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Abstract 

 Point source extraction is critical to proper analysis of images containing 

point sources obtained by focal plane array cameras. Two popular methods of 

extracting the intensity of a point source are aperture photometry and point 

spread function fitting. Digital aperture photometry encompasses procedures 

utilized to extract the intensity of an imaged point source. It has been used by 

astronomers in various forms for calculating stellar brightness. It is also useful for 

doing analysis of data associated with other unresolved radiating objects. The 

various aperture photometry methods include the two-aperture method, aperture 

correction, and growth curve method.  

 The growth curve method utilizes integrated irradiance within an aperture 

versus growing aperture size. Signal to noise ratio, imperfect backgrounds, 

moving and off centered targets, and noise structure are just a few of the items 

that can cause problems with point source extraction. This thesis presents a 

study of how best to apply the growth curve method.  

 Multiple synthetic image sets were produced to replicate real world data. 

The synthetic images contain a Gaussian target of known intensity. Noise was 

added to the images, and various image related parameters were altered. The 

growth curve method is then applied to each data set using every reasonable 

aperture size combination to calculate the target intensity. It will be shown that for 

different types of data, the most optimal application of the growth curve method 
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can be determined. An algorithm is presented that can be applied to all data sets 

that fall within the scope of this study will be presented.  
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1. Introduction 

 Remote sensing involves gathering information about the physical world 

by detecting and quantifying signals composed of radiation, particles, and fields 

emanating from objects located beyond the immediate vicinity of the sensor 

device. The information collected by the sensors can be placed into one of three 

categories: spatial, spectral, and intensity information. Some sensors produce 

data that fall into two or all three categories. For example, an imaging radiometer 

produces both spatial and intensity data, but since it can have spectral 

dependent sensitivity, spectral data is produced as well. This thesis will focus on 

systems that produce images. Digital imagers consist of a variety of materials 

and operate in numerous electromagnetic bands. Regardless, these instruments 

all produce an image that consists of an array of pixels each representing the 

amount of incident radiation present during the time of exposure [1]. 

 Imagery can consist of extended resolved sources or unresolved point 

sources. In order to analyze point source imagery it is typical to extract the total 

irradiance of the target. There are a variety of techniques for extracting point 

source intensity, each with respective strengths and weaknesses. 

 One popular method for extracting point source intensity is point spread 

function (PSF) fitting. The PSF describes the response of an imager to a point 

source, and is sometimes referred to as the blur function. An image produced by 

the imaging system is simply the convolution of the object being imaged with the 

PSF of the system. This is true for unresolved point sources or resolved 
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extended objects. A PSF can also be thought of as a modulation transfer function 

(MTF) in the spatial domain. The MTF is the modulus of the optical transfer 

function (OTF) [2].  PSF fitting is a viable point source extraction method, but 

requires accurate knowledge of the system PSF. In addition, there can be no 

apparent motion within the time scale of the integration time of the sensor. The 

PSF overlays the image, and the position and amplitude are adjusted until the 

difference between the two are minimized. The extracted signal is then taken to 

be the summation or amplitude of the adjusted PSF [3]. In general, varying 

conditions may induce ambiguities that are difficult to resolve by resorting to the 

PSF approach only. In some cases, the PSF is simply unknown. In others, the 

PSF may have changed. A satellite that underwent characterization on the 

ground may exhibit different parameters once on orbit. Still in other cases the 

target may be constantly moving and any known PSF will not apply due to the 

blur related to the motion [4]. 

 Aperture photometry methods tend to be more useful for recorded data. 

With a perfect image, without noise and a background of zero, one could simply 

apply a digital aperture of any size as long as it effectively contains the entire 

signal from the target. Since the point source image extends beyond digital 

windows, it is not possible to completely contain it. A similar issue is encountered 

when measuring the beam width of a laser. A criterion commonly used with 

lasers is D4σ, which is a beam diameter of four sigma [5]. In this case, the digital 

aperture should be at least six sigma wide, or three sigma radius, to capture 
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more than 99% of the signal. To be clear, a digital aperture is simply a defined 

region of the image containing the point source [6]. A summation of the signal 

from all pixels within that aperture would be the extracted intensity of the target. 

Of course, it is not that easy with actual recorded data. One subtype of aperture 

photometry is the two-aperture method. Two digital apertures defining the 

integration area are centered on the point source. Each aperture is large enough 

to effectively contain the complete point source out to three sigma with one 

aperture larger than the other. The integrated intensities of the two apertures are 

then compared [7]. Since one aperture is larger than the other, it will collect more 

background. The comparison results in two linear equations and two unknowns. 

One of these unknowns is the point source intensity. The equations are  

𝐼1 = 𝑁1 × 𝐵𝐺 + 𝐼0     (1) 

𝐼2 = 𝑁2 × 𝐵𝐺 + 𝐼0     (2) 

where I1 and I2 are the integrated signal, N1 and N2 are the number of pixels 

contained within the two apertures, BG is the uniform background level, and I0 is 

the actual intensity of the point source. Subtracting the two equations yields the 

background value, BG, which can be substituted into one of the original 

equations to find the point source intensity.  

𝐼0 = 𝐼1 − 𝑁1
𝐼2−𝐼1

𝑁2−𝑁1
     (3) 

One advantage of this method is that it does not require a well-defined PSF. It 

simply requires that both apertures be larger than three sigma of the point source 



4 

itself. The two-aperture method can be thought as of the growth curve method in 

its most simple form [8]. 

 Noise must be considered when using any aperture photometry method. 

Larger apertures will integrate more noise, which will introduce uncertainty with 

point source intensity calculations. In the case of white noise, the image noise is 

proportional to the square root of the number of pixels. For pink or red noise, the 

noise level increases more quickly with aperture size. The color of the noise 

refers to its power spectral distribution. White noise has a flat distribution while 

pink and red noise have a distribution proportional to 1/f and 1/f2, respectively [9]. 

When noise is present, the smallest aperture that still effectively contains the 

point source will be the most optimal. However, if the apertures get too small, the 

calculated signal will be truncated, producing an underestimate of the actual 

intensity of the target [7]. Nevertheless, there is a method that allows even 

smaller apertures to be used. 

