 
matrixsize=size(x); 
numpoints=matrixsize(1,2); 
for position=1:numpoints; 
    dismiles=x; 
    xx=x(position)*1609.43; %convert distance units from miles to meters. 
    vf(:,position)=v2*cos(beta*xx)+i*zo*i2*sin(beta*xx); 
    If(:,position)=i2*cos(beta*xx)+i*yo*v2*sin(beta*xx); 
    va(1,position)=vf(1,position); 
    vb(1,position)=vf(2,position); 
    vc(1,position)=vf(3,position); 
    ia(1,position)=If(1,position); 
    ib(1,position)=If(2,position); 
    ic(1,position)=If(3,position); 
    pa(1,position)=real(va(1,position)*conj(ia(1,position)));        %recieved 
instantaneous real power for each phase 
    pb(1,position)=real(vb(1,position)*conj(ib(1,position))); 
    pc(1,position)=real(vc(1,position)*conj(ic(1,position))); 
    qa(1,position)=imag(va(1,position)*conj(ia(1,position)));        %recieved 
instantaneous reactive power for each phase 
    qb(1,position)=imag(vb(1,position)*conj(ib(1,position))); 
    qc(1,position)=imag(vc(1,position)*conj(ic(1,position))); 
     
    pt(1,position)=pa(1,position)+pb(1,position)+pc(1,position);                %recieved 
total real power 
    qt(1,position)=qa(1,position)+qb(1,position)+qc(1,position);                %recieved 
total reactive power 
    S(1,position)=sqrt(pt(1,position)^2+qt(1,position)^2);                      %recieved 
total apparant power 
    PF(1,position)=pt(1,position)/S(1,position);                                %power 
factor 
     
end 
 
delthetaV0=(angle(va)-angle(va(1)))*180/pi; %calculate voltage angle differences over 
distance with respect to first phase 
delthetaVb=(angle(vb)-angle(va))*180/pi-120;      
delthetaVc=-(angle(vc)-angle(va))*180/pi-120; 
 
 
 
%delthetaI0=angle(ia)*180/pi; %calculate current angle differences over distance with 
respect to first phase 
delthetaIb=(angle(ib)-angle(ia))*180/pi-120;      
delthetaIc=-(angle(ic)-angle(ia))*180/pi-120; 
 
%Find LL voltage mags 
Vab=abs(va-vb); 
Vbc=abs(vb-vc); 
Vca=abs(vc-va); 
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thetava=angle(va)*180/pi; 
thetavb=angle(vb)*180/pi; 
thetavc=angle(vc)*180/pi; 
 
thetavab=angle(va-vb)*180/pi; 
thetavbc=angle(vb-vc)*180/pi; 
thetavca=angle(vc-va)*180/pi; 
 
EFF=pt/pt(1,numpoints);                                         %Efficiency 
%******************************************************************************** 
x=2 
%Plot output 
%NOTE: x=0 corresponds to the location of the load.****************************** 
figure(1); 
subplot(4,2,1), plot(dismiles,abs(va),'g',dismiles,abs(vb),'b',dismiles,abs(vc),'r'); 
    title('voltage magnitude per phase (kV)'); 
    %xlabel('distance (miles)'); 
    %axis([0,xl/1609.3,0,80]); 
    %axis([0,xl/1609.3,0,80]); 
    grid; 
subplot(4,2,2), plot(dismiles,abs(ia),'g',dismiles,abs(ib),'b',dismiles,abs(ic),'r'); 
    title('current magnitude (kA)'); 
    %xlabel('distance (miles)'); 
    %axis([0,xl/1609.3,0,3]); 
    grid; 
subplot(4,2,3), 
plot(dismiles,angle(va)*180/pi,'g',dismiles,angle(vb)*180/pi,'b',dismiles,angle(vc)*180/p
i,'r'); 
    title('voltage phase angles (deg)'); 
    %xlabel('distance (miles)'); 
    grid; 
subplot(4,2,4), 
plot(dismiles,angle(ia)*180/pi,'g',dismiles,angle(ib)*180/pi,'b',dismiles,angle(ic)*180/p
i,'r'); 
    title('current phase angles (deg)'); 
    %xlabel('distance (miles)'); 
    grid;    
subplot(4,2,5), plot(dismiles,(angle(va)-angle(ia))*180/pi,'g',dismiles,(angle(vb)-
angle(ib))*180/pi,'b',dismiles,(angle(vc)-angle(ic))*180/pi,'r'); 
    title('angle between voltage and current (deg)'); 
    %xlabel('distance (miles)'); 
    %axis([0,xl/1609.3,-20,0]); 
    grid; 
subplot(4,2,6), plot(dismiles,delthetaVb,'b',dismiles,delthetaVc,'r');  
    title('delta in voltage phases (deg)'); 
    %xlabel('distance (miles)');    
    %axis([0,xl/1609.3,-1,1]); 
    grid; 
subplot(4,2,7), 
plot(dismiles,abs(va)*sqrt(3),'g',dismiles,abs(vb)*sqrt(3),'b',dismiles,abs(vc)*sqrt(3),'
r'); 
    title('line-to-line voltage magnitude (kV)'); 
    xlabel('distance (miles)'); 
    %%axis([0,xl/1609.3,65.5,66.5]); 
    %axis([0,xl/1609.3,0,80]); 
    grid;    
subplot(4,2,8), plot(dismiles,delthetaIb,'b',dismiles,delthetaIc,'r');  
    title('delta in current phases (deg)'); 
    xlabel('distance (miles)');    
    grid; 
%subplot(4,2,8), plot(dismiles,pa,'g',dismiles,pb,'b',dismiles,pc,'r'); 
%   title('real power in each phase (MW)'); 
%   xlabel('distance (miles)'); 
%   grid; 
 