 The aperture correction method allows us to use apertures that are 

smaller than the point source itself. The aperture correction method uses one 

aperture that is comparable to the full width half maximum (FWHM) of the point 

source image and a correction factor. The correction factor is based on the PSF 

shape. For example, if the point source is a Gaussian, and the aperture size is 

the same as the FWHM, only 76% of the energy will lie within the aperture. A 

correction factor of approximately 1.3 would be applied to the truncated intensity 

in order to find the actual intensity. Alternatively, the growth curve method (see 
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Chapter 2) could be applied to an uncrowded target with high signal to noise in 

order to find the total intensity. Applying the reduced aperture to that same target 

and comparing with the total intensity will yield the correction factor to be applied 

to other targets which may be crowded with other sources which maybe very 

faint [10]. 

 Crowding is not a problem typically encountered when analyzing data not 

related to stellar fields. Also, the PSFs for many of the imaging systems that 

produce the data are not well known. Point sources may exhibit motion due to 

tracking error or motion of the target itself, thus rendering any technique requiring 

a stable PSF useless. For these reasons, much of the data lends itself to the 

growth curve method of aperture photometry. 
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2. The Growth Curve Method 

 The need for the growth curve method lies within signal to noise 

arguments. Obviously, a larger digital aperture will contain more radiation flux 

than a smaller one. However, the rate at which the signal grows with increasing 

aperture size declines as the wings of the point source approach zero intensity. 

At the same time, noise in the measurement grows rapidly with increasing 

aperture size. Contributions to this noise can include random errors in readout, 

Poisson shot noise, flat-field errors, etc. As a result, the signal to noise ratio (S/N) 

reaches an optimal value at some intermediate aperture size. This aperture may 

or may not be large enough to capture the flux within three sigma from the 

source. Also, this optimum aperture size will be dependent on signal intensity. 

One way to improve this method is to add another, larger concentric aperture [3]. 

This is the basis for the two-aperture method discussed in the previous chapter.   

 A more powerful method is to measure the flux in several concentric 

apertures and calculate the flux difference between successive apertures. Each 

aperture is centered on the point source as illustrated in Figure 1. The flux 

contained within each aperture is plotted versus aperture size, producing the so-

called growth curve. The growth curve will grow until the aperture is large enough 

to capture three sigma of the present signal and will become linear with a slope 

based on the image background. [7]  

 Figure 1 contains a Gaussian point source with a total intensity of 100 

counts. The FWHM of the Gaussian is three pixels. Nine digital apertures ranging  
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Figure 1: Growth Curve Apertures 
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in size from 1x1 to 17x17 have been applied. The background level is perfectly 

flat at 0.25 counts. Figure 2 illustrates the growth curve resulting from the image. 

The red line is a linear fit that has been applied to the portion of this curve 

corresponding to apertures beyond three sigma. The intercept is the intensity of 

the signal. In this case, the intercept is exactly 100 counts as expected. This 

result was easily achieved since the background was perfectly flat and absent of 

noise. Alternatively one could have subtracted 0.25 from the entire image and 

found the summation of every pixel in the image. The summation would be 

exactly 100 for this example.  

 The simulated flux in this example was completely contained within the 

9x9 digital aperture. Applying a linear fit to any number of points along the growth 

curve corresponding to apertures 9x9 or larger would produce an intercept of 100 

counts. In this ideal case, the only consideration is the minimum aperture size 

that defines the first data point for the linear fit. Once noise is considered, the 

task of selecting apertures for the linear fit becomes more difficult.  

 Figure 3 is another Gaussian point source image with the same attributes 

as the one in Figure 1. However, this image has been modified with noise. The 

signal to noise ratio is 200. Even with a relatively high signal to noise ratio, the 

growth curve in Figure 4 illustrates potential issues. The curve is not perfectly 

linear as it was in Figure 2. The red line is a linear fit to the points related to 

apertures 9x9 through 17x17. The linear fit is accomplished by using the method  
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Figure 2: Flat Background Growth Curve 
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Figure 3: Image with Noise and Apertures 

 

Figure 4: Background Noise Growth Curve 
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of least squares. This fit yielded an intercept of approximately 97. The 

introduction of noise has resulted in a 3% loss in total extracted intensity.  

 Figure 5 illustrates the effects various signal to noise ratios can have on 

growth curves. Each curve results from an image with an integrated intensity of 

100 counts, but with signal to noise ratios varying from 500 down to 5. Figure 6 

shows the uncertainty in measurements at larger apertures. The growth curve is 

the average of 100 curves produced from 100 synthetic images with noise. One 

sigma error bars are also shown. As the aperture gets larger, the uncertainty in 

the measurement goes up as well. This effect becomes even more evident as the 

signal to noise ratio goes down.  

 Typically, when presented with actual data to analyze, the user will 

produce a growth curve for initial assessment. The best place to apply a linear fit 

is then determined simply by viewing the growth curve. This has been successful 

in the past, but can be tedious and is based more on user intuition than actual 

analysis of the imagery. This can cause problems if the linear fit is applied to 

apertures that may be too small or unnecessarily large. A way to avoid improper 

point source extraction is by properly understanding the behavior of growth 

curves by applying them to a variety of data with known source intensities. The 

results can be analyzed in order to find an optimized solution for specific types of 

data or even larger subsets of data that may be encountered. 
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Figure 5: Growth Curves for Various S/N Ratios 
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Figure 6: Noise Effects at Large Aperture Size 



14 

3. Approach 

 For this analysis, multiple synthetic data sets were created. Each set 

contains 100 images of a Gaussian point source. A Gaussian function  is 

frequently used to model a PSF [11]. Each point source was normalized to have 

an integrated intensity of 100 counts. Signal to noise, FWHM, and centroid offset 

all vary in each data set. In the end, 84 different data sets were created resulting 

in 8,400 unique images to be analyzed. Each image was 32x32 pixels with the 

point source located in the center. All data creation and analysis were performed 

using MATLAB 7.8.0 (2009a).  

 Each image starts off as a two-dimensional (2-D) Gaussian function. The 

formula for a 2-D Gaussian is as follows 

𝑓 𝑥,𝑦 = 𝐴𝑒
−[

 𝑥−𝑥0 2

2𝜎𝑥
2 +

 𝑦−𝑦0 2

2𝜎𝑦
2 ]

    (4) 

where σ is a spread parameter related to FWHM by formula 5, A is amplitude, 

and (x0,y0) is the Gaussian center location.  

𝐹𝑊𝐻𝑀 = 2 2𝑙𝑛2𝜎     (5) 

For this analysis, σx and σy are equal producing a circular Gaussian. A Gaussian 

function is spatially smooth; however, imaging systems collect data that is 

spatially discrete. The result is an image that can be represented by the 

convolution of the original Gaussian signal and the discrete Gaussian kernel [12].  

The first two frames of Figure 7 illustrate a smooth Gaussian and its discrete 

counterpart image. The third frame displays the addition of noise, which will be 

discussed later in this chapter.  
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Figure 7: Synthetic Scene Generation 

 Six values for the FWHM of the Gaussian were used to create the data 

sets. The values were 1.5, 2, 2.5, 3, 4, and 5. These values were chosen to 

reflect the same values that are commonly encountered in imagery data. Figure 8 

illustrates a Gaussian with FWHMs of 1.5, 2, and 2.5. Each image is on the same 

color scale to show the relative change. Even with the same signal to noise, a 

high FWHM can cause more of the signal to be lost to noise. 

 The centroid offset is another parameter varied for this study. Centroid 

offset is the location of the centroid based on the center of a pixel. In this case, 

the offset will be a single number indicating the distance to the right and below 

the center of the pixel. An offset of zero indicates that the Gaussian centroid is 

exactly centered on a pixel and is symmetrical. An offset of 0.2 indicates the 

centroid is located at point 0.2 pixels to the right and 0.2 pixels down. An offset 

off 0.5 indicates the centroid is located at the junction of four pixels. Figure 9 

illustrates centroid offsets of 0, 0.2, and 0.4, which are the offsets used in this 

experiment.  

 Noise is the most critical aspect of the synthetic data sets. The noise 

introduced in this experiment has a power spectral density of the form  
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Figure 8: FWHM Maximum Variation 

 

 

Figure 9: Gaussian Centroid Offset 
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𝑆(𝑓) ∝
1

𝑓𝛼
     (6) 

where f is frequency and 0 < α < 2. White noise corresponds to α = 0, which was 

used in this experiment to simulate thermal noise. So called “pink noise” 

corresponds to α = 1, and was used to simulate noise from other sources related 

to the sensor electronics. The power spectral density is the Fourier transform of 

the noise signal and is measured in units of Watts/Hz [13]. A separate 32x32 

noise frame was created for each of the 8,400 images. The noise frame was 

created by adding a pink noise frame and a white noise frame with a 

multiplicative weighting factor. White noise usually dominates the pink noise to 

some degree in the data of interest. The weighting factor used for this experiment 

was two. This resulted in a white noise frame with a standard deviation double 

that of the pink noise frame. The frames were added together and then scaled 

such that the standard deviation of the resulting frame was the desired fraction of 

the target intensity. Figure 10 shows frames with various signal to noise ratios 

resulting from this process. The ratios represented are 100, 50, and 25. The point 

source in Figure 10 has a FWHM of 1.5 pixels. 

 The basis for creating the noise is the pseudo-random number generator 

utilized by MATLAB. The function “randn” returns pseudo-random numbers with 

a normal distribution. The sequence of numbers generated by randn utilize 

MATLAB’s default number stream. These values work well for the Monte Carlo 

type of simulation executed in this experiment. The function randn produces the 

32x32 noise array which can be filtered in the frequency domain to produce the  
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Figure 10: Signal to Noise Variation 

 

white and pink noise frames [14]. The “randn” function works well for a single 

workstation. However, in order to expand this study and use parallel computing, 

a different pseudo-random number generator would need to be utilized. The 

Scalable Parallel Pseudo Random Number Generator (SPRNG) would work well 

in this case [15]. 

 Once the noise frame is created, it is added to the Gaussian frame with 

the appropriate FWHM and centroid offset. The result is an image closely 

approximating actual data produced by an imaging system. The process is 

repeated 100 times producing 100 images with the same FWHM, centroid offset 

and signal to noise ratio, but with different noise patterns resulting from the 

pseudo-random number generator.  All parameters included in the study are 

listed in Table 1. All tables are located in Appendix A. 

  The analysis of each data set begins with producing a growth curve for 

each of the 100 images. Figure 11 illustrates 100 growth curves for the data set 

representing a signal to noise ratio of 100, a FWHM of 2, and an offset of 0. The  
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Figure 11: 100 Growth Curves For One Data Set 
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positive and negative slopes are a result of imperfect background corrections 

resulting in locally positive or negative backgrounds. The calculated growth 

curves resulted from aperture sizes starting with 1x1 and ending with 21x21. A 

linear fit was calculated for every possible start and stop point within these two 

aperture sizes. For example, if the start and stop point are 5x5 and 11x11, then a 

linear fit is applied to the points along the growth curve corresponding to aperture 

sizes 5x5, 7x7, 9x9, and 11x11. This calculation would be performed on all 100 

growth curves resulting in 100 extracted intensities for the point source for that 

particular combination of start and stop apertures. A mean and standard 

deviation were calculated based on these values. In the example used to 

produce Figure 11, a linear fit to the points between and including 5x5 and 11x11 

resulted in a mean of 99 and a standard deviation of 7.3. Considering the actual 

intensity is 100 counts, this result is very accurate. However, it may not be the 

best result one could achieve using the same 100 growth curves.  

 With aperture sizes between 1x1 and 21x21, there are 55 possible start 

and stop combinations for calculating a linear fit.  The combinations go as 

follows. 1x1 to 3x3, 1x1 to 5x5, 1x1 to 7x7…15x15 to 21x21, 17x17 to 21x21, 

19x19 to 21x21. All 55 combinations were applied to the 100 growth curves for 

each case. This resulted in 55 unique sets of average intensities and the 

respective standard deviations. A ranking system was developed in order to 

quickly determine which aperture start and stop combination works best for each 
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data set. The ranks were based on which combinations produced the lowest 

value for the following formula created for this study, 

𝑠𝑐𝑜𝑟𝑒 = 𝑤  1−
𝐼0

100
 +  

𝜎

𝐼0
      (7) 

where I0 is the average calculated intensity from one hundred growth curves, σ is 

the standard deviation of the extracted intensities, and w is a weighting factor. 