figure(2); 
subplot(4,1,1), plot(dismiles,pa,'g',dismiles,pb,'b',dismiles,pc,'r'); 
    title('real power in each phase (MW)'); 
    %xlabel('distance (miles)'); 
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    grid; 
subplot(4,1,2), plot(dismiles,qa,'g',dismiles,qb,'b',dismiles,qc,'r'); 
    title('reactive power in each phase (MVars)'); 
    %xlabel('distance (miles)'); 
    %axis([0,10,220,230]); 
    grid; 
subplot(4,1,3), plot(dismiles,pt,'r') 
    title('total power (MW)'); 
    %xlabel('distance (miles)'); 
    %axis([0,10,220,230]); 
    grid; 
subplot(4,1,4), plot(dismiles,qt,'r'); 
    title('total reactive power (MVars)'); 
    xlabel('distance (miles)'); 
    %axis([0,10,220,230]); 
    grid; 
     
figure(3); 
subplot(4,1,1), plot(dismiles,S,'r') 
    title('total apparent power (MVA)'); 
    %xlabel('distance (miles)'); 
    %axis([0,10,220,230]); 
    grid; 
subplot(4,1,2), plot(dismiles,PF,'r') 
    title('power factor of the line (leading)'); 
    %xlabel('distance (miles)'); 
    %axis([0,10,0,1]); 
 
    grid; 
subplot(4,1,3), plot(dismiles,EFF,'r') 
    title('efficiency (Pout/Pin)'); 
    xlabel('distance (miles)'); 
    %axis([0,10,0,1]); 
    grid; 
 
figure (4)    
subplot(4,1,1), plot(dismiles,abs(va),'g',dismiles,abs(vb),'b',dismiles,abs(vc),'r') 
    title('Simulation Results of the 13.2 kV Triaxial Cable Using Telegraph Equations'); 
    ylabel('L-n voltage (Vrms)'); 
    %axis([0,10,0,1]); 
    grid; 
     
subplot(4,1,2), plot(dismiles,Vab,'g',dismiles,Vbc,'b',dismiles,Vca,'r') 
    ylabel('L-L voltage (Vrms)'); 
    %axis([0,10,0,1]); 
    grid; 
     
 
subplot(4,1,3), plot(dismiles,thetava,'g',dismiles,thetavb,'b',dismiles,thetavc,'r') 
    ylabel('thetavln [degrees]'); 
    %axis([0,10,0,1]); 
    grid; 
 
     
subplot(4,1,4), plot(dismiles,thetavab,'g',dismiles,thetavbc,'b',dismiles,thetavca,'r') 
    ylabel('thetavll [degrees]'); 
    axis([0,10,-100,160]); 
    grid;  
     