The first term in the equation after the weighting factor represents the percent 

difference from the expected extracted intensity of one hundred counts. The 

second additive term is the standard deviation of the intensity calculations scaled 

by the average calculated intensity. A perfect score in this case would be zero. A 

score of zero indicates all one hundred growth curve measurements yielded an 

extracted intensity of one hundred counts.  

 The equation allows us to find the most accurate answer with the highest 

precision. It simply adds the accuracy and the precision of the measurement. The 

accuracy is given a weighting factor to ensure that accuracy has priority over 

precision. For this study, a weighting factor of three was applied, such that 

accuracy played a major role in the rankings but still allowed precision to have 

some influence. The result of this analysis is presented in the next chapter. 
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4. Findings and Results 

 After completing all calculations, a Microsoft Excel file was created to save 

all of the data. Each tab of the spreadsheet contained a single test case with all 

55 aperture start and stop combinations. For each combination the spreadsheet 

has the start aperture, stop aperture, average extracted intensity, standard 

deviation, a score resulting from the equation on the previous page, and the rank 

of the score among the other aperture combinations for that 100 frame dataset. 

Each table was sorted leaving the best aperture combinations at the top of each 

tab. All tables referred to in this section are available in Appendix A. 

 The first image parameter analyzed was the centroid offset. Intuitively, 

offsets that are small (less than 1/3) as compared to the FWHM should have little 

effect other than perhaps increasing the size of the minimum aperture since the 

offset may move the wings outside of the optimal minimum aperture for a target 

centered on a pixel. In this case, the evidence supports the intuition. Table 2 lists 

the five most optimal aperture combinations for all 3 offsets for data with a signal 

to noise ratio of 100 and a FWHM of 1.5 pixels. Data with an offset of zero and 

0.2 agree well. One slight difference of note is that three of the top five start 

apertures associated with zero offset are 3x3 while only two are for the offset 0.2 

data. For an offset of 0.4, all starting apertures are 5x5 indicating that a larger 

starting aperture is required for this particular data set. This makes sense 

because an offset of 0.4 is a larger percentage of the 1.5 pixel FWHM.  
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 The same comparisons were made for a 2.5 FWHM. As seen in Table 3, 

the data associated with offsets of zero and 0.2 are the same in that they both 

have three starting apertures of 7x7 and two of 5x5. For data with an offset of 

0.4, there were four 7x7 start apertures and only one 5x5 start aperture, 

indicating the offset had a slight effect similar to the previous data with a FWHM 

of 1.5. Again, this makes sense because the 0.4 offset is a lesser percentage of 

a 2.5 FWHM. Tables 4 and 5 show the same comparisons from above, but with a 

reduced signal to noise ratio of 25. These data exhibited similar trends to the 

data with a signal to noise ratio of 100, but to a lesser degree.  

 The next parameter examined was FWHM. Again, if intuition were applied, 

one would expect the minimum aperture to increase with FWHM. As before, the 

data agrees with intuition. Table 6 shows the five most optimal start and stop 

aperture combinations for a signal to noise ratio of 100 and a centroid offset of 

zero with FWHM varying between 1.5 and 5. The start aperture sizes clearly 

increase along with the FWHM. In fact, a trend emerges from this particular 

example. The best start aperture size is one that is twice the FWHM max or one 

step larger. For a FWHM of 1.5, the five most optimal start apertures are either 

3x3 or 5x5. For a FWHM of 3, all five optimal start apertures are 7x7 pixels. 

 Table 7 displays the same comparison as Table 6, but with signal to noise 

ratio reduced to 25. In this case, the optimal start aperture still increases with 

FWHM, but the increase in noise seems to keep them somewhat smaller than in 

the previous example.  The FWHM values of 1.5 through 3 still follow the same 
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trend as before, however the trend breaks down beyond that. For a FWHM of 4, 

one would expect the best start aperture to be 9x9, however only the fifth most 

optimal start aperture is 9x9. The rest are a smaller 7x7. This implies that lower 

signal to noise ratios have small optimal apertures, as expected from earlier 

noise discussions. Also of note, the average extracted intensity trends downward 

as FWHM increases. The average extracted intensity for the top five aperture 

combinations with a FWHM of 1.5 is 98.2. For a FWHM of 5, the average 

extracted intensity is only 92.3. This is probably due to the wings of the signal 

being lost to noise or truncation due to the smaller aperture sizes.  

 Finally, trends related to signal to noise ratio were examined. The ratios 

included were 100, 75, 50, 25, 10, 5, and 2. Table 8 shows the five most optimal 

start and stop aperture combinations for a FWHM of 1.5, a centroid offset of 0, 

and all signal to noise ratios. The optimal start aperture size shows no 

dependence on signal to noise ratio. The dominant starting aperture is 3x3 for 

this case. The optimal stop apertures however do exhibit a trend related to the 

signal to noise ratio. As the signal to noise ratio goes down, the optimal stop 

apertures get smaller. For a signal to noise ratio of 100, four of the five optimal 

stop apertures are 11x11 or higher, indicating better results using more apertures 

for computing the linear fit. For a signal to noise ratio of 25, four of the five 

optimal stop apertures are 9x9 or lower, indicating better results using fewer 

apertures for computing the linear fit.  
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 Table 9 is the same as Table 8 except the FWHM is 4. For this case, the 

optimal starting apertures show a slight trend toward smaller sizes with an 

increase in signal to noise ratio. In this case, data at or below a signal to noise 

ratio of 25 are questionable since the standard deviations of the measurements 

are 50% or more of the extracted intensity. This was also true for data at or 

below a signal to noise ratio of five for a FWHM of 1.5. As before, the optimal 

stop aperture size reduces as the signal to noise ratio goes down. 

 The last step of this analysis is to utilize all of the results to produce an 

algorithm that can be applied to any data set within the scope of this study. 

Based on the findings so far, the framework of an algorithm can be formed.  The 

minimum starting aperture should be one step higher than double the FWHM. If it 

is 1.5, then the starting aperture should be 5x5. If it is 4, then the starting 

aperture should be 9x9.  While the stopping aperture should be related to the 

signal to noise, it can be difficult to calculate it for some data sets. It seems 

simply cutting off the linear fit with a stop aperture of three positions higher than 

the start aperture will suffice for most cases. In the case of a 1.5 FWHM, this 

means the stop aperture would be 11x11. For a value of four, it would be 15x15. 

The results of universally applying this algorithm to all data sets in this study can 

be seen in Table 10. Data in which the signal to noise ratio is too low have been 

omitted. Applying this algorithm works surprisingly well and requires nothing 

more than an estimation of the FWHM of the image. Of the 84 cases, 60 had 

sufficient signal to noise for proper analysis. Applying the algorithm outlined 



26 

above consistently yielded high-ranking results from each data set. In fact, 

applying the algorithm to 17 of the 60 cases yielded either the first or the second 

most optimal solution. The median rank for all 60 cases was 4. Figure 12 shows 

the extracted intensities yielded by applying the algorithm universally to all 60 

cases. In each case, one hundred intensities were extracted from one hundred 

growth curves. The mean and standard deviation of the intensities were 

calculated for each case. One sigma error bars are included. The average 

extracted intensity for all cases was 99 with an average standard deviation of 23. 

Table 10 lists the results from all 60 cases that are illustrated in Figure 12. 

Having a general algorithm this successful on multiple types of image data can 

be very useful when processing large quantities of data. 
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Figure 12: Extracted Intensity with Algorithm Application 
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5. Future Improvements 

 The analysis in this thesis established trends based on image parameters. 

These trends are helpful in determining the best application of the growth curve 

method. However, there is room for improvement. There were unexpected 

inconsistencies between data sets with similar image parameters. One solution 

could be to expand the number of frames per data set beyond 100. Perhaps 

doing 1,000 frames per data set would have yielded better results, but the 

tradeoff would have been the time required to do so. Processing the 8,400 

frames took approximately 16 hours of computer processing time. Increasing the 

frame number tenfold would increase the computation time similarly. An 

alternative would be to use parallel computing in order to increase throughput. 

 Another area for improvement would be to test non-circular Gaussian 

targets. Many data of interest contain objects that are blurred due to tracking jitter 

or simply the object moving. The result may likely be that the minimum aperture 

is related to the broader of the two Gaussian widths, but it may still be worth 

closer inspection. 

 Investigating profiles that are not Gaussian is also an area for future 

improvement. Though a Gaussian profile is a good approximation for most 

imager data, it would still be interesting to explore other profiles such as a 

Lorentzian, a combination of different curves, or a shape that is unique to a 

particular imaging system.  
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 Also, an exploration of the effects of bad pixels would be valuable. 

Typically, a bad pixel is corrected by replacing it with the median value of the 

surrounding pixels. This works well for extended sources, but can have a drastic 

effect on a point source. A study on how a corrected bad pixel affects the 

intensity extracted using the growth curve method for various image parameters 

would be a welcome addition to the analysis presented here.  

 Filtering the images in Fourier-transform space should also be explored. 

The study presented in this thesis could be repeated after applying a noise filter 

to all images. A Savitzky-Golay smoothing filter would be ideal for this application 

since it may preserve the original features that other smoothing techniques can 

alter [16]. Filtering may reduce the standard deviation of the measurement, but 

accuracy should be carefully examined after applying any filtering technique.  

 Finally, an analysis of real world data would be valuable. Due to sensitivity 

of the imaging systems and all data produced from them, no real world data 

analysis were included in this thesis.  



30 

6. Summary 

 The intent of this thesis was to show that the growth curve method of 

aperture photometry could be optimized based on image criteria. Unlike point 

spread function (PSF) fitting and other forms or aperture photometry, the growth 

curve method does not require a detailed PSF of the imaging system. It is also 

advantageous when analyzing data in which the point source may be blurred due 

to tracking errors or target motion.  

 In all, 84 synthetic image sets containing 100 images each were created 

for examination. Each image set contained a Gaussian point source and had 

various image parameters altered. The variable parameters were signal to noise 

ratio, full width half maximum of the Gaussian, and the centroid offset. Growth 

curves were calculated for every single image produced, and a linear fit was 

applied to each curve with every possible aperture start and stop combination 

possible between 1x1 and 21x21.  

 The resulting data were analyzed for how the optimal application of the 

growth curve is affected by image parameters. It was found that the optimal 

starting aperture was directly related to the full with half maximum (FWHM), 

loosely related to the centroid offset, and not related to the signal to noise ratio. 

The optimal stop aperture was directly related to the signal to noise and FWHM. 

Centroid offset had no effect on the optimal stop aperture size.  

 Finally, an attempt was made to create a general algorithm that could be 

applied to data of this type. An algorithm that works well is starting the linear fit at 
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the aperture that is one step above twice the FWHM and ending it at the aperture 

that is three steps above it. Utilizing this algorithm will provide accurate results 

while not sacrificing the time to examine a new growth curve each time. Time is 

also saved by not performing an optimization routine on every single data set to 

be analyzed. The presented algorithm works well for data within the scope of this 

study. However, the algorithm may need to be applied with care and/or modified 

prior to application to different data sets.  
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Appendix A: Tables 

Table 1: Image Parameters 

FWHM Signal to Noise Offset 

1.5 100, 75, 50, 25, 10, 5, 2 0, 0.2, 0.4 

2 100, 75, 50, 25, 10, 5, 2 0, 0.2, 0.4 

2.5 100, 75, 50, 25, 10, 5, 2 0, 0.2, 0.4 

3 100, 75, 50, 25, 10, 5, 2 0 

4 100, 75, 50, 25, 10, 5, 2 0 

5 100, 75, 50, 25, 10, 5, 2 0 

 

Tables 2-5 are the results of altering the centroid offset parameter. 