%Save data to a file for Excel Plotting and convert from miles to km 
M=[dismiles'*1.60943,fliplr(abs(va))',fliplr(abs(vb))',fliplr(abs(vc))',fliplr(abs(ia))',
fliplr(abs(ib))',fliplr(abs(ic))',fliplr((angle(va)-
angle(ia))*180/pi)',fliplr((angle(vb)-angle(ib))*180/pi)',fliplr((angle(vc)-
angle(ic))*180/pi)',fliplr(pt)',fliplr(pa)',fliplr(pb)',fliplr(pc)',fliplr(qt)',fliplr(qa
)',fliplr(qb)',fliplr(qc)',fliplr(S)',fliplr(thetava)',fliplr(thetavb)',fliplr(thetavc)',
fliplr(thetavab)',fliplr(thetavbc)',fliplr(thetavca)',abs(fliplr(Vab))',abs(fliplr(Vbc))'
,abs(fliplr(Vca))']; 
WK1WRITE('C:\AEPtemp\TE10mile13kv',M); 
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“triaxfault” 
 
%*//////ATP--.pl4 FILE CAPTURE FOR ATP TRIAXIAL CABLE FAULT SIMULATION//////////////    * 
%*  Loads time, voltage, and current data columns from .pl4 file and performs           * 
%*  desired calculations so that line characteristics can be plotted as a function      * 
%*  of distance.                                                                        * 
%*  ///////////////created by Marcus Young/////June 23, 2004//////////////              * 
%**************************************************************************************** 
 
clear; 
clc; 
 
%Load .pl4 file & assign data------------------------------------------------------------ 
alldata=load('c:\ATP_DRAW39\ATP\triax10mile1.pl4'); 
sizedata=size(alldata) 
columns=sizedata(1,2) 
datacolumn=sizedata(1,1) 
 
time=alldata(:,1); 
i=1; 
for k=2:4 
    V(:,i)=alldata(:,k); 
    i=i+1; 
end 
i=1; 
for k=5:12 
    I(:,i)=alldata(:,k); 
    i=i+1; 
end 
 
%plot(time,I(:,5)*1e-3,time,I(:,6)*1e-3,time,I(:,7)*1e-3,time,I(:,8)*1e-3); 
 
M=[time,I(:,5)*1e-3,I(:,6)*1e-3,I(:,7)*1e-3,I(:,8)*1e-3]; 
WK1WRITE('C:\AEPtemp\13kvslgout',M); 
 

 110



 
 
 
 
 
 
 
 
 
 
 
 

Appendix C 
 
 

Results of 13.2 kV Steady-State  
 

Simulations with an Inductive Load 
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Simulation of a 13.2 kV Triaxial Cable with an Inductive Load 
 
 
 
 

Inductive Load Specifications 

 

All specifications used for the steady-state simulation of a 13.2 kV triaxial cable with an 

inductive load were the same as for the 13.2 kV cable described in chapter 2. The 

inductance and resistance in the load were chosen such that it would operate at 0.9 power 

factor lagging. 

 

 

Steady-State Simulation Results 

 

Results from ATP and TE model simulations are plotted in this section. Solid lines 

represent ATP results, and the dashed lines represent those of the TE model. 
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Figure (A.1) Phase voltages of a 13.2 kV triaxial cable with an inductive load. 
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Figure (A.2) Phase Currents of a 13.2 kV triaxial cable with an inductive load. 
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Figure (A.3) Power factor angles of a 13.2 kV triaxial cable with an inductive load. 
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Figure (A.4) Total reactive power of a 13.2 kV triaxial cable with an inductive load. 
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Figure (A.5) Phase real power of a 13.2 kV triaxial cable with an inductive load. 
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Figure (A.6) Phase reactive power of a 13.2 kV triaxial cable with an inductive load. 
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Figure (A.7) Total real and apparent power of a 13.2 kV triaxial cable with an inductive 
load. 

 115



12.8

12.85

12.9

12.95

13

13.05

13.1

13.15

13.2

13.25

0 4 8 12 16

Source     Line Distance [km]     Load

l-l
 V

ol
ta

ge
 [k

V r
m

s]

Vab

Vbc

Vca

 
 

Figure (A.8) Line-to-line voltages of a 13.2 kV triaxial cable with an inductive load. 
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Figure (A.9) Copper shield voltage and current for a 13.2 kV triaxial cable with an 
inductive load. 
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Appendix D 
 
 

Specifications and Results from 69 kV Steady-State  
 

Simulations 
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Simulation of a 13.2 kV Triaxial Cable 
 
 
 
 

69 kV Triaxial Cable Specifications 

 

All specifications used for the 69 kV steady-state simulations were the same as for the 

13.2 kV cable described in chapter 2, except for differences in the phase and shield radii. 