Table 2: Offset Comparison FWHM-1.5 S/N-100 

Offset 0           

Start Stop Signal StanDev Score Rank 

5x5 11x11 99.72 6.71 0.08 1 

5x5 7x7 100.27 6.88 0.08 2 

3x3 17x17 99.95 8.70 0.09 3 

3x3 11x11 98.74 5.37 0.09 4 

3x3 13x13 99.02 6.57 0.10 5 

            

Offset 0.2           

Start Stop Signal StanDev Score Rank 

3x3 17x17 100.05 7.86 0.08 1 

5x5 11x11 99.78 8.01 0.09 2 

5x5 9x9 100.47 7.57 0.09 3 

5x5 13x13 99.81 8.81 0.09 4 

3x3 15x15 99.29 7.81 0.10 5 

            

Offset 0.4           

Start Stop Signal StanDev Score Rank 

5x5 11x11 99.43 6.83 0.09 1 

5x5 13x13 100.12 8.74 0.09 2 

5x5 9x9 100.86 6.78 0.09 3 

5x5 7x7 98.94 6.45 0.10 4 

5x5 15x15 100.35 9.64 0.11 5 
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Table 3: Offset Comparison FWHM-2.5 S/N-100 

Offset 0           

Start Stop Signal StanDev Score Rank 

7x7 11x11 100.21 10.80 0.11 1 

5x5 15x15 99.13 9.43 0.12 2 

7x7 9x9 100.58 11.16 0.13 3 

7x7 15x15 99.70 12.78 0.14 4 

5x5 13x13 97.93 7.89 0.14 5 

            

Offset 0.2           

Start Stop Signal StanDev Score Rank 

5x5 15x15 98.90 9.41 0.13 1 

7x7 13x13 99.56 13.08 0.14 2 

5x5 21x21 98.88 12.33 0.16 3 

7x7 9x9 98.69 11.90 0.16 4 

7x7 15x15 99.19 13.56 0.16 5 

            

Offset 0.4           

Start Stop Signal StanDev Score Rank 

7x7 11x11 100.57 11.42 0.13 1 

5x5 15x15 98.90 9.76 0.13 2 

7x7 13x13 101.03 11.19 0.14 3 

7x7 17x17 100.17 14.19 0.15 4 

7x7 15x15 101.42 11.43 0.16 5 
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Table 4: Offset Comparison FWHM-1.5 S/N-25 

Offset 0           

Start Stop Signal StanDev Score Rank 

3x3 5x5 96.29 12.98 0.25 1 

3x3 9x9 96.31 18.67 0.30 2 

3x3 7x7 94.18 13.03 0.31 3 

5x5 9x9 102.20 25.45 0.31 4 

3x3 15x15 101.79 26.81 0.32 5 

            

Offset 0.2           

Start Stop Signal StanDev Score Rank 

3x3 15x15 100.28 27.08 0.28 1 

3x3 11x11 97.14 20.93 0.30 2 

5x5 7x7 101.92 28.87 0.34 3 

5x5 9x9 98.14 28.06 0.34 4 

3x3 7x7 92.97 13.62 0.36 5 

            

Offset 0.4           

Start Stop Signal StanDev Score Rank 

3x3 11x11 97.53 21.74 0.30 1 

5x5 7x7 99.46 28.35 0.30 2 

3x3 7x7 94.23 15.12 0.33 3 

5x5 9x9 98.09 29.50 0.36 4 

3x3 9x9 94.29 18.86 0.37 5 
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Table 5: Offset Comparison FWHM-2.5 S/N-25 

Offset 0           

Start Stop Signal StanDev Score Rank 

5x5 11x11 100.34 28.66 0.30 1 

5x5 13x13 101.97 31.30 0.37 2 

5x5 9x9 96.42 26.36 0.38 3 

5x5 7x7 93.62 24.47 0.45 4 

7x7 9x9 100.71 44.99 0.47 5 

            

Offset 0.2           

Start Stop Signal StanDev Score Rank 

5x5 13x13 100.32 34.78 0.36 1 

5x5 9x9 96.06 26.50 0.39 2 

7x7 11x11 99.93 48.28 0.49 3 

5x5 15x15 104.80 36.87 0.50 4 

5x5 11x11 94.31 32.59 0.52 5 

            

Offset 0.4           

Start Stop Signal StanDev Score Rank 

5x5 13x13 97.36 28.59 0.37 1 

5x5 15x15 100.40 38.70 0.40 2 

7x7 11x11 100.94 44.00 0.46 3 

5x5 17x17 102.20 46.06 0.52 4 

5x5 9x9 92.77 31.84 0.56 5 
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Tables 6 and 7 are the results of altering the FWHM parameter. 

Table 6: FWHM Comparison S/N-100 Offset-0 

FWHM 1.5           

Start Stop Signal StanDev Score Rank 

5x5 11x11 99.72 6.71 0.08 1 

5x5 7x7 100.27 6.88 0.08 2 

3x3 17x17 99.95 8.70 0.09 3 

3x3 11x11 98.74 5.37 0.09 4 

3x3 13x13 99.02 6.57 0.10 5 

            

FWHM 2           

Start Stop Signal StanDev Score Rank 

5x5 9x9 100.67 6.66 0.09 1 

5x5 11x11 99.01 7.33 0.10 2 

7x7 15x15 99.75 10.99 0.12 3 

5x5 19x19 100.08 11.67 0.12 4 

7x7 13x13 100.49 11.05 0.12 5 

            

FWHM 2.5           

Start Stop Signal StanDev Score Rank 

7x7 11x11 100.21 10.80 0.11 1 

5x5 15x15 99.13 9.43 0.12 2 

7x7 9x9 100.58 11.16 0.13 3 

7x7 15x15 99.70 12.78 0.14 4 

5x5 13x13 97.93 7.89 0.14 5 

            

FWHM 3           

Start Stop Signal StanDev Score Rank 

7x7 13x13 98.54 11.48 0.16 1 

7x7 17x17 100.55 14.50 0.16 2 

7x7 11x11 98.33 10.94 0.16 3 

7x7 15x15 98.70 12.87 0.17 4 

7x7 21x21 99.02 17.03 0.20 5 

            

FWHM 4           

Start Stop Signal StanDev Score Rank 

9x9 11x11 99.88 17.53 0.18 1 

9x9 17x17 99.28 18.28 0.21 2 
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9x9 13x13 97.86 15.56 0.22 3 

11x11 13x13 99.73 21.81 0.23 4 

9x9 15x15 98.50 18.63 0.23 5 

            

FWHM 5           

Start Stop Signal StanDev Score Rank 

11x11 15x15 99.37 20.61 0.23 1 

9x9 21x21 97.05 20.67 0.30 2 

13x13 17x17 99.43 28.44 0.30 3 

11x11 21x21 97.72 23.98 0.31 4 

11x11 19x19 97.45 26.52 0.35 5 
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Table 7: FWHM Comparison S/N-25 Offset-0 

FWHM 1.5           

Start Stop Signal StanDev Score Rank 

3x3 5x5 96.29 12.98 0.25 1 

3x3 9x9 96.31 18.67 0.30 2 

3x3 7x7 94.18 13.03 0.31 3 

5x5 9x9 102.20 25.45 0.31 4 

3x3 15x15 101.79 26.81 0.32 5 

            

FWHM 2           

Start Stop Signal StanDev Score Rank 

5x5 11x11 99.33 27.80 0.30 1 

5x5 7x7 98.47 30.82 0.36 2 

5x5 9x9 97.09 28.39 0.38 3 

3x3 17x17 97.68 37.00 0.45 4 

3x3 13x13 93.45 24.44 0.46 5 

            

FWHM 2.5           

Start Stop Signal StanDev Score Rank 

5x5 11x11 100.34 28.66 0.30 1 

5x5 13x13 101.97 31.30 0.37 2 

5x5 9x9 96.42 26.36 0.38 3 

5x5 7x7 93.62 24.47 0.45 4 

7x7 9x9 100.71 44.99 0.47 5 

            

FWHM 3           

Start Stop Signal StanDev Score Rank 

5x5 15x15 98.73 36.12 0.40 1 

7x7 9x9 99.55 41.29 0.43 2 

5x5 13x13 95.90 35.43 0.49 3 

7x7 13x13 98.75 48.29 0.53 4 

7x7 11x11 106.11 41.94 0.58 5 

            

FWHM 4           

Start Stop Signal StanDev Score Rank 

7x7 21x21 99.55 57.10 0.59 1 

7x7 9x9 94.08 49.91 0.71 2 

7x7 19x19 95.11 59.92 0.78 3 

7x7 15x15 91.46 52.75 0.83 4 
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9x9 11x11 94.34 64.20 0.85 5 

            

FWHM 5           

Start Stop Signal StanDev Score Rank 

9x9 13x13 96.04 62.12 0.77 1 

7x7 21x21 94.56 64.17 0.84 2 

9x9 17x17 93.44 65.58 0.90 3 

9x9 21x21 96.72 87.85 1.01 4 

5x5 19x19 80.68 52.26 1.23 5 
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Tables 8 and 9 are the results of altering the signal to noise parameter. 

Table 8: S/N Comparison FWHM-1.5 Offset 0 

S/N 100           

Start Stop Signal StanDev Score Rank 

5x5 11x11 99.72 6.71 0.08 1 

5x5 7x7 100.27 6.88 0.08 2 

3x3 17x17 99.95 8.70 0.09 3 

3x3 11x11 98.74 5.37 0.09 4 

3x3 13x13 99.02 6.57 0.10 5 

            

S/N 75           

Start Stop Signal StanDev Score Rank 

5x5 7x7 99.79 10.41 0.11 1 

5x5 11x11 99.46 10.46 0.12 2 

5x5 9x9 99.13 9.98 0.13 3 

3x3 13x13 98.12 7.65 0.13 4 

3x3 17x17 99.13 10.83 0.14 5 

            

S/N 50           

Start Stop Signal StanDev Score Rank 

3x3 7x7 97.51 8.04 0.16 1 

5x5 7x7 99.02 13.18 0.16 2 

3x3 9x9 97.03 8.87 0.18 3 

3x3 15x15 98.61 13.76 0.18 4 

5x5 9x9 101.68 13.86 0.19 5 

            

S/N 25           

Start Stop Signal StanDev Score Rank 

3x3 5x5 96.29 12.98 0.25 1 

3x3 9x9 96.31 18.67 0.30 2 

3x3 7x7 94.18 13.03 0.31 3 

5x5 9x9 102.20 25.45 0.31 4 

3x3 15x15 101.79 26.81 0.32 5 

            

S/N 10           

Start Stop Signal StanDev Score Rank 

3x3 9x9 97.47 42.06 0.51 1 

3x3 7x7 94.43 38.47 0.57 2 



45 

3x3 13x13 102.97 57.40 0.65 3 

5x5 9x9 100.22 66.64 0.67 4 

3x3 5x5 90.67 36.65 0.68 5 

            

S/N 5           

Start Stop Signal StanDev Score Rank 

3x3 7x7 101.36 73.39 0.76 1 

3x3 9x9 107.98 85.12 1.03 2 

3x3 5x5 88.15 67.80 1.12 3 

3x3 11x11 93.09 106.36 1.35 4 

5x5 9x9 104.42 132.58 1.40 5 

            

S/N 2           

Start Stop Signal StanDev Score Rank 

3x3 5x5 102.97 194.25 1.98 1 

3x3 7x7 92.77 182.75 2.19 2 

3x3 9x9 111.44 215.18 2.27 3 

1x1 7x7 66.29 94.78 2.44 4 

1x1 13x13 88.69 187.19 2.45 5 
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Table 9: S/N Comparison FWHM-4 Offset 0 

S/N 100           

Start Stop Signal StanDev Score Rank 

9x9 11x11 99.88 17.53 0.18 1 

9x9 17x17 99.28 18.28 0.21 2 

9x9 13x13 97.86 15.56 0.22 3 

11x11 13x13 99.73 21.81 0.23 4 

9x9 15x15 98.50 18.63 0.23 5 

            

S/N 75           

Start Stop Signal StanDev Score Rank 

9x9 21x21 101.20 26.18 0.29 1 

9x9 19x19 98.50 24.87 0.30 2 

9x9 17x17 102.04 25.21 0.31 3 

9x9 15x15 96.96 22.40 0.32 4 

9x9 13x13 96.58 22.58 0.34 5 

            

S/N 50           

Start Stop Signal StanDev Score Rank 

7x7 17x17 99.62 28.21 0.29 1 

7x7 19x19 99.82 30.28 0.31 2 

7x7 21x21 98.92 30.98 0.35 3 

9x9 15x15 101.98 30.75 0.36 4 

9x9 17x17 101.44 33.18 0.37 5 

            

S/N 25           

Start Stop Signal StanDev Score Rank 

7x7 21x21 99.55 57.10 0.59 1 

7x7 9x9 94.08 49.91 0.71 2 

7x7 19x19 95.11 59.92 0.78 3 

7x7 15x15 91.46 52.75 0.83 4 

9x9 11x11 94.34 64.20 0.85 5 

            