The axial field inductance was excluded from the simulations. The average phase and 

shield radii approximated for the 69 kV triaxial cable are presented in table (A.1). 

 

 

 

69 kV Triaxial Cable Steady-State Simulation Results 

 

Results from ATP and TE model simulation are plotted in this section. Solid lines 

represent ATP results, and the dashed lines represent those of the TE model. 

 
 
 
 
 
 

Table (A.1) Average phase and shield radii of a 69 kV triaxial cable. 

 
Conductor Average radius [mm] 

Phase A 19 
Phase B 26 
Phase C 33 
Shield 40 
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Figure (A.10) Phase voltages of a 69 kV triaxial cable. 
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Figure (A.11) Phase Currents of a 69 kV triaxial cable. 
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Figure (A.12) Power factor angles of a 69 kV triaxial cable. 
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Figure (A.13) Phase real power of a 69 kV triaxial cable. 
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Figure (A.14) Phase reactive power of a 69 kV triaxial cable. 
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Figure (A.15) Total reactive power of a 69 kV triaxial cable. 

 121



351.5

352

352.5

353

353.5

354

354.5

355

0 4 8 12 16

Source               Line Distance [km]             Load

To
ta

l R
ea

l &
 A

pp
ar

en
t P

ow
er

 [M
W

]

Real Power (ATP)
Real Power (TE)
Apparent Power (ATP)
Apparent Power (TE)

 
 

Figure (A.16) Total real and apparent power of a 69 kV triaxial cable. 
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Figure (A.17) Line-to-line voltages of a 69 kV triaxial cable. 
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Figure (A.18) Copper shield voltage and current for a 69 kV triaxial cable. 

 123



 
 
 
 
 
 
 
 
 
 
 

Appendix E 
 
 

Equivalent Network Impedance 
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Calculation of the Equivalent Network Impedance 
 
 
The equivalent network impedance of the 13.2 kV power system simulated in chapter 5 

was approximated from assumed values about the short circuit impedance of the system 

to represent a nominal case [45]. A list of the assumptions made and the calculation of 

the positive and zero sequence components are provided in this section. 

 

 

List of assumptions 

 

1) Short circuit capacity (SSC) of the transformer ~ 10%. 

2) Minimum transformer rating ~ 70 MVA (at least that of the cable). 

3) Short circuit power of the source is 20 times that of the transformer (20 X 70 

~ 1400MVA). 

4) R/X ratio ~ 1/10, this ratio assumes a bulk 138 kV/13.2 kV network. The 1/10 

value is a nominal value chosen to represent the bulk network as on 

impedance. The R/X ratio is generally not a used value in power system 

studies, however in this case it provides nominal values of impedance for 

simulations conducted in this study. 

5) For the Delta/WYE-grounded transformer, Zo=Z+. 

6) For the source, Zo=1.5*Z+. 

 

 

Calculation of the equivalent network impedance 

 

Positive sequence: 

 

[ohmsX rtransforme 25.0%10
70

2.13 2

≅×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅−+ ]  (D.1) 
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[ohmsX source 125.0
1400

2.13 2

≅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅−+ ]

]

  (D.2) 

 

[ohmsR rtransforme 0=−+   (D.3) 

 

[ohms
X

R sourcex
source 0125.0

10
≅≅ −

−+ ]   (D.4) 

 

[ ]ohmsjZZZ sourcetrasformer 375.00125.0 +≅+= −+−++   (D.5) 

 

 

Zero sequence: 

 

[ ]ohmsRR rtransformertransformeo 0== −+−  

 

[ ]ohmsXX rtransformertransformeo 25.0≅= −+−  

 

( ) [ ]ohmsR sourceo 019.00125.05.1 ≅×≅−  

 

( ) [ ]ohmsX sourceo 190.0125.05.1 ≅×≅−  

 

[ ]ohmsjZZZ sourceotrasformeroo 44.0019.0 +≅+= −−   (D.6) 
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