S/N 10           

Start Stop Signal StanDev Score Rank 

5x5 19x19 99.82 113.54 1.14 1 

7x7 11x11 97.45 127.26 1.38 2 

5x5 13x13 87.07 87.82 1.40 3 

3x3 15x15 81.94 71.75 1.42 4 
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3x3 19x19 91.08 107.96 1.45 5 

            

S/N 5           

Start Stop Signal StanDev Score Rank 

3x3 19x19 96.27 188.44 2.07 1 

3x3 17x17 84.18 148.78 2.24 2 

3x3 13x13 73.40 121.82 2.46 3 

3x3 21x21 124.22 220.16 2.50 4 

5x5 11x11 84.40 179.21 2.59 5 

            

S/N 2           

Start Stop Signal StanDev Score Rank 

5x5 9x9 98.96 293.45 3.00 1 

5x5 11x11 96.87 329.89 3.50 2 

1x1 19x19 104.83 374.88 3.72 3 

5x5 13x13 95.13 414.12 4.50 4 

3x3 21x21 106.58 473.47 4.64 5 
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Table 10 is the result of applying the presented algorithm to 60 data sets.  

Table 10: Algorithm Application Results 

Identifier S/N FWHM Offset Start Stop Signal StanDev Score Rank 

1 100 1.5 0 5x5 11x11 99.72 6.71 0.08 1 

2 100 2 0 5x5 11x11 99.01 7.33 0.10 2 

3 100 2.5 0 7x7 13x13 99.31 13.03 0.15 6 

4 100 3 0 7x7 13x13 98.54 11.48 0.16 1 

5 100 4 0 9x9 15x15 97.86 15.56 0.22 3 

6 100 5 0 11x11 17x17 94.19 23.05 0.42 12 

7 100 1.5 0.2 5x5 11x11 99.78 8.01 0.09 2 

8 100 2 0.2 5x5 11x11 99.47 8.01 0.10 3 

9 100 2.5 0.2 7x7 13x13 99.56 13.08 0.14 2 

10 100 1.5 0.4 5x5 11x11 99.43 6.83 0.09 1 

11 100 2 0.4 5x5 11x11 99.26 7.87 0.10 1 

12 100 2.5 0.4 7x7 13x13 101.03 11.19 0.14 3 

13 75 1.5 0 5x5 11x11 99.46 10.46 0.12 2 

14 75 2 0 5x5 11x11 99.12 8.36 0.11 1 

15 75 2.5 0 7x7 13x13 99.86 13.43 0.14 1 

16 75 3 0 7x7 13x13 98.41 15.14 0.20 3 

17 75 4 0 9x9 15x15 96.96 22.40 0.32 4 

18 75 5 0 11x11 17x17 98.33 31.85 0.37 4 

19 75 1.5 0.2 5x5 11x11 99.53 10.65 0.12 6 

20 75 2 0.2 5x5 11x11 99.20 10.48 0.13 2 

21 75 2.5 0.2 7x7 13x13 97.97 15.12 0.22 9 

22 75 1.5 0.4 5x5 11x11 98.58 9.09 0.13 4 

23 75 2 0.4 5x5 11x11 100.00 10.39 0.10 1 

24 75 2.5 0.4 7x7 13x13 99.82 16.44 0.17 2 

25 50 1.5 0 5x5 11x11 101.69 14.29 0.19 7 

26 50 2 0 5x5 11x11 100.16 15.71 0.16 1 

27 50 2.5 0 7x7 13x13 98.66 23.08 0.27 5 

28 50 3 0 7x7 13x13 98.92 23.03 0.27 3 

29 50 4 0 9x9 15x15 101.98 30.75 0.36 4 

30 50 5 0 11x11 17x17 95.36 40.15 0.56 4 

31 50 1.5 0.2 5x5 11x11 99.57 16.32 0.18 5 

32 50 2 0.2 5x5 11x11 98.88 15.45 0.19 4 

33 50 2.5 0.2 7x7 13x13 99.68 24.55 0.26 3 

34 50 1.5 0.4 5x5 11x11 99.56 15.35 0.17 2 

35 50 2 0.4 5x5 11x11 99.55 16.47 0.18 2 
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36 50 2.5 0.4 7x7 13x13 99.59 21.05 0.22 1 

37 25 1.5 0 5x5 11x11 102.96 33.45 0.41 9 

38 25 2 0 5x5 11x11 99.33 27.80 0.30 1 

39 25 2.5 0 7x7 13x13 99.48 45.98 0.48 6 

40 25 3 0 7x7 13x13 98.75 48.29 0.53 4 

41 25 4 0 9x9 15x15 110.68 72.29 0.97 16 

42 25 5 0 11x11 17x17 91.00 101.91 1.39 14 

43 25 1.5 0.2 5x5 11x11 107.71 26.83 0.48 13 

44 25 2 0.2 5x5 11x11 93.29 30.36 0.53 12 

45 25 2.5 0.2 7x7 13x13 107.38 52.05 0.71 16 

46 25 1.5 0.4 5x5 11x11 96.62 29.86 0.41 7 

47 25 2 0.4 5x5 11x11 97.32 31.75 0.41 4 

48 25 2.5 0.4 7x7 13x13 94.34 46.01 0.66 10 

49 10 1.5 0 5x5 11x11 97.27 77.08 0.87 10 

50 10 2 0 5x5 11x11 92.50 79.85 1.09 8 

51 10 2.5 0 7x7 13x13 98.07 135.09 1.44 13 

52 10 3 0 7x7 13x13 98.64 115.35 1.21 4 

53 10 4 0 9x9 15x15 88.11 176.67 2.36 18 

54 10 5 0 11x11 17x17 84.59 238.73 3.28 27 

55 10 1.5 0.2 5x5 11x11 96.67 65.71 0.78 5 

56 10 2 0.2 5x5 11x11 95.94 71.38 0.87 6 

57 10 2.5 0.2 7x7 13x13 100.40 130.01 1.31 12 

58 10 1.5 0.4 5x5 11x11 92.00 80.30 1.11 13 

59 10 2 0.4 5x5 11x11 98.82 79.37 0.84 5 

60 10 2.5 0.4 7x7 13x13 80.54 126.18 2.15 32 
